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ABSTRACT: We have shown that the fundamental step responsible for enantioinduction in the inner-sphere asymmetric Tsuji
allylic alkylation is C−C bond formation through a seven-membered pericyclic transition state. We employ an extensive series of
quantum mechanics (QM) calculations to delineate how the electronic structure of the Pd-catalyzed C−C bond forming process
controls the reaction. Phase inversion introduced by d orbitals renders the Pd-catalyzed [π2s + π2s + σ2s + σ2s] reaction symmetry-
allowed in the ground state, proceeding through a transition state with Craig−Möbius-like σ-aromaticity. Lastly, we connect QM to
fundamental valence bonding concepts by deriving an ab initio “arrow-pushing” mechanism that describes the flow of electron
density through the reaction.

The fundamental step responsible for enantioinduction in
the inner-sphere asymmetric Tsuji allylic alkylation is C−C

bond formation through a seven-membered pericyclic transition
state (TS1) (Figure 1A).1 Since the original computational
reports by our groups2 and others,3 the relationship between this
class of seven-membered transition states to those of the

canonical pericyclic reactions as described by Woodward and
Hoffmann is underexplored.4 Exemplifying the peculiar nature
of the reaction, an analogous transformation in a system
comprised of main group elements remains elusive.5 Given the
key role of this seven-membered pericyclic process in
asymmetric catalysis, we sought to delineate the underlying
reactivity paradigm that enables this unique reactivity.
To obtain a general understanding of this bond forming event,

we first examined an analogous system comprised of main group
elements, namely, the reaction of diallyl sulfone 3 to sulfur
dioxide (4) and 1,5-hexadiene (5) (Figure 2). If the geometry of
the seven-membered quasi-cheletropic transition state (TS2) is
constrained to match that of TS1, then a suprafacial relationship
among the eight correlating orbitals with linear departure of the
chelefuge is mandated. Thus, the transformation of 3 to 4 + 5 is
designated [π2s + π2s + σ2s + σ2s], and the reverse is designated
as [ω2s + π2s + π2s + σ2s].
With four suprafacial two-electron terms, the ground-state

[π2s + π2s + σ2s + σ2s] pericyclic reaction of 3 to 4 + 5 is
anticipated to be symmetry-forbidden by the generalized
Woodward−Hoffmann rules.4 An identical conclusion is
reached for chelefuges such as CO and N2 in the ground
state.6 Given the low thermal barriers with which the Pd-
catalyzed transformations proceed (ΔG⧧ = 10−20 kcal/mol),1

we became curious as to whether the transformation is similarly
forbidden for a LnPd0-like chelefuge.
To uncover the electronic origins that enable the transition

metal-mediated pericyclic processes, we turned to ab initio
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Figure 1. Inner-sphere C−C bond formation in the Pd-catalyzed
asymmetric allylic alkylation reaction.1−3
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quantum mechanics (QM) calculations. Calculations were
carried out with the ORCA ab initio package (see the
Supporting Information for full computational details).7

Complete active space self-consistent field (CASSCF) theory
is utilized to capture the multiconfigurational nature of the
potential energy surface (PES), where the (8,8) active space is
defined to be the eight valence electrons in eight correlating
orbitals as described by orbital correlation diagrams. Dynamical
correlation is accounted for via N-electron valence state
perturbation theory8 (NEVPT2) single-point calculations on
the CASSCF wave functions. All geometry optimizations and
frequency calculations were carried out with the triple-ζ quality
def2-TZVP basis set9 on all atoms (with the small core
ECP28MWB pseudopotential10 on Pd, i.e., 18 explicit electrons
including the 4s and 4p core electrons). For transition metal
complexes with insignificant multiconfigurational character,
geometries were obtained with density functional theory
(DFT) (PBE0-D3(BJ)/def2-TZVP)11 followed by CASSCF/
NEVPT2 single-point calculations with the def2-TZVPP basis
set. Solvation was accounted for in single-point calculation with

the SMD model for THF.12 All energies reported are solvated
free energies at 298.15 K.
Beginning with main group analog diallyl sulfone (3),

generation of symmetry-adapted linear combinations of
correlating valence orbitals under approximate C2 symmetry
affords symmetric (a) and antisymmetric (b) sets of σ/σ*(C−S)
and π/π*(C−C) orbitals (Figure 2A). Correlating these orbitals
to those of the product implies an avoided crossing along the
ground-state potential energy surface (PES) as the diabatic state
describing 3, |ΦA⟩, corresponds to a doubly excited state of the
products. A single transition state connecting 3 to 4 + 5 was not
found on the CASSCF potential energy surface. Rather, a
stepwise process involving singlet diradical intermediate 10 was
found (Figure 2B).13 At this point, the ground-state
configuration interaction (CI) vector possesses nearly equal
contributions of configurations |ΦS⟩ and |ΦA⟩, leading to a
diradical index d = 98.0% (Figure 2C).14 Calculations with
multireference iterative difference-dedicated CI (IDDCI)
theory provide d = 95.4% and a singlet/triplet exchange
coupling constant (J) of 83 cm−1.15

Figure 2. (A) Orbital correlation diagram for the [π2s + π2s + σ2s + σ2s] quasi-cheletropic reaction of diallyl sulfone. Select natural orbitals from the
CAS(8,8) active space shown. (B) Symmetry-forbidden C−C bond formation from diallyl sulfone 3. CASSCF-based free energy estimates in kcal/mol
with the NEVPT2-corrected values in parentheses. (C) Relevant orbitals in the (8,8) active space of diradical 10 and ground-state CI vector fractional
composition.
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In summary, the required crossing of the starting material (3)
and product (4 + 5) diabatic ground states renders the
concerted [π2s + π2s + σ2s + σ2s] reaction symmetry-forbidden.
The ground-state PES of 3→ 4 + 5 is characterized by a stepwise
mechanism involving weakly coupled diradical 10, with an
overall ΔG⧧ of >50 kcal/mol, contrasting the low thermal
barriers of Pd-catalyzed transformations (ΔG⧧ = 10−20 kcal/
mol).1 Given this, we became curious as to whether the Pd-
catalyzed transformation is similarly symmetry-forbidden,
proceeding through a low-energy diradical intermediate, or
whether a unique set of symmetry elements describes the
transformation that conserves orbital symmetry through the
reaction.
In order to probe this hypothesis, we first considered the case

of a simplified bis(η1-allyl)PdII complex, 6. Contrary to 3, we
find a single low-energy transition state (TS3), withΔG⧧ = 13.4
kcal/mol, on the spin-restricted DFT (PBE0-D3(BJ)/def2-
TZVP) PES connecting 6 to 8 (Figure 3B). We obtain a similar
result for (η1-allyl)PdII enolate 7. We find that the ground-state
wave function along the PES is stable with respect to symmetry
breaking, suggesting that a single closed-shell singlet (CSS)
configuration is dominant. This suggests that simple DFT

geometries should be reliable for these palladium complexes and
will be used in the following.
For comparison to the symmetry-forbidden transformation of

3 to 4 + 5, we construct the corresponding orbital correlation
diagram for the conversion of 6 to 8 (Figure 3A). The four
occupied correlating orbitals of starting complex 6 are identical
in symmetry to those of diallyl sulfone 1. However, unlike the
products of the thermally-forbidden reaction (4 + 5), complex 8
maintains the orbital symmetries of ground-state minimum 6.
This is further evident in the composition of the ground-state
CASSCFwave function atTS3, with weights of 0.86 and 0.02 for
the dominant CSS configuration and second largest contributor,
respectively. Hence, the Pd-catalyzed transformation is
symmetry-allowed. The symmetry of the lone pair-like orbital
of the chelefuge differentiates between the thermally-allowed
and forbidden scenarios. In ground state SO2, the lone pair
occupies a symmetric sp2 valence orbital (2a in Figure 2A),
whereas in 8/9, this corresponds to the antisymmetric Pd-based
dx2−y2 orbital (2b in Figure 3A). Thus, the eight-electron seven-
membered pericyclic transition is thermally-allowed in the cases
of Pd complexes 7, 9, and 1 by virtue of the parity of the dx2−y2
orbital involved in σ bonding with the organic scaffold.16

Figure 3. (A) Orbital correlation diagram for the pericyclic reaction of 6 to 8. Select natural orbitals of CAS(8,8) wave function shown. (B) DFT
(PBE0-D3(BJ)) free energies with NEVPT2 [using DFT geometries and thermodynamical corrections] free energy estimates in parentheses. (C)
Orbital topologies.
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From the perspective of frontier molecular orbital (FMO)
theory, the transformation is readily interpreted as the
(in)ability of the chelefuge HOMO/donor to constructively
interact with the antisymmetric LUMO/acceptor of the 1,5-
hexadiene in the appropriate geometry (Figure 4). If
constructive overlap is achieved, then net bonding is preserved
through the transition state, and the reaction is thermally-
allowed.16a,b This is the case for the Pd-catalyzed transformation
as the Pd-based dx2−y2 HOMO of hypothetical L2Pd0 chelefuge σ
bonds with the diene in a suprafacial/antaranodal fashion
(Figure 3C), that is, with phase inversion, constructively mixing
with the diene LUMO (Figure 4C).17 This is not the case for the
symmetric nucleophile lone pair orbitals of SO2 and CO.6

It is well-understood that concerted, symmetry-allowed
pericyclic reactions preferentially proceed through aromatic
transition states.18 Thus, if the Pd-catalyzed [π2s + π2s + σ2s +
σ2s] reaction of 6 to 8 is indeed thermally-allowed, then TS3
should be aromatic in nature. From analysis of the active space
MOs atTS3we find elements of Craig−Möbius-like aromaticity
within the σ bonding framework.19 Particularly interesting is that
the HOMO andHOMO−2 conform to aMöbius topology with
the Pd dx2−y2 generating a phase inversion and an odd number of
nodes (1 and 3) along the ring (Figure 4A).20 To probe this
suspected aromaticity, we employ the nucleus-independent
chemical shift (NICS) method of Schleyer and co-workers.21 A
NICS(0) of −19.4 ppm is calculated at the geometric center of
the 7-membered ring of TS3, indicating aromaticity.22 Likewise,
a positive NICS is found at various points along the external
periphery. For enhanced visualization, the NICS at points along
2D grids are displayed in Figure 4B.
A principal objective of our investigation is to relate electronic

structure to intuitive concepts in chemical bonding. As such, we

sought to explore whether the Pd-catalyzed [π2s + π2s + σ2s +
σ2s] transformation could be properly described by valence
bonding concepts such as the ubiquitous “arrow-pushing”
mechanisms of Robinson and Ingold.23 Given the single-
configurational nature of the ground state density, the concept of
electron flow is addressed through analysis of intrinsic bonding
orbitals (IBOs) as described by Knizia and co-workers.24

Previously, IBO analysis was implemented to highlight electron
flow through transition states, discern between classes of
mechanisms, and evaluate synchronicity of bond making/
breaking in these events.24 Generation of IBOs proceeds
through a Pipek−Mezey-style localization where orbital charge
contribution to an atomic center is measured by Intrinsic
Atomic Orbital (IAO) charge.24a,b At no point in the localization
are empirical concepts of valence bonding introduced, thus the
ensuing insight is purely ab initio to the extent of the preceding
calculation.
IBO analysis was carried out with the full (PHOX)Pd enolate

system (Figure 5). Four IBOs (ϕi) undergo significant
displacement along the intrinsic reaction coordinate (IRC)
through 1 → TS1 → 2.25 The first of these, ϕ1, corresponds to
the localized π(C−C) bond of the enolate fragment, which
smoothly progresses to encapsulate the density of the newly
formed σ(C−C) bond of the product (Figure 5). Likewise, ϕ2,
ϕ3, and ϕ4 track the transformations of π(C−C) → π(C−C)′,
σ(Pd−C) → n(Pd; dx2−y2),

26 and σ(Pd−O) → π(C−O),
respectively. Considering these transformations together reveals
an intrinsic directionality to the flow of electron density in the
Pd-catalyzed [π2s + π2s + σ2s + σ2s] reaction. Inspection of the
relative magnitudes of net orbital displacement along the IRC
further suggests synchronicity in the bond making/breaking
events of the [π2s + π2s + σ2s + σ2s] process (Figure 5). In
accord with the initial reports of Knizia and co-workers, we also
find the localized IBOs obtained from the ground-state densities
closely resemble valence orbitals as portrayed in simple Lewis
structures. Thus, tracking the net flow of electron density is
carried out in the same valence bonding framework. The result is
a mechanism described by the synchronous movement of
valence bonding electron pairs, or more precisely, a first-
principles-derived “arrow-pushing” mechanism that accounts
for the net change in bonding along the reaction coordinate in a
chemically intuitive orbital basis (Figure 5).24b,c

In conclusion, we find the Pd-catalyzed [π2s + π2s + σ2s +
σ2s] reaction to be symmetry-allowed in the ground state owing
to the phase-inverting role of the Pd dx2−y2 orbital in the σ
bonding framework of the transition state. Insights from this
investigation are contextualized within the frameworks of the
Woodward−Hoffmann rules, orbital correlation diagrams, and
FMO theory. As with prototypical thermally-allowed pericyclic
reactions, we find the Pd-catalyzed [π2s + π2s + σ2s + σ2s]
reaction proceeds through an aromatic transition state. Finally,
we describe a first-principles-derived “arrow-pushing” mecha-
nism from analysis of the flow of electron density through the
transformation by means of IBOs. These efforts highlight the
connection between ab initio electronic structure calculations
and empirical bonding concepts, thus facilitating a natural
conceptualization of chemical bonding in these unique systems.
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Figure 4. (A) Relevant MOs from the CAS(8,8) active space that
contribute to the aromaticity of TS3. (B) NICS analysis of TS3. NICS
values in ppm. For grid points, green and red spheres denote negative
and positive NICS values, respectively, with the sphere radius depicting
the magnitude of the shift (r = (|δppm|)1/3). (C) FMO perspective of the
[π2 + π2 + σ2 + σ2] reaction.
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