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SUMMARY

The macroevolutionary transition from terra firma to obligatory inhabitance of the marine
hydrosphere has occurred twice in the history of Mammalia: Cetacea and Sirenia. In the case of
Cetacea (whales, dolphins, porpoises), molecular phylogenies provide unambiguous evidence that
fully aquatic cetaceans and semiaquatic hippopotamids (hippos) are each other’s closest living
relatives. Ancestral reconstructions suggest that some adaptations to the aquatic realm evolved in
the common ancestor of Cetancodonta (Cetacea+Hippopotamidae). An alternative hypothesis is
that these adaptations evolved independently in cetaceans and hippos. Here, we focus on the
integumentary system and evaluate these hypotheses by integrating new histological data for
cetaceans and hippos, the first genome-scale data for pygmy hippopotamus, and comprehensive
genomic screens and molecular evolutionary analyses for protein-coding genes that have been
inactivated in hippos and cetaceans. We identified eight skin-related genes that are inactivated in
both cetaceans and hippos, including genes that are related to sebaceous glands, hair follicles, and
epidermal differentiation. However, none of these genes exhibit inactivating mutations that are
shared by cetaceans and hippos. Mean dates for the inactivation of skin genes in these two clades
serve as proxies for phenotypic changes and suggest that hair reduction/loss, the loss of sebaceous
glands, and changes to the keratinization program occurred ~16 million years earlier in cetaceans
(~46.5 Ma) than in hippos (~30.5 Ma). These results, together with histological differences in the
integument and prior analyses of oxygen isotopes from stem hippopotamids (“anthracotheres”),
support the hypothesis that aquatic skin adaptations evolved independently in hippos and
cetaceans.
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INTRODUCTION

The evolutionary history of Mammalia is mostly one of deployment and adaptation to
different terrestrial habitats. Nevertheless, numerous mammalian clades have returned to
aquatic habitats, either on a part-time basis or with full-time commitment to the aquatic
realm. Fully aquatic clades include Cetacea and Sirenia, and in both cases there are extinct
taxa that document the macroevolutionary transition from land to water [1,2]. Semiaquatic
clades are more numerous and examples are found in a wide range of mammalian orders,
e.g., Monotremata (platypuses), Rodentia (beavers, capybaras), Carnivora (pinnipeds,
otters), and Cetartiodactyla (hippos). Adaptations to aquatic habitats are most extreme in
fully aquatic forms where virtually every organ system has been highly modified.
Locomotory adaptations in cetaceans include hind limb loss, modification of the front limbs
into flippers, and conversion of the tail into a powerful fluke [1]; sensory system
modifications include highly modified eyes with reduction or loss of color vision [3],
olfactory structures that are highly reduced or absent [4,5], and ultrasonic hearing in
odontocetes (toothed whales) [6].

Cetaceans also show changes to their integument. The skin of fully aquatic mammals
constantly interacts with dense, viscous, and thermally conductive water, which poses
unique physical challenges to its outer surface. The cetacean epidermis is exceptionally thick
and undergoes constant cellular renewal [7—13]. Even with its increased thickness there are
only three distinct histological layers — a basal layer (stratum basale), an intermediate layer
(stratum spinosum), and an outer layer (stratum corneum) [14]. The stratum granulosum,
which in land mammals lies beneath the stratum corneum, is ill-defined or absent [10,15].
The thick epidermis provides mechanical and thermal protection, and its fast rate of
sloughing and extensive epidermal-dermal interdigitations guard against potential damage
from locomotory shear stress [16]. The stratum basale forms deep root-like projections (=
rete ridges) that extend into the underlying dermis [17—19]. Extensive cytoplasmic lipid
vacuoles are present in the stratum spinosum and stratum corneum keratinocytes [20-22],
and may play metabolic and/or thermo-insulating roles [22,23]. Unlike terrestrial mammals,
cells of the stratum corneum retain nuclei and do not become fully keratinized in cetaceans
[14], possibly because fully aquatic mammals do not need a functional epidermal barrier to a
dry environment [24]. The cetacean dermis is thickened and consists of an upper papillary
layer that interdigitates with the epidermis and a lower reticular layer that gradually
transitions into the underlying blubber [10,11,18,25,26].

Cetaceans have reduced their ectodermal appendages including hair follicles and skin glands
[27]. They show no evidence of pelage (i.e., fur) hair follicle formation during embryonic
development although vibrissa follicles (i.e., whiskers) form on the head [28—32]. Mysticetes
and some odontocetes cyclically grow whiskers as adults, but most adult odontocetes lose
their whiskers and convert vibrissa follicles into degenerated pits that may perform sensory
functions [30,33,34]. Cetaceans lack oil-secreting sebaceous glands [31,32,35] and sweat
glands [1,14,27].

Among semiaquatic forms, hippos are the largest herbivores [36]. Both extant species
(Hippopotamus amphibius [river hippo], Choeropsis liberiensis [pygmy hippo]) spend
their

days in the water and emerge at dusk to feed on grasses and other vegetation. H. amphibius
has a thick epidermis and its stratum basale forms distinct projections into the papillary
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dermis [15]. H. amphibius shows elevated levels of epidermal lipid storage, although unlike
cetaceans the most prominent lipid deposits occur in intercellular locations within the
stratum corneum [23]. Hippos have bristle-like whiskers on their muzzle, and pelage hairs
that are sparsely distributed across most of the body [15]. Sebaceous glands have not been
reported, but previous histological studies have only examined limited regions of the body
[15,37-39]. Hippo skin contains anatomically complex sweat glands [37,38] that secrete a
red-orange pigmented sweat that may have sunscreen and/or antimicrobial properties
[40,41].

The traditional view based on morphology is that cetaceans are excluded from a
monophyletic Artiodactyla (even-toed hoofed mammals) [42,43] and that hippopotamids are
the sister taxon to pigs (Suidae) and/or peccaries (Tayassuidae) [44—48]. However,
molecular studies challenged this view and eventually provided conclusive evidence that
cetaceans are nested within Artiodactyla [49,50] as the sister to Hippopotamidae [51-54].

Given that cetaceans and hippopotamids share a variety of morphological and behavioral
characters that may be related to aquatic habitats (hairless or nearly hairless body, lack of
sebaceous glands, lack of scrotal testes, underwater parturition and nursing, underwater
detection of sound directionality), the most parsimonious hypothesis is that these characters
evolved in the common ancestor of these two clades (= Cetancodonta) and that this common
ancestor was semiaquatic [51,52,55,56] (Figure 1A). O’Leary and Gatesy [57] favored the
common origin hypothesis based on ancestral reconstructions of underwater hearing and
other aquatic characters. Gatesy et al. [1] favored the aquatic ancestry hypothesis,
specifically in freshwater, based on oxygen isotope values in pakicetid cetaceans and the
presence of dense, osteosclerotic bones in both hippos and basal stem cetaceans (raoellids,
pakicetids). Alternatively, semiaquatic adaptations evolved convergently in hippos and
cetaceans [36] (Figure 1B). In part, support for these two competing hypotheses turns on the
phylogenetic placement of various ‘Anthracotheriidae’, which collectively are the
paraphyletic stem group to Hippopotamidae. Some anthracotheres in the subfamilies
Anthrocotheriinae (e.g., Anthracotherium) and Microbunodontinae (e.g., Microbunodon)
are inferred to have been terrestrial based on oxygen isotope values, but members of
Bothriodontinae (e.g., Bothriogenys, Merycopotamus) have values that are consistent with
a semiaquatic lifestyle [58—62]. Cooper et al. [62] performed ancestral reconstructions on
bone microanatomy for a data set that included both anthracotheres and stem cetaceans
(“archaeocetes™) and concluded that the most recent common ancestor of Cetancodonta was
probably semiaquatic. Soe et al. [63] reported skeletal material for the Eocene
anthracotheriid Siamotherium, which they recovered as the most basal genus of
Anthracotheriidae in their phylogenetic analysis, and concluded there is no evidence of
clear-cut aquatic adaptations in Siamotherium.

At the molecular level, positive selection analyses provide minimal support for shared
aquatic adaptations in the ancestry of Cetancodonta [64]. However, branch-site selection
analyses can have weak statistical power. A more promising approach may be to search for
skin genes that have been inactivated in the common ancestor of cetaceans and hippos.
Previous authors have employed this approach to identify skin genes that were inactivated in
the common ancestor of cetaceans [16,24,65—-68]. However, only two candidate gene studies
[69—-70] have searched for skin genes that are inactivated in cetaceans and hippos. It remains
to be determined if a comprehensive genomic screen [sensu 67] will reveal additional skin
genes that have been inactivated in both cetaceans and hippos.

Curr Biol. Author manuscript.
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Here, we present morphological and molecular evidence to evaluate competing hypotheses
that aquatic skin adaptations evolved in the common ancestor of cetaceans and hippos versus
independently in these two groups (Figure 1). First, we provide histological data for different
regions of the integument in two cetacean species and both extant hippos. Next, we perform
a comprehensive genomic screen on representative cetaceans and hippopotamids for
proteincoding genes that have been inactivated in both of these clades and assess the timing
of pseudogenization for these genes. Finally, we discuss our results in the context of the rich
fossil record for stem cetaceans (“archacocetes™) and stem hippos (“anthracotheres”).

RESULTS AND DISCUSSION

Comparative Skin Histology Between Terrestrial and Aquatic Cetartiodactyla

We analyzed skin samples from the face, eyelid, ear, dorsum, ventrum, and tail in both
hippopotamid species, and from the facial region of one odontocete (Tursiops truncatus
[bottlenose dolphin]) and one mysticete (Eschrichtius robustus [gray whale]). Table 1
summarizes features of the skin in these taxa and also includes data from the literature for
terrestrial mammals including humans and two cetartiodactyls (cow, pig) that are close
relatives of Cetancodonta [71-79].

Cetaceans and hippos have prominent differences in the thickness and organization of the
epidermis (Figure 2). Consistent with previous reports [17—19], the facial epidermis in adult
Eschrichtius robustus (Figure 2E) and neonatal Tursiops truncatus (Figure 2F-G) is very
thick, with a wide stratum spinosum and an undulated stratum basale with deep root-like
rete ridges. By contrast, the epidermis in neonatal pygmy hippo is thin, with only shallow
rete ridges (Figure 2A-D).

Hippo skin contains hair follicles of both pelage and vibrissa morphology. Prominent
vibrissa follicles that contain collagen capsules and ringwulst (ring-like dermal structure that
surrounds the follicle) occur in the upper lip skin (Figure 2A; Figure S1C). Some tail-tip hair
follicles display collagen capsules (Figure 2B; Figure S1E), suggesting that the tail might
contain both pelage and vibrissa hair types. Hair follicles in ear and eyelid skin have typical
pelage morphology, and meibomian glands are absent (Figure 2D; Figure S1A-B, S2C). All
hippo hair follicles lack sebaceous glands (Figure 2; Figure S1). The facial skin of both
cetaceans has prominent vibrissa hair follicles (Figure 2E-G), but their structure differs from
hippo vibrissae in lacking collagen capsules and ringwulst. In both cetaceans, mesenchymal
dermal papillae and the epithelial hair matrix, two defining structures of actively growing
hair follicles, are present. However, the hair matrix in dolphin vibrissae is
uncharacteristically thin. There is no evidence of vibrissa-associated sebaceous glands in
either cetacean species.

Prominent sweat glands occur in hippo skin in several locations, including the upper lip,
dorsum, and ventrum (Figure 2C-D; Figure S2). The structure of the dermis is different in
cetaceans and hippos. There are abundant clusters of adipocytes throughout the dermis in
dolphin (Figure 2G), but we found no evidence for mature adipocytes in hippos. Hippos
exhibit prominent differences in dermal thickness across body sites, with tail and ear dermis
being the thinnest.

In conclusion, cetacean skin has a distinctly thick and highly undulated epidermis, a thick
and adipocyte-rich dermis, and morphologically-specialized facial vibrissa hair follicles as
the only skin appendage. Hippo skin is characterized by a much thinner epidermis, shallow
rete ridges, a dermis of variable thickness without adipocytes, highly specialized sweat
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glands, and both pelage and vibrissa hair follicles. Cetaceans and hippos both lack sebaceous
glands (Table 1). Our histological analyses for each species are limited to just one time
point. Additional histological features, not captured in our studies, are expected for both
hippos and cetaceans. For example, the epidermis undergoes annual molting in some
cetaceans including belugas [80] and the Okhotsk population of bowheads [81]. During the
spring molt the bowhead epidermis is at its thinnest and contains a highly vacuolated
stratum
spinosum that is not present in the fall [81,82].

Genomic Screens and Patterns of Gene Inactivation in Cetaceans and Hippos

We evaluated the shared versus independent aquatic ancestry hypotheses using existing and
newly-generated genomic data. Changes in both protein-coding sequences and cis-regulatory
elements could contribute to the evolution of skin phenotypes, but we focused on the former
because the timing of gene inactivation can be estimated from protein-coding sequences
[83]. We screened genomic alignments with 63 mammalian taxa for protein-coding genes
that are inactivated in Hippopotamidae and Cetacea but not in terrestrial cetartiodactyls. Our
screen included Hippopotamus amphibius, one baleen whale (Balaenoptera acutorostrata
[common minke whale]), and three toothed whales (Physeter macrocephalus [sperm
whale], Orcinus orca [killer whale], Tursiops truncatus). We identified 38 genes that have
inactivating mutations (frameshift indels, premature stop codons, splice site mutations,
deleted exons) or are completely deleted in these taxa (Table S1) including ten genes that
have primary or sole functions related to skin and its ectodermal appendages (ALOX15,
AWATI, KPRP, KRT2, KRT26, KRT77, KRTAP6-2, KRTAP6-3, KRTAP7-1,
TCHHL1). Two genes (KRTAP6-2, KRTAP6-3) were excluded because of ambiguous
orthology relationships, leaving eight genes for a detailed analysis. ABCC11, which our
screen found to be inactivated only in Cetacea, was added to our list because ABCCl11 is a
candidate gene of interest that is expressed in axillary sweat glands in humans [84,85].

Base errors in genome assemblies can mimic gene-inactivating mutations [86], so we used
additional genomic data to confirm the validity of inactivating mutations and thus the loss of
gene function. Our investigation of ten additional cetacean genomes revealed that all nine
genes have mutations shared between at least two species (as exemplified in Figure 3A-B),
which makes base errors highly unlikely. Three of these genes (AWATI1, KRTAP7-1,
ABCCI11) exhibit inactivating mutations shared between odontocetes and mysticetes,
indicating gene loss on the stem cetacean branch (Figure 3C). Three genes exhibit large or
entire gene deletions in odontocetes (KRT2, KRT26) or mysticetes (KRT77), and gene loss
dating (below) indicates that KRT26 and KRT77 losses happened on the stem cetacean
branch. The distribution of mutations in ALOX15 suggests that it was independently
inactivated on three different cetacean branches (Figure 3C). Finally, two genes are absent
from all cetacean (KPRP and TCHHL1) genomes. However, large deletions and
rearrangements in these loci obscure reconstructions of when these genes were lost because
there are no obvious breakpoints that are shared by odontocetes and mysticetes.

Genomic data for Choeropsis liberiensis are required to investigate whether mutations are
shared between both hippopotamid species. Therefore, we generated ~40X coverage of
I[lumina whole-genome shotgun data for C. liberiensis and mapped these reads to the
Hippopotamus amphibius assembly to obtain orthologous sequences. Eight of nine genes
(ALOXI15, AWATI, KPRP, KRT2, KRT26, KRT77, KRTAP7-1, TCHHL1) exhibit
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shared inactivating mutations in both hippopotamid species (Figure 3). ABCC11 is intact
in H. amphibius, but a two-bp frameshift deletion in exon 14 of C. liberiensis suggests a
recent
loss in pygmy hippo (Figure 3B).

Next we analyzed whether inactivating mutations in any of these nine skin-related genes are
shared by cetaceans and hippos, which would indicate gene inactivation in the common
ancestor of Cetancodonta. We did not find any shared inactivating mutations. Instead, all
nine genes have different inactivating mutations that indicate independent gene loss in
cetaceans and hippos (Figure 3, Table S2). Lopes-Marques et al. [70] reported the
convergent loss of both AWAT1 and MOGAT3 in Cetacea and Hippopotamus amphibius.
Our results confirm the independent inactivation of AWATTI and further suggest that
AWAT]I was inactivated in the common ancestor of H. amphibius and Choeropsis
liberiensis. However, our investigation suggests that MOGAT3 underwent a tandem
duplication, most likely in the common ancestor of the two extant hippopotamids (Figure 4),
and whereas one copy is pseudogenized, a functional copy of MOGAT3 is present ~15.7 kb
upstream (NCBI contig PVJP02910399).

Comparison of Inactivated Skin Genes and Epidermal Phenotypes in Cetaceans and

Hippos

The cetacean epidermis is very thick and renews rapidly, yet does not fully differentiate into
the highly keratinized stratum corneum of terrestrial mammals that confers barrier
functions. These modifications are associated with loss of function of numerous genes that
belong to the Epidermal Differentiation Complex (EDC) including S100 fused-type protein
genes (CRNN, FLG, FLG2, HRNR, RPTN, TCHH, TCHHL1, TCHHL2) [27,65] and
suprabasal epidermal keratin genes (KRT1, KRT2, KRT9, KRT10, KRT77, KRT23,
KRT24) [16]. Our analyses confirm these findings (Figure 5).

Cetaceans and hippos share features such as reduced differentiation of the epidermis, but
there are also differences. In particular, the hippo epidermis is much thinner, has shallower
rete ridges, and partially preserves epidermal barrier function as hippos spend substantial
time on land. These differences may explain why only one EDC gene, TCHHL1
(trichohyalin-like 1), is convergently inactivated in cetaceans and hippos (Figure 5).
TCHHL1 is predominantly expressed in the stratum basale and its specific function in
keratinocyte differentiation remains unclear [87,88]. Among suprabasal keratins, only KRT2
and KRT77 are independently inactivated in hippos (Figure 5), and the overall degree of
suprabasal keratin inactivation in hippos is less than in obligately-aquatic manatees, which
are more similar to cetaceans [16]. Other important epidermal genes that were reported as
inactivated in cetaceans are intact in hippos. These include terminal keratinocyte
differentiation-associated caspase CASP14 [65], PSORS1C2 (psoriasis susceptibility 1
candidate 2) [89], desmosome proteins DSG4 and DSCI1, transglutaminase TGMS5, and the
atypical lipoxygenase ALOXE3 [90]. In summary, cetaceans and hippos both have
inactivated copies of EDC and suprabasal keratin genes, but many more genes are knocked
out in cetaceans.

Our genome-wide screen identified two new epidermal genes, KPRP and ALOX15, that are
independently inactivated in cetaceans and hippos (Figure 5). KPRP (keratinocyte
prolinerich protein) is an epidermal terminal differentiation-associated protein, part of the
EDC, that is normally expressed in the stratum granulosum [91,92]. This epidermal layer is
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poorly defined in hippos [15] and absent in cetaceans [10]. A single-nucleotide

polymorphism in human KPRP is associated with atopic dermatitis, a condition diagnosed
by disrupted epidermal barrier function [93]. ALOX15 (arachidonate 15-lipoxygenase)
belongs to the lipoxygenase family of enzymes that catalyze bioactive lipids synthesis,
including resolvins that regulate resolution of excessive inflammatory responses [94,95].
ALOX15 is highly expressed in mouse epidermis and Axol15~/~ mutant mouse studies
suggest a role in epidermal barrier function [96].

We next focused on genes that are associated with hair follicles, sebaceous glands, and sweat
glands. We confirm previous findings that some or all cetaceans have inactivated hair inner
root sheath keratins (KRT25, KRT26, KRT27, KRT28, KRT71, KRT72, KRT73,
KRT74), hair, nail and tongue papillae keratins (KRT32, KRT33A, KRT33B, KRT34,
KRT35,

KRT38, KRT39, KRT40, KRT82, KRT83, KRT84), as well as keratins KRT3 and
KRT6B [16,97]. Of these, hippos have independently inactivated only KRT26. The
retention of functional hair and nail keratins in hippos is consistent with the presence of
prominent keratinized hoofs [98] and both pelage and vibrissa hairs. Brush-like hairs on the
tail aid in spreading feces during defecation, a behavior used by hippos for marking territory
[99]. Our analyses validate that cetaceans have inactivating mutations in genes (AWAT]I,
DGAT2L6, FABP9, ELOVL3, MOGAT3, MC5R) associated with sebaceous gland
function [69,70]. AWATTI is inactivated in both hippos, but in contradiction to Lopes-
Marques et al. [70] we show that these species retain an intact copy of MOGAT?3 (Figure 4).
Finally, we found that ABCC11, which is associated with axillary sweat gland function in
humans, is inactivated in all cetaceans and independently in pygmy hippo, which like river
hippo has active sweat glands that produce pigmented secretion. Therefore, ABCC11
function does not appear to be critical for pygmy hippos’ sweat gland biology.

The Timing of Gene Inactivations in Hippopotamidae and Cetacea

To understand when gene losses occurred, we performed dN/dS analyses with the coding
remnants of inactivated genes and equations from Meredith et al. [83]. To obtain robust
inactivation dates, we calculated dates using eight different combinations of codon
frequency model (CF1, CF2), fixed versus estimated w values for the pseudogenic branch
category, and one versus two rates for synonymous substitutions (Table S3). Mean
inactivation dates based on these estimates are shown in Figure 3 and Table 2. Mean
estimates for eight genes (ALOX15, AWATI, KPRP, KRT2, KRT26, KRT77, KRTAP7—
1, TCHHLT1) that were inactivated on the stem Hippopotamidae branch range from 53.92 to
5.42 Ma. These inactivation dates suggest that derived changes in hippopotamid skin,
including the loss of sebaceous glands, have a long history that encompasses the entirety of
the stem hippopotamid branch. The mean date for inactivation of these eight genes is ~30.5
Ma, which is near the midpoint of the stem hippopotamid branch. In addition, ABCC11
appears to have been inactivated very recently in Choeropsis liberiensis (Figure 3; Table 2).

For Cetacea, estimated inactivation dates for four genes (ABCC11, AWATI1, KRTAP7-1,
MOGAT?3) with evidence of pseudogenization on the stem cetacean branch based on shared
inactivating mutations range from 48.23 to 40.54 Ma (mean = 44.02 Ma). Three additional
genes are inactivated in all cetaceans, but are completely absent from either odontocetes
(KRT2, KRT77) or mysticetes (KRT26). As complete gene deletion could have erased
smaller mutations that inactivated these genes earlier in evolution, we used the remnants of
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these genes to estimate whether loss may have occurred on the stem Cetacea branch.

Inactivation dates suggest that two of these genes were pseudogenized on the cetacean stem
branch (53.92 Ma [KRT77], 48.93 Ma [KRT26]) whereas the date for KRT2 [33.64 Ma] is
slightly younger than the most recent common ancestor of crown Cetacea at ~36.72 Ma. The
mean date for the six genes (ABCC11, AWATI1, KRT26, KRT77, KRTAP7-1,
MOGAT?3) inactivated on the stem cetacean branch is ~46.5 Ma, which is near the midpoint
of the stem cetacean branch. Overall, the mean inactivation date for these six genes in
cetaceans is ~16.0 million years older than the mean inactivation date for eight genes that
were inactivated on the stem hippo branch. Among four overlapping genes (AWAT],
KRT26, KRT77, KRTAP7- 1), the mean date for inactivation on the stem Cetacea branch
(48.00 Ma) is 10.54 Ma older than the mean date for inactivation on the stem hippo branch
(37.46 Ma). Two additional genes (KPRP, TCHHL1) are completely absent in all examined
cetacean genomes, so the timing of these gene losses on the stem cetacean branch could not
be estimated. Finally, ALOX15 was independently inactivated in the common ancestor of
Delphinida (34.13 Ma), on the branch leading to Physeter (21.44 Ma), and in the common
ancestor of Balaenoptera

acutorostrata and B. bonaerensis (15.74 Ma).

Integration of Molecular, Histological, and Paleontological Data

Our analyses shed light on a key question pertaining to the evolution of Cetancodonta: Did
shared features associated with a (semi)aquatic lifestyle evolve in the common ancestor of
this clade or independently in Cetacea and Hippopotamidae (Figure 1)? If aquatic features of
hippos represent an intermediate condition in the transition from land to sea in the ancestry
of Cetacea [1], then features of extant hippos might provide insights into the behavior and
morphology of the earliest cetaceans from the Eocene [51]. Shared morphological features
include the loss of sebaceous glands and the general reduction or complete loss of pelage
hairs that cover the body. Previous histological studies that reported the absence of
sebaceous glands in river hippo were limited to skin from the trunk, neck, and limbs that has
few to no hairs [15]. However, sebaceous glands and hair follicles comprise an anatomically
connected pilosebaceous unit. Therefore, we thoroughly investigated several regions of
hairbearing skin and provide more definitive evidence for the absence of sebaceous glands in
both extant hippo species. Meibomian glands, which are modified sebaceous glands in the
eyelids, are also absent in both hippos (also see [39]). Further, vibrissa follicles in newborn
dolphin and adult gray whale lack sebaceous glands. These findings suggest the complete
body-wide absence of sebaceous glands in hippopotamids and cetaceans. The most
parsimonious explanation is that these glands were lost in the common ancestor of
Cetancodonta. Similarly, the most parsimonious explanation for body hair reduction (hippos)
or loss (cetaceans) is that pelage density started to decrease in the common ancestor of
Cetancodonta. By contrast, the distribution of lipids is intracellular in the stratum corneum
of cetaceans whereas hippos have intercellular stratum corneum lipids, which suggests
parallel evolution of the highly modified epidermis in these taxa.

If sebaceous gland loss and pelage reduction occurred in the common ancestor of
Cetancodonta, then we should find evidence of shared inactivating mutations in one or more
skin-specific genes in hippos and cetaceans. By contrast, the independent origins hypothesis
predicts convergent gene inactivations in cetaceans and hippos. Our genomic screens
identified several skin-specific genes that are inactivated in hippos and cetaceans. Strikingly,
while our genomic screens identified several skin-specific genes that are inactivated in
hippos and cetaceans, none of these genes have shared inactivating mutations, suggesting
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that pelage reduction and the loss of sebaceous glands occurred independently in

Hippopotamidae and Cetacea.

Mean dates for the inactivation of skin genes in these two clades serve as a proxy for
phenotypic changes. These dates suggest that pelage reduction/loss, the loss of sebaceous
glands, and changes to the keratinization program occurred 15.95 million years earlier in
Cetacea (46.48 Ma) than Hippopotamidae (30.53 Ma) based on all estimates for gene
inactivations or 10.54 million years earlier in Cetacea (48.00 Ma) than Hippopotamidae
(37.46 Ma) based on an overlapping set of four genes (Figure 3, Table 2). The mean date of
~48.0-46.5 Ma for Cetacea is older than the first obligately aquatic cetaceans in the family
Basilosauridae (e.g., Basilosaurus at ~41 Ma) and instead corresponds with the oldest
protocetids (e.g., Rodhocetus) from the Lutetian (47.8—41.3 Ma), which may have utilized
both land and water as sea lions do today [100]. The mean inactivation date (~37.5-30.5 Ma)
for hippopotamid skin genes, in turn, is in the range of early bothriodontine anthracotheres
(37.2-33.9 Ma) that are inferred to be the oldest semiaquatic members of Anthracotheriidae
[36]. It is also noteworthy that far more skin-related genes have been inactivated in Cetacea
than in Hippopotamidae (Figure 5), which is consistent with the more complete
reorganization of the epidermis and its derivatives in cetaceans than hippopotamids (Table 1;
Figures 2 and 5). Finally, our estimates of individual gene inactivations span tens of millions
of years for both stem + crown cetaceans and stem + crown hippos (Figure 3, Table 2),
suggesting that macroevolutionary changes to aquatic and semiaquatic habitats in these
clades have long, stepwise histories. Indeed, AWATT inactivation on the stem hippopotamid
branch and ABCC11 inactivation on the Choeropsis liberiensis branch have estimated
pseudogenization dates that are separated by ~54 million years.

Paleontological evidence also provides an opportunity to evaluate competing hypotheses that
(semi)aquatic features of cetaceans and hippos were acquired independently rather than in the
common ancestor of this clade (Figure 1). If the initial shift to a semiaquatic lifestyle occurred
in the common ancestor of Cetancodonta, then we might expect to find morphological and/or
geochemical evidence for this transition in (1) stem cetancodontans that are close to the crown
group, (2) the earliest stem cetaceans, and (3) the earliest stem hippopotamids. For stem
cetaceans, the most primitive and earliest branching clade is Raoellidae. Thewissen et al. [101]
inferred that the raoellid Indohyus was already semiaquatic based on a thickened medial wall
in the auditory bulla (= involucrum) that is associated with underwater hearing. Dense limb
bones (for ballast) and oxygen isotopic signatures of its teeth also suggest that Indohyus was
semiaquatic [101]. Evidence for semiaquatic specializations in stem cetancodontans and stem
hippopotamids is less forthcoming. Definitive stem members of Cetancodonta have been
difficult to identify owing to the uncertainty of cladistic analyses. Possible stem
cetancodontans have included various anthracotheres (e.g., Anthracotherium, Siamotherium
[56]; Elomeryx, Heptacodon,

Microbunodon [1]), an entelodontid (Brachyhyops [56], a cebochoerid (Cebochoerus
[1,102]), and the enigmatic Andrewsarchus [56]. We are not aware of compelling evidence
for aquatic adaptations in any of these taxa. Also, there is an emerging consensus that
anthracotheres comprise the paraphyletic stem group that gave rise to Hippopotamidae
[36,63,102]. Many anthracotheres (e.g., Anthracotherium, Siamotherium) appear to have
been terrestrial based on oxygen isotope values whereas taxa in the subfamily
Bothriodontinae have values that are consistent with a semiaquatic lifestyle [58,59,61,62].
However, the phylogenetic placement of presumed terrestrial anthracotheres as basal, stem
Hippopotamidae suggests that specializations for an aquatic/semiaquatic lifestyle evolved
independently in hippopotamids and cetaceans [36,63]. Thus, available paleontological
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evidence is largely aligned with distinct inactivating mutations in skin-related genes that

favor the independent origins hypothesis. Additional testing of this hypothesis will benefit
from more comprehensive taxonomic sampling of anthracotheres in both phylogenetic
analyses and oxygen isotope studies.

When sister taxa share the same anatomical, physiological, or behavioral features, as is the
case for aquatic features in Hippopotamidae and Cetacea, the simplest hypothesis is that
these features evolved in their common ancestor. However, our results suggest otherwise and
support the independent evolution of features that are related to the skin in hippos and
cetaceans. Given that most synapomorphies for Cetancodonta are aquatic traits [1],
morphological and behavioral support is very limited for this group if these traits evolved in
parallel. Along the same lines, pinnipeds have lost their sweet and umami taste receptors.
However, loss of these receptors occurred independently in the ancestors of the reciprocally
monophyletic Phocidae (seals) and Otaroidea (sea lions, fur seals, walruses) rather than in
the common ancestor of Pinnipedia [103]. Numerous morphological features related to
raptorial feeding and hydrodynamic locomotion also evolved independently within
Pinnipedia [104]. In Cetacea, multiple cranial and postcranial specializations for an aquatic
lifestyle evolved convergently in odontocetes and mysticetes [1,105,106]. Morphological
characters preserved in fossils and pseudogenic remnants of formerly functional genes
provide complementary sources of evidence for elucidating such cases of convergent or
parallel evolution.

Finally, gene inactivation dates have implications for understanding the physiology,
behavior, and appearance of extinct organisms [1,107]. In the case of cetaceans, inactivation
dates for AWAT1 and MOGATS3 are older than the inactivation date for ABCC11, which
suggests sebaceous glands were lost before sweat glands on the stem cetacean branch. Given
the timing of gene inactivations for these three genes, extinct protocetid whales may have
retained sweat glands but not sebaceous glands. Similarly, the hair inner root sheath keratin
KRT26 was lost relatively early on the stem cetacean branch (~49 Ma), suggesting that the
program for generating body pelage hair had already been compromised at this early stage in
cetacean evolution. Protocetids, which comprise a paraphyletic grade, were probably the
earliest transoceanic cetaceans, but also spent time on land where they may have given birth
and nursed their young [100,108,109]. These forms would certainly have looked different
than modern whales due to their more prominent hindlimbs and primitive cranial
morphology, but in other respects, such as having a largely hairless body, may have been
similar to modern cetaceans.

Pelage reduction and other shared morphological features of the skin in Cetancodonta are
not obligatory or exclusive features of a (semi)-aquatic lifestyle. For example, pinnipeds and
beavers maintain dense hair despite being semi-aquatic. By contrast, sparse hair evolved in
some fully terrestrial mammals (e.g., elephants, rhinoceroses) to enhance heat loss in
savanna habitats [110]. Selection for efficient thermoregulation is also hypothesized to have
contributed to hair reduction in hominins when our ancestors occupied the Africana savanna
[110,111].

In summary, the integration of new histological data with comprehensive analyses of
inactivated protein-coding genes provides strong support for the hypothesis that aquatic
adaptations of the skin evolved independently in cetaceans and hippos. Our study further
illustrates the potential of genomic data and in particular remnants of once functional genes
as dateable ‘molecular vestiges’ to complement morphological data in providing novel
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insights into ancestry and timing of key trait changes and macroevolutionary transitions

[68,83,86,107,112-117].

STAR*METHODS
RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be
directed to and will be fulfilled by the Lead Contact, Mark S. Springer (springer@ucr.edu).

Materials Availability—Gene alignments generated in this study have been deposited to
FigShare [https://doi.org/10.6084/m9.figshare.13549070.v1].

Data and Code Availability—The Illumina sequencing data generated for this study are
available under NCBI BioProject PRINA694317.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Genomic DNA from Choeropsis liberiensis (pygmy hippopotamus) was provided by G.
Amato (formerly at New York Zoological Society). The sources for skin samples used in
histological analyses are as follows: Choeropsis liberiensis (pygmy hippopotamus) skin
samples are from Smithsonian National Museum of Natural History — specimen number
395848 (unknown gender, neonatal); Hippopotamus amphibius (river hippopotamus) skin
samples are from Smithsonian National Museum of Natural History — specimen number
254870 (male, neonatal); Tursiops truncatus (common bottlenose dolphin) skin samples are
from Southwest Fisheries Science Center (NOAA) specimen numbers KKS0032 (unknown
gender, neonatal) and KXD0206 (late term fetus); Eschrichtius robustus (gray whale) skin
samples are from Southwest Fisheries Science Center (NOAA) Fisheries — specimen number
NEBO0083 (unknown gender, adult).

METHOD DETAILS

Histology—Formalin-fixed Choeropsis liberiensis and Hippopotamus amphibius skin
samples were first hydrated and rinsed in 1X PBS. Samples were then dehydrated through an
ethanol gradient (from 25% to 100%), processed through histoclear and embedded in paraffin.
Each hydration and dehydration step lasted for 12 hours. Tissues were sectioned at a thickness
of 10 pm with a microtome (Leica). Samples were stained with hematoxylin and eosin using
standard methods with minor modifications. Tissue sections were mounted with Permount
mounting media and visualized with Nikon Ti-E Upright microscope. Tissue whole-mounts
were captured with a Nikon dissecting microscope. Individual fields of Eschrichtius robustus
rostral skin were visualized and stitched together with Keyence microscope.

Quantification of Epidermal Thickness—Epithelial thickness of Choeropsis
liberiensis, Hippopotamus amphibius, Tursiops truncatus and Eschrichtius robustus rostral
skin was quantified using ImageJ (NIH). We included measurements ranging from: a) top to
start of rete ridge; b) start to end of rete ridge; and c) entire epidermis including rete ridge. Up
to 10 individual measurements were included per image field per species. Measurements are
reported as average epidermal thickness (um) + standard deviation (um) in Table 1.

Pygmy Hippopotamus Genome—Genomic DNA was sonicated at the University of

California, Riverside (UCR), Genomics Core Facility into ~550 bp fragments. We
constructed a genomic library using Illumina’s NeoPrep Library Prep System. Paired-end
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sequencing (150 bp) was performed at UCR. Raw Illumina sequence data have been

deposited at NCBI (PRINA694317).

Genomic Screens for Inactivated Genes—We used a genome alignment of placental
mammals with the human hg38 assembly as the reference [118]. Our gene loss detection
method [68,119] was used to screen for genes that exhibit inactivating mutations in the
genomes of bottlenose dolphin, killer whale, sperm whale, common minke whale, and river
hippo. We started with 19,769 genes annotated by Ensembl (http://www.ensembl.org)
version 90 [120] in the human genome and considered 18,363 genes that are present in the
assemblies of at least 31 of 63 placental mammals. To identify genes that were potentially
inactivated on the branch leading to hippos and cetaceans, we further extracted genes that are
inactivated in all cetaceans and the river hippo. We excluded genes that are intact in less
than three of six terrestrial outgroup artiodactyls included in the screen (Bos taurus [cow],
Capra hircus [goat], Camelus ferus [wild Bactrian camel], Pantholops hodgsonii [Tibetan
antilope], Bison bison [bison], Vicugna pacos [alpaca]). Finally, we used a more recent
assembly of the river hippo genome (GCA_004027065.2) to exclude instances where
assembly errors mistakenly led to genes classified as inactivated in the river hippo. This
resulted in a final list of 38 genes (Table S1).

BLAST Searches and Alignments—Genomic sequences encoding ten genes of interest
(ABCCIl11, ALOX15, AWATI1, KPRP, KRT2, KRT26, KRT77, KRTAP7-1, MOGAT3,
TCHHL1) were downloaded from NCBI for Homo sapiens (human), Bos taurus (cow),
and Equus caballus (horse). Sequences for each gene were aligned and exon annotations in
Bos and Equus were compared against those in Homo to ensure that orthologous regions
were annotated. Protein-coding sequences and flanking introns from Bos and Equus were
employed in BLAST searches against other cetartiodactyls and perissodactyls, respectively,
in NCBI’s ‘RefSeq Genome’ and ‘Whole-genome shotgun contigs’ databases. Additional
perissodactyls included Ceratotherium simum (white rhinoceros) and Dicerorhinus
sumatrensis (Sumatran rhinoceros). Additional cetartiodactyls included two camelids
(Camelus ferus [wild Bactrian camel], Vicugna pacos [alpaca)), one suid (Sus scrofa
[pig]), two bovids (Bubalus bubalis [water buffalo], Capra hircus [goat]), two giraffids
(Giraffa

camelopardalis [giraffe], Okapia johnstoni [okapi]), two cervids (Axis porcinus [hog
deer],

Odocoileus virginianus [white-tailed deer]), one hippopotamid (Hippopotamus amphibius
[river hippopotamus]), four mysticetes (Balaena mysticetus [bowhead, downloaded from
http://www.bowhead-whale.org/], Balaenoptera acutorostrata [common minke whale], B.
bonaerensis [Antarctic minke whale], Eschrichtius robustus [gray whale]), and ten
odontocetes (Physeter macrocephalus [sperm whale], Lipotes vexillifer [baiji],
Delphinapterus leucas [beluga], Phocoena phocoena [harbor porpoise], Neophocaena
asiaorientalis [narrow-ridged finless porpoise], Orcinus orca [killer whale],
Lagenorhynchus obliquidens [Pacific white-sided dolphin], Sousa chinensis [Indo-Pacific
humpback dolphin], Tursiops aduncus [Indo-Pacific bottlenose dolphin], Tursiops truncatus
[common bottlenose dolphin]). Additional searches were performed with other perissodactyls
or cetartiodactyls when the initial searches with Equus and Bos were unsuccessful in
retrieving complete orthologs. Megablast was employed for highly similar sequences and
blastn for less similar sequences. Complete protein-coding sequences and intervening introns
were imported into Geneious 11.1.5 [121] and aligned against reference sequences with
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MAFFT [122] with minor adjustments by eye. Aligned sequences were annotated for exons

and inspected for splice site mutations. Illumina sequences for Choeropsis liberiensis were
imported into Geneious and protein-coding sequences for the above-mentioned genes were
obtained using a map to reference approach with probe sequences from the closely related
Hippopotamus amphibius. We allowed for a maximum mismatch of 6% per read and
required at least two reads for base calling with a consensus threshold of 65%. We also used
MAFFT to align complete protein-coding sequences from all taxa for each gene.
Inactivating Mutations—Final alignments for protein-coding sequences for each gene
included 15-29 taxa given that some genes are deleted in one or more cetaceans. We
inspected the final protein-coding alignment for each gene for inactivating mutations
including exon deletions, frameshift insertions and deletions, altered start and stop codons,
and premature stop codons (splice site mutations screened above). For each gene, parsimony
optimizations with delayed transformation (deltran) were performed with PAUP* 4.0a150
[123] to map inactivating mutations to branches of the species tree (see below).

QUANTIFICATION AND STATISTICAL ANALYSIS

Phylogenetic Analyses—RAxML 8.2.11 [124] was run in Geneious to estimate
maximum likelihood gene trees for each protein-coding alignment. Gene trees were
inspected for suspicious relationships that conflict with the species tree (e.g., Camelus
grouping with Sus instead of Vicugna) but none were found. Instead, gene tree
incongruence was confined to conflicts that are readily explained by ILS such as Ruminantia
grouping with Suoidea or Physeter grouping with Mysticeti [125]. Rapid bootstrap analysis
(100 pseudoreplications) and a search for the best tree were performed in a single run. These
analyses were performed with a GTR + I' model of sequence evolution.

DN/dS Analyses—DN/dS analyses were performed with the codeml program of PAML
4.4 [126]. Analyses for each gene were performed with separate dN/dS categories for
functional branches that lack inactivating mutations, fully pseudogenic branches that
postdate the occurrence of an inactivating mutation on an earlier branch, and each
transitional branch that records the first occurrence of an inactivating mutation (e.g., [83]).
Analyses were performed with the codon frequency 1 (CF1) and codon frequency 2 (CF2)
models of codeml. We also performed analyses with estimated and fixed (dN/dS =1.00)
values for the fully pseudogenic branch category. We employed a species tree with higher
level (interordinal, interfamilial) relationships from Meredith et al. [127] and intrafamilial
relationships from Hassanin et al. [128] for terrestrial cetartiodactyls and McGowen et al.
[129] for cetancodontans.

Estimation of Gene Inactivation Times—Equations from Meredith et al. [83] were
used to estimate gene inactivation times in hippopotamids and cetaceans. We performed
calculations using eight different combinations of codon model (CF1 or CF2), fixed (1.0)
versus estimated values for dN/dS on fully pseudogenic branches, and equations that allow
for one versus two synonymous substitution rates [83]. Mean inactivation dates for each
gene are averages based on these eight different combinations. Divergence times for relevant
nodes in these calculations were taken from McGowen et al. [129].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Springer et al. perform genomic and anatomical comparisons to determine if aquatic
adaptations of the skin in hippos and cetaceans are shared derived or convergent features
in these two clades. The results of these comparisons support the hypothesis that aquatic
adaptions of the skin are convergent characters in hippos and cetaceans.

. Cetaceans and hippos have differences in the thickness and organization of the
skin

. Genomic screens identified 8 skin genes that are inactivated in hippos and
cetaceans

. None of these 8 genes share inactivating mutations in hippos and cetaceans

. Aquatic skin adaptations evolved independently in hippos and cetaceans
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Figure 1. Two hypotheses for the evolution of aquatic adaptations

(A) Evolution of shared aquatic features in the common ancestor of Hippopotamidae and
Cetacea, and (B) independent evolution of aquatic features on the cetacean stem lineage and
also on the hippopotamid stem lineage. Encircled red stars mark the initial evolution of
behavioral, physiological, and anatomical characteristics associated with adaptation to
aquatic environments. Aquatic (blue) and terrestrial (brown) specializations of extant taxa
(squares) and ancestral nodes (circles) are indicated in each scenario.
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Figure 2. Histological features of the skin in hippos and cetaceans

Hippo skin (A-D) and cetacean skin (E-G). (A) Whole mount (left) and histological
appearance (middle, right) of the upper lip skin in pigmy hippo. In the lip, vibrissa hairs
above the skin surface and anagen (active growth) phase vibrissa hair follicles are
prominent. Each lip vibrissa follicle has a prominent mesenchymal dermal papilla (black
arrowhead, center), a collagen capsule (white arrowheads, center), an epithelial matrix, a
mesenchymal ringwulst (black arrowheads, right), and an epithelial bulge (white
arrowheads, right). There is no histological evidence of sebaceous glands. (B) Whole mount
of tail skin from pygmy hippo (left) shows large hair follicles (white bracket). Histological
analysis (right) suggests that tail hair follicles might be of vibrissa type because they are
surrounded by a collagen capsule (white arrowheads). There is no histological evidence of
sebaceous glands. (C, D) Whole mount and corresponding histological view of upper lip
skin (C) and dorsal skin (D) in the pigmy hippo. At both sites, eccrine sweat glands are
present. On histology, secretory coils located deep in the dermis are marked with black
arrowheads; associated excretory ducts (where obvious) are marked with white arrowheads.
In the dorsal skin (D), secretory coils of the glands reside at the very base of the dermis and
come in contact with the underlying skeletal muscle layer. There is no histological evidence
of dermal adipocytes. (E) Histology of facial skin and a rostral vibrissa hair follicle in an
adult gray whale. The epidermis is thick and its basal layer is heavily undulated. The vibrissa
follicle has a typical anagen (active growth) phase morphology with a large mesenchymal
dermal papilla (green arrowheads, second panel) surrounded by epithelial matrix (yellow
arrowheads, second panel). The epithelial outer root sheath compartment located above hair
matrix is uncharacteristically thick and has prominent protrusions (yellow arrowheads, third
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panel). The vibrissa follicle is associated with distinct nerve bundles on either side (yellow

arrowheads, fourth panel). (F) Wholemount side view of rostral skin from neonatal common
bottlenose dolphin. Vibrissae hairs (black arrowheads) are clearly visible above the skin
surface. (G) Histological view of rostral vibrissa hair follicle from neonatal common
bottlenose dolphin. The vibrissa follicle has anagen phase morphology. A large dermal
papilla (green arrowheads, bottom middle panel) and an uncharacteristically thin epithelial
matrix (yellow arrowheads, bottom middle panel) are obvious. Unlike in gray whale, the
outer root sheath lacks undulations, and like in gray whale, the vibrissa follicle lacks
sebaceous gland. The overlaying epidermis displays prominent rete ridges (yellow
arrowheads, right panel). The surrounding dermis contains numerous adipocyte clusters
(blue arrowheads, right panel). Scale bar: A-E, G— 50 pm. See also Figure S1 and Figure S2.
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Delphinapterus ctc AAC ..21bp.. CCC CTG AAC ..9p.. GGA TGA AAT Delphinapterus ATC ATC -GG GGG AGC GCG CTC AGG GGG AAG catcac ATC ATC
Lipotes cTG AAC ..21bp.. CCC CTG AAC ..9%p.. GGA TGA AAT Lipotes ATC ATC -GG GGG AGC GCG CTC AGG TGG AAG catcac ATC ATC
Physeter cTG AAC ..21bp.. CCC CTG AAC ..9%p.. GGA TGA AAT Physeter ATC ATC -GG GGG AGC GCG CTC AGG GGG RAG catcac ATC ATC
B. acutorostrata c1G AAC ..21bp.. CCC CTG AAC ..9p.. GGA TGA AAT B. acutorostrata ATC ATC -GG GGA AGC GCG CTC AGG GGG AAG catcac ATC ATC
Balaena c1G AAC ..21bp.. CCC CTG AAC ..9bp.. GGA TGA AAT Balaena ATC ATC -GG GGA AGC GCG CTC AGG GGG AAG catcac ATC ATC
Hippopotamus CAC TG AAC ..21bp.. CCC C-G BAC ..9p.. GGA TGC AAT Hippopotamus ATC ATC AGG GGG AAT GCG CTC AGG GGG AAG cagcag ATC ATC
Choeropsis CAC TG AAC ..21pp.. CCC C-G AAC ..9p.. GGA TGC AAT Choeropsis ATC ATC AGG GGG AAT GCG CTC --G GGG AAG caccag ATC ATC
B. taurus CTG AAC ..21bp.. CCC CTG AAT ..9%p.. GGA TGC AAT B. taurus ATC ATC AAG GGG AGT GTG CTC AGG AGG AAG taccag ATC ATC
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Figure 3. Inactivating mutations in cetaceans and hippos

Inactivating mutations in KRTAP7-1 (A) and ABCC11 (B). Genes are shown with exons
represented by green rectangles proportional to their size and introns represented by
horizontal lines. Inactivating mutations are premature stop codons (vertical black line and
corresponding triplet), insertions (red arrowhead and corresponding insertion size), deletions
(vertical red line and corresponding deletion size, or red rectangle for completely deleted
exon), and splice site donor or acceptor mutations (red letters at the end or beginning of an
exon, respectively). Insets show the DNA sequence context of representative mutations.
Alignment files for inactivating mutations in all genes are available at https://doi.org/
10.6084/m9.figshare.13549070.v1. (C) The phylogenetic pattern of skin gene inactivations
mapped onto a timetree for Cetancodonta (Hippopotamidae + Cetacea). Independent
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inactivations of skin genes (red triangles) are marked on branches of the tree; inactivation

times are average estimates for each locus based on dN/dS analyses. The mean dates of skin
gene knockouts for six loci that were inactivated in the common ancestor of Cetacea and for
eight loci that were inactivated in the common ancestor of Hippopotamidae are indicated on
the stem lineages to these clades (encircled red stars). The timetree for extant lineages is
based on the molecular clock analysis of McGowen et al. [129]. Extinct lineages for stem
cetaceans (Indohyus, Ambulocetus, Georgiacetus) and stem hippopotamids (Elomeryx,
Libycosaurus) are approximately positioned relative to the geological time scale based on
earliest occurrence in the fossil record for each genus and phylogenetic hypotheses based on
morphological characters. See also Table S2 and Table S3.
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Figure 4. Gene tree for MOGAT3

The gene tree for MOGAT3 shows inferred gene duplication event in Hippopotamidae
(yellow circle) and parallel gene inactivations (red lineages). Seven gene knockouts are
inferred, including pseudogenization of the MOGAT?3 paralog that was derived from a
duplication event on the stem hippopotamid branch. Lineages with functional MOGAT3 are
gray, and lineages with inactivated MOGAT3 are colored red. Branches where inactivation
events (frameshift indels, premature stop codons) were inferred by parsimony optimization
of indels are gray and red, indicating the transition from functional to non-functional. The
dashed red lineage for Choeropsis liberiensis represents hypothesized deletion of the
MOGATS3 paralog in the genome of this species. Branch lengths are in expected numbers of
substitutions per site.
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Figure 5. Skin structures and inactivated skin genes

A comparison of skin structures in human, hippo, and dolphin with skin-associated gene
inactivations in hippopotamids and cetaceans. A) Schematic drawing of Homo sapiens skin.
Key anatomical structures, including multi-layered epidermis, dermis, dermal white adipose
tissue (AWAT), subcutaneous white adipose tissue (sWAT), and ectodermal appendages
(hair follicles with sebaceous glands and sweat glands) are shown and color-coded. The
epidermis (middle panel) is divided into stratum basale — which houses stem cells, and
suprabasal layers of differentiating cells that include stratum spinosum, stratum
granulosum, and

stratum corneum. dWAT is closely associated with growing hair follicles and secretory
coils of sweat glands. Additional abbreviations: IRS — inner root sheath; ORS — outer root
sheath; DP — dermal papilla; Mx — hair matrix; SCs — stem cells. (B) Schematic of “average”
hippo skin. The epidermis is relatively thin in comparison to cetaceans and displays shallow
rete ridges. The dermis lacks identifiable adipocytes. Ventral, dorsal and ear skin contains
pelage hair follicles that lack associated sebaceous glands. Facial skin features vibrissae
follicles that also lack sebaceous glands. Tail skin contains prominent hair follicles that have
vibrissalike morphology. Several body sites contain distinct sweat glands. (C) Schematic
drawing of facial skin in common bottlenose dolphin. The epidermis is very thick and
features prominent rete ridges. The dermis contains numerous adipocyte clusters. In
newborn dolphin, the facial skin contains actively growing vibrissae hair follicles that lack
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distinct collagen capsules, ringwulst, and sebaceous glands (left). In adult dolphin, facial :
vibrissae degrade, forming keratin-filled pits (right). Skin has no sweat glands. (D) Skin-
associated genes (excluding KRTAP genes) that are inactivated in some or all cetaceans and
sometimes in hippos (see main text). Genes are classified based on their cell type or skin
structurespecific expression and ontology as projected on the human skin diagram in A.
Genes in black font are inactivated in some (*) or all cetaceans but not in hippos; genes in
red font are independently inactivated in some (*) or all cetaceans and both hippos; the
single gene in blue font is independently inactivated in cetaceans and pygmy hippo.
Inactivated genes are based on the literature [16,24,65-67,69,70,89,117] and new
observations reported here. See also Table S1.
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Table 2.

Inactivation dates for pseudogenized skin genes.

Page 35

Mean inactivation dates for skin-related genes in cetaceans and hippos based on eight different combinations

of codon frequency model (CF1, CF2), fixed versus estimated dN/dS values for the pseudogenic branch

category, and one versus two rates for synonymous substitutions. Estimates based on individual analyses are

provided in Table S3.

Gene Hippopotamidae | Choeropsis | Cetacea Mysticeti | Balaenoptera | Delphinida | Physeteroidea
ABCCl11 0 40.54
ALOX15 23.54 15.74 34.13 21.44
AWATI 53.92 48.23
KPRP 39.01 CDS deleted
KRT2 26.41 a
33.64
KRT26 15.98 b
48.93
KRT77 45.75 c
53.92
KRTAP 7-| 34.18 40.94
1
MOGAT3 46.37
TCHHL1 5.42 CDS deleted
a
CDS (partial) only preset in Mysticeti.
b
CDS only present in Delphinida.
c
CDS only present in Mysticti.
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE | IDENTIFIER
Deposited Data
Choeropsis liberiensis Illumina whole-genome shotgun This PRINA694317
sequences paper
Nexus alignments of inactivated genes This https://doi.org/10.6084/m9.figshare.13549070.v1
paper
Software and Algorithms
PAML [126] http://abacus.gene.ucl.ac.uk/software/paml.html
Geneious 11.1.5 [121] https://www.geneious.com

Curr Biol. Author manuscript.



