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Measuring the Algorithmic Convergence of Randomized Ensembles:
The Regression Setting\ast 
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Abstract. When randomized ensemble methods such as bagging and random forests are implemented, a basic
question arises: Is the ensemble large enough? In particular, the practitioner desires a rigorous
guarantee that a given ensemble will perform nearly as well as an ideal infinite ensemble (trained
on the same data). The purpose of the current paper is to develop a bootstrap method for solving
this problem in the context of regression---which complements our companion paper in the context
of classification [Lopes, Ann. Statist., 47 (2019), 1088--1112]. In contrast to the classification setting,
the current paper shows that theoretical guarantees for the proposed bootstrap can be established
under much weaker assumptions. In addition, we illustrate the flexibility of the method by showing
how it can be adapted to measure algorithmic convergence for variable selection. Lastly, we provide
numerical results demonstrating that the method works well in a range of situations.
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1. Introduction. Ensemble methods are a fundamental approach to prediction, based on
the principle that accuracy can be enhanced by aggregating a diverse collection of prediction
functions. Two of the most widely used methods in this class are random forests and bagging,
which rely on randomization as a general way to diversify an ensemble [10, 11]. For these types
of randomized ensembles, it is generally understood that the predictive accuracy improves and
eventually stabilizes as the ensemble size becomes large. Likewise, in the theoretical analysis
of randomized ensembles, it is common to focus on the ideal case of an infinite ensemble [14,
28, 6, 50, 5, 55]. However, in practice, the user does not know the true relationship between
accuracy and ensemble size. As a result, it is difficult to know if a given ensemble is large
enough so that its accuracy will nearly match the ideal level of an infinite ensemble.

Beyond these statistical considerations, the relationship between accuracy and ensemble
size is important for computational reasons. Indeed, as an ensemble becomes larger, more
resources are needed to train it, to store it in memory, and to make new predictions on
unlabeled points---especially when large volumes of data are involved. Consequently, if it
were possible for the user to know the true relationship between accuracy and ensemble size, it
would be possible to do ``just enough"" computation to achieve a desired degree of convergence.
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Similarly, this would also make it possible to ensure that the amount of computation is adaptive
to the unique data the user has at hand.

The purpose of the current paper is develop a solution to the problem of measuring
algorithmic convergence for random forests, bagging, and related methods in the context of
regression. More specifically, we offer a bootstrap method for estimating how far the prediction
error of a finite ensemble is from the ideal prediction error of an infinite ensemble (trained
on the same data). To put this into perspective for the setting of regression, it is worth
noting that a theoretically justified method for solving this problem has not previously been
available. In this way, our work fills a significant gap in the literature by providing users with
a more rigorous alternative to informal rules that are used in practice for selecting ensemble
size. Furthermore, our approach is of broader conceptual interest, because it indicates new
possibilities for applying bootstrap methods to randomized algorithms outside the scope of
classical statistical inference (see subsection 1.3 for additional details).

In the remainder of the introduction, we give a precise description of the problem formu-
lation in subsection 1.1, followed by a summary of related work and contributions in subsec-
tion 1.2 and subsection 1.3.

1.1. Background and setup. To fix some basic notation for the regression setting, let
\scrD = \{ (Xj , Yj)\} nj=1 denote a set of training data in a space \scrX \times R, where each Yj is the
scalar response variable associated to Xj , and the space \scrX is arbitrary. In addition, for each
i = 1, . . . , t, we write Ti : \scrX \rightarrow R to refer to the ith regression function in an ensemble of size
t trained on \scrD .

Randomized regression ensembles. For the purpose of understanding our setup, it is helpful
to quickly review the methods of bagging and random forests. The method of bagging works
by generating random sets \scrD \ast 

1, . . . ,\scrD \ast 
t , each of size n, by sampling with replacement from \scrD .

Next, a standard ``base"" regression algorithm is used to train a regression function Ti on \scrD \ast 
i

for each i = 1, . . . , t. For instance, it is especially common to apply a decision tree algorithm
like CART [12] to each set \scrD \ast 

i . In turn, future predictions are made by using the averaged
regression function, which is defined for each x \in \scrX by

(1.1) \=Tt(x) =
1

t

t\sum 
i=1

Ti(x).

Much like bagging, the method of random forests uses sampling with replacement to generate
the same type of random sets \scrD \ast 

1, . . . ,\scrD \ast 
t . However, random forests adds an additional source

of randomness. Namely, if the space \scrX is (say) p-dimensional, and CART is the base regression
algorithm, then random forests uses randomly chosen subsets of the p features when ``split
points"" are selected for the CART regression trees. Apart from this distinction, random forests
also uses the average (1.1) when making final predictions. A more detailed description may
be found in [22].

In order to unify the methods of bagging and random forests within a common theoretical
framework, our analysis will consider a more general class of randomized ensembles. This
class consists of regression functions T1, . . . , Tt that can be represented in the abstract form

(1.2) Ti(x) = \varphi (x;\scrD , \xi i),D
ow

nl
oa

de
d 

07
/1

3/
21

 to
 1

28
.1

20
.2

39
.1

17
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s



ALGORITHMIC CONVERGENCE OF RANDOMIZED ENSEMBLES 923

where \xi 1, . . . , \xi t are i.i.d. ``randomizing parameters"" generated independently of \scrD , and \varphi is a
deterministic function that does not depend on n or t. In particular, the representation (1.2)
implies that the random functions T1, . . . , Tt are conditionally i.i.d., given \scrD . To see why
bagging is representable in this form, note that \xi i can be viewed as a random vector that
specifies which points in \scrD are randomly sampled into \scrD \ast 

i . Similarly, in the case of random
forests, each \xi i encodes the points in \scrD \ast 

i , as well as randomly chosen sets of features used for
training Ti. More generally, the representation (1.2) is relevant to other types of randomized
ensembles, such as those based on random rotations [9], random projections [15], and posterior
sampling [46, 17].

Algorithmic convergence. In our analysis of algorithmic convergence, we will focus on quan-
tifying how the mean-squared error (MSE) of an ensemble behaves as the ensemble size t be-
comes large. To define this measure of error in more precise terms, let \bfitxi t := (\xi 1, . . . , \xi t) denote
the randomizing parameters of the ensemble, and let \nu = \scrL (X,Y ) denote the joint distribu-
tion of a test point (X,Y ) \in \scrX \times R, which is drawn independently of \scrD and \bfitxi t. Accordingly,
we define

(1.3) mset =

\int 
\scrX \times R

\bigl( 
y  - \=Tt(x)

\bigr) 2
d\nu (x, y) = E

\Bigl[ 
(Y  - \=Tt(X))2

\bigm| \bigm| \bigm| \bfitxi t,\scrD \Bigr] 
,

where the expectation on the right is only over the test point (X,Y ). In this definition,
it is important to notice that mset is a random variable that depends on both \bfitxi t and \scrD .
However, due to the fact that the algorithmic fluctuations of mset arise only from \bfitxi t, we
will view the set \scrD as a fixed input to the training algorithm, and likewise, our analysis will
always be conditional on \scrD . Indeed, the conditioning on \scrD is motivated by the fact that
the user would like to assess convergence for the particular set \scrD that they actually have,
and this viewpoint has been adopted in several other analyses of algorithmic convergence for
randomized ensembles [46, 35, 53, 15, 36].

As a conceptual illustration, Figure 1 shows what algorithmic convergence looks like when
random forests is applied to a fixed training set \scrD . In detail, the left panel displays values of
the convergence gap mset  - mse\infty as decision trees are added during a single run of random
forests, from t = 1 up to t = 2,000, where mse\infty denotes the limit of mset as t \rightarrow \infty . If this
entire process is repeated by running random forests many more times on the same set \scrD ,
then the result is a large collection of overlapping sample paths, as shown in the right panel
of Figure 1. (Note also that none of these sample paths are observable in practice, and that
the figure is given only for illustration.)

From a practical standpoint, the user would like to know the size of the convergence gap
mset  - mse\infty as a function of t. For this purpose, it is useful to consider the (1 - \alpha )-quantile
of the random variable mset  - mse\infty , which is defined for any \alpha \in (0, 1) by

q1 - \alpha (t) = inf
\Bigl\{ 
q \in R

\bigm| \bigm| \bigm| P\bigl( mset  - mse\infty \leq q
\bigm| \bigm| \scrD \bigr) 

\geq 1 - \alpha 
\Bigr\} 
.

In other words, the value q1 - \alpha (t) is the tightest possible upper bound on the gap that holds
with probability at least 1 - \alpha , conditionally on the set \scrD . This interpretation of q1 - \alpha (t) can
also be understood from the right panel of Figure 1, where we have plotted q1 - \alpha (t) in gray,
with \alpha = 1/10.D
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Figure 1. Left panel: A sample path of mset  - mse\infty over a single run of random forests on the Housing
data described in section 5. Right panel: Many sample paths of mset  - mse\infty , with the 90\% quantile q.90(t)
overlaid in gray. (The curves in these panels are not observable to the user.)

The problem to be solved. Although it is clear that the quantile q1 - \alpha (t) represents a precise
measure of algorithmic convergence, this function is unknown in practice. This leads to the
problem of estimating q1 - \alpha (t), which we propose to solve.

Beyond the fact that q1 - \alpha (t) is unknown, it is also important to keep in mind that esti-
mating q1 - \alpha (t) involves some additional constraints. First, the user would like to be able to
assess convergence from the output of a single run of the ensemble method. However, at first
sight, it is not obvious that the output of a single run provides enough information to success-
fully estimate q1 - \alpha (t). Second, the method for estimating q1 - \alpha (t) should be computationally
inexpensive, so that the cost of checking convergence is manageable in comparison to the cost
of training the ensemble itself. Accordingly, we will show that the proposed method is able
to handle both of these constraints in section 2 and section 4, respectively.

1.2. Related work. The general problem of measuring the algorithmic convergence of
randomized ensembles has attracted sustained interest over the past two decades. For instance,
there have been numerous empirical studies of algorithmic convergence for both classification
and regression (e.g., [31, 2, 52, 48, 49]).

With regard to the theoretical analysis of convergence, we will now review the existing
results for classification and regression separately. In the setting of classification, much of the
literature has studied convergence in terms of the misclassification probability for majority
voting, denoted errt (a counterpart of mset), which is viewed as a random variable that de-
pends on \bfitxi t and \scrD . For this measure of error, the convergence of E[errt| \scrD ] and var(errt| \scrD )
as t\rightarrow \infty has been analyzed in the papers [46, 35, 15], which have developed asymptotic for-
mulas for E[errt| \scrD ], as well as bounds for var(errt| \scrD ). Related results for a different measure
of error can also be found in [29]. More recently, our companion paper [36] has developed a
bootstrap method for measuring the convergence of errt which is able to circumvent some of
the limitations of formula-based results.D
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ALGORITHMIC CONVERGENCE OF RANDOMIZED ENSEMBLES 925

In the setting of regression, algorithmic convergence results on mset are scarce in compar-
ison to those for errt. Instead, much more attention in the regression literature has focused
on how the size of t influences the variance of point predictions \=Tt(x), with x \in \scrX held fixed,
e.g., [56, 1, 62, 43, 53]. To the best of our knowledge, the only paper that has analyzed
algorithmic convergence in terms of a prediction error measure is [53], which considers the
risk rt := E[( \=Tt(X) - \mu (X))2], where \mu (x) := E[Y | X = x] is the true regression function, and
the expectation in the definition of rt is over all of the objects (X,\scrD , \bfitxi t). In particular, the
paper [53] develops an elegant theoretical bound on the gap between rt and the risk of an
infinite ensemble, denoted r\infty . Under the assumption of a Gaussian regression model with
\scrX = [0, 1]p, this bound has the form

(1.4) rt  - r\infty \leq 8
t

\Bigl( 
\| \mu \| 2\infty + \sigma 2(1 + 4 log(n))

\Bigr) 
,

where \sigma 2 = var(Y ), and \| \mu \| \infty = supx\in \scrX | \mu (x)| . However, due to the fact that the parameters
\sigma and \| \mu \| \infty are unknown, and that \| \mu \| \infty is inherently conservative, this bound does not lend
itself to a practical method for measuring convergence, and is primarily of theoretical interest.

1.3. Contributions.
Methodology. From a methodological standpoint, the approach taken here differs in sev-

eral ways from previous works in the regression setting. Most notably, our work looks at
algorithmic convergence in terms of an error measure that is conditional on \scrD . (For instance,
this differs from the analysis of rt mentioned above, which averages over \scrD .) In more concrete
terms, we will provide a quantile estimate \^q1 - \alpha (t), such that the bound

mset  - mse\infty \leq \^q1 - \alpha (t)

holds with a probability that is nearly 1 - \alpha or larger, conditionally on \scrD . This conditioning is
especially important from the viewpoint of the user, who is typically interested in algorithmic
convergence with respect to the actual dataset at hand. Another distinct feature of our method
is that it provides the user with a direct numerical estimate of convergence, whereas formula-
based results are more likely to depend on specialized models, involve conservative constants,
or depend on unknown parameters, such as in the bound (1.4).

In addition, the scope of the proposed method goes beyond mset, and in subsection 2.3
we will show how the bootstrap method is flexible enough that it can also be applied to
variable selection. In this context, the ensemble provides a ranking of variables according to
an ``importance measure,"" and this ranking typically stabilizes as t\rightarrow \infty . However, the notion
of convergence is somewhat subtle, because the importance measure for some variables may
converge more slowly than for others---which can distort the overall ranking of variables. As
far as we know, this issue has not been addressed in the literature, and the method proposed
in subsection 2.3 provides a way to check that convergence has been achieved uniformly across
variables, so that they can be compared fairly.

Theory. From a theoretical standpoint, the most important aspect of our work is that it
establishes consistency guarantees for the proposed methods under very mild assumptions. To
place our assumptions into context, it should be emphasized that most analyses of randomized
ensembles deal with specialized types of prediction functions T1, . . . , Tt that are simpler thanD
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926 MILES E. LOPES, SUOFEI WU, AND THOMAS C. M. LEE

the ones used in practice, e.g., [34, 1, 6, 5, 55, 53, 54, 36]. By contrast, our current results for
regression only rely on (1.2) and basic moment assumptions (to be detailed in section 3). In
particular, the crucial ingredient that enables us to handle general types of prediction functions
in our main result (Theorem 3.1) is a version of Rosenthal's inequality due to Talagrand [61],
which is applicable to sums of independent Banach-valued random variables. Moreover, this
allows our analysis to be fully nonasymptotic.

To make a more direct comparison with the main theoretical result in our previous paper in
the classification setting [36], there are three points to highlight. First, the previous analysis
requires that the classifier functions, say Q1, . . . , Qt, have a particular form, which is not
generally satisfied by the decision tree classifiers in random forests---whereas our current
theory is applicable to actual random forests. Second, if we let \omega (x) = E[Q1(x)| \scrD ] for any
fixed x \in \scrX , then the previous analysis assumes that the distribution \scrL (\omega (X)| \scrD ) has a
continuously differentiable density function, while the current analysis involves no analogue
of this condition. Third, the previous result on bootstrap consistency is stated in terms of a
distributional limit and does not provide a rate of convergence. Instead, our current result
avoids the reliance on such a limit and gives a more quantitative description of coverage
probability.

Links between inference and computation. Traditionally, bootstrap methods have been
viewed by statisticians as a way to use computation in the service of inference. For this
reason, it should be emphasized that our work looks at bootstrap methods from a reciprocal
perspective, since we aim to use inference in the service of computation (viz. using a quantile
estimate to measure algorithmic convergence).

More generally, this way of looking at bootstrap methods has the potential to be applied to
the convergence analysis of other randomized algorithms. For instance, in the growing field of
randomized numerical linear algebra (or ``matrix sketching""), it turns out that convergence can
often be framed in terms of the quantiles of certain error variables. Some specific examples
include randomized algorithms for matrix multiplication, least-squares, and singular value
decomposition [39, 40, 37], and we refer the reader to the recent survey [42, pp. 14--18] for a
related discussion of the potential of bootstrap methods in this context. In addition, several
variants of bootstrap methods have attracted interest as a way to assess the quality of solutions
obtained from stochastic gradient descent (SGD) algorithms [21, 32, 60, 20]. Likewise, given
the rising use of randomized algorithms in data science, it seems that considerable opportunity
remains for developing bootstrap methods along these lines.

Outline. The remainder of the paper is organized as follows. The proposed methods are
described in section 2, and our theoretical results on bootstrap consistency are presented
in section 3. Next, computational cost is assessed in section 4, and numerical experiments are
given in section 5. Finally, all proofs are given in the supplementary material (M134330 01.pdf
[local/web 586KB]).

2. Methodology. Below, we present our core method for measuring algorithmic conver-
gence with respect to mset in subsection 2.1. Later on, we show how this approach can be
extended to measuring convergence with respect to variable importance in subsection 2.3.

2.1. Measuring convergence with respect to mean-squared error. The intuition for the
proposed method is based on two main considerations. First, the definition of mset in (1.3)D
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ALGORITHMIC CONVERGENCE OF RANDOMIZED ENSEMBLES 927

shows that it can be interpreted as a functional of \=Tt. Namely, if we let f : \scrX \rightarrow R denote a
generic function, then we define the functional \psi according to

(2.1) \psi (f) =

\int 
\scrX \times R

(y  - f(x))2d\nu (x, y),

and it follows that mset can be written as

(2.2) mset = \psi ( \=Tt).

Second, it is a general principle that bootstrap methods are well suited to approximating
distributions derived from smooth functionals of sample averages---which is precisely what
the representation (2.2) entails.

To make a more detailed connection between these general ideas and the problem of
estimating q1 - \alpha (t), recall that we aim to approximate the distribution of the gap mset - mse\infty 
rather than just mset itself. Fortunately, the limiting value mse\infty can be linked with \psi through
the function \vargamma defined by

(2.3) \vargamma (x) = E[ \=Tt(x)| \scrD ],

where the expectation is only over the algorithmic randomness in \=Tt (i.e., over the random
vector \bfitxi t). More specifically, when the functions T1, . . . , Tt satisfy the representation (1.2),
the law of large numbers implies mse\infty = \psi (\vargamma ) under basic integrability assumptions, which
leads to the relation

(2.4) mset  - mse\infty = \psi ( \=Tt) - \psi (\vargamma ).

This relation is the technical foundation for the proposed method, since it suggests that in
order to mimic the fluctuations of mset - mse\infty , we can develop a bootstrap method by viewing
the functions T1, . . . , Tt as ``observations"" and viewing \=Tt as an estimator of \vargamma . In other words,
if we sample t functions T \ast 

1 , . . . , T
\ast 
t with replacement from T1, . . . , Tt, then we can formally

define a bootstrap sample of mset  - mse\infty according to

(2.5) mse\ast t  - mset = \psi ( \=T \ast 
t ) - \psi ( \=Tt),

where \=T \ast 
t := 1

t

\sum t
i=1 T

\ast 
i . In turn, after generating a collection of such bootstrap samples, we

can use their empirical (1  - \alpha )-quantile as an estimate of q1 - \alpha (t). However, as a technical
point, it should be noted that (2.5) is a ``theoretical"" bootstrap sample of mset  - mse\infty ,
because the functional \psi depends on the unknown distribution of the test point \scrL (X,Y ).
Nevertheless, the same reasoning can still be applied by replacing \psi with an estimate \^\psi , which
will be explained in detail later in this subsection. Altogether, the method is summarized by
Algorithm 2.1 below.

2.2. Using hold-out or out-of-bag samples. To complete our discussion of Algorithm 2.1,
it remains to clarify how the functional \psi can be estimated from either hold-out samples, or
so-called ``out-of-bag"" (oob) samples. With regard to the first case, suppose a set of m labeledD
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928 MILES E. LOPES, SUOFEI WU, AND THOMAS C. M. LEE

Algorithm 2.1. Bootstrap method for estimating q1 - \alpha (t).

For b = 1, . . . , B :

\bullet Sample t functions T \ast 
1 , . . . , T

\ast 
t with replacement from T1, . . . , Tt.

\bullet Compute the bootstrap sample zt,b := \^\psi ( \=T \ast 
t ) - \^\psi ( \=Tt).

Return: the empirical (1 - \alpha )-quantile of zt,1, . . . , zt,B to estimate q1 - \alpha (t).

samples \~\scrD = \{ ( \~X1, \~Y1), . . . , ( \~Xm, \~Ym)\} has been held out from the training set \scrD . Using this
set, the estimate \^\psi ( \=Tt) in Algorithm 2.1 can be easily obtained as

(2.6) \^\psi ( \=Tt) =
1

m

m\sum 
j=1

( \~Yj  - \=Tt( \~Xj))
2.

Analogously, we may also obtain \^\psi ( \=T \ast 
t ) by using \=T \ast 

t instead of \=Tt in the formula above.
If the regression functions T1, . . . , Tt are trained via bagging or random forests, it is possible

to avoid the use of a hold-out set by taking advantage of oob samples, which are a unique
attribute of these methods. To define the notion of an oob sample, recall that these methods
train each function Ti using a random set \scrD \ast 

i obtained from \scrD by sampling with replacement.
Due to this sampling mechanism, it follows that each set \scrD \ast 

i is likely to exclude approximately
(1  - 1

n)
n \approx 37\% of the training points in \scrD . So, as a matter of terminology, if a particular

training point Xj does not appear in \scrD \ast 
i , we say that Xj is ``out-of-bag"" for the function Ti.

Also, we write oob(Xj) \subset \{ 1, . . . , t\} to denote the index set corresponding to the functions
for which Xj is oob.

From a statistical point of view, oob samples are important because they serve as ``effec-
tive"" hold-out points. (That is, if Xj is oob for Ti, then the function Ti ``never touched"" the
point Xj during the training process.) Hence, it is natural to consider the following alternative
estimate of \psi based on oob samples:

(2.7) \^\psi o( \=Tt) =
1

n

n\sum 
j=1

(Yj  - \=Tt,o(Xj))
2,

where we define \=Tt,o(Xj) to be the average over the functions for which Xj is oob,

\=Tt,o(Xj) =
1

| oob(Xj)| 

\sum 
i\in oob(Xj)

Ti(Xj),

and | \cdot | refers to the cardinality of a set. Similarly, the quantity \^\psi o( \=T
\ast 
t ) may be defined in terms

of a corresponding average with the functions T \ast 
1 , . . . , T

\ast 
t . Lastly, in the case when oob(Xj)

is empty, we arbitrarily define \=Tt,o(Xj) = Yj , but this occurs very rarely. In fact, it can be
checked that for a given point Xj , the set oob(Xj) is empty with probability approximately
equal to (0.63)t.D
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2.3. Measuring convergence with respect to variable importance. In addition to their
broad application in prediction problems, randomized ensembles have been very popular for
the task of variable selection, e.g., [18, 58, 30, 23, 41, 24, 27]. Although a variety of procedures
have been proposed for variable selection in this context, they are generally based on a common
approach of ranking the variables according to a measure of averaged variable importance
(VI). Under this approach, the averaged VI assigned to each variable typically converges to a
limiting value as the ensemble becomes large. However, in practice, the user does not know
how this convergence depends on the ensemble size---much like we have seen already for mset.

Uniform convergence across variables. Before moving on to the details of our extended
method, it is worth mentioning an extra subtlety of measuring algorithmic convergence for
VI. Specifically, we must keep in mind that because variable selection is based on ranking,
it is important that algorithmic convergence is reached uniformly across variables. In other
words, if the VI for some variables converges more slowly than for others, then the ranking of
variables will be distorted by purely algorithmic effects. Motivated by this issue, our extended
method will provide a way to ensure that algorithmic convergence is achieved in a uniform
sense. As an illustration of this point, Figure 2 shows how uniform convergence of VI across
several variables can differ considerably from the convergence of VI for a single variable.
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Figure 2. Left panel: 1,000 sample paths of | vit(1)  - vi\infty (1)| , with the true 0.9 quantile curve in gray.
Right panel: 1,000 sample paths of the variable max1\leq l\leq p | vit(l)  - vi\infty (l)| , with the true 0.9 quantile curve in
gray. Both panels were obtained from the Music dataset described in section 5.

Setup for variable importance. To describe algorithmic convergence for VI in detail, let
T1, . . . , Tt be a randomized ensemble that satisfies the representation (1.2), and consider a
situation where the space \scrX is p-dimensional. Also, suppose that for each function Ti, we
have a rule for computing an associated value, say vii(l), to each variable l \in \{ 1, . . . , p\} .
(Note that since Ti is a random function, it follows that vii(l) is random as well.) Likewise,
the vector of such values associated with Ti is denoted vii = (vii(1), . . . ,vii(p)), and theD
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930 MILES E. LOPES, SUOFEI WU, AND THOMAS C. M. LEE

average over i = 1, . . . , t is denoted as

(2.8) vit =
1

t

t\sum 
i=1

vii.

Hence, by comparing the entries of this vector, i.e., (vit(1), . . . ,vit(p)), the user is able to rank
the variables, and this is commonly done using a built-in option from the standard random
forests software package [33].

Up to this point, we have not specified a particular rule for computing the values vii(l),
but several choices are available. For instance, two of the standard choices are based on
the notions of ``node impurity"" (for regression trees) or ``random permutations"" (for general
regression functions). However, from an abstract point of view, our proposed method does not
depend on the underlying details of these rules, and so we refer the reader to the book [22,
sect. 15.3.2] for additional background. Indeed, our proposed method is applicable to any
VI rule, provided that the random vectors vi1, . . . ,vit are conditionally i.i.d. given \scrD ---and
this is satisfied by both of the standard rules when T1, . . . , Tt follow the representation (1.2).
Also, it should be mentioned that a considerable literature has investigated limitations and
improvements of the standard VI rules, e.g., [59, 51, 58, 47, 45], and the study of variable
importance in this context continues to be an open direction of research.

When the vectors vi1, . . . ,vit are conditionally i.i.d. given \scrD , the vector vit will typically
converge to a limit, say vi\infty \in Rp, as t \rightarrow \infty and \scrD is held fixed. In order to measure
this convergence uniformly across l \in \{ 1, . . . , p\} , we will focus on the (unobserved) random
variable defined by

(2.9) \varepsilon t := max
1\leq l\leq p

| vit(l) - vi\infty (l)| ,

and our goal will be to estimate its (1  - \alpha )-quantile, denoted as

(2.10) q1 - \alpha (t) := inf
\Bigl\{ 
q \in [0,\infty )

\bigm| \bigm| \bigm| \bigm| P\bigl( \varepsilon t \leq q
\bigm| \bigm| \scrD \bigr) 

\geq 1 - \alpha 
\Bigr\} 
.

The bootstrap method for variable importance. By analogy with our method for estimating
the quantiles of mset  - mse\infty , we propose to construct bootstrap samples of \varepsilon t by resampling
the vectors vi1, . . . ,vit, and then estimating q1 - \alpha (t) with the empirical (1  - \alpha )-quantile. In
algorithmic form, the procedure is described in Algorithm 2.2 below.

Numerical results illustrating the performance of this algorithm, as well as Algorithm 2.1,
are given section 5. Also, in Appendix F of the supplementary material, we show how Al-
gorithm 2.2 can be adapted to the situation where convergence is measured in terms of the
relative error variable max1\leq l\leq p | vit(l) - vi\infty (l)| /| vi\infty | . Numerical results for the case of rela-
tive error are provided there as well.D
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Algorithm 2.2. Bootstrap method for estimating q1 - \alpha (t).

For b = 1, . . . , B :
\bullet Sample t vectors (vi\ast 1, . . . ,vi

\ast 
t ) with replacement from (vi1, . . . ,vit), and let

vi\ast t =
1
t

\sum t
i=1 vi

\ast 
i .

\bullet Compute the bootstrap sample

(2.11) \varepsilon \ast t,b := max
1\leq l\leq p

| vi\ast t (l) - vit(l)| .

Return: the empirical (1 - \alpha )-quantile of \varepsilon \ast t,1, . . . , \varepsilon 
\ast 
t,B to estimate q1 - \alpha (t).

3. Main result. In this section, we develop the main theoretical result of the paper (The-
orem 3.1), which quantifies the coverage probability of the bootstrap estimate \^q1 - \alpha (t) for
q1 - \alpha (t). Namely, we will show that for a fixed set \scrD , the inequality

(3.1) mset  - mse\infty \leq \^q1 - \alpha (t)

holds with a probability that is not much less than 1  - \alpha . Later on, we will also show that
a corresponding result holds for estimating the quantile q1 - \alpha (t) in the context of variable
importance (cf. subsection 3.1).

To establish the main result, we will rely on a common type of simplification, which is
to exclude sources of error beyond the resampling process itself. More specifically, we will
focus on bootstrap samples of the form mse\ast t  - mset, defined in (2.5), since these are not
affected by the extraneous error from estimating the functional \psi . (In other words, these
samples are different from those of the form \^\psi ( \=T \ast 

t )  - \^\psi ( \=Tt) and \^\psi o( \=T
\ast 
t )  - \^\psi o( \=Tt) described

in subsection 2.2.) Meanwhile, even with such a simplification, the proof of the result is still
quite involved. Also, this same choice was used in our previous analysis of the classification
setting for the same reasons [36], but apart from this detail, the analysis in the current paper
is entirely different.

With regard to the ensemble, it will only be assumed to satisfy the representation (1.2)
and a basic moment condition in Theorem 3.1. From the standpoint of existing theory for
randomized ensembles, these assumptions are very mild, because the representation (1.2) is
always satisfied by bagging and random forests. By contrast, it is much more common in the
theoretical literature to work with ensembles that are simpler than the ones used in practice,
and similarly, our previous work in the classification setting relied on a specialized type of
ensemble. Finally, it is notable that our result is fully nonasymptotic, whereas much existing
work on the convergence of randomized ensembles has taken an asymptotic approach that
does not always provide explicit rates of convergence.

Notation. If g and h are real-valued functions on \scrX \times R, we denote their inner product
with respect to the test point distribution \nu = \scrL (X,Y ) as

\langle g, h\rangle =
\int 
\scrX \times R

g(x, y)h(x, y) d\nu (x, y),
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932 MILES E. LOPES, SUOFEI WU, AND THOMAS C. M. LEE

and accordingly, we write \| g\| L2 =
\sqrt{} 

\langle g, g\rangle . In addition, recall the function \vargamma (x) = E[T1(x)| \scrD ]
from (2.3), and define the random variable

\zeta = 2 \langle \vargamma  - y, T1  - \vargamma \rangle ,

where \vargamma  - y is understood as the function that sends (x, y) to \vargamma (x)  - y. When the random
variable \zeta is conditioned on \scrD , we denote its standard deviation by

\sigma (\scrD ) =
\sqrt{} 
var(\zeta | \scrD ),

and the finiteness of this quantity will follow from assumption A2 below. Also, all expressions
involving 1/\sigma (\scrD ) will be understood as \infty in the exceptional case when \sigma (\scrD ) = 0. Lastly, for
each positive integer k, we define the moment parameter

(3.2) \gamma k(\scrD ) =
\bigl( 
E
\bigl[ 
\| T1  - y\| 2kL2

\bigm| \bigm| \scrD \bigr] \bigr) 1/k
.

To interpret the role of this parameter, note that the random variable mset can be written as
\| 1
t

\sum t
i=1(Ti  - y)\| 2L2

. Hence, the fluctuations of mset are determined by the tail behavior of
the summands Ti  - y, and the parameter \gamma k(\scrD ) describes the tails of the summands through
their moments.

Assumptions. With the above notation in place, the two assumptions for our main result
may be stated as follows.

A1. The ensemble T1, . . . , Tt can be represented in the form (1.2).

A2. There is at least one integer k \geq 2 such that \gamma 3k(\scrD ) <\infty .

Regarding the finiteness of \gamma 3k(\scrD ) in A2, it is noteworthy that this condition is satisfied
for any k whenever the regression functions T1, . . . , Tt are trained by the standard method
of CART and the test label distribution has moments of all orders. This is because the
regression trees trained by CART have a range that is determined by the training labels
Y1, . . . , Yn. In particular, if we define M(\scrD ) = max1\leq i\leq n | Yi| , then every tree Ti satisfies
supx\in \scrX | Ti(x)| \leq M(\scrD ). The same reasoning also applies beyond CART to any other method
whose predictions are obtained as local averages of training labels.

We now state the main result of the paper.

Theorem 3.1. Suppose that A1 and A2 hold. In addition, fix any small constant \alpha \in 
(0, 1), and let k \geq 2 be as in A2. Lastly, let \^q1 - \alpha (t) denote the empirical (1 - \alpha )-quantile of
B bootstrap samples of the form (2.5), and define the quantity

(3.3) \delta (\scrD ) = k2\surd 
t

\Bigl( 
\gamma 3k(\scrD )
\sigma (\scrD )

\Bigr) 3
+ e - k/2 +

\sqrt{} 
\mathrm{l}\mathrm{o}\mathrm{g}(B)

B .

Then, there is an absolute constant c0 > 0 such that \^q1 - \alpha (t) satisfies

(3.4) P
\Bigl( 
mset  - mse\infty \leq \^q1 - \alpha (t)

\bigm| \bigm| \bigm| \scrD \Bigr) 
\geq 1 - \alpha  - c0 \delta (\scrD ).D
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ALGORITHMIC CONVERGENCE OF RANDOMIZED ENSEMBLES 933

Remarks. In essence, the result shows that \^q1 - \alpha (t) bounds the unknown convergence gap
mset - mse\infty with a probability that is not much less than the ideal value of 1 - \alpha . To comment
on some further aspects of the result, note that the inequality (3.4) has the desirable property
of being scale-invariant with respect to the labels Y1, . . . , Yn and the functions T1, . . . , Tt.
More precisely, if we were to change the units of the labels and functions by a common scale
factor, it can be checked that both sides of (3.4) would remain unchanged.

Another important aspect of Theorem 3.1 deals with the dependence of \delta (\scrD ) on the value
of k, and it is of interest to develop a bound on \delta (\scrD ) that simplifies this dependence. To do
this, we can look at a basic situation where the regression functions are trained by CART and
the test label variable is bounded. In addition, we may consider the particular choice

(3.5) k = \lceil log(t) - 4 log log(t)\rceil ,

which leads to the following bounds:

e - k/2 \leq log(t)2\surd 
t

and
k2\surd 
t

\leq c1 log(t)
2

\surd 
t

for some absolute constant c1 > 0 and all t \geq 2. In turn, it follows that there is a number
c(\scrD ) > 0 not depending on t, k, or B, such that

(3.6) \delta (\scrD ) \leq c(\scrD ) \mathrm{l}\mathrm{o}\mathrm{g}(t)2\surd 
t

+

\sqrt{} 
\mathrm{l}\mathrm{o}\mathrm{g}(B)

B ,

which provides a considerable simplification. Hence, under the conditions just mentioned, and
with \scrD held fixed, the quantity \delta (\scrD ) converges to 0 at nearly parametric rates with respect
to t and B.

3.1. Bootstrap consistency in the context of variable importance. Having developed
our main result as a consistency guarantee for Algorithm 2.1 in the context of mean-squared
error, we now aim to establish a corresponding result for Algorithm 2.2 in the context of
variable importance, which is given as Theorem 3.2 below.

Setting and assumptions. In order to formulate this result, we will proceed along the lines
of the setup described in subsection 2.3. Recall that for each random function Ti with
i \in \{ 1, . . . , t\} , there is an associated random vector vii = (vii(1), . . . ,vii(p)) \in Rp, where
vii(l) refers to the importance assigned to the variable l by the function Ti, and the sample
average is denoted vit =

1
t

\sum t
i=1 vii. The only two conditions required of vi1, . . . ,vit are as

follows.

A3. The random vectors vi1, . . . ,vit \in Rp are conditionally i.i.d. given \scrD .

A4. There are positive numbers b(\scrD ) and b\prime (\scrD ) such that the following inequalities hold
almost surely for all l \in \{ 1, . . . , p\} :

(3.7) b(\scrD ) \leq 
\sqrt{} 
var(vi1(l)| \scrD ) and vi1(l) \leq b\prime (\scrD ).

Perhaps the most important point to emphasize about A3 is that it is automatically
satisfied by two of the standard variable importance measures used within random forests,D

ow
nl

oa
de

d 
07

/1
3/

21
 to

 1
28

.1
20

.2
39

.1
17

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



934 MILES E. LOPES, SUOFEI WU, AND THOMAS C. M. LEE

namely the ``node impurity"" measure and the ``random permutations"" measure [33]. More
generally, as long as each vector vii can be computed as a function of Ti, and as long as Ti
can be represented in the abstract form (1.2), then A3 will hold. With regard to the first
inequality in A4, this is simply a nondegeneracy condition, which rules out situations where
vii(l) has no algorithmic fluctuations. Meanwhile, the second inequality in A4 is always
satisfied by the two standard variable importance measures in random forests when each Ti
is trained via CART. Lastly, the condition A4 ensures that vit has a limit as t\rightarrow \infty with \scrD 
held fixed, which is given by vi\infty = E[vi1| \scrD ].

The gist of Theorem 3.2 below is that the output \^q1 - \alpha (t) of Algorithm 2.2 has reliable
coverage probability when it is used as an upper bound on max1\leq l\leq p | vit(l) - vi\infty (l)| .

Theorem 3.2. Suppose that A3 and A4 hold, and fix any small constants \alpha , \eta \in (0, 1).
In addition, let \^q1 - \alpha (t) denote the empirical (1  - \alpha )-quantile of B bootstrap samples of the
form (2.11), and define the quantity

(3.8) \~\delta =

\sqrt{} 
\mathrm{l}\mathrm{o}\mathrm{g}(2pt)3

t +

\sqrt{} 
\mathrm{l}\mathrm{o}\mathrm{g}(B)

B .

Then, there is a number \~c(\scrD ) > 0 depending only on the triple (\eta , b(\scrD ), b\prime (\scrD )) such that
\^q1 - \alpha (t) satisfies

(3.9) P
\biggl( 

max
1\leq l\leq p

| vit(l) - vi\infty (l)| \leq \^q1 - \alpha (t) + \eta 

\bigm| \bigm| \bigm| \bigm| \scrD \biggr) 
\geq 1 - \alpha  - \~c(\scrD ) \~\delta .

Remarks. Just like Theorem 3.1 given earlier, this result quantifies coverage probability in
a nonasymptotic manner. On the other hand, one small point of contrast with Theorem 3.1
is the constant \eta \in (0, 1) in the present result, which serves only as a theoretical expedient
and can be fixed at an arbitrarily small value. Concerning the proof, it leverages recent
advances on bootstrap methods for ``max statistics"" [16]. Furthermore, under some extra
structural assumptions on the covariance matrix of vi1, it is possible to replace the error term
log(2pt)3/2t - 1/2 in (3.8) with a dimension-free term of the form t - 1/2+\epsilon 0 for an arbitrarily
small constant \epsilon 0 > 0 [38].

4. Computation and speedups. In order for the proposed method to be a practical tool
for checking algorithmic convergence, its computational cost should be manageable in com-
parison to training the ensemble itself. Below, in subsection 4.1, we offer a quantitative
comparison, showing that under simple conditions, Algorithm 2.1 and Algorithm 2.2 are not
a bottleneck in relation to training t regression functions with CART. Additionally, we show
in subsection 4.2 how an extrapolation technique from our previous work on classification can
be improved in our current setting with a bias correction rule.

4.1. Cost comparison. Since the CART method is based on a greedy iterative algorithm,
the exact computational cost of training a regression tree is difficult to describe analytically.
Due to this difficulty, the authors of CART studied its cost in the simplified situation where
each node of a regression tree is split into exactly 2 child nodes (except for the leaves). To be
more precise, suppose \scrX \subset Rp, and let d \geq 2 denote the ``depth"" of the tree, so that there are
2d leaves. In addition, suppose that when the algorithm splits a given node, it searches overD
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ALGORITHMIC CONVERGENCE OF RANDOMIZED ENSEMBLES 935

\lceil p/3\rceil candidate variables that are randomly chosen from \{ 1, . . . , p\} , which is the default rule
when CART is used by random forests [33]. Based on these assumptions, the analysis in the
book [12, p. 166] shows that the number of operations involved in training t such trees is at
least of order \Omega (t \cdot p \cdot d \cdot n).1

The cost of Algorithm 2.1. To determine the cost of Algorithm 2.1, it is important to clarify
that when bagging and random forests are used in practice, the prediction error of the ensemble
is typically estimated automatically using either hold-out or oob samples. As a result, the
predicted values of each tree on these samples can be regarded as being precomputed by the
ensemble method. Once these values are available, the subsequent cost of Algorithm 2.1 is
simple to measure. Specifically, in the case of hold-out samples, (2.6) shows that the cost to
obtain \^\psi ( \=Tt)  - \^\psi ( \=T \ast 

t ) for each bootstrap sample is \scrO (t \cdot m), which leads to an overall cost
that is \scrO (B \cdot t \cdot m). Similarly, for the case of oob samples, the overall cost is \scrO (B \cdot t \cdot n).
Altogether, this leads to the conclusion that the cost of Algorithm 2.1 does not exceed that
of training the ensemble if the number of bootstrap samples satisfies the very mild condition

(4.1) B = \scrO (p \cdot d),

and this applies to either the hold-out or oob cases, provided m = \scrO (n). Moreover, our
discussion in subsection 4.2 will show that the condition (4.1) can be relaxed even further via
extrapolation.

Beyond the fact that Algorithm 2.1 compares well with the cost of training an ensemble,
there are several other favorable aspects to mention. First, the algorithm only relies on
predicted labels for its input, and it never needs to access any points in the space \scrX . In
particular, this means that the cost of the algorithm is independent of the dimension of \scrX .
Second, the bootstrap samples in Algorithm 2.1 are simple to compute in parallel, which
means that the runtime of the algorithm can essentially be reduced by a factor of B.

The cost of Algorithm 2.2. Many of the previous considerations for Algorithm 2.1 also
apply to Algorithm 2.2, but it turns out that the cost of Algorithm 2.2 can be much less when
n is large. Because each bootstrap sample in Algorithm 2.2 requires forming an average of t
vectors in Rp, it is straightforward to check that the overall cost is \scrO (B \cdot t \cdot p), where we view
the vectors vi1, . . . ,vit as being precomputed by the ensemble method. Consequently, the
cost is independent of n, and the algorithm is thus highly scalable. Furthermore, under the
setup of our earlier cost comparison with CART, the cost of Algorithm 2.2 does not exceed
the cost of training the ensemble if

B = \scrO (n \cdot d),

which allows for plenty of bootstrap samples in practice. Better still, our numerical experi-
ments show that just a few dozen bootstrap samples can be sufficient when n is on the order
of 104, indicating that Algorithm 2.2 is quite inexpensive in comparison to training.

4.2. Further reduction of cost by extrapolation. The basic idea of extrapolation is to
check algorithmic convergence for a small ``initial"" ensemble, say of size t0, and then use this
information to ``look ahead"" and predict convergence for a larger ensemble of size t > t0. This

1We use \Omega (\cdot ) and \scrO (\cdot ) in the conventional way, so that they respectively refer to lower and upper bounds
that hold up to constants [26, sect. 9.2].D
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936 MILES E. LOPES, SUOFEI WU, AND THOMAS C. M. LEE

general technique has a long history in the development of resampling methods and numerical
algorithms, and further background can be found in [8, 3, 4, 7, 13, 57] among others. In the
remainder of this section, we first summarize how extrapolation was previously developed in
our companion paper [36] and then explain how that approach can be improved in the present
context with a bias correction rule for oob samples.

A basic version of extrapolation. At a technical level, our use of extrapolation is based on
the central limit theorem, which suggests that the fluctuations of mset  - mse\infty should scale
like 1/

\surd 
t as a function of t. As a result, we expect that the quantile q1 - \alpha (t) should behave

like
q1 - \alpha (t) \approx \kappa \surd 

t

for some quantity \kappa that may depend on all problem parameters except t.
To take advantage of this heuristic scaling property, suppose that we train an initial

ensemble of size t0 and run Algorithm 2.1 to obtain an estimate \^q1 - \alpha (t0). We can then
extract an estimate of \kappa by defining

\^\kappa =
\surd 
t0 \^q1 - \alpha (t0).

Next, we can rapidly estimate q1 - \alpha (t) for all subsequent t \geq t0 by defining the extrapolated
estimate

(4.2) \^q \mathrm{e}\mathrm{x}\mathrm{t}
1 - \alpha (t) = \^\kappa \surd 

t
=

\surd 
t0\^q1 - \alpha (t0)\surd 

t
.

In particular, there are two crucial benefits of this estimate: (1) It is much faster to apply Al-
gorithm 2.1 to a small initial ensemble of size t0 than to a large one of size t. (2) If we would
like mset to be within some tolerance \epsilon > 0 of the limit mse\infty , then we can use the condition

\^q \mathrm{e}\mathrm{x}\mathrm{t}
1 - \alpha (t) \leq \epsilon 

to dynamically predict how large t must be chosen to reach that tolerance, namely t \geq 
(
\surd 
t0\^q1 - \alpha (t0)/\epsilon )

2.
Bias-corrected extrapolation. If the initial estimate \^q1 - \alpha (t0) is obtained by implement-

ing Algorithm 2.1 with oob samples, it turns out to be a biased estimate of q1 - \alpha (t0). Fortu-
nately, however, it is possible to correct for this bias in a simple way, as we now explain.

To understand the source of the bias, consider a particular training point Xj and note
that for an initial ensemble of size t0, the expected number of functions for which Xj is oob is
given by

(4.3) \tau n(t0) = (1 - 1/n)n \cdot t0.

In other words, this means that when an ensemble of size t0 makes a prediction on an
oob point, the ``effective"" size of the ensemble is \tau n(t0) rather than t0. As a result, if we
implement Algorithm 2.1 using oob samples with an initial ensemble of size t0, then the
output \^q1 - \alpha (t0) should really be viewed as an estimate of q1 - \alpha (\tau n(t0)) rather than q1 - \alpha (t0).

Based on this reasoning, we can adjust our previous definition of the estimate \^q \mathrm{e}\mathrm{x}\mathrm{t}
1 - \alpha (t)

in (4.2) by using

(4.4) \^q \mathrm{e}\mathrm{x}\mathrm{t},o
1 - \alpha (t) =

\surd 
\tau n(t0)\^q1 - \alpha (t0)\surd 

t
for t \geq \tau n(t0).

Later on, in section 5 we will demonstrate that this simple adjustment works well in practice.D
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Remark. As a clarification, it should be noted that the definition (4.4) is only to be used
when Algorithm 2.1 is implemented with oob samples, and the basic rule (4.2) should be used
in the case of hold-out samples. Also, the basic rule (4.2) can be easily adapted to extrapolate
the estimate produced by Algorithm 2.2, and so we omit the details in the interest of brevity.

5. Numerical results. We now demonstrate the bootstrap's numerical accuracy in the
tasks of measuring algorithmic convergence with respect to both mean-squared error and
variable importance. Overall, our results show that the extrapolated oob estimate is accurate
at predicting the effect of increasing t. In fact, the results show that extrapolation succeeds
at predicting what will happen when t is increased by a factor of 4 beyond t0, and possibly
much farther.

5.1. Organization of experiments.
Data preparation. Our experiments were based on several natural datasets that were each

randomly partitioned in the following way. Letting \scrF denote the full set of observation pairs
(X1, Y1), (X2, Y2), . . . for a given dataset, we evenly split \scrF into a disjoint union \scrF = \scrD \sqcup \scrT ,
where \scrD was used as a training set, and \scrT was used as a ``ground truth set"" to approximate
the true quantile curves q1 - \alpha (t) and q1 - \alpha (t).

Since Algorithm 2.1 relies on a hold-out set, we also used a relatively small subset \scrH \subset \scrT 
for that purpose. Specifically, the hold-out set \scrH was chosen so that its cardinality satisfied
| \scrH | /(| \scrH | + | \scrD | ) = 1/6, up to rounding error. This reflects a practical situation where the user
can only afford to allocate 1/6 of the available data for the hold-out set. In other words, the
idea is to think of the user as only having access to \scrD \sqcup \scrH , while the set \scrT is used externally
to determine q1 - \alpha (t) and q1 - \alpha (t).

Each of the full datasets are briefly summarized below.

\bullet Housing. This dataset originates from the 1990 California census and is available as
part of the online supplement to the book [25]. The observations correspond to dif-
ferent housing districts, and for each one, there are nine features for predicting the
median home price in that district. (| \scrF | = 20,640, | \scrD | = | \scrT | = 10,320, | \scrH | = 4,128.)

\bullet Protein. This dataset was collected from the fifth through the ninth series of CASP ex-
periments [44] and is available at the UCI repository [19] under the title Physicochemi-
cal Properties of Protein Tertiary Structure Data Set. The observations correspond to
artificially generated conformations of proteins (known as decoys) that are described
by nine biophysical features. Each decoy can be thought of as a perturbation of an
associated ``target"" protein, and the features are used to predict how far the decoy is
from its target. (| \scrF | = 45,730, | \scrD | = | \scrT | = 22,865, | \scrH | = 4,573.)

\bullet Music. This dataset consists of audio recordings (observations) described by 68 fea-
tures that are used to predict the geographic latitude of the recording, as described
in [64]. The dataset is available at the UCI repository [19] under the title Geographical
Origin of Music Data Set. (| \scrF | = 1,059, | \scrD | = | \scrT | = 530, | \scrH | = 106.)

\bullet Diamond. This dataset arises from a collection of diamonds, each described by nine
features that are used to predict the diamond's price. The dataset was obtained asD
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938 MILES E. LOPES, SUOFEI WU, AND THOMAS C. M. LEE

a downsampled version of diamonds in the package ggplot2 [63]. (| \scrF | = 10,000,
| \scrD | = | \scrT | = 5,000, | \scrH | = 1,000.)

Computing the true quantile curves q1 - \alpha (t) and q1 - \alpha (t). Once a full dataset \scrF was parti-
tioned as above, we ran the random forests algorithm 1,000 times on the associated set \scrD ,
using the R package randomForest [33]. The overall process was a serious computational
undertaking, because 2,000 regression trees were trained during every run, and hence a total
of 2\times 106 trees were trained on each dataset.

During each run, as the ensemble size increased from t = 1 up to t = 2,000, the corre-
sponding true values of mset were approximated with the ensemble's error rate on \scrT . Also,
the true value of mse\infty was approximated with the average of the 1,000 approximate values
of mse2,000. In this way, the collection of runs produced 1,000 approximate sample paths of
mset  - mse\infty , similar to those illustrated in the right panel of Figure 1. Finally, the quantile
curve q.90(t) was approximated by using the empirical 90\% quantile of the sample paths at
each t \in \{ 1, . . . , 2,000\} .

To handle the setting of variable importance, essentially the same steps were used. Specifi-
cally, we measured variable importance in terms of node impurity to compute vit \in Rp at every
value t \in \{ 1, . . . , 2,000\} , for each of the 1,000 runs mentioned above. In addition, we approx-
imated vi\infty \in Rp with the average of the 1,000 realizations of vi2,000. Altogether, these com-
putations provided us with 1,000 approximate sample paths of \varepsilon t = max1\leq l\leq p | vit(l) - vi\infty (l)| ,
and then we used the empirical 90\% quantile at each t \in \{ 1, . . . , 2,000\} as an approximation
to q.90(t).

Applying the bootstrap algorithms with extrapolation. For each of the described 1,000 runs of
random forests, we applied the extrapolated versions of Algorithm 2.1 and Algorithm 2.2 at the
initial ensemble size of t0 = 500, using a choice of B \in \{ 25, 50, 100\} bootstrap samples. (The
extrapolation was carried out to a final ensemble size of t = 2,000.) Also, for Algorithm 2.1,
we implemented both the hold-out and oob versions, including the bias correction for the
oob samples described in (4.4). Hence, this provided us with 1,000 realizations of each type
of estimate, allowing for an assessment of their variability.

5.2. Numerical results for mean-squared error.
Organization of the plots. The hold-out and oob estimates for q.90(t) are illustrated in

Figures 3--6. For each choice of B \in \{ 25, 50, 100\} , the colored curves represent the averages of
the estimates over the 1,000 runs described previously, and the error bars display the fluctua-
tions of the estimates over repeated runs---corresponding to the 10th and 90th percentiles of
the estimates. (For the values of t between the endpoints, we omit the error bars for clarity.
Also, the error bars should not be interpreted as confidence intervals for q.90(t); they are only
intended to illustrate the variability of the estimates.)

With regard to computation, another point to mention is that the estimates were only
computed for the initial ensemble size t0 = 500, and the rest of the estimated curves were
obtained essentially for free by extrapolation. Lastly, as a clarification, it should be noted
that the oob curves are shifted to the left of the hold-out curves because of the bias correction
rule (4.4) for oob samples.

Remarks on performance. The main point to take away from the plots is that the oob es-
timate performs well overall and can be noticeably more accurate than the hold-out estimateD
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(cf. Figures 3, 5, and 6). Furthermore, the oob estimate has an extra advantage because
it does not require the user to hold out any data. For these reasons, we recommend the
oob estimate in practice.

Concerning the number of bootstrap samples, we see the expected pattern that larger
values of B reduce the fluctuations of the estimates. Nevertheless, even at B = 25, the
fluctuations are well behaved. So, for practical purposes, this indicates that the speedup from
a small choice of B may outweigh a relatively minor reduction in variance.

Another conclusion to draw from the plots is that the bias correction plays a significant role
in the extrapolation of the oob estimate. To see this, note that if the bias correction were not
used, this would be equivalent to shifting the blue curves so that they start at the same point
as the green curves, which would clearly lead to a loss in accuracy. Also, it is remarkable that
the extrapolated oob estimate continues to be accurate at a final ensemble size of t = 2,000
that is 4 times larger than the initial ensemble size t0 = 500. Hence, this provides the user
with a very inexpensive way to predict how quickly the ensemble will converge.

To explain the inferior performance of the hold-out estimate, recall that it uses the small
set \scrH in order to estimate mset. As a result of the small size of \scrH , the estimate of mset has
high variability, which inflates the upper extremes and ultimately leads to a larger estimate
of q.90(t). On the other hand, the oob estimate is able to take advantage of the oob samples
in the much larger set \scrD , which reduces this detrimental effect.
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Figure 3. Housing data.
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Figure 4. Protein data.

5.3. Numerical results for variable importance. The results in the setting of variable
importance are simpler to describe, since there is only one type of estimate for q.90(t). Fig-
ures 7--10 display the average of the 1,000 realizations of the estimate using a blue curve
(corresponding to B = 50), and as before, the error bars at the endpoints represent the 10th
and 90th percentiles. Also, the extrapolation procedure was performed using an initial en-
semble size of t0 = 500, as in the previous subsection. From the four plots, it is clear that the
extrapolated estimate displays excellent overall performance, with its bias and variance bothD
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Figure 5. Music data.
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Figure 6. Diamond data.
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Figure 8. Protein data.

being very small.

6. Conclusion. In this paper, we have developed a bootstrap method that allows users
to measure the algorithmic convergence of regression ensembles with a level of precision that
has not previously been available. In particular, the method provides users with a systematic
way to determine when the ensemble is large enough so that it will perform nearly as well as
an ideal infinite ensemble---with respect to either mean-squared error or variable importance.
With regard to theory, our approach is supported by guarantees in Theorems 3.1 and 3.2
that quantify the coverage probabilities of the quantile estimates produced by Algorithms 2.1
and 2.2. Computationally, the method incurs only modest cost in comparison to training
the ensemble itself, and furthermore, the method naturally lends itself to speedups via par-
allel computing and extrapolation. Lastly, we have shown empirically that the method hasD
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Figure 9. Music data.
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Figure 10. Diamond data.

encouraging finite-sample performance in a range of situations.
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