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Abstract
Cells and microorganisms adopt various strategies to migrate in response to different
environmental stimuli. To date, many modeling research has focused on the crawling-based
Dictyostelium discoideum (Dd) cells migration induced by chemotaxis, yet recent experimental
results reveal that even without adhesion or contact to a substrate, Dd cells can still swim to follow
chemoattractant signals. In this paper, we develop a modeling framework to investigate the
chemotaxis induced amoeboid cell swimming dynamics. A minimal swimming system consists of
one deformable Dd amoeboid cell and a dilute suspension of bacteria, and the bacteria produce
chemoattractant signals that attract the Dd cell. We use the mathematical amoeba model to generate
Dd cell deformation and solve the resulting low Reynolds number flows, and use a moving mesh
based finite volume method to solve the reaction–diffusion–convection equation. Using the
computational model, we show that chemotaxis guides a swimming Dd cell to follow and catch
bacteria, while on the other hand, bacterial rheotaxis may help the bacteria to escape from the
predator Dd cell.

1. Introduction

Cell migration, an integrated molecular process
involving biochemical cascades intercorrelated with
external chemical and mechanical stimuli, contin-
ues throughout the life span of many organisms
[1]. Different microorganisms adopt various propul-
sion mechanisms and directed locomotion strategies
for searching for food/running from predators. For
example, individual cells and micro-organisms such
as C. reinhardtii and spermatozoa find food by a com-
bination of taxis and kinesis using a flagellated or
ciliated mode of swimming [2–5]. Other cell migra-
tion processes use the highly motile amoeboid mode,
whose underlying molecular mechanisms have been
extensively studied [6]. Amoeboid (e.g. Dictyostelium
discoideum or leukocytes) cell migration relies on the
generation, protrusion, and sometimes even travel of
either pseudopodia or blebs [7]. As for strategies for
directed locomotion, many flagellated bacteria (e.g. E.

coli, S. marcescens, and V. alginolyticus) and even some
eukaryotic organisms such as the green algae C. rein-
hardtii adopt a run- and-tumble type of motility [8].
During the run stage, the bacterium performs a more
or less linear motion, while during the tumble stage
it performs a highly erratic motion that produces lit-
tle translocation but reorients the cell, thereby gen-
erating a random direction for the next run [9–11].
On the other hand, amoeboid cells detect extracellular
chemical and mechanical signal gradients via mem-
brane receptors, and these trigger signal transduction
cascades that produce intracellular signals. Small dif-
ferences in the extracellular signal are amplified into
large end-to-end intracellular differences that control
the motile machinery of the cell and thereby deter-
mine cell polarization and sites of pseudopod or bleb
generation [12–18].

Due to their genetic, biochemical and cell-biolo
gical tractability, the social amoebae—Dictyostelium
discoideum (Dd) have been a microorganism of choice

© 2021 IOP Publishing Ltd

https://doi.org/10.1088/1478-3975/abf7d8
https://orcid.org/0000-0003-2673-921X
https://orcid.org/0000-0003-1458-6930
mailto:qixuanw@ucr.edu


Phys. Biol. 18 (2021) 045001 Q Wang and H Wu

to study basic processes in morphogenesis, including
cell–cell chemical signaling, signal transduction, and
cell motility [6, 19–22]. Crawling-based chemotaxis-
driven Dd migration, at both individual and collec-
tive levels, has been well studied via both models and
experiments [23–35]. To date, amoeboid cell migra-
tion and taxis are generally studied as the cells crawl
on various solid substrates, relying on pseudopods
attaching to the substrate. Recently, it was discov-
ered that Dd cells can occasionally detach from the
substrate and stay completely free in suspension for
a few minutes before they slowly sink; during the
free suspension stage, cells continue to form pseu-
dopods that convert to rear-ward moving bumps,
thereby propelling the cell through the surrounding
fluid in a totally adhesion-free fashion [36]. Also,
a mutant of Dd, sadA, which attaches poorly to a
substrate, appears nevertheless to migrate normally
and does so with an enhanced speed [37]. In the
experiments, cells actively swam to a point source of
cAMP, compared to no directed motion when the
cAMP source is absent [37]. Furthermore, a simi-
lar adhesion-independent swimming model involv-
ing large-scale shape deformation of the cell body
may be adopted by other cells, in particular, tra-
ditionally well known crawling cells: for example,
human neutrophils swim to a chemoattractant fMLP
(formyl-methionylleucyl-phenylalanine) source at a
speed similar to that of cells migrating on a glass cov-
erslip under similar conditions [37]. Most recently
and equally striking, cytokine can induce Drosophila
fat body cells to actively swim to wounds in an
adhesion-independent motility mode associated with
actomyosin-driven, peristaltic cell shape deforma-
tions that initiate from the cortex of the cell center and
extend to the rear of the cell, propelling them forward.
These waves occur constantly within fat body cells in
unwounded pupae and become highly directed with
respect to a wound. Once at the wound, fat body
cells start to form lamellipodia that extend around the
wound margin, assist hemocytes to clear the wound
of cell debris, tightly seal the epithelial wound gap,
and release antimicrobial peptides to fight wound
infection [38].

Inspired by these recent experimental discover-
ies of amoeboid mode of swimming—in the strict
sense of adhesion-independent cell–fluid interaction
that involves large-scale of cell shape deformations,
it is timely to conduct a modeling study on chemo-
taxis driven Dd swimming that allows the coupling of
signaling dynamics and biohydrodynamics. In recent
years, several models for single cell amoeboid swim-
ming have emerged, many focus on exploring the
fluid–structure interaction in the system and how the
amoeboid style of shape deformations lead to swim-
ming in various viscous fluid environments [39–45],
some also consider the underlying membrane protein
kinetics that regulate the excitable dynamics of the cell
membrane deformations [46, 47]. In this paper, we

develop a model that includes a deforming Dd amoe-
boid cell and a group of bacteria, where the amoeboid
cell swims following chemoattractant signal produced
by the bacteria. The model is a minimal one that cou-
ples the chemotaxis dynamics and the hydrodynamic
effects. The paper is structured as follows. In section 2
we introduce the model setup, where the active bac-
terium motions are modeled by a random walk model
(section 2.1), the chemotaxis signaling dynamics is
numerically solved using the finite volume method in
a moving mesh (section 2.2), the Dd amoeboid cell
shape deformations and the resulting fluid dynamics
are modeled and solved using an established complex
analysis technique (section 2.3) [45, 48–50]. Numer-
ical results are presented and discussed in section 3,
where we first discussed the chemotaxis guided amoe-
boid swimming with one bacterium (section 3.1),
then how bacterial rheotaxis could help the bacteria
escape from the predator Dd cell (section 3.2), finally
chemotaxis guided amoeboid swimming with a dilute
suspension of bacteria (section 3.3).

2. Modeling framework

In this section we will discuss the development of the
model, including the bacterial motions (section 2.1),
the chemotaxis dynamics (section 2.2), the deforming
Dd cell and the resulting fluid dynamics (section 2.3).
We consider a system consisting of a Dd amoeboid
cell and bacteria in low Reynolds number incompress-
ible Newtonian fluid. For simplicity of modeling and
computation, we will consider a 2D system. Many of
the chemotaxis induced Dd cell swimming experi-
ments are performed in containers sufficiently large
so as to avoid influences from the walls [36, 37].
In this paper, we also consider a ‘large tank’ model-
ing system, where the fluid mechanics resulted mainly
from the swimming deformable Dd cells is obtained
using the mathematical amoeba model [39, 45, 48–50]
approach, which provides the solution in a 2D infi-
nite fluid domain (section 2.3); on the other hand,
the signaling dynamics is modeled using a moving-
mesh based reaction–diffusion–convection (RDC)
PDE model (section 2.2), where we assume a finite
but sufficiently large computation domain for the
RDC system. Such a coupled modeling framework
allows us to efficiently study the dynamics of the sys-
tem with relatively low computational costs, assuming
the swimming Dd and bacteria are all away from the
computational boundary of the RDC submodel.

2.1. Bacterium motions
We consider Escherichia coli (E. coli) as a representa-
tive bacteria model. E. coli’s typical movement strat-
egy is well known as run-and-tumble: an E. coli can
either rotate its flagella counterclockwise resulting in
a directed straight ‘run’, or rebundle its flagella by
rotating them clockwise resulting in a ‘tumble’ which
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Figure 1. (A) Illustration of the geometry of the computational domains. (B) A local view of the Voronoi meshes near the Dd cell.

reorients the cell without significant change of loca-
tion [9, 10]. The E. coli constantly switch between
the run and tumble modes. The mean run interval is
reported to be about 1 s in the absence of chemotaxis,
and the mean tumble interval is about 0.1 s, and both
are distributed exponentially [11]. In our model sys-
tem, we will first consider one amoeboid Dd cell with
one E. coli, due to the small size of an E. coli (length
∼ 2–3 μm, diameter ∼ 1 μm [51]) compared to that
of a Dd cell (length∼ 22–25μm, diameter∼ 4–6μm
[36, 37]), the E. coli can be well modeled as mov-
ing particles without considering the flow stirred by
their deformation and movement. Later (section 3.3)
we will consider a system of one amoeboid Dd cell
with a group of E. coli in a dilute suspension, where
the number of E. coli is small (�12) and are sepa-
rated. In such a dilute suspension scenario, for sim-
plicity, we do not consider the hydrodynamic effects
among the E. coli or between the amoeboid Dd cell
and an E. coli. However, we point out that if a large
amount of E. coli is presented, the active suspension
will greatly alter the hydrodynamic effects of the sys-
tem, causing effects including clustering of E. coli.
Refer to the discussion section for potential future
extensions.

We start with NB bacteria in the system, where
each bacterium is represented as a dot with its posi-
tion vector xn = (xn, yn), n = 1, 2, . . . , NB. Without
considering the flows generated by the movement of
the bacteria, the movement of a bacterium mainly
consists of two parts: a convection term of the fluid,
and an active movement term from the run-and-
tumble. Since the mean tumble interval (∼0.1 s) is
much less than the mean run interval (∼1 s) [11], we
model it as a random walk, where the run is mod-
eled as a jump and the tumble serves a reorientation
of the bacterium. The movement of each bacterium is
described by the following equation:

dxn = u(xn)dt + dXn, (1)

where u(·) gives the fluid velocity field that is calcu-
lated via a complex analysis approach (section 2.3);
Xn denotes the random walk of the bacterium, and
we assume that at each small time step dt, the bac-

terium moves a distance δJ in the direction ϑn.
In the following discussion we start by consider-
ing a 2D random walk of the bacterium, where
ϑn ∼ U(−π,π).

Recent research results reveal that bacterial rheo-
taxis plays a role in bacterial swimming, even without
presence of a nearby surface [52]. To computationally
investigate the effects of bacterial rheotaxis on bac-
terial escaping, that is, when the motions of the
bacteria are directed in response to the local fluid
velocity gradient, we use a hybrid type of random
walk model to model the bacterial rheotaxis, where
the moving direction ϑn is given by the following
equation:

ϑn = (1 − sn)ξr ±
(
arg u(xn) + sn(1 − sn)πξb

)
,
(2)

where sn = min(1, ‖u(xn)‖/M) ∈ [0, 1] measures the
sensitivity of the bacterium to the local fluid veloc-
ity with M the cut-off value for the fluid velocity
amplitude. arg u(xn) is the argument of the local
fluid velocity, ξr ∼ U(−π,π) represents the random
walk part of ϑn, ξb ∼ N(0, 1) and the sum of the
two terms (arg u(xn) + sn(1 − sn)πξb) represents the
correlation with the fluid velocity due to rheo-
taxis, where we are assume two types of rhoetactic
movement—along the flow (+) or against it (−).
Equation (2) is an empirical way to model the bac-
terial rheotaxis, in a way to ensure that (1) when
the bacterium is far apart from the Dd cell (sn → 0),
the bacterium does not sense the flow thus it under-
goes a random walk without bias (notice that with
ξr ∼ U(−π,π), we have ξr ±Θ ∼ U(−π,π) for any
angle Θ), (2) when the bacterium is near the Dd cell
(sn → 1), bacterial movement is dominated by rho-
taxis (ϑn = ±arg u(xn)), and (3) bacterial movement
continuously change between unbiased and biased
random walk depending on sn.

Comparing to a typical shape deformation cycle
of a Dd cell of about T ∼ 1–2 min [36, 37], the mean
run interval is ∼1 s subjected to exponential distribu-
tion [11]. For simplicity, we take the small time step
dt of the random walk dXn as dt = 0.1T, where T is
the average period of a Dd cell swimming cycle.
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2.2. Chemotaxis signaling dynamics
Dictyostelium discoideum (Dd) utilizes folic acid
receptor 1 (fAR1), a class of single G-protein-coupled
receptor (GPCR) to detect diffusible chemoattractant
folate secreted by bacteria, thus to locate and chase
bacteria [53]. Once the amoeba ‘catches’ the bacteria,
the amoeba engulfs and consumes them. Dd amoe-
boid cell is reported to ingest, kill and digest bacteria
at a rate of at least one per minute [54].

Suppose that at time t, the amoeboid cell cap-
tures a region ΩDd(t) in the 2D infinite domain, thus
ΩC

Dd, ∂ΩDd give the external fluid domain and the cell
boundary, respectively. Let f(x, t), R0

f (x, t) and Rf(x, t)
denote the concentration of diffusive folate, the sur-
face concentration of free fAR1 receptors and the sur-
face concentration of the folate-bond fAR1 receptors,
respectively. f(x, t) is defined on ΩC

Dd(t) × [0,∞) and
R0

f (x, t), R0
f (x, t) are defined on ∂ΩDd(t) × [0,∞).

The signaling dynamics of the diffusible chemoattrac-
tant folate and the fAR1 receptors on the cell mem-
brane are modeled by the following RDC equations
together with boundary conditions:

∂f

∂t
= DΔf − u · ∇f

+ a

∫ NB∑
n=1

δ(x − xn)dx in ΩC
Dd(t) (3)

D
∂f

∂n
= −k+f R0

f + k−Rf on ∂ΩDd(t) (4)

∂Rf

∂t
= k+f R0

f − k−Rf − γRf

+ ςRf
dW

dt
on ∂ΩDd(t) (5)

with the constraints:

R0
f (x, t) + Rf (x, t) = Rmax ,

f (x, t) � 0, R0
f (x, t) � 0, Rf (x, t) � 0.

The terms in equations (3)–(5) are explained as fol-
lows.

• DΔf: diffusion of folate with the diffusion rate
D.

• u · ∇f: convection of folate, where u gives the
velocity field of the extra-cellular flow.

• a
∫ ∑

δ dx: production of folate molecules
from the bacteria, where a is the folate pro-
duction rate. For simplicity, we assume that all
bacteria have the same folate production rate.

• k+f R0
f , k−Rf : biochemical reactions between

folate molecules and fAR1 receptors along the
cell membrane boundary, where k+, k− are the
binding and unbinding rates of the fAR1 recep-
tors. Rmax is the sum of free and folate-bond
receptors, and we assume it a constant along the
cell boundary.

• γRf: degradation of folate-bond fAR1 receptors,
where γ is the degradation rate.

• ςRf dW: white noise that captures stochastic
effects in intracellular signal dynamics, where ς
is the noise strength.

Computationally, instead of considering the infi-
nite fluid domain, we consider a finite but large
enough computational domain ΩChem that con-
tains the cell domain ΩDd and all the bacte-
ria, and Area(ΩDd) 	 Area(ΩChem) (illustrated in
figure 1(A)). Therefore the fluid domain boundary
consists of two pieces: ∂ΩDd and ∂ΩChem. We assume
no-flux Neumann boundary condition n̂ · ∇f = 0 on
∂ΩChem.

To solve the RDC equations (3)–(5), we use the
Voronoi tessellation based finite volume method for-
mulated in [55, 56]. Initially, we generate a network of
fluid ‘nodes’ {wi} in the computational fluid domain
ΩChem ∩ ΩC

Dd, and discretize the cell boundary ∂ΩDd

by NR nodes w ′
0, w ′

1, . . ., w ′
NR

= w ′
0 —how to choose

the discretization will be discussed in section 2.3.
Notice that the positions of both the boundary nodes
{w′

i(t)} and {wi(t)} change as the Dd cell deforms
and perturbs the surrounding fluid. At each compu-
tational time step, the fluid nodes {wi} are updated as

wn+1
i = wn

i + u(wn
i )Δt, (6)

where u is the fluid velocity field. We generate a
Voronoi tessellation {Vn+1

i } ∪ {V ′
i

n+1} of the com-
putational domain ΩChem ∩ ΩC

Dd based on the nodes
{wn+1

i } ∪ {w′
i
n+1}, that is, Vn+1

i (or V ′
i

n+1) is the set
of all the points in the computational fluid domain
ΩChem ∩ ΩC

Dd closer to the node wi (or w′
i) than any

other node (figure 1(B)).
The folate concentration data f is available at the

nodes {wi}. In the Lagrangian frame, the convec-
tion term u · ∇f disappears from equation (3). The
Laplacian in equation (3) can thus be approximated
for each Voronoi tile Vi through summation of the
fluxes across the edges partitioning Vi from each of
its Delaunay neighbors (denoted by Λi) [55]:

Δfi ≈
1

Area(Vi)

∫
∂Vi

n · ∇fds

≈ 1

Area(Vi)

∑
j∈Λi

fj − fi

‖wj − wi‖
lij (7)

,where fi = f(wi), and lij is the length of the common
edge shared by Vi and Vj. Notice that for a Voronoi
tile Vi, its Delaunay neighbors may also include Dd
cell boundary tiles Vi

′, but for simplicity, we omit
the notation ′ in equation (7). Numerical convergence
studies show that the method converges linearly in
the L2 norm [57]. We solve equation (3) numeri-
cally in a forward Euler scheme, with the Laplacian
approximated by equation (7). Equation (3) can be
numerically solved as follows:

f n+1
i = f n

i +

(
DΔf n

i +
a
∑NB

n=1δVi(xn)

Area(Vi)

)
Δt,

4
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Figure 2. Shapes of the Dd cell in a cycle, showing the polarization, swimming and relaxation phases. Arrows indicate the cellular
polarization direction θ within the cycle. At the end of the cycle, a new direction is selected.

where δVi (xn) = 1 if the nth bacteria is in Vi, other-
wise δVi (xn) = 0.

For boundary conditions, first we notice that
while other nodes wi locates inside the corresponding
Voronoi tile Vi, the cell boundary nodes w′

i locate on
∂V′

i ∪ ∂ΩDd (figure 1(B)). To each cell boundary w′
i,

the numerical Laplacian equation (7) can be modified
as:

Δfi ≈
1

Area(V ′
i )

⎛
⎝∑

j∈Λi

fj − fi

‖wj − w′
i‖

lij +
(

n · ∇f
)

l′i

⎞
⎠ ,

(8)
where we approximate the boundary ∂Vi ∩ ∂ΩDd by
a line segment connecting the two vertices shared by
neighboring Voronoi tiles, and let l′i be its length. For
boundary condition on ∂ΩDd given by equation (4),
along the small boundary segment ∂V′

i ∩ ∂ΩDd we
have:

∂f

∂n
= n · ∇f =

1

D

(
−k+f R0

f + k−Rf

)
and equation (8) becomes:

Δfi ≈
1

Area(Vi)

⎛
⎝∑

j∈Λi

fj − fi

‖wj − w′
i‖

lij

+
lMi
D

(
−k+f R0

f + k−Rf

))
.

Finally, the no-flux boundary condition on ∂ΩChem

can be directly enforced to equation (8).

2.3. Chemotaxis induced Dd shape deformations
and swimming
When adhesion is absent thus cell crawling is dis-
abled, Dd cells can swim towards a chemoattractant
source. During swimming, cells form pseudopods
that convert to rear-ward moving bumps thereby pro-
pelling itself through the surrounding fluid in a totally
adhesion-free fashion [7, 36, 37, 58]. Such a swim-
ming mode is very different from ciliated or flagel-
lated swimming modes that are commonly adopted
by many bacteria including E. coli, as it is the one
that requires large deformations that propagate over
the cell body. We use the mathematical amoeba model
[39, 45, 48–50] to generate the Dd cell deformation
as well as to solve the resulting cell–fluid interaction.

In the following we list the outline of the model-
ing framework, see the supplement for more details
(https://stacks.iop.org/PB/18/045001/mmedia).

Consider the following conformal mapping
defined from {ζ ∈ C; |ζ| � 1} to ΩC

Dd:

w(ζ; t) = eiθ(t)

[
r(t)ζ +

η−1(t)

ζ
+

η−2(t)

ζ2

]
+ ZDd(t),

(9)
where the Dd cell shape is defined by ∂ΩDd(t) =
{w(σ; t)|σ ∈ S1}. The Nr discretization nodes
{w′

1, w′
2, . . . , w′

Nr
} are generated as follows: we

discretize the unit circle ∂D in the computational
ζ-plane equally into Nr nodes:

σj = eiθj = ei 2πj
Nr , j = 0, 1, 2, . . . , Nr − 1

then let w′
j = w(σj; t). In equation (9), θ(t) ∈ R gives

the cell polarization that will be determined by signal-
ing sensing dynamics as discussed below. The swim-
ming Dd cell undergoes cyclic shape deformation
with the same period T. We assume that the polar-
ization θ is determined at the beginning of a swim-
ming cycle and will not change during the cycle,
thus θ(nT + t) ≡ θ(nT) for t ∈ [0, T). r, η−1, η−2 ∈ R

control the cell size and shape deformations, and are
subjected to area conservation of the cell. ZDd(t) gives
the location of the cell, while UDd(t) = ŻDd(t) gives
the velocity of the cell and is computed from the
Goursat formula [59]. The fluid velocity field u, or in
the complex notation u, can be also obtained through
the Goursat formula. Refer to supplement section 1
for more details of the complex analysis techniques
involved in this part.

We assume that the Dd cell undergoes shape defor-
mations in response to signal gradient, with each
swimming cycle lasting for a period of T and consist-
ing of three phases: (i) polarization, when the Dd cell
determines the polarization θ during the current cycle
in response to the signal Rf, and elongates its cell body
in preparation for (ii) swimming, when the Dd cell
deforms its shape so to actively swim along the polar-
ization direction, followed (iii) relaxation, when the
Dd cell returns to its initial circular shape. Durations
of polarization and relaxation phases are chosen to
be much shorter than the swimming phase. Figure 2
shows a typical cycle of the Dd cell shape defor-
mations. For more details of the modeling setup of

5
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Figure 3. Simulation of a swimming Dd cell following a bacterium guided by chemotaxis. (A) and (B) Snapshots of the fluid
velocity at T = 20.8, where the heatmap (B) shows the amplitude of the fluid velocity, in the zoom in view near the Dd cell (C),
the white arrows show the fluid velocity directions. (C) A snapshot of the heatmap of the diffusive folate signal concentration at
T = 20.8. In (A)–(C), both the Dd cell and the bacterium are colored in white. (D) trajectories of the Dd cell (blue) and the
bacterium (red), where circles show the start points of the Dd cell center (blue circle) and the bacterium (green circle), and
squares show the end points of the Dd cell center (blue square) and the bacterium (green square). The Dd cell catches the
bacterium after 69 swimming cycles.

the signaling induced Dd cell polarization and shape
deformations, please refer to supplement section 2.

In our model, we do not model the engulfment
process in phagocytosis. For simplicity, once a bac-
terium falls within a close enough distance near a cell
boundary node w′

j, we consider it taken by the amoeba
and remove it from the system.

2.4. Computations of the model
We nondimensionalize the system, using the duration
of a Dd cell swimming cycle T and the radius of a Dd
cell at rest r0 as the characteristic temporal and spatial
scales, and Rmax the characteristic concentration scale
for f and Rf. The non-dimensionalized system can be
found in supplement section 3.

The system is computed using the following
update algorithm:

(a) Signaling dynamics. Generate the Voronoi tes-
sellation from the current distribution of ‘nodes’
{wi} ∪ {w′

i}. Update f and Rf by solving the RDC

equations using the finite volume method in the
moving mesh.

(b) Dd amoeboid cell shape.

1. If the cell is at rest in a circular shape (t = nT,
n ∈ N), determine the cell polarization θ for
this swimming cycle.

2. ElseIf the cell is during a swimming cycle,
t ∈ (nT, (n + 1)T), n ∈ N}, update the con-
formal mapping w equation (9).

(c) Fluid mechanics. Update flow velocity field u
from the Goursat formulas. Update bacteria posi-
tions and the moving mesh:

1. Bacteria motions. Update bacterial positions
by equation (1). Remove any bacterium that
comes to cell boundary Voronoi tiles.

2. Moving mesh. Update the moving mesh nodes
{wi} from equation (6).

The numerical scheme works for our model sys-
tem where hydrodynamics and signaling dynamics
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Figure 4. Simulation results of chemotaxis guided Dd cell swimming. (A)–(F) Distance between the Dd cell center and the
bacterium with different combinations of D and δJ values. x-axis shows the time counted as swimming cycles. Each colored curve
shows the result from one simulation from the group, and black boxes show when the Dd cell catches the bacterium. The
sub-panel in each panel shows the trajectories of the Dd cell (blue curve) and the bacterium (red curve) from one typical
simulation from the group, with the blue and green circles mark the starting locations of the Dd cell and the bacterium, and the
blue and green squares mark the end locations of the Dd cell and the bacterium when the Dd cell catches the bacterium.
(G) Durations of the simulations, where red dots show when the Dd cell catches the bacterium, green dots show when the
bacterium runs out of ΩChem : [−25, 25] × [−25, 25], or the Dd cell does not catch the bacterium by the end of 300 cycles.

are coupled, and allows us to study cellular chemo-
taxis and rheotaxis in a fluid environment. We point
out that we do see fluid nodes near the Dd cell bound-
ary getting closer after many swimming cycles due
to the large deformation of the cell, which causes
numerical instability of the finite volume method. We
solve this numerical issue by a local re-mesh near the
Dd cell, see more details in supplement section 4.
Parameter values used in our simulations are given in
supplement table 1.

3. Results

3.1. Chemotaxis guided amoeboid swimming
allows the Dd amoeboid cell to follow and catch
bacteria
We start with a system consisting of one Dd cell
and one bacterium where the bacterium undergoes
an unbiased random walk (equation (1)). Simulation
results show that the Dd amoeboid cell is able to swim
following the bacterium guided by the chemoattrac-
tant signal. Figure 3 shows a typical simulation, where

the Dd cell catches the bacterium after 69 cycles.
Compared to the random walk of the bacterium, the
motion of the Dd cell is more directed; as the Dd cell
approaches the bacterium, the bacterium is pushed
away to the right by the flow generated by the swim-
ming Dd cell, and eventually being captured by the
Dd cell (figure 3(C)). The full time lapse snapshots of
the fluid velocity profile during one Dd cell swimming
cycle is provided in supplement figure 2.

We consider how the chemoattactant diffusion
rate D and the bacterial jump amplitude δJ affect
the Dd cell swimming dynamics. We perform 6
groups of 10 simulations, with different values of D
and δJ: D = 0.2, 0.5, 1, δJ = 0.02, 0.1. Simulations
results show large coefficient rate D makes it easier
for the Dd cell to follow the signal guidance thus
catch the bacterium; bacterial random walk strength
δJ may also help the bacterium to escape, however,
the more important effect of δJ is that it increases
the variance of time for the Dd cell to catch the
bacterium, if it could (figure 4). The increase of
catch time variance needed caused by δJ should
not be surprising, since the passive motion of the
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Figure 5. Simulation results of bacterial rheotaxis. (A)–(C) Distance between the bacterium and the Dd cell center with (A) no
bacterial rheotaxis, (B) bacterial rheotaxis with the flow, and (C) bacterial rheotaxis against the flow. x-axis shows the time
counted as swimming cycles. Each colored curve shows the result from one simulation from the group, and black boxes in
(A)–(C) show when the Dd cell catches the bacterium. (D) Durations of the simulations, where red dots mark the time when the
Dd cell catches the bacterium, green dots mark when the bacterium runs out of ΩChem : [−25, 25] × [−25, 25], or the Dd cell does
not catch the bacterium by the end of 300 cycles. (E) Trajectories of the Dd cell (blue curve) and the bacterium (red curve) with
bacterial rheotaxis with the flow, with the blue and green circles mark the starting locations of the Dd cell and the bacterium, and
the blue and green squares mark the end locations of the Dd cell and the bacterium when the Dd cell catches the bacterium.
(F) Trajectories of the Dd cell (blue curve) and the bacterium (red curve) with bacterial rheotaxis against the flow, with the blue
and green circles mark the starting locations of the Dd cell and the bacterium, the Dd cell does not catch the bacterium in 300
cycles.

bacterium is an unbiased random walk X, thus
E(X) = 0 and large δJ only increases Var(X) which
in return increases the catch time variance, though
through a complex chemotaxis induced amoeboid
swimming dynamics. Figure 4 shows that in 10 out of
10 simulations with D = 0.5, δJ = 0.02 (figure 4(C))
D = 1, δJ = 0.02 (figure 4(C)) or D = 1, δJ = 0.1
(figure 4(F)), the Dd cell is able to catch the bac-
terium within 300 cycles, compared to 9 out of
10 with D = 0.2, δJ = 0.02 (figure 4(A)) and 7 out
of 10 with D = 0.5, δJ = 0.1 (figure 4(E)). The worst
scenario for the Dd cell is small D and large δJ: with
D = 0.2, δJ = 0.1, only in 2 out of 10 simulations
the Dd cell catches the bacterium within 300 cycles
(figure 4(D)). In the above simulations we take
k− = 0, finally we take k− = 0.1 and with D = 0.5,
δJ = 0.02, the results from 10 simulations are
shown in supplement figure 3, compare with k− = 0
(figure 4(B)), which indicates that large k− helps the
bacterium to escape from the Dd cell.

We present the time lapse snapshots from typical
simulations with δJ = 0.1, D = 0.2, 0.5, 1 in supple-
ment figures 4–6.

3.2. Rheotaxis helps bacteria escaping from the
predator
Next, we use the model to investigate if rheotaxis
could help the bacterium run away from the predator
Dd cell. In particular, we consider two types of bac-
terial rheotaxis: the bacterium prefers to move with

the flow vs against the flow. We model either of the
two rheotactic systems by a biased random walk of
the bacterium, where the direction of the bacterium’s
jump ϑ is given by equation (2), and it takes the +

sign if the bacterium prefers to move with the flow,
and the − sign if against the flow.

We performed three groups of simulations: (1)
no bacterial rheotaxis, (2) bacterial rheotaxis with a
biased random walk with the flow, and (3) bacterial
rheotaxis with a biased random walk against the flow.
We take D = 1, δJ = 0.05 in all three groups, and in
each group we run 10 simulations. Simulation results
are shown in figure 5. Without bacterial rheotaxis, the
Dd cell catches the bacterium in all 10 simulations
(figures 5(A) and (D)). With bacterial rheotaxis with
the flow, in 8 out of 10 simulations it needs longer
time for the Dd cell to catch the bacterium and 8 out
of 10, and in the other 2 simulations the bacterium
runs out of the ΩChem domain after >250 Dd cell
swimming cycles (figures 5(B) and (D)). Finally with
bacterial rheotaxis against the flow, in 8 out of 10 sim-
ulation the bacterium runs out of the ΩChem domain,
and in the other 2 simulations the bacterium stays
within the ΩChem domain always but the Dd cell does
not catch the bacterium in 300 cycles (figures 5(C)
and (D)). Figure 5(E) shows the trajectories of the
Dd cell and the bacterium with bacterial rheotaxis
with the flow from one simulation, when the Dd cell
catches the bacterium at the end, and figure 5(F)
shows the trajectories of the Dd cell and the bacterium
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Figure 6. Dd cell polarization change. Each top panel (A)–(F) shows the PCI changes in one simulation with the conditions
shown by the panel title, and the bottom panels (A′)–(F′) shows the Rf concentration at four sites along the Dd cell boundary,
with each neighboring pair separated by an angle of π/2. (A) and (A′), (B) and (B′), (C) and (C′) show a more directed Dd cell
swimming when guided by a single bacterium, whether with or without bacterial rheotaxis. (D) and (D′), (E) and (E′), (F) and
(F′) show a more chaotic Dd cell swimming when surrounded by more bacteria.

with bacterial rheotaxis against the flow from another
simulation, the Dd cell does not catch the bacterium
in 300 cycles.

Our simulation results (figure 5) show that while
bacterial rheotaxis against the flow appears to be a
good strategy for the bacterium to escape from the
predator Dd cell, bacterial rheotaxis with the flow may
also help the bacterial to run away a little compared to
no rheotaxis. We emphasize that at LRN, since inertia
is absent, the current flow profile only depends on the
current Dd cell deformation, and it keeps changing
over a swimming cycle (see supplement figure 2). The
bacterial rheotaxis we find here is the result out of one
or even multiple Dd cell swimming cycles. Moreover,
we would also point out that even in the best simu-
lated scenario—bacterial rheotaxis against the flow,
the bacterium is not able to fully escape from the Dd
cell, which can be seen from figure 5(C) that the dis-
tance between the Dd cell and the bacterium oscillates
but the mean is not increasing, indicating that the Dd
cell keeps following the bacterium.

3.3. Chemotaxis guided amoeboid swimming
caused by a dilute suspension of bacteria
Finally we consider the system with one Dd cell and a
dilute suspension of bacteria, that is, a small number
of bacteria present in the system. In the dilute sus-
pension, the hydrodynamic interactions among the
bacteria can be ignored. We consider systems where
initially a group of N bacteria locate equispaced in
a ring with the Dd cell center as the ring center (see
supplement movie and supplement figures 7–9, the
color scales are the same as figure 3(C)), and D = 1,
δJ = 0.1 in all simulations in this section.

Simulations results show that similar to the sys-
tems with only one bacterium, when multiple bac-
teria are present, the Dd cell is still able to follow
the chemoattractant signals and catch some bacteria.
However, we notice that unlike in the systems with
only one bacterium where the Dd cell movement is
more directed, now with more bacteria present, the
movement of the Dd cell becomes more chaotic—the
Dd cell changes its polarization between consecutive
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cycles more frequently. To quantify this effect, we
define a Dd cell polarized orientation change index
PCI as follows:

PCIn =
1 − cos (θn − θn−1)

2
, n � 2, n ∈ N,

where PCIn denotes the PCI for the nth swimming
cycle t ∈ [nT, (n + 1)T), and θn is the Dd cell polar-
ization angle in the nth cycle. PCIn takes values in
[0, 1], with PCIn = 0 means that the polarization does
not change between the two consecutive cycles, while
PCIn = 0 means that the polarization changes with an
angle π, i.e. the polarization is reversed.

We compare simulation results between systems
with one bacterium only and systems with multi bac-
teria, the former group includes single bacterium with
no external flow (figures 6(A) and (A′)), single bac-
terium with rheotaxis along the flow (figures 6(B)
and (B′)) and against the flow (figures 6(C) and
(C′)), and the latter multi bacteria group includes 6,
8 or 12 bacteria with no external flow (figures 6(D)
and (D′), (E) and (E′), (F) and (F′)). In the initial
stage of all the simulations, the chemoattractant sig-
nal has not diffused to the whole Dd cell, causing
a random polarization of the cell. Therefore, PCI is
high in a small period at the beginning stage. After
the initial stage, the Dd cell is able to receive the
diffusive chemoattractant signal. In the systems (no
rheotaxis, rheotaxis along and against the flow) with
only one bacterium, the averagely low PCI indicates
that the Dd cell performs a more directed swim-
ming toward the bacterium (figures 6(A)–(C)). On
the other hand, PCI is averagely high when more bac-
teria are present, indicating that the polarization deci-
sion of the Dd cell is affected by many body effect, and
thus presents a chaotic behavior without the ability
to effectively follow and catch a bacterium. Looking
further into the dynamics of the chemotaxis guided
amoeboid swimming (supplement movie and supple-
ment figures 7–9), we find that the number multipli-
cation of bacteria plays a similar role as the period
multiplication as a road transition to the chaos [60].
Due to the Dd cell surrounded by multiple strong
signal sources, the polarization of the Dd cell is fre-
quently changed. In each of simulations in 6, we track
the Rf concentrations at four sites along the Dd cell
boundary, with each neighboring pair separated by
an angle of π/2, and the results are given in the
bottom panels in figures 6(A′)–(F′). With only one
bacterium in the system (figures 6(A′)–(C′)), Rf at
the four sites are averagely low (mostly below 0.6),
and it is clear that which site is at the front/rear,
as its Rf keeps the highest/lowest all the time (pur-
ple/orange line in figures 6(A′)–(C′)). Such a clear
difference in the Rf level indicates a clear polariza-
tion of the Dd cell. On the other hand, when more
bacteria are presented in the system, Rf levels are
much higher (figures 6(D′)–(F′)), and there is no
clear high/low difference in the Rf at the four sites

due to the high level as well as noise, leading to the
frequent change in the cell polarization as is shown
by the PCI plots. This causes the chaotic swimming
pattern and reduces the cell’s efficiency in catching
bacteria. As pointed out above, this chaotic polariza-
tion behavior becomes more evident with more bac-
teria present in the system, which is verified by larger
average PCIs in figure 6(F) compared to figures 6(D)
and (E).

4. Discussion

While Dd amoeboid cell has long been well known
as a model system for chemotaxis study on a crawl-
ing based motion, in recent year, Dd cell swimming
induced by different types of taxis including chemo-
taxis has become an emerging research area. A major
modeling challenge in this direction is the coupling
of signaling dynamics and hydrodynamics. In this
paper, we developed a minimal modeling framework
to investigate the chemotaxis induced amoeboid
cell swimming. Our model captures the interac-
tions between a Dd cell and bacteria, where both
biochemical (chemotaxis signaling dynamics) and
biomechanical (amoeboid swimming and bacterial
rheotaxis) are considered. For the numerical compu-
tations, a complex analysis technique—mathematical
amoeba model [39, 45, 48–50] is applied to solve the
amoeboid dynamics in 2D viscous flows, associated
with the finite volume method based on the mov-
ing mesh Voronoi tessellation [55, 56] to solve the
RDC equation system. Our simulations results show
that chemotaxis effectively guides Dd cell swimming,
especially when less bacteria are presented in the sys-
tem, and bacterial rheotaxis may help a bacterium to
escape from a predator Dd cell.

To better investigate the dynamics of chemotaxis
induced amoeboid cell swimming, there are many
aspects that our model can be developed. We discuss
some major aspects in the following.

Intracellular signaling dynamics induced amoe-
boid cell shape deformations. In this paper, we used
the 2D mathematical amoeba model (section 2.3),
which was greatly used in modeling study of amoe-
boid cell swimming. However, the shape defor-
mations in the mathematical amoeba model is
prescribed. In the future, we plan to develop an intra-
cellular submodel for the amoeboid cell to capture
how the membrane protein dynamics in response
to extracellular stimuli generates excitable traveling
waves of cell shape deformations. Several modeling
approaches to this directions have been developed,
including models with a phenomenological descrip-
tion of membrane protein reaction–diffusion sys-
tem that generates excitable dynamics of cell mem-
brane deformation [46, 47] and a crawling based
chemotaxis induced amoeboid cell deformation and
migration model [61]. We would like to mention
that the modeling framework developed in this paper
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is compatible with more complex cell deforma-
tions, using the computational method developed
in [39].

Chemotaxis induced amoeboid swimming in
confined space. Currently in our model, we consider
a swimming system in free space. However, amoeboid
motion generally occurs close to surfaces, in small
capillaries or in extracellular matrices of biological
tissues. In addition, micro-organisms swim through
permeable boundaries, cell walls, or microvascula-
ture. For example, flows are ubiquitous in human
immune systems, blood vessels and microcirculation
system, and are subjected to biological confinement
by complex geometric structures. In particular, the
effect of walls on motile micro-organisms has been
a topic of increasingly active research. Recently, the-
oretical and modeling studies have revealed compli-
cated swimming trajectories with the confinement
effects and simulation predictions have been verified
by experiments [40, 41, 62, 63]. In the future we will
develop our model to study a swimming system in
confined space.

Hydrodynamic interactions and chemotaxis
of bacteria. In this paper we consider only a
dilute suspension of bacteria, and we neglect
bacterium–bacterium and bacterium–Dd cell hydro-
dynamic interactions. Due to the large size ratio
of the Dd cell to a bacterium, the hydrodynamic
effects generated by a bacterium should not affect
much of the Dd cell swimming dynamics, yet the
hydrodynamic interactions between bacteria might
play an important role to bacterial swimming as well
as the chemotaxis dynamics when the concentration
of bacteria is higher. In recent years, both modeling
and experimental studies reveal that in an active sus-
pension of bacteria, hydrodynamics affects bacterial
collective motions with chemotaxis [64, 66–69].
Another important future direction to our cur-
rent modeling study would thus be to consider an
active suspension of bacteria with hydrodynamic
interactions.

In addition, it is well known that E. coli also
respond to chemotactic signals, either produced by
themselves or following local chemical gradients
[65, 69, 70]. Yet whether bacterial chemotaxis play a
role in the Dd–E. coli swimming system stays unclear.
Would bacterial chemotaxis help E. coli to run away
from the Dd cell is another interesting question to
be considered and investigated, on both experimental
and modeling sides. In particular, two crucial ques-
tions should be addressed: will the Dd send the signal
to repel/attract the E. coli? With a large amount of
E. coli presented in the system, how will the chemo-
taxis induced bacterial clustering alter the Dd–E. coli
interaction?
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