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Goodness-of-Fit Tests on Manifolds

Alexander Shapiro™, Yao Xie

Abstract— We develop a general theory for the goodness-of-fit
test to non-linear models. In particular, we assume that the
observations are noisy samples of a submanifold defined by a
sufficiently smooth non-linear map. The observation noise is
additive Gaussian. Our main result shows that the ‘residual”
of the model fit, by solving a non-linear least-square problem,
follows a (possibly noncentral) x ? distribution. The parameters of
the x2 distribution are related to the model order and dimension
of the problem. We further present a method to select the model
orders sequentially. We demonstrate the broad application of
the general theory in machine learning and signal processing,
including determining the rank of low-rank (possibly complex-
valued) matrices and tensors from noisy, partial, or indirect
observations, determining the number of sources in signal demix-
ing, and potential applications in determining the number of
hidden nodes in neural networks.

Index Terms— Goodness-of-fit test, manifolds, nested model
selection, sequential test.

I. INTRODUCTION

ESTING for goodness-of-fit of a model is a funda-
mental problem in statistics and signal processing (see,
e.g., a survey in [1]). The goal is to describe how well the
model fits a set of observations. The model can be repre-
sented by a pre-specified distribution, or structured parametric
models (such as time series or linear regression models).
Commonly seen goodness-of-fit tests include the chi-square
and Kolmogorov-Smirnov tests (see, e.g., [2]). The goodness-
of-fit test is often used for model diagnosis to determine the
appropriate parsimonious models, for instance, selecting the
order and type of time series models [3]. For linear regression,
a related problem is variable selection [4], which determines a
subset of variables that lead to the best overall fit to the data.
Although much has been done for model selection in
linear models, it is unclear how to select models given noisy
observations in the non-linear setting, especially when there
are underlying manifold structures. Such problems arise very
often in machine learning and signal processing applications.
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For instance, how to select the rank of a low-rank matrix,
decide the number of hidden nodes in neural networks, and
determine the number of signal sources when observing their
mixture.

In this paper, we develop a general theory for testing the
goodness-of-fit of non-linear models. In particular, we assume
that the observations are noisy samples of a submanifold
(defined by a sufficiently smooth non-linear map). The obser-
vation noise is additive Gaussian. Our main result shows
that the “residual” of the model fit (by solving a non-linear
least-square problem) follows a (possibly non-central) x?
distribution. The parameters of the x? distribution are related
to the model order and dimensions of the problem. A key
component of our analysis is the characteristic rank of the
Jacobian matrix associated with the non-linear map that
defines the submanifold. A natural use of our result is to
the select order of a model via a sequential test procedure
by choosing between two nested models. We are particularly
interested in “nested” models, i.e., one can order the models
by their complexity. We demonstrate the applications of this
general theory in the settings of real and complex matrix
completion from incomplete and noisy observations, signal
source identification, and determining the number of hidden
nodes in neural networks.

It is worthwhile pointing out that the model goodness-of-fit
test here is not the same as the widely known model order
selection based on the celebrate AIC and BIC rules, etc.; the
related field of is extensive (see, e.g., a recent survey in [1]).
The criterion for model order selection therein is the “pre-
diction” or “generalization” error. In contrast, the goodness-
of-fit we consider here is to describe how well a model fits a
set of observations (thus, we consider “residual” errors). One
potential issue with the classic model order selection based
on AIC/BIC is that for certain situations, the expected predic-
tion/generalization error may not be easily derived (for linear
regression, there are explicit expressions). Such situations
happen, for instance, when observations are noisy samples on a
manifold. In such cases, the classic AIC and BIC rule may not
be easy to carry through and may require significant numerical
simulation to estimate the prediction errors. One benefit of the
proposed approach is that the distribution of the residual is
explicitly characterized. Thus, we can use it conveniently for
selecting model orders through a sequential test procedure.

The proposed framework differs from other goodness-of-fit
tests, such as the classic Kolmogorov-Smirnov test, which
determines whether the empirical distribution is close a “nom-
inal” or “target” distribution, the non-parametric approach
based on the Maximum Mean Discrepancy (MMD) diver-
gence [5]-[7], and the Bayesian approach [8]. Our proposed
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framework also differs from the work on testing the manifold
hypothesis  [9], i.e., determining whether data lie near a
low-dimensional manifold; [9] uses a “worst-case” analysis
without assuming prior information about data generation
mechanism.

Part of our work is related to low-rank matrix comple-
tion from partial and noisy observations. There has been
much work done in this field, with notable contributions
of [10]-[15]. There are mainly two categories of algorithms,
including convex relaxation based on nuclear norm minimiza-
tion, and non-convex optimization based on alternating mini-
mization. In nuclear minimization (see, e.g., [11]), the rank
selection is not explicitly addressed, possibly due to that the
focus is on the recovery of the matrix itself. It is not clear
how true rank will be recovered using the nuclear norm min-
imization approach. However, it is known that nuclear norm
minimization may be asymptotically biased (see, e.g., [16]).
For non-convex optimization-based matrix completion, such
as alternating minimization [17], one has to pre-determine the
rank of the matrix, and it is typically done empirically by
heuristic methods [18].

Our proposed framework also differs from the work on
testing the manifold hypothesis in [9]. The approach in [9] is
nonasymptotic and, in a sense, nonparametric. It is assumed
there that the data is generated from a “true” but unknown
distribution. The algorithmic question addressed in [9] is,
given a sample of size N, whether it is possible to ver-
ify with a high probability existence of a manifold, from
a family of d-dimensional C2-submanifolds, which fits the
data with a prescribed accuracy measured in terms of an
average squared distance. Unlike our approach, no parametric
model is assumed, while a “worst-case” analysis is applied
in [9]. On the other hand we consider a nested family of
parametrically defined manifolds.

The rest of the paper is organized as follows. Section II
presents the background knowledge. Section III contains the
main results: the test statistics for model selection on mani-
folds. Section IV gives several examples to demonstrate the
use the general theory in specific settings. Section V presents
numerical experiments. Finally, section VI concludes the paper
with discussions on future directions.

Our notations are conventional. By ||z||2 we denote the
Euclidean norm of vector € R". By lin(A4) we denote
the linear space generated by columns of the matrix A and
by tr(A) the trace of the square matrix A. For a linear space
L C R™, we denote by L+ ={y e R™ :y'2 =0, v € L}
its orthogonal space. All proofs are delegated to the Appendix.

II. BACKGROUND

In this section, we present the general theory, which,
in particular, will help to develop subsequent test statistics
for determining model orders in Section III.

Consider a nonempty set © C R? and a mapping
G : © — R™. We assume throughout the paper that the set
© is open and connected. Here, d is the dimension of the
parameter space (also referred to as the intrinsic dimension),
and m is the dimension of the observation space. Consider a
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point § € R™ and the least squares problem:

in||g — 2. 1
min [|§ — GOz (1
Define the image of the mapping G,
Mm:={G() : 0 € B}. )
Then problem (1) can be written as
2
min [|§ — 3. (&)

That is, in problem (3), we aim to find a point of the set
I such that the Euclidean distance is minimized. We deal
with situations where the set 91 is a smooth manifold; we will
discuss this below. By saying that the manifold is smooth we
mean that it is at least C? smooth.

We assume that the map G(:) is at least C? smooth,
ie., G(-) = (¢1(-),-..,gm(-)) with functions g; : © — R,
i =1,...,m, being twice continuously differentiable. In some
cases we make the stronger assumption that G(-) is analytic,
ie., every gi(-), ¢ = 1,...,m, is analytic. Recall that a
function is analytic on an open subset of R?, if it can be
expanded in power series in a neighborhood of every point of
this set. For instance, every polynomial function is analytic.

With the mapping G(6) is associated the m x d Jacobian
matrix

J(0) == 0G(0) /99, )

whose components are formed by partial derivatives
[J(G)]” = 8gL(6)/663, = 1, e, M, j = 1, .. .,d.

The differential of G(-) at a point 6 € © is the linear mapping
dG(0) : RT — R™ given by dG(0)h = J(0)h.

Remark II.1: Tt is possible to deal with more general
settings where the set © is a smooth connected manifold
(without boundaries) rather than an open set. In that case,
the derivations below can be pushed through by considering
the corresponding Jacobian matrices in the local systems of
coordinates of ©.

Definition I1.1 (Characteristic Rank): We refer to the max-
imal rank of the Jacobian matrix,

ti= Ielleaé({rallk(J(G))}, (5)
as the characteristic rank of the mapping G(-).

The following Proposition II.1 shows that, when G(-) is
analytic, the characteristic rank in a certain sense is generic.
By saying that a property holds for almost every (a.e.) € O,
we mean that there is a set T C © of Lebesgue measure zero
such that the property holds for all § € © \ Y. Discussions of
the following result can be found in [19]; we give its proof in
the Appendix.

Proposition II.1: The following holds: (i) The set
{0 € © : rank(J(0)) =t} is open. (i) If the map G(-) is
analytic, then for a.e. # € O the rank of the Jacobian matrix
J(0) is equal to the characteristic rank t.

If rank(J(fp)) = ¢ for some 6, € O, then there is
a neighborhood of 6y such that rank(J(f)) = v for all
0 in that neighborhood. It follows by the Constant Rank
Theorem (e.g., [20]) that there is a neighborhood V' of 6,
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such that the set G(V) forms a smooth manifold of dimension
v, in the space R™, with the tangent space generated by the
columns of the Jacobian matrix J(¢). When the map G(-) is
analytic, if we choose a point 6, at random, with respect to
a continuous distribution on the set O, then rank(.J(6p)) =t
almost surely (with probability one).

Remark I1.2: Assuming that the mapping G(-) is C™
smooth, we have by Sard’s theorem [21] that the image 901
(of G7) has Lebesgure measure zero in the observation space
R™ if and only if v < m.

Definition I1.2 (Regularity [19]): We say that a point 6y € ©
is regular if rank of the Jacobian matrix J(6p) is equal to the
characteristic rank v and moreover there exist neighborhoods
V of 6y and W of G(6y) such that MNW = G(V).

The regularity of 6, ensures that the local structure of 90t
near xg = G(6p) is provided by the mapping G(-) defined
in a neighborhood of y. Hence, 91 is a smooth manifold of
the dimension of the characteristic rank v, in a neighborhood
of x. In particular, this implies that if 8’ € © is such that
G(0') = G(0y), then there are neighborhoods V' of 6" and V),
of 6y such that G(V') = G(Vy). A result deeper than the one
of Proposition II.1(ii) says that when the coordinate mappings
gi(+), i =1,...,m, are analytic (for instance polynomial) and
either the set O is bounded or G(f) — oo as § — oo, then
a.e. point 0y € O is regular (e.g., [22, Section 3.4]).

We denote by Ton(x) the tangent space to 9 at a point
x € M, provided M is a smooth manifold in a neighborhood
of . Let 0y be a regular point of G(-) and zy = G(6y). Then
Tom(xo) = lin(J(Ap)) and dimension of Ton(zo) is equal to
the rank v of J(6p). Also, Zon(xo) coincides with the image
of the differential dG(6y), i.e.,

Ton(z0) = {dG(0p)h : h e R} . (6)

III. TEST STATISTICS ON MANIFOLD

We view now the mapping G(6) as a considered model of
the parameter vector § € ©, and problem (1) as the least
squares estimation (LSE) procedure with ¢ being a given data
point. More specifically, we assume the following model

§=x0+ N2 (7)

where xo € 91 is viewed as the population (true) value,
vector v € R™ is a deterministic bias, and the error vector
¢ is random. When ¢ is estimated from a random sample,
the parameter N represents the sample size. In general, N can
be viewed as a normalization parameter allowing to formu-
late rigorous convergence results for /N tending to infinity.
We assume that the components ¢;, ¢ = 1,...,m, of ¢ are
independent of each other and such that N'/2¢; converges in
distribution, as N — oo, to normal distribution with mean zero
and variance o2 > 0. The term N ~!/2~ represents systematic
deviations form the “true" model and is referred to in statistics
literature as the population drift (e.g., [23]).

We consider the following least squares test statistic to
determine the model

T+e,

®)

Ty := Né~2 min ||§ — z||?
N & gélggl\y |3,

2

where 62 is a consistent estimate of o2.
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A. Test Statistic on Manifolds

We now consider the general case defined in (7). We will
show that for the problem defined on smooth manifolds,
similar results in the form of RSS for linear models hold.

Remark I11.1: For any §j € R™, the generalized least-square
problem (3) has an optimal solution which may be not unique.
If y, is a sequence converging to zg € 9N and xy is an
optimal solution of (3), then x; converges to z( (e.g., [24,
Theorem 7.23]). Under the model (7) we have that § converges
to x¢ in probability as N — oo. It follows that any minimizer
Z in the right hand side of (8) converges in probability to xg.

Suppose that 971 is a smooth manifold in a neighborhood
W of the point zo. If £ € W is an optimal solution of the
least squares problem (8), then it follows that

§— & € [Tm(2)]", )

where Ton () is the respective tangent space (see (6)). The
following result shows that for gy sufficiently close to z,
the necessary optimality condition (9) is also sufficient

(cf., [16, Proposition II1.4]).

Proposition I11.1: Suppose that 91 is a smooth manifold in
a neighborhood of zy € 9. Then there exists a neighborhood
W of xo such that if § € VW and a point & € VW NI satisfies
condition (9), then % is the unique globally optimal solution
of the least squares estimation problem (8).

Since the least-squares problem in (8) is non-convex,
standard optimization algorithms are at most guaranteed to
converge to a stationary point satisfying first-order optimality
conditions of the form (9). The above proposition shows that
if the fit is “sufficiently good", then, in fact, the computed
stationary point is globally optimal. Of course, this result is
of a local nature, and it would be difficult to quantify what fit is
good enough. Nevertheless, this tries to explain an empirical
observation that for good fits, the problem of local optima
does not happen too often.

Under the model (7) we have the following asymptotic
results, which are counterparts of the properties when 91 is a
linear space (cf., [19]).

Theorem II1.1 (Asymptotic Distribution of Test Statistic):
Suppose that 907 is a smooth manifold, of dimension ¢, in a
neighborhood of the point zyp € 9. Let P be the orthogonal
projection matrix onto the tangent space Ton(xo). Then the
following holds as N — oo:

(i) With probability tending to one the least squares prob-
lem (8) has unique optimal solution Z,

(i) The test statistic Ty in (8) converges in distribution to the
noncentral x? distribution with m —t degrees-of-freedom
and the noncentrality parameter § = o~ 2||(I,, — P)~|/3.

(iii) The scaled estimator N''/2(& — x() converges in distrib-
ution to a multivariate normal distribution with the mean
vector P~y and the covariance matrix o2 P.

(iv) The scaled error N'/2e converges in distribution to a
multivariate normal distribution with the mean vector
(I,, — P)~ and the covariance matrix o(1,, — P), where
e =y — & is a vector of residuals.
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B. Nested Models

Consider now nested models, meaning the setting such that
models can be naturally ordered by their complexity. For
instance, the linear regression problems, one can sequentially
increase or remove the variables being used in the model.
Mathematically, this poses a natural order for the parameter
space. That is, let © C © be a smooth manifold of dimen-
sion d’, and let

M = {G(H): 0O}

Let 6y € O’ be a regular point of the mapping G. Then 90 is a
smooth manifold in a neighborhood of the point 29 = G(fy).
Moreover, M’ forms a smooth submanifold in a neighborhood
of the point zy with the tangent space (compare with (6))

Tgm/ (J)Q) = {dG(@Q)h che T@/ (90)} (10)

Note that Ton/(x0) € Ton(zo) and it could happen that
Ton (zg) = Ton(xo) even when d' < d.
Consider now the test statistic

Tl = NU_Qggig}tll 5 — |3 (11)
We have the following results (cf., [25]).

Theorem II1.2: Suppose that 91 is a smooth manifold
of dimension v and 9 C 9 is a smooth manifold of
dimension t/, in a neighborhood of the point zy € 9. Then
the following holds:

(i) T} converges in distribution to a noncentral x? random
variable with m — ¢’ degrees-of-freedom and the noncen-
trality parameter &' = o~ 2||(L,, — P')¥||3, where P’ is
the orthogonal projection matrix onto the tangent space
Tgm/ ((Eo)

(ii) The difference statistic Ty, — Ty converges in distribution
to a noncentral x? random variable with (m — t/) —
(m—rt) = v—1’ degrees-of-freedom and the noncentrality
parameter &' — 0.

(iii) The statistics Ty — Ty and Ty are asymptotically
independent.

C. Decomposable Maps

Now we will make additional structural assumptions about
the mapping that defines the manifold of our problem. We will
make sense of such structural decompositions in specific
applications in Section IV. Consider model defined by the
following mapping

G(0) == G(&) + A(Q),

where = C R? is a nonempty open connected set, G : = —
R™ is a smooth mapping and A : R¥ — R™ is a linear
mapping. Note that G(-) inherits smoothness properties of
G(-). In particular, if G(-) is analytic, then the corresponding
mapping G(-) is analytic.

The parameter vector here is § = (£, () and the parameter
space © = = x R¥, We assume that A(¢) = A(, where A is
an m X k matrix of rank k. Denote by

M:={G(&):£€E}and L:={A(): ¢ eR"}

12)
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the images of the mappings G and A, respectively. Note that
the linear space £ has a dimension k, and 9T = M + L
is the image of the mapping G : © — R™. We denote
by t the characteristic rank of mapping G(-), and by p the
characteristic rank of G(-), i.e.,

p = rgg}rank(ﬂf)),
where J (&) = 0G(§)/0¢ is the Jacobian of G(-).

Consider the corresponding least squares problem (3), the
model (7) and the least squares test statistic 7, defined in (8),
for the mapping G(6) of the form (12).

Remark I11.2: Note that the optimal value of least squares
problem (3) is not changed if the point ¥ is replaced by 7+ v
for any v € L. Therefore the corresponding test statistic T'x
can be considered as a function of §j' = P,. 4, where Py. =
I, — P, is the orthogonal projection onto the linear space
orthogonal to L.

Recall that 9t = M + L. If M is a smooth manifold,
of dimension v, in a neighborhood of x, then Theorems III.1
and II1.2 can be applied. In particular, it will follow that the test
statistic Ty converges in distribution to a noncentral y? with
m —t degrees-of-freedom and certain noncentrality parameter.

Note that for 6 = (¢,¢) € O, the differential dG () : R? x
R* — R™ is given by

dG(0)(h, z) = dG(£)h + Az, h € RY 2 € R,

13)

(14)

This implies that the corresponding characteristic rank
t<p+k.

Definition 111.1: We say that a point x € M is well-posed
if M is a smooth manifold of dimension p in a neighborhood
of x and

Tm(x) N L ={0}. (15)
We say that the model is well-posed if
t=p+k. (16)

For the matrix completion problem the well-posedness
condition (at a point) was introduced in [16]. Note that
condition (15) means that

dim(7am(z) + £) = dim(Tpq(x)) + dim(L).

Of course, a necessary condition for (17) to hold is
that p + & < m. Note also that assuming the mapping G(-),
and hence the mapping G(-), is analytic we have that the image
M = M + L has Lebesgue measure zero in the observation
space R" if and only if v < m (see Remark II.2).

Proposition I11.2: Suppose that the mapping G(+) is analytic.
Then the following holds. If there exists at least one well-posed
point z € M, then the model is well-posed. Conversely if M
is a smooth manifold of dimension p and the model is well-
posed, then for a.e. £ € =, the corresponding point x = G(§)
is well-posed.

Let us make the following observation. By the definition
of 9 under the decomposition (12), we have that the point
o € M can be represented as

a7

x9 = 2" + vg for some ¥ € M, vy € L. (18)

Definition I11.2: We say that the model is identifiable at x*
(at xp) if the representation (18) is unique, i.e., if o = '+’
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with 2’ € M and v’ € L, then 2’ = z*. We say that the model
is locally identifiable at x*, if such uniqueness holds locally,
i.e., there is a neighborhood W of z* such that if xg = 2’ +’
with 2’ € M NW and v’ € L, then 2/ = z*.

The following result can be proved in the same way as
[16, Theorem III.2].

Proposition 1I1.3: If a point z* € M is well-posed, then
the model is locally identifiable at z*.

To verify the (global) identifiability of a nonlinear model
is difficult, and often is out of reach. Of course, local iden-
tifiability is a necessary condition for global identifiability.
When G(+) is analytic, the well-posedness condition (16) can
be verified numerically; it is necessary and sufficient for the
local identifiability in the generic sense of Proposition III.2.
We argue that the well-posedness condition is a minimal
property that should be verified for a considered model.

IV. APPLICATIONS OF GENERAL THEORY

In this section, we present several examples in signal
processing and machine learning to illustrate how to use the
general theory, developed in the previous section, to determine
the “model order” in the specific setting.

Remark IV.I: For some well-structured manifolds, it is
possible to give an explicit formula for the characteristic rank.
In more complicated settings, we can find the characteristic
rank numerically. That is, we compute the Jacobian matrix of
the considered mapping at several randomly generated points
of ©, and subsequently compute its rank. By Proposition II.1,
we can expect that this will give us the characteristic rank of
the considered mapping. This approach worked quite well in
experiments reported in Sections IV-B, IV-C, and I'V-F below.

A. Noisy Matrix Completion

We first show that the problem of selecting rank for noisy
matrix completion can be addressed using our general theory.
Part of the relevant discussion can be found in [16]; here,
we generate a conclusion using the framework of our general
theory in this paper.

Consider the noisy matrix completion problem (e.g., [10],
[14], [12] and references there in). Suppose we observe a
subset of entries of a low-rank matrix with Gaussian noise
and aim to recover the matrix. A common approach to solve
this problem, is to use a matrix factorization by selecting a
rank of the matrix using subjective choice or experiments and
cross-validation. However, it is not clear what would be a good
statistical procedure to determine the rank of the matrix.

Consider a mapping G(f) of the form (12) with the fol-
lowing parameters. Let £ = (V,W) with V € R™*" and
W e R™*" r < min{ni,no}, and let & C R™*" x R™2*"
be the set of such ¢ with both matrices V' and W having full
column rank r. Define

G(&) :=VWT e Rmxn2,

and
£ — {X c Ran”Q . X” = O7 (Z,j) c Q},

for an index set Q@ C {1,...,n1} x {1,...,n2}. Then
M = M, forms the set of ny X no matrices of rank r.
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Note that the set = is an open connected subset of R™**" x
R™2*" and
dim(L) = ning — ||,

where ()| is the cardinality (number of elements) of the index
set ). The parameter set

© = = x R~

Here the least squares problem of (8), associated with the
test statistic T, can be written as

19)

where Y;;, (i,7) € Q, are observed values of the data matrix.
Then the model (7) can be written as

Vij= X5+ N7V20y ey, (i) €9, (20)

where X* € M,.. Note that here the test statistic 7'y is a func-
tion of the components Yz] (i,4) € Q, of the corresponding
matrix Y (compare with Remark III.2 and (18)).

It is well known that the set M,., of ny X ny matrices of
rank r > 0, is a smooth manifold of dimension r(nq + ng —
r) in a neighborhood of its every point (excluding origin).
Therefore here every £ € = is a regular point of the mapping
G(-) with the characteristic rank p = r(ny +ng —r). Thus for
the characteristic rank v of the corresponding mapping G(-)
we have that

v <r(ny +ng —r)+ning — |9, 2D

and that the model is well-posed if and only if the equality
holds in (21).
Let us make the following assumption.
(A) The set M = M.,.+L is a smooth manifold, of dimension
v, in a neighborhood of the point X.
Note that if Assumption (A) holds, then 91 is a smooth
manifold of dimension t in a neighborhood of X' = X +U
for any U € L. Therefore by the discussion of Section II, the
above assumption (A) holds generically. By Theorem III.1 we
have the following result as /N tends to infinity (cf., [16]).
Proposition IV.1: Suppose that Assumption (A) holds. Then
the test statistic Ty converges in distribution to a noncentral
x? with degrees-of-freedom nm2 — t and the noncentrality

parameter
> (i — Hy)?.
(i,7)€Q

§=0"2 min

HeTpm, (x*) (22)

Moreover, applying Proposition II1.2, we can conclude the
following under the assumption:

(B) The point X ™ is well-posed and the model is identifiable
at X*.

Proposition IV.2: Suppose that Assumption (B) holds. Then:
(1) the equality holds in (21), (ii) the test statistic 7y converges
in distribution to noncentral y? with degrees-of-freedom
|| —7(n1 + ne —r) and the noncentrality parameter 0 given
in (22), (iii) with probability tending to one, problem (19) has
a unique optimal solution {Xij}(i’j)eﬂ.

The difference test statistic can be applied to the following
setting. Consider another index set ' C {1,...,n1} x
{1,...,n2} of cardinality |Q’| such that Q C €’ and the
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corresponding space
L:={XeR"*™:X;; =0, (1,j) € Q}.
Clearly, £ is a subspace of £, and the corresponding set
O =2 x RMn2 1,

is a linear subspace of the set ©. By Theorem III.2 we have
the following.

Proposition 1V.3: Suppose that Assumption (A) holds and
moreover M’ is a smooth manifold, of dimension t/, in a
neighborhood of X* € 9. Then the difference statistic
T) — Tn converges in distribution to noncentral x? with
degrees-of-freedom v — v/ and the noncentrality parameter
§’ — 0. Moreover, the statistics Ty — Ty and T are asymp-
totically independent.

The above result can be used to compare the goodness-of-fit
of two models.

Remark IV.2: An application of Theorem III.2 and Proposi-
tion IV.3 allows to estimate o> when the variance of the noise
is unknown. Specifically, let’s assume N = 1, I';; = 0 and ¢
follows normal distribution with zero mean and variance o2.
Denote the set of observation indices as €. By leaving out
some observation, we have a new set of observation indices
Q such that Q C . Then we can construct the estimate of
o? as the following:

T/ _ : Y 2
No=gmin o Y0 (Vi - Xy,
(i,5)€Q
I — 1mi o X )2
-y, -
(,5)€Q
€] =19
By Theorem III.2 and Proposition IV.3, we have

o 2(T} — Ty) follows a x> distribution with degrees-
of-freedom || — |Q] asymptotically for the true model.
Therefore, 62 is a consistent estimator of ¢2. This method
can be generalized to the other applications in this paper and
more discussion is provided in the Appendix.

B. Complex Noisy Matrix Completion

In this section, we generalize the results to “complex matrix
completion.” Here, the observations and underlying low-rank
matrices are over the field C of complex numbers. Consider the
matrix completion problem (over complex numbers), where
X E (CYLanQ’ V E (Cnlxr’ W E (CYLQXT:

rVninVlHX-VWTHg st Xij = bij, (1,5) €Q. (23)

This can be formulated in terms of a real numbers problem as
follows. Write

V=V 41V,

where i2 = —1, V; € R™*" and V5 € R™*7" are the real
and imaginary parts of matrix V' € C"**". Similarly, let

W =W;+iW,, X =X;+iXo.
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Then
VW = Ww = Ve W) +i(Vi Wy 4+ Ve W),
Define
Li:={UeR" " :U;; =0,(i,j) € Q},
and £ = L1 x L1. Then we can set
0 = (Vi, Wy, Vo, Wa, Uy, Us),

and mapping
G(0) == (G1(0),G2(0)),

where
G1(0) = Viw" — Vo W 4+ Uy,
Go(0) = Vi Wy + Vo W, 4 Us,
and Uy € L1 and Uy € Lq. Hence we can write the

problem (23) in the following form

min | X3 = G1(0)]3 + [ X = G2(0)]3

sit. X5 = b1y, Xoij = bayij, (4,75) € Q,

Xl,ij = X2,ij =0, (Z,j) c 0°. (24)

The dimension of the manifold of n; X ny complex matrices

of rank r, in terms of real numbers, is twice the corresponding

dimension r(ny + ng — r) in the real case. That is, the char-
acteristic rank of the respective mapping G(-) here is

t=2r(ny +na—1).

Note that this differs from the real-value matrix completion
case in Section IV-A by a factor of 2.

C. Low-Rank Matrix Sensing

Matrix sensing problems [26] is related to matrix com-
pletion, where the observations are linear projections of the
underlying low-rank matrix. Specifically, denote by S%*¢
the space of d x d symmetric matrices, and (A, B) := tr(AB)
the scalar product of A, B € S%*4, Let X* € S%* be a
positive semidefinite matrix of rank r needed to be recovered.
Given measurement matrices A; € S¥¥% i = 1,...,m, we
observe y € R™, such that

Yi = <A7,5X*>

Then we aim to solve the following least square problem.

min
UERdxr

fU) = Z (yi — (A, UUT>)2 .

i=1

(25)

It is shown in [26] that (25) is the same problem as the problem
of fitting one-layer neural networks with quadratic activation
in (27), which we discuss next.
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D. One-Hidden-Layer Neural Networks

We will show the general theory can be applied to determine
the number of hidden nodes. Consider a one-layer neural
networks. Let 2; € R? be the inputs and the observation is
assume to be generated by:

yi =1Tq(U" ;) + &5, (26)

where U* € R?*", 1 € R" with all entries equal to 1 and ¢;
is the Gaussian noise with mean zero and variance o2. The
activation function can be one of the following,

(i) Quadratic activation:

Q(Zla' o aZT’) = (vazgv" . ’Zg)

(ii) Sigmoid activation:
727") = (1/(1 + 6721)’ cee ]_/(1 + efz,,.)).

A commonly used approach to fit neural networks is to solve
the least square problem:

q(zl’. ..

FO) =3 (g —1TqU )"

i=1

min

27)
UERd Xr

Define © = R¥*" for U € O,

GU) = (1(U),...,gm(U)),

where ¢;(U) = 17q(U"x;). In this setting problem (27)
becomes a least squares problem of the form (1).

It is difficult to evaluate the characteristic rank v of the
mapping G in a theoretical way. By computing the rank of
the corresponding Jacobian matrix (see Remark IV.1), we find
the following formulas for the characteristic rank fit well in
numerical experiments:

v=dr—r(r—1)/2,

for the Quadratic activation function; and v = dr for the
Sigmoid activation function.

E. Tensor Completion

Next, we consider the problem of determining the rank of
a tensor from incomplete and noisy observations to illustrate
the role of the general theory.

Consider a tensor X € R™ "4 of order d over the field
of real numbers. It is said that X has rank one if

d

?

X:alo...oa

where a’ € R™ is n; x 1 vector,i = 1,...,d, and “o” denotes
the vector outer product. That is, every element of tensor X
can be written as the product

1 d
Xiyooiqg = a; X Xag.

The smallest number r such that tensor X can be represented
as a sum X = Z:ZlYi of rank one tensors Y; is called
the rank of X, and the corresponding decomposition is often
referred to as the (tensor) rank decomposition, minimal CP
decomposition, or Canonical Polyadic Decomposition (CPD).

The tensor completion problem can be formulated as the
problem of reconstructing tensor of rank r by observing a
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relatively small number of its entries. The second order tensor
(i.e., when d = 2) can be viewed as a matrix, and this becomes
the matrix completion problem discussed in Section IV-A.
Consider now third order tensors X € R™1*™2%"3 and denote
by M, third order tensors of rank r. Without loss of generality,
we can assume that nq; > ng > ng. With tensor X € M,. are
associated matrices A € R™*" B € R™"2*" (C € R™*" such
that
X=A®B®C(C,

meaning that
T
X = ZaiObioci,
i=1

with a?, b’, ¢’ being ith columns of the respective matrices A,
B, C.
The above leads to the following parameterization of M,..
For
E — (A,B, C) E RTUX?‘ % Rngxr X Rngxr,

consider mapping
GE)=A®BC.

By definition of the tensor rank we have that rank of tensor
X = G(&) cannot be larger than r. So we define the parameter
set

= {Le R x R™X" x R™X : G(¢) € M, }. (28)

We need to verify that the set = is open and connected. Note
that it could happen that the complement (R™*" x R"2%" x
R™s*7) \ E of the set Z, has positive (Lebesgue) measure,
or even that = has measure zero.

Careful analysis of properties of M, is not trivial and is
beyond the scope of this paper. We will make some comments
below. Let us consider the following examples. Suppose that
ns = 1. In that case, assuming that the elements of a matrix
C € RY" are nonzero, by rescaling columns of the respective
matrices A and B, we can assume that all elements of C
equal 1. Consequently, essentially, this becomes the matrix
completion problem discussed in Section IV-A. Thus the
characteristic rank of G(£) in that case is t = 7(ny +ns — 7).

The key question of the tensor rank decomposition is its
uniqueness. Clearly the decomposition X = A ® B ® C,
of X € M,, is invariant with respect to permutations, and
rescaling of the columns of matrices A, B, C' by factors
Ais A2i, Agq, © = 1,...,7, such that A\j;A9;A3; = 1. It is
said that the decomposition X = A ® B ® C is (globally)
identifiable if it is unique up to the corresponding permutation
and rescaling. It is beyond the scope of this paper to give a
careful discussion of the (very nontrivial) problem of tensor
rank identifiability. As it was pointed above, for n3 = 1 this
becomes the matrix rank problem for which the identifiability
never holds for r > 1 (e.g., [27, section 3.2]).

Suppose now that ng > 2. In that case the situation is
different.

Definition IV.1: It is said that the rank r decomposition
is generically identifiable if for almost every (A4, B,C) €
R™ X7 x R™2X7 x R™ %" the corresponding tensor A® B® C
has identifiable rank r.
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In particular, the generic identifiability implies that the com-
plement of the parameter set =, defined in (28), has (Lebesgue)
measure zero. It is known that for sufficiently small r, the iden-
tifiability holds in the generic sense (we refer to [28], [29],
and references therein for a discussion of the tensor rank
identifiability from a generic point of view).

The identifiability is related to the characteristic rank:

Definition IV.2: We say that (A4, B,C) € R"*" x R"*" x
R™ %" is locally identifiable if there is a neighborhood W

f (A,B,C) such that (A',B',C') € W and A’ ® B’ ®
C'' = A® B® C imply that (A’, B’,C") can be obtained
from (A,B,C) by the corresponding rescaling. We say
that model (n1,n2,n3,7) is generically locally identifiable
if ae. (A,B,C) € R™M*" x R™*" x R™*" js locally
identifiable.

Note that local identifiability of (A, B,C) € R™*" x
R™2%7 x R™*" is a local property, it could happen that
rank of the corresponding tensor A ® B ® C' is less than 7.
If indeed the rank of tensor A ® B ® C' is r, then its global
identifiability implies its local identifiability (note that the
permutation invariance does not affect the local identifiability).
Note also that the rank of the Jacobian matrix of a mapping
G(&) is always less than or equal to r(ny + n2 + ns) — 2r.
This follows by counting the number of elements in (A, B, C)
and making corrections for the scaling factors. That is,
the characteristic rank v of map G(-) cannot be larger than
r(ny +ne +n3 — 2).

Proposition IV4: Model (ni,ng,ng,r) is generically
locally identifiable if and only if the following formula for
the characteristic rank t holds,

t=7r(ny +n2 +ns —2). (29)

Since the generic (global) identifiability implies generic
local identifiability we have the following consequence of the
above proposition.

Corollary 1V.1: If the rank r decomposition is generically
identifiable, then formula (29) for the characteristic rank
follows.

F. Determining Number of Sources in Blind De-Mixing
Problem

De-mixing problem (e.g., [30]) is a fundamental challenge
in signal processing, which arises from applications such
as ambient noise seismic imaging [31], NMR imaging, etc.
In such problems, the goal is to recover the signals by observ-
ing their weighted mixture. Blind de-mixing is particularly
challenging in which we do not know the waveforms of the
signal. Moreover, the number of signals and the magnitudes
of the waveforms are also unknown. Such a problem has
been addressed using a matrix factorization approach [32].
However, in existing approaches, there is no efficient method
to determine the number of signals, which is usually a critical
input parameter to algorithms. In this section, we show how
to determine the number of sources in the context of ambient
noise imaging using the general theory.
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Assume there are N sensors. Define the signal received by
the nth sensor as follows:

Sl

Assume the number of signals K and the delays 7, ; are all
unknown. Further assume the signal is a Gaussian function

n=1,...,N. (30)

Tnk

si(t) = pre~ "+t
where oy, defines the width of the kth source, and py, is the
magnitude of the kth source. Here, our goal is to estimate the
number of signal sources K from observations of x,, () buried
in Gaussian noise.

We now derive the observation model. For the ease of
presentation, we present the derivation in continuous time (and
continuous frequency) domain, and the switch to discrete-time
(and discrete frequency) domain later. Let the Fourier trans-
form of the signal to be

Sulf) = Fls} ) = [

—o00
Recall that the Fourier transform of the delayed signal corre-
sponds to a phase-shift. Hence, for Gaussian signals in (30),
it can be shown that

F{se(t =) }(f) = ok \/azke—%ﬁe—wzfz/ak.

For continuous function h; and hso, the cross-correlation is
defined as:

(tn  ha)(s) = |

—00

sp(t)e 2™t dt,

oo

ha(t — s)ha(t)dt.

Here, in this section, ® represents the cross-correlation oper-
ator. By the duality of convolution in frequency and time,
we have

F{h1 @ ha}(f) = F{ha}" (f)F{h2}(f),

where (-)* denotes the conjugate of a complex number.

In ambient noise imaging, the useful “signal” are extracted
by performing pairwise cross-correlation between sensors.
Define 7y, (t) as the cross-correlation function of the
nth and the mth sensors:

Tn,m(t) = xﬂ( ) ® $m( )

RN

k=1 l=1

— Tn,t) @ Skt — T k)

Now consider the frequency domain. Denote the Fourier
transform operator by F and frequency by f. Define R,, ., (f)
as the Fourier transform of r,, ,, at the frequency f,

Rpm(f) ':-7:{7"71 m(t)}(f)
= Z Z Qui(f) - 2 Tt =Tms), (3D
where o
Que(f) = Flsi(t) @ si(t)}(f) = Sy (f)Sk(f)-
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The matrix Q(f) depends on unknown signal waveforms sy ()
as well as the the number of sources K. For Gaussian signals
defined in (30), we can write specifically

K K -
Rym(f) = Z Z Que(f) - €27 (Pma=Tm)

k=11=1

K 1 2,20 1 1
= Z ZPkplezﬂf(”“l*“””“)m |——e ™ IGptap),
(e953e7)

=1 1=1

Now we can write R,, ,,(f) in (31) in a compact form and
show its low-rank structure. Define a matrix Q(f) € CK*X|
where the ([, k)th entry of the matrix is Qi (f). Clearly, Q(f)
is a rank-one complex matrix. Define

S(f) =[51"(f),- - Sk,

then

Q(f) = S(HSH™,

where (-) denote the Hermitian of a complex vector or matrix
(i.e., the complex conjugate and transpose). Define

—2mifrn1 ,—2mifTn 2 —27rif7'n,K]T
, - .

an:[e e ., €

We have
Ry (f) = apl Q(f)oum, Vf.

Define a matrix A = [ay,...,ay] € CEXN and a matrix
R(f), whose (n,m)th entry is given by Ry, (f). We can
further write

R(f) = A"Q(f)AV/.

Assume our observations are a subset of entries of the tensor
R with additive Gaussian noise. The missing data can be
due to distance and communication constraints; see [33] for
context. Certain pairs of cross-correlations functions are not
available. This can happen when sensors far away, and it is
impractical for them to communicate information and perform
cross-correlation, and only a subset of frequency samples are
communicated. This can also happen when the signal-to-noise
ratio is too small for a pair of sensors. Denote the indices of
the observations as 2. To recap, our goal is to infer K, from
noisy and partial observations of a complex tensor R, indexed
on §.

Now we present the form of the non-linear map. Consider
discrete-time and frequency samples. Assume the discrete
event samples are indexed by ¢t = 0,...,T — 1. Thus, for
discrete Fourier transform, the frequency samples are also
indexed by f = 0,...,7 — 1. Define a vector of coefficients
in our problem ¢ € = C R2EHNK,

£=(p,...
Define the set

L={MeRNN<T M0 =0,Y(i, 4, k) € Q},

;pK;ah---704K77—1,1;7'1,2;---7TN,K)-

which can be viewed as the “nullspace” of a given observation
index set 2. Then we set

0= (£7M17M2)7
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TABLE I
RESULT OF HYPOTHESIS TESTS FOR THE RANK OF COMPLEX MATRIX
COMPLETION: r* IS THE TRUE RANK. FOR EACH r*, THERE ARE
200 EXPERIMENTS. WE PERFORM THE TEST FROM 7 = 1 TO
r = 4 AND COUNT THE NUMBER OF DETERMINED 7
WITH SIGNIFICANT LEVEL, 0.05; 7 = 0 MEANS

TESTS ARE REJECTED FOR”r = 1,...,4.
r=0 r=1 r=2 r=3 r=4| FDR
r*=2 0 0 190 10 0 5%
r*=3 0 0 0 193 7 3.5%
TABLE 11

RANK OF THE JACOBIAN MATRICES FOR THIRD ORDER TENSOR. FOR
EACH COMBINATION OF (ni,n2,n3,r), THE EXPERIMENTS ARE
REPEATED 100 TIMES AND THE RESULTS ARE ALL THE SAME.
WHEN 7 IS SMALL, RANK(J) = r(n1 + n2 + nz — 2).

WHEN r IS LARGE (CASES MARKED WITH *),

RANK(J) < r(n1 +n2 +nz — 2)

ny N2 N3 r rank(J) | n1 m2 ns r rank(J)
3 4 5 1 10 2 2 4 3 15*
3 4 5 5 50 2 2 5 3 18*
3 4 5 12 60" 2 3 5 4 28*
15 15 15 5 215 3 3 3 4 26"
15 15 15 15 645 3 4 4 5 44
15 15 15 100 3375* 3 5 5 7 74*

where M; € £ and M, € L. Denote the real and imaginary
parts of the frequency samples as R, m,r = Re(Ry m(f)),
and Z,, ,, r = Im(R,, ,n (f)), respectively, and define the cor-
responding tensors R and Z (which depend on the parameter
vector &). The non-linear map (similar to the case the complex
matrix completion) is defined by

G(0) == (R+ My, T + M>). (32)

Hence, although the situation is fairly complex here, we can
cast it into the format of the general problem and use our
result.

Numerical experiments suggest the following formula for
the characteristic rank

t=2K+NK — 1.

This is achieved by evaluating the rank of the Jacobian matrix
of the map defined by (32) (see Remark I'V.1) and the appendix
for the derivation of the Jacobian matrix).

V. NUMERICAL EXPERIMENTS
A. Complex Matrix Completion

In this section we consider the complex matrix completion
problem (23). To solve the related optimization problem,
we use a generalize version the hard thresholding algorithm
in [34]. In the experiment, we generate a rank-r complex
matrix with size ny x ng, by first generating Vy, Vo € R™1 %"
and Wy, Wy € R™2*" where each entries are i.i.d AV(0,1),
and form X = (Vi + iVa)(W; + iW,)". We numerically
verified that the characteristic rank of the manifold M, C
Cm*m2 of matrices of rank 7, is p = 2r(ny + ngo — r) for
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TABLE III

RESULTS OF HYPOTHESIS TESTS FOR THE NUMBER OF SOURCES: K* IS THE TRUE NUMBER OF SOURCES. FOR EACH K™, THERE ARE
100 EXPERIMENTS. WE PERFORM THE TEST FROM K = 1 TO K = 6 AND COUNT THE NUMBER

OF DETERMINED K; K = 0 MEANS TESTS ARE REJECTEDFOR K =1,...,6
K=0 K=1 K=2 K=3 K=4 K=5 K=6 | FDR
Kr=1 0 100 0 0 0 0 0 0
K*=2 1 0 98 0 1 0 0 6%
K*=3 4 0 0 94 2 0 0 3%
K* = 9 0 0 0 91 0 0 9%
K*=5 32 0 0 0 0 67 1 33%
2450 T T T T TABLE IV
2400 - | RANK OF THE JACOBIAN MATRIX FOR ONE-HIDDEN-LAYER NEURAL
@ NETWORKS WITH A QUADRATIC ACTIVATION FUNCTION. FOR EACH
2350 - - i COMBINATION OF (d,r*), THE EXPERIMENTS ARE REPEATED
100 TIMES, AND THE RESULTS ARE ALL THE SAME. THIS
2300 i JUSTIFIES THE FORMULA OF THE CHARACTERISTIC RANK
OF ONE-HIDDEN-LAYER NEURAL NETWORKS WITH
5/ 2250 - _ QUADRATIC ACTIVATION IS dr* — r*(r* — 1)/2
=
2200 |- . d r* rank(J) | d r* rank(J)
2150 i 10 1 10 30 11 275
10 40 30 17 374
2100 7 10 10 55 30 23 473
wsol A i 20 1 20 |50 10 455
+/F 20 12 174 70 10 655
1 1 1 1
200200()0 2100 2200 2300 2400 2500 20 18 207 90 10 855
x2(2208)
TABLE V

Fig. 1. QQ-plot of test statistics against x? distribution.

all random instances, which is consistent with the results in
Section IV-B.

To show the asymptotic distribution of test statistics
(Theorem III.1), we generate a rank-2 true matrix X* €
(C100x100  The observed entries are contaminated with
Gaussian noise:

" k) | . (k
Yij = X} +5§j) —|—177§j),

(i’ ]) 6 Q?

where || = 1500 and the noise 65;?),775?) S N(0,5%). The
experiments are repeated 400 times, i.e., £k = 1,...,400,
to demonstrate the empirical distribution of the test statistic.
Figure 1 shows the QQ-plot of {7 (2)(*)}4%, against the
x? distribution with a degrees-of-freedom equal to 2208.
Recall that the characteristic rank of the manifold M, C
C™ "2 of matrices of rank r, is p = 2r(ny + na — r)
(see Section IV-B). The results in Figure 1 show that the y?
distribution fits the test statistics reasonably well. Moreover,
we show the result of detecting the rank in table I, with the
same experiment setting. In each experiment, we complete the
matrix from rank » = 1 to r = 4. We choose the smallest 7,
such that Ty (r) has p-value larger than 0.05. In table I, there
are the results of 200 experiments for true rank r* = 2 and
r* = 3. We can see the power of tests are high when r < r*
since there is no false acceptance and the false rejection rate
is close to the significant level 0.05 when r = r*.

RANK OF THE JACOBIAN MATRIX FOR ONE-HIDDEN-LAYER NEURAL
NETWORKS WITH SIGMOID ACTIVATION. FOR EACH COMBINATION OF
(d,r*), THE EXPERIMENTS ARE REPEATED 100 TIMES AND THE
RESULTS ARE ALL THE SAME. THIS JUSTIFIES THE FORMULA
OF THE CHARACTERISTIC RANK OF ONE-HIDDEN-LAYER
NEURAL NETWORKS WITH SIGMOID ACTIVATION IS dr*

d r* rank(J) | d r* rank(J)
10 1 10 30 11 330
10 50 30 17 510
10 10 100 30 23 690
20 1 20 50 10 500
20 12 240 70 10 700
20 18 360 90 10 900

B. Characteristic Rank of Third Order Tensor

To generate third-order tensors of size ni Xng Xng, we form
A e Rm*r B e R™%" (C € R"™*" where each entry in
A, B, C are i.i.d. distributed as standard normal (zero-mean
and unit variance). Let X = A® B® C and a”, b*, ¢* be the
kth columns of A, B, C, respectively. To compute the Jacobian

matrix, forall i =1,...,ny,j=1,...,n2,l=1,...,n3 and
k=1,...,r, we can show that

aXijl = bkck aXijl = akck aXijl = akbk

dak 7ok ek ivi

All the other entries in the Jacobian matrix are zero.
Table II shows the rank (evaluated numerically) of the
Jacobian matrices for different (n1, 12, ns,r) values. We note
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TABLE VI
RESULT OF RELU ACTIVATION FUNCTION: 7* IS THE RANK OF TRUE U*. FOR EACH r*, THERE ARE 100 EXPERIMENTS. WE PERFORM THE TEST
FROM 7 = 1TO 7 = 7 AND COUNT THE NUMBER OF DETERMINED 7. 7 = 0 MEANS TESTS ARE REJECTED FOR”T =1,...,7
r=0 r=1 r=2 r=3 r=4 r=5 r=6 r=7]|FDR

r*=2 3 0 96 1 0 0 0 0 4%

r* = 4 0 0 96 0 0 0 0 4%

r* = 4 0 0 0 94 1 0 1 6%

r*=35 2 0 0 0 0 93 5 0 7%

r* =26 5 0 0 0 0 0 88 7 12%
that when r is sufficiently small, the characteristic rank is
equal to 7(n1 + na + ng — 2), as expected. When r is large,
the characteristic rank can be less than 7(n; + ns + ng — 2). €0
This effect can be explained by Proposition IV.4: since in .

= N

those cases the model is not generically locally identifiable, g 8
and hence is not generically identifiable. It is not surprising B 40
that when r is large enough (the cases marked with * in ‘§ / 10
the left column), the rank of the Jacobian matrix is equal to g / 12
ningns. The interesting cases are when r ~ (nynans)/(n1 + "

ny + n3 — 2). The right column of table II shows some
cases in which ranks of the Jacobian matrices are less than
min{ninaong, r(n1 + na + n3 — 2)}.

C. Determining the Number of Signals in Blind De-Mixing

Consider the ambient noise imaging in a distributed sensor
network setting (described in Section IV-F), where there are
missing values in the observations. Our goal is to determine
the number of sources. For this problem, one can show that
the characteristic rank is 2K + NK — 1 for large enough 7.
Therefore, by identifying the characteristic rank, we can
determine the number of sources.

In each experiment, we generate the random instances are
follows: «ap ~ Unif[10,11], pr ~ Unif[10,11], 7,5 ~
Unif[—2.5,2.5],Vn=1,...Nand k=1,..., K"

First, we want to verify the characteristic rank of the
Jacobian matrix predicted using our theory. Let N = 8,10, 12
and K =1,...,5. For each N and K, we generate parameters
and compute the corresponding rank of the Jacobian matrix
numerically. In figure 2, each point is the mean of ranks
in 100 experiments corresponding to a certain pair of N
and K. The lines plotted correspond to 2K + NK — 1, for
N = 8,10, 12. We can see the points are exactly on the lines,
which justifies our formulation for the characteristic rank.

Second, we show the result of testing the rank in this
problem. The observation noise are normal random variables
with zero mean and variance equal to 0.05. Table III is the
result of determining source number K™ with oy, py and 7, j
being unknown. We run experiments for K* = 1,...,5. For
each K*, 100 experiments are run and in each experiment,
the test is running from K = 1 to K = 6 and the significant
level is 0.01. In the table, K = 0 means all the tests are
rejected. We can see our test gives the true number of sources
most of the time, except K* = 5. When K* = 5, the algorithm
becomes difficult to converge to the optimal solution and
therefore leads to a large fitting error.

1 2 3 4 5
K

Fig. 2. The characteristic rank of the problem in Section IV-F: K is the
number of sources, NN is the number of sensors, the points are the rank of
the Jacobian matrix of the mapping, and the line is 2K + NK — 1.

D. One-Hidden-Layer Neural Networks

In this section, we consider the problem of determining
the number of hidden units for one-hidden-layer neural net-
works; the problem described in (27). In the experiment,
z; ~ N(0,15), U € R¥" | such that U;; ~ N(0,1) and
m = 1000. Consider the activation function to be quadratic
activation and sigmoid activation, respectively. Table IV and
Table V are the ranks of Jacobian matrices for different
combinations of (d,r*). The results justify the formula of
characteristic rank of one-hidden-layer neural networks are
dr* —r*(r*—1)/2 for quadratic activation and dr* for sigmoid
activation, respectively.

Although we could not provide any theoretical prediction for
the characteristic rank when the activation function is a ReLu
function, here we provide some numerical examples. We show
the performance of our rank test for one-hidden-layer neural
networks with a ReL.U activation function. In the experiments,
d = 50, and 0 = 0.1. We perform 100 experiments each
from r*, with the true rank of U being equals to 1 to 6.
For each r*, we perform the test from » = 1 to r = 7
with significant level 0.05. With this setting, the p-value is
computed under the x?(m — dr). The optimization problem
involved with fitting the neural networks model is solved using
gradient descent (implemented by Pytorch package).

For ReLu activation function, Table VI shows the rank
determined by our proposed test for each r*. Here, » = 0
means all tests are rejected. Results are similar to what we
observed in Table III. When the order of the model is small,

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 14,2021 at 01:55:50 UTC from IEEE Xplore. Restrictions apply.



2550

the test is consistent with the significant level. When the order
of the model increase, convergence to the optimal solution
becomes more difficult; in this setting, the false discovery rate
will increase but is still tolerable. An interesting finding is that
our test still gives promising results even though the ReLU
activation is not an analytic function.

VI. CONCLUSION

We develop a general theory for the goodness-of-fit test to
non-linear models, which essentially shows that the parameter-
of-interests are related to the characteristic rank of the linear
map that defines the manifold structure of our observation.
The test statistic has a simple chi-square distribution whose
parameters are specified explicitly. Based on this result, it is
convenient to implement a test procedure to determine the
model order in practice. Our general theory can provide precise
answers to several questions, such as determining the rank
of (complex) low-rank matrix from noisy and incomplete
observations. In some other applications, we show that how the
general theory can shed light on finding the “model-order-of-
interests”, such as tensor completion, determining the number
of hidden nodes in neural networks, determining the number of
sources in blind signal demixing problems, using analysis and
simulations. Providing explicit answers (such as exact values
of characteristic ranks) are too complex and beyond the scope
of this paper, which we leave for future work.

VII. APPENDIX

Proof of Proposition I1.1: (i) Since G(-) is twice contin-
uously differentiable, it follows that J(-) is continuous. Thus
the function rank(J(-)) is lower semicontinuous, and hence
the set {# € © : rank(J(6)) <t — 1} is closed. It follows that
its complement set {6 € © : rank(.J(#)) = t} is open.

(ii) Let 6y € O be such that rank(.J(6p)) = t, such g exists
since the function rank(.J(-)) is piecewise constant. Consider
an v x v submatrix of J(6y) of rank v, and the associated
function ¢(f) given by the determinant of this submatrix of
J(0). Since G(-) is analytic, we have that the function ¢(-) is
analytic and is not constantly zero since ¢(fy) # 0. It follows
that the set {6 : ¢(f) = 0} has (Lebesgue) measure zero
(e.g., [35]). That is, for a.e. # we have that rank(.J(0)) > .
Since by the definition the rank v is maximal, it follows that
rank(J(#)) = ¢ for a.e. @ € O©. This completes the proof.

Proof of Proposition II1.1: Since N is a smooth manifold
near xo it can be defined by equations ¢(z) = 0 in a
neighborhood of zy with ¢ : R™ — R™ being a smooth
near xo mapping with nonsingular Jacobian matrix V¢(zg).
Then optimality condition (9) can be written as: there exists
A € R™ such that the derivatives of the Lagrangian L(x, \) :=
1|9 — z||* = AT ¢(z) are zeros at (&, \). This can be written
as the following system of equations in (x, A),

Vo L(x,)) =0, ¢(x) = 0. (33)

Note that as ¢ and x approach zy, the corresponding A
tends to 0. The Jacobian matrix of partial derivatives of this
system, with respect to (z,A), at © = x9 and A = 0 is
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(v ¢€:Q)T v¢(()x0) ) This Jacobian matrix is nonsingular. It fol-

lows by the Implicit Function Theorem that in a neighborhood
W of xo the system (33) has unique solution. Moreover by
Remark III.1 the neighborhood W can be such that if § € W,
then any optimal solution of the least squares problem is in W.
If moreover & is in W and satisfies optimality equations (33),
then by the uniqueness property & should coincide with the
corresponding optimal solution. This completes the proof.

Proof of Theorem III.1: Since 3 converges in probability
to xg, the assertion (i) follows from Proposition III.1. Also any
minimizer Z in the right hand side of (8) converges in proba-
bility to x( (see Remark III.1). Therefore we can perform the
asymptotic analysis in a neighborhood of xg. As in the above
proof of Proposition III.1, 9t can be defined by equations
¢(x) = 0 in a neighborhood of ¢ with nonsingular Jacobian
matrix V(zo). Let (&, A) be a solution of equations (33) in
a sufficiently small neighborhood of (zp,0). By the Implicit
Function Theorem we have that

5 )= [oter ™50 [750]
+o([lg = zol))- (34)

Also it follows by (7) that N'/2() — xo) converges in distri-
bution to normal N (v, 02 I,,). In particular this implies that
|9 — xo| = O,(N~1/2), and hence

& — 20 = P(j — x0) + 0p(N71/?), (35)

where

P = I, — Vo(xo) (Vé(z0) 'V(20))  Vo(zo)T. (36)

Note that Ton(z9) = {v : V@ (x) "v = 0}. Therefore matrix
P in (36) is the orthogonal projection matrix onto the tangent
space Ton(xo). Slutsky’s theorem together with (35) imply
that N'/2(& — x0) has the same asymptotic distribution as
P[N'?(jj—x()]. Since N*/2({j— 1) converges in distribution
to normal N (7,02 I,,,), the assertion (iii) follows, and the
assertion (iv) follows by similar arguments.
Moreover by (35),

§—& =70~ (& —20) = (Imn—P)(§ —w0) +0p(N"}/?),
and since ||§ — x| = O,(N~'/2) it follows that
19 = &[5 = |(Tn=P)(G = zo)ll3 + 0p(N ).

It follows by Slutsky’s theorem that the N times right
hand side of (37) has the same asymptotic distribution as
Z"(I,,—P)Z, where Z ~ N (7,02 I,,,). The assertion (ii) fol-
lows. This completes the proof.

Theorem III.2 can be proved in a similar way by showing
that asymptotically this is equivalent to the linear case.

Proof of Proposition II1.2: Let x = G(€) be a well-posed

point. Then 7p(z) = {dG(¢)h : h € R4}, and for any ¢ € R¥
we have by (14) that dimension of the image of the differential
dG(&,¢) is p+ k. Tt follows that t > p + k. Since vt < p+ k,
it follows that t = p + k.

Conversely suppose that M is a smooth manifold of dimen-
sion p and vt = p+k. Let 6 € © be such that dimension of the
image of dG(6) is t, by Proposition II.1 we have that a.e. 0 is

(37)
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like that. Since v = p + k and Ta(x) = {dG(&)h : h € R4}
we have by (14) that (15) follows. It remains to note that
dG(0) = dG(¢’) for any points § = (£,¢) and 6’ = (£,{’) in
O with the same first component. This completes the proof.
Proof of Proposition IV.4: Let p be the characteristic rank
of mapping
R™MX7 x R™X7 x R™*" 5 (A,B,C) — A® B C. (38)

Recall that it always holds that 7(nq + na + ns — 2) > p.
Consider ¢ = (A, B,C) such that rank of the Jacobian

matrix of mapping (38) at (A, B,C) is p. For X = A BeC

consider the set
GHX)={(A, B, e

AeB oC =X}.
By the Constant Rank Theorem this set forms a smooth
manifold of dimension

dim (Rnl Xr % an Xr % RngXT’)

RVHXT X RnQXT % ]Rnng" .

—p=r(n1+n2+nz)—p

in a neighborhood of the point . If (29) holds, then dimension
of this manifold is 2r, and hence any (A’, B’,C") € G~}(X)
in a neighborhood of (A4, B,C) can be obtained by the
rescaling. That is, the local identifiability follows.

On the other hand if r(ny + ng + ng) — p > 2r, then this
will imply that there exists (A’, B/, C") € R™M*" x R™2*X" x
R™*" near (A, B,C) such that A/ @ B @C' = A B®C
and (A’, B’,C") cannot be obtained from (A, B,C) by the
rescaling. That is, the local identifiability does not hold.

Derivation of the Jacobian matrix in section IV-F.

For all k9 = 1,...,K, Yn,m,ng = ., N and
f=0,...,T — 1, the entries of the Jacobian matrix can be
derived as follows

K
aRn m
ool =37 pilcos(2m (7t = Tm ko))
Pko =1
+ co8(27 f(Tn ko — Tm.1)))
220141
- Le f(”k0+”l).
akoal
K
0Lp.m .
S P DI CLICREL )
0 —
+ 8027 f (7o, ko — Tim 1))
_a2f2( 11
oL PG )
(07787
K
ORn.m, T
ﬁm’f Y Z Pro PL(COS(2T f (Tt = T ko))
0

=1
+ cos(2mf (Tnkg — Tmit)))

—5 i, G )
l

+ 102 g pr(cos(2m f (Tt — Tin i )
=1

_1
+ cos(ZWf(Tn ko — Tm l)))akoz

2551
ORm.f, PhoQpy -
N 8;1::f(_ 02 =T precy):
K
8In m,f T .
Zznm,; _ _ = 2 — )
i DI CIC LB )
+ sin(27rf(7’n7k0 - Tm,l)))
3 _ 1 2201 4 1
ako Oq 277 (rtap)
™ f? Z Pro PU(SIN(2T f (Tt — Tim ko))
=1
sin(27 f (Tr,ky — Tm,1)))
1 D 2 p2 1 1
cay tay te o (”k0+°’)041;02
aIn,'m,f pkoal;() 2 r2 —2
- 8pk0 ( 2 +7T f pkoako )
ORn,m.f
aTnoJ%
K
= 1(n="n0) > _ prpry (=27 f SN2 f (Tng kg — Tm.i)))
=1
-1 1 —r? 14 1
uge? akoze s (°l+”ko)
K
0) > Pipro (2
=1
[ R G
Fsin27f (T — Tnoko))) - Ty Tay e ™/ (”IJF"’«O).
OLn,m, s
87'"0 ko
K
10) " pupe (2 cOS(2 (T iy = Timt)))
1 7;:_ 24200 4 1
'7704[ akoz f (Ol ko )
1m = 1) S b (=2 o2 (7t = 1)
=1
1 1 _g2p201 4 1
e 2ak026 ! (°l+”ko).

With the above result, we can numerically check the rank of
Jacobian matrix J(§) = 8%(55).

Discussion of estimating the noise variance o>

In the paper, we provide two ways to estimate the variance
o2 of the noise ¢ in the model.

1) As it is mentioned in Section III, if N > 1, i.e, we can

use sample variance to estimate the o2. That is: we
have samples yﬁ] Vi = 1,...,m,j = 1,...,N. Let
Yi = (N)_l E]‘:1 Yi,j and 6% = (mN)_l 271:1 E;V:1
(ij — i)

2) If N =1, let’s assume ¢; ~ N(0,02) and v = 0. Then
we can apply Theorem III.2 to construct a consistent
estimate of 2. Consider 9 C 9 and v = dim(9'),
v = dim(9M), let

Ty = min, g — 2|3, Tn = min 9 — |3
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T'hen let,
T —T
&2 N N

, (39)
r—rv

According to Theorem III.2, we know that under the
true model T]’V — T follows central X2 distribution
with v — t/ degrees-of-freedom asymptotically. Therefore
&2 is a consistent estimate of o2, ie. 62 — o2 as
v/ — v — oo. More specifically, as mentioned in section
III.C, we assume that our manifold can be decomposed to
be a sum of smooth manifold and linear space. Therefore,
for an g € M = M + L/, we can construct a linear
space L, s.t I/ C L. Then, let 9t = M + L. we can

compute eq.(39).

Below, we will show how to use this general strategy to
construct the £ in each application mentioned in the paper. The
key idea is that we can always leave out some observations to
construct the L.

1)

2)

3)

Matrix completion: Denote the set of observation indices
as o manifold: M = M, + L/, where £’ = {X €
R™1Xm2 0 X, 0 =0, Y(i,j) € Qo}. To estimate the o2,
we can leave out some observation, i.e. we form a smaller
observation set {27 C g. Then the new manifold is 99T =
M, + L, where £L={X e Rm*" : X, , =0,Y(i,j) €
Q1}. We can see that £ C £ = 9" C M. Therefore,
according to eq.(39), we can estimate o2 as following:

T — i XL )2
N Xnel}{/l[r Z (Yi; — X45)%
(i,5)€Q0
TN—XHEI}\I/I[T Z (Yij — Xi)?,
(,5)€Q
T —T
~2 N N
=t (40)
Q0] — [€2]

Complex matrix completion: It is similar to real matrix
completion. By leaving out some observations, we have
a smaller set of observation indices €7 C g, and

L= {X c (mem,Xij =0, V(Z,j) S QQ}
L= {X (S Cnlxnz,Xij - 07 V(Za]) € Ql}

Let TJ’V be the objective value of eq.(24) in the paper
with respect to observation set {2 and Ty be the result
with respect to observation set {2;. Then, we can estimate
the o2

~2 T]/V - TN

Q0] = 1]

Rank-r tensor completion: It is similar to matrix com-
pletion problem: Denote the manifold of rank-r tensors
as M., and there is an observation index €2y. By leaving
out some observations, we have ; C Q. Let’s define,

L:/ — {X (= Rnlxn27Xijk - Oa V(l,], k) S QO}
L= {X (S Rnlxn27Xijk - Oa V(Z,], k) € Ql}

and
M =M, + L', M= M, + L.
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TABLE VII

ESTIMATE OF 02 IN MATRIX COMPLETION WITH TRUE RANK r* = 6

rank &2 rank 62
1 34995.5 5 5050.63
2 26751.3 6 97.7
3 18719.6 7 96.6
4 11231.8 8 96.7

We can see M’ C M. According to the Theorem II1.2,
we can construct the 62 similar to eq.(40),

Th = mi Yiin — Xiin)2
N = Z (Yija ijk) s
(4,5,k)€Q0
Ty =Xnélinr Z (Yijk’ — Xijk)?
(4,5,k) €
o Ty —Tn

Q0] — [€21]

4) Demixing: It can be viewed as a tensor completion prob-

lem in our setting. The difference between the demixing
problem and rank-r tensor completion problem is the
way of parameterizing. In the rank-r tensor completion
problem, we parameterize the tensor with rank. In the
demixing problem, we parameterize the tensor as the
cross-correlation function of the frequency domain sig-
nals. However, in estimating o2, what matters is the £
part, which is not related to the parameterization of the
M part.

5) Neural networks: Suppose we have m observations,

ie. y € R™. Then we say that our set of observation
indices are all the indices i.e. Q¢ = {1,2,...,m}. Then
L = {X e R™ X, = 0,Vi € Qo} = {0}
By leaving out some observations, we have 7 C o,
L={XeR™": X, =0,VieQ} DL, according to
the eq.(27) in the paper, o2 is estimated as:

Tl _ : z_]-T UT i 27
N =, min Z_Zl(y q(U " i)
T : =17 Tr:))?
N=min (y q(U" )7,
i€

T4 —Tn

~2 N
_INT N 41
m =] (41)

6) Matrix sensing: As mentioned in the paper, matrix sens-

ing is a special case of one-hidden-layer neural networks
with quadratic activation function.

Below we also present two numerical examples to show the
performance of the estimate of the sigma:
1) Matrix completion: Table VII shows a result of estimating

o2 for each rank . In this experiment, n; = ny = 100,
true rank r* = 6, |Q] = 8000, 0 = 10, N = L
In practise, we may not know the true rank, therefore,
we compute the estimate of o2 for each rank r ranging
from 1 to 8. o2 is estimated by &2 in eq.(40) with
|| = 2000. When r < r*, 62 largely overestimates
the o and decreases hugely as r increases because part
of the signal is treated as noise. When r > 7%, &2 become
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[5]

[6]

[7]

[8

—_

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

TABLE VIII
ESTIMATE OF 62 IN MATRIX SENSING (r* = 3)
rank &2 rank | 62
1 8952.8 4 1.04
2 1498.8 5 1.12
3 1.12 6 0.88

stable since it is over-fitting the noise. We can also see
that when r = r*, our &2 is close to 2.

Matrix sensing (One-hidden-layer neural networks with
quadratic activation). Table VIII shows a result of esti-
mating o2 for each rank r. In this experiment, d = 50,
true rank r* = 3 (the number of hidden nodes),
m = |Q| = 500, 0 = 1, N = 1. We compute the
estimate of o2 for each rank r ranging from 1 to 4. o2 is
estimated by 62 in eq.(41) with |21 = 400. We can see
that our estimator 62 is close to the true o2 when r = 7*.
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