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Convex Parameter Recovery for Interacting
Marked Processes

Anatoli Juditsky, Arkadi Nemirovski, Liyan Xie, Student Member, IEEE, and Yao Xie

Abstract—We introduce a new general modeling approach
for multivariate discrete event data with categorical interacting
marks, which we refer to as marked Bernoulli processes. In the
proposed model, the probability of an event of a specific cate-
gory to occur in a location may be influenced by past events
at this and other locations. We do not restrict interactions to
be positive or decaying over time as it is commonly adopted,
allowing us to capture an arbitrary shape of influence from his-
torical events, locations, and events of different categories. In
our modeling, prior knowledge is incorporated by allowing gen-
eral convex constraints on model parameters. We develop two
parameter estimation procedures utilizing the constrained Least
Squares (LS) and Maximum Likelihood (ML) estimation, which
are solved using variational inequalities with monotone operators.
We discuss different applications of our approach and illus-
trate the performance of proposed recovery routines on synthetic
examples and a real-world police dataset.

Index Terms—Optimization methods,
stochastic processes.

estimation theory,

I. INTRODUCTION

ISCRETE events are a type of sequential data, where each
data point is a tuple consisting of event time, location,
and possibly category. Such event data is ubiquitous in modern
applications, such as police data[1], electronic health records [2],
and social network data [3], [4]. In modeling discrete events,
we are particularly interested in estimating the interactions of
events, such as triggering or inhibiting effects of past events
on future events. For example, in crime event modeling, the
triggering effect has been empirically verified; when a crime
event happens, it makes future events more likely to happen in the
neighborhood. Similar empirical observations have been made
for other applications such asin biological neural networks, social
networks [5], [6], financial networks [7], and spatio-temporal
epidemiological processes [8].
A popular model for capturing interactions between dis-
crete events is the so-called Hawkes processes [9]-[12].
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The Hawkes process is a type of mutually-exciting
non-homogeneous point process with intensity function con-
sisting of a deterministic part and a stochastic part depending
on the past event. The stochastic part of the intensity func-
tion can capture the interactions of past events and the current
event, and it may be parameterized in different ways. In a
certain sense, Hawkes processes may be viewed as a point pro-
cess analog to classical autoregression in time series analysis.
Hawkes process has received much attention since it is quite
general and can conveniently model interactions. For instance,
in a network Hawkes process,1 interactions between nodes
are modeled using a directed weighted graph in which direc-
tion and magnitude of edges indicate direction and strength
of influence of one node on another. Along this line, there
are various generalizations that allow for other types of point
process modeling, where different “link” functions are con-
sidered, such as self-correcting process, reactive process, and
specialized process (see [12] for an overview).

Estimating the interactions of the past events and the current
event is a fundamental problem for Bernoulli processes since
it reveals the underlying temporal and spatial structures and
predicts future events. There has been much prior work in esti-
mating model parameters, assuming that interactions are shift-
invariant and captured through kernel functions. Furthermore,
various simplifying assumptions are typically made for the
kernel functions, e.g., that the spatio-temporal interactions are
decoupled (e.g., [5]), implying that the interaction kernel func-
tion is a product of the interaction over time and interaction
over locations and can be estimated separately. It is often
assumed that the temporal kernel function decays exponen-
tially over time with an unknown decay rate [6], or it is
completely specified [13]; thus, the problem focus is on
estimating spatial interaction between locations. It is also
commonly assumed that the interactions are positive, i.e.,
the interaction triggers rather than inhibit future events [14].
Such simplification, however, may impede capturing com-
plex interaction effects between events. For instance, negative
interaction or inhibition is well known to play a major role
in neuronal connectivity [15]. The study of more complex
modeling of spatial aspects, especially jointly with discrete
marks, is still in infancy.

In this article, we present a general computational framework
for estimating marked spatio-temporal processes with categor-
ical marks. Motivated by Hawkes processes, we consider a
model of a discrete-time process on a finite spatio-temporal
grid, which we refer to as Bernoulli processes. A brief descrip-
tion of the proposed modeling is as follows. At each time ¢
a site k of the grid of the M-state Bernoulli process can be

I'When space is discretized, the spatio-temporal point process of a grid can
be modeled as a network point process.
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in one of M 4 1 states — a ground state, in which “nothing
happens,” or an event state if an event of one of M given
types at every (discrete) time instant ¢ takes place at the site.
We assume that the probability distribution of the events at
each location at time ¢ is a (linear or nonlinear) function on
the process history — past events at different sites at times
from t —d to t — 1, d being the memory parameter of the
process. For instance, each site of a 1-state linear (vanilla)
Bernoulli process can be in one of two states — 0 (no event) or
1 (event takes place). From the point of view of time series,
this process can be seen as a vector autoregressive process.
The observations at sites of the grid at time ¢ are Bernoulli
random variables with the conditional expectation (what is the
same as the conditional probability of an event to take place)
being a linear combination of historical states of the process
at times t — d to t — 1. The linear combination coefficients
are unknown process parameters. This model can be seen as a
natural simplification of the continuous-time Hawkes process,
where spatio-temporal cells are so small that one can ignore the
chances for two or more events occurring in a cell. A notable
feature of our model is that prior information on the structure
of interactions is represented by general convex constraints on
the parameters,® allowing for very general types of structures
of interactions. For instance, we can relax the nonnegativity
restrictions on interaction parameters and/or avoid assumptions
of monotone or exponential time decay of interactions com-
monly used in the literature. When the situation has a “network
component” allowing to assume that interacting sites are pairs
of neighboring nodes in a known graph, we can incorporate
this information, for instance, by restricting the interaction
coefficients for non-neighboring pairs of sites to be zero.

The considered model is related to information diffu-
sion processes over continuous time, for example, non-
linear Hawkes model [16], self-exciting processes over
networks (see [12] for an overview), information diffu-
sion networks [17], and multivariate stationary Hawkes
processes [15]. Compared to these well-known models,
time and space discretization leading to the spatio-temporal
Bernoulli process is a considerable simplification that,
nonetheless, leads to practical estimation routines that can be
used in “real world” scenarios.

Various approaches to parametric and nonparametric esti-
mation of spatio-temporal processes have been proposed
in the literature. A line of work [14], [18], [19] con-
sider non-parametric Hawkes process estimation based on
the Expectation-Maximization (EM) algorithms and the
Kernel method. Least-square estimates for link functions of
continuous-time multivariate stationary Hawkes process are
studied in [15]. There is also much work [20]-[22] considering
the estimation in the Bayesian framework. In particular, [23]
considers estimation in a Bernoulli model similar to the one we
promote in this article using the Bayesian approach and impose
prior distributions on parameters. Several authors consider the
problem of sparse model estimation for point processes, see,
e.g., [24], etc.

An important feature of the proposed models is that they
allow for simple “computation-friendly” statistical inferences.
Our approach to processing the resulting estimation problems
is based on convex optimization, which leads to computation-
ally efficient procedures. Our primary tools here are variational

2Convexity is assumed for the sake of computational tractability.

inequalities (VI) with monotone operators.? Specifically, we
show that the parameters of spatio-temporal models can be
recovered in a computationally efficient fashion by solving
inequalities of this type, both in the cases of linear models
(Sections II-A-II-E) and of nonlinear models satisfying certain
monotonicity restrictions (Section II-F). In the linear case, our
approach results in the usual Least Squares estimate* which,
of course, could be motivated without any references to VI’s.
However, these references explain how to act in the nonlinear
cases, where Least Squares, if applied, “as is” typically lose
computational tractability. Aside from the VI-based approach,
we consider the standard Maximum Likelihood estimation
(Section III). In the linear case, computing the Maximum
Likelihood estimate amounts to solving a convex optimization
problem and thus is computationally efficient. On the other
hand, in the nonlinear case, Maximum Likelihood estima-
tion typically becomes problematic computationally, including
the cases where the VI-based approach remains computation-
friendly. (A notable exception is the spatio-temporal logistic
model in which the Maximum Likelihood estimation reduces
to solving the convex problem.) It should be added that finite-
sample theoretical results on the statistical performance of the
estimates we develop do not favor Maximum Likelihood as
compared with the VI-based estimation.

Finally, we also demonstrate the good performance of our
method on synthetic and real data. In particular, we study a
real crime dataset in Atlanta, USA, to demonstrate the promise
of our methods to recover interesting structures from real-data
and predict the probability of crime incidents.

This article is organized as follows. We discuss the LS
estimation of the network Bernoulli process in Section II,
by introducing the model of the simplest Bernoulli process
with {0, 1}-valued mark in Section II-A. We then derive the
Least Squares estimate (which under the circumstances is what
VI-estimate boils down to) for this model in Section II-C
and building data-driven confidence sets for the estimated
parameters in Section II-D. We describe the general model of
the M-state Bernoulli process and discuss the Least Squares
estimation in Section II-E. The nonlinear modeling of the
process and the corresponding VI estimate are presented
in Section II-F. In Section III, we discuss the Maximum
Likelihood estimate of parameters of the general Bernoulli
process. The application of the proposed approach is illus-
trated by various simulation examples in Section IV-A. Finally,
Section IV-B shows an application of our modeling to “real-
world” data analysis of crime events in Atlanta.

II. ESTIMATING PARAMETERS OF SPATIO-TEMPORAL
BERNOULLI PROCESS

Here we consider spatio-temporal Bernoulli process with
discrete-time over discrete locations. Specifically, we assume
that the discrete-time and location grid we deal with is fine
enough so that we can neglect the possibility for more than
one event to occur in a cell of the grid. We will model the
interactions of these events in the grid. In Sections II-C-II-E
we develop and process linear models; nonlinear extensions
are considered in Section II-F.

3Utilizing VI's with monotone operators for statistical estimation is the
main novelty in this article; to the best of our knowledge in statistics, this
approach was used only once (see paper [25] on Generalized Linear Models).

4This, in hindsight, is resembling but not identical to what is done in [15].
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Fig. 1. Illustration of the discretized process. Observation wy, at the location
of a three-dimensional spatio-temporal grid.

A. Single-State Model

Define a spatio-temporal Bernoulli process with memory
depth d as follows. We assume the memory depth is a pre-
specified hyper-parameter (e.g., it can be estimated using
cross-validation as explained in Section IV-B when we study
real data). We observe on discrete time horizon {t : —d+1 <
t < N} random process as follows. At time ¢ we observe
Boolean vector w; € RX with entries wy € {0,1}, 1 <k <K.
Here wy = 1 and wy = 0 mean, respectively, that at time ¢ in
location k an event took/did not take place. We set

o' ={wg, —d+1<s<t1<k<K}eRIFTDK
w, ={wg, 1 <s<t,1<k<K}e RU—T+DxK

In other words, o’ denotes all observations (at all locations)
until current time ¢, and a)tr contains observations on time
horizon from 7 to t.

We assume that for # > 1 the conditional probability of the
event wy = 1, given the history o'~!, is specified as

d K

Bt D D Blwu—se 1 <k <K,

s=1 ¢=1

where 8 = {f¢, ,B,ie 1 <s<d,1 <k, £ <K} is a collection
of coefficients. Here

o B corresponds to the baseline intensity at the k-th loca-
tion (i.e., the intrinsic probability for an event to happen
at a location without the exogenous influence, also called
the birthrate);

o B, captures the magnitude of the influence of an event
that occurs at time ¢ — s at the ¢-th location on chances
for an event to happen at time ¢ in the k-th location; so
the sum in (1) represents the cumulative influence of past
events at the k-th location.

Since the probability of occurrence is between 0 and 1, we

require the coefficients to satisfy

(D

d K
0<pB+Yy Y min[B},,0], Vk<K,

s=1 £=1

d K
U2 et Doy max[By, 0], V<K

s=1 {=1

2)

Note that constraints in (2) allow some of the coefficients
By, to be negative, permitting the corresponding model to cap-
ture the inhibitive effect of past events. Fig. 2 illustrates a
realization of the sample path of a simple Bernoulli process
in the considered setting with different memory depths (5 for

2| O OOO O 000 00000000000
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Fig. 2. Realizations of spatio-temporal Bernoulli processes with memory
depths 5 (top) and O (bottom) on time horizon N = 32 with three locations
represented with y-axis 1, 2, and 3. “1” events in different locations are marked
by different colors.

the top figure and O for the bottom). Note that in the bottom
plot, the events are more spread out due to the memoryless
nature of the process.

Our goal is to recover the collection of parameters B using
a set of observations " over a time horizon N.

B. Preliminaries on Variational Inequalities With Monotone
Operators

Variational inequalities (VI’s) with monotone operators is
the principal computational tool of the approach we are about
to describe. We start with the related preliminaries. A vector
field F : X — RY defined on a nonempty convex subset X' of
RY is called monotone, if (F(x) — F(y), x —y) > 0 whenever
x,y € X. When N = 1, monotonicity means that the scalar
function F is nondecreasing on X’; a basic example (by far not
the only useful one) of a multivariate monotone vector field is
the gradient field of a differentiable convex function f : X —
R. We say that o > 0 is a modulus of strong monotonicity of
vector field F, when

(F(x) = F(),x—y) > allx —yl3 Va,ye X;

when o > 0, F is called strongly monotone. A pair (X, F)
comprised of nonempty convex domain X and monotone vec-
tor field F on this domain gives rise to variational inequality
VI(F, X). A weak solution to this VI is any point x € X’ such
that

(Fx),x—Xx)>0 VxeX.

Whenever F is strongly monotone, weak solution, if exists, is
unique.
A strong solution is a point X € X’ such that

(F(x),x—Xx) >0 VxeX.

Every strong solution is a weak one; when F is continuous
on X, the inverse also is true. When X is a convex com-
pact set, VI(F, X') always has weak solutions. When F is the
gradient field of a continuously differentiable convex function
f on X, the weak and the strong solutions to VI(F, X)) are
exactly the minimizers of f on X. Finally, we should stress
that variational inequalities with monotone operators are the
most general “problems with convex structure;” under mild
computability assumptions, that can be efficiently solved to a
high accuracy.
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C. Least Squares (LS) Estimation

As applied to the simple spatio-temporal model described
in Section II-A the VI-based approach we are developing boils
down to the Least Squares (LS) estimation. Let x = K +dK?;
we arrange all reals from the collection 8 in (1) into a column
vector (still denoted B):

ﬁ:[ﬂl,...,ﬁK,ﬂlll,...,ﬁfl,ﬂ}K,...

T
d 1 d
x ﬂ]K,...,ﬁKK,...,,BKK] € R¥.

Note that constraints (2) above state that 8 must reside in the
polyhedral set 3 given by explicit polyhedral representation.’
Assume that we are given a convex compact set X' C B such
that B € X'; we introduce this set to account for additional to
the obvious inclusion 8 € B a priori information, if any, on the
vector of model’s parameters. Our model says that for 7 > 1,

the conditional expectation of w; given w'™! is nT(wﬁ:;)ﬂ,

Prob,-1{w; = 1} = nT(wf:cll),B,

with a known to us function 7n(-) which is defined on the set
of all zero-one arrays !~} € {0, 1}**X and takes values in
the matrix space R<*K:

nT(wjjjl) = [IK, Ik ® vec<a);:jl)T] e RExx (3)

where I is a K x K identity matrix, ® denotes the standard

Kronecker product, and vec(-) vectorizes a matrix by stacking

all columns. Note that the matrix n(wi;ll) is Boolean and has

at most one nonzero entry in every row.?
Consider a vector field F : X — R¥, defined as

Fx) = IivaN i[n(a):_;)nTGu;_;)x

- n(a);:;)a)t] : X - R,

where E v denotes expectation taken with respect to the dis-

tribution of " (notation E,, is similarly defined). Below, all

expectations and probabilities are conditional given a specific

realization of the initial fragment ©® 441 Of observations.
Observe that we have

| N
(F@) = F),x = y)=5 D Eon
t=1
X {(x—y)Tn(wi:jOnT(a);:;) (x—y)}zO Vx,y e X.

5Polyhedral representation of a set X C R" is a representation of the form
X:{xeR”:EIweR’" :Px+Qw§r},

that is, representation of X as a projection of the solution set of a system of
linear inequalities in the space of (x, w)-variables on the plane of x-variables.
When X is polyhedrally representable, it automatically is polyhedral — can be
represented by a finite system of linear inequalities in x-variables only. This
system, however, can be much larger than the one in the polyhedral repre-
sentation in question, making explicit polyhedral representations the standard
descriptions of polyhedral sets in optimization.

6Indeed, (1) says that a particular entry in 8, By or ﬂ/ﬁe’ affects at most
one entry in nT(a);:JZ)/S , namely, the k-th entry, implying that each column

of r]T(~) has at most one nonzero entry.

Thus, the vector field F is monotone. Moreover, we have
F(B) =0, since

_1 ng,{n(w;—:,) [ (wi3)8 ]

= ]% éEwtl {n(wﬁiﬁz) [nT(wiiﬁz)ﬂ ~ Ejo {“”}]}
- %IZ[:;EQ)H {n(ai:;) [ﬂT(wZ;)ﬁ - "T(‘“ d)ﬁ“
=0,

where E -1 denotes the conditional expectation given o'l

Therefore, f € X is a zero of the monotone operator F and
therefore it is a solution to the variational inequality VI[F, X].
Now consider the empirical version

1V 1\, T(, 1
Fonv(x) = [ﬁztzlr;(a);d)n (a)fd):|x
AlwN]
1 N 1
N ﬁzt:1n<w§_d)w,
aloN]

of vector field F. Note that F v (x) monotone and affine, and
its expected value is F(x) at every point x.

We propose to use, as an estimate of 8, a weak solution
to the Sample Average Approximation of VI[F, X], i.e., the
variational inequality

findze X : (Fy(w),w—2 >0,

“

Vw € X. VI[F v, X]

The monotone vector field F, v (-) is continuous (even affine),
so that weak solutions to VI[F ~, X] are exactly the same as
strong solutions, i.e., points x € X" such that (F v (x), x —x) >
0 for all x € X. Moreover, the empirical vector field F, n(x)
is just the gradient field of the convex quadratic function

1 Y T t—1 2
= 2 S (oo,
=1

so that weak (same as strong) solutions to VI[F v, X] are
just minimizers of this function on X. In other words, our
estimate based on solving variational inequality is an optimal
solution to the Least Squares (LS) formulation: the constrained
optimization problem

, &)

min ¥, v (x) (6)
xeX

with a convex quadratic objective. Problem (6), the same as a
general variational inequality with a monotone operator, can
be routinely and efficiently solved by convex optimization
algorithms.

D. Toward Performance Guarantees

Our objective in this section is to construct non-asymptotic
confidence sets for parameter estimates built in the previous
section. Utilizing concentration inequalities for martingales,
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we can express these sets in terms of the process observations
in the spirit of results of [24], [26], [27].

Observe that the vector of true parameters § underlying our
observations not only solves variational inequality VI[F, X],
but also solves the variational inequality VI[FwN, X], where

A= 23 (et (of-0)8
a[oN]

FwN x) =

with A[w"] defined in (4).

In fact, B is just a root of F,n(x) : F,n(B) = 0. Moreover,
the monotone affine operators F, v (x) and szv (x) differ only
in the value of constant term: in F,n(x) this term is alwM],
and in szv (x) this term is @[w"]. Thus, equivalently, B is the
minimizer on X of the quadratic form

2
1
d)ﬂ Hz

N
— 1 _ _
W (x) = 3N E H’?T(w;ali)x - nT(w;—
=1

and the functions W in (5) and W above differ only in the con-
stant terms (which do not affect the results of minimization)
and in the linear terms. Moreover, the difference of the vectors
of coefficients of linear terms is given by (due to fw/v (B) =0):

Ap = F () = F N (B) = F oy (B) = ao"] — a[o”]
N
- Ilv ; ”(“’;:011) [UT<60§:01,>/3 - w,] . (7)
&

Note that this is the same as the difference of constant terms
in F,v(-) and F v (-).
Concentration bounds for F,~(8) can be obtained by
applying general Bernstein-type inequalities for martingales.
Lemma I: For all € € (0,1) vector F n(B) = Af in (7)

satisfies
In(2k /€)
. (8
+ AN }56 (®)

In(2k/€)
2N

Probwzv{”FwN(,B) (=
Proof: Since the conditional expectation of @, given '™
is nT(w;;l,)ﬁ, we have E,,-1[§] = 0. Thus, & is a

martingale-difference. Also, because both w; and nT<a)§:tli) B

are vectors with nonnegative entries not exceeding 1, we
have ||77T(a);:£11)ﬂ wtlloo < 1. Besides this, n(a)t d) is
a Boolean matrix with at most one nonzero in every row,
whence ||nT(w§:}1)z||oo < |lzlle for all z. The bottom line

is that ||&|lcc < 1. Furthermore, the conditional variance
of components of w; is bounded by 1/4, so, applying the
Azuma-Hoeffdlng inequality [28] to components (F, v (8))k,
k=1,...,k, of F n(B8) we conclude that

PI'Owa{i(FwN(ﬂ))A > 1/ v ﬁ} < 2exp{—x}

Vi<k<k,x>0.

The latter bound results in (8) by application of the total

probability formula. |
A somewhat finer analysis allows to establish more precise

data-driven deviation bounds for components of F v (B).

Lemma 2: For all y > 1 entries Fn(Bi k =
1,...,k, of F,n(B) satisfy, with probability at least
1 —2e(y[In((y — DN) +2]4+2) e,

a[“’N]k - E(‘1[“)I\I]k’ N:y)
< Fon(B) < a["], — ¥ (a[w"],. N1 y) (€

where a[w"]; is the k-th component of a[w"] as in (4) and
lower and upper functions ¥ (-), W(-) are defined in relation
(??), see the Appendix.

Proof of Lemma 2 is postponed till the Appendix. We are
about to extract from this lemma upper bounds on the accuracy
of recovered coefficients.

1) Upper—Boundmg Risk of Recovery: Recall that our esti-
mate ,3 = /3 (&™) solves the variational inequality VI[F,, N, X
with F v (x) = Alo"]x — a[o"], see (4). Note that A[w"] is
positive semidefinite (we write A > 0, and we write A > 0 for
positive definite A). Given A € R“**, A > 0, and p € [1, o0,
define the “condition number”

O,lA] = max{e >0:¢"Ag = 0llgl2 Vg e R“]. (10)

Observe that 6,[A] > 0 whenever A > 0, and that for p, p €
[1, oo] one has

Tag = S0, [ATIgl2 + 6,141 gl
g Ag = S OplAllgll; + Oy 1Allgly

> /6,[A16,[Allgll, gl

The following result is immediate:
Theorem 1 (Bounding £, estimation error): For every p €
[1, 00] and every " one has

|B(") — 81, < |Fn B o/ /6o[A]

(1)

1er[A["]].

(12)

As a result, for every € € (0, 1), the probability of the event

|B(@") - 81, < @[A[" I [A[«"]]) "
n(2 In(2
x( n(2;/€)+ n(3;/€)> Vpell, ool (13)

is at least 1 — €. L

Proof: Let us fix o and set B = B[w"], A = A["]. Since
F wN( ) is continuous and ,3 is a weak solution to VI[F, v, X],
,3 is also a strong solution: (F,, N(ﬂ) z—pB) >0 forall z €
A5 in_particular, (F ~(8), B — ,B) > 0. On the other hand,
Fn(B) = F(B)—A(B—B). Asaresult, 0 < (F n(B), B—B) =
(Fon (B) —A(B — B), B — B), whence

(8—B)A(B—B) < (Fn(B), B—P)
< [Fox®| I8 = Bl;-

Setting p’ = 1 in (11), we obtain

(8~ B)'A(p ~ B) = VoriATG, 41|~ Bl |6 ~ B,

This combines with (14) to imply (12); then (12) together
with (8) imply (13). [ |

Remark 1: (Evaluating the condition number): To assess
the upper bound (13) one needs to compute “condition num-
bers” 6,[A] of a positive definite matrix A. The computation

(14)
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is easy when p = 2, in which case 6;[A] is the minimal
eigenvalue of A, and when p = oc:

OolA] =

min {xAx : |x]lo < 1, x; = 1}

1<i<k

is the minimum of « efficiently computable quantities. In gen-
eral, 61[A] is difficult to compute, but this quantity admits
an efficiently computable tight within the factor w/2 lower
bound. Specifically, for a symmetric positive definite A,
min,{z'Az : ||z|l; = 1} is the largest r > 0 such that the ellip-
soid {z : zf Az < r} is contained in the unit ||-||;-ball, or, passing
to polars, the largest r such that the ellipsoid y’A~ 'y < r~!
contains the unit || - ||oo-ball. Because of this, the definition of
01[A] in (10) is equivalent to 61[A] = [ max | <1 xA-1x~L
It remains to note that when Q is a symmetric positive semidef-
inite ¥ X « matrix, the efficiently computable by semidefinite
relaxation upper bound on max |, <1 xT Qx, given by

m}\in{ZAi :Ai >0 Vi; Diag{A1, ..., A} = O,
1

is tight within the factor 7 /2, see [29].

Under favorable circumstances, we can expect that for large
N the minimal eigenvalue of A[w™] will be of the order of
one with overwhelming probability implying that the lengths
of the confidence intervals (16) go to 0 as N — oo at
the rate O(1 /«/IV). Note, however, that inter-dependence of

the “regressors” n a)i;ll across ¢ makes it difficult to prove

something along these lines.

2) Estimating Linear Forms of B: We can use concentration
bounds of Lemmas 1 and 2 to build confidence intervals for
linear functionals of B. For instance, inequality (9) of Lemma 2
leads to the following estimation procedure of the linear form
e(B) = e’B, e € R“. Given y > 1, consider the pair of
optimization problems

xe X,
o o] = Bl ) < (),
= P I S o
el 3] = mas | s Vel )= Ao
=¥ (a[@"], N:y), k=1,

(15)

where (1) and ¥(-) are defined as in (2?) of the

Appendix. These problems clearly are convex, so e[« y] and
e[w", y] are efficiently computable. Immediately, we have the
following.

Lemma 3: Given y > 1, the probability of the event

g[a)N,y] <elp< E[a)N,y] Ve, (16)

is at least 1 — 2ke(y[In((y — 1)N) + 2] + 2)e™.
Indeed, when events
a[o ], = (a[0"], N;y) < For (B
< a[a)N]k —K(a[a)N]k,N; y), k=1,...,k
take place, B is a feasible solution to optimization problems

in (15). Due to Lemma 2, this implies that (16) takes place
with probability at least 1 —2xe(y[In((y — 1)N) + 2] +2)e™.

E. Estimating Parameters of Multi-State Spatio-Temporal
Processes

In this section, we consider the multi-state spatio-temporal
process in which an event outcome contains additional
information about its category [19]. So far, we considered the
case where at every time instant ¢ every location k maybe be
either in the state wy = 0 (“no event”), or wy = 1 (“event”).
We are now extending the model by allowing the state of a
location at a given time instant to take M > 2 “nontrivial”
values on the top of the zero value “no event.” In other words,
observation of the multi-state Bernoulli process is categori-
cal — we can either observe no event or observe one of M
possible event outcomes.

We define M-state spatio-temporal process with memory
depth d as follows:

« We observe a random process on time horizon {¢ :

1 <t < N}, observation at time ¢ being

—d+

a)[:{w[ke{o,l,,M},lkaK}

e For every t > 1, the conditional, ! =

(w—d+1, ©—g42, ..., wr—1) given, distribution of wy is
defined as follows. With every location k, we associate
an array of (baseline) parameters fBr = {Br(p),1 <
p < M}, and with every pair of locations k, £ and every
s € {l,...,d} — an array of (interaction) parameters
,B,i@ = {ﬂgz(p, q),1 <p<M,0<gqg < M}. Then induced
by w'~! probability of wy to be of category p, 1 < p < M,
is given by

d K
=BP)+ D> Bi(p. wu—sye),

s=1 £=1

Prob, -1 {wx = p}

a7)

and the probability for wy to take value O (no event or
“ground event”) is the complementary probability

Prob 1 {wg = 0}

M d K
=1- Z[ﬁk(l’) + Z Zﬁ)ﬁg (p. w(l—s)ﬁ):|-

p=1 s=1 £=1

In other words, B;,(p, ) is the contribution of the loca-
tion £ in state ¢ € {0,1,..., M} at time ¢t — s to the
probability for the location & to be in state p € {1, ..., M}
at time ¢, and Bi(p), p € {l,...,M} is the “endoge-
nous” component of the probability of the latter event.
Of course, for this description to make sense, the B-
parameters should guarantee that for every o'~!, that is,
for every collection {w¢ € {0,1,..., M} : T < 1,1 <
{ < K}, the prescribed by (17) probabilities are nonneg-
ative and their sum over p = 1,..., M is < 1. Thus, the
B-parameters should satisfy the system of constraints

0</3k(P)+ZZ mln ﬂkg(P 9,

s=1 =1
1<p<M 1<k<K

= Z,Bk(l?)"‘zz max Z:Bkz(l’ 9,

slll__

1§k§K. (18)
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The solution set B of this system is a polyhedral set given
by explicit polyhedral representations.

o« We are given convex compact set X in the space of
parameters B = {Br, B, (. ¢).1 < s < d, 1 <k, £ <
K,1 <p<M,0 <gq < M} such that X contains the true
parameter B of the process we are observing, and X is
contained in the polytope B given by constraints (18).

We arrange the collection of B-parameters associated with a
M-state spatio-temporal process with memory depth d into a
column vector (still denoted 8) and denote by « the dimension
of B.7 Note that (17) says that the M-dimensional vector of
conditional probabilities for wy to take values p € {1, ..., M}

given o'~ ! is
T(, -1
ol (of3)]
[ K\ @i-a)P |,

with known to us function ni(-) defined on the set of arrays
wi:; e {0,1,.. .,M}dXK and taking values in the space of
k x M matrices. Note that the value of wy is the index of
the category, and does not mean magnitude. Same as above,
nk(w’dill) is a Boolean matrix.

To proceed, for 0 < g < M, let x, € RM be defined as
follows: xo = 0 € R¥, and x,, 1 < g < M, is the g-th
vector of the standard basis in RM. In particular, the state
g can be encoded by vector @y = X, and the state of our
process at time # — by the block vector @, € RMK with blocks
o € RM k=1,...,K. In other words: the k-th block in @,
is an M-dimensional vector which is the p-th basic orth of
RM when wy = p > 1, and is the zero vector when wy = 0.
Arranging « x M matrices ni(-) into a matrix

1) =ImE), ..., nx()] € {0, 1y>MK

we obtain
By @) = 1" (0/7})B € RYE,

where E -1 is the conditional expectation given o', Note
that similarly to Section II-A, (17) says that every particular
entry in 8, Br(p) or B}, (p, q), affects at most one of the entries
in the block vector [an(wg:}l),B; cees n%(wf:é)ﬂ] specifically,
the p-th entry of the k-th block, so that the Boolean matrix
77(0)§: 511) has at most one nonzero entry in every row.

Note that the spatio-temporal Bernoulli process with
memory depth d, as defined in Section II-A, is a special case of
M-state (M = 1) spatio-temporal process with memory depth
d, the case where state 0 at a location contributes nothing to
probability of state 1 in another location at a later time, that
is, B3, (1,0) =0 for all s, k, £.

Motivating example: Different types of crime events: As an
illustration, consider a spatio-temporal model of crime events
of different types, e.g., burglary and robbery, in a geographic
area of interest. We split the area into K non-overlapping cells,
which will be our locations. Selecting the time step in such
a way that we can ignore the chances for two or more crime
events to occur in the same spatio-temporal cell, we can model
the history of crime events in the area as a M = 2-state spatio-
temporal process, with additional to (18) convex restrictions on

"In general, k = KM + dK*M?. However, depending on application, it
could make sense to postulate that some of the components of B are zeros,
thus reducing the actual dimension of §; for example, we could assume that
Bre (-, -) = 0 for some “definitely non-interacting” pairs k, £ of locations.

the vector of parameters 8 expressing our a priori information
on the probability Bi(p) of a “newborn” crime event of cat-
egory p to occur at time instant ¢ at location k and on the
contribution B;,(p, ¢) of a crime event of category ¢ in spatio-
temporal cell {r — s, £} to the probability of crime event of
category p, p > 1, to happen in the spatio-temporal cell {z, k}.

The problem of estimating parameters B of the M-state
spatio-temporal process from observations of this process can
be processed exactly as in the case of the single state spatio-
temporal Bernoulli process. Specifically, observations o” give
rise to two monotone and affine vector fields on X, the first
observable and the second unobservable:

ot =[S e

t=

A[w"]

Fon(x) = A[o" x—A[o"]B. (19)

The two fields differ only in constant term, S is a root of the
second field, and the difference of constant terms, same as the
vector F, v (B) due to F,n(B) = 0, are zero-mean satisfying,
for exactly the same reasons as in Section II-D, concentration
bounds (8) and (9) of Lemmas 1 and 2. To recover 8 from
observations, we may use the Least Squares (LS) estimate
obtained by solving variational inequality VI[F v, X] with the
just defined F v, or, which is the same, by solving

N
. 1 T( t—1 —?
)rgl)r(l{lpr(x) = N ;Zl Hn (a);_d)x — 2}. (20)

Note that (8) and (9), by the same argument as in Section II-D,
imply the validity in our present situation of Theorem 1 and
Lemma 3.

F. Nonlinear Link Function

So far, our discussion focused on “linear” link functions,
where past events contribute additively to the probability of
a specific event in a given spatio-temporal cell. We now con-
sider the case of non-linear link functions. This generalizes our
model to allow more complex spatio-temporal interactions.

1) Single-State Process: Let ¢(-) : D — RK be a continu-
ous monotone vector field defined on a closed convex domain
D C RX such that

yeD=0=<¢@y <[1;...;1].

For example, we may consider “sigmoid field” ¢(u) =

[p1(w); - - - 5 dx(u)] with

b0 = Pl

=—= _ k<K, D=RK
1 + exp{ur}

Given positive integer N, we define a spatio-temporal
Bernoulli process with memory depth d and link function
¢ as a random process with realizations {wyg € {0, 1},k <
K,—d+ 1 < t < N} in the same way it was done in
Section II-A with assumptions of Section II-A replaced with
the following:
o we are given a convex compact set X C R* such that the
vector of parameters 8 underlying the observed process
belongs to X and every B8 € X satisfies

W (@ ))peD Vi<t=N @)
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with given functions n(a);:;) taking values in the space
of k¥ x K matrices;
« the conditional expectation of w; € {0, 1}X given o'~ is

o (0f=})B).
Let us set
N

Fo9 = o oot 2o (-39
=1

(ot d)o]
P = 53 n(omd)o(o” (o

AN ()

1 N _
— ﬁzt:1n<a)§_}l>w, : X — RY,

a[oV]

[ —
=
+
&

17
QU —
—
=
N—

Foy(x) = AN ()
= S (el )o(n" (w4h)p) s xR

o]

(22)

We are now essentially in the situation of Section II-C (where
we considered the special case ¢ (z) = z of our present situa-
tion). Specifically, F(-) is a monotone (albeit not affine) vector
field on X, F(B) = 0. The empirical version F v (x), for every
x € X, is a monotone on X vector field which is an unbiased
estimate of F'(x). Besides this, Fa,zv (x) is a monotone on X vec-
tor field, and the true vector of parameters § underlying our
observations solves the variational inequality VI[FwN, X](Gs a
root of F,v). These observations suggest estimating 8 by weak
solution to the variational inequality VI[F ~, X].

Note that, same as above, vector fields F,~ and szv dif-
fer only in the constant terms, and this difference is nothing

but F, ~(B) due to FwN (B) = 0; moreover & = n(w;:tli)wt —
n’ (a);: 31) B is a martingale difference. Though deviation prob-
abilities for F, v (f) do not obey the same bound as in the case
of ¢ (z) = z (since the matrices n(w;:tli) now not necessarily

are Boolean with at most one nonzero in a row), the reasoning
which led us to (8) demonstrates that the vector F,~(8) in our
present situation does obey the bound

In2e/e) | 1n(2x/e)“ -
2N 3N

(23)

where © is the maximum, over all possible wif_ll, of the ||-||1-

Prowa{”FwN(,B)HOO > @[

Ve € (0, 1),

norm of rows of n(wﬁé). Note that in the situation of this

section, our O(1/+4/N) exponential bounds on large deviations
of F,v(B) from zero, while being good news, do not result
in easy-to-compute on-line upper-risk bounds and confidence
intervals for linear functions of . Indeed, in order to adjust
to our present situation Theorem 1, we need to replace the
condition numbers 6,[ - ] with constants of strong monotonic-
ity of the vector field F ~(-) on X. On the other hand, to
adopt the result of Lemma 3 in the present setting, we need

to replace the quantities e and e, see (15), with the maxi-
mum (resp., minimum) of the linear form eTx over the set
fxe X :||F,v(x)]oo < 8}. Both these tasks for a nonlinear
operator F,n(-) seem to be problematic.

2) Multi-State Processes: The construction in the previous
paragraph can be extended to M-state processes. Below, with
a slight abuse of notation, we redefine notation for the multi-
state processes.

Let us identify two-dimensional K x M array {ag, : 1 <
k < K,1 < £ < M} with KM-dimensional block vector
with K blocks [aki;ara;...;amm], 1 < k < K, of dimen-
sion M each. With this convention, a parametric K x M array
V(@ = {Yiwk € R:k < K,1 < p < M} depend-
ing on KM-dimensional vector z of parameters becomes a
vector field on RXY. Assume that we are given an array
¢() ={dip() e R: k <K, 1 < p < M} of the outlined struc-
ture such that vector field ¢ (-) is continuous and monotone
on a closed convex domain D C Rf¥™ and for all y € D

M
0<ip( <1, 1 <p<M1<k<K&Y ¢y <1,
p=1

1 <k<K. (24)

We assume that the conditional probability for location k at
time ¢ to be in state p € {1,..., M} (i.e., to have wgx = p)

given o'~ ! is
oo s (01-1)5)

for some vector of parameters 8 € R* and known to us func-
tion n(-) taking values in the space of k x KM matrices and
such that nT(a)Z__ll),B € D whenever wy € {0, 1, ..., M} for
all T and k. As a result, the conditional probability to have
Wil = 0 is

M

1= o (0" («l20)B).
p=l1
In addition, we assume that we are given a convex compact

set X C R¥ such that 8 € X and for all such g

nT<a)§:(11),BeD Viwg € {0,1,..., M) Vz,k).

Same as in Section II-E, we encode the collection {wgy:1 <
k < K} of locations’ states at time ¢ by block vector w; with
K blocks of dimension M each, with the k-th block equal to
the wgy-th vector of the standard basis in R when wy > 0
and equal to 0 when wyg = 0. We clearly have

Ej (@) = ¢ (n" (/=) 8).
Setting

Fx) = IlvaN {Z[n(wi_é)

t=1

©
—
P
N]
—
NSN
I
Q-
N
=
~~—
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- —Z” (,d) . X = R
3 alo"]
Fn(x) = wN()C)
- S (et i)e(n" (o h)p) 2 - v

a[oM]

(25)

(see equation (22)), we can repeat word by word the comment
at the end of Section II-F1.

III. MAXIMUM LIKELIHOOD ESTIMATE

In the previous sections, we have discussed the Least
Squares estimate of the parameter vector §. Now, we con-
sider commonly used in statistics alternative approach based
on the Maximum Likelihood (ML) estimation. ML estimate is
obtained by maximizing over 8 € & the conditional likelihood
of what we have observed, the condition being the actually
observed values of wy for —d+1 <t <0and 1 <k < K.
In this section, we study the properties of the ML estimate
and show that its calculation reduces to a convex optimization
problem.

A. ML Estimation: Case of Linear Link Function

a) Single state model: Assume, in addition to what has
been already assumed, that for every ¢ random variables wy
are conditionally independent across k given w'~!. Then the
negative log-likelihood, conditioned by the value of @, is
given by

L) =

1 N K d K
N Z Z |:—a)tk In <,3k + Z Z ,B,i,za)(,_x)g)

t=1 k=1 s=1 £=1

d K
— (1 — i) 1n<1 —B—) Zﬂigw(zs)z>i|-

s=1 £=1

Note that L(-) is a convex function, so the ML estimate in our
model reduces to the convex program

min L(x). (26)
xXe

b) Multi-state model: Assume that states wy at locations
k at time t are conditionally independent across k < K given
'~!. Then the ML estimate is given by minimizing, over
B € X, the conditional negative log-likelihood of collection
oV of observations (the condition being the initial segment o’
of the observation). The objective in this minimization problem
is the convex function

La)N (ﬂ) = -
t=1 k=1
where
n([E (el
yu(p. o i € “ ML @)
(1 / 1 Uk “)z—d>ﬂ]j)’
Wk = 0

c) Toward performance guarantees: We are about to
show that the ML estimate has a structure similar to the LS
estimator that we have dealt within Section II, and obeys
bounds similar to (23). Given a small positive tolerance o,
consider M-state spatio-temporal process with K locations and
vector of parameters § € R, as defined in Section II-E,
restricted to reside in the polyhedral set B, cut off R“ by
“o-strengthened” version of constraints (18), specifically, the
constraints

o< ﬂk<p)+ZZ min_ B, (p. q).

s=1 ¢=1 =q=M
1<p<M 1<k<[{

l—0> Zﬂk@>+22 max Zﬂkmv 9.

=1 =1 V=1=M p=
1< k <K. (28)
The purpose of strengthening the constraints on 8 is to make
the maximum likelihood, to be defined below, continuously
differentiable on the given parameter domain.
In what follows, we treat vectors from RXM as block vectors
with K blocks of dimension M each. For such a vector z, [z]x,
stands for the p-th entry in the k-th block of z. Let

M
weR"™:0>0 (o<1 Vk<K
p=1

Zy =

Similarly, for a small positive tolerance o, define

M
e R : [z, > 0 Vp, ) [zlyp<l—o VK
p=1

Zy=12 CZyp.

We associate with a vector w € Zjy the convex function
Ly 1 Zy — R,

K M

L@ ==Y | D Wl In(lzly)
k=1| p=1
M

M
1= "l [In{ 1= [y
p=1 p=1

From now on, assume that we are given a convex compact set
X C B, known to contain the true vector 8 of parameters.
Then the problem of minimizing the negative log-likelihood
becomes

N
mgg{Lw ™= ; La,(n" (w1=})x) }

w;(w') encodes, as explained in Section II-E,
t—1

(29)

(30)

where w; =

the observations at time ¢, and n(a) ) are as defined in

Section II-E.

Note that by construction, w; belongs to Zy. Moreover, by
construction, we have nT(a);:cll)x € Z, whenever x € B, and
o € {0, 1, ..., M} for all t and k. Now, minimizers of L, (x)
over x € X are exactly the solutions of the variational inequal-
ity stemming from X and the monotone and smooth vector
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field (the smoothness property is due to L, (x) being convex
and smooth on X):

Fon(x) = Vil (x) = ]%] i n(w;j 31)9 (nT (w;: j,)x, @ (wz))
t=1
with

0(z, w) = VZ‘CW(Z)

_ ZK: f: Wlkp o _ 1- Zﬁ/lzl Wl = P
k=1| p=1 [Z]k[) 1-— Zﬁ)u:l [Z]kp p=1 '
[w € Zo]

where ¢ € RKM is the block-vector with the p-th vector of
the standard basis in RM as the k-th block and all other blocks
equal to O.

Note that we clearly have

wE Zy = ¢y(w) =0. a3

Let us show that F, ~(B) is “typically small”: its magnitude
obeys the large deviation bounds similar to (8) and (23).

Indeed, let us set Z;(w'™1) = 77T<a)f:cll),3, so that z; € Z,
due to B € B,. Invoking (31) with w = Z(@'™ 1), we have

N

Fn(B) = 1%] Z; n(wﬁ;ll)z%[wt],
t=1 ‘—————
&

[@(@)]y, ~ (@D, 4,

K (a)l_l)]kp

Zﬁi{[@]kp - [6,(w’)]kp] M o
11— Zg”:l[zt(wt—l)]kp Ze

p=1

Since the conditional expectation of [@,(w)]x, given '~
equals [Z;(w”‘)]kp the conditional expectation of & given
o' is zero. Besides this, random vectors & take their val-
ues in a bounded set (of size depending on @). As a result,
|1F,~(B)lloec admits bound on probabilities of large deviations
of the form (23), with properly selected (and depending on o)
factor ®. However, for the reasons presented in Section II-F,
extracting from this bound meaningful conclusions on the
accuracy of the ML estimate is a difficult task, and it remains
an open problem.

Remark 2 (Decomposition of LS and ML estimation): In
the models we have considered, the optimization problems
(6), (20), (26), and (30), we aim to solve when building the LS
and the ML estimates under mild assumptions are decompos-
able (in spite of the fact that the observations are dependent).
Indeed, vector

B =B B, 9 1 <k, £ <K,
l<p=<M 0=q=<M 1=<s<dj

1

of the model parameters can be split into K subvectors

B = {Bip. B (o), 1 <€ <K, 1 <p <M,
0<g<M,1<s<d}, k=1,...,K.

It is immediately seen that the objectives to be minimized in
the problems in question are sums of K terms, with the k-th
term depending only on x*. As a result, if the domain X’ sum-
marizing our a priori information on 8 is decomposable: X =
{x: x* e Xk, 1 < k < K}, the optimization problems yielding
the LS and the ML estimates are collections of K uncoupled
convex optimization problems in variables x*. Moreover, under
favorable circumstances optimization problem (20) admits
even finer decomposition. Namely, splitting ¥ into subvectors

B =B, BL (0. @), 1 <t <K, 1<s5<d, 0<q<M)],

it is easily seen that the objective in (20) is the sum, over k < K
and p < M, of functions \IJZ;V (xkp). As a result, when X =
{x: P = X, 1 <k <K,1=<p=<Mj}, (20) is a collection of
KM uncoupled convex problems min Xip \I/Z,’V (xkPy.

The outlined decompositions may be used to accelerate the
solution process.

B. ML Estimate: General Link Functions

Let us now derive ML estimate for the case of nonlinear
link function considered in Section II-F2. In this situation, we
strengthen constraints (24) on D to

M
YED= 0 < (), Y ¢l <l-o
p=1
1<k<K 1<p=<M,

with some ¢ > 0. Assuming that wy’s are conditionally inde-
pendent across k given w'~!, computing ML estimate for the
general link-function reduces to solving problem (30) with
Lyw(2) : D— R, w e Zy, given by

K M

L@ ==Y | D whyIn(¢r(2))

k=1] p=1
M M
+ 1= Wy [In] 1= ¢
p=1 p=1

Assuming ¢ continuously differentiable on D and L,,(-) con-
vex on D, we can repeat, with straightforward modifications,
everything that was said above (that is, in the special case of
¢(z) = 7), including exponential bounds on probabilities of
large deviations of F v (B). However, in general, beyond the
case of affine ¢y, (-), function £,,(-) becomes nonconvex. This
is due to the fact that convexity on D of functions

—In(pip (), —Inf 1= ¢p()
p

is a rare commodity. Nevertheless, convexity of these functions
does take place in the case logistic link function

explai (2]
Zg/lzo exXp { Akq (@) }

with functions ay,(z), 0 < g < M that are affine in z.

d’kp (@ =
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Fig. 3. Single-state process: estimates for baseline intensity B; and
interactions parameters ﬂ/ﬁ@ for one random instance.

TABLE I
SINGLE-STATE PROCESS: ERROR OF ML, LS, AND EM ESTIMATION FOR
THE ONE INSTANCE SHOWN IN FIG. 3

Estimate £y error {5 error L~ error
ML 1.7150 (22.57%) 0.1534 (17.67%) 0.0342 (13.64%)
LS 1.8849 (24.80%) 0.1714 (19.73%) 0.0372 (14.84%)

EM (exponential kernel) 6.3127 (83.06%) 0.6413 (73.83%) 0.2105 (83.97%)

IV. NUMERICAL EXPERIMENTS
A. Experiments With Simulated Data

This section presents the results of several simulation exper-
iments illustrating applications of the proposed Bernoulli
process models. We compare performances of Least Squares
(LS) and Maximum Likelihood (ML) estimates in terms of £,
£5, and €, norms of the error of parameter vector recovery.
We assume that d (or a reasonable upper bound on it) is known
in our simulation examples. The bracket percentage inside the
table below shows the norm of the error relative to the norm
of the corresponding true parameter vector.

1) Single State Spatio-Temporal Processes: First, consider
a single state setting with the memory depth d = 8 and the
number of locations K = 8. The true parameter values are
selected randomly from the set Xy as follows:

C B> 0, By >0 and B+ XL S Bl <1 Vs

o Bj, =0 when |k — £] > 1 (interactions are local);

o For every 1 <k, £ < K, B}, is a non-increasing convex

function of s.3
Note that we have imposed additional to (2) constraints on f.

We report the performance of the LS estimate (obtained
by solving VI[F,~, X]) and the ML estimate (obtained by
solving (26)). To ensure a fair comparison, we do not intro-
duce any additional constraints on the interaction coefficients
in our estimation procedure (meaning that the LS and ML
estimates do not have any prior knowledge about X and their
assumed admissible set X' is much larger than Aj). Utilizing
the MATLAB implementation [30] of the EM algorithm, we
also compute estimations of parameters of the commonly
used model of Hawkes process with exponential temporal
kernel (see, e.g., [5]). The latter is equivalent to assuming
that 8}, = aete™ ", s = 1,2, ..., where T > 0 is the decay
rate parameter and aye > O represents the interactions between
two locations.

Fig. 3 shows the recovered interaction coefficients using
various methods with N = 10,000 observations, for a single
(randomly generated) instance. The associated error metrics
are presented in Table I. The confidence intervals in Fig. 4 are

8Here, the convexity of a function f(s) in s € G = {1, ..., d} means that
the function is the restriction of a convex function on the segment [1, d] onto
the grid G or, which is the same, that f(s — 1) —2f(s) + f(s+ 1) > 0,5 =
2,3,...,d — 1. This translates into the constraint ﬂ,izl - 2;‘3,?6 + ,B,ile >
0,s=2,3,...,d—1 Vk,¢.

02 T 05
L | |
o 171 117 T T—— .
2 4 6 8 2 4 6 8 2 4 6 8
Location k Memory (time) Memory (time)
Interaction 33, Interaction 5, Interaction 35 5

0.5 05] 0.4
l\‘ — 0.2# N
)= —o QL ——e—2 s 4 o 5 o =

2 4 6 8 2 4 6 8 2 4 6 8
Memory (time)

Memory (time)
—o—true ——LS estimate

Memory (time)
ML estimate

Fig. 4. Computed 90% confidence intervals corresponding to Fig. 3.

TABLE II
SINGLE-STATE PROCESS: ERROR OF ML, LS, AND EM ESTIMATION
AVERAGED OVER 100 TRIALS

Estimate £y error {5 error £~ error
ML 1.1482 (15.11%) 0.1112 (12.60%) 0.0336 (11.87%)
LS 1.9776 (26.02%) 0.1831 (20.72%) 0.0472 (16.62%)

EM (exponential kernel) 6.4725 (85.16%) 0.6695 (75.72%) 0.2209 (75.17%)

computed according to (15) by letting e be standard basis vec-
tors in R and restricting the parameter space to X. We also
repeat the experiment 100 times (each time, generate new true
parameters), and the average errors are reported in Table II.
The experiments show that ML and LS estimates exhibit simi-
lar performance (ML outperforming slightly the LS estimates).
Both of them outperform the recovery by EM algorithm based
on the exponential kernel, which may be due to a more flexible
parameterization of our model.

2) Multi-State Spatio-Temporal Processes: Now consider a
multi-state spatio-temporal Bernoulli process with the number
of states M = 2. Here the possible states p = 0 represents
no event, p = 1,2 represent the event of category 1 and 2,
respectively. We assume memory depth d = 8 and the number
of locations K = 10. The true parameters are randomly gener-
ated from the set Xy specified by (again, we impose additional
constraints as in Section IV-Al):

« B) = 0 B = 0 YL A +

Z?:] Zf:l maxg<g<m Z[/;il Br.9) =1 Vk<K;

e Biy(.q) =0 when [k —£| > 1 Vp,q (interactions are
local);

e Forevery l <k, <Kandl1 <p <M,0<gqg <M,
Bie(p, @) is a non-increasing convex function of s.
Furthermore, we consider two scenarios, with additional con-

straints on the parameters

e Scenario 1: events can only trigger future events of the
same category, i.e., B;,(p,q) =0, g # p;

e Scenario 2: events of category g = 0, ..., M, only trig-
ger events with category p < ¢g. This can happen, for
example, when modeling earthquakes aftershocks: events
are marked using M categories according to their mag-
nitudes: u; < ... < up. Set ug = 0 and treat the event
“no earthquake” as “earthquake of magnitude 0.” Then
each earthquake can trigger “aftershocks” with the same
or smaller magnitudes.

We generate a synthetic data sequence of length N =
20, 000. For a single (randomly generated) instance, recovery
of baseline and interaction parameters are presented in Fig. 5.
The associated recovery errors of the LS estimate (solution
to (20)) and the ML estimate (solution to (30)) are reported
in Table III. In addition, we also report the recovery errors
separately for (i) the baseline intensity vector (referred to as
“birthrates™) Boin = {Be(p), k < K, 1 < p < M} € REMx1;
and (ii) the vector of interactions between different locations
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Fig. 5. Multi-state process: examples of LS and ML estimates for baseline
intensity B (p) and interactions parameters ,B,i((p, Q).

TABLE III
MULTI-STATE PROCESS RECOVERY: NORMS OF RECOVERY ERROR FOR
LS ESTIMATE B¢ AND ML ESTIMATE Sy

Scenario 1 Scenario 2

Estimate

£y error {5 error £y error £y error

B 0.3524 (4.7%)
Bus 0.4947 (6.6%)

0.0532 (2.5%) 1.0179 (13.6%)  0.1146 (5.9%)

0.0744 (3.4%)  1.0854 (14.5%)  0.1230 (6.3%)

B b 0.0106 (2.7%) 0.0028 (3.1%) 0.0226 (5.7%) 0.0060 (6.7%)
Bus. virtn 0.0160 (4.0%) 0.0044 (5.0%) 0.0237 (5.9%) 0.0066 (7.4%)
BuL iner  0.3419 (4.8%) 0.0531 (2.5%)  0.9952 (14.0%)  0.1144 (5.9%)
Brs. imer 0.4786 (6.7%) 0.0743 (3.4%) 1.0617 (15.0%)  0.1228 (6.3%)

Binter = (B0, @)} € RIK*MM+DX1 - Aq shown in Table III,
the ¢; recovery error for estimating birthrate is smaller than
that for the interaction parameters. Thus, the recovery error
for B is dominated by the error for interaction parameters.
This could be explained because the magnitude of the base-
line intensity is higher than the influence parameters (which
is usually needed to have stationary processes).

Finally, to assess the predictive capability of our model, we
did the following experiment. Generate one sequence of dis-
crete events, with length N = 20,000, using randomly selected
parameters. We divide the sequence in half: use half for “train-
ing” and the other half for “testing”. In particular, we (1) use
the first half of the sequence for estimating the Bernoulli pro-
cess model parameter, (2) use the “trained” model to generate
a new “synthetic” sequence of length N/2, and (3) compare
the “synthetic” sequence with the “test” sequence, in terms of
the frequency of events, for each category, at each location.
The results in Fig. 6 show that the synthetic sequence has a
reasonably good match with the testing sequence, based on
the LS and the ML estimates.

3) Sparse Network Recovery With Negative and Non-
Monotone Interactions: In the last synthetic example, we
consider an example to recover a network with “non-
conventional” interactions: non-monotonic temporal interac-
tions and negative interactions. Consider a sparse, directed,
and non-planar graph (meaning that this cannot be embedded
on a two-dimensional Euclidean space and, thus, this does
not correspond to discretized space) with K = 8 nodes. The
interaction functions are illustrated in Fig. 7.

The baseline intensities are all positive at all 8 nodes.
The directed edge (arrows) means there is a one-directional
“influence” from one node to its neighbor, e.g., 1 — 5. The
self-edges, e.g., 2 — 2 and 5 — 5, denote that these nodes
have a self-exciting effect: events happen at the node will
trigger future events at itself. The true parameters of the model
are generated as follows.

o Baseline parameters values at all locations are drawn

independently from a uniform distribution on [0, 0.2];

State p=1 State p=2
0.05 005
0.04 0.04
0.03 0.03
0.02 0.02
0.01 0.01
0 0
12 3 45 6 7 8 910 12 3 456 7 8 910
Location k Location k
Scenario 1
State p=1 State p=2
0.04
0.05 0.035
0.04 0.03
0.025
0.03 0.02
0.02 0.015
0.01
0.01
0.005
0 0
1 2 3 456 7 8 910 12 3 456 7 8 910
Location k Location k
Scenario 2

Fig. 6. Multi-state process: experiment to compare the frequency of events
from a synthetic sequence (generated using models estimated from training
sequence using LS and ML estimates) with that from the testing sequence.

Fig. 7. Sparse non-planar graph with non-monotonic and negative interaction.
Note that the interaction 1 — 8 is negative.

o For each directed edge £ — k, the interaction B , is given

by B, = 0.05¢70256-m’ s > 0, and the peak i is
randomly chosen from {1, ..., d}, except for one edge
1 — 8, whose interaction function is set to be negative:
B, = _0.05¢0-25G—15,0%
In our implementation, we consider two scenarios: (1) the
graph structure is unknown: we do not impose sparsity con-
straints while obtaining the LS and ML estimates; (2) the graph
structure is known, and then we impose the sparsity constraints
by setting the interactions to be 0 when there is no edge; this
illustrate the scenario when we have some prior information
about the network structure. We report recovery errors for
the two scenarios in Table IV and compare the recovery of
interaction parameters under scenario (1) with the true values
in Fig. 8. From the experiment results, we observe that both the
LS and ML estimates match closely with the true parameters,
even when the underlying graph structure is unknown. The
comparison in Table IV shows a significant improvement in
the estimation error when the graph structure is known a pri-
ori. This is consistent with our previous remark that knowing
the network structure allows for a better choice of the feasible
region resulting in reduced estimation error. Moreover, by
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TABLE IV
SPARSE NETWORK RECOVERY WITH NON-CONVENTIONAL
INTERACTIONS: ERRORS OF LS AND ML ESTIMATES S5, SML

Unknown Graph Known Graph
Estimate
£y error L2 error Lo error £y error £ error Lo error
Bwe 17694 (58.71%) 0.1128 (24.65%) 0.0224 (13.79%) 0.4715 (15.64%) 0.0593 (12.95%) 0.0173 (10.68%)
Bis 18757 (62.23%) 0.1166 (25.48%) 0.0211 (13.01%) 0.4773 (15.84%) 0.0606 (13.23%) 0.0204 (12.58%)
Buivin  0.0367 (3.84%)  0.0162 (442%) 00111 (6.84%)  0.0126 (132%)  0.0068 (1.85%)  0.0061 (3.75%)

Bus.vim 00378 (3.95%)  0.0172 (4.69%) 0.0129 (7.94%)  0.0126 (1.32%)  0.0069 (1.89%)  0.0061 (3.75%)

1.7327 (84.20%) 0.1117 (40.69%) 0.0224 (44.73%)  0.4589 (22.30%) 0.0589 (21.46%) 0.0173 (34.65%)

B, inter

1.8379 (89.31%) 0.1153 (42.02%) 0.0211 (42.19%) 0.4648 (22.58%) 0.0602 (21.92%) 0.0204 (40.81%)

B, imer

Birthrate 3 Interaction 5 Interaction (35,

1 *33;L// \Jssz /\\J
0

2 4 4 6
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.o.ozr\/ﬁﬁo 01 10.01
0.04 —= e

2 4 6 8 4 6 8

6 8 2
Memory (time) Memory (time) Memory (time)
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Fig. 8. Sparse network identification when graph is unknown: examples of LS
and ML estimates of baseline intensity and vectors of interaction parameters;
interactions B¢ 1 and Bg o correspond to edges 1 — 6 and 2 — 8 which do
not exist in the graph in Fig. 7.
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Fig. 9. Sparse network qupport recovery: histogram of the recovered
interaction parameters {max |/35 [,1 < k,£ < K}. Edges with non-zero
interactions can be perfectly separated from those with zero interactions.

examining the histogram of the maximum interaction between
each pair, i.e., {maxle |,3,‘§’€|,1 < k,f < K} as shown in
Fig. 9, we observe that we can indeed accurately recover the
support of the graph: the estimates of the edges with non-zero
interactions, are completely separable from the estimates of
the edges with zero interactions. This indicates that we can
apply an appropriate threshold (in this case, e.g., 0.03) to
recover precisely the unknown graph structure completely.
This example also shows that even when prior information
about the spare structure of the underlying network is not
available, LS and ML estimates can recover the underlying
network reasonably well, which opens possibilities of apply-
ing the proposed approach to perform casual inference [31]
using discrete-event data.

B. Real Data Studies: Crime in Atlanta

Finally, we study a real crime dataset in Atlanta, USA, to
demonstrate the promise of our methods to recover interesting
structures from real-data. We consider two categories of crime
incidents, “burglary” and “robbery”. These incidents were
reported to the Atlanta Police Department from January 1,
2015, to September 19, 2017. The dataset contains 47,245
“burglary” and 3,739 “robbery” incidents. As mentioned in
the introduction, it is believed that crime incidents are related
and have “self-exciting” patterns: once crime incidence hap-
pens, it triggers similar crimes more likely to happen in the
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Fig. 10. Raw data map: burglary and robbery incidents in Atlanta. Left: the
full map; Right: zoom-in around downtown Atlanta.

TABLE V
CRIME EVENT MODEL RECOVERY: FREQUENCY OF BURGLARY AND
ROBBERY EVENTS AT EACH LOCATION

Burglary Robbery
Locations
True  With constr  Without constr ~ True ~ With constr ~ Without constr
1 0.1499 0.1707 0.1766 0.0102 0.0195 0.0186
2 0.0284 0.0373 0.0445 0.0017 0.0203 0.0212
3 0.0483 0.0580 0.0606 0.0021 0.0254 0.0195
4 0.0407 0.0364 0.0356 0.0017 0.0178 0.0224
5 0.0508 0.0529 0.0648 0.0042 0.0220 0.0165
6 0.1957 0.2088 0.1834 0.0131 0.0208 0.0144
7 0.0970 0.1368 0.1224 0.0068 0.0229 0.0191
8 0.0419 0.0580 0.0563 0.0021 0.0127 0.0182
9 0.0148 0.0161 0.0220 0.0013 0.0165 0.0212
10 0.0584 0.0729 0.0805 0.0055 0.0258 0.0178
11 0.1266 0.1525 0.1529 0.0106 0.0195 0.0169
12 0.1364 0.1266 0.1186 0.0102 0.0191 0.0169
13 0.0322 0.0521 0.0445 0.0021 0.0229 0.0224
14 0.0627 0.0868 0.0834 0.0055 0.0212 0.0195
15 0.0208 0.0224 0.0280 0.0008 0.0241 0.0216
16 0.0144 0.0203 0.0178 0.0013 0.0203 0.0212

neighborhood in the near future [32]. Here, we model the data
using a multi-state Bernoulli process with two states: no event
(p = 0), burglary (p = 1), and robbery (p = 2).

We extract crime events around the Atlanta downtown area,
as shown in Fig. 10, which contains 6031 “burglary” events
and 454 “robbery” events. The whole time horizon (788
days) is split into discrete time intervals of four hours. The
memory depth d is set to 6 in this example. This value was
obtained using a simple “cross-validation-like” procedure uti-
lizing predictions of frequencies of the burglary and robbery
incidents in various spatial cells. The downtown region is
divided uniformly into 16 sub-regions.

We compute the LS estimates of the parameters
{Br(p), ,B,i’ ;(p, @)}, intwo different ways to set up the constraints:
in the first setup, we do not impose additional constraints on
the parameters apart from “basic” constraints (18); in the sec-
ond setup, we impose constraints to only consider temporal
interaction function, ;,, with monotonic and convex “shapes”. o
The estimated parameters are shown in Fig. 11. In the figure,
the size of the red dot in each region is proportional to the
magnitude of the estimated birthrate Bi(p), k = 1, , K, for
Burglary/Robbery, respectively; the width of the arrow is pro-
portional to the magnitude of the interaction ,3,2 (P, @) between

9Such constraints are routinely imposed when estimating parameters of
Hawkes model, see, e.g., [12].
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Robbery and burglary in downtown Atlanta: recovered spatio-temporal interactions, using LS estimates without additional constraint on the shapes

locations. It is interesting to notice that our model recovers the
dynamic of the interactions and how they change over time.
There also seem to be strong interactions between burglary
and robbery at different locations.

To validate the model, we experiment similar to we did
for the simulated data in Section IV-A2. We take the two-
year duration of data, divide the sequence in half, use the
first half of the sequence to estimate a multi-state Bernoulli
process model, generate a synthetic sequence, and compare
with the second half of the sequence reserved for testing. We
compare the frequency of Burglary and Robbery events across
all locations, for the synthetic and testing sequence. The results
are shown in Table V. The results look to be a reasonably good

match, considering that the crime events are relatively rare and
with highly complex (and unknown) dynamics: predicting their
frequency in the first place is a highly challenging task and
an essential research task of criminology.

We also note that the prediction for burglary seems to be
better since the frequencies from the synthetic sequence are
very close, and the relative error is smaller. This is expected
since the number of burglary cases is much larger than the
number of robbery cases in our dataset, and the frequency of
robbery cases is very small (typically below 0.01, as shown in
Table V). The experiment serves as a sanity check and shows
that for challenging and noisy real-world datasets, there could
be a certain truth to the proposed methods.
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