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ABSTRACT

Statistical inference in high-dimensional settings has recently attracted enormous attention within the
literature. However, most published work focuses on the parametric linear regression problem. This article
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considers an important extension of this problem: statistical inference for high-dimensional sparse non-

parametric additive models. To be more precise, this article develops a methodology for constructing a
probability density function on the set of all candidate models. This methodology can also be applied to
construct confidence intervals for various quantities of interest (such as noise variance) and confidence
bands for the additive functions. This methodology is derived using a generalized fiducial inference
framework. It is shown that results produced by the proposed methodology enjoy correct asymptotic
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frequentist properties. Empirical results obtained from numerical experimentation verify this theoretical
claim. Lastly, the methodology is applied to a gene expression dataset and discovers new findings for which
most existing methods based on parametric linear modeling failed to observe.

1. Introduction

Nonparametric additive models, given their flexibility, have long
been a popular tool for studying the effects of covariates in
regression problems (e.g., Friedman and Stuetzle 1981; Stone
1985). Given a set of n independently and identically distributed
observations {(Y;, X;)}_,, with Y; being the ith response and

Xi = (Xip,...,Xjp)' as the ith p-dimensional covariate, a
nonparametric additive model is defined as
P
Yi=p+) Xy +e, i=1....n, 1)
j=1

where p is an intercept term, the f;’s are unknown (and usually

smooth) functions, and ¢; is an independent random error with
mean zero and finite variance 2. Here this article allows the
possibility that p is greater than n, which implies some of the
functions f;s are zero.

There is a rich literature on the estimation of the functions
)jv’s in (1) when p < n is fixed. For example, Stone (1985)
developed spline estimators that achieve the same optimal rate
of convergence for general p as for p = 1 under some assump-
tions. Buja, Hastie, and Tibishirani (1989) proposed a backfit-
ting algorithm to estimate the functions with linear smoothers
and prove its convergence. For fixed p and under some mild
regularity conditions, Horowitz, Klemela, and Mammen (2006)
obtained oracle efficient estimators using a two-step procedure
which are asymptotically normal with convergence rate n=%/° in
probability.

In high-dimensional settings where p > n, much work
has also been done in variable selection; that is, selecting

(and estimating) the significant f;’s. Meier, Van De Geer, and
Buhlmann (2009) proposed using a new sparsity-smoothness
penalty for variable selection and provide oracle results which
lead to asymptotic optimality of their estimator for high-
dimensional sparse additive models. Ravikumar et al. (2009)
derived a sparse backfitting algorithm for variable selection with
a penalty based on the /; norm of the mean value of the non-
parametric components. Their algorithm decouples smoothing
and sparsity and is applicable to any nonparametric smoother.
Huang, Horowitz, and Wei (2010) applied adaptive group Lasso
to select significant f;s and provide conditions for achieving
selection consistency.

In recent years there has been a growing body of work
in statistical inference for high-dimensional linear parametric
models. For example, Bithlmann (2013), Javanmard and Mon-
tanari (2014), Van de Geer et al. (2014), and Zhang and Zhang
(2014) studied hypothesis testing and confidence intervals for
low-dimensional parameters in high-dimensional linear and
generalized linear models. Their approaches are mostly based
on “de-biasing” or “de-sparsifying” a regularized regression esti-
mator such as Lasso. Chatterjee and Lahiri (2013) and Lopes
(2014) examined properties of the residual bootstrap for high-
dimensional regression. Lee et al. (2016) and Tibshirani et al.
(2016) considered the exact post-selection inference for sequen-
tial regression procedures conditioning on the selected models.
Finally, the empirical Bayes approach has also been adopted (see,
e.g., Martin, Mess, and Walker 2017).

However, much less attention is given to statistical infer-
ence for nonparametric additive models, especially in high-
dimensional settings. Fan and Jiang (2005) extended the
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generalized likelihood ratio tests to additive models estimated
by backfitting to determine if a specific additive component
is significant or admits a certain parametric form. However,
these authors did not consider the cases where p > n and
inferences for some parameters such as o. More recently Lu,
Kolar, and Liu (2015) proposed two types of confidence bands
for the marginal influence function in a novel high-dimensional
nonparametric model, termed ATLAS, which is a generalization
of the sparse additive model, although no inference procedure is
provided for other model components. Finally, various Bayesian
methods have also been proposed, including Scheipl, Fahrmeir,
and Kneib (2012) and Shang and Li (2014). However, none of
these methods is designed to provide uncertainty quantification
for high-dimensional nonparametric additive models.

The main goal of this article is to address the inference prob-
lem for high-dimensional nonparametric additive models. To be
more specific, this article develops a method that quantifies the
uncertainties in the estimated parameters and selected models.
This method is based on the generalized fiducial inference (GFI)
framework (Hannig et al. 2016), which has been shown to pos-
sess extremely good properties, both theoretical and empirical,
in various inference problems. To the best of our knowledge, this
is the first time that uncertainty quantification is being formally
considered for high-dimensional additive models.

The remainder of this article proceeds as follows. In the
next section, we first present a spline representation of non-
parametric additive models upon which our inference will be
based. In Section 3, we introduce the GFI framework and for-
mally describe our proposed inference method for sparse and
high-dimensional nonparametric additive models. Section 4
examines the theoretical properties of the proposed method
while Section 5 illustrates its empirical properties via numerical
experiments and a real data example. Lastly, concluding remarks
are offered in Section 6 while proofs of theoretical results are
delayed in Appendix A.

2. Spline Modeling of Additive Functions

The functions f;’s in nonparametric additive models are com-
monly modeled by splines f,;’s in practice. A spline function isa
piecewise polynomial function, usually cubic, that is connected
together at knots. Here we state the standard conditions and def-
inition for spline functions following (e.g., Stone 1985; Huang,
Horowitz, and Wei 2010).

Suppose that X; € A; where A; = [a, b] for finite numbers
a < band E(Y?) < oo. To ensure identifiability, we assume
Efj(Xj) =0forj=1,...,p. Let K be the number of knots for a
partition of [a, b] satisfying condition (A2) stated in Section 4.
Let S, be the collection of functions s on [a, b] satisfying the
following two conditions: (i) s is a polynomial of degree [ (or less)
on each subinterval, and, (ii) for two integers I and /' satisfying
I=2and0 <! <1—1,sis/'-times continuously differentiable
on [a, b].

Then there exists a normalized B-spline basis {gi(-),k =
L,...,hn}, hy = K + Ifor Sy, such that for any f,,; € Sp,

hn

Fi@® =Y Brwir(®), )
k=1

where ;. is the coefficient of the basis function gy (x), k =
L,...,h,. Asshown in Lemma 1, f;’s can be well approximated
by functions in S, under certain smoothness conditions. Thus,
in the rest of this article, for the purpose of expediting technical
calculations, we shall assume that the spline representation is
exact for the additive functions fj’s.

In matrix notation, Equation (1) can be rewritten in the

following form Y = pul+ZB + 6, (3)
where Y = (Y,....Y)', Z is_ a n x (h,p)
matrix with ith row equals’ to (@11 (Xi)¢12(Xi1),...,
1k, (Xi1)s . > 0p1 (Xip)s 0p2(Xip)s - - . @ph, (Xip)), B =
(,811!---aﬁlhns---;ﬁpl,---,ﬁphﬁ)—r, and ¢ = (81,...,8“).

This linear representation of additive models provides us a
proxy to apply the GFI methodology on high-dimensional
regression models as described in Lai, Hannig, and Lee (2015).

3. Methodology
3.1. Generalized Fiducial Inference

The original idea of fiducial inference can be dated back to
the 1930s. Fisher (1930) introduced fiducial inference as an
alternative to Bayesian procedures with the goal to assign
an appropriate statistical distribution on the parameters of
a parametric family of distributions. One well-known criti-
cism of the classical Bayesian procedures is the need of spec-
ifying prior distributions for the parameters. Fishers pro-
posal aims to avoid such an issue by considering a switch-
ing mechanism between the parameters and the observa-
tions, in a way very similar to the procedure of obtaining
parameter estimates by maximizing the likelihood function.
In spite of Fisher’s continuous effort in establishing a for-
mal inference framework via the fiducial argument, it has
been overlooked for many years by the majority of the statis-
tics community. Interested readers are referred to Hannig
et al. (2016) where a detailed discussion about the history
of fiducial inference and numerous related references can be
found.

In recent years, there has been increasing interest in reformu-
lating the somewhat abandoned fiducial concepts. These mod-
ern modifications include Dempster-Shafer theory (Dempster
2008), its relative inferential models (Martin, Zhang, and Liu
2010; Martin and Liu 2013, 2015) and confidence distribution
(Xie and Singh 2013). One such modern formulation of Fisher’s
fiducial inference is the so-called generalized fiducial inference
or GFI (Hannig 2009; Hannig et al. 2016). GFI has been applied
successfully in many classical and modern problems, including
wavelet regression (Hannig and Lee 2009), linear mixed models
(Cisewski and Hannig 2012), and logistic regression model (Liu
and Hannig 2016). In particular, Lai, Hannig, and Lee (2015)
successfully apply GFI on ultrahigh-dimension regression mod-
els and show that the resulting GFI inference procedure has
excellent theoretical and practical performance.

3.2. ARecipe for Applying GFI

The most significant idea behind the philosophy of GFI
is a switching principle. It begins by realizing that any



n-dimensional observation Y can be viewed as an outcome of
an equation:

Y = G, U), (4)

where # € O is a p-dimensional fixed parameter vector which
determines the distribution of Y, U is a random variable whose
distribution is known and does not depend on 6, and G is
a parametric deterministic function relating Y and 6. Such a
relationship is sometimes known as a “structural equation” in
other areas of study. There may be more than one structural
equation for any given distribution of a random vector Y. If the
elements of Y are independent, a naive choice of G would be the
inverse distribution function for each element and U would be
just an iid uniformly (0, 1) random vector.

The switching principle states that, if ¥ = y is observed, a
distribution of # can be defined by inverting the relationship
of y and @ while continuing to believe that the same relation
holds and the distribution of U remains unchanged. With this
thinking, for any y, one could define the set {6 : y = G(6, U*)}
as the inverse mapping of G and U™ is distributed identically
as U. This random set could be empty if there are no 8’s such
that y = G(@, U*), or it could have more than one element if
there is more than one 6 such that y = G(8#, U*). The support
of U* could be renormalized to assure that there is at least one
solution of the equation. For those values of U* resulting in
multiple solutions, Hannig (2009) suggested randomly picking
an element from the random set {6 : y = G(#, U*)}.

This algorithm yields a random sample of 8 if U* is repeat-
edly sampled. The resulting random sample of @ is called a
fiducial sample of @, on which statistical inferences of  could
be based. The density function of @ is also implicitly defined via
this algorithm and is denoted as r(#|y). The function r(#|y) is
called the generalized fiducial density and Hannig et al. (2016)
show that, under reasonable smoothness assumptions of the
likelihood function of Y, a version of the generalized fiducial
density is given by

f(.0)](r.0)
Jof 3,01 (y,0)do"”’

r@ly) = (5)

where

d
J(3,0) =D (EG(& u)|u=G_1(y,9)) ,

D(A) = (detATA)? and u = G~'(y,0) is the value of u such
that y = G(0, u).

Although the generalized fiducial density in Equation (5)
provides an explicit expression for the distribution of 6, it is not
always possible to calculate its form analytically. For example,
it is very often that r(@|y) is known only up to a normalizing
constant, and in such cases one may need to use Monte Carlo
techniques to simulate a fiducial sample. Besides conventional
Monte Carlo techniques, Hannig, Lai, and Lee (2014) consid-
ered a nonintrusive method for models for which closed form
densities are not available.

Model selection was introduced into the GFI paradigm by
Hannig and Lee (2009) in the context of wavelet regression.
The most significant challenge is to incorporate the uncertainty
due to model selection into the problem setup. To facilitate the
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notation, denote now the structural equation of a particular
model M as

Y=GWM, 0\, U), McM, (6)

where M is a collection of models. Thus, for any given model,
Equation (5) gives the corresponding generalized fiducial den-
sity for @, which is now represented as r(#|y, M). As stated by
Hannig et al. (2016), similar to MLE, GFI tends to favor large
models, therefore, additional penalty and assumptions about the
model size are needed to account for the model complexity.
These authors also argued for introducing penalty in the GFI
framework which leads to the following marginal generalized
fiducial probability r(M) of model M:

[ 10y, MyqgMdo
Swrem S @1y, M)gM1d8

where g is a constant determined by the penalty and |M| is the
number of parameters of the model M. Note that for brevity
we suppress the dependence of y in the notation of r(M). The
value of g can be interpreted as the prior sparsity rate of the
predictors under the Bayesian framework, or can be viewed as a
solely penalty term as in the context of frequentists. In GFI, g can
be thought as the probability of observing a structural equation
for a specific predictor. For the p < n scenario, one can choose
q as n—'/2 which results in the classical BIC penalty. However,
for the more general and high-dimensional setting, the choice
of g will need to be adjusted. One possibility is to set g o
p~! which matches the extended Bayesian information criterion
(EBIC) of Luo and Chen (2013) with ¥ = 1, where y is a user-
specified parameter for EBIC. Such a choice of q is justified by
the theoretical results to be presented below. Throughout all our
numerical work, we set g = 0.2p~!.

r(M) = (7)

3.3. GFIfor Nonparametric Additive Models

This subsection applies the above results to nonparametric addi-
tive models and obtains the corresponding generalized fidu-
cial probability. Without loss of generality, first assume that
in (3) © = 0 and the random error ¢ is normally distributed
with covariance diag(c?,...,0?). Let M denote any candidate
model, My be the true model and H be the projection matrix of
Z; thatis, H = Z(ZTZ)~'ZT. The residual sum of squares RSS
is given by RSS = ||y — Hy||?. The structural equation (6) is now

Y=GM,0m,U)=28+0cU, MecM. (8)

It can be shown that for the parameters 8 = (d,,&)T in
model (3) (with » = 0) (e.g., Lai, Hannig, and Lee 2015)

J(y,0) = o~ !|det(Z'Z)| /> RSS2,
Therefore, the generalized fiducial density of @ given any model
Mis
n/2
o1 [det(ZTZ)]"/* Rss!/2 (ﬁf)
exp{—s (v — ZB) T (v — ZB)}

[ o1 [det(zT2)]"* Rss1/2 (Tﬁ,)"ﬂ

exp {—5 (v —ZB) " (y — ZB)} db
(9)

r(@ly, M) =
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Let p* be the length of B. The numerator of Equation (7)
becomes

1/2 1 n/2
—1 T 1/2
f o~ [det(z72)| " Rss (—23162)

1 *
X exp [—ﬁ(y —ZB)T(y— Zﬁ)] q° do

* * RSS *
= (2m) P ~"/2Rss!/2 f o? " Lexp (—F) ¢ do

* * = n—p* *
= (2m) @ M/ 2" =D/ 2pgg (P* —n+1)/2 (—2P )q" .
(10)

Thus, the generalized fiducial probability r(M) of any candidate
model M is

r(M) oc R(M) :(231)@*—”)!22(:':—,0*—2);2

— p* .
RSS®* D2 (%) ¢ . @11

3.4. Generating Fiducial Samples

This subsection describes how to practically generate fiducial
samples (M, o, B) for the current nonparametric additive mod-
eling problem.

First, to reduce the “search space,” we consider only candidate
models from a subset M* of M. This subset M* should contain
only candidate models with nonnegligible values of r(M). The
way we obtain M* is to apply group Lasso (Yuan and Lin 2006)
to the spline representation in (2), in a manner described below.
Notice that group Lasso is used here as it enforces that all Bjx’s
with the same j to be zero or nonzero simultaneously.

Without the loss of generality, we assume that the first mj
functionsf;’sin (1) are nonzero. Let Bi= Bjt>---» ,Bj;,”)T forj =

l...,p.then g = (B,,..

is the minimizer of

. ,BP)T. The group Lasso estimator B

14
LB) =Y — ZBI5 + 1) 1182
j=1
subject to the constraint that

n  hy

Z Z Bikek(Zij) = 0,

i=1 k=1
where A is a penalty parameter. The constraint can be dropped if
we initially center the response and the basis functions. Chang-
ing the values of A will lead to a sequence of fitted models; that is,
a solution path. Those fitted models that are on the solution path
of group Lasso are taken as candidate models for M*. For the
purpose of not missing any candidate models with nonnegligible
r(M) values, we repeat the group Lasso procedure to a number
of bootstrapped data and take all the fitted models that lie on the
solution paths as AM*. In this way the size of M* is substantially
smaller than the size of M, and we expect ) ;. 14« 7(M) to be
very close to 1.

For each M € M*, we can compute

R(M):(zn,)(m—r!)f22(n—m—2)/2Rss(m—n+l)f2l" (}1 _ m) x qm
2

with m as the number of nonzero functions in M. The gener-
alized fiducial probability (M) can then be well approximated
by
R(M)
D arerr RAM*)
For a given model M, ¢ and § can then be sampled from,
respectively,

r(M) =~ (12)

RSSy/02 ~ x2 ., (13)

and

B ~ NPy o> ZLZy) ™), (14)

where RSSys is the residual sum of squares of the candidate
model M, Zy is the design matrix of M, and ﬁML is the MLE
of 8 for M.

To summarize, we can generate a fiducial sample (M, &, B)
by first drawing a model M from (12), and then & and B
from (13) and (14), respectively. Notice that in the above no
computationally intensive technique like MCMC is required so
the generation of a fiducial sample is relatively fast. Using a 2018
MacBook Pro with a dataset of n = 400 and p = 600, the
proposed method typically takes around 50 sec to generate 10°
fiducial samples.

Finally, we discuss the practical choice of K, the number of
knots. It is widely known K will introduce bias if its value is
too small, or it will inflate the variance if it is too large. Our
experience is that, as long as K is larger than a certain value,
the resulting estimates are very often similar (and acceptable),
as the use of group Lasso will shrink those insignificant knots
to zero. From a theoretical standpoint, the calculations of Lai,
Huang, and Lee (2012) suggest that K should be of order log(n).
So in practice we recommend choosing K as the smallest integer
larger than log(n). Tables 1 and 2 suggest that the numerical
results are relatively insensitive to the choice of K (as long as
K is large enough).

3.5. Point Estimates, Confidence Intervals and Prediction
Intervals

Repeating the above procedure multiple times will result in a
fiducial sample for (M, o, ) which can be used for inference,
in a manner similar to that for a Bayesian posterior sample.
Instead of selecting one single model, the r(M) approximated
in (12) estimates how likely each candidate model would be
the true model; this affects the models being selected in the
fiducial sample. For o, one can use the average or median of
all 6’ as a point estimate, and the «/2 and 1 — /2 percentiles
to construct a 100(1 — «)% confidence interval. Similarly, a
confidence interval for E(Y;|x;) given the observation (x;, Y;)
can be found by computing the percentiles from z, 8, where z; is
the spline representation of x;. In addition, prediction intervals
for Y can be obtained by taking the percentiles from Zg + & W,
where W ~ N(0,1,).

However, constructing confidence bands for the f’s is a less
trivial task, as it is possible that any particular f; would appear
only in some but not all of the fiducial samples. To handle
this issue, we use the following strategy. First from the fiducial



Table 1. Empirical coverage rates of confidence intervals for o 2,
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90% 95% 99%
1=3,K=6 Proposed 86.40% (0.392) 92.90% (0.466) 95.10% (0.630)
oracle 89.70% (0.374) 95.60% (0.447) 98.50% (0.595)
_ 1=3K=8 86.60% (0.410) 91.20% (0.501) 94.82% (0.672)
(n,p, o) = (200,1000, 1) 90.40% (0.378) 94,309 (0.454) 99.10% (0.609)
I=4K=6 86.80% (0.429) 89.60% (0.535) 94.50% (0.714)
91.60% (0.376) 94.40% (0.451) 98.30% (0.599)
T=3K=6 Proposed 89.80% (0.242) 94.40% (0.286) 98.60% (0.384)
oracle 90.00% (0.243) 94.60% (0.288) 99.10% (0.384)
_ 1=3K=8 88.89% (0.244) 93.00% (0.295) 98.20% (0.395)
(n,p, o) = (200, 1000, 0.8) 89.59% (0.242) 93.50% (0.292) 99.20% (0.389)
I=4K=6 90.40% (0.241) 93.70% (0.289) 99.10% (0.383)
89.80% (0.242) 93.00% (0.290) 99.10% (0.386)
T=3K=6 Proposed 89.50% (0.207) 94.80% (0.248) 98.30% (0.329)
oracle 89.00% (0.208) 94.60% (0.207) 98.10% (0.331)
_ 1=3K=8 90.90% (0.210) 94.29% (0.252) 98.80% (0.333)
(n,p, o) = (250, 1500, 0.8) 91.00% (0.210) 94,09% (0.253) 98.60% (0.334)
I=4K=6 88.70% (0.212) 92.69% (0.253) 98.68% (0.338)
88.10% (0.214) 92.89% (0.255) 98.38% (0.340)
NOTE: Numbers in parentheses are average widths of the confidence intervals.
Table 2. Empirical coverage rates of confidence intervals for E(Yj|x;).
90% 95% 99%
1=3,K=6 Proposed 87.35% (1.401) 93.19% (1.668) 98.05% (2.205)
oracle 88.75% (1.385) 93.92% (1.648) 98.53% (2.167)
_ 1=3K=8 86.46% (1.601) 91.39% (1.923) 97.05% (2.562)
(n,p, o) = (200,1000, T) 89.41% (1.524) 94.38% (1.817) 98.76% (2.396)
I=4K=6 87.70% (1.489) 93.36% (1.789) 98.17% (2.353)
89.08% (1.452) 94.40% (1.731) 98.77% (2.272)
1=3,K=6 Proposed 89.08% (1.170) 93.63% (1.328) 98.50% (1.757)
oracle 89.00% (1.167) 93.55% (1.323) 98.57% (1.741)
_ 1=3K=8 89.14% (1.225) 94.38% (1.467) 98.72% (1.937)
(n,p, o) = (200, 1000, 0.8) 89.319% (1.220) 94.45% (1.457) 98.81% (1.916)
I=4K=6 88.86% (1.168) 94.13% (1.395) 98.72% (1.839)
88.83% (1.165) 94.10% (1.389) 98.66% (1.825)
1=3,K=6 Proposed 88.17% (0.991) 93.62% (1.183) 98.47% (1.557)
oracle 88.14% (0.989) 93.53% (1.179) 98.46% (0.983)
_ 1=3K=8 89.33% (1.092) 94.38% (1.306) 98.79% (1.716)
(n,p, o) = (250, 1500, 0.8) 89.28% (1.090) 94.329% (1.302) 98.76% (1.707)
I=4K=6 87.48% (1.050) 93.04% (1.251) 98.33% (1.651)

87.41% (1.048) 92.98% (1.247) 98.29% (1.643)

NOTE: Numbers in parentheses are the average widths of the confidence intervals.

samples, we identify the model M that appears most. If M
appears for more than 50% of the times (which has always been
the case for all the simulated datasets and the real data example
examine(Ai), we treat it as the selected model and declare all its
nonzero f;’s as significant. For each of these selected function f;’s,
we then form a confidence band by finding the corresponding
percentiles from Z¢B; where Zs and B are, respectively, the

spline representation and the part of B corresponding to this
selected function.

4. Theoretical Properties

This section presents some asymptotic properties of the above
generalized fiducial based method. We assume that p is diverg-
ing and the theoretical properties are established under the
following conditions.

(A1) Let H be the class of functions h on [a, b] which satisfies
a Lipschitz condition of order a:

Ih® (s) — KR (1) < C|s — t|* fors,t < [a, b],

where k is a nonnegative integer and « € (0,1] so that d =
k+a >05Thenfie Hfor1 <j<gq.

(A2) Leta = & < & < & < < & <
Ex+1 = b denote a partition of [a, b] into K + 1 subintervals
where the fth subinterval I; = [&_.,&) fort = 1,...,K
and Ixy1 = [&k,&ky1]. We assume that these knots are not
overly sparse; that is, let 0 < v < 05and K = n"
be a positive integer such that max;<i<xy1 & — &—1] =
O(n™").

(A3) There exists a constant ¢y such that min;<j<4||fill2 >

co, where |[fl, = [ fab f2(x)dx]'/? whenever the integral
exists.

(A4) X has a continuous density and there exist constants C;
and C; such that the density function g; of X; satisfies 0 < C; <
g}(X) < Cy > Q.

(A5) Let m and mg be the number of nonzero functions
selected for models M and M, respectively. Then p* = h,m
for model M. We consider only M € M where M = {M:m <
kmy} for a finite constant k > 1; that is, the model whose size is

comparable to the true model.
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(A6) Let A(M) = [ljp — Hmp| where p = Zpg,Bpy,. We
assume the following identifiability condition:

I AMM) -MﬂgéM,mgkmD] = oQ.

li in{——:
im min TmoTogp

H—00
This condition ensures that the true model can be differentiated
from the other models.

(A7) There exists a variable screening procedure to reduce
the size of M when p is too large in practice. Denote the class
of candidate models resulting from the screening procedure by
M*. Existence follows from

P(My e M*) — 1 and log(lM}"l) = o(hyjlogn), (15)

where M}“ denotes the set of all submodels in M* of size j. These
two limiting criteria ensure that the true model is contained in
M* and the size of the model space M* is not too large.

The following theorem summarizes our main results and its
proof can be found in Appendix A.

Theorem 1. Assume A1-A6 hold. Asn — o0, p — o9,

homgolog(p) = o(n), log(h,mgp)/log(p) — & and —log(q)/
log(p) = y, we have

r(M) p
max — 0, 16
M#My,MeM r(My) (16)
for1 + 48 < y < Cwith Cbeing a constant.
Moreover if A7 also holds, with the same y we have
P
r(Mp) — 1 (17)

over the class M*.

Theorem 1 states that the true model My has the highest
generalized fiducial probability amongst all the candidate mod-
els under some regularity conditions, and if in addition Equa-
tion (15) holds, the true model will be selected with probability
tending to 1. Note that Equation (16) does not imply (17) in
general since we assume a diverging p. Here y plays a role
similar to that of the tuning parameter in EBIC of Luo and
Chen (2013), which controls a penalty for the size of the class
of submodels and it must fall within a specified range to ensure
that the generalized fiducial distribution is consistent.

In practice, we use group Lasso on bootstrapped data to
generate candidate models as discussed in Section 3.4. The
resulting model space satisfies Equation (15), since group Lasso
is selection consistent for some A as shown in Nardi and Rinaldo
(2008). Theorem 1 also implies that statistical inference based
on the generalized fiducial density (5) will retain the exact
asymptotic frequentist property as shown in Theorems 2 and
3 of Hannig et al. (2016), which ensure the consistency of our
inferential procedure.

We close this section with the following two remarks. First,
in general, nonparametric function estimators are biased. We
handle this issue by imposing some restrictions on the true
functions fs. Lemma 1 implies that these functions can be
well approximated by polynomial splines adopted in the pro-
posed method (i.e., the bias vanishes asymptotically). With these
somewhat strong restrictions, we are able to obtain the above

theoretical results. The second remark is that establishing the-
oretical results for the estimation of B;’s is more challenging.
One reason is that the optimal number of Bj’s can vary for
different f;’s and we do not have any method or consistency
results for estimating this number under the current setting.
Another difficulty is that, in practice, some fitted models in
the fiducial samples contain a certain set of Sjx’s while some
other fitted models do not. This makes it very difficult to even
construct confidence intervals for such g, let alone conduct
rigorous study of any theoretical property.

5. Empirical Properties

This subsection investigates the empirical properties of the
proposed method via numerical experiments and a real data
example.

5.1. Simulation Experiments

Following the simulation settings in Huang, Horowitz, and Wei
(2010), we use the model

P
yx:Zf}(xq)"'gu i=1,...n,

=1

g; ~ iid N(0,02)

to generate simulated data, where

fitx) = 5x,

fx) =3@x—1)?,

f3(x) = 4sin(2wx)/{2 — sin(2nx)},

fa(x) = 6{0.1sin(27x) + 0.2 cos(27x)} + 0.3 sin® (27 x)
+0.4 cos3(231x) + 0.5sin’ 2m x),

fix) =0 for 5<j<p,

and the noise variance o' is chosen such that the signal-to-noise
ratio is greater than 1 for each nonzero function.

For each set of simulated data, we first use B-spline expan-
sions to transform our data to representation (2). Then a set of
candidate models M are generated by using group Lasso on the
transformed data and 10 sets of bootstrapped data. For each M,
we run a simple linear regression to obtain RSSys and compute
the fiducial probability r(M) as shown in (11). Then we can
draw samples of (M, 02, B) based on r(M), (13) and (14) and
construct confidence intervals or bands.

Figure 1 summarizes some results of applying the proposed
method to a typical simulated dataset with n = 200, p = 1000
and o = 0.8. For the B-spline expansion we use / = 3and K =
8, and 10,000 samples of (M, o2, B) are generated. Using these
samples a 95% confidence interval for ¢ is obtained, which is
(0.756,0.947) and includes the true value 0.8. The left panel in
Figure 1 depicts the histogram of the 10,000 samples of o which
can be seen to be approximately normally distributed. The right
panel shows the 95% pointwise confidence band of f;(x), where
the black line is the true function and the red lines are the two
bounds. We use f3(x) here since it is the most complicated of
the four nonzero functions. We can see that the confidence band
covers the true function very well.
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Figure 1. Left: Histogram of the fiducial samples of . Right: A 95% pointwise confidence band of fg. The black line is the true function while the red lines show the band.
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Figure 2. Empirical coverage rates for each nonzero function with experimental parameters n = 200,p = 1000, = 0.8, = 5%,/ = 3,and K = 8.

To test the coverage of these confidence intervals, we generate
1000 simulated datasets and apply the proposed method to
compute the confidence intervals for 2 and the mean function
E(Y;|x;) evaluated at n design points x;’s. We compare the per-
formance of our method with the “oracle” method which uses
the true model and classical theories in linear models based
on the spline representation to derive confidence intervals.

0.0

Different combinations of n, p, o, I, K, and « are tested and
the numerical results are summarized in Tables 1 and 2. The

empirical coverage rates are reported together with the average
widths of the intervals shown in parentheses.

To evaluate the performance visually, we also plot the empir-
ical coverage rates of all four nonzero functions for one combi-
nation of experimental parameters; see Figure 2. In each panel



520 Q GAOETAL.

the black dashed line depicts the true value of the function, the
horizontal red dashed line is the target confidence level (95%
in this case) while the black solid line represents the empirical
coverage rates. One can see that these rates are very close to the
target confidence level.

5.2. Comparison With an Existing Method

This subsection compares the performances of the proposed
method with those from the kernel-sieve hybrid estimator
developed by Lu, Kolar, and Liu (2015). As with the settings in
Lu, Kolar, and Liu (2015), the same set of test functions in the
previous subsection are used with 2 = 1.5%, p = 600, and
n € {400,500, 600}. For the kernel-sieve hybrid estimator, we
follow the parameter selection used in Lu, Kolar, and Liu (2015).
For the proposed method, we set/ = 3 and K = 8.

The empirical coverage rates that the 95% confidence bands
cover the true f4(x) on the first 100 data points are computed
based on 500 repetitions. These coverage rates are summarized
in Table 3. One can see that both methods produce very reason-
able results, with those from the proposed method being closer
to the nominal significance level. For visual evaluation, 95%
confidence bands for typical datasets are displayed in Figures 3
and 4. These plots suggest that the proposed method produces
tighter confidence bands.

Table 3. Empirical coverage rates of 95% confidence bands targeted for f(x).

Finally, we report the execution times for the methods. For
a typical dataset of n = 400, the proposed method and the
kernel-sieve hybrid estimator take about 52 sec and 903 sec,
respectively, to finish. The code for the proposed method is
written in R while the code for the hybrid estimator (kindly
provided by one of its authors) is in Matlab. The machine is a
2018 MacBook Pro with a 2.3 GHz Intel Core i5 processor.

5.3. Real Data Example

This subsection presents a real data analysis on the riboflavin
(vitamin B;) production dataset which is available in Supple-
mentary Section A.1 of Bithlmann, Kalisch, and Meier (2014).
The response variable is the logarithm of the riboflavin produc-
tion rate in Bacillus subtilis for n = 71 samples while there are
p = 4088 covariates measuring the logarithm of the expression
level of 4088 genes. Bithlmann, Kalisch, and Meier (2014) and
Javanmard and Montanari (2014) use linear models to detect
significant genes that potentially affect riboflavin production.
Biithlmann, Kalisch, and Meier (2014) locate the gene YXLD-at
while Javanmard and Montanari (2014) identify the two genes
YXLD-at and YXLE-at as significant. Here, instead of using a
simple linear model, we assume a nonparametric additive model
and apply the GFI methodology to select significant genes.
Following Bithlmann, Kalisch, and Meier (2014), we first
adopt a screening procedure and use only the 100 genes with the
largest empirical variances. We then apply the proposed method
with K = 2 and [ = 3 to the screened dataset and obtain
10,000 fiducial samples for (M, o, ). It turns out with 63.2%
fiducial probability, YXLD-at and YBFG-at are jointly selected
while with 28.4% fiducial probability, YXLD-at and XHLA-
at are jointly selected. In other words the proposed method is
capable of detecting YXLD-at which is considered significant

n Generalized fiducial inference Kernel-sieve hybrid estimator

400 949 91.6
500 948 93.2
600 953 93.6

¥ ¥
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Figure 4. Similar to Figure 3 but for the kernel-sieve hybrid estimator.
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Figure 5. 95% prediction intervals, denoted as blue error bars, for the responses
Yi's, denoted as black circles. For clarity the Y;'s are sorted in ascending order.
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Figure 6. A 95% pointwise confidence band for YXLD_at. The black solid line is the
median of the fiducial samples and the dashed blue lines represent the confidence
band.

in most previous analyses of this dataset. Also, with the 10,000
fiducial samples we construct a 95% confidence interval for o,
which is (0.43, 0.62).

From the fiducial samples of (M, o, 8), we also compute the
leave-one-out 95% prediction intervals for the responses Y;’s
and the results are displayed in Figure 5. Note that for clarity the
Y’s are sorted in ascending order. From the plot we can see that
68 out of 71 prediction intervals cover the value of Y;’s, which is
around 95.8%. We also compute the 95% pointwise confidence
band for YXLD-at which is shown in Figure 6. For the ith
function, such a confidence band can be constructed by using
the quantiles from Z;8; where Z; and B; are, respectively, the
design matrix and coefficients corresponding to the ith function
after the B-spline expansion. In Figure 6, the black solid line
is the median among all the samples as the true function is
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not available for real data, while the dashed lines represent the
confidence band. This plot strongly suggests that this gene is
indeed significant and the overall trend is more complicated
than a simple straight line. We note that, although many previ-
ous methods based on high-dimensional linear regression have
successfully identified this gene as significant, these methods fail
to provide any flexible estimate for the trend, such as the one in
Figure 6.

6. Conclusion

In this article, we adopted a GFI methodology to perform statis-
tical inference on sparse high-dimensional nonparametric addi-
tive models. In particular, we developed a procedure to generate
fiducial samples based on the generalized fiducial distribution
of a set of candidate models obtained from group Lasso, and to
construct various confidence intervals and prediction intervals
by making use of these samples. The developed inferential pro-
cedure was shown to have an exact asymptotic frequentist prop-
erty under some regularity conditions, which was confirmed by
its promising performance in numerical simulations. We note
that the current framework can in principle be extended to other
more complicated and flexible models in high-dimensional set-
tings, such as the generalized nonparametric additive models.

Appendix A: Technical Details

This appendix provides technical details, including the proof for The-
orem 1. We begin with three lemmas.

A.1. Lemmas

Lemma 1. Let F be the class of functions f on [a, b] which satisfies:
[f(k) (s) —f(k){t)l < C|s—t|* fors,t €[a,b],
where k is a nonnegative integer and @ € (0, 1] sothatd = k+a > 0.5.

Let S denote the space of centered polynomial splines. Suppose that
feF, Ef(Zj) =0and h, = O(rtl/(zd"'l)}, then there exists f,, € S?,
satisfying

I = fll2 = Op(hiz %) = Op(n=4/CHHD),

This lemma is proved in Huang, Horowitz, and Wei (2010) and it
indicates that the f;’s can be well approximated by polynomial splines
under certain smoothness assumptions. Therefore, the representation
we consider in Equation (2) is exact.

Lemma 2. Let Xj-z denotea 2 random variable with degrees of freedom
jIfc— o0 and’-; — 0, then
1

)
uniformly for allj < J.

(/2> L exp(—c/2)(1 + 0(1))

P()(J,v2 >¢)

The proof can be found in Luo and Chen (2013) by using integration
by parts.

Lemma 3. Let ij be a chi-square random variable with degrees of
freedom j and ¢; = 2j[logp + log(jlogp)]. If p — oo, then for any
J=pandh=1,

/ p 2
Z (j)P(th > cp) — 0.

=1
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cj . ;
Proof. letgj= | m By using {f) < p/ and Lemma 2,

P\p.,2 _(? 1 hj/2—1

(j)P(X;,j > Chj) = (J) m%j exp(—cpj/2)(1+0(1))
hj/2—1
<P (140w
~ (hjlogp)

ki
=—(1+0(1))

Cﬁj
uniformly over j < hJ for any J < p.

Since g; < 1 for all j and g; — 0 when j is large enough, we have

I o I gl
> C)pugj >c) <y c—f(l +0(1)) — O.
=1 =1 H

O
A.2. Proof of Theorem 1
Since
r(M) o ()@ =/ 2 (=" =D/ 2gg (" —n+D/2 (—” —P *) x ¢,
2
we have
r(M)
=exp{-T; — T2},
o) p{—T1 — Tz}
where
_n—hym—1 RSSum
hi= PR (RSSMO)
and
n — hymg n— hym
+log 1 T( >/ T(———)+ hy(mg — m) log(g).
Case 1: Mp ¢ M.

Let M; = {M : |[M| = j,M € M}. Recall Hy is the projection
matrix for model M and Hpyy, is the projection matrix for the true
model M. Calculate

RSSpt, = 7 — Zago Bagy) | 4 — Hag) 0 — Zagp Bogy)

= sT(I — Hpy)e
n—hymg

D ZF = (n—hamo)(1 + 0p(1)) = n(1 + 0p(1)),

i=1

where Z;s are iid standard normal variables.
Let A(M) = ||p — Hpp|| with p = Zpg, Bpg,- Then
RSSpr — RSSpp, = (e + &) T (I — Hyp)(n + &) — eT(I — Hypgye

=AM) + ZuT(I — Hpp)e — sTHMs + sTHMﬂs,
(A1)

where sTHMos = hymo(1 + 0p(1)).
Express the second term in (A.1) as

w1 — Hye = VAM) Zy»

where Zy; ~ N(0,1). Then for any M € M,
I — Hye| < VADD) max|Zy].
Let ¢; = 2j{log p + log(jlog p)}, according to Lemma 3 we have

P{nﬁxlelzﬁ)zP( max 1Zm| = VO

MeMj,1<j<kmy

kmy
=y G)P(xf > 0)
=

kmy
<> (‘?)P(xf >0) > 0.
=1

Therefore, | T(I — Hyp)e| = AM)Op(km, log p) uniformly over
M.
Similarly, for the third term in (A.1), as T Hye = Xf,,m we have

P{maxsTH e=>cqy ) =P( max
M M hinj

2 .= )
MeM;,1<j<kmg Khnj = hnj

k?ﬂn P
=< E ( .)P(xfm,v = Cpyj) = 0.
=1V
Thus, we have
njl‘)atx{sTHMs} = Op(khym,logp).

Assuming that h,m, log p = o(n), we have

RSSp — RSSp, = AM)(1 + 0p(1))

and
. n—hym—1 RSSpr — RSSpy,
T, = — 5 log (1 + 7RSSMO )
_ n(1+ op(1)) log {1 n AM)(1 + 0p(1)) }
2 n
_ A(M)(l+0p{l)) (A2)
S m— .
By Sterling’s formula,
e (= ()
- Ml{)gn{l +o(1)).
Therefore,
hﬂ -
T, = M {103 n(op(1)) —log{n'qz)]
h,m
o 0 [logn(oP{l)) —log(nqz)l. (A.3)
Case 2: My € M.

Let AM* be the collection of models that contain the true model;
that is, M* = (M € M,My € M,M # My}. Moreover, let M}" =
M, |M] = j, Mo € M).

When Mg € M, (I — Hy)Zpg, = 0, therefore, yT(I — Hypy =
eT(I — Hpp)e. Also

RSSp — RSSym, = & (I — Hyy)e — e (I — Hyp)e
= ST{HM — Hpgy)e
2
= Xhiy(m—mq) M)>



where Xf,, (m_mo}{M ) follows chi-square distribution with degrees of

freedom hy,(m — mg).
Let ¢; = 2j{log p + log(jlog p)}. According to Lemma 3,

P max 2 (M) = ¢y, ;
(MeMJ’.‘,lgjgkmg—mu Xhnj = Chnj

kmg—myg
P( max (M) =¢y )
; MEM Xh hj

kmg—mg
_ p—mp
B ; ( j

kmo my
= (})P(x;, i M = cnyj) — 0.

)P(xf:ﬂj{M} > )

Therefore, Xil:,,(m (M) < ch, (m—mg) (1 + 0p(1)) and

—mp)

n—hﬂm—llog(RSSM)
2 RSSM[cl
_ nhm-t by Xion(m—m) D
2 RSSp, — Xf,,(m_mn)(M)

2
Xy (m—mg) M
TP

T =

)_n—hﬂm—l
- 2

2

Since n_lRSSMO — o“ as n — 0o, we have RSSyy, = n(1 +o(1)),

T > %—_m“)(l +0p(1))

- 2

> _hy(m — mo)[l  Jogthn (kmo — mo) logp}] log p(1 + 0,(1))
logp

> —hn(m — mo)(1 4 8) log p(1 + 0p(1)) (A.4)

uniformly over M*, and

hy(m —

Tz _ ﬂ) {108 n{OP(l)) _ log{n.qz)} {AS}

uniformly over M*.
Combing case 1 and case 2, we aim to show that

r(M)

M¢M.J,MeM r(Mg)
—T3)} = 0.

- T).})

{“. { 1
max exp -T
. ( 1

By (A.2) and (A.3), for case 1,

AM)Y(1 + 0,(1))  h,m
T + T, > —E— — == {log n(op(1)) ~ log(rq?)]
_ hymglogp | A (1+0,(1)) lognoy(1) log(wg?)
- 2 hamglogp  logp logp |[°
In order that

min T} + T — oo,
MogM

we can choose g such that —logg = O(log p); that is,

_log;q = 0(1).

logp
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Similarly by (A.4) and (A.5), for case 2,

Iy 4T, Imn—mo)logp [lognop(1) _ logtra®)
2 logp logp
—2(1+48)(1 +op{l))}.
In order that
min Ty + Tz — oo,
MpeM
we have
—loﬂ >1+44.
logp

_ . :
Eherefore, fort1+8 <y = ]gg-g < C with C being a constant, we
ave

r(M)
max
MéM,MeM r(Mp)

Moreover, if condition (A7) holds, we have

E ?'(M) Z E r(M)
MMy MM r(Mo) — r(Mo)
< kmg max |W|r{—M} — 0.
M#Mo,MeM 1 r(Mo)

This completes the proof for Theorem 1.
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