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A B S T R A C T

St ati sti c al i nf er e n c e i n  hi g h- di m e n si o n al  s etti n g s  h a s  r e c e ntl y  attr a ct e d  e n or m o u s  att e nti o n   wit hi n  t h e
lit er at ur e.   H o w e v er,   m o st  p u bli s h e d   w or k f o c u s e s o n t h e  p ar a m etri c li n e ar r e gr e s si o n  pr o bl e m. T hi s arti cl e
c o n si d er s  a n i m p ort a nt  e xt e n si o n  of t hi s  pr o bl e m: st ati sti c al i nf er e n c e f or  hi g h- di m e n si o n al s p ar s e  n o n-
p ar a m etri c  a d diti v e   m o d el s.  T o  b e   m or e  pr e ci s e, t hi s  arti cl e  d e v el o p s  a   m et h o d ol o g y f or  c o n str u cti n g  a
pr o b a bilit y  d e n sit y f u n cti o n  o n t h e s et  of  all c a n di d at e   m o d el s.  T hi s   m et h o d ol o g y c a n  al s o  b e  a p pli e d t o
c o n str u ct  c o n fi d e n c e i nt er v al s f or  v ari o u s  q u a ntiti e s  of i nt er e st ( s u c h  a s  n oi s e  v ari a n c e)  a n d  c o n fi d e n c e
b a n d s  f or  t h e  a d diti v e  f u n cti o n s.  T hi s   m et h o d ol o g y  i s  d eri v e d  u si n g  a  g e n er ali z e d  fi d u ci al  i nf er e n c e
fr a m e w or k. It i s  s h o w n  t h at  r e s ult s  pr o d u c e d  b y  t h e  pr o p o s e d   m et h o d ol o g y  e nj o y  c orr e ct  a s y m pt oti c
fr e q u e nti st  pr o p erti e s.  E m piri c al r e s ult s  o bt ai n e d fr o m  n u m eri c al  e x p eri m e nt ati o n  v erif y t hi s t h e or eti c al
cl ai m. L a stl y, t h e   m et h o d ol o g y i s a p pli e d t o a g e n e e x pr e s si o n d at a s et a n d di s c o v er s n e w fi n di n g s f or   w hi c h
m o st e xi sti n g   m et h o d s b a s e d o n p ar a m etri c li n e ar   m o d eli n g f ail e d t o o b s er v e.

A R TI C L E   HI S T O R Y
R e c ei v e d J u n e 2 0 1 8
A c c e pt e d S e pt e m b er 2 0 1 9

K E Y W O R D S
C o n fi d e n c e b a n ds;
C o n fi d e n c e i nt er v als;
G e n er ali z e d fi d u ci al
i nf er e n c e; L ar g e p s m all n ;
V ari a bilit y esti m ati o n

1.  I ntr o d u cti o n

N o n p ar a m etri c a d diti v e   m o d els, gi v e n t h eir fl e xi bilit y, h a v e l o n g
b e e n  a  p o p ul ar  t o ol  f or  st u d yi n g  t h e  e ff e cts  of  c o v ari at es  i n
r e gr essi o n  pr o bl e ms  ( e. g.,  Fri e d m a n  a n d  St u et zl e 1 9 8 1 ; St o n e
1 9 8 5 ).   Gi v e n a s et of n i n d e p e n d e ntl y a n d i d e nti c all y distri b ut e d
o bs er v ati o ns {(Y i, X i)}

n
i= 1 , wit h Y i b ei n g t h e it h  r es p o ns e  a n d

X i = (X i1 , . . . , X i p) as  t h e it h p - di m e nsi o n al  c o v ari at e,  a
n o n p ar a m etri c a d diti v e   m o d el is d e fi n e d as

Y i = μ +

p

j= 1

fj(X ij) + ε i, i = 1, . . . , n , ( 1)

w h er e μ is a n i nt er c e pt t er m, t h e fj’s ar e u n k n o w n ( a n d us u all y
s m o ot h) f u n cti o ns, a n d ε i is a n i n d e p e n d e nt r a n d o m err or   wit h
m e a n  z er o  a n d  fi nit e  v ari a n c e σ 2 .   H er e t his  arti cl e  all o ws t h e
p ossi bilit y t h at p is  gr e at er t h a n n ,   w hi c h i m pli es  s o m e  of t h e
f u n cti o ns fj’s ar e z er o.

T h er e is  a ri c h lit er at ur e  o n t h e  esti m ati o n  of t h e f u n cti o ns
fj’s  i n  (1 ) w h e n p < n is  fi x e d.  F or  e x a m pl e,  St o n e  (1 9 8 5 )
d e v el o p e d s pli n e esti m at ors t h at a c hi e v e t h e s a m e  o pti m al r at e
of c o n v er g e n c e f or g e n er al p as f or p = 1  u n d er s o m e ass u m p-
ti o ns.   B uj a,   H asti e,  a n d   Ti bis hir a ni (1 9 8 9 ) pr o p os e d a b a c k fit-
ti n g al g orit h m t o esti m at e t h e f u n cti o ns   wit h li n e ar s m o ot h ers
a n d  pr o v e its  c o n v er g e n c e.  F or  fi x e d p a n d  u n d er  s o m e   mil d
r e g ul arit y c o n diti o ns,   H or o wit z,   Kl e m el a, a n d   M a m m e n ( 2 0 0 6 )
o bt ai n e d  or a cl e e ffi ci e nt esti m at ors  usi n g a t w o-st e p  pr o c e d ur e
w hi c h ar e as y m pt oti c all y n or m al   wit h c o n v er g e n c e r at e n − 2 / 5 i n
pr o b a bilit y.

I n  hi g h- di m e nsi o n al  s etti n gs   w h er e p > n , m u c h w or k
h as  als o  b e e n  d o n e  i n  v ari a bl e  s el e cti o n;  t h at  is,  s el e cti n g

C O N T A C T T h o m a s  C.   M. L e e t c ml e e @ u c d a vis. e d u D e p art m e nt of St ati sti c s,   U ni v er sit y of  C alif or ni a at   D a vi s, 4 1 1 8   M at h e m ati c al S ci e n c e s B uil di n g,
O n e S hi el d s   A v e n u e,   D a vi s,  C A 9 5 6 1 6.
C ol or v er si o n s of o n e or   m or e of t h e fi g ur e s i n t h e arti cl e c a n b e f o u n d o nli n e at w w w.t a n df o nli n e. c o m/r/ T E C H .

( a n d  esti m ati n g)  t h e  si g ni fi c a nt fj’s.   M ei er,   Va n   D e   G e er,  a n d
B u hl m a n n  ( 2 0 0 9 )  pr o p os e d  usi n g  a  n e w  s p arsit y-s m o ot h n ess
p e n alt y f or  v ari a bl e s el e cti o n  a n d  pr o vi d e  or a cl e r es ults   w hi c h
l e a d  t o  as y m pt oti c  o pti m alit y  of  t h eir  esti m at or  f or  hi g h-
di m e nsi o n al  s p ars e  a d diti v e   m o d els.   R a vi k u m ar  et  al.  ( 2 0 0 9 )
d eri v e d a s p ars e b a c k fitti n g al g orit h m f or v ari a bl e s el e cti o n   wit h
a p e n alt y b as e d o n t h e l2 n or m  of t h e   m e a n  v al u e  of t h e  n o n-
p ar a m etri c c o m p o n e nts.   T h eir al g orit h m d e c o u pl es s m o ot hi n g
a n d s p arsit y  a n d is a p pli c a bl e t o  a n y  n o n p ar a m etri c s m o ot h er.
H u a n g,   H or o wit z, a n d   Wei ( 2 0 1 0 ) a p pli e d a d a pti v e gr o u p L ass o
t o  s el e ct  si g ni fi c a nt fj’s  a n d  pr o vi d e  c o n diti o ns  f or  a c hi e vi n g
s el e cti o n c o nsist e n c y.

I n  r e c e nt  y e ars  t h er e  h as  b e e n  a  gr o wi n g  b o d y  of   w or k
i n  st atisti c al i nf er e n c e f or  hi g h- di m e nsi o n al li n e ar  p ar a m etri c
m o d els.  F or e x a m pl e,   B ü hl m a n n ( 2 0 1 3 ), J a v a n m ar d a n d   M o n-
t a n ari (2 0 1 4 ), Va n d e G e er et al. (2 0 1 4 ), a n d   Z h a n g a n d   Z h a n g
(2 0 1 4 ) st u di e d  h y p ot h esis t esti n g  a n d  c o n fi d e n c e i nt er v als f or
l o w- di m e nsi o n al  p ar a m et ers  i n  hi g h- di m e nsi o n al  li n e ar  a n d
g e n er ali z e d li n e ar   m o d els.   T h eir  a p pr o a c h es  ar e   m ostl y  b as e d
o n “ d e- bi asi n g” or “ d e-s p arsif yi n g” a r e g ul ari z e d r e gr essi o n esti-
m at or  s u c h  as  L ass o.   C h att erj e e  a n d  L a hiri  ( 2 0 1 3 ) a n d L o p es
(2 0 1 4 ) e x a mi n e d  pr o p erti es  of t h e r esi d u al  b o otstr a p f or  hi g h-
di m e nsi o n al  r e gr essi o n.  L e e  et  al. ( 2 0 1 6 )  a n d   Ti bs hir a ni  et  al.
(2 0 1 6 ) c o nsi d er e d t h e e x a ct p ost-s el e cti o n i nf er e n c e f or s e q u e n-
ti al r e gr essi o n pr o c e d ur es c o n diti o ni n g o n t h e s el e ct e d   m o d els.
Fi n all y, t h e e m piri c al  B a y es a p pr o a c h h as als o b e e n a d o pt e d (s e e,
e. g.,   M arti n,   M ess, a n d   Wal k er 2 0 1 7 ).

H o w e v er,   m u c h  l ess  att e nti o n  is  gi v e n  t o  st atisti c al  i nf er-
e n c e  f or  n o n p ar a m etri c  a d diti v e   m o d els,  es p e ci all y  i n  hi g h-
di m e nsi o n al  s etti n gs.  F a n  a n d  Ji a n g  ( 2 0 0 5 )  e xt e n d e d  t h e
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g e n er ali z e d li k eli h o o d r ati o t ests t o  a d diti v e   m o d els  esti m at e d
b y  b a c k fitti n g  t o  d et er mi n e  if  a  s p e ci fi c  a d diti v e  c o m p o n e nt
is  si g ni fi c a nt  or  a d mits  a  c ert ai n  p ar a m etri c  f or m.   H o w e v er,
t h es e  a ut h ors  di d  n ot  c o nsi d er  t h e  c as es   w h er e p > n a n d
i nf er e n c es  f or  s o m e  p ar a m et ers  s u c h  as σ . M or e r e c e ntl y L u,
K ol ar,  a n d  Li u ( 2 0 1 5 )  pr o p os e d t w o t y p es  of c o n fi d e n c e  b a n ds
f or t h e   m ar gi n al i n fl u e n c e f u n cti o n i n a n o v el hi g h- di m e nsi o n al
n o n p ar a m etri c   m o d el, t er m e d   A T L A S,   w hi c h is a g e n er ali z ati o n
of t h e s p ars e a d diti v e   m o d el, alt h o u g h n o i nf er e n c e pr o c e d ur e is
pr o vi d e d f or ot h er   m o d el c o m p o n e nts. Fi n all y, v ari o us  B a y esi a n
m et h o ds h a v e als o b e e n pr o p os e d, i n cl u di n g S c h ei pl, F a hr m eir,
a n d   K n ei b ( 2 0 1 2 )  a n d  S h a n g  a n d  Li (2 0 1 4 ).   H o w e v er,  n o n e  of
t h es e   m et h o ds is d esi g n e d t o pr o vi d e u n c ert ai nt y q u a nti fi c ati o n
f or hi g h- di m e nsi o n al n o n p ar a m etri c a d diti v e   m o d els.

T h e   m ai n g o al of t his arti cl e is t o a d dr ess t h e i nf er e n c e pr o b-
l e m f or hi g h- di m e nsi o n al n o n p ar a m etri c a d diti v e   m o d els.  T o b e
m or e s p e ci fi c, t his arti cl e d e v el o ps a   m et h o d t h at q u a nti fi es t h e
u n c ert ai nti es i n t h e esti m at e d  p ar a m et ers a n d s el e ct e d   m o d els.
T his   m et h o d is b as e d o n t h e g e n er ali z e d fi d u ci al i nf er e n c e ( G FI)
fr a m e w or k ( H a n ni g et al. 2 0 1 6 ), w hi c h h as b e e n s h o w n t o p os-
s ess e xtr e m el y g o o d  pr o p erti es,  b ot h t h e or eti c al a n d e m piri c al,
i n v ari o us i nf er e n c e pr o bl e ms.  T o t h e b est of o ur k n o wl e d g e, t his
is t h e first ti m e t h at u n c ert ai nt y q u a nti fi c ati o n is b ei n g f or m all y
c o nsi d er e d f or hi g h- di m e nsi o n al a d diti v e   m o d els.

T h e  r e m ai n d er  of  t his  arti cl e  pr o c e e ds  as  f oll o ws.  I n  t h e
n e xt  s e cti o n,   w e  first  pr es e nt  a  s pli n e  r e pr es e nt ati o n  of  n o n-
p ar a m etri c  a d diti v e   m o d els  u p o n   w hi c h  o ur i nf er e n c e   will  b e
b as e d. I n S e cti o n  3 , w e i ntr o d u c e t h e G FI fr a m e w or k a n d f or-
m all y  d es cri b e  o ur  pr o p os e d i nf er e n c e   m et h o d f or s p ars e  a n d
hi g h- di m e nsi o n al  n o n p ar a m etri c  a d diti v e   m o d els. S e cti o n  4
e x a mi n es  t h e  t h e or eti c al  pr o p erti es  of  t h e  pr o p os e d   m et h o d
w hil e S e cti o n 5 ill ustr at es its e m piri c al pr o p erti es vi a n u m eri c al
e x p eri m e nts a n d a r e al d at a e x a m pl e. L astl y, c o n cl u di n g r e m ar ks
ar e  o ff er e d i n S e cti o n  6 w hil e  pr o ofs  of t h e or eti c al  r es ults  ar e
d el a y e d i n   A p p e n di x   A.

2.  S pli n e   M o d eli n g of   A d diti v e F u n cti o n s

T h e f u n cti o ns fj’s i n  n o n p ar a m etri c  a d diti v e   m o d els  ar e  c o m-
m o nl y   m o d el e d b y s pli n es fnj ’s i n pr a cti c e.   A s pli n e f u n cti o n is a
pi e c e wis e p ol y n o mi al f u n cti o n, us u all y c u bi c, t h at is c o n n e ct e d
t o g et h er at k n ots.   H er e   w e st at e t h e st a n d ar d c o n diti o ns a n d d ef-
i niti o n f or s pli n e f u n cti o ns f oll o wi n g ( e. g.,  St o n e 1 9 8 5 ; H u a n g,
H or o wit z, a n d   Wei 2 0 1 0 ).

S u p p os e t h at X j ∈ X j w h er e X j = [ a , b ] f or  fi nit e  n u m b ers
a < b a n d E (Y 2 ) < ∞ . T o e ns ur e i d e nti fi a bilit y, w e ass u m e
Ef j(X j) = 0 f or j = 1, . . . , p . L et K b e t h e n u m b er of k n ots f or a
p artiti o n  of [a , b ] s atisf yi n g c o n diti o n ( A 2) st at e d i n S e cti o n 4 .
L et S n b e t h e  c oll e cti o n  of f u n cti o ns s o n [a , b ] s atisf yi n g t h e
f oll o wi n g t w o c o n diti o ns: (i) s is a p ol y n o mi al of d e gr e e l ( or l ess)
o n e a c h s u bi nt er v al, a n d, (ii) f or t w o i nt e g ers l a n d l s atisf yi n g
l ≥ 2 a n d 0 ≤ l < l − 1, s is l -ti m es c o nti n u o usl y di ff er e nti a bl e
o n [a , b ].

T h e n  t h er e  e xists  a  n or m ali z e d   B-s pli n e  b asis {ϕ k (·), k =
1, . . . , h n }, h n = K + l f or S n , s u c h t h at f or a n y fnj ∈ S n ,

fnj (x ) =

h n

k = 1

β j kϕ j k(x ), (2 )

w h er e β j k is  t h e  c o e ffi ci e nt  of  t h e  b asis  f u n cti o n ϕ j k(x ), k =
1, . . . , h n . As s h o w n i n L e m m a 1 , fj’s  c a n  b e   w el l  a p pr o xi m at e d
b y f u n cti o ns i n S n u n d er c ert ai n s m o ot h n ess c o n diti o ns.   T h us,
i n t h e r est of t his arti cl e, f or t h e p ur p os e of e x p e diti n g t e c h ni c al
c al c ul ati o ns,   w e  s h all  ass u m e t h at t h e  s pli n e  r e pr es e nt ati o n is
e x a ct f or t h e a d diti v e f u n cti o ns fj’s.

I n   m atri x  n ot ati o n,  E q u ati o n  (1 ) c a n b e r e writt e n i n t h e
f oll o wi n g f or m

Y = μ 1 + Z β + ε , (3 )

w h er e Y = (Y 1 , . . . , Y n ) , Z is  a n × (h n p )
m atri x   wit h it h r o w e q u als t o ( ϕ 1 1 (X i1 ), ϕ 1 2 (X i1 ), . . . ,
ϕ 1 h n (X i1 ), . . . , ϕ p 1 (X i p), ϕ p 2 (X i p), . . . , ϕ p h n (X i p)), β =

( β1 1 , . . . , β 1 h n , . . . , β p 1 , . . . , β p h n ) , a n d ε = ( ε1 , . . . , ε n ).
T his  li n e ar  r e pr es e nt ati o n  of  a d diti v e   m o d els  pr o vi d es  us  a
pr o x y  t o  a p pl y  t h e   G FI   m et h o d ol o g y  o n  hi g h- di m e nsi o n al
r e gr essi o n   m o d els as d es cri b e d i n L ai,   H a n ni g, a n d L e e ( 2 0 1 5 ).

3.   M et h o d ol o g y

3. 1.   G e n er ali z e d Fi d u ci al I nf er e n c e

T h e  ori gi n al  i d e a  of  fi d u ci al  i nf er e n c e  c a n  b e  d at e d  b a c k  t o
t h e  1 9 3 0s.  Fis h er  (1 9 3 0 )  i ntr o d u c e d  fi d u ci al  i nf er e n c e  as  a n
alt er n ati v e  t o  B a y esi a n  pr o c e d ur es   wit h  t h e  g o al  t o  assi g n
a n  a p pr o pri at e  st atisti c al  distri b uti o n  o n  t h e  p ar a m et ers  of
a  p ar a m etri c  f a mil y  of  distri b uti o ns.   O n e   w ell- k n o w n  criti-
cis m  of t h e  cl assi c al   B a y esi a n  pr o c e d ur es is t h e  n e e d  of  s p e c-
if yi n g  pri or  distri b uti o ns  f or  t h e  p ar a m et ers.  Fis h er’s  pr o-
p os al  ai ms  t o  a v oi d  s u c h  a n  iss u e  b y  c o nsi d eri n g  a  s wit c h-
i n g   m e c h a nis m  b et w e e n  t h e  p ar a m et ers  a n d  t h e  o bs er v a-
ti o ns,  i n  a   w a y  v er y  si mil ar  t o  t h e  pr o c e d ur e  of  o bt ai ni n g
p ar a m et er  esti m at es  b y   m a xi mi zi n g  t h e  li k eli h o o d  f u n cti o n.
I n  s pit e  of  Fis h er’s  c o nti n u o us  e ff ort  i n  est a blis hi n g  a  f or-
m al  i nf er e n c e  fr a m e w or k  vi a  t h e  fi d u ci al  ar g u m e nt,  it  h as
b e e n  o v erl o o k e d f or   m a n y  y e ars  b y t h e   m aj orit y  of t h e  st atis-
ti cs  c o m m u nit y.  I nt er est e d  r e a d ers  ar e  r ef err e d  t o   H a n ni g
et  al.  ( 2 0 1 6 )   w h er e  a  d et ail e d  dis c ussi o n  a b o ut  t h e  hist or y
of  fi d u ci al  i nf er e n c e  a n d  n u m er o us  r el at e d  r ef er e n c es  c a n  b e
f o u n d.

I n r e c e nt y e ars, t h er e h as b e e n i n cr e asi n g i nt er est i n r ef or m u-
l ati n g t h e s o m e w h at a b a n d o n e d  fi d u ci al c o n c e pts.   T h es e   m o d-
er n   m o di fi c ati o ns i n cl u d e   D e m pst er – S h af er t h e or y ( D e m pst er
2 0 0 8 ), its  r el ati v e i nf er e nti al   m o d els  ( M arti n,   Z h a n g,  a n d  Li u
2 0 1 0 ; M arti n a n d Li u 2 0 1 3 , 2 0 1 5 )  a n d  c o n fi d e n c e  distri b uti o n
( Xi e a n d Si n g h 2 0 1 3 ).   O n e s u c h   m o d er n f or m ul ati o n of Fis h er’s
fi d u ci al i nf er e n c e is t h e s o- c all e d g e n er ali z e d  fi d u ci al i nf er e n c e
or   G FI ( H a n ni g 2 0 0 9 ; H a n ni g et al. 2 0 1 6 ).   G FI h as b e e n a p pli e d
s u c c essf ull y i n   m a n y cl assi c al a n d   m o d er n  pr o bl e ms, i n cl u di n g
w a v el et r e gr essi o n ( H a n ni g a n d L e e 2 0 0 9 ), li n e ar   mi x e d   m o d els
( Cis e ws ki a n d   H a n ni g 2 0 1 2 ), a n d l o gisti c r e gr essi o n m o d el ( Li u
a n d   H a n ni g 2 0 1 6 ).  I n  p arti c ul ar,  L ai,   H a n ni g,  a n d  L e e  (2 0 1 5 )
s u c c essf ull y a p pl y   G FI o n ultr a hi g h- di m e nsi o n r e gr essi o n   m o d-
els  a n d  s h o w  t h at  t h e  r es ulti n g   G FI  i nf er e n c e  pr o c e d ur e  h as
e x c ell e nt t h e or eti c al a n d pr a cti c al p erf or m a n c e.

3. 2.   A R e ci p e f or  A p pl yi n g   G FI

T h e   m ost  si g ni fi c a nt  i d e a  b e hi n d  t h e  p hil os o p h y  of   G FI
is  a  s wit c hi n g  pri n ci pl e.  It  b e gi ns  b y  r e ali zi n g  t h at  a n y
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n - di m e nsi o n al  o bs er v ati o n Y c a n b e vi e w e d as a n o ut c o m e of
a n e q u ati o n:

Y = G (θ , U ), (4 )

w h er e θ ∈ is a p - di m e nsi o n al  fi x e d  p ar a m et er v e ct or   w hi c h
d et er mi n es t h e distri b uti o n of Y , U is a r a n d o m v ari a bl e   w h os e
distri b uti o n  is  k n o w n  a n d  d o es  n ot  d e p e n d  o n θ , a n d G is
a  p ar a m etri c  d et er mi nisti c f u n cti o n  r el ati n g Y a n d θ . S u c h a
r el ati o ns hi p is  s o m eti m es  k n o w n  as  a  “str u ct ur al  e q u ati o n” i n
ot h er  ar e as  of  st u d y.   T h er e   m a y  b e   m or e  t h a n  o n e  str u ct ur al
e q u ati o n f or a n y gi v e n distri b uti o n of a r a n d o m v e ct or Y . If t h e
el e m e nts of Y ar e i n d e p e n d e nt, a n ai v e c h oi c e of G w o ul d b e t h e
i n v ers e  distri b uti o n f u n cti o n f or e a c h el e m e nt a n d U w o ul d  b e
j ust a n ii d u nif or ml y (0, 1 ) r a n d o m v e ct or.

T h e s wit c hi n g  pri n ci pl e st at es t h at, if Y = y is  o bs er v e d,  a
distri b uti o n  of θ c a n  b e  d e fi n e d  b y i n v erti n g t h e  r el ati o ns hi p
of y a n d θ w hil e  c o nti n ui n g t o  b eli e v e t h at t h e  s a m e  r el ati o n
h ol ds  a n d t h e  distri b uti o n  of U r e m ai ns  u n c h a n g e d.   Wit h t his
t hi n ki n g, f or a n y y , o n e c o ul d d e fi n e t h e s et θ : y = G (θ , U ∗ )
as t h e i n v ers e   m a p pi n g  of G a n d U ∗ is  distri b ut e d i d e nti c all y
as U .   T his r a n d o m s et  c o ul d  b e  e m pt y if t h er e  ar e  n o θ ’s  s u c h
t h at y = G (θ , U ∗ ),  or it  c o ul d  h a v e   m or e t h a n  o n e  el e m e nt if
t h er e is   m or e t h a n  o n e θ s u c h t h at y = G (θ , U ∗ ). T h e s u p p ort
of U ∗ c o ul d  b e r e n or m ali z e d t o ass ur e t h at t h er e is at l e ast  o n e
s ol uti o n  of  t h e  e q u ati o n.  F or  t h os e  v al u es  of U ∗ r es ulti n g  i n
m ulti pl e s ol uti o ns,   H a n ni g ( 2 0 0 9 ) s u g g est e d r a n d o ml y  pi c ki n g
a n el e m e nt fr o m t h e r a n d o m s et θ : y = G (θ , U ∗ ) .

T his al g orit h m yi el ds a r a n d o m s a m pl e  of θ if U ∗ is r e p e at-
e dl y  s a m pl e d.   T h e  r es ulti n g  r a n d o m  s a m pl e  of θ is  c all e d  a
fi d u ci al s a m pl e  of θ ,  o n   w hi c h st atisti c al i nf er e n c es  of θ c o ul d
b e b as e d.   T h e d e nsit y f u n cti o n of θ is als o i m pli citl y d e fi n e d vi a
t his al g orit h m a n d is  d e n ot e d as r (θ |y ). T h e f u n cti o n r (θ |y ) is
c all e d t h e g e n er ali z e d  fi d u ci al  d e nsit y a n d   H a n ni g et al. ( 2 0 1 6 )
s h o w  t h at,  u n d er  r e as o n a bl e  s m o ot h n ess  ass u m pti o ns  of  t h e
li k eli h o o d f u n cti o n  of Y ,  a  v ersi o n  of t h e  g e n er ali z e d  fi d u ci al
d e nsit y is gi v e n b y

r (θ |y ) =
f (y , θ )J(y , θ )

f (y , θ )J(y , θ )d θ
, (5 )

w h er e

J(y , θ ) = D
d

d θ
G (θ , u )|u = G − 1 (y ,θ ) ,

D (A ) = (d et A T A )1 / 2 a n d u = G − 1 (y , θ ) is t h e v al u e  of u s u c h
t h at y = G (θ , u ).

Alt h o u g h  t h e  g e n er ali z e d  fi d u ci al  d e nsit y  i n  E q u ati o n  ( 5 )
pr o vi d es a n e x pli cit e x pr essi o n f or t h e distri b uti o n of θ , it is n ot
al w a ys  p ossi bl e t o  c al c ul at e its f or m  a n al yti c all y.  F or  e x a m pl e,
it is  v er y  o ft e n t h at r (θ |y ) is  k n o w n  o nl y  u p t o  a  n or m ali zi n g
c o nst a nt,  a n d i n s u c h  c as es  o n e   m a y  n e e d t o  us e   M o nt e   C arl o
t e c h ni q u es t o si m ul at e  a  fi d u ci al s a m pl e.   B esi d es  c o n v e nti o n al
M o nt e   C arl o t e c h ni q u es,   H a n ni g,  L ai,  a n d  L e e ( 2 0 1 4 ) c o nsi d-
er e d  a  n o ni ntr usi v e   m et h o d f or   m o d els f or   w hi c h cl os e d f or m
d e nsiti es ar e n ot a v ail a bl e.

M o d el  s el e cti o n   w as i ntr o d u c e d i nt o t h e   G FI  p ar a di g m  b y
H a n ni g  a n d  L e e  ( 2 0 0 9 )  i n  t h e  c o nt e xt  of   w a v el et  r e gr essi o n.
T h e   m ost si g ni fi c a nt c h all e n g e is t o i n c or p or at e t h e u n c ert ai nt y
d u e t o m o d el s el e cti o n i nt o t h e pr o bl e m s et u p. T o f a cilit at e t h e

n ot ati o n,  d e n ot e  n o w  t h e  str u ct ur al  e q u ati o n  of  a  p arti c ul ar
m o d el M as

Y = G (M , θ M , U ), M ∈ M , (6 )

w h er e M is a c oll e cti o n  of   m o d els.   T h us, f or a n y gi v e n   m o d el,
E q u ati o n  ( 5 ) gi v es t h e c orr es p o n di n g g e n er ali z e d fi d u ci al d e n-
sit y f or θ , w hi c h is n o w r e pr es e nt e d as r (θ |y , M ). As st at e d b y
H a n ni g  et  al. ( 2 0 1 6 ), si mil ar t o   M L E,   G FI t e n ds t o f a v or l ar g e
m o d els, t h er ef or e, a d diti o n al p e n alt y a n d ass u m pti o ns a b o ut t h e
m o d el  si z e  ar e  n e e d e d  t o  a c c o u nt  f or  t h e   m o d el  c o m pl e xit y.
T h es e  a ut h ors  als o  ar g u e d f or i ntr o d u ci n g  p e n alt y i n t h e   G FI
fr a m e w or k   w hi c h l e a ds t o t h e f oll o wi n g   m ar gi n al  g e n er ali z e d
fi d u ci al pr o b a bilit y r (M ) of   m o d el M :

r (M ) =
r (θ |y , M )q |M |d θ M

M ∈ M r (θ |y , M )q |M |d θ M
, ( 7)

w h er e q is a c o nst a nt  d et er mi n e d  b y t h e  p e n alt y a n d |M | is t h e
n u m b er  of  p ar a m et ers  of  t h e   m o d el M . N ot e t h at f or br e vit y
w e s u p pr ess t h e  d e p e n d e n c e  of y i n t h e  n ot ati o n  of r (M ). T h e
v al u e  of q c a n  b e i nt er pr et e d  as  t h e  pri or  s p arsit y  r at e  of  t h e
pr e di ct ors u n d er t h e  B a y esi a n fr a m e w or k, or c a n b e vi e w e d as a
s ol el y p e n alt y t er m as i n t h e c o nt e xt of fr e q u e ntists. I n G FI, q c a n
b e t h o u g ht as t h e pr o b a bilit y of o bs er vi n g a str u ct ur al e q u ati o n
f or a s p e ci fi c  pr e di ct or.  F or t h e p < n s c e n ari o, o n e c a n c h o os e
q as n − 1 / 2 w hi c h r es ults i n t h e cl assi c al   BI C  p e n alt y.   H o w e v er,
f or t h e   m or e  g e n er al  a n d  hi g h- di m e nsi o n al s etti n g, t h e  c h oi c e
of q will  n e e d  t o  b e  a dj ust e d.   O n e  p ossi bilit y  is  t o  s et q ∝
p − 1 w hi c h   m at c h es t h e e xt e n d e d  B a y esi a n i nf or m ati o n crit eri o n
( E BI C) of  L u o a n d   C h e n (2 0 1 3 ) wit h γ = 1,   w h er e γ is a  us er-
s p e ci fi e d  p ar a m et er f or  E BI C.  S u c h a c h oi c e  of q is j usti fi e d  b y
t h e t h e or eti c al r es ults t o b e pr es e nt e d b el o w.  T hr o u g h o ut all o ur
n u m eri c al   w or k,   w e s et q = 0. 2 p − 1 .

3. 3.   G FI f or   N o n p ar a m etri c  A d diti v e   M o d el s

T his s u bs e cti o n a p pli es t h e a b o v e r es ults t o n o n p ar a m etri c a d di-
ti v e   m o d els  a n d  o bt ai ns  t h e  c orr es p o n di n g  g e n er ali z e d  fi d u-
ci al  pr o b a bilit y.   Wit h o ut  l oss  of  g e n er alit y,  first  ass u m e  t h at
i n (3 ) μ = 0 a n d t h e r a n d o m err or ε is  n or m all y  distri b ut e d
wit h c o v ari a n c e  di a g ( σ 2 , . . . , σ 2 ). L et M d e n ot e a n y c a n di d at e
m o d el, M 0 b e t h e tr u e   m o d el a n d H b e t h e pr oj e cti o n   m atri x of
Z ; t h at is, H = Z (Z T Z )− 1 Z T .   T h e r esi d u al s u m of s q u ar es   R S S
is gi v e n b y  R S S = y − H y 2 . T h e str u ct ur al e q u ati o n (6 ) is n o w

Y = G (M , θ M , U ) = Z β + σ U , M ∈ M . ( 8)

It  c a n  b e  s h o w n  t h at  f or  t h e  p ar a m et ers θ = ( σ , β ) i n
m o d el ( 3 ) ( wit h μ = 0) ( e. g., L ai,   H a n ni g, a n d L e e 2 0 1 5 )

J(y , θ ) = σ − 1 |d et (Z Z )|1 / 2 R S S 1 / 2 .

T h er ef or e, t h e g e n er ali z e d fi d u ci al d e nsit y of θ gi v e n a n y   m o d el
M is

r (θ |y , M ) =

σ − 1 d et (Z Z )
1 / 2

R S S 1 / 2 1
2 π σ 2

n / 2

e x p − 1
2 σ 2 (y − Z β ) (y − Z β )

σ − 1 d et (Z Z )
1 / 2

R S S 1 / 2 1
2 π σ 2

n / 2

e x p − 1
2 σ 2 (y − Z β ) (y − Z β ) d θ

.

( 9)
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L et p ∗ b e  t h e  l e n gt h  of β .   T h e  n u m er at or  of  E q u ati o n  (7 )
b e c o m es

σ − 1 d et (Z Z )
1 / 2

R S S 1 / 2 1

2 π σ 2

n / 2

× e x p −
1

2 σ 2
(y − Z β ) (y − Z β ) q p ∗

d θ

= (2 π ) (p ∗ − n ) /2 R S S 1 / 2 σ p ∗ − n − 1 e x p −
R S S

2 σ 2
q p ∗

d σ

= (2 π ) (p ∗ − n ) /2 2 (n − p ∗ − 2 ) /2 R S S (p ∗ − n + 1 ) /2 n − p ∗

2
q p ∗

.

( 1 0)

T h us, t h e g e n er ali z e d fi d u ci al pr o b a bilit y r (M ) of a n y c a n di d at e
m o d el M is

r (M ) ∝ R (M ) = (2 π ) (p ∗ − n ) /2 2 (n − p ∗ − 2 ) /2

R S S (p ∗ − n + 1 ) /2 n − p ∗

2
q p ∗

.  ( 1 1)

3. 4.   G e n er ati n g Fi d u ci al S a m pl e s

T his  s u bs e cti o n  d es cri b es  h o w t o  pr a cti c all y  g e n er at e  fi d u ci al
s a m pl es (M , σ , β ) f or t h e c urr e nt n o n p ar a m etri c a d diti v e   m o d-
eli n g pr o bl e m.

First, t o r e d u c e t h e “s e ar c h s p a c e,”   w e c o nsi d er o nl y c a n di d at e
m o d els fr o m a s u bs et M ∗ of M . T his s u bs et M ∗ s h o ul d c o nt ai n
o nl y c a n di d at e   m o d els   wit h  n o n n e gli gi bl e  v al u es  of r (M ). T h e
w a y   w e o bt ai n M ∗ is t o a p pl y gr o u p L ass o ( Y u a n a n d Li n 2 0 0 6 )
t o t h e s pli n e r e pr es e nt ati o n i n (2 ), i n a   m a n n er d es cri b e d b el o w.
N oti c e t h at  gr o u p  L ass o is  us e d  h er e as it e nf or c es t h at all β j k’s
wit h t h e s a m e j t o b e z er o or n o n z er o si m ult a n e o usl y.

Wit h o ut t h e l oss  of  g e n er alit y,   w e  ass u m e t h at t h e  first m 0

f u n cti o ns fj’s i n (1 ) ar e n o n z er o. L et β j = ( βj1 , . . . , β j hn ) f or j =

1 . . . , p , t h e n β = (β 1 , . . . , β p ) . T h e gr o u p L ass o esti m at or β̂
is t h e   mi ni mi z er of

L (β ) = Y − Z β 2
2 + λ

p

j= 1

β j 2

s u bj e ct t o t h e c o nstr ai nt t h at

n

i= 1

h n

k = 1

β i kϕ k (Z ij) = 0,

w h er e λ is a p e n alt y p ar a m et er.  T h e c o nstr ai nt c a n b e dr o p p e d if
w e i niti all y c e nt er t h e r es p o ns e a n d t h e b asis f u n cti o ns.   C h a n g-
i n g t h e v al u es of λ will l e a d t o a s e q u e n c e of fitt e d   m o d els; t h at is,
a s ol uti o n p at h. T h os e fitt e d m o d els t h at ar e o n t h e s ol uti o n p at h
of  gr o u p  L ass o ar e t a k e n as c a n di d at e   m o d els f or M ∗ . F or t h e
p ur p os e of n ot   missi n g a n y c a n di d at e   m o d els  wit h n o n n e gli gi bl e
r (M ) v al u es,   w e r e p e at t h e gr o u p  L ass o  pr o c e d ur e t o a  n u m b er
of b o otstr a p p e d d at a a n d t a k e all t h e fitt e d   m o d els t h at li e o n t h e
s ol uti o n p at hs as M ∗ . I n t his w a y t h e si z e of M ∗ is s u bst a nti all y
s m all er t h a n t h e si z e of M , a n d   w e e x p e ct M ∈ M ∗ r (M ) t o b e
v er y cl os e t o 1.

F or e a c h M ∈ M ∗ , w e c a n c o m p ut e

R (M ) = (2 π ) (m − n ) /2 2 (n − m − 2 ) /2 R S S (m − n + 1 ) /2 n − m

2
× q m

wit h m as t h e n u m b er of n o n z er o f u n cti o ns i n M . T h e g e n er-
ali z e d  fi d u ci al  pr o b a bilit y r (M ) c a n t h e n  b e   w ell a p pr o xi m at e d
b y

r (M ) ≈
R (M )

M ∗ ∈ M ∗ R (M ∗ )
. ( 1 2)

F or  a  gi v e n   m o d el M , σ a n d β c a n t h e n  b e s a m pl e d fr o m,
r es p e cti v el y,

R S S M / σ 2 ∼ χ 2
n − m ( 1 3)

a n d

β ∼ N ( β̂ M L , σ 2 (Z M Z M )− 1 ), ( 1 4)

w h er e   R S S M is  t h e  r esi d u al  s u m  of  s q u ar es  of  t h e  c a n di d at e

m o d el M , Z M is t h e  d esi g n   m atri x  of M , a n d β̂ M L is t h e   M L E
of β f or M .

T o s u m m ari z e,   w e  c a n  g e n er at e  a  fi d u ci al s a m pl e ( ˜M , σ̃ , β̃ )

b y  first  dr a wi n g  a   m o d el ˜M fr o m  (1 2 ),  a n d  t h e n σ̃ a n d β̃
fr o m  (1 3 ) a n d (1 4 ), r es p e cti v el y. N oti c e t h at i n t h e a b o v e n o
c o m p ut ati o n all y i nt e nsi v e t e c h ni q u e li k e   M C M C is r e q uir e d s o
t h e g e n er ati o n of a fi d u ci al s a m pl e is r el ati v el y f ast.   Usi n g a 2 0 1 8
M a c B o o k  Pr o   wit h  a  d at as et  of n = 4 0 0  a n d p = 6 0 0,  t h e
pr o p os e d   m et h o d t y pi c all y t a k es ar o u n d 5 0 s e c t o g e n er at e 1 0 5

fi d u ci al s a m pl es.
Fi n all y,   w e  dis c uss t h e  pr a cti c al c h oi c e  of K , t h e n u m b er of

k n ots.  It is   wi d el y  k n o w n K will i ntr o d u c e  bi as if its  v al u e is
t o o  s m all,  or it   will i n fl at e  t h e  v ari a n c e if it is  t o o l ar g e.   O ur
e x p eri e n c e is t h at,  as l o n g  as K is l ar g er t h a n  a  c ert ai n  v al u e,
t h e r es ulti n g  esti m at es  ar e  v er y  o ft e n si mil ar ( a n d  a c c e pt a bl e),
as t h e  us e  of  gr o u p  L ass o   will s hri n k t h os e i nsi g ni fi c a nt  k n ots
t o  z er o.  Fr o m  a t h e or eti c al st a n d p oi nt, t h e  c al c ul ati o ns  of  L ai,
H u a n g, a n d L e e ( 2 0 1 2 ) s u g g est t h at K s h o ul d b e of or d er l o g(n ).
S o i n pr a cti c e   w e r e c o m m e n d c h o osi n g K as t h e s m all est i nt e g er
l ar g er  t h a n l o g(n ). Ta bl es  1 a n d 2 s u g g est  t h at  t h e  n u m eri c al
r es ults  ar e  r el ati v el y i ns e nsiti v e t o t h e  c h oi c e  of K ( as l o n g  as
K is l ar g e e n o u g h).

3. 5.  P oi nt E sti m at e s, C o n fi d e n c e I nt er v al s a n d Pr e di cti o n
I nt er v al s

R e p e ati n g t h e  a b o v e  pr o c e d ur e   m ulti pl e ti m es   will  r es ult i n  a
fi d u ci al s a m pl e f or (M , σ , β ) w hi c h  c a n  b e  us e d f or i nf er e n c e,
i n  a   m a n n er  si mil ar  t o  t h at  f or  a  B a y esi a n  p ost eri or  s a m pl e.
I nst e a d  of  s el e cti n g  o n e  si n gl e   m o d el, t h e r (M ) a p pr o xi m at e d
i n  (1 2 )  esti m at es  h o w  li k el y  e a c h  c a n di d at e   m o d el   w o ul d  b e
t h e  tr u e   m o d el;  t his  a ff e cts  t h e   m o d els  b ei n g  s el e ct e d  i n  t h e
fi d u ci al  s a m pl e.  F or σ , o n e c a n us e t h e a v er a g e or m e di a n of
all σ̃ ’s  as  a  p oi nt  est i m at e,  a n d t h e α / 2 a n d 1 − α / 2  p er c e ntil es
t o  c o nstr u ct  a  1 0 0(1 − α ) %  c o n fi d e n c e  i nt er v al.  Si mil arl y,  a
c o n fi d e n c e i nt er v al f or E (Y i|x i) gi v e n t h e  o bs er v ati o n (x i, Y i)

c a n b e f o u n d b y c o m p uti n g t h e p er c e ntil es fr o m z s β̃ , w h er e z s is
t h e s pli n e r e pr es e nt ati o n of x i. I n a d diti o n, pr e di cti o n i nt er v als
f or Y c a n b e o bt ai n e d b y t a ki n g t h e p er c e ntil es fr o m Z β̃ + ˜σ W ,
w h er e W ∼ N (0 , I n ).

H o w e v er, c o nstr u cti n g c o n fi d e n c e  b a n ds f or t h e fj’s is  a l ess
tri vi al t as k, as it is  p ossi bl e t h at a n y  p arti c ul ar fj w o ul d  a p p e ar
o nl y i n s o m e b ut n ot all of t h e fi d u ci al s a m pl es. T o h a n dl e
t his iss u e,   w e  us e t h e f oll o wi n g str at e g y.  First fr o m t h e  fi d u ci al
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T a bl e 1. E m piri c al c o v er a g e r at es of c o n fi d e n c e i nt er v als f or σ 2 .

9 0 % 9 5 % 9 9 %

(n ,p ,σ ) = (2 0 0, 1 0 0 0, 1 )

l = 3, K = 6 Pr o p os e d 8 6. 4 0 % ( 0. 3 9 2) 9 2. 9 0 % ( 0. 4 6 6) 9 5. 1 0 % ( 0. 6 3 0)
or a cl e 8 9. 7 0 % ( 0. 3 7 4) 9 5. 6 0 % ( 0. 4 4 7) 9 8. 5 0 % ( 0. 5 9 5)

l = 3, K = 8 8 6. 6 0 % ( 0. 4 1 0) 9 1. 2 0 % ( 0. 5 0 1) 9 4. 8 2 % ( 0. 6 7 2)
9 0. 4 0 % ( 0. 3 7 8) 9 4. 3 0 % ( 0. 4 5 4) 9 9. 1 0 % ( 0. 6 0 9)

l = 4, K = 6 8 6. 8 0 % ( 0. 4 2 9) 8 9. 6 0 % ( 0. 5 3 5) 9 4. 5 0 % ( 0. 7 1 4)
9 1. 6 0 % ( 0. 3 7 6) 9 4. 4 0 % ( 0. 4 5 1) 9 8. 3 0 % ( 0. 5 9 9)

(n ,p ,σ ) = (2 0 0, 1 0 0 0, 0. 8 )

l = 3, K = 6 Pr o p os e d 8 9. 8 0 % ( 0. 2 4 2) 9 4. 4 0 % ( 0. 2 8 6) 9 8. 6 0 % ( 0. 3 8 4)
or a cl e 9 0. 0 0 % ( 0. 2 4 3) 9 4. 6 0 % ( 0. 2 8 8) 9 9. 1 0 % ( 0. 3 8 4)

l = 3, K = 8 8 8. 8 9 % ( 0. 2 4 4) 9 3. 0 0 % ( 0. 2 9 5) 9 8. 2 0 % ( 0. 3 9 5)
8 9. 5 9 % ( 0. 2 4 2) 9 3. 5 0 % ( 0. 2 9 2) 9 9. 2 0 % ( 0. 3 8 9)

l = 4, K = 6 9 0. 4 0 % ( 0. 2 4 1) 9 3. 7 0 % ( 0. 2 8 9) 9 9. 1 0 % ( 0. 3 8 3)
8 9. 8 0 % ( 0. 2 4 2) 9 3. 0 0 % ( 0. 2 9 0) 9 9. 1 0 % ( 0. 3 8 6)

(n ,p ,σ ) = (2 5 0, 1 5 0 0, 0. 8 )

l = 3, K = 6 Pr o p os e d 8 9. 5 0 % ( 0. 2 0 7) 9 4. 8 0 % ( 0. 2 4 8) 9 8. 3 0 % ( 0. 3 2 9)
or a cl e 8 9. 0 0 % ( 0. 2 0 8) 9 4. 6 0 % ( 0. 2 0 7) 9 8. 1 0 % ( 0. 3 3 1)

l = 3, K = 8 9 0. 9 0 % ( 0. 2 1 0) 9 4. 2 9 % ( 0. 2 5 2) 9 8. 8 0 % ( 0. 3 3 3)
9 1. 0 0 % ( 0. 2 1 0) 9 4. 0 9 % ( 0. 2 5 3) 9 8. 6 0 % ( 0. 3 3 4)

l = 4, K = 6 8 8. 7 0 % ( 0. 2 1 2) 9 2. 6 9 % ( 0. 2 5 3) 9 8. 6 8 % ( 0. 3 3 8)
8 8. 1 0 % ( 0. 2 1 4) 9 2. 8 9 % ( 0. 2 5 5) 9 8. 3 8 % ( 0. 3 4 0)

N O T E:  N u m b ers i n p ar e nt h es es ar e a v er a g e   wi dt hs of t h e c o n fi d e n c e i nt er v als.

T a bl e 2. E m piri c al c o v er a g e r at es of c o n fi d e n c e i nt er v als f or E (Y i|x i).

9 0 % 9 5 % 9 9 %

(n ,p ,σ ) = (2 0 0, 1 0 0 0, 1 )

l = 3, K = 6 Pr o p os e d 8 7. 3 5 % ( 1. 4 0 1) 9 3. 1 9 % ( 1. 6 6 8) 9 8. 0 5 % ( 2. 2 0 5)
or a cl e 8 8. 7 5 % ( 1. 3 8 5) 9 3. 9 2 % ( 1. 6 4 8) 9 8. 5 3 % ( 2. 1 6 7)

l = 3, K = 8 8 6. 4 6 % ( 1. 6 0 1) 9 1. 3 9 % ( 1. 9 2 3) 9 7. 0 5 % ( 2. 5 6 2)
8 9. 4 1 % ( 1. 5 2 4) 9 4. 3 8 % ( 1. 8 1 7) 9 8. 7 6 % ( 2. 3 9 6)

l = 4, K = 6 8 7. 7 0 % ( 1. 4 8 9) 9 3. 3 6 % ( 1. 7 8 9) 9 8. 1 7 % ( 2. 3 5 3)
8 9. 0 8 % ( 1. 4 5 2) 9 4. 4 0 % ( 1. 7 3 1) 9 8. 7 7 % ( 2. 2 7 2)

(n ,p ,σ ) = (2 0 0, 1 0 0 0, 0. 8 )

l = 3, K = 6 Pr o p os e d 8 9. 0 8 % ( 1. 1 7 0) 9 3. 6 3 % ( 1. 3 2 8) 9 8. 5 0 % ( 1. 7 5 7)
or a cl e 8 9. 0 0 % ( 1. 1 6 7) 9 3. 5 5 % ( 1. 3 2 3) 9 8. 5 7 % ( 1. 7 4 1)

l = 3, K = 8 8 9. 1 4 % ( 1. 2 2 5) 9 4. 3 8 % ( 1. 4 6 7) 9 8. 7 2 % ( 1. 9 3 7)
8 9. 3 1 % ( 1. 2 2 0) 9 4. 4 5 % ( 1. 4 5 7) 9 8. 8 1 % ( 1. 9 1 6)

l = 4, K = 6 8 8. 8 6 % ( 1. 1 6 8) 9 4. 1 3 % ( 1. 3 9 5) 9 8. 7 2 % ( 1. 8 3 9)
8 8. 8 3 % ( 1. 1 6 5) 9 4. 1 0 % ( 1. 3 8 9) 9 8. 6 6 % ( 1. 8 2 5)

(n ,p ,σ ) = (2 5 0, 1 5 0 0, 0. 8 )

l = 3, K = 6 Pr o p os e d 8 8. 1 7 % ( 0. 9 9 1) 9 3. 6 2 % ( 1. 1 8 3) 9 8. 4 7 % ( 1. 5 5 7)
or a cl e 8 8. 1 4 % ( 0. 9 8 9) 9 3. 5 3 % ( 1. 1 7 9) 9 8. 4 6 % ( 0. 9 8 3)

l = 3, K = 8 8 9. 3 3 % ( 1. 0 9 2) 9 4. 3 8 % ( 1. 3 0 6) 9 8. 7 9 % ( 1. 7 1 6)
8 9. 2 8 % ( 1. 0 9 0) 9 4. 3 2 % ( 1. 3 0 2) 9 8. 7 6 % ( 1. 7 0 7)

l = 4, K = 6 8 7. 4 8 % ( 1. 0 5 0) 9 3. 0 4 % ( 1. 2 5 1) 9 8. 3 3 % ( 1. 6 5 1)
8 7. 4 1 % ( 1. 0 4 8) 9 2. 9 8 % ( 1. 2 4 7) 9 8. 2 9 % ( 1. 6 4 3)

N O T E:  N u m b ers i n p ar e nt h es es ar e t h e a v er a g e   wi dt hs of t h e c o n fi d e n c e i nt er v als.

s a m pl es,   w e  i d e ntif y  t h e   m o d el ˆM t h at  a p p e ars   m ost.  If ˆM
a p p e ars f or m or e t h a n 5 0 % of t h e ti m es ( w hi c h h as al w a ys b e e n
t h e c as e f or all t h e si m ul at e d d at as ets a n d t h e r e al d at a e x a m pl e
e x a mi n e d), w e tr e at it as t h e s el e ct e d m o d el a n d d e cl ar e all its
n o n z er o f̂j’s as si g ni fi c a nt. F or e a c h of t h es e s el e ct e d f u n cti o n fj’s,
w e t h e n f or m a c o n fi d e n c e  b a n d  b y  fi n di n g t h e c orr es p o n di n g
p er c e ntil es  fr o m Z f β f w h er e Z f a n d β f ar e,  r es p e cti v el y,  t h e

s pli n e  r e pr es e nt ati o n  a n d t h e  p art  of β̃ c orr es p o n di n g t o t his
s el e ct e d f u n cti o n.

4.  T h e or eti c al Pr o p erti e s

T his s e cti o n  pr es e nts s o m e as y m pt oti c  pr o p erti es  of t h e a b o v e
g e n er ali z e d fi d u ci al b as e d m et h o d. We ass u m e t h at p is  di v er g-
i n g  a n d  t h e  t h e or eti c al  pr o p erti es  ar e  est a blis h e d  u n d er  t h e
f oll o wi n g c o n diti o ns.

( A 1) L et H b e t h e cl ass of f u n cti o ns h o n [a , b ] w hi c h s atis fi es
a  Li ps c hit z c o n diti o n of or d er α :

|h (k ) (s) − h (k ) (t)| ≤ C |s − t|α f or s, t ∈ [ a , b ],

w h er e k is  a  n o n n e g ati v e i nt e g er  a n d α ∈ (0, 1 ] s o t h at d =
k + α > 0. 5.   T h e n fj ∈ H f or 1 ≤ j ≤ q .

( A 2)  L et a = ξ 0 < ξ 1 < ξ 2 < · · · < ξ K <
ξ K + 1 = b d e n ot e  a  p artiti o n  of [a , b ] i nt o K + 1 s u bi nt er v als
w h er e  t h e tt h  s u bi nt er v al It = [ ξ t− 1 , ξ t) f or t = 1, . . . , K
a n d IK + 1 = [ ξ K , ξ K + 1 ].   We  ass u m e  t h at  t h es e  k n ots  ar e  n ot
o v erl y  s p ars e;  t h at  is,  l et  0 < ν < 0. 5  a n d K = n ν

b e  a  p ositi v e  i nt e g er  s u c h  t h at   m a x 1 ≤ t≤ K + 1 |ξ t − ξ t− 1 | =
O (n − ν ).

( A 3)   T h er e  e xists  a  c o nst a nt c 0 s u c h t h at   mi n1 ≤ j≤ q fj 2 ≥

c 0 , w h er e f 2 = [
b
a f 2 (x )d x ]1 / 2 w h e n e v er  t h e  i nt e gr al

e xists.
( A 4) X h as a c o nti n u o us d e nsit y a n d t h er e e xist c o nst a nts C 1

a n d C 2 s u c h t h at t h e d e nsit y f u n cti o n g j of X j s atis fi es 0 < C 1 ≤
g j(X ) ≤ C 2 > ∞ .

( A 5)  L et m a n d m 0 b e  t h e  n u m b er  of  n o n z er o  f u n cti o ns
s el e ct e d f or   m o d els M a n d M 0 ,  r es p e cti v el y.   T h e n p

∗ = h n m
f or   m o d el M .   We c o nsi d er o nl y M ∈ M w h er e M = { M : m ≤
k m 0 } f or a fi nit e c o nst a nt k > 1; t h at is, t h e   m o d el   w h os e si z e is
c o m p ar a bl e t o t h e tr u e   m o d el.
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( A 6)  L et (M ) = μ − H M μ w h er e μ = Z M 0 β M 0
. We

ass u m e t h e f oll o wi n g i d e nti fi a bilit y c o n diti o n:

li m
n → ∞

mi n
(M )

h n m o l o g p
: M 0 /∈ M , m ≤ k m 0 = ∞ .

T his c o n diti o n e ns ur es t h at t h e tr u e   m o d el c a n b e di ff er e nti at e d
fr o m t h e ot h er   m o d els.

( A 7)   T h er e  e xists  a  v ari a bl e  s cr e e ni n g  pr o c e d ur e t o  r e d u c e
t h e si z e  of M w h e n p is t o o l ar g e i n  pr a cti c e.   D e n ot e t h e cl ass
of c a n di d at e   m o d els r es ulti n g fr o m t h e s cr e e ni n g  pr o c e d ur e  b y
M ∗ .  E xist e n c e f oll o ws fr o m

P (M 0 ∈ M ∗ ) → 1 a n d   l o g (|M ∗
j |) = o (h n j l o g n ),  ( 1 5)

w h er e M ∗
j d e n ot es t h e s et of all s u b m o d els i n M ∗ of si z e j. T h es e

t w o li miti n g crit eri a e ns ur e t h at t h e tr u e   m o d el is c o nt ai n e d i n
M ∗ a n d t h e si z e of t h e m o d el s p a c e M ∗ is  n ot t o o l ar g e.

T h e f oll o wi n g t h e or e m s u m m ari z es o ur   m ai n r es ults a n d its
pr o of c a n b e f o u n d i n   A p p e n di x   A.

T h e ore m  1. Ass u m e   A 1 – A 6  h ol d.   As n → ∞ , p → ∞ ,
h n m 0 l o g(p ) = o (n ), l o g(h n m 0 ) / l o g(p ) → δ a n d − l o g(q ) /
l o g(p ) = γ , w e h a v e

m a x
M = M 0 ,M ∈ M

r (M )

r (M 0 )

P
−→ 0, ( 1 6)

f or 1 + δ < γ   < C wit h C b ei n g a c o nst a nt.
M or e o v er if   A 7 als o h ol ds,   wit h t h e s a m e γ w e h a v e

r (M 0 )
P
−→ 1 ( 1 7)

o v er t h e cl ass M ∗ .

T h e or e m  1 st at es  t h at  t h e  tr u e   m o d el M 0 h as  t h e  hi g h est
g e n er ali z e d fi d u ci al pr o b a bilit y a m o n gst all t h e c a n di d at e   m o d-
els  u n d er s o m e r e g ul arit y c o n diti o ns,  a n d if i n  a d diti o n  E q u a-
ti o n (1 5 ) h ol ds, t h e tr u e m o d el will b e s el e ct e d wit h pr o b a bilit y
t e n di n g t o  1.   N ot e t h at  E q u ati o n  (1 6 )  d o es  n ot i m pl y  (1 7 ) i n
g e n er al  si n c e   w e  ass u m e  a  di v er gi n g p . H er e γ pl a ys  a  r ol e
si mil ar t o t h at of t h e t u ni n g p ar a m et er i n E BI C of L u o a n d
C h e n ( 2 0 1 3 ),   w hi c h  c o ntr ols  a  p e n alt y f or t h e si z e  of t h e  cl ass
of s u b m o d els a n d it   m ust f all   wit hi n a s p e ci fi e d r a n g e t o e ns ur e
t h at t h e g e n er ali z e d fi d u ci al distri b uti o n is c o nsist e nt.

I n  pr a cti c e,   w e  us e  gr o u p  L ass o  o n  b o otstr a p p e d  d at a  t o
g e n er at e  c a n di d at e   m o d els  as  dis c uss e d  i n S e cti o n  3. 4 . T h e
r es ulti n g   m o d el s p a c e s atis fi es E q u ati o n ( 1 5 ), si n c e gr o u p L ass o
is s el e cti o n c o nsist e nt f or s o m e λ as s h o w n i n   N ar di a n d  Ri n al d o
(2 0 0 8 ). T h e or e m  1 als o i m pli es t h at st atisti c al i nf er e n c e  b as e d
o n  t h e  g e n er ali z e d  fi d u ci al  d e nsit y  ( 5 )   will  r et ai n  t h e  e x a ct
as y m pt oti c fr e q u e ntist  pr o p ert y  as  s h o w n i n   T h e or e ms  2  a n d
3  of   H a n ni g  et  al. ( 2 0 1 6 ),   w hi c h  e ns ur e t h e  c o nsist e n c y  of  o ur
i nf er e nti al pr o c e d ur e.

We cl os e t his s e cti o n   wit h t h e f oll o wi n g t w o r e m ar ks.  First,
i n  g e n er al,  n o n p ar a m etri c f u n cti o n  esti m at ors  ar e  bi as e d.   We
h a n dl e  t his  iss u e  b y  i m p osi n g  s o m e  r estri cti o ns  o n  t h e  tr u e
f u n cti o ns fj’s. L e m m a  1 i m pli es  t h at  t h es e  f u n cti o ns  c a n  b e
w ell  a p pr o xi m at e d  b y  p ol y n o mi al  s pli n es  a d o pt e d i n t h e  pr o-
p os e d m et h o d (i. e., t h e bi as v a nis h es as y m pt oti c all y). Wit h t h es e
s o m e w h at  str o n g  r estri cti o ns,   w e  ar e  a bl e t o  o bt ai n t h e  a b o v e

t h e or eti c al r es ults.   T h e s e c o n d r e m ar k is t h at est a blis hi n g t h e-
or eti c al  r es ults f or t h e  esti m ati o n  of β j k’s  is   m or e  c h a l l e n g i n g.
O n e  r e as o n  is  t h at  t h e  o pti m al  n u m b er  of β j k’s  c a n  v ar y  f or
di ff er e nt fj’s  a n d   w e  d o  n ot  h a v e  a n y   m et h o d  or  c o nsist e n c y
r es ults  f or  esti m ati n g  t his  n u m b er  u n d er  t h e  c urr e nt  s etti n g.
A n ot h er  di ffi c ult y  is  t h at,  i n  pr a cti c e,  s o m e  fitt e d   m o d els  i n
t h e  fi d u ci al  s a m pl es  c o nt ai n  a  c ert ai n  s et  of β j k’s   w hi l e  s o m e
ot h er  fitt e d   m o d els  d o  n ot.   T his   m a k es it  v er y  di ffi c ult t o e v e n
c o nstr u ct c o n fi d e n c e i nt er v als f or s u c h β j k’s, l et  al o n e  c o n d u ct
ri g or o us st u d y of a n y t h e or eti c al pr o p ert y.

5.  E m piri c al Pr o p erti e s

T his  s u bs e cti o n  i n v esti g at es  t h e  e m piri c al  pr o p erti es  of  t h e
pr o p os e d   m et h o d  vi a  n u m eri c al  e x p eri m e nts  a n d  a  r e al  d at a
e x a m pl e.

5. 1.  Si m ul ati o n E x p eri m e nt s

F oll o wi n g t h e si m ul ati o n s etti n gs i n   H u a n g,   H or o wit z, a n d   Wei
(2 0 1 0 ),   w e us e t h e   m o d el

y i =

p

j= 1

fj(x ij) + ε i, i = 1, . . . n , ε i ∼ ii d N (0, σ 2 )

t o g e n er at e si m ul at e d d at a,   w h er e

f1 (x ) = 5 x ,

f2 (x ) = 3 (2 x − 1 )2 ,

f3 (x ) = 4 si n (2 π x ) /{2 − si n(2 π x )},

f4 (x ) = 6 {0. 1 si n (2 π x ) + 0. 2 c os (2 π x )} + 0. 3 si n 2 (2 π x )

+ 0. 4 c os 3 (2 π x ) + 0. 5 si n 3 (2 π x ),

fj(x ) = 0 f or 5 ≤ j ≤ p ,

a n d t h e n ois e v ari a n c e σ 2 is c h os e n s u c h t h at t h e si g n al-t o- n ois e
r ati o is gr e at er t h a n 1 f or e a c h n o n z er o f u n cti o n.

F or  e a c h s et  of si m ul at e d  d at a,   w e  first  us e   B-s pli n e  e x p a n-
si o ns t o tr a nsf or m o ur d at a t o r e pr es e nt ati o n ( 2 ).   T h e n a s et  of
c a n di d at e   m o d els M ar e g e n er at e d b y usi n g gr o u p L ass o o n t h e
tr a nsf or m e d d at a a n d 1 0 s ets of b o otstr a p p e d d at a. F or e a c h M ,
w e r u n a si m pl e li n e ar r e gr essi o n t o  o bt ai n   R S S M a n d c o m p ut e
t h e  fi d u ci al  pr o b a bilit y r (M ) as s h o w n i n ( 1 1 ).   T h e n   w e  c a n
dr a w s a m pl es  of (M , σ 2 , β ) b as e d  o n r (M ), (1 3 ) a n d (1 4 ) a n d
c o nstr u ct c o n fi d e n c e i nt er v als or b a n ds.

Fi g ur e  1 s u m m ari z es s o m e r es ults  of a p pl yi n g t h e  pr o p os e d
m et h o d t o a t y pi c al si m ul at e d  d at as et   wit h n = 2 0 0, p = 1 0 0 0
a n d σ = 0. 8. F or t h e   B-s pli n e e x p a nsi o n   w e us e l = 3 a n d K =
8, a n d  1 0, 0 0 0 s a m pl es  of (M , σ 2 , β ) ar e  g e n er at e d.   Usi n g t h es e
s a m pl es  a  9 5 %  c o n fi d e n c e i nt er v al f or σ is  o bt ai n e d,   w hi c h is
(0. 7 5 6, 0. 9 4 7 ) a n d i n cl u d es t h e tr u e v al u e  0. 8.   T h e l e ft  p a n el i n
Fi g ur e 1 d e pi cts t h e hist o gr a m of t h e 1 0, 0 0 0 s a m pl es of σ w hi c h
c a n b e s e e n t o b e a p pr o xi m at el y n or m all y distri b ut e d. T h e ri g ht
p a n el s h o ws t h e 9 5 % p oi nt wis e c o n fi d e n c e b a n d of f4 (x ), w h er e
t h e  bl a c k li n e is t h e tr u e f u n cti o n a n d t h e r e d li n es ar e t h e t w o
b o u n ds.   We  us e f4 (x ) h er e  si n c e it is t h e   m ost  c o m pli c at e d  of
t h e f o ur n o n z er o f u n cti o ns.   We c a n s e e t h at t h e c o n fi d e n c e b a n d
c o v ers t h e tr u e f u n cti o n v er y   w ell.
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Fi g ur e 1. L eft:  Hist o gr a m of t h e fi d u ci al s a m pl es of σ . Ri g ht: A 9 5 % p oi nt wis e c o n fi d e n c e b a n d of f4 . T h e bl a c k li n e is t h e tr u e f u n cti o n   w hil e t h e r e d li n es s h o w t h e b a n d.
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Fi g ur e 2. E m piri c al c o v er a g e r at es f or e a c h n o n z er o f u n cti o n   wit h e x p eri m e nt al p ar a m et ers n = 2 0 0, p = 1 0 0 0, σ = 0. 8, α = 5 %, l = 3, a n d K = 8.

T o t est t h e c o v er a g e of t h es e c o n fi d e n c e i nt er v als,  w e g e n er at e
1 0 0 0  si m ul at e d  d at as ets  a n d  a p pl y  t h e  pr o p os e d   m et h o d  t o
c o m p ut e t h e c o n fi d e n c e i nt er v als f or σ 2 a n d t h e   m e a n f u n cti o n
E (Y i|x i) e v al u at e d at n d esi g n  p oi nts x i’s. We c o m p ar e t h e p er-
f or m a n c e  of  o ur   m et h o d   wit h t h e “ or a cl e”   m et h o d   w hi c h  us es
t h e tr u e m o d el a n d cl assi c al t h e ori es i n li n e ar m o d els b as e d
o n  t h e  s pli n e  r e pr es e nt ati o n  t o  d eri v e  c o n fi d e n c e  i nt er v als.

Di ff er e nt  c o m bi n ati o ns  of n , p , σ , l, K , a n d α ar e  t est e d  a n d
t h e  n u m eri c al  r es ults  ar e  s u m m ari z e d i n Ta bl es  1 a n d 2 . T h e
e m piri c al c o v er a g e r at es ar e r e p ort e d t o g et h er   wit h t h e a v er a g e
wi dt hs of t h e i nt er v als s h o w n i n p ar e nt h es es.

T o e v al u at e t h e p erf or m a n c e vis u all y,   w e als o pl ot t h e e m pir-
i c al c o v er a g e r at es of all f o ur  n o n z er o f u n cti o ns f or o n e c o m bi-
n ati o n  of e x p eri m e nt al  p ar a m et ers; s e e Fi g ur e  2 . I n e a c h p a n el
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t h e bl a c k d as h e d li n e d e pi cts t h e tr u e v al u e of t h e f u n cti o n, t h e
h ori z o nt al  r e d  d as h e d li n e is t h e t ar g et  c o n fi d e n c e l e v el  ( 9 5 %
i n t his c as e)   w hil e t h e  bl a c k s oli d li n e r e pr es e nts t h e e m piri c al
c o v er a g e r at es.   O n e c a n s e e t h at t h es e r at es ar e v er y cl os e t o t h e
t ar g et c o n fi d e n c e l e v el.

5. 2.  C o m p ari s o n   Wit h a n E xi sti n g   M et h o d

T his  s u bs e cti o n  c o m p ar es  t h e  p erf or m a n c es  of  t h e  pr o p os e d
m et h o d   wit h  t h os e  fr o m  t h e  k er n el-si e v e  h y bri d  esti m at or
d e v el o p e d  b y  L u,   K ol ar, a n d  Li u ( 2 0 1 5 ).   As   wit h t h e s etti n gs i n
L u,   K ol ar,  a n d  Li u ( 2 0 1 5 ), t h e s a m e s et of t est f u n cti o ns i n t h e
pr e vi o us s u bs e cti o n ar e us e d wit h σ 2 = 1. 5 2 , p = 6 0 0,  a n d
n ∈ { 4 0 0, 5 0 0, 6 0 0 }.  F or t h e  k er n el-si e v e  h y bri d  esti m at or,   w e
f oll o w t h e p ar a m et er s el e cti o n us e d i n L u,   K ol ar, a n d Li u (2 0 1 5 ).
F or t h e pr o p os e d   m et h o d,   w e s et l = 3 a n d K = 8.

T h e e m piri c al c o v er a g e r at es t h at t h e 9 5 % c o n fi d e n c e b a n ds
c o v er t h e tr u e f4 (x ) o n t h e  first  1 0 0  d at a  p oi nts  ar e  c o m p ut e d
b as e d o n 5 0 0 r e p etiti o ns.   T h es e c o v er a g e r at es ar e s u m m ari z e d
i n Ta bl e 3 .   O n e c a n s e e t h at b ot h   m et h o ds pr o d u c e v er y r e as o n-
a bl e r es ults,   wit h t h os e fr o m t h e pr o p os e d   m et h o d b ei n g cl os er
t o  t h e  n o mi n al  si g ni fi c a n c e  l e v el.  F or  vis u al  e v al u ati o n,  9 5 %
c o n fi d e n c e b a n ds f or t y pi c al  d at as ets ar e  dis pl a y e d i n Fi g ur es 3
a n d 4 .   T h es e  pl ots s u g g est t h at t h e  pr o p os e d   m et h o d  pr o d u c es
ti g ht er c o n fi d e n c e b a n ds.

T a bl e 3. E m piri c al c o v er a g e r at es of 9 5 % c o n fi d e n c e b a n ds t ar g et e d f or f4 (x ).

n G e n er ali z e d fi d u ci al i nf er e n c e  K er n el-si e v e h y bri d esti m at or

4 0 0 9 4. 9 9 1. 6
5 0 0 9 4. 8 9 3. 2
6 0 0 9 5. 3 9 3. 6

Fi n all y, w e r e p ort t h e e x e c uti o n ti m es f or t h e m et h o ds. F or
a t y pi c al d at as et of n = 4 0 0,  t h e  pr o p os e d   m et h o d  a n d  t h e
k er n el-si e v e  h y bri d  esti m at or  t a k e  a b o ut  5 2  s e c  a n d  9 0 3  s e c,
r es p e cti v el y,  t o  fi nis h.   T h e  c o d e  f or  t h e  pr o p os e d   m et h o d  is
writt e n  i n R w hil e  t h e  c o d e  f or  t h e  h y bri d  esti m at or  ( ki n dl y
pr o vi d e d  b y  o n e  of its  a ut h ors) is i n   M atl a b.   T h e   m a c hi n e is  a
2 0 1 8   M a c B o o k  Pr o   wit h a 2. 3   G H z I nt el   C or e i 5 pr o c ess or.

5. 3.  R e al   D at a E x a m pl e

T his  s u bs e cti o n  pr es e nts  a  r e al  d at a  a n al ysis  o n t h e  ri b o fl a vi n
( vit a mi n   B2 )  pr o d u cti o n  d at as et   w hi c h is  a v ail a bl e i n  S u p pl e-
m e nt ar y  S e cti o n   A. 1  of  B ü hl m a n n,   K alis c h,  a n d   M ei er ( 2 0 1 4 ).
T h e r es p o ns e v ari a bl e is t h e l o g arit h m of t h e ri b o fl a vi n pr o d u c-
ti o n r at e i n B acill us s u btilis f or n = 7 1 s a m pl es   w hil e t h er e ar e
p = 4 0 8 8 c o v ari at es   m e as uri n g t h e l o g arit h m of t h e e x pr essi o n
l e v el  of  4 0 8 8  g e n es.   B ü hl m a n n,   K alis c h,  a n d   M ei er (2 0 1 4 ) a n d
J a v a n m ar d  a n d   M o nt a n ari  (2 0 1 4 )  us e li n e ar   m o d els t o  d et e ct
si g ni fi c a nt  g e n es  t h at  p ot e nti all y  a ff e ct  ri b o fl a vi n  pr o d u cti o n.
B ü hl m a n n,   K alis c h, a n d   M ei er ( 2 0 1 4 ) l o c at e t h e g e n e Y X L D- at
w hil e J a v a n m ar d  a n d   M o nt a n ari ( 2 0 1 4 ) i d e ntif y t h e t w o  g e n es
Y X L D- at a n d Y X L E- at as si g ni fi c a nt.   H er e, i nst e a d  of  usi n g a
si m pl e li n e ar   m o d el,   w e ass u m e a n o n p ar a m etri c a d diti v e   m o d el
a n d a p pl y t h e   G FI   m et h o d ol o g y t o s el e ct si g ni fi c a nt g e n es.

F oll o wi n g   B ü hl m a n n,   K alis c h,  a n d   M ei er  ( 2 0 1 4 ),   w e  first
a d o pt a s cr e e ni n g pr o c e d ur e a n d us e o nl y t h e 1 0 0 g e n es   wit h t h e
l ar g est e m piri c al v ari a n c es.   We t h e n a p pl y t h e pr o p os e d   m et h o d
wit h K = 2 a n d l = 3  t o  t h e  s cr e e n e d  d at as et  a n d  o bt ai n
1 0, 0 0 0  fi d u ci al  s a m pl es f or (M , σ , β ).  It t ur ns  o ut   wit h  6 3. 2 %
fi d u ci al pr o b a bilit y, Y X L D- at a n d Y B F G- at ar e j oi ntl y s el e ct e d
w hil e   wit h  2 8. 4 %  fi d u ci al  pr o b a bilit y, Y X L D- at a n d X H L A-
at ar e j oi ntl y s el e ct e d. I n  ot h er   w or ds t h e  pr o p os e d   m et h o d is
c a p a bl e  of  d et e cti n g Y X L D- at w hi c h is  c o nsi d er e d  si g ni fi c a nt
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Fi g ur e 3. Pl ots of 9 5 % c o n fi d e n c e b a n ds pr o d u c e d b y t h e pr o p os e d   m et h o d. T h es e b a n ds ar e t ar g eti n g f4 (x ). Fr o m l eft t o ri g ht, n = 4 0 0, 5 0 0, 6 0 0, r es p e cti v el y.

Fi g ur e 4. Si mil ar t o Fi g ur e 3 b ut f or t h e k er n el-si e v e h y bri d esti m at or.
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Fi g ur e  5. 9 5 %  pr e di cti o n i nt er v als,  d e n ot e d as  bl u e err or  b ars, f or t h e r es p o ns es
Y i’s, d e n ot e d as bl a c k circl es. F or cl arit y t h e Y i’s ar e s ort e d i n as c e n di n g or d er.
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Fi g ur e 6. A 9 5 % p oi nt wis e c o n fi d e n c e b a n d f or Y X L D _ at. T h e bl a c k s oli d li n e is t h e
m e di a n of t h e fi d u ci al s a m pl es a n d t h e d as h e d bl u e li n es r e pr es e nt t h e c o n fi d e n c e
b a n d.

i n   m ost  pr e vi o us a n al ys es  of t his  d at as et.   Als o,   wit h t h e 1 0, 0 0 0
fi d u ci al s a m pl es   w e c o nstr u ct a  9 5 % c o n fi d e n c e i nt er v al f or σ ,
w hi c h is (0. 4 3, 0. 6 2 ).

Fr o m t h e  fi d u ci al s a m pl es of (M , σ , β ), w e als o c o m p ut e t h e
l e a v e- o n e- o ut  9 5 %  pr e di cti o n  i nt er v als  f or  t h e  r es p o ns es Y i’s
a n d t h e r es ults ar e dis pl a y e d i n Fi g ur e 5 . N ot e t h at f or cl arit y t h e
Y i’s ar e s ort e d i n as c e n di n g or d er. Fr o m t h e pl ot   w e c a n s e e t h at
6 8 o ut of 7 1 pr e di cti o n i nt er v als c o v er t h e v al u e of Y i’s,   w hi c h is
ar o u n d 9 5. 8 %.   We als o c o m p ut e t h e 9 5 %  p oi nt wis e c o n fi d e n c e
b a n d  f or Y X L D- at w hi c h  is  s h o w n  i n Fi g ur e  6 . F or t h e it h
f u n cti o n, s u c h  a  c o n fi d e n c e  b a n d  c a n  b e  c o nstr u ct e d  b y  usi n g
t h e  q u a ntil es fr o m Z iβ i w h er e Z i a n d β i ar e,  r es p e cti v el y, t h e
d esi g n   m atri x a n d c o e ffi ci e nts c orr es p o n di n g t o t h e it h f u n cti o n
a ft er  t h e   B-s pli n e  e x p a nsi o n.  I n Fi g ur e  6 , t h e bl a c k s oli d li n e
is  t h e   m e di a n  a m o n g  all  t h e  s a m pl es  as  t h e  tr u e  f u n cti o n  is

n ot a v ail a bl e f or r e al  d at a,   w hil e t h e  d as h e d li n es r e pr es e nt t h e
c o n fi d e n c e  b a n d.   T his  pl ot  str o n gl y  s u g g ests  t h at  t his  g e n e is
i n d e e d  si g ni fi c a nt  a n d  t h e  o v er all  tr e n d  is   m or e  c o m pli c at e d
t h a n a si m pl e str ai g ht li n e.   We  n ot e t h at, alt h o u g h   m a n y  pr e vi-
o us   m et h o ds b as e d o n hi g h- di m e nsi o n al li n e ar r e gr essi o n h a v e
s u c c essf ull y i d e nti fi e d t his g e n e as si g ni fi c a nt, t h es e   m et h o ds f ail
t o pr o vi d e a n y fl e xi bl e esti m at e f or t h e tr e n d, s u c h as t h e o n e i n
Fi g ur e 6 .

6.   C o n cl u si o n

I n t his arti cl e,   w e a d o pt e d a   G FI   m et h o d ol o g y t o p erf or m st atis-
ti c al i nf er e n c e o n s p ars e hi g h- di m e nsi o n al n o n p ar a m etri c a d di-
ti v e   m o d els. I n p arti c ul ar,   w e d e v el o p e d a pr o c e d ur e t o g e n er at e
fi d u ci al s a m pl es b as e d o n t h e g e n er ali z e d fi d u ci al distri b uti o n
of a s et of c a n di d at e   m o d els o bt ai n e d fr o m gr o u p  L ass o, a n d t o
c o nstr u ct v ari o us c o n fi d e n c e i nt er v als a n d  pr e di cti o n i nt er v als
b y   m a ki n g us e of t h es e s a m pl es.   T h e d e v el o p e d i nf er e nti al pr o-
c e d ur e   w as s h o w n t o h a v e a n e x a ct as y m pt oti c fr e q u e ntist pr o p-
ert y u n d er s o m e r e g ul arit y c o n diti o ns,   w hi c h   w as c o n fir m e d b y
its  pr o misi n g  p erf or m a n c e i n  n u m eri c al si m ul ati o ns.   We  n ot e
t h at t h e c urr e nt fr a m e w or k c a n i n pri n ci pl e b e e xt e n d e d t o ot h er
m or e c o m pli c at e d a n d fl e xi bl e   m o d els i n hi g h- di m e nsi o n al s et-
ti n gs, s u c h as t h e g e n er ali z e d n o n p ar a m etri c a d diti v e   m o d els.

A p p e n di x   A: T e c h ni c al   D et ail s

T his a p p e n di x  pr o vi d es t e c h ni c al  d et ails, i n cl u di n g t h e  pr o of f or T h e-
or e m 1 .   We b e gi n   wit h t hr e e l e m m as.

A. 1. L e m m a s

L e m m a 1. L et F b e t h e cl ass of f u n cti o ns f o n [a , b ] w hi c h s atis fi es:

|f (k ) (s) − f (k ) (t)| ≤ C |s − t|α f or s, t ∈ [ a , b ],

w h er e k is a n o n n e g ati v e i nt e g er a n d α ∈ (0, 1 ] s o t h at d = k + α > 0. 5.
L et S 0

n d e n ot e t h e s p a c e of c e nt er e d p ol y n o mi al s pli n es. S u p p os e t h at

f ∈ F , Ef (Z j) = 0 a n d h n = O (n 1 /( 2 d + 1 ) ), t h e n t h er e e xists fn ∈ S 0
n

s atisf yi n g

fn − f 2 = O p (h − d
n ) = O p (n − d /( 2 d + 1 ) ).

T his l e m m a is  pr o v e d i n   H u a n g,   H or o wit z,  a n d   Wei ( 2 0 1 0 ) a n d it
i n di c at es t h at t h e fj’s c a n  b e   w ell a p pr o xi m at e d  b y  p ol y n o mi al s pli n es
u n d er c ert ai n s m o ot h n ess ass u m pti o ns.   T h er ef or e, t h e r e pr es e nt ati o n
w e c o nsi d er i n  E q u ati o n ( 2 ) is e x a ct.

L e m m a 2. L et χ 2
j d e n ot e a χ 2 r a n d o m v ari a bl e  wit h d e gr e es of fr e e d o m

j. If c → ∞ a n d J
c → 0, t h e n

P ( χ 2
j > c) =

1

(j/ 2 )
(c/ 2 )j/ 2 − 1 e x p (− c/ 2 )(1 + o (1 ))

u nif or ml y f or all j ≤ J.

T h e pr o of c a n b e f o u n d i n L u o a n d C h e n ( 2 0 1 3 ) b y usi n g i nt e gr ati o n
b y p arts.

L e m m a  3. L et χ 2
j b e  a  c hi-s q u ar e  r a n d o m  v ari a bl e   wit h  d e gr e es  of

fr e e d o m j a n d c j = 2 j[l o g p + l o g(j l o g p )]. If p → ∞ , t h e n f or a n y
J ≤ p a n d h ≥ 1,

J

j= 1

p

j
P ( χ 2

hj > c hj ) → 0.
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Pr o of. L et q j =
cj

(j l o g p )2 . B y usi n g
p
j ≤ p j a n d L e m m a 2 ,

p

j
P ( χ 2

hj > c hj ) =
p

j

1

2 hj / 2 − 1 (hj / 2 )
c
hj / 2 − 1
hj e x p (− c hj / 2 )(1 + o (1 ))

≤
c
hj / 2 − 1
hj

(hj l o g p )hj
(1 + o (1 ))

=
q
hj
hj

c hj
(1 + o (1 ))

u nif or ml y o v er j < hJ f or a n y J ≤ p .
Si n c e q j < 1 f or all j a n d q j → 0 w h e n j is l ar g e e n o u g h,   w e h a v e

J

j= 1

p

j
P ( χ 2

hj > c hj ) ≤

J

j= 1

q
hj
hj

c hj
(1 + o (1 )) → 0.

A. 2. Pr o of of T h e or e m 1

Si n c e

r (M ) ∝ (2 π ) (p ∗ − n ) /2 2 (n − p ∗ − 2 ) /2 R S S (p ∗ − n + 1 ) /2 n − p ∗

2
× q p ∗

,

w e h a v e

r (M )

r (M 0 )
= e x p { −T 1 − T 2 },

w h er e

T 1 =
n − h n m − 1

2
l o g

R S S M

R S S M 0

a n d

T 2 =
h n (m 0 − m )

2
l o g ( π R S S M o )

+ l o g (
n − h n m 0

2
) /   (

n − h n m

2
) + h n (m 0 − m ) l o g(q ).

C as e 1: M 0 /∈ M .
L et M j = { M : |M | = j, M ∈ M }. R e c all H M is t h e  pr oj e cti o n

m atri x  f or   m o d el M a n d H M 0 is  t h e  pr oj e cti o n   m atri x  f or  t h e  tr u e
m o d el M 0 . C al c ul at e

R S S M 0 = (y − Z M 0 β M 0
)T (I − H M 0 )(y − Z M 0 β M 0

)

= ε T (I − H M 0 )ε

=

n − h n m 0

i= 1

Z 2
i = (n − h n m 0 )(1 + o p (1 )) = n (1 + o p (1 )),

w h er e Z i’s ar e ii d st a n d ar d  n or m al v ari a bl es.
L et (M ) = μ − H M μ wit h μ = Z M 0 β M 0

. T h e n

R S S M − R S S M 0 = (μ + ε )T (I − H M )(μ + ε ) − ε T (I − H M 0 )ε

= (M ) + 2 μ T (I − H M )ε − ε T H M ε + ε T H M 0 ε ,
( A. 1)

w h er e ε T H M 0 ε = h n m 0 (1 + o p (1 )).
E x pr ess t h e s e c o n d t er m i n ( A. 1 ) as

μ T (I − H M )ε = (M )Z M ,

w h er e Z M ∼ N (0, 1 ). T h e n f or a n y M ∈ M ,

|μ T (I − H M )ε | ≤ (M ) m a x
M

|Z M |.

L et c j = 2 j{l o g p + l o g(j l o g p )}, a c c or di n g t o L e m m a 3 w e h a v e

P (m a x
M

|Z M | ≥
√

c) = P ( m a x
M ∈ M j, 1≤ j≤ k m 0

|Z M | ≥
√

c)

≤

k m 0

j= 1

p

j
P ( χ 2

1 ≥ c)

≤

k m 0

j= 1

p

j
P ( χ 2

j ≥ c) → 0.

T h er ef or e, |μ T (I − H M )ε | = (M )O p (k m o l o g p ) u nif or ml y  o v er
M .

Si mil arl y, f or t h e t hir d t er m i n ( A. 1 ), as ε T H M ε = χ 2
h n m w e h a v e

P (m a x
M

ε T H M ε ≥ c h n j) = P ( m a x
M ∈ M j, 1≤ j≤ k m 0

χ 2
h n j ≥ c h n j)

≤

k m 0

j= 1

p

j
P ( χ 2

h n j ≥ c h n j) → 0.

T h us,   w e h a v e

m a x
M

{ε T H M ε } = O p (k h n m o l o g p ).

Ass u mi n g t h at h n m o l o g p = o (n ), w e h a v e

R S S M − R S S M 0 = (M )(1 + o p (1 ))

a n d

T 1 =
n − h n m − 1

2
l o g 1 +

R S S M − R S S M 0

R S S M 0

=
n (1 + o p (1 ))

2
l o g 1 +

(M )(1 + o p (1 ))

n

=
(M )(1 + o p (1 ))

2
. ( A. 2)

B y St erli n g’s f or m ul a,

l o g
n − h n m 0

2
/

n − h n m

2

=
h n (m − m 0 )

2
l o g n (1 + o (1 )).

T h er ef or e,

T 2 =
h n (m − m 0 )

2
l o g n (o p (1 )) − l o g( π q 2 )

≥ −
h n m 0

2
l o g n (o p (1 )) − l o g( π q 2 ) .  ( A. 3)

C as e 2: M 0 ∈ M .
L et M ∗ b e t h e  c oll e cti o n  of   m o d els t h at  c o nt ai n t h e tr u e   m o d el;

t h at is, M ∗ = { M ∈ M , M 0 ∈ M , M = M 0 }. M or e o v er, l et M ∗
j =

{M , |M | = j, M 0 ∈ M }.
W h e n M 0 ∈ M , (I − H M )Z M 0 = 0, t h er ef or e, y T (I − H M )y =

ε T (I − H M )ε . Als o

R S S M − R S S M 0 = ε T (I − H M 0 )ε − ε T (I − H M )ε

= ε T (H M − H M 0 )ε

= χ 2
h n (m − m 0 ) (M ),
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w h er e χ 2
h n (m − m 0 ) (M ) f oll o ws c hi-s q u ar e  distri b uti o n   wit h  d e gr e es  of

fr e e d o m h n (m − m 0 ).
L et c j = 2 j{l o g p + l o g(j l o g p )}.   A c c or di n g t o L e m m a 3 ,

P m a x
M ∈ M ∗

j , 1≤ j≤ k m 0 − m 0

χ 2
h n j(M ) ≥ c h n j

=

k m 0 − m 0

j= 1

P ( m a x
M ∈ M ∗

j

χ 2
h n j(M ) ≥ c h n j)

=

k m 0 − m 0

j= 1

p − m 0

j
P ( χ 2

h n j(M ) ≥ c h n j)

=

k m 0 − m 0

j= 1

p

j
P ( χ 2

h n j(M ) ≥ c h n j) → 0.

T h er ef or e, χ 2
h n (m − m 0 ) (M ) ≤ c h n (m − m 0 ) (1 + o p (1 )) a n d

T 1 =
n − h n m − 1

2
l o g

R S S M

R S S M 0

= −
n − h n m − 1

2
l o g 1 +

χ 2
h n (m − m 0 ) (M )

R S S M 0 − χ 2
h n (m − m 0 ) (M )

≥ −
n − h n m − 1

2

χ 2
h n (m − m 0 ) (M )

R S S M 0 − χ 2
h n (m − m 0 ) (M )

.

Si n c e n − 1 R S S M 0 → σ 2 as n → ∞ , w e h a v e R S SM 0 = n (1 + o (1 )),

T 1 ≥
c h n (m − m 0 )

2
(1 + o p (1 ))

≥ − h n (m − m 0 ) 1 +
l o g{h n (k m 0 − m 0 ) l o g p }

l o g p
l o g p (1 + o p (1 ))

≥ − h n (m − m 0 )(1 + δ ) l o g p (1 + o p (1 )) ( A. 4)

u nif or ml y o v er M ∗ , a n d

T 2 =
h n (m − m 0 )

2
{l o g n (o p (1 )) − l o g( π q 2 )} ( A. 5)

u nif or ml y o v er M ∗ .
C o m bi n g c as e 1 a n d c as e 2, w e ai m t o s h o w t h at

m a x
M /∈ M 0 ,M ∈ M

r (M )

r (M 0 )
= m a x { m a x

M 0 /∈ M
e x p (− T 1 − T 2 ),

m a x
M 0 ∈ M

e x p (− T 1 − T 2 )} → 0.

B y ( A. 2 ) a n d (A. 3 ), f or c as e 1,

T 1 + T 2 ≥
(M )(1 + o p (1 ))

2
−

h n m 0

2
l o g n (o p (1 )) − l o g( π q 2 )

=
h n m 0 l o g p

2

(M )(1 + o p (1 ))

h n m 0 l o g p
−

l o g n o p (1 )

l o g p
+

l o g( π q 2 )

l o g p
.

I n or d er t h at

mi n
M 0 /∈ M

T 1 + T 2 → ∞ ,

w e c a n c h o os e q s u c h t h at − l o g q = O (l o g p ); t h at is,

−
l o g q

l o g p
= O (1 ).

Si mil arl y b y ( A. 4 ) a n d (A. 5 ), f or c as e 2,

T 1 + T 2 ≥
h n (m − m 0 ) l o g p

2

l o g n (o p (1 ))

l o g p
−

l o g( π q 2 )

l o g p

− 2 (1 + δ )( 1 + o p (1 )) .

I n or d er t h at

mi n
M 0 ∈ M

T 1 + T 2 → ∞ ,

w e h a v e

−
l o g q

l o g p
> 1 + δ .

T h er ef or e, f or  1 + δ < γ = −
l o g q
l o g p < C wit h C b ei n g a c o nst a nt,   w e

h a v e

m a x
M /∈ M 0 ,M ∈ M

r (M )

r (M 0 )
→ 0.

M or e o v er, if c o n diti o n ( A 7) h ol ds,   w e h a v e

M = M 0 ,M ∈ M ∗

r (M )

r (M 0 )
≤

k m 0

j= 1 M ∗

r (M )

r (M 0 )

≤ k m 0 m a x
M = M 0 ,M ∈ M

|M ∗
j |

r (M )

r (M 0 )
→ 0.

T his c o m pl et es t h e pr o of f or T h e or e m 1 .

A c k n o wl e d g m e nt s

T h e a ut h ors ar e m ost gr at ef ul t o t h e r e vi e w ers, t h e ass o ci at e e dit or, a n d
t h e e dit or f or t h eir   m ost c o nstr u cti v e a n d h el pf ul c o m m e nts   w hi c h l e d t o a
m u c h i m pr o v e d v ersi o n of t h e arti cl e.
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