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Abstract— This paper provides a dynamical system per-
spective on the escape of sharp local minima in constrained
optimization problems. The dynamical system view models
a perturbed projected first-order optimization algorithm and
translates the problem of escaping local minima in constrained
optimization problems to that of escaping regions of attraction
of the corresponding dynamical system. We develop the notion
of biased perturbation and show that it gives a quantitative
view of the notion of small regions of attraction that can be
escaped. As a counterpart, we explain why the dynamics is
stable in a wide region of attraction around a strongly stable
equilibrium. Numerical examples are provided to illustrate the
usefulness of the developed concepts.

I. INTRODUCTION

The empirical success of optimization in the training of
neural networks has motivated a large body of work on
non-convex optimization algorithms, especially the stochastic
gradient descent (SGD) algorithm that has been observed to
not only converge faster than the gradient descent method but
also converge to a better solution than the gradient descent
method. Most of the literature has focused on unconstrained
problems that are motivated from fitting statistical models.
It is known that, almost surely with random initialization, a
wide range of first-order methods never converge to saddle
points [8], [9]. The effect of perturbation on the escape
of saddle points has been quantified in various versions
of perturbed gradient descent [4]. The effect of noise has
also been studied under the model of Stochastic Gradient
Langevin Dynamics [20], [13]. The recent work [17] argues
that the Brownian-motion-based analysis may not be realistic
for the SGD method and provides an alternative stochastic
differential equation model driven by the Lévy motion with
Symmetrical α-Stable (SαS) distribution, which has infinite
second-order momentum. Several existing works have been
performed to analyze the role of the noise in the SGD
method; one such explanation is provided in [6], where a
change of variables introduces a new stochastic iteration
based on a smoothed objective. Adaptive restart SGD method
is proposed in [3] and shown to achieve both fast and
robust convergence. Global exponential convergence of non-
convex LQR is analyzed in [12]. Nevertheless, it lacks a
satisfactory explanation of escaping locally optimal solutions
and a quantitative view of sharp versus flat local minima.
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Moreover, the literature has largely ignored constrained op-
timization problems since the existing ideas are not readily
generalizable to optimization over a feasible set.

This paper studies the escape of certain local minima for
a general equality-constrained optimization problem, using
tools in control theory. This approach has major advantages:
(1) it translates local minima of the constrained optimization
problem to equilibrium points of a continuous-time dynam-
ical system, which can subsequently be analyzed using rich
techniques in dynamical systems; (2) the continuous-time
model allows deploying the notion of region of attraction
to relate the sharpness of a local minimum to the size
of the region of attraction. The continuous-time analysis
of optimization algorithms has advanced the area of al-
gorithm design [16], [18] and deepened our understanding
of various phenomena in optimization. These include the
analysis and the design of acceleration techniques via the
Bregman Lagrangian [19], study of stochastic gradient via
the Ornstein-Uhlenbeck process [11], and convergence anal-
ysis via integral quadratic constraints [10]. However, only
a few works have studied the underlying problem in the
constrained setting. The starting point of our formulation
is [15], where multiple ordinary differential equation (ODE)
models of gradient flow are proposed for the constrained
case.

The paper is organized as follows. In Section II, we
formalize a dynamical system model of a general equality-
constrained optimization problem and discuss the correspon-
dence between the local minima of the constrained optimiza-
tion problem and the equilibrium points of the dynamical
system. Section III introduces the noisy version of the model
and develops sufficient conditions on the perturbation under
which the constraints are approximately satisfied in the long
run. Section IV introduces the key notion of biased pertur-
bation and demonstrates the usefulness of this concept in the
escape of local minima with a small region of attraction. For
a wide region of attraction, Section V proposes the notion
of strong equilibrium and proves that a small perturbation
does not trigger the solution to escape the wide region of
attraction around a strong equilibrium. This analysis enables
the introduction of the notion of sharp minima, which can be
escaped via small perturbations in the underlying algorithm.
A numerical example is provided in Section VI. Concluding
remarks are provided in Section VII.
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II. DYNAMICAL SYSTEM MODEL OF CONSTRAINED
OPTIMIZATION

The paper considers a general optimization problem with
equality constraints:

min
x∈Rn

f(x) (1)

s.t. gi(x) = 0, i = 1, 2, . . . ,m.

We use g(x) = [g1(x), . . . , gm(x)]T to denote a vector-
valued function and use

Jg(x) = [∇g1(x), . . . ,∇gm(x)]T

to denote the m-by-n Jacobian matrix of the equality con-
straints. We make a variant of the constraint qualifications
assumption below.

Assumption 1. The functions f : Rn → R and gi : Rn →
R are twice continuously differentiable for i = 1, 2, . . . ,m.
Furthermore, the m-by-n Jacobian matrix Jg(x) has full row
rank for all x ∈ Rn.

Remark 1. The full rank assumption of the Jacobian matrix
is part of a classical constraint qualification condition for
the local minima of the constrained optimization problem
to be KKT points [2, §4.3.8]. Moreover, Sard’s theorem [14]
ensures that for a sufficiently smooth map g, the set of values
of g for which Jg is not full rank has measure 0.

Under this assumption, every local minimum of the con-
strained optimization problem (1) satisfies the first-order
stationary conditions:

∇f(x) + Jg(x)
Tλ = 0,

g(x) = 0,

for some vector λ ∈ Rm. In this paper, we study the
following dynamical system

ẋ = −
[
I − Jg(x)T (Jg(x)Jg(x)T )−1Jg(x)

]
∇f(x)

− αJg(x)T (Jg(x)Jg(x)T )−1g(x)
(2)

where α ≥ 0 is a parameter. Under Assumption 1, the right-
hand side of (2) is a continuously differentiable function of
x. Therefore, it is locally Lipschitz. For any initial condition
x(0) = x0, the solution to (2) exists and is unique locally.

Proposition 1. Consider the dynamical system (2) with
x(0) = x0. Assume that x(t) exists for all t ≥ 0. If x0 is
feasible for the constrained optimization problem (1), then
x(t) is feasible for all t ≥ 0. Furthermore, if α > 0,
then the equilibrium points of (2) are exactly the first-
order stationary points of (1). If x0 is not feasible for the
constrained optimization problem (1), then the trajectory
x(t) will approach feasibility at an exponential rate.

Proof. Taking the derivative of g(·) with respect to time

along any trajectory x(t) of the system (2) yields that

d

dt
g(x(t))

=−Jg(x(t))
[
I − Jg(x(t))T (Jg(x(t))Jg(x(t))T )−1Jg(x(t))

]
×∇f(x(t))− αg(x(t))

=−αg(x(t)),

for all t ≥ 0. Therefore, g(x(t)) = e−αtg(x(0)), which
converges to zero as t → ∞ when α > 0 and is identical
to zero if g(x(0)) = 0. For each equilibrium point x of the
dynamical system (2), we have[

I − Jg(x)T (Jg(x)Jg(x)T )−1Jg(x)
]
∇f(x)

−αJg(x)T (Jg(x)Jg(x)T )−1g(x) = 0

Since α 6= 0, multiplying the above equation by Jg(x) yields
g(x) = 0. The first-order stationary condition is satisfied by
setting

λ = −(Jg(x)Jg(x)T )−1Jg(x)∇f(x). (3)

Conversely, if x is a first-order stationary point with the mul-
tiplier λ, then λ must be given by (3) due to Assumption 1.
Hence, x is an equilibrium.

Remark 2. In the case α > 0, it follows from Theorem 2.3
in [15] that, as long as (2) has finitely many equilibria, all
bounded solutions to (2) exist for all t ≥ 0. Therefore, the
existence of x(t) for all t ≥ 0 is a mild assumption.

Since the first-order stationary points for the constrained
optimization problem (1) are the same as the equilibria of the
dynamical system (2), the focus of the paper is on modifying
this dynamics to eliminate some of its undesirable equilibria
corresponding to sharp local minima.

III. PERTURBATION AND ITS EFFECT ON CONSTRAINTS

When solving an unconstrained optimization problem, the
common practice is to inject noise or use momentum in the
gradient algorithm to avoid undesirable local minima. As a
counterpart of this technique, we add a perturbation w to the
system dynamics. In its most general form, the perturbation
can depend on the current state and time, which can be
formally written as

ẋ = Uα(x) + w(x, t), (4)

where

Uα(x) = −
[
I − Jg(x)T (Jg(x)Jg(x)T )−1Jg(x)

]
∇f(x)

− αJg(x)T (Jg(x)Jg(x)T )−1g(x)

is the right-hand side of (2). In order for the perturbed
dynamics to meaningfully solve the constrained optimization
problem, one needs to ensure a near feasibility of the solution
x(t) as t goes to infinity. In what follows, we will provide
a bound that gives sufficient conditions to guarantee that the
solution to the perturbed dynamics approximately satisfies
the constraints in the long run. We note that the solution
to (4) is not always feasible for any t ≥ 0 due to the
perturbation term.
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Proposition 2. Consider the perturbed dynamics (4) with
parameter α. Let y(t) be the solution to (4) with an arbi-
trary initial condition y(0) = y0, where y0 is feasible for
the optimization problem (1). Assume that the perturbation
satisfies the bound

‖Jg(y)w(y, t)‖ ≤ χ(t)‖g(y)‖+ ξ(t) (5)

for some χ(t) ≥ 0, ξ(t) ≥ 0 and all t ≥ 0. Given a constant
ε > 0, if there is a number T (ε) > 0 such that

e−αt
∫ t

0

ξ(s)ds · exp
(∫ t

0

χ(r)e−αrdr

)
≤ε, for all t > T (ε),

then ‖g(y(t))‖ ≤ ε for all t > T (ε).

Proof. One can write

ġ(y(t)) = −Jg(y)
[
I − Jg(y)T (Jg(y)Jg(y)T )−1Jg(y)

]
∇f(y)

− αg(y(t)) + Jg(y)w(y, t)

= −αg(y(t))− Jg(y)w(y, t).

Since g(y(0)) = 0, it holds that

‖g(y(t))‖ ≤ e−αt
∫ t

0

‖Jg(y(s))w(y(s), s)‖ds

≤ e−αt
∫ t

0

χ(s)‖g(y(s))‖ds+ e−αt
∫ t

0

ξ(s)ds.

(6)

We proceed in the spirit of the proof of Grönwall’s Inequality.
Let u(t) = ‖g(y(t))‖. Consider the function

v(s) := exp

(
−
∫ s

0

χ(r)e−αrdr

)∫ s

0

χ(r)u(r)dr.

Taking the derivative of v(s), we obtain

v′(s) = exp

(
−
∫ s

0

χ(r)e−αrdr

)
χ(s)

×
[
u(s)− e−αs

∫ s

0

χ(r)u(r)dr

]
≤ exp

(
−
∫ s

0

χ(r)e−αrdr

)
χ(s)e−αs

∫ s

0

ξ(r)dr,

due to the bound (6) and the non-negativity of χ(s). By
integrating both sides of the above inequality, we obtain

v(t) ≤
∫ t

0

exp

(
−
∫ s

0

χ(r)e−αrdr

)
χ(s)e−αs

∫ s

0

ξ(r)drds.

Therefore,

u(t) ≤ e−αt
∫ t

0

ξ(s)ds+ e−αt exp

(∫ t

0

χ(r)e−αrdr

)
v(t)

≤ e−αt
[∫ t

0

ξ(s)ds+∫ t

0

exp

(∫ t

s

χ(r)e−αrdr

)
χ(s)e−αs

∫ s

0

ξ(r)drds

]
≤ e−αt

∫ t

0

ξ(s)ds

[
1−

∫ t

0

d(exp

(∫ t

s

χ(r)e−αrdr

)
)

]
= e−αt

∫ t

0

ξ(s)ds exp

(∫ t

0

χ(r)e−αrdr

)
,

where we have used (6) in the first inequality and the non-
negativity of ξ(r) in the third inequality. This bound is less
than ε for large values of t by assumption.

Proposition 2 quantifies how the perturbation contributes
to the deviation from the solutions of the optimization (1).
Especially, when α > 0 and the trajectory y(t) is bounded,
the condition of the proposition is satisfied for a bounded
noise w by setting χ(t) = 0 and ξ(t) = C for a large
enough constant C. In the following sections, we will study
how to design the perturbation so that the trajectories of the
dynamical system move away from undesirable local minima
but stay close to desirable local minima.

IV. ESCAPING SHARP LOCAL MINIMA

We refer to a local minimum of the optimization prob-
lem (1) as sharp if its associated region of attraction in the
unperturbed dynamics (2) is relatively small. The threshold
defining smallness will be quantified in Theorem 1. To
simplify the presentation, we assume that the noise depends
only on time and therefore study the following dynamics:

ẋ = Uα(x) + w(t). (7)

Without loss of generality, let x = 0 be the equilibrium
under study. We will develop sufficient conditions for the
solution of (7) to leave the region of attraction of the sharp
local minimum. To this end, we introduce the key notion of
biased perturbation. Intuitively, if w(t) forces the dynamics
to move along a certain direction for a certain amount of
time, the dynamics will be perturbed away from 0.

Definition 1. The function w(t) is said to be (δ, ε)-biased
over T if for all τ ∈ T , there exists a unit vector v(τ) ∈ Rn
such that 〈w(t), v(τ)〉 ≥ ε for all t ∈ [τ, τ + δ] ∩ T . Here
we define the inner-product 〈w, v〉 :=

∑n
i=1 wivi.

Remark 3. In many models of stochastic gradient descent,
the sample estimator of the gradient is unbiased and the
noise values at different iterations are independent of each
other. However, there are many ways to introduce bias and
dependence into the estimator and the theory to be developed
below can be adapted to study avoiding undesirable local
minima in this case.

The following two lemmas demonstrate the generality of
the definition.

Lemma 1. If ‖w(t)‖ ≥ ε for all t ∈ T and w(t) is L-
Lipschitz continuous, then the function w(t) is (δ, ε − Lδ)-
biased for δ ∈ (0, ε/L).

Proof. Select the unit vector v(τ) = w(τ)
‖w(τ)‖ , which is well-

defined because w(t) is assumed non-zero for all t ∈ T . For
t ∈ [τ, τ + δ] ∩ T , we have

〈w(t), v(τ)〉 ≥ 〈w(τ), v(τ)〉 − L|t− τ | ≥ ε− Lδ.

Lemma 2. Consider w(t) = B(t), which is the n-
dimensional Brownian motion with the initial condition
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B(0) = 0. Given arbitrary numbers t1 and t2 such that
0 < t1 < t2, the function w(t) is (δ, ε)-biased over T =
[t1, t2] with probability at least(

1− e−ε
2/(2δ)

)
Ce−cε

2/t1 · (1− 2e−t1/(t2−t1))n,

where c and C are universal constants.

Proof. From the independent increment property of Brown-
ian motion, the distribution of w(t) is the same as w(τ) +
Bt−t0 , where Bt is an n-dimensional Brownian motion
independent of w(t). Select the unit vector v(τ) = w(τ)

‖w(τ)‖ ,
which is well-defined almost surely. For δ and ε > 0, one
can write

P (〈w(t), v(τ)〉 ≥ ε, ∀τ ∈ T , t ∈ [τ, τ + δ] ∩ T )
= P (〈w(τ) +Bt−τ , v(τ)〉 ≥ ε, ∀τ ∈ T , t ∈ [τ, τ + δ] ∩ T )
(a)

≥ P (〈w(τ) +Bs, v(τ)〉 ≥ ε, ∀τ ∈ T , s ∈ [0, δ])

= P (〈Bs, v(τ)〉 ≥ ε− ‖w(τ)‖, ∀τ ∈ T , s ∈ [0, δ])

(b)
= P (Ws ≥ ε− ‖w(τ)‖, ∀τ ∈ T , s ∈ [0, δ])

≥ P (Ws ≥ ε− r, ‖w(τ)‖ ≥ r, ∀τ ∈ T , s ∈ [0, δ])

(c)
= P (Ws ≥ ε− r, ∀s ∈ [0, δ])P(‖w(τ)‖ ≥ r, ∀τ ∈ T )
(d)

≥ (1− 2P(Wδ ≤ ε− r))
P(‖w(t1)‖2 ≥ r2 + r′2)P(‖Bs‖2 ≤ r′2, ∀s ∈ [0, t2 − t1])

(e)

≥
(
1− e−(ε−r)

2/(2δ)
)
·

Ce−c(
r2+r′2

t1
−n) · P( sup

s∈[0,t2−t1]
|Ws| ≤ r′/

√
n)n

≥
(
1− e−(ε−r)

2/(2δ)
)
Ce−c(

r2+r′2
t1
−n)·

(1− 2e−r
′2/(n(t2−t1)))n

In the above bounds, we enforce a stronger range of s in
(a). We let Ws = 〈Bs, v(τ)〉 in (b). Ws is a one-dimensional
Brownian motion projected from an n-dimensional Brownian
motion. The distribution of Ws does not depend on the
projection vector v(τ) or w(τ). This independence factors
the product in (c) and similarly in (d). (d) also uses the
reflection principle of the Brownian motion. The bound (e)
strengthens the bound on the norm of Bs to every coordinate.
Since the squared norm ‖Bs‖22 obeys the χ2

n distribution, the
constraints r > ε and (r′2 + r2)/t1 > n are required for
lower bounding the tail probability [7]. Setting r′2 = nt1
and r = 2ε yields the desired probability bound.

We next show that a biased perturbation escapes any
small region of attraction, which is a well-defined notion
for continuous-time dynamics. The region of attraction of
the equilibrium (7) is defined as

R = {x0 : x(t)→ 0 with x(0) = x0, where
x(t) solves (7) with w(t) = 0} .

The notion of “smallness” of R is quantitatively described
in the assumptions of Theorem 1 below. We assume that the
region of attraction R is bounded in the following analysis.

Theorem 1. Let r = supx0∈R‖x0‖ denote radius of the
smallest ball containing the region of attraction. Define

E = sup
‖x‖≤r

‖Uα(x)‖.

Assume that w(t) is (δ, ε)-biased over [0,∞), where
ε > E and δ(ε − E) > 2r. The perturbed solution
x(t) to (7) satisfies the property that whenever x(τ) ∈
R at any time τ , then there exists a time t ∈ [τ, τ + δ] such
that x(t) /∈ R.

Proof. We use the definition of (δ, ε)-biasness to find a unit
vector v(τ) such that

〈w(t), v(τ)〉 ≥ ε, for all t ∈ [τ, τ + δ].

When x(τ) ∈ R, it holds that ‖x(τ)‖ ≤ r. We take the inner
product of (7) with v(τ) to obtain

〈ẋ(t), v(τ)〉 = 〈U(x), v(τ)〉+ 〈w(t), v(τ)〉
≥ ε− ‖U(x)‖ ≥ ε− E, when x ∈ R, t ∈ [t, τ ].

If x(t) ∈ R for all t ∈ [τ, τ + δ], we arrive at the following
contradiction:

r ≥ ‖x(τ + δ)‖ ≥ 〈x(τ + δ), v(τ)〉

≥ 〈x(τ), v(τ)〉+
∫ τ+δ

τ

(e− E)dt ≥ −r + (e− E)δ.

V. ATTRACTION TO WIDE LOCAL MINIMA

In this section, we study wide local minima, which cor-
respond to those equilibria of the unperturbed dynamics (2)
whose regions of attraction are sufficiently large. As before,
we focus on the dynamics (7) and with no loss of generality
assume that the local minimum under study is x∗ = 0.
Let λ0 = −(Jg(0)Jg(0)T )−1Jg(0)∇f(0) and consider the
augmented Lagrangian function

Lβ(x) = f(x)− f(0) + λT0 g(x) +
β

2
‖g(x)‖2.

We introduce the following notion of strong equilibrium.

Definition 2. We say that x∗ = 0 is a (γ1, γ2, r) strong
equilibrium of the dynamics (2) if the following conditions
hold for all x such that ‖x‖ ≤ r:
• Lβ(x) ≥ γ1

2 ‖x‖
2

• Either ‖g(x)‖2 ≥ γ2‖x‖2 or

∇f(x)T
[
I−Jg(x)T(Jg(x)Jg(x)T)−1Jg(x)

]
∇f(x)≥γ2‖x‖2,

(8)

Remark 4. It is known that if the equilibrium x = 0 satisfies
the first- and the second-order sufficient conditions

∇f(0) + Jg(x)
Tλ0 = 0, g(0) = 0

yT∇2L0(0)y > 0 for all y 6= 0 with Jg(0)y = 0,
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then for large β > 0, there exist ε > 0 and γ > 0 such
that Lβ(x) ≥ Lβ(0) +

γ
2 ‖x‖

2 for all x with ‖x‖ ≤ ε.
This suggests that Lβ(x) is a plausible candidate for the
Lyapunov function used in the proof of Theorem 2.

Remark 5. The matrix I − Jg(x)T(Jg(x)Jg(x)T)−1Jg(x)
is rank deficient; hence, one cannot expect solely that the
inequality (8) holds for all x. In particular, it does not hold
when ∇f(x) is in the range of JTg (x) at a nonzero x. This
is the reason why we include two possibilities in the second
condition of strong equilibrium.

Theorem 2. Suppose that x∗ = 0 is a (γ1, γ2, r)-strong
equilibrium of the dynamics (2). Then, there exist constants
δ, k, γ, θ, b, T such that, for all ‖x(t0)‖ < θr, ‖w(t)‖ ≤ δ
and a small α > 0, the solution x(t) to (7) satisfies

(1) ‖x(t)‖ ≤ k exp[−γ(t− t0)]‖x(t0)‖, for t0 ≤ t < t0 + T

(2) ‖x(t)‖ ≤ b, for all t ≥ t0 + T

The proof of the theorem makes use of the following
lemma on the stability of perturbed dynamics.

Lemma 3 (Lemma 9.2 in [5]). Let V (t, x) be a Lyapunov
function for (2) that satisfies

c1‖x‖2 ≤ V (t, x) ≤ c2‖x‖2 (9)
∂V

∂t
+
∂V

∂x
Uα(x) ≤ −c3‖x‖2 (10)∥∥∥∥∂V∂x

∥∥∥∥ ≤ c4‖x‖ (11)

over [0,∞) ×D, where D = {x ∈ Rn : ‖x‖ ≤ r}. Assume
that the perturbation w(t) satisfies ‖w(t)‖ ≤ δ ≤ c3

c4

√
c1
c2
θr

for all t ≥ 0, all x ∈ D and some constant θ < 1. Then, for
all ‖x(t0)‖ <

√
c1
c2
r, the solution to (7) satisfies

(1) ‖x(t)‖ ≤ k exp[−γ(t− t0)]‖x(t0)‖, for t0 ≤ t < t0 + T

(2) ‖x(t)‖ ≤ b, for all t ≥ t0 + T

for some finite T and k =
√

c2
c2

, γ = (1−θ)c3
2c2

, b = c4
c3

√
c2
c1
δ
θ .

Proof of Theorem 2. We show that the conditions in
Lemma 3 are satisfied for the Lyapunov function V (t, x) =
Lβ(x) for a large enough β > 0. The existence of the
constant c1 in (9) follows from the assumption of strong
equilibrium. The constant c2 exists due to the first-order
necessary condition, Lβ(0) = 0 and ∇Lβ(0) = 0. Since
Lβ(x) is twice continuously differentiable, the constant c2
exists for every x in a neighborhood of the equilibirum
x∗ = 0 and can be selected large enough to apply to all
points x with ‖x‖ ≤ r. We compute

∇Lβ(x) = ∇f(x) + Jg(x)
Tλ0 + βJg(x)

T g(x).

From the first-order necessary condition and twice differen-
tiability, condition (11) can be satisfied for a large enough
c4. To verify condition (10), we compute the time derivative

of Lβ :

L̇β(x) = ∇V (x) · Uα(x)
= −∇f(x)T

[
I − Jg(x)T (Jg(x)Jg(x)T )−1Jg(x)

]
∇f(x)

− α[∇f(x)TJg(x)T (Jg(x)Jg(x)T )−1 + λ0]g(x)

− αβ‖g(x)‖2

≤ −∇f(x)T
[
I − Jg(x)T (Jg(x)Jg(x)T )−1Jg(x)

]
∇f(x)

+ αL‖x‖2 − αβ‖g(x)‖2

for some constant L that depends on the Lipschitz constants
of the functions g(x) and f(x)TJg(x)

T (Jg(x)Jg(x)
T )−1.

The second condition of strong equilibrium leads us to
consider two possibilities: when ‖g(x)‖2 ≥ γ2‖x‖2, we have

L̇β(x) ≤ −α(β − Lγ2)‖x‖2,

which is negative definite for a large β; when
∇f(x)T

[
I − Jg(x)T (Jg(x)Jg(x)T )−1Jg(x)

]
∇f(x) ≥

γ2‖x‖2, we have

L̇β(x) ≤ −(γ2 − αL)‖x‖2

which is negative definite for a small enough α.

VI. NUMERICAL EXPERIMENTS

For the numerical experiment, we consider a variant of the
Ackley Function [1], which is widely used for testing global
optimization algorithms for non-convex problems:

f(x) = ae−d − a exp

(
−
√

1

2
(x21 + x22) + d2

)
+

e− exp

(
1

2
(cos(cx1) + cos(cx2))

)
. (12)

Figure 1 plots the test function with selected parameter
a = 20 and d = 0.05. As can be observed from the figure,
there are numerous local minima, and the global minimum
is achieved at f(0, 0) = 0. The global minimum lies in a
large basin, which implies a large region of attraction for
the constrained dynamics (2).

We incorporate the following equality constraint:

g(x) = x1 −
1

2
x22 = 0.

Note that we have focused on a two-dimensional optimiza-
tion problem with a single constraint only for visualization
purposes. The functions f(x) and g(x) satisfy Assumption 1,
with

Jg(x) = [1,−x2].

The function in (7) takes the form

Uα(x) = −

[
x2
2

1+x2
2

x2

1+x2
2

x2

1+x2
2

1
1+x2

2

]
∇f(x)− α

x1 − 1
2x

2
2

1 + x22

[
1
−x2

]
Figure 2 plots sample trajectories of the system without
noise. The figure shows that, even without the noise, the
dynamics of (2) is able to overcome the ridge of the function
f in order to reach a feasible solution. Of the 298 uniformly
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Fig. 1: Counter plot of the test function (12) overlaid with
the locus of the feasible points.

random initializations in a square of side length 8, about
78% of the initializations achieve the “success”, which is
defined as reaching the unit ball1 around the global minimum
x = (0, 0) by the time t = 20.

Fig. 2: Sample trajectories of the noiseless dynamical sys-
tem (2). Some trajectories reach the global minimum while
others do not.

Let the noise w(t) be of the following form:

w(t) = A

[
cos(ωt)
sin(ωt)

]
,

where A and ω are parameters to be determined. The injected
noise ω(t) is Lipschitz continuous and therefore biased by
Proposition 1. Table I tallies the success rate of several
choices of the frequency parameter ω. We note that when

1Note that from Figure 1, the unit ball is within the region of attraction
of the equilibrium (0, 0).

A = 1 and ω < 0.27, the noise is varying so slowly that
the success rate is worse than the case without perturbation,
which is due to the fact that a persistent perturbation along
one direction leads astray trajectories that may otherwise be
able to escape to the global minimum. Table II tallies the
success rate of several choices of the amplitude parameter A.
Figure 3 and Figure 4 plot the sample trajectories correspond-
ing to Table I and Table II, respectively. Since the trajectories
are all bounded, by Proposition 2 and the continuity of
ODE with respect to initial conditions, the constraint will
eventually be satisfied with a close-to-feasible initialization,
which is shown in Figure 3. In comparison, Figure 4 shows
that when the initialization is far away from feasible and
when the frequency ω is small, the paths are erratic due to
unsuitable perturbations. In summary, the experiment shows
that different choices of the parameters can significantly alter
the behavior of the perturbed trajectory and their ability to
explore many local minima. There is a sweet spot for the
parameters (A,ω) that best improves the success rate.

TABLE I: Successfully rate by the frequency of noise

A ω success rate

1 0.1 71.28%
1 0.16681 76.12%
1 0.27826 93.77%
1 0.46416 94.46%
1 0.77426 86.51%
1 1.2915 80.97%
1 2.1544 84.78%
1 3.5938 88.24%
1 5.9948 83.39%
1 10 80.62%

TABLE II: Successfully rate by the amplitude of noise

A ω success rate

0.1 1 82.35%
0.14678 1 84.43%
0.21544 1 86.51%
0.31623 1 88.58%
0.46416 1 91%
0.68129 1 86.16%
1 1 80.28%
1.4678 1 87.89%
2.1544 1 88.58%
3.1623 1 87.2%

VII. CONCLUSION

This paper studies a dynamical system model of a general
equality constrained optimization problem. This approach
views sharp and wide local minima from the perspective
of small and large regions of attraction of the dynamical
system. We mathematically study the effect of injecting noise
into the dynamics on small and large regions of attraction.
In particular, we introduce the notion of biased perturbation
and the notion of strong equilibrium, and show how these
concepts can be used to quantify sharpness and wideness
of a local minimum. This result enables us to understand
how to escape undesirable local minima of a non-convex
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Fig. 3: Sample trajectories of the perturbed dynamics (7)
corresponding to Table I. Thick ensembles of paths are
formed when perturbation varies the gradient dynamics and
allows the escape from local minima.

Fig. 4: Sample trajectories of the perturbed dynamics (7)
corresponding to Table II. Unsuitable perturbation can cause
wild wandering paths.

constrained optimization problem. The experiments illustrate
the importance of adapting the noise to the optimization
problem of interest. Future research includes the design of
discrete-time numerical algorithms and a rigorous study of
noise in the Stochastic Gradient Langevin model. It is also
instructive to extend the study to accelerated methods, whose
corresponding dynamics are typically time-varying.
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