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Alexander Shapiro, Yao Xie, and Rui Zhang

On the Characteristic Rank for  
Matrix and Tensor Completion

In this lecture note, we discuss a fun-
damental concept, referred to as the 
characteristic rank, that suggests a 

general framework for characterizing the 
basic properties of various low-dimen-
sional models used in signal processing. 
We illustrate this framework through 
two examples—matrix and three-way 
tensor completion problems—and con-
sider basic properties, including the iden-
tifiability of matrices and tensors, given 
partial observations. We consider cases 

without observation noise to illustrate 
the principle.

Relevance
The characteristic rank provides a funda-
mental tool for determining the “order” of 
low-rank structures, such as the rank of 
low-rank matrices and the rank of three-
way tensors. The concept of characteristic 
rank was introduced in [6], where it was 
used to establish necessary and sufficient 
conditions to determine the “recoverabil-
ity” of low-rank matrices. The character-
istic rank can also be generally applied 
to determine the “intrinsic” degrees of 

freedom in other low-rank manifold 
structures. Such instances include deter-
mining the number of hidden nodes in 
one-layer neural networks and establish-
ing the number of sources in blind demix-
ing problems, as shown in [7].

Prerequisites
To better comprehend the concepts dis-
cussed in this lecture note, readers are 
expected to have a good background 
in linear algebra, multivariate calculus, 
and basic concepts of measure theory, 
which we will explain whenever we 
run into them. Suggested references are 
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[4] and [3]. In the following, we review 
some basic concepts.

Manifold of low-rank matrices
Consider the set of n n1 2#  matrices of 
rank r, denoted M .r  Note that the rank 
is no larger than the dimension of the 
matrix: { , } .minr n n1 2#  It is known 
that such a set of rank-r matrices Mr  
forms a smooth manifold in the space 

,Rn n1 2#  and the dimension of the mani-
fold is given by

 M( ) ( ) .dim r n n rr 1 2= + -  (1)

A matrix MA r!  can be represented in 
the form ,A VW= <  where V and W are 
matrices of the respective order n r1 #   
and ,n r2 #  both of full column rank r. 
Thus, we can view (V, W) as a param-
etrization of M .r  Note that the number 
of involved parameters is ( ),r n n1 2+  
which is larger than the dimension of 
M ;r  this is because V and W in the pre-
ceding representation are not unique.

Three-way tensor
Another example we will consider is the 
(three-way) tensor .X Rn n n1 2 3! # #  It is 
said that X has rank one if ,X a b c% %=  
where a, b, and c are vectors of the 
respective dimensions , , andn n n1 2 3  
and “°” denotes the vector outer prod-
uct. That is, every element of ten-
sor X can be written as the product 

.X a b cijk i j k=  The smallest number r 
such that tensor X can be represented 
as the sum r of rank-one tensors is 
called the rank of X. The correspond-
ing decomposition is often referred to 
as the (tensor) rank-decomposition or 
the canonical polyadic decomposition 
[8], [10]. We would like to remark that 
our method can apply to higher-order 
tensors, as well.

Problem statement

Matrix completion
Let us start by considering the problem 
of reconstructing an n n1 2#  matrix 
of a given rank r, while observing its 
entries , ( , ) ,M i jij !X  for an index set 

{ , ..., } { , ..., }n n1 11 2#1X  of cardinal-
ity m | | .X=  This is known as the exact 
matrix completion problem [1], which 

is now well studied. The conditions for 
recovery have been derived assuming 
that entries are missing at random, and 
the performance guarantees are given in 
a probabilistic sense. Here, we aim to 
approach the problem from a geomet-
ric perspective, which can possibly lead 
to a deterministic and more intuitive 
answer. There are two basic difficulties 
associated with this problem, namely, 
the existence of the solution and the 
uniqueness of the solution; that is, 
whether such a matrix does exist and if 
so, whether it is unique. Fundamentally, 
these questions are related to the iden-
tifiability of low-rank matrices, which 
we define as follows.

Definition 1: Local identifiability of 
low-rank matrix completion problem
Let MY r!  be such that [ ] ,Y Mij ij=
( , ) .i j !X  [Thus, rank(Y) = r.] It is said 
that the matrix completion problem is 
locally identifiable at Y if there exists 
a neighborhood N Rn n1 21 #  of Y such 
that for any NY !l  and Y Y!l  with 
[ ] , ( , ) ,Y M i jij ij !X=l  the rank of Y l is 
different from r.

Uniqueness of tensor decomposition
Uniqueness is the key question relat-
ed to tensor rank decomposition. 
Here, we consider the following ten-
sor decomposition problem: given a 
three-way tensor X, we would like 
to find the associated matrix fac-
tors A, B, and C of the respective 
order ,n r n r1 2# #  and n r3 #  such 
that , , ,X A B C= " ,  meaning that 

,X a b ci
r i i i

1 % %R= =  with , , and a b ci i i  
being the ith columns of the respec-
tive matrices A, B, and C. Clearly, the 
decomposition , ,X A B C= " , is invari-
ant with respect to permutations of 
the rank-one components and rescal-
ing of the columns of matrices A, B, 
and C by factors , , andi i i1 2 3m m m  such 
that , , , .i r1 1i i i1 2 3 fm m m = =  We first 
introduce the global identifiability and 
the local identifiability of the tensor.

Definition 2: Global identifiability  
of tensor decomposition
The decomposition , ,X A B C= " , (glo-
bally) identifies rank r if it is unique; i.e., 
if , ,X A B C= l l l" ,  is another decom-

position of tensor X, with matrices 
, ,A B Cl l l, being of the respective order 

, ,n r n r n r1 2 3# # #l l l and ,r r=l  then 
both decompositions are the same up to  
the corresponding permutation and rescal-
ing. It is said that the rank-r decomposi-
tion is generically identifiable if for almost 
every ( , , ) ,A B C R R Rn r n r n r1 2 3# #! # # #  
the corresponding tensor , ,X A B C= " , 
iden tifies rank r.

Definition 3: Local identifiability  
of tensor decomposition
We say that ( , , )A B C R Rn r n r1 2# #! # #  
Rn r3#  is locally identifiable if there is 
a neighborhood N  of (A, B, C) such 
that N( , , )A B C !l l l  and , ,A B Cl l l" ,

, ,A B C= " , imply that ( , , )A B Cl l l  can 
be obtained from (A, B, C) by the cor-
responding rescaling. We say that 
model  ( , , , )n n n r1 2 3  is  gener ica l ly 
locally identifiable if almost every 
( , , )A B C R RRn r n r n r1 2 3# #! # # #  is loc - 
ally identifiable.

Like the matrix completion prob-
lem, it is also possible to consider a 
tensor completion problem: recon-
structing a tensor of a given rank 
when only a subset of the entries is 
observed. The respective local and 
global identifiability concepts can be 
similarly defined.

Solutions

Matrix completion

Reparameterization of matrix 
completion problem
Let us start with the matrix completion 
problem by using the following parame-
trization. Consider the set X  of n n1 2#  
matrices X such that [ ] , ( , )X i j0ij !X=  
(when adding such matrices to the solu-
tions, the obtained matrices remain con-
sistent with the observations). We can 
view X  as a linear space of dimension 

mX .dim n n1 2= -^ h  Then, the matrix 
completion problem has a solution if and 
only if there exist respective matrices V 
and W of rank r and XX !  such that 
[ ] , ( , ) .VW X M i jij ij !X+ =<  Let H  
be the set of vectors i  formed from the 
components of (V, W, X). Note that H  is 
a subset of the vector space of dimen-
sion m( ) .r n n n n1 2 1 2+ + -
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Characteristic rank
The matrix completion parametrization 
can be considered as a mapping that 
assigns matrix VW X+<  to a vector 
of parameters ( , , ) .V W X !i H=  With 
this mapping, we can define the so-
called Jacobian matrix ( ),iD  which is 
the matrix of the partial derivatives of 
VW X+<  with respect to components 
of vector i . Then, we associate this 
mapping with its characteristic rank, 
defined as

 r { ( ( ))}.max rank iD=
!i H

 (2)

Note that the characteristic rank r  does 
not depend on the order in which the 
parameters are arranged.

The characteristic rank has the fol-
lowing properties: the rank of ( )iD  is 
equal to r  for almost every .!i H  By 
almost every we mean that the set of 
such !i H  for which rrank( ( )) !iD  
has a Lebesgue measure of zero. More-
over, the set r}{ : rank( ( ))!i iH D =  
forms an open subset of H . It follows 
that the rank of ( )iD  is constant and 
equals r  in a neighborhood of almost 
every .!i H  This result implies that 
the characteristic rank is an intrinsic 
quantity associated with the “degrees of 
freedom” of the problem, regardless of 
the value of the parameters.

Implication of characteristic rank  
on matrix completion
We can also look at the characteristic 
rank from the following point of view. 
Consider the tangent space T ( )YMr  
to the manifold Mr  at the point 

M .Y VW r!= <  We have that

T X

T X

rank( ( )) ( ( )) ( )

( ) .

dim dim

dim

Y

Y
M

M

r

r +

iD = +

- ^ h  
 (3)

The relation (3) can be explained as 
follows. Generically, the image of the 
considered mapping VW X+<  forms a 
smooth manifold in the image space, 
at least locally. The tangent space to 
this manifold at the considered point 
is the sum of the tangent space to Mr  
(from the parameterization )VW<  and 
the linear space X  in the image space. 
On the other hand, this tangent space 

is generated by columns of the Jaco-
bian matrix ( )iD  (or, in other words, 
by the differential of the mapping), 
and its dimension is equal to the rank 
of ( ) .iD  Then, the right-hand side of 
(3) is the usual formula for the dimen-
sion of the sum of two linear spaces 
T ( )YMr  and X. Hence, from (3) and 
the definition of the characteristic rank 
(2), we have that

 
r T X

T X)

( ( )) ( )

( ( ) .

dim dim

inf dim

Y

Y
Y

M

M
M

r

r
r +

= +

-
!
" ,  (4)

By Sard’s theorem [5], we have that 
the image of the set H  by the mapping 

VW X7i +<  has the Lebesgue mea-
sure zero if and only if r .n n1 21  That 
is, if r ,n n1 21  generically, the problem 
of reconstructing a matrix of rank r 
by observing its entries , ( , )M i jij !X 
is unsolvable. By generically we mean 
that the set of rank-r solutions with 
components matching , ( , )M i jij !X 
has the Lebesgue measure of zero in the 
corresponding vector space of dimen-
sion m.

In other words, if the characteristic 
rank is smaller than the dimension n n1 2  
of the image space, any solution of rank 
r is unstable: this means that arbitrarily 
small changes of the data values Mij  
make the rank-r solution unattainable. 
Note that the characteristic rank is a 
function of the index set Ω and does not 
depend on the observed values .Mij  In 
particular, because of (4) we have that 
r n n1 21  if m ( ) .r n n r1 22 + -  For 
example, if , ,n n r10 31 2= = =  we have 
r 1001  if m ( ) .3 10 10 3 51#2 + - =  
Since the characteristic rank is the 
dimension of the image of the mapping, 
if it is smaller than the dimension n n1 2  
of the image space, then it is “thin,” i.e., 
of measure zero in the image space.

Well-posedness condition
By the preceding discussion, we have 
that if

 T X( ) { },Y 0Mr + =  (5)

at least for one point M ,Y r!  then

 r T X( ( )) ( ) .dim dimYMr= +  (6)

Conversely, if (6) holds, condition (5) is 
satisfied for all MY r!  except for a set 

of measure zero in M .r  Condition (5) 
implies local identifiability at Y. Generi-
cally, the matrix completion problem is 
locally identifiable if and only if condi-
tion (6) holds, which is referred to as the 
well-posedness condition in [6]. Figure 1  
illustrates the point. Generically, the 
intersection of T ( )YMr  and X  gives 
the tangent space to the intersection of 
Mr  and X. When the intersection of 
T ( )YMr  and X  is {0}, we have well-
posedness and local uniqueness.

Simple example
Here, we illustrate the characteristic rank 
using a simple example of a two-by-two 
rank-one matrix ,M vw= <  with par-
tial observations at {( , ), ( , )} .1 1 2 2X=  
Then,

,X x
x0
021

12
= ; E

( , , , , , ) .v v w w x x1 2 1 2 12 21i =  We have

( )
( )

.

vw X

w
w

w
w

v

v
v

v
0
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0
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0

0

0
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D =
+
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<

R
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S
S
S
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It  can be ver i f ied that rank 
( ( )) 4iD =  for almost every ;!i H  
thus, r  = 4. Consider a possible rank-
one solution to this problem. The 
tangent space of the rank-one mani- 
fold T M( ( )) ,dim 2 2 1 3r = + - =  and 

rX) X( ; ( ( )) ( ),dim dim dimT M2 r1= +  
and the well-posedness condition (6)  

X

Mr

(Y )

FIGURE 1. The well-posedness condition for the 
matrix completion problem.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 14,2021 at 02:35:13 UTC from IEEE Xplore.  Restrictions apply. 



128 IEEE SIGNAL PROCESSING MAGAZINE   |   March 2021   |

is not satisfied. Indeed, the rank-one 
solution to this problem is not unique: 
i t  can be any ,x x c12 21 =  where c 
i s  the product of the observed diag-
onal elements.

On the other hand, if {( , ),1 1X=  
( , ), ( , )},2 2 11

,X x
0
0

0
22

= ; E
( , , , , ) .v v w w x1 2 1 2 22i =  We have

( )
( )

.

vw X
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w
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It can be verified that rank( ( )) 4iD =  
for almost every ,!i H  and thus 
r .4=  The rank of the tangent space is 

;2 2 1 3+ - =  the dimension of X  is  
one. Thus, r T M X( ( )) ( ),dim dimr= +  
and the well-posedness condition (6) 
is satisfied. Indeed, the solution to this 
matrix completion problem is unique.

Checking conditions
Although the preceding simple exam-
ple is easy to check, evaluating the 

characteristic rank in a closed form is 
not always easy for larger instances. 
Nevertheless, the rank of the Jacobian 
matrix can be computed numerically, 
and hence condition (6) can be veri-
fied for a considered index set Ω and 
rank r. Clearly, local identifiability is a 
necessary condition for global identifi-
ability (i.e., for the global uniqueness 
of the solution). There is an example in 
[11] that shows that local identifiabil-
ity does not imply global identifiabil-
ity. Assuming that all observed entries 
are different than zero, necessary and 
sufficient conditions for global identi-
fiability are known when r = 1. Those 
conditions are the same for local iden-
tifiability (see [6] for more details). 
Giving necessary and sufficient con-
ditions for global identifiability for a 
general r and Ω could be too difficult 
and out of reach. On the other hand, 
the simple dimensionality condition (6) 
gives a verifiable condition, at least for 
local identifiability.

Tensor decomposition

Invoking characteristic rank  
on three-way tensor
Here, we briefly discuss local identifi-
ability for tensor decomposition. For 

three-way tensor recovery, we can con-
sider the mapping

 G : ( , , ) , , .A B C A B Cr 7 " ,  (7)

Similar to (2), the characteristic rank r  
of the mapping is given by the maximal 
rank of its Jacobian matrix, and it has 
generic properties similar to the ones 
discussed for the matrix completion 
problem. Note that r  is always less than 
or equal to ( ) .r n n n 21 2 3+ + -  This 
follows by counting the number of ele-
ments in (A, B, C) and making correc-
tions for the scaling factors.

The model ( , , , )n n n r1 2 3  is generi-
cally locally identifiable if and only if 
the following condition for the charac-
teristic rank holds:

 r ( ) .r n n n 21 2 3= + + -  (8)

The condition (8) is necessary for 
generic global identification and can 
be numerically verified by comput-
ing the rank of the Jacobian matrix of 
the mapping G .r  Let us note that in a 
similar spirit, it is also possible to give 
conditions for the local identifiability 
of the tensor completion problem when 
only a set of observed values of the ten-
sor components is available (i.e., ten-
sor completion problems). To do so, we 
need to set up an appropriate mapping 
and study the associated characteristic 
rank. We can refer to [2, Sec. 3.2] and 
the references therein for a discussion of 
the uniqueness (identifiability) of ten-
sor rank decompositions. For the tensor 
completion problem, local identifiabil-
ity does not imply global identifiability, 
even in the rank-one case (e.g., [9]).

Computational example
Here, we present a numerical example 
to illustrate how to use the characteristic 
rank to study a three-way tensor’s com-
pletion problem. Consider the case where 
the tensor entries are randomly sampled. 
Assume the size of each dimension of 
the tensor is n, and thus the size of the 
tensor is .Rn n n# #  The proportion of the 
observed entries is p, and the total num-
ber of observed entries is m ,pn3= ^ h  
where x^ h is the ceiling function for 
rounding up to the nearest integer. For 
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each p, we randomly choose m observa-
tions from the tensor. For the reported 
experiments, we used , ,n 2 10f=  
and . , . , , . .p 0 02 0 04 0 6f=  To validate 
the theoretical results, we perform 300 
random trials for each combination of n 
and p. For each trial, we generate a, b, 
c Rn!  such that the entries of the vec-
tor are independent identically distrib-
uted normal random variables with zero 
mean and unit variance. With a, b, and 
c and index set Ω, the Jacobian matrix 
of a b c X% % +  can be computed, where 
[ ] , ( , , ) .X i j k0ijk !X=  If the rank of the 
Jacobian equals ,n n m3 2 3- + -  we 
conclude that the well-posedness condi-
tion is satisfied for the instance [see (6)].

Finally, we report the proportion 
of the random instances satisfying the 
condition. As mentioned, the neces-
sary condition for well-posedness is 
that m n3 2$ -  [see (8)]. This requires, 
approximately, ( ) / .p n n3 2 3$ -  Fig-
ure 2 gives the probability that well-
posedness is satisfied for rank-one 
tensors under different tensor sizes 
and sampling proportions. Note that 
the empirical results match the theo-
retical prediction well. Moreover, it can  
be observed that as the tensor size 
becomes large, the well-posedness con-
dition is satisfied with a small sam-
pling proportion.

What we have learned
In this lecture note, we explained 
how to use a fundamental concept, 
namely, the characteristic rank, to 
answer essential questions, such as 
identifiability, when given observa-
tions of a low-rank structure (e.g., 
low-rank mat r ices and low-rank 
three-way tensors). The framework 
involved a few steps. We first found 
the map that associated the truth to 
the observations, then studied the 
Jacobian matrix of the map to find 
the characteristic rank and compared 
the characteristic rank with respec-
tive conditions that were problem 
specific (such as the well-posed-
ness condition). Once the concepts 
are understood, the analysis usu-
ally involves only basic multivari-
ate calculus. The benefit is that the 

tool can generally be applicable to 
study other problems with low-rank 
structures. We have considered cases 
without observation noise to illus-
trate the principle. When there are 
additive Gaussian noises, statistical 
goodness-of-fit tests can be devel-
oped based on the framework [7].
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