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Alexander Shapiro, Yao Xie, and Rui Zhang

n this lecture note, we discuss a fun-

damental concept, referred to as the

characteristic rank, that suggests a
general framework for characterizing the
basic properties of various low-dimen-
sional models used in signal processing.
We illustrate this framework through
two examples—matrix and three-way
tensor completion problems—and con-
sider basic properties, including the iden-
tifiability of matrices and tensors, given
partial observations. We consider cases
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On the Characteristic Rank for
Matrix and Tensor Complefion

without observation noise to illustrate
the principle.

Relevance

The characteristic rank provides a funda-
mental tool for determining the “order” of
low-rank structures, such as the rank of
low-rank matrices and the rank of three-
way tensors. The concept of characteristic
rank was introduced in [6], where it was
used to establish necessary and sufficient
conditions to determine the “recoverabil-
ity” of low-rank matrices. The character-
istic rank can also be generally applied
to determine the “intrinsic” degrees of
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freedom in other low-rank manifold
structures. Such instances include deter-
mining the number of hidden nodes in
one-layer neural networks and establish-
ing the number of sources in blind demix-
ing problems, as shown in [7].

Prerequisites

To better comprehend the concepts dis-
cussed in this lecture note, readers are
expected to have a good background
in linear algebra, multivariate calculus,
and basic concepts of measure theory,
which we will explain whenever we
run into them. Suggested references are
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[4] and [3]. In the following, we review
some basic concepts.

Manifold of low-rank matrices
Consider the set of n1 X ny matrices of
rank r, denoted /M. Note that the rank
is no larger than the dimension of the
matrix: r <min{ni,n2}. It is known
that such a set of rank-r matrices M,
forms a smooth manifold in the space
R™>*™ and the dimension of the mani-
fold is given by

dim(M,)=r(ni+n2—r). (D

A matrix A € M, canbe represented in
the form A = VW', where V and W are
matrices of the respective order ni X r
and n» X r, both of full column rank r.
Thus, we can view (V, W) as a param-
etrization of M. Note that the number
of involved parameters is r(ni + n2),
which is larger than the dimension of
M,; this is because V and W in the pre-
ceding representation are not unique.

Three-way tensor

Another example we will consider is the
(three-way) tensor X € R Tt is
said that X hasrank one if X =a-b - c,
where a, b, and ¢ are vectors of the
respective dimensions 71,712, and n3
and “o” denotes the vector outer prod-
uct. That is, every element of ten-
sor X can be written as the product
Xijx = aibjck. The smallest number r
such that tensor X can be represented
as the sum r of rank-one tensors is
called the rank of X. The correspond-
ing decomposition is often referred to
as the (tensor) rank-decomposition or
the canonical polyadic decomposition
[8], [10]. We would like to remark that
our method can apply to higher-order
tensors, as well.

Problem statement

Matrix completion

Let us start by considering the problem
of reconstructing an n; X n2 matrix
of a given rank r, while observing its
entries My, (i,j) € Q, for an index set
Qc{l,..,n}x{l1,..,n2} of cardinal-
ity m=1Q1. This is known as the exact
matrix completion problem [1], which

is now well studied. The conditions for
recovery have been derived assuming
that entries are missing at random, and
the performance guarantees are given in
a probabilistic sense. Here, we aim to
approach the problem from a geomet-
ric perspective, which can possibly lead
to a deterministic and more intuitive
answer. There are two basic difficulties
associated with this problem, namely,
the existence of the solution and the
uniqueness of the solution; that is,
whether such a matrix does exist and if
so, whether it is unique. Fundamentally,
these questions are related to the iden-
tifiability of low-rank matrices, which
we define as follows.

Definition 1: Local identifiability of
low-rank matrix completion problem
Let Y € M, be such that [Y];= Mj,
(i,j) € Q. [Thus, rank(Y) = r.] It is said
that the matrix completion problem is
locally identifiable at Y if there exists
a neighborhood N C R"*™ of Y such
that for any Y€ N and Y’ #Y with
[Y']5 =M, (i,)) € Q, the rank of Y’ is
different from r.

Uniqueness of tensor decomposition

Uniqueness is the key question relat-
ed to tensor rank decomposition.
Here, we consider the following ten-
sor decomposition problem: given a
three-way tensor X, we would like
to find the associated matrix fac-
tors A, B, and C of the respective
order ni Xr,naXr and n3 Xr such
that X =[A, B,C], meaning that
X=Xi-1a'b'>c', with a', b’ and ¢’
being the ith columns of the respec-
tive matrices A, B, and C. Clearly, the
decomposition X =[A, B, C] is invari-
ant with respect to permutations of
the rank-one components and rescal-
ing of the columns of matrices A, B,
and C by factors Ai;, A2, and A3; such
that A2z =1,i=1,...,r. We first
introduce the global identifiability and
the local identifiability of the tensor.

Definition 2: Global identifiability

of tensor decomposition

The decomposition X =[A,B,C] (glo-
bally) identifies rank r if it is unique; i.e.,
if X=[A",B’,C’] is another decom-
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position of tensor X, with matrices
A’, B',C’, being of the respective order
ni Xr',n2Xr',n3Xr and ' =r, then
both decompositions are the same up to
the corresponding permutation and rescal-
ing. It is said that the rank-r decomposi-
tion is generically identifiable if for almost
every (A,B,C) € R"™" X R"™*" x R"™*7,
the corresponding tensor X =[A, B, C]
identifies rank r.

Definition 3: local identifiability

of tensor decomposition

We say that (A,B,C) € R"™" x R"™*" x
R™" is locally identifiable if there is
a neighborhood N of (A, B, C) such
that (A",B',C’)EN and [A",B',C']
=[A,B,C| imply that (A",B’,C’) can
be obtained from (A, B, C) by the cor-
responding rescaling. We say that
model (n1,n2,n3,r) is generically
locally identifiable if almost every
(A,B,C) € R"™" X R™" x R"™*”isloc-
ally identifiable.

Like the matrix completion prob-
lem, it is also possible to consider a
tensor completion problem: recon-
structing a tensor of a given rank
when only a subset of the entries is
observed. The respective local and
global identifiability concepts can be
similarly defined.

Solutions
Matrix completion

Reparameterization of mafrix
complefion problem

Let us start with the matrix completion
problem by using the following parame-
trization. Consider the set X of n1 X n2
matrices X such that [X]; =0, (i,j) € Q
(when adding such matrices to the solu-
tions, the obtained matrices remain con-
sistent with the observations). We can
view X as a linear space of dimension
dim(X) = n1n2 — m. Then, the matrix
completion problem has a solution if and
only if there exist respective matrices V
and W of rank r and X € X such that
(VW' +X]y=M;.(i, )€Q. Let ©
be the set of vectors 6 formed from the
components of (V, W, X). Note that © is
a subset of the vector space of dimen-
sion r(ni+ n2) + niny—m.
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Characferisfic rank

The matrix completion parametrization
can be considered as a mapping that
assigns matrix VW' + X to a vector
of parameters 0 =(V,W,X) € 0. With
this mapping, we can define the so-
called Jacobian matrix A(8), which is
the matrix of the partial derivatives of
VW' + X with respect to components
of vector 6. Then, we associate this
mapping with its characteristic rank,
defined as

U= max {rank (A (6))}. 2)

Note that the characteristic rank r does
not depend on the order in which the
parameters are arranged.

The characteristic rank has the fol-
lowing properties: the rank of A(6) is
equal to v for almost every 6 € ©. By
almost every we mean that the set of
such 6 €O for which rank(A(6)) #
has a Lebesgue measure of zero. More-
over, the set {6 € O :rank(A(6))= r}
forms an open subset of ©. It follows
that the rank of A(6) is constant and
equals r in a neighborhood of almost
every 6 € 0. This result implies that
the characteristic rank is an intrinsic
quantity associated with the “degrees of
freedom” of the problem, regardless of
the value of the parameters.

Implication of characteristic rank

on mafrix completion

We can also look at the characteristic
rank from the following point of view.
Consider the tangent space T ar(Y)
to the manifold M, at the point
Y =VW' € M,. We have that

rank (A (0)) = dim (7 m,(Y)) + dim (X))
—dim(7Tm () NX). 3)

The relation (3) can be explained as
follows. Generically, the image of the
considered mapping VW' + X forms a
smooth manifold in the image space,
at least locally. The tangent space to
this manifold at the considered point
is the sum of the tangent space to M,
(from the parameterization VW) and
the linear space X in the image space.
On the other hand, this tangent space

is generated by columns of the Jaco-
bian matrix A(6) (or, in other words,
by the differential of the mapping),
and its dimension is equal to the rank
of A(6). Then, the right-hand side of
(3) is the usual formula for the dimen-
sion of the sum of two linear spaces
T m.(Y) and X. Hence, from (3) and
the definition of the characteristic rank
(2), we have that

t=dim (7 m,(Y)) + dim (X)
- Yien/a {dm(TmNX)} @)

By Sard’s theorem [5], we have that
the image of the set © by the mapping
6— VW' + X has the Lebesgue mea-
sure zero if and only if v <ninz. That
is, if v <n1na, generically, the problem
of reconstructing a matrix of rank r
by observing its entries My, (i,j) € Q
is unsolvable. By generically we mean
that the set of rank-r solutions with
components matching My, (i,j) € Q
has the Lebesgue measure of zero in the
corresponding vector space of dimen-
sion m.

In other words, if the characteristic
rank is smaller than the dimension nn2
of the image space, any solution of rank
r is unstable: this means that arbitrarily
small changes of the data values M;
make the rank-r solution unattainable.
Note that the characteristic rank is a
function of the index set () and does not
depend on the observed values M;;. In
particular, because of (4) we have that
r<minp if m>r(mi+n2—r). For
example, if n1 = n2 =10, r = 3, we have
r <100 if m>3x(10+10—-3)=51.
Since the characteristic rank is the
dimension of the image of the mapping,
if it is smaller than the dimension nin2
of the image space, then it is “thin,” i.e.,
of measure zero in the image space.

Wellposedness condifion
By the preceding discussion, we have
that if

TmMNX={0}, ®)

at least for one point Y € M,, then
r=dim(7m, (V) +dim(X).  (6)

Conversely, if (6) holds, condition (5) is
satisfied for all Y € M, except for a set
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of measure zero in M,. Condition (5)
implies local identifiability at Y. Generi-
cally, the matrix completion problem is
locally identifiable if and only if condi-
tion (6) holds, which is referred to as the
well-posedness condition in [6]. Figure 1
illustrates the point. Generically, the
intersection of Ty, (Y) and X gives
the tangent space to the intersection of
M, and X. When the intersection of
Tu, (Y) and X is {0}, we have well-
posedness and local uniqueness.

Simple example

Here, we illustrate the characteristic rank
using a simple example of a two-by-two
rank-one matrix M =vw', with par-
tial observations at Q ={(1,1),(2,2)}.
Then,

0 xi2
x21 O

>

0= (v1,v2,w1,w2,X12,x21). We have

.
A©) = a(vvge—i-X)
wi 0 vi O

It can be verified that rank
(A(6))=4 for almost every € 0;
thus, v = 4. Consider a possible rank-
one solution to this problem. The
tangent space of the rank-one mani-
fold dim(7 (M,))=2+2—-1=3, and
dim (X) = 2; v <dim(T(M,)) + dim (X),
and the well-posedness condition (6)

T, (Y)

FIGURE 1. The well-posedness condition for the
matrix completion problem.
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is not satisfied. Indeed, the rank-one
solution to this problem is not unique:
it can be any xpx21=c, where ¢
is the product of the observed diag-
onal elements.

On the other hand, if Q=/{(1,1),
(1,2),(2, D},

00

X= 0 x2

>

6 = (vi,v2,wi,w2,x22). We have

dvw' +
Agy=20w_+X) . X)
wi 0 vi 00
(w2 0 0 v O
0 wiva 0 Of
0 w2 0 val

It can be verified that rank(A(8)) =4
for almost every 6€©, and thus
r=4. The rank of the tangent space is
2+ 2 —1=3; the dimension of X is
one.Thus, r = dim (7 (M,)) + dim (X)),
and the well-posedness condition (6)
is satisfied. Indeed, the solution to this
matrix completion problem is unique.

Checking conditions
Although the preceding simple exam-
ple is easy to check, evaluating the

characteristic rank in a closed form is
not always easy for larger instances.
Nevertheless, the rank of the Jacobian
matrix can be computed numerically,
and hence condition (6) can be veri-
fied for a considered index set () and
rank r. Clearly, local identifiability is a
necessary condition for global identifi-
ability (i.e., for the global uniqueness
of the solution). There is an example in
[11] that shows that local identifiabil-
ity does not imply global identifiabil-
ity. Assuming that all observed entries
are different than zero, necessary and
sufficient conditions for global identi-
fiability are known when r = 1. Those
conditions are the same for local iden-
tifiability (see [6] for more details).
Giving necessary and sufficient con-
ditions for global identifiability for a
general r and Q could be too difficult
and out of reach. On the other hand,
the simple dimensionality condition (6)
gives a verifiable condition, at least for
local identifiability.

Tensor decomposition

Invoking characterisfic rank

on three-way tensor

Here, we briefly discuss local identifi-
ability for tensor decomposition. For

Sample Proportion p

— Necessary Condition
for Well-Posedness

0.8

0.6

-04

-0.2

FIGURE 2. Recovering a three-way tensor with missing data: the probability of well-posedness being
satisfied versus a theoretical prediction. The blue line corresponds to p = (31— 2)/n% the yellow
and the orange lines correspond to the sampling proportion whereby the well-posedness condition is
empirically satisfied with a probability of 90% and 99.9%.

IEEE SIGNAL PROCESSING MAGAZINE | March 2021 |

three-way tensor recovery, we can con-
sider the mapping

Gr:(A,B,C) ~[A,B,C]. @)
Similar to (2), the characteristic rank r
of the mapping is given by the maximal
rank of its Jacobian matrix, and it has
generic properties similar to the ones
discussed for the matrix completion
problem. Note that t is always less than
or equal to r(ni+n2+n3—2). This
follows by counting the number of ele-
ments in (A, B, C) and making correc-
tions for the scaling factors.

The model (n1,n2,n3,r) is generi-
cally locally identifiable if and only if
the following condition for the charac-
teristic rank holds:

r=r(ni+n2+nz—2). ®)
The condition (8) is necessary for
generic global identification and can
be numerically verified by comput-
ing the rank of the Jacobian matrix of
the mapping G,. Let us note that in a
similar spirit, it is also possible to give
conditions for the local identifiability
of the tensor completion problem when
only a set of observed values of the ten-
sor components is available (i.e., ten-
sor completion problems). To do so, we
need to set up an appropriate mapping
and study the associated characteristic
rank. We can refer to [2, Sec. 3.2] and
the references therein for a discussion of
the uniqueness (identifiability) of ten-
sor rank decompositions. For the tensor
completion problem, local identifiabil-
ity does not imply global identifiability,
even in the rank-one case (e.g., [9]).

Computational example

Here, we present a numerical example
to illustrate how to use the characteristic
rank to study a three-way tensor’s com-
pletion problem. Consider the case where
the tensor entries are randomly sampled.
Assume the size of each dimension of
the tensor is n, and thus the size of the
tensor is R"*"*". The proportion of the
observed entries is p, and the total num-
ber of observed entries is m= [ pn?],
where [x] is the ceiling function for
rounding up to the nearest integer. For
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each p, we randomly choose m observa-
tions from the tensor. For the reported
experiments, we used n=2,...,10
and p=0.02,0.04,...,0.6. To validate
the theoretical results, we perform 300
random trials for each combination of n
and p. For each trial, we generate a, b,
¢ € R" such that the entries of the vec-
tor are independent identically distrib-
uted normal random variables with zero
mean and unit variance. With a, b, and
¢ and index set (), the Jacobian matrix
of a+b-c+ X can be computed, where
[X1i# = 0,(i,j, k) € Q. If the rank of the
Jacobian equals 3n—2+ nd—m, we
conclude that the well-posedness condi-
tion is satisfied for the instance [see (6)].

Finally, we report the proportion
of the random instances satisfying the
condition. As mentioned, the neces-
sary condition for well-posedness is
that m = 3n — 2 [see (8)]. This requires,
approximately, p>(3n—2)/n’. Fig-
ure 2 gives the probability that well-
posedness is satisfied for rank-one
tensors under different tensor sizes
and sampling proportions. Note that
the empirical results match the theo-
retical prediction well. Moreover, it can
be observed that as the tensor size
becomes large, the well-posedness con-
dition is satisfied with a small sam-
pling proportion.

What we have learned

In this lecture note, we explained
how to use a fundamental concept,
namely, the characteristic rank, to
answer essential questions, such as
identifiability, when given observa-
tions of a low-rank structure (e.g.,
low-rank matrices and low-rank
three-way tensors). The framework
involved a few steps. We first found
the map that associated the truth to
the observations, then studied the
Jacobian matrix of the map to find
the characteristic rank and compared
the characteristic rank with respec-
tive conditions that were problem
specific (such as the well-posed-
ness condition). Once the concepts
are understood, the analysis usu-
ally involves only basic multivari-
ate calculus. The benefit is that the

tool can generally be applicable to
study other problems with low-rank
structures. We have considered cases
without observation noise to illus-
trate the principle. When there are
additive Gaussian noises, statistical
goodness-of-fit tests can be devel-
oped based on the framework [7].
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