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CONNECTIVITY PROPERTIES OF THE SET OF STABILIZING
STATIC DECENTRALIZED CONTROLLERS\ast 

HAN FENG\dagger AND JAVAD LAVAEI\dagger 

Abstract. The NP-hardness of the optimal decentralized control (ODC) problem is reflected
in the properties of its feasible set. We study the complexity of the ODC problem through an
analysis of the set of stabilizing static decentralized controllers and show that there is no polynomial
upper bound on its number of connected components. In particular, it is proved that this number
is exponential in the order of the system for a class of problems. Since every point in each of these
components is the unique solution of the ODC problem for some quadratic objective functional, the
results of this work imply that, without prior knowledge for initialization, local search algorithms
cannot solve the ODC problem to global optimality for all decentralized control structures. In an
effort to understand the connection between the geometric properties of the feasible set of the ODC
problem and the control structure, we further identify decentralized structures that admit tractable
connectivity properties, using a combination of the Routh--Hurwitz criterion and Lyapunov stability
theory.
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1. Introduction. Classical state-space solutions to optimal centralized control
problems do not scale well as the dimension increases [11]. Moreover, structural
constraints such as locality and delay are ubiquitous in real-world controllers. The
optimal decentralized control (ODC) problem has been proposed in the literature to
bridge this gap. The model has found wide applications in electric power systems
and robotics [28, 10, 35, 27]. On the one hand, ODC can have nonlinear optimal
solutions even for linear systems and is NP-hard in the worst case [39, 6]. On the
other hand, the existence of dynamic structured feedback laws is completely captured
by the notion of fixed modes [33], and several works have discovered structural con-
ditions on the system and/or the controller under which the ODC problem admits
tractable solutions. The conditions include spatial invariance [2], partial nestedness
[32], positiveness [31], and quadratic invariance [23]. More recently, the system level
approach [36] has convexified structural constraints at the expense of working with a
series of impulse response matrices. Promising approximation [13, 1, 26] and convex
relaxation techniques [34, 8, 15, 9] also exist in the literature.

A recent line of research, initiated in the machine learning community, suggests
using nonlinear programming methods based on local search for the optimal con-
trol problems [14]. These methods have been applied to instances of ODC to ob-
tain approximate solutions [37] and to promote sparsity in controllers [24]. Local
search methods are well-studied for convex problems, and they normally come with
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optimality guarantees [8]. However, when the problem is nonconvex, these methods
may converge to a saddle point or to a local minimum [5]. Local search algorithms are
effective: (i) when they are initialized at a point close enough to the optimal solution,
or (ii) when there is no spurious local optimum and it is possible to escape saddle
points [17, 21, 40, 20]. These conditions are not evidently verifiable for ODC and the
question whether local search is effective for ODC remains unanswered.

This paper shows that the chances of success for the global convergence of local
search methods applied to a general ODC problem are theoretically slim. Specifically,
we prove that the feasible set of the ODC problem in the static case, which includes
all structured static controllers that stabilize the system, can be not only nonconvex
but also disconnected where the number of connected components grows exponen-
tially in the order of the system. Since any point in the feasible set is the unique
globally optimal solution of ODC for some quadratic objective functional, this result
implies that no reformulation of the problem with a smooth change of variables could
convexify the problem. Moreover, if one seeks to solve a hard instance of the ODC
problem through local search, the algorithm needs to be initialized an exponential
number of times unless some prior information about the location of the solution is
available in order to start in the correct connected component. This result contrasts
with the recent findings in [14] and qualifies the applicability of local search methods
in optimal control problems.

Although the number of connected components is shown to be exponential in
this work, we also demonstrate that favorably structured systems can have a single
connected component. In particular, it is proved that the set of static stabilizing
controllers is connected for damped systems no matter what the control structure is.
Moreover, a bound on the number of connected components is provided in the scalar
case. For block structured systems with a sufficient number of free elements, we
develop a series of equivalence relations that describe the exact number of connected
components of structured stable matrices.

This work is related to several papers in the literature. The set of stabilizing
controllers has been studied from many angles. The work [30] parametrizes the set
of stable state-feedback controllers under no structural constraints. The paper [29]
studies the connectivity of stable linear systems and concludes that minimal single-
input single-output systems of order n have at most n + 1 connected components,
while stable and minimal multi-input multi-output systems have only one connected
component. The work [3] investigates what types of sparse patterns can sustain stable
dynamics using graph theory. For systems with a few parameters, the number of
stability regions can be bounded by the number of root-invariant regions using the D-
decomposition method [18, 19]. However, the connectivity of decentralized stabilizing
controllers, especially for multi-input multi-output systems, lacks a systematic study.

The remainder of this paper is organized as follows. Notation and problem for-
mulations are given in section 2. We derive elementary connectivity properties of
the set of stabilizing controllers and bound the number of connected components for
scalar controllers in section 3. Section 4 examines a subclass of decentralized control
problems for which the number of connected components is exponential and discusses
the implications of this result on the number of locally optimal solutions of ODC. Sec-
tion 5 extends the result to a board class of controllers with a tridiagonal-containing
structure and shows that the set of stabilizing controllers with a bounded norm has an
exponential number of connected components. Section 6 proves that highly damped
systems admit a connected set of decentralized controllers. The section further dis-
cusses how this property could be used to approximate the solution of the ODC
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2792 HAN FENG AND JAVAD LAVAEI

problem. Section 7 describes the connectivity properties of structured stable matrices
with zero blocks. Concluding remarks are made in section 8.

2. Problem formulation. Consider the linear time-invariant system

\.x(t) = Ax(t) +Bu(t),

y(t) = Cx(t),

where A \in Rn\times n, B \in Rn\times m, and C \in Rp\times n are real matrices of compatible sizes.
The vector x(t) is the state of the system and y(t) is the output. We focus on the static
case, where the control input u(t) is to be determined via a static output-feedback
law u(t) = Ky(t) with the gain K \in Rm\times p such that some measure of performance is
optimized. Since the analysis to follow is on the feasible set, the initial state (being
deterministic or stochastic) and the objective function (being quadratic or some other
function of the system's signals) are unimportant. With no loss of generality, we
assume that the initial state x(0) = x0 is normally distributed with zero mean and
unit variance. The quadratic performance measure is defined by

J\lambda (K) = E
\int \infty 

0

e - \lambda t
\bigl[ 
x\top (t)Qx(t) + 2x\top (t)Du(t) + u\top (t)Ru(t)

\bigr] 
dt,(2.1)

where the matrix L =
\bigl[ Q D

D\top R

\bigr] 
is positive semidefinite and R is positive definite. We

use the notation L \succeq 0 and R \succ 0 to denote positive semidefiniteness and positive
definiteness, respectively. The discount factor \lambda is nonnegative. The expectation is
taken over x0. The closed-loop system is

\.x(t) = (A+BKC)x(t).

A matrix is stable, or equivalently Hurwitz, if all its eigenvalues lie in the open left
half plane. K is said to stabilize the system if A + BKC is stable. All the matrices
considered in this work are real-valued unless otherwise noted. The objective is to
study the set of structured stabilizing controllers

\scrK \scrS = \{ K : A+BKC is stable,K \in \scrS \} ,(2.2)

where \scrS \subseteq Rm\times p is a linear subspace of matrices, often specified by fixing certain
entries of the matrix to zero. Decentralized and distributed controllers could be
specified by the set \scrS with a prescribed sparsity pattern. The set of sparse stable
matrices

\scrA \scrT = \{ A : A stable and A \in \scrT \} (2.3)

is a special case of (2.2), where \scrT \subseteq Rn\times n is a linear subspace of matrices. When \scrT 
is a linear subspace of sparse matrices, we represent \scrT with a sparsity pattern where
\ast denotes the positions of entries that can be nonzero. As an example, the set of
tridiagonal matrices can be represented by the following sparsity pattern:\left[            

\ast \ast 0 \cdot \cdot \cdot \cdot \cdot \cdot 0

\ast \ast \ast 
. . .

...

0 \ast \ast 
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . . \ast 
0 \cdot \cdot \cdot \cdot \cdot \cdot 0 \ast \ast 

\right]            
.
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Let I\scrT \in \scrT denote the indicator of the sparsity pattern of \scrT so that I\scrT has an entry 1
at all positions of \scrT that can be nonzero and 0 otherwise. The connectivity properties
of \scrK \scrS and \scrA \scrT will be studied under Euclidean topology. We use \partial \scrK \scrS to denote the
boundary of the set \scrK \scrS . The notation diag(a1, . . . , an) denotes the n-by-n diagonal
matrix with diagonal entries a1, . . . , an. We write tr(A) for the trace of the matrix A
and \| A\| 2 for the 2-norm of A. The notation E[X| Y ] denotes the expectation of the
random variable X conditioned on the random variable Y .

Geometrically, the set of stable matrices is an open nonconvex cone with the
origin removed. The sets \scrK \scrS and \scrA \scrT are obtained by slicing this open cone of stable
matrices along an affine subspace and a linear subspace, respectively. The slicing
affects the number of connected components for each of these sets and thereby reflects
the tractability of the ODC problem.

3. Connectivity properties in special cases. In this section, we prove global
geometric properties of the stabilizing set \scrK \scrS for certain choices of B,C, and \scrS using
elementary arguments.

The stability of matrices can be characterized in different ways. Lyapunov's char-
acterization [12, section 4.1] states that a matrix M is stable if and only if there is a
solution P \succ 0 to the equation MP +PM\top +I = 0. The Routh--Hurwitz criterion [4,
section 11.17] states that a matrix is stable if and only if the coefficients of its char-
acteristic polynomial satisfy a set of polynomial inequalities. These basic techniques
allow us to study the stabilizing set \scrK when there are no structural constraints and
full state measurements.

Lemma 3.1. Assume that \scrS = Rm\times p and C = I. The set \scrK \scrS is connected but
generally nonconvex.

Proof. Observe that \scrK \scrS is the continuous image of the set

\scrH = \{ (R,P ) : AP +BR+ PA\top +R\top B\top =  - I, P \succ 0\} 

through the map (R,P ) \rightarrow RP - 1. Moreover, \scrH is connected since it is the intersection
of a linear space and a convex cone. The map is well-defined as P is positive definite;
it is also surjective from the Lyapunov's characterization: whenever A+BK is stable,
there is a matrix P \succ 0 such that (A + BK)P + P (A + BK)\top =  - I and the tuple
(R,P ) can be mapped to the desired K under the formula KP = R.

To show that \scrK \scrS is generally nonconvex, consider the second-order system

A =

\biggl[ 
0 1

 - a0  - a1

\biggr] 
, B =

\biggl[ 
0 b0
1 b1

\biggr] 
,K =

\biggl[ 
k11 k12
k21 k22

\biggr] 
,

where A and the first column of B are in the canonical form to ensure controllability.
The closed-loop matrix is equal to

A+BK =

\biggl[ 
b0k21 1 + b0k22

 - a0 + k11 + b1k21  - a1 + k12 + b1k22

\biggr] 
.

To analyze the stability, we use the Routh--Hurwitz criterion and write

\scrK \scrS = \{ K : tr(A+BK) < 0, det(A+BK) > 0\} .

Notice that \scrK \scrS is not convex in general since its intersection with the lower dimen-
sional subspace k21 = 0 is given by
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2794 HAN FENG AND JAVAD LAVAEI\biggl\{ 
K =

\biggl[ 
k11 k12
k21 k22

\biggr] 
:  - a1 + k12 + b1k22 < 0, (1 + b0k22)( - a0 + k11) < 0

\biggr\} 
,

which turns out to be the union of two disjoint polyhedrons if b0 \not = 0 (due to the
product in the second condition).

An implication of Lemma 3.1 is that the feasible set of the linear-quadratic opti-
mal centralized control problem is connected, which justifies the success of the local
search algorithm proven in [14] for centralized controllers. Another insightful, but
impractical, scenario is the case with B = C = I and a mostly arbitrary \scrS . This is
studied below.

Lemma 3.2. Assume that B = C = I and that \scrS contains  - I. Then, the set \scrK \scrS 
is connected.

Proof. Since \scrS is a linear subspace, we have  - \lambda I \in \scrS for every \lambda \in R. Given two
arbitrary matrices K1,K2 \in \scrK \scrS , consider the following connected path from A+K1

to A+K2:

A+K1
increase \lambda \rightarrow A+K1  - \lambda I,

K1\rightarrow K2\rightarrow A+K2  - \lambda I,

decrease \lambda \rightarrow A+K2,

where
\bullet \lambda \geq 0 is first increased to a large value;
\bullet we move from A+K1  - \lambda I to A+K2  - \lambda I via an arbitrary continuous path
between K1 and K2 in \scrS ;

\bullet \lambda is decreased eventually.
The parameter \lambda can be made so large that all matrices on the path from A+K1 - \lambda I
to A+K2  - \lambda I could be regarded as a small (on the order of K2  - K1) perturbation
of the large matrix A + K1  - \lambda I. Such small perturbation preserves the stability
condition of A+K1  - \lambda I. The proof is completed by noting that the designed path,
which connects K1 and K2, involves only controllers in \scrS and passes through only
stabilizing matrices continuously.

If the measurement matrix C is not the identity matrix, the set could become
disconnected even in the simplest case K = k \in R. This is demonstrated in the
example below. To differentiate vectors from matrices, we rewrite B as b and C as
c\top , where b and c are column vectors in Rn.

Example 1. Assume that (A, b) is controllable and c \not = 0, where A \in R3\times 3. Then,
the set \scrK can have at most two connected components. To prove this statement, with
no loss of generality we write the system in the controllable canonical form, i.e.,

A =

\left[  0 1 0
0 0 1

 - a0  - a1  - a2

\right]  , b =

\left[  00
1

\right]  , c\top =
\bigl[ 
c0 c1 c2

\bigr] 
.

The Routh--Hurwitz criterion characterizes stability with the set of inequalities

a0  - kc0 > 0,

a1  - kc1 > 0,

a2  - kc2 > 0,

(a0  - kc0) < (a2  - kc2)(a1  - kc1).
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Fig. 1. As discussed in Example 1, the set of stabilizing controllers can have two connected
components for a third-order system. Observe that there are two intervals for k that produce eigen-
values in the left-half complex plane.

Consider the quadratic function f(k) = (a2  - kc2)(a1  - kc1), which can have at most
two branches that lie above the line a0  - kc0. The intersection of these branches
with the interval defined by the first three linear inequalities leads to at most two
connected components. An example with exactly two components can be produced
by the parameters

(a0, a1, a2) = ( - 5, - 1, 1), (c0, c1, c2) = (0.85, 0.2, 0.2).

Figure 1 verifies the above result by plotting the maximum real part of the closed-loop
eigenvalues versus k.

It can be inferred from Example 1 that the coordinates of the set of stabilizing
controllers are ``one-sided."" This is not surprising since when A + BKC is stable, it
holds that tr(A+BKC) < 0. We elaborate on this result in Lemma 3.3.

Lemma 3.3. Consider the case m = p = 1. Suppose that (A, b) is controllable
and c \not = 0. Then, the scalar set \scrK \scrS cannot extend to infinity on both sides.

Proof. As before, with no loss of generality consider the canonical form

A =

\biggl[ 
0 I

 - a0 \cdot \cdot \cdot  - an - 1

\biggr] 
, b =

\biggl[ 
0
1

\biggr] 
, c\top = [c0, . . . , cn - 1].

The matrix A+ bkc\top has the characteristic polynomial

(a0  - c0k) + (a1  - c1k)x+ \cdot \cdot \cdot + (an - 1  - cn - 1k)x
n - 1 + xn = 0.

It follows from the Routh--Hurwitz criterion that the coefficients of this polynomial
must be positive. Since c \not = 0, there is some entry ci0 \not = 0 and, as a result, k is
prevented from extending to infinity on one side due to the inequality ai0  - ci0k > 0.

In what follows, we will bound the number of connected components for scalar
controllers. Compared with [19, Theorem 1], our bound is tighter under the assump-
tion of controllability. We denote by \lceil \xi \rceil the smallest integer greater than or equal to
the scalar \xi .

Theorem 3.4. Consider the case m = p = 1. Suppose that (A, b) is controllable
and c \not = 0. The scalar set \scrK \scrS can have at most \lceil n

2 \rceil connected components.
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2796 HAN FENG AND JAVAD LAVAEI

Proof. If there is no stabilizing controller in \scrS , then \scrK \scrS = \emptyset ; otherwise one can
first stabilize A with some controller k0 and then analyze the set of shifted controllers
k  - k0. As a result, without loss of generality one can assume that A is stable. We
call a controller k critical when it is on the boundary of the set stabilizing controllers,
implying the presence of a closed-loop eigenvalue on the imaginary axis. If necessary,
we replace A with A - \epsilon I for a small \epsilon > 0 so that the number of connected components
remains the same and the intervals of \scrK \scrS share no boundary points. Consider the
solution to the equation

0 =det(jwI  - A - kbc\top )

=det(jwI  - A) det(1 - kc\top (jwI  - A) - 1b)(3.1)

(the symbol j denotes the imaginary unit). Since A is stable, the first term in the
second line of (3.1) is not zero and therefore the second term must be zero. Taking
its real and imaginary parts yields

1 - k \times Re\{ c\top (jwI  - A) - 1b\} = 0,(3.2)

Im\{ c\top (jwI  - A) - 1b\} = 0.(3.3)

Equation (3.3) is of the form Im\{ f(\bfj w)
g(\bfj w)\} = 0 with g(jw) = det(jwI  - A) \not = 0; equiv-

alently, one can write Im\{ f (jw)g(jw)\} = 0, where f(jw) is a polynomial of degree
at most n  - 1, g(jw) = det(jwI  - A) is a polynomial of degree n, and the overline
denotes the complex conjugate. Im\{ f(jw)g(jw)\} is a polynomial of degree 2n - 1 in w
with only odd degree terms; it can have at most 2n - 1 real roots that are symmetric
around 0. Because Re\{ f(jw)g(jw)\} has only even degree terms, at most n distinct
pairs of the symmetric roots of (3.3) can be plugged into (3.2). This leads to at most
n critical values for the scalar k and divides the real line into at most n+ 1 intervals
of interlacing stable-unstable controller regions. At most \lceil n+1

2 \rceil of them are stable.
Note that when n+1 is odd, Lemma 3.3 rules out one interval that extends to infinity.
As a result, the upper bound can be sharpened to \lfloor n+1

2 \rfloor = \lceil n
2 \rceil .

Theorem 3.4 states that the number of connected components would grow with
the dimension of the system even in the special case m = p = 1. Our bound is tight
when n = 3 in light of Example 1.

4. Exponential subclass. One of the main results of this paper is stated below.

Theorem 4.1. There is no polynomial function with respect to the order of the
system that can serve as an upper bound on the number of connected components of
the set of decentralized stabilizing controllers.

To prove the theorem, it suffices to show the existence of a subclass of decentral-
ized control problems whose set of stabilizing controllers has an exponential number
of connected components. Our proof requires a lemma that characterizes the sta-
bility of tridiagonal matrices whose diagonal elements are mostly purely imaginary
complex numbers. Define the inertia In(G) of an n \times n matrix G as the triplet
In(G) = (\alpha (G), \beta (G), \gamma (G)), where \alpha (G), \beta (G), and \gamma (G) count the eigenvalues of G
with positive, negative, and zero real parts, respectively.
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Lemma 4.2 (from [38]). Consider the tridiagonal matrix

G =

\left[              

f1 + jg1 f2 0 \cdot \cdot \cdot \cdot \cdot \cdot 0

 - h2 jg2 f3
. . .

...

0  - h3 jg3 f4
. . .

...

...
. . .

. . .
. . .

. . . 0

...
. . .  - hn - 1 jgn - 1 fn

0 \cdot \cdot \cdot \cdot \cdot \cdot 0  - hn jgn

\right]              
,

where fi, gi, and hi are real for i = 1, . . . , n, f1 \not = 0, and fihi \not = 0 for i = 2, . . . , n.
Then,

In(G) = In(D),

where

D = diag(f1, f1f2h2, f1f2f3h2h3, . . . , f1 \cdot \cdot \cdot fnh2 \cdot \cdot \cdot hn).

A corollary of Lemma 4.2 for the stability of real tridiagonal matrices is given
below.

Corollary 4.3. Given the tridiagonal real matrix A of the form

A =

\left[              

f1 f2 0 \cdot \cdot \cdot \cdot \cdot \cdot 0

 - h2 0 f3 0
...

0  - h3 0 f4
. . .

...

...
. . .

. . .
. . .

. . . 0

...
. . .  - hn - 1 0 fn

0 \cdot \cdot \cdot \cdot \cdot \cdot 0  - hn 0

\right]              
,(4.1)

it holds that
\bullet if f1 < 0 and fihi > 0 for all i \in \{ 2, . . . , n\} , then A is stable;
\bullet if fihi < 0 for some index i \in \{ 2, . . . , n\} , then A is unstable.

Remark 4.4. Sparse stable matrices theory [3] states that the graph associated
with the sparsity pattern of the matrix in (4.1) is a chain and has nested Hamiltonian
subgraphs. The graph is sufficient to sustain stable dynamics. Moreover, the sparse
matrix subspace is minimally stable because (i) if f1 is set to zero, then the trace of
the matrix becomes zero and therefore at least one eigenvalue should be unstable, (ii)
if any nondiagonal element is set to zero, then the matrix decomposes into a block
triangular form where the lower diagonal block has a zero trace, leading to instability.

Due to Remark 4.4, Corollary 4.3 gives necessary and sufficient conditions for
the stability of a class of matrices, which can be used to analyze both connected
components and separating hypersurfaces. In what follows, we will first show the
possibility of 2n - 1 connected components in the case with a nonidentity C and then
develop a similar result for C = I.
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2798 HAN FENG AND JAVAD LAVAEI

Theorem 4.5. Let A \in Rn\times n be in the form of (4.1), and set B \in Rn\times (2n - 2),
C \in R(2n - 2)\times n, and K \in R(2n - 2)\times (2n - 2) to

B =

\left[         

0 \cdot \cdot \cdot \cdot \cdot \cdot 0 +1 0 \cdot \cdot \cdot 0

 - 1
. . .

... 0
. . .

. . .
...

0
. . .

. . .
...

...
. . .

. . . 0
...

. . .
. . . 0

...
. . . +1

0 \cdot \cdot \cdot 0  - 1 0 \cdot \cdot \cdot \cdot \cdot \cdot 0

\right]         
,

C =

\left[                

1 0 \cdot \cdot \cdot \cdot \cdot \cdot 0

0
. . .

. . .
...

...
. . .

. . .
. . . 0

0 \cdot \cdot \cdot 0 1 0
0 1 0 \cdot \cdot \cdot 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 \cdot \cdot \cdot \cdot \cdot \cdot 0 1

\right]                
,

K = diag(k2, . . . , kn, k2, . . . , kn).

Suppose that f1 < 0 and fi \not = hi for i = 2, . . . , n. Then, the set \scrK has at least 2n - 1

connected components.

Proof. The closed-loop matrix A+BKC can be expressed as\left[            

f1 f2 + k2 0 \cdot \cdot \cdot \cdot \cdot \cdot 0

 - h2  - k2 0 f3 + k3
. . .

...

0  - h3  - k3
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . .

. . . 0 fn + kn
0 \cdot \cdot \cdot \cdot \cdot \cdot 0  - hn  - kn 0

\right]            
.

It results from Corollary 4.3 and Remark 4.4 that the closed-loop stability is equivalent
to the conditions (hi + ki)(fi + ki) > 0 for i = 2, . . . , n. Equivalently, either ki <
min( - hi, - fi) or ki > max( - hi, - fi) holds for i = 2, . . . , n. Therefore, the region of
stabilizing K, parametrized in (k2, . . . , kn) \in Rn - 1, is separated by n - 1 hyperplanes
ki =  - (fi+hi)/2 for i = 2, . . . , n. Since there are stable regions on both sides of each
of those hyperplanes, the overall number of connected components becomes at least
2n - 1.

The result of Theorem 4.5 is demonstrated in the left plot of Figure 2 for n = 3.
Note that the ``one-sided"" result of Lemma 3.3 does not hold here since K is not a
scalar.

Remark 4.6. Note that eigenvalues are continuous functions of the entries of a
matrix and that the connected components studied in the proof of Theorem 4.5 are
separated by a positive margin. Therefore, one may speculate that a small pertur-
bation of A will not change the number of connected components. This is not the
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CONNECTIVITY OF STATIC DECENTRALIZED CONTROLLERS 2799

(a) \epsilon = 0 (b) \epsilon = 0.2

Fig. 2. We randomly sample K and check the closed-loop stability for an instance of the system
in Theorem 4.5. The controller is parametrized in terms of (k2, k3) where n = 3, with fi =  - 1 and
hi = 2 for i = 1, 2, 3. The projection of the set \scrK onto the two-dimensional space corresponding
to (k2, k3) is shown in green. The left figure shows that there are 2n - 1 = 4 connected components,
where each coordinate takes values in ( - \infty , - 2) or (1,\infty ) to be stable. The right figure shows the
connected components when the number 0.2 is added to each diagonal entry of A.

Fig. 3. If the diagonal entries of A are reduced by 0.2, then the set \scrK becomes connected. The
projection of the set \scrK onto the two-dimensional space corresponding to (k2, k3) is shown in green.

case in general since the eigenvalues of A+BKC can become arbitrarily close to the
imaginary axis when \| K\| is large, as illustrated in Figure 3. However, one part of
every connected component is resistant to perturbations. For example, with \epsilon > 0,
the set \{ K : (A+ \epsilon I)+BKC stable\} is a subset of \{ K : A+BKC stable\} ; the former
contains only those controllers that make the closed-loop eigenvalues at least \epsilon away
from the imaginary axis. The number \epsilon can be set so small that at least one point from
each component remains stable. In other words, a new matrix A obtained by adding \epsilon 
to the diagonal of the matrix in (4.1) gives rise of an exponential number of connected
components where the number cannot change with a very small perturbation of its
elements. This is illustrated in the right plot of Figure 2.

The subclass of problems studied in Theorem 4.5 may be unsatisfactory as it
requires that the free elements of K repeat themselves and that C \not = I. The next
theorem addresses these issues.
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Theorem 4.7. Let A be in the form

A =

\left[            

f1 + \epsilon f2 0 \cdot \cdot \cdot \cdot \cdot \cdot 0

 - h2 \epsilon f3
. . .

...

0  - h3 \epsilon f4
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . .  - hn - 1 \epsilon fn

0 \cdot \cdot \cdot \cdot \cdot \cdot 0  - hn \epsilon 

\right]            
,(4.2)

where \epsilon \geq 0, f1 < 0, and ( - 1)i(fi  - hi+1) > 0 for i = 2, . . . , n. Consider B \in Rn\times n,
C \in Rn\times n, and K \in Rn\times n to be

B =

\left[      
0 1

 - 1
. . .

. . .

. . . 0 1
 - 1 0

\right]      , C = I,

K = diag(k1, k2, . . . , kn).

For a small enough \epsilon , the set \scrK has at least Fn connected components, where F0 =
1, F1 = 1, Fi+2 = Fi+1 + Fi for i = 0, 1, . . . is the Fibonacci sequence, which is on the

order of ( 1+
\surd 
5

2 )n.

Proof. First, assume that \epsilon = 0 and consider the closed-loop matrix A+BKC:\left[            

f1 f2 + k2 0 \cdot \cdot \cdot \cdot \cdot \cdot 0

 - h2  - k1 0 f3 + k3
. . .

...

0  - h3  - k2
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . .

. . . 0 fn + kn
0 \cdot \cdot \cdot \cdot \cdot \cdot 0  - hn  - kn - 1 0

\right]            
.

In light of Corollary 4.3 and Remark 4.4, the necessary and sufficient conditions for
the closed-loop stability are (hi + ki - 1)(fi + ki) > 0 for i = 2, . . . , n. As a result,
if h2 + k1 > 0, then f2 + k2 > 0. Now, because h3 < f2, the term h3 + k2 can be
positive or negative. If it is positive, then f3 + k3 must be positive, and we can move
on to study the sign of h4 + k3. As we proceed, note that not all sign assignments for
hi+ki - 1 and fi+ki are possible due to the assumptions on fi and hi. The enumeration
procedure is illustrated in Figure 4. Any path from the root to the bottom level leaf
passes through a set of linear inequalities that together enclose an open polyhedron
of stable regions. These stable regions are separated by the hyperplanes hi+1+ki = 0
for i = 1, 2, . . . , n - 1 and fi + ki = 0 for i = 2, 3, . . . , n.

Next, we count the number of branches. If hi+ki - 1 > 0 (or equivalently fi+ki >
0) appears mi times and hi + ki - 1 < 0 (or equivalently fi + ki < 0) appears ni times,
assuming mi \geq ni, the next level will have at most (mi+ni)+max(mi, ni) = 2mi+ni

branches. This number is achievable if fi < hi+1, which means keeping all the children
of the inequalities fi + ki > 0 and pruning one child from each inequality fi + ki < 0.
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\circ 

h2 + k1 > 0

f2 + k2 > 0

h3 + k2 > 0

f3 + k3 > 0

h4 + k3 > 0

f4 + k4 > 0

h4 + k3 < 0 (\ast )

h3 + k2 < 0

f3 + k3 < 0

h4 + k3 > 0

f4 + k4 > 0

h4 + k3 < 0

f4 + k4 < 0

h2 + k1 < 0

f2 + k2 < 0

h3 + k2 > 0 (\ast ) h3 + k2 < 0

f3 + k3 < 0

h4 + k3 > 0

f4 + k4 > 0

h4 + k3 < 0

f4 + k4 < 0

Fig. 4. This tree shows the enumerating signs of the closed-loop matrix entries for n = 4. The
branch marked with (\ast ) has contradictory inequalities.

Then, mi+1 = mi, ni+1 = mi + ni, and ni+1 \geq mi+1, which reverses the order of mi

and ni. It can be verified that the total number of connected regions mi +ni satisfies
the iteration of the Fibonacci sequence.

The connected regions are separated by the hyperplanes ki =  - fi or ki =  - hi+1

with no margin. When \epsilon > 0, the connected components are strictly separated.
More precisely, whenever ki =  - fi or ki =  - hi+1, the matrix A+BKC decomposes
into a block triangular form where the lower diagonal block has a positive trace,
which means that the matrix cannot be stable. When \epsilon is small enough, the original
connected regions described by linear inequalities do not shrink abruptly---in fact, at
least one point from every polyhedron remains stable. As a result, the number of
shrinked stabilizing regions is no fewer than the number of unshrinked regions.

To illustrate Theorem 4.7, consider the matrix

A =

\left[         

 - 1 + \epsilon 2 0
 - 2 \epsilon 1 0
0  - 1 \epsilon 2 0

0  - 2 \epsilon 1 0
0  - 1 \epsilon 2 0

. . .
. . .

. . .
. . .

. . .

\right]         
.(4.3)

The corresponding set \scrK obtained by sampling random matrices K and checking the
closed-loop stability is provided in Figure 5 for n = 3.

Our exponential examples are based on specific settings of the parameters fi and
hi in the matrix A that maximize the number of connected components. We next show
that even if the parameters fi and hi are considered random, the expected number of
connected components is still exponential.

Theorem 4.8. Consider the matrices A, B, C, and K defined in Theorem 4.7,
and let fi and hj be independent random variables whose distribution are standard
normal for i = 1, . . . , n and j = 2, . . . , n. If \epsilon \geq 0 is small enough, the expected

number of connected component of \scrK \scrS is at least
\bigl( 
3
2

\bigr) n - 2
.

Proof. With the assumed distribution, fi < hi+1 and fi > hi+1 occur equally
likely, while fi = hi+1 happens with zero probability. Our enumeration tree is random,
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2802 HAN FENG AND JAVAD LAVAEI

(a) \epsilon = 0 (b) \epsilon = 0.02

Fig. 5. We randomly sample K and check the closed-loop stability for an instance of the system
in Theorem 4.7 with n = 3, the matrix A given in (4.3), and K = diag(k1, k2, k3). The projection
of the set \scrK onto the three-dimensional space corresponding to (k1, k2, k3) is shown in blue.

and we count the number of leaves as follows. If fi + ki > 0 appears mi times and
fi + ki < 0 appears ni times for i \geq 2, the next level has two possibilities:
(i) fi < hi+1, which keeps all the children of the inequalities fi + ki > 0 and prunes

one child from each inequality fi + ki < 0. Therefore, mi+1 = mi and
ni+1 = mi + ni.

(ii) fi > hi+1, which keeps all the children of the inequalities fi + ki < 0 and prunes
one child from each inequality fi + ki > 0. Therefore, mi+1 = mi + ni and
ni+1 = ni.

Combining the two cases, we can calculate the expected number of children mi+1 +
ni+1 conditioned on mi and ni in the previous level:

E[mi+1 + ni+1| mi, ni] = E[mi+1 + ni+1| mi, ni, fi+1 < hi+2]P(fi+1 < hi+2)

+ E[mi+1 + ni+1| mi, ni, fi+1 > hi+2]P(fi+1 > hi+2)

= (2mi + ni)
1

2
+ (2ni +mi)

1

2
=

3

2
(mi + ni).

With the initial conditions E[m2+n2| f1 > 0] = 0 and E[m2+n2| f1 < 0] = 2, we have

E[m2 + n2] = 1. Using induction, it can be concluded that E[mn + nn] =
\bigl( 
3
2

\bigr) n - 2
.

By adopting a randomized setting, we are able to analyze the change of connected
components when one element ki0 is fixed to zero for some index i0 \in \{ 1, 2, . . . , n - 1\} .
The proof is based on a careful counting of branches and is provided in the appendix.

Proposition 4.9. With the same setting as in Theorem 4.8, assume that K =
diag(k1, . . . , kn) and ki0 is fixed to zero for some index i0 \in \{ 1, . . . , n\} . Then, the
expected number of connected components of \scrK \scrS for a small enough \epsilon is at least\left\{   

1
6 (

3
2 )

n - 2 if 2 \leq i0 \leq n - 1,

1
2 (

3
2 )

n - 2 if i0 = 1 or i0 = n.

The above results on connectivity reflect not only the computational complexity of
the original ODC problem with the hard constraint K \in \scrK \scrS but also the complexity of
a modified ODC formulation with soft constraints. We explain this implication below.
Consider an arbitrary continuous function h : Rm\times p \rightarrow R that satisfies h(K) = 0 for
all K \in \scrK \scrS and h(K) > 0 for all K \in Rm\times p \setminus \scrK \scrS . h(K) serves as a penalty function
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that can be used to replace the hard constraints of ODC with soft constraints. The
penalized form of ODC is given by

(4.4) min
K

J0(K) + c \cdot h(K),

where J0(K) is defined in (2.1) and c is a large constant. The above optimization is
unconstrained and can be solved using standard numerical algorithms for nonlinear
optimization. Indeed, it is common in optimization to convert constrained problems
to unconstrained ones via penalty or barrier functions since most efficient numerical
algorithms for nonconvex optimization are designed for unconstrained problems. The
reason for such reformulation is that the constraints do not need to be satisfied in
each iteration of a numerical algorithm, and their satisfaction is only required asymp-
totically when many iterations are taken. In what follows, we study how numerical
algorithms perform on the unconstrained formulation (4.4).

Lemma 4.10. Suppose that C has full row rank and [ Q D

D\top R
] is positive definite.

There are instances of the ODC problem for which the penalized formulation (4.4) has
an exponential number of local minima if c is sufficiently large.

Proof. Consider any instance of the class of ODC problems provided in The-
orem 4.7 for which the feasible set of the problem has an exponential number of
connected components. Due to the coercive property proven in Lemma E.1 in the
appendix, each connected component in \scrK \scrS must have a local minimum for the un-
penalized objective J0(K). Let \scrO denote the set of all local minima in any arbitrary
connected component of the feasible set of ODC, and let \scrO (\epsilon ) \subseteq Rm\times p be the set of
all points in the feasible set of (4.4) that are at most \epsilon away from \scrO , for any given
\epsilon > 0. If (4.4) is numerically solved using gradient descent with an initial point in
\scrO (\epsilon ), it follows from the proof in [25, section 13.1] that the algorithm will converge to
a local minimum that is in the interior of \scrO (\epsilon ) and approaches \scrO as c goes to infinity.
This implies that (4.4) has at least one local minimum corresponding to the set \scrO .
Therefore, (4.4) has an exponential number of local minima.

Lemma 4.10 implies that common first-order and second-order numerical algo-
rithms that work on unconstrained formulations and are guaranteed to converge to a
stationary point may end up producing an exponential number of different solutions
depending on their initialization.

5. Bounded connectivity number. The results of the preceding section were
developed for systems with a very specific structure. We show in this section that for a
large class of systems that contain a tridiagonal structure, there exists a configuration
of the matrices (A,B) such that the set of static stabilizing controllers with a bounded
norm has an exponential number of connected components. The restriction to a
bounded control gain is natural since very high gain controllers cannot be implemented
in practice due to the sensitivity of the closed-loop system to noise and disturbance.

Given a linear subspace of sparse matrices1 \scrT , we say that \scrT is tridiagonal-
containing if it contains all tridiagonal matrices, i.e.,

\scrT \supseteq \{ A : Aij = 0 for all | i - j| \geq 2\} .

We say that (A,B) is compatible with \scrT if both A and B's sparsity patterns coincide
with I\scrT . Since \scrT is a linear subspace, A + BK \in \scrT for every diagonal matrix K.

1Recall in section 2 that a linear subspace of sparse matrices is specified by positions of nonzero
entries and I\scrT is the indicator matrix of the nonzero positions.
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Given a set \scrK , let \#\scrK denote the number of connected components of \scrK . Given
system matrices (A,B) and a radius r \geq 0, we define the set of bounded stabilizing
controllers \scrK r(A,B) as

\scrK r(A,B) = \{ K : A+BK stable, K diagonal, \| K\| \leq r\} ,

where \| \cdot \| denotes an arbitrary matrix norm. Note that \scrK \infty (A,B) coincides with the
set \scrK \scrS defined in (2.2). We define the bounded connectivity number, which we denote
by c(A,B), as follows:

c(A,B) = sup
r\geq 0

\#\scrK r(A,B).

The bounded connectivity number quantifies the number of connected components of
the set of stabilizing decentralized controllers with a bounded norm in the worst case.

Theorem 5.1. Given any tridiagonal-containing sparse matrix subspace \scrT , there
exist system matrices (A,B) compatible with \scrT such that the bounded connectivity
number c(A,B) is exponential in the order of the system.

Proof. To prove that c(A,B) is exponential, it suffices to find a radius r and
system matrices (A,B) such that Kr(A,B) has an exponential number of connected
components and that (A,B) has the same sparsity pattern as \scrT . We start with the
matrices (A,B) given in Theorem 4.7 with an \epsilon > 0, which may not be compatible
with \scrT . Since \scrK \infty (A,B) is exponential, by continuity there exists an r > 0 such
that \scrK r(A,B) is exponential. Moreover, since \epsilon > 0, the connected components of
\scrK r(A,B) are strictly separated in the sense that every component of \scrK r(A,B) is
contained in a component of \scrK r(A  - \epsilon 

2I,B), and when K \in \partial \scrK r(A  - \epsilon 
2I,B), the

eigenvalues of the closed-loop matrix A+BK is at least \epsilon 
2 away from the imaginary

axis. Since eigenvalues of a matrix are continuous functions of the entries of the
matrix and K is bounded, we claim that for all small \delta > 0, the set \scrK r(A+ \delta I\scrT , B +
\delta I\scrT ) is also exponential, because (1) by continuity when \delta > 0 is small, there exists
a controller in each connected component of \scrK r(A,B) that remains stabilizing in
\scrK r(A + \delta I\scrT , B + \delta I\scrT ) and (2) no two connected components of \scrK r(A,B) in this
bounded region can merge. We elaborate on the second point below. Let N denote
the number of connected components of \scrK r(A,B). We select one controller from each
connected component of \scrK r(A,B) and denote them by K1, . . . ,KN . By continuity,
when \delta is small, they remain stabilizing for the system (A+ \delta I\scrT , B + \delta I\scrT ). Consider
the quantity

a(A,B) = min
1\leq i,j\leq N

i\not =j

min
pij\in Pij

max
K\in pij

spabs(A+BK),(5.1)

where spabs(\cdot ) denotes the spectral abscissa (maximum real part of the eigenvalues).
The set Pij contains all paths pij from Ki to Kj such that every controller K \in Pij

satisfies \| K\| \leq r. We use min instead of inf because the minimum is achievable.2

We also have a(A,B) > \epsilon 
2 because all paths pij \in Pij with i \not = j must intersect

with a controller K \in \partial \scrK r(A  - \epsilon 
2I,B), at which point spabs(A + BK) > \epsilon 

2 . Since
the continuous function spabs(\cdot ) is absolutely continuous in a compact region, for all

2Even though the minimization of (5.1) is over an infinite set Pij , we can replace it with the
minimization over the bounded part of a lower level set of spabs(A+BK), where the lower level set
is large enough so that Ki and Kj are connected.
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small \delta > 0, we have | spabs(A + BK)  - spabs(A + \delta I\scrT + (B + \delta I\scrT )K)| < \epsilon 
4 for all

K with \| K\| \leq r. As a result, a(A + \delta I\scrT , B + \delta I\scrT ) > 0, i.e., K1, . . . ,KN belong to
different connected components of \scrK r(A+ \delta I\scrT , B + \delta I\scrT ). The proof is concluded by
noting that \delta can be selected so that (A+\delta I\scrT , B+\delta I\scrT ) has the same sparsity pattern
as \scrT .

To understand the implication of Theorem 5.1, consider a multiagent system,
where each agent has a single state. As long as each agent interacts with its previ-
ous and next neighbors, no matter how many more interactions exist in the system,
the ODC problem has an exponential number of local solutions for certain system
parameters.

6. Highly damped systems. All previous results suggest that the diagonal
entries of A being positive contribute to the complexity of the feasible set \scrK . Theo-
rem 6.1 below shows that the diagonal of A being negative is a desirable structure in
the sense that if A is highly dampened, the feasible set is connected independent of
control structures.

Theorem 6.1. Given arbitrary matrices A, B, and C of compatible dimensions
and a linear subspace of matrices \scrS , the set

\scrK \scrS ,\lambda = \{ K : A - \lambda I +BKC is stable ,K \in \scrS \} 

is connected when \lambda > 0 is large enough.

Proof. Consider a number \mu and let \lambda be a parameter that increases from \mu toward
\infty . Since \lambda \geq \mu , we have \scrK \scrS ,\lambda \supseteq \scrK \scrS ,\mu , and therefore \scrK \scrS ,\lambda contains all components
of K\mu but could possibly connect them or add new components. The addition of new
components with the increase of \lambda could occur only a finite number of times. Because
the Routh--Hurwitz criterion describes \scrK \scrS ,\lambda by polynomial inequalities in the entries
of A  - \lambda I + BKC, the set \scrK \scrS ,\lambda is semialgebraic with a finite number of connected
components given the order of the system [7]. To connect all those components, we
first increase \lambda until no new connected component appears, then select a controller
from each connected component, and cover all those controllers with a ball \scrB \subseteq \scrS .
By making \lambda so large that all controllers in \scrB become stabilizing, we glue all of the
connected components.

The interpretation of the result of Theorem 6.1 is that if the open-loop matrix of
the system can be written as A  - \lambda I for a large \lambda , then the feasible set of ODC is
connected. This corresponds to highly damped systems.

Remark 6.2. It is noted in [22] that if we consider the discounted cost

J2\lambda (K) = E
\int \infty 

0

e - 2\lambda t
\bigl( 
x\top Qx+ 2x\top Du+ u\top Ru

\bigr) 
dt,

or equivalently make a change of variables \^x(t) = e - \lambda tx(t) and \^u(t) = e - \lambda tu(t), then
the closed-loop dynamics become equal to \.\^x(t) = (A - \lambda I +BKC)\^x(t). Therefore, it
follows from Theorem 6.1 that the feasible set of the ODC problem is connected for
discounted costs with a large discount factor.

Remark 6.3. It is known in the context of inverse optimal control [22] that any
static state-feedback gain K is the unique minimizer of some quadratic performance
measure (2.1) for all initial states. One such measure is
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2806 HAN FENG AND JAVAD LAVAEI\int \infty 

0

(u(t) - Kx(t))
\top 
R (u(t) - Kx(t)) dt,

where R is a positive definite matrix. As a result, every point in any connected
component is an optimal solution to some ODC problem. Since there is an exponential
number of connected components in certain cases, random initialization is unlikely to
successfully locate the optimal component unless prior information is available or the
system is favorably structured. Local search algorithms, therefore, fail for general
ODC problems.

A by-product of Theorem 6.1 is a new controller design strategy, which is based
on approximating the ODC problem with another one whose feasible set is connected.
This new problem is obtained by damping the system's dynamics. Indeed, we have
shown in the technical report [16] that minimizing J\lambda (K) with a large \lambda is more
tractable than solving the original ODC problem since the separate connected com-
ponents will be glued together via damping (as proved in Theorem 6.1). In the
following, we study the cost of this approximation by bounding the ratio of the two
objectives.

Lemma 6.4. Suppose that Ex0x
\top 
0 = I and C = I. Let K+ be the solution of

ODC with the objective function J\lambda (K) and assume that K+ stabilizes (A,B). Let
W (K+) = (A+BK+) + (A+BK+)\top . We have the upper bound

J0(K
+)

J\lambda (K+)
\leq 

\left\{   
\nu min(W (K+)) - \lambda 
\nu max(W (K+)) if \nu max(W (K+)) < 0,

\nu max(W (K+)) - \lambda 
\nu min(W (K+)) if \nu min(W (K+)) > 0

and lower bound

J0(K
+)

J\lambda (K+)
\geq 

\left\{   
\nu max(W (K+)) - \lambda 
\nu min(W (K+)) if \nu max(W (K+)) < \lambda ,

\nu min(W (K+)) - \lambda 
\nu max(W (K+)) if \nu min(W (K+)) > \lambda ,

where \nu min(\cdot ) and \nu max(\cdot ) denote the smallest and largest eigenvalues of a matrix,
respectively.

The proof of Lemma 6.4 is provided in the appendix. We illustrate Lemma 6.4
with a numerical simulation in Figure 6. The system matrices are of the form (4.3),
which are specified below:

A =

\biggl[ 
 - 1 0.5
 - 0.5 0

\biggr] 
, B =

\biggl[ 
0 1
 - 1 0

\biggr] 
, C = I,K = diag(k1, k2), Q = 5I,R = I,D = 0.

Using extensive search, it can be shown that the system has two locally optimal
controllers and their undamped costs J0(K) are as follows:

K\ast 
1 \approx diag(0.7178, 0.6643), J0(K

\ast 
1 ) \approx 12.88,

K\ast 
2 \approx diag( - 1.5384, - 1.4369), J0(K

\ast 
2 ) \approx 18.08.

Starting from the initial stabilizing controller K0 = diag( - 2, - 2), we run gradient
descent twice to minimize the cost J0(K) and its approximate function J1(K). The
step sizes are selected by the Amijo rule as in [16] so that stability is preserved for all
iterations. The iterations are stopped when the norm of the gradient is less than 10 - 6.
When minimizing J0(K), the iterations converge to K\ast 

2 . When minimizing J1(K),
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(a) minimize J0 (b) minimize J1

Fig. 6. Cost surface and trajectory of gradient descent in the undamped regime and the damped
regime. In the undamped regime, gradient descent is trapped in the initial component. In the damped
regime, it almost reaches the globally optimal stabilizing controller.

the iterations converge to K+ \approx diag(0.4420, 0.3836). We calculate the damped cost
J1(K

+) \approx 5.98 and the undamped cost J0(K
+) \approx 13.44. The local search solution to

the approximate ODC is better than the solution to the original ODC. With

W (K+) = (A+BK+) + (A+BK+)\top \approx 
\biggl[ 
 - 3.0000  - 0.0584
 - 0.0584  - 1.0000

\biggr] 
,

we calculate \nu max(W (K+)) \approx  - 1.00 and \nu min(W (K+)) \approx  - 3.00. The conclusion of
Lemma 6.4 is verified:

J0(K
+)

J1(K+)
\approx 2.25 < 4.00 \approx \nu min(W (K+)) - 1

\nu max(W (K+))
,

J0(K
+)

J1(K+)
\approx 2.25 > 0.67 \approx \nu max(W (K+)) - 1

\nu min(W (K+))
.

7. Stable matrices with block patterns. In this section, we analyze the
connectivity of the set of sparse stable matrices \scrA \scrT , defined in (2.3). It follows
from Lemma 3.2 that only in matrices with constrained diagonal entries do nontrivial
connectivity properties emerge, and we study sparse stable matrices with zero blocks
in the diagonal.

7.1. Two-by-two block. Below is the main theorem.

Theorem 7.1. Consider the matrix subspace

\scrT =

\Biggl\{ \biggl[ 
A11 A12

A21 0(n - r)\times (n - r)

\biggr] \bigm| \bigm| \bigm| \bigm| \bigm| A21 \in \scrZ 

\Biggr\} 
,
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2808 HAN FENG AND JAVAD LAVAEI

where \scrZ is any subspace of matrices in R(n - r)\times r. Then, the sets \scrA \scrT and

\{ A21 : A21 has full row rank, A21 \in \scrZ \} 

have the same number of connected components.

Proof. For clarity the proof is first stated without the constraint A21 \in \scrZ ; this

incurs no loss of generality. A is stable if and only if there is a matrix P =
\bigl[ P11 P12

P\top 
12 P22

\bigr] 
\succ 

0 partitioned accordingly that satisfies the Lyapunov equation

(7.1)

\Biggl[ 
A11 A12

A21 0

\Biggr] \Biggl[ 
P11 P12

P\top 
12 P22

\Biggr] 
+

\Biggl[ 
P11 P12

P\top 
12 P22

\Biggr] \Biggl[ 
A\top 

11 A\top 
21

A\top 
12 0

\Biggr] 
=

\Biggl[ 
 - I 0

0  - I

\Biggr] 
.

Note that P is unique and depends continuously on A whenever A is stable [12, section
4.1]. We solve the partitioned equation

A11P11 +A12P
\top 
12 + P11A

\top 
11 + P12A

\top 
12 =  - I,(7.2)

A11P12 +A12P22 + P11A
\top 
21 = 0,(7.3)

A21P12 + P\top 
12A

\top 
21 =  - I.(7.4)

Since P22 \succ 0, (7.3) uniquely determines the unconstrained block

A12 =  - (A11P12 + P11A
\top 
21)P

 - 1
22 .

Substituting it back to (7.2) yields

A11P11 + P11A
\top 
11  - (A11P12 + P11A

\top 
21)P

 - 1
22 P\top 

12  - P12P
 - T
22 (A21P11 + P\top 

12A
\top 
11) =  - I,

or equivalently

A11(P11  - P12P
 - 1
22 P\top 

12) + (P11  - P12P
 - 1
22 P\top 

12)A
\top 
11(7.5)

=  - I + P11A
\top 
21P

 - 1
22 P\top 

12 + P12P
 - T
22 A21P11.

The equation above can be simplified using the Schur complement \~P11 = P11  - 
P12P

 - 1
22 P\top 

12, which is an arbitrary positive definite matrix. One can write

A11
\~P11 + \~P11A

\top 
11 =  - I + \~P11A

\top 
21P

 - 1
22 P\top 

12 + P12P
 - T
22 A21

\~P11 + P12P
 - 1
22 P\top 

12A
\top 
21P

 - 1
22 P\top 

12

+ P12P
 - T
22 A21P12P

 - 1
22 P\top 

12.

In light of (7.4), this is equivalent to

A11
\~P11 + \~P11A

\top 
11 =  - I + \~P11A

\top 
21P

 - 1
22 P\top 

12 + P12P
 - T
22 A21

\~P11  - P12P
 - 2
22 P\top 

12.(7.6)

Given A21, P12, \~P11 \succ 0, and P22 \succ 0, the eigenvalues of \~P11 do not sum to zero.
Therefore, (7.6) can be regarded as a Lyapunov equation where the unknown block
A11 has a unique symmetric solution A11 = A\top 

11; all other solutions A11 lie in a linear
subspace that contains this symmetric solution. The symmetric solution, moreover,
depends continuously on \~P11 as long as \~P11 remains in the positive semidefinite cone,
which is connected. As a result, not only are all A11 connected to a symmetric A11, all
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CONNECTIVITY OF STATIC DECENTRALIZED CONTROLLERS 2809

symmetric A11 given \~P11 are connected to the symmetric solution A11 given \~P11 = I,
which we denote by \phi (A12, P12, P22):

\phi (A12, P12, P22) =
1

2

\Bigl( 
 - I +A\top 

21P
 - 1
22 P\top 

12 + P12P
 - T
22 A21  - P12P

 - 2
22 P\top 

12

\Bigr) 
.

The above argument retracts the solutions of (7.2)--(7.4) while maintaining the topo-
logical property of connectivity. Using \sim to denote the equivalence of connected
components, we state the retraction procedure

\scrA \scrT \sim 
\biggl\{ \biggl( \biggl[ 

A11 A12

A21 0

\biggr] 
,

\biggl[ 
P11 P12

P\top 
12 P22

\biggr] \biggr) 
: (7.1),

\biggl[ 
P11 P12

P\top 
12 P22

\biggr] 
\succ 0

\biggr\} 
(7.7)

\sim \{ (A11, A21, P11, P12, P22) : (7.4), (7.5), P11 \succ P12P
 - 1
22 P\top 

12, P22 \succ 0\} (7.8)

\sim \{ (A11, A21, \~P11, P12, P22) : (7.4), (7.6), \~P11 \succ 0, P22 \succ 0\} (7.9)

\sim \{ (A11, A21, P12, P22) : (7.4), A11 = \phi (A12, P12, P22), P22 \succ 0\} (7.10)

\sim \{ (A21, P12, P22) : (7.4), P22 \succ 0\} (7.11)

\sim \{ (A21, P12) : (7.4)\} .(7.12)

The first equivalence (7.7) follows from the fact that for any stable matrix A, the
formula

P =

\int \infty 

0

eA\tau eA
\top \tau d\tau 

gives the unique solution to the Lyapunov equation and the solution depends con-
tinuously on the matrix A. (7.8) follows from the unique solution of A12 and the
characterization of partitioned positive definite matrices with Schur complements:\biggl[ 

P11 P12

P\top 
12 P22

\biggr] 
\succ 0 \Leftarrow \Rightarrow P11 \succ P12P

 - 1
22 P\top 

12 and P22 \succ 0.

(7.9) follows from the simplification of the Lyapunov equation, and the one-one cor-
respondence between \~P11 and P11 given (P12, P22). (7.10) follows from the retraction
of the solutions to (7.6); (7.11) follows from the continuity of function \phi , and finally
(7.12) throws away the free variable P22 because it does not appear in the relationship
between A21 and P12.

(7.12) can be further simplified. We first show that (7.4) has a solution if and only
if A21 has full rank. If there is a vector x \in Rs such that x\top A21 = 0, premultiplying
and postmultiplying (7.4) by x yields

0 = x\top (A21P12 + P\top 
12A

\top 
21)x =  - x\top x,

or equivalently, x = 0. Therefore, A21 has full row rank, and similarly, P12 has full
column rank. On the other hand, given any full row rank matrix A21, (7.4) has a
full rank solution P12 =  - 1/2A+

21, where A+
21 is the Moore--Penrose inverse. This

completes the proof for the first equivalence in

\{ (A21, P12) : (7.4)\} \sim \{ (A21, P12) : (7.4), A21 has full row rank\} 
\sim \{ 

\bigl( 
A21, - 1/2A+

21

\bigr) 
: A21 has full row rank\} 

\sim \{ A21 : A21 has full row rank\} .
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2810 HAN FENG AND JAVAD LAVAEI

The second equivalence follows from the fact that, given A21 has full row rank, a
solution P12 =  - 1/2A+

21 to (7.4) always exists and all solutions lie in a subspace that
can be retracted to that solution. The final equivalence comes from dropping the
redundant second coordinate, since the Moore--Penrose inverse is continuous over full
rank matrices.

The above proof imposes no restriction on A21; it holds even if A21 is restricted
to a subspace \scrZ .

In the special case where \scrZ is the whole space and A21 has more columns than
rows, the set is connected.

Corollary 7.2. Assume that \scrZ = R(n - r)\times r, where 2r > n. Then, the set \scrA \scrT 
is connected.

Proof. From Theorem 7.1, if suffices to show the connectivity of\Bigl\{ 
A21 \in R(n - r)\times r : A21 has full row rank

\Bigr\} 
.

This set is the image of the continuous map (U,D, V ) \rightarrow UDV from the connected
set \scrU \times \scrD \times \scrV , where

\scrU =
\Bigl\{ 
U \in R(n - r)\times (n - r) : U is a orthogonal matrix with determinant 1

\Bigr\} 
,

\scrD =
\Bigl\{ 
D \in R(n - r)\times r : Dii > 0 for i = 1, . . . , r and all other entries are 0

\Bigr\} 
,

\scrV =
\bigl\{ 
V \in Rr\times r : V is a orthogonal matrix with determinant 1

\bigr\} 
.

\scrU and \scrV are connected because the set of orthogonal matrices with positive deter-
minant is connected. The map is surjective, because every full rank matrix A21 has
a singular value decomposition A21 = UDV , where Dii > 0 for i = 1, . . . , r. If
det(U) =  - 1, we can flip the sign of the first column of U and the first row of V to
ensure that det(U ) = 1 while preserving the product. If det(V ) =  - 1, we can flip the
sign of the last row of V , and since n - r < r, the last row does not affect the product
UDV .

Corollary 7.3. Suppose 2r \geq n and \scrZ = \{ A21 \in R(n - r)\times r : Aij = 0 for j \not = i\} .
Then, the set \scrA \scrT has 2n - r connected components.

Proof. We invoke Theorem 7.1. For a diagonal matrix to have full rank, all its
diagonal entries must be nonzero, and therefore, every diagonal entry of A21 can be
either positive or negative. Those (n - r) diagonal entries give rise to 2n - r connected
components.

7.2. More complicated block patterns. We generalize the results in the pre-
vious section to the case where the space of matrices \scrT has a block structure as
in

\scrT =

\left\{   
\left[  A11 A12 A13

A21 0r\times r 0r\times (n - 2r)

0(n - 2r)\times r A32 0(n - 2r)\times (n - 2r)

\right]  \bigm| \bigm| \bigm| \bigm| \bigm| A21 \in \scrZ 1, A32 \in \scrZ 2

\right\}   ,(7.13)

where \scrZ 1 \subseteq Rr\times r and \scrZ 2 \subseteq R(n - 2r)\times r are arbitrary subsets of matrices.

Theorem 7.4. The set \scrA \scrT with \scrT defined in (7.13) has the same number of
connected components as the set

\{ (A21, A32) : A21 \in \scrZ 1, A32 \in \scrZ 2, A21 and A32 have full row rank\} .
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Fig. 7. Verifying the result of Theorem 7.4 in the case n = 3 and r = 1, we plot the projection
of A onto (A21, A32). The entries of the matrix A are sampled uniformly over [ - 2, 2]. The green
points marked those matrix A such that 0.2I +A is stable.

We provide the proof in the appendix. The result of Theorem 7.4 is verified
for n = 3 in Figure 7, where four connected components are found. In order to
strictly separate the components, we plot the samples of sparse stable matrices whose
eigenvalues are away from the imaginary axis by a fixed margin.

Remark 7.5. The result of Theorem 7.4 can be generalized to n-by-n block ma-
trices if the blocks are square and the first row and the lower diagonal blocks of A are
nonzero. The square block assumption on the subdiagonals of A ensures that, for any
full rank subdiagonals, the first row of A and the upper-triangular entries of P can
always be solved from the Lyapunov equation. Specially, in case of scalar blocks, the
set of stable matrices with the following pattern has 2n - 1 connected components:\left[        

\ast \ast \cdot \cdot \cdot \cdot \cdot \cdot \ast 
\ast 0 \cdot \cdot \cdot \cdot \cdot \cdot 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...
0 \cdot \cdot \cdot 0 \ast 0

\right]        .

This relaxes the condition 2r \leq n of Corollary 7.3.

The sparsity pattern discussed in Remark 7.5 seems to suggest that the sparsity
of the matrix space directly contributes to the number of connected components. The
connection between sparsity and connectivity is complicated in that the number of
connected components may remain exponential even when half of the matrix entries
are free (such matrices are often regarded as dense).

Theorem 7.6. The set \scrA \scrT has 2n - 1 connected components, where \scrT is the subset
of matrices with the sparsity pattern\left[           

\ast \ast \ast \cdot \cdot \cdot \cdot \cdot \cdot \ast 
\ast 0 \ast \cdot \cdot \cdot \cdot \cdot \cdot \ast 

0 \ast 0
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . \ast 
0 \cdot \cdot \cdot \cdot \cdot \cdot 0 \ast 0

\right]           
.
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2812 HAN FENG AND JAVAD LAVAEI

The theorem can be proved in the same manner as Theorem 7.4 with a different
reduction order. The proof is provided in the appendix.

8. Conclusion. In this paper, we studied the connectivity properties of the set
of static stabilizing decentralized controllers. We demonstrated through a subclass
of problems that the NP-hardness of ODC could be attributed to a large number of
connected components. In particular, we proved that the number of connected compo-
nents for chain subsystems would follow a Fibonacci sequence. Even if the elements of
the system matrix are random, the expected number of connected components is still
exponential. A further implication of our study is that for any tri-diagonal-containing
structure, there exists a system with that structure and certain parameters for which
the bounded connectivity number is exponential. The fact that the structure of the
decentralized control problem can cause intractability leads to our study of specific
system and controller properties that have connectivity guarantees. We bound the
number of connected components for the scalar control case. We showed that connec-
tivity would not be an issue for highly damped systems independent of the control
structures. In case the system matrix has a certain block structure, we fully charac-
terized the number of connected components. Our results qualified the applicability of
local search algorithms to ODC problems and emphasized structural considerations.

One future research direction is the analysis of the connectivity properties of
dynamic controllers. Dynamic controllers have more flexibility in the choice of pa-
rameters and therefore we expect better connectivity properties to hold. On the
constructive side, it is important to identify system or control structural properties
that guarantee the connectivity of the feasible set. The connectivity result, combined
with an analysis of the absence of saddle points, will shed light on the possibility of
applying local search algorithms to decentralized control problems.

Appendix A. Proof of Proposition 4.9.

Proof. We adopt the same notation of mi and ni in Theorem 4.8. Let m\prime 
i+1 and

n\prime 
i+1 denote the number of appearances of hi+1+ki > 0 and hi+1+ki < 0, respectively.

In Theorem 4.8, m\prime 
i+1 = mi+1 and n\prime 

i+1 = ni+1. The situation is different when some
ki0 is set to zero. We first consider the case 2 \leq i0 \leq n - 1.

The random variable mi+ni evolves from i = 1 to i = i0 - 1 in the same manner
as Theorem 4.8. Therefore, given mi0 - 1 copies of the inequality fi0 - 1 + ki0 - 1 > 0
and ni0 - 1 copies of the inequality fi0 - 1+ki0 - 1 < 0, conditioned on mi0 - 1 and ni0 - 1,
we have

(m\prime 
i0 , n

\prime 
i0) =

\left\{   (mi0 - 1,mi0 - 1 + ni0 - 1) with probability 1
2 ,

(mi0 - 1 + ni0 - 1, ni0 - 1) with probability 1
2 .

Since ki0 is fixed to zero, when fi0 > 0, all inequalities fi0 + ki0 < 0 are pruned, and
when fi0 < 0, all inequalities fi0 + ki0 > 0 are pruned. Therefore, conditioned on m\prime 

i0
and n\prime 

i0
,

(mi0 , ni0) =

\left\{   (m\prime 
i0
, 0) with probability 1

2 ,

(0, n\prime 
i0
) with probability 1

2 .

Count similarly m\prime 
i0+1 and n\prime 

i0+1, we account for the loss of freedom in hi0+1 + ki0 :

(m\prime 
i0+1, n

\prime 
i0+1) =

\left\{   (mi0 , 0) with probability 1
2 ,

(0, ni0) with probability 1
2 .
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CONNECTIVITY OF STATIC DECENTRALIZED CONTROLLERS 2813

After this, the evolution of (mi, ni) from i to i+ 1 is the same as its evolution in the
proof of Theorem 4.8. It holds that mi0+1 = m\prime 

i0+1 and ni0+1 = n\prime 
i0+1. In sum,

E[mi0+1 + ni0+1| mi0 - 1, ni0 - 1] = E[m\prime 
i0+1 + n\prime 

i0+1| mi0 - 1, ni0 - 1]

=
1

2
E[mi0 + ni0 | mi0 - 1, ni0 - 1]

=
1

4
E[m\prime 

i0 + n\prime 
i0 | mi0 - 1, ni0 - 1]

=
3

8
(mi0 - 1 + ni0 - 1).

Hence, after fixing ki0 = 0, the number of children is smaller by a factor of 1
6 compared

with Theorem 4.8.
When i0 = 1, h2 + k1 appears only once in the tree, and the expected number is

cut by one half, because after fixing k1 = 0, either h2 > 0 or h2 < 0 is kept. In the
same vein, when i0 = n, only half of the leaves are kept.

Appendix B. Proof of Theorem 7.4.

Proof. Similar to Theorem 7.1, we first ignore the constraints A21 \in \scrZ 1 and
A32 \in \scrZ 2. A is stable if and only if there is a matrix P \succ 0 partitioned accordingly
that satisfies the Lyapunov equation

(B.1)

\left[  A11 A12 A13

A21 0 0
0 A32 0

\right]  \left[  P11 P12 P13

P21 P22 P23

P31 P32 P33

\right]  +

\left[  P11 P12 P13

P21 P22 P23

P31 P32 P33

\right]  \left[  A\top 
11 A\top 

21 0
A\top 

12 0 A\top 
32

A\top 
13 0 0

\right]  =  - I.

The solution P is unique whenever A is stable.
We first show that

(B.2) A21 and A32 have full row rank.

Consider the (2, 2) and (3, 3) blocks of (B.1):

A21P12 + P21A
\top 
21 =  - I,(B.3)

A32P23 + P32A
\top 
32 =  - I.(B.4)

If x\top A32 = 0, conjugate (B.4) with x to obtain

0 = x\top (A32P23 + P32A
\top 
32)x =  - x\top x

or, equivalently, x = 0, which means that A32 has full row rank. Similarly, A21 has
full row rank.

Next we consider the (1, 3) and (2, 3) blocks of (B.1):

A11P13 +A12P23 +A13P33 + P12A
\top 
32 = 0,(B.5)

A21P13 + P22A
\top 
32 = 0.(B.6)

Because P33 is invertible, A13 can be uniquely determined from (B.5). Because A21 is
full row rank and square, P13 can be uniquely determined from (B.6). The equation
corresponding to the remaining blocks after eliminating A13 can be extracted by pre-
multiplying (B.1) by

W =

\biggl[ 
I 0  - P13P

 - 1
33

0 I  - P23P
 - 1
33

\biggr] D
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2814 HAN FENG AND JAVAD LAVAEI

and postmultiplying (B.1) by W\top , which yields

(B.7)\Biggl[ 
A11 A12  - P13P

 - 1
33 A32

A21  - P23P
 - 1
33 A32

\Biggr] \Biggl[ 
\=P11

\=P12

\=P21
\=P22

\Biggr] 
+

\Biggl[ 
\=P11

\=P12

\=P21
\=P22

\Biggr] \Biggl[ 
A\top 

11 A\top 
21

A\top 
12  - A\top 

32P
 - 1
33 P32  - A\top 

32P
 - 1
33 P32

\Biggr] 

=

\Biggl[ 
 - I  - P13P

 - 2
33 P31  - P13P

 - 2
33 P32

 - P23P
 - 2
33 P31  - I  - P23P

 - 2
33 P32

\Biggr] 
,

where the partitioned Schur complement \=Pij is equal to Pij - Pi3P
 - 1
33 P3j for i, j = 1, 2.

The (1, 2) and (2, 2) blocks of (B.7) are

A11
\=P12 + (A12  - P13P

 - 1
33 A32) \=P22 + \=P11A

\top 
21  - \=P12A

\top 
32P

 - 1
33 P32 =  - P13P

 - 2
33 P32,(B.8)

A21
\=P12 + \=P21A

\top 
21 =  - I  - P23P

 - 2
33 P32 + P23P

 - 1
33 A32

\=P22 + \=P22A
\top 
32P

 - 1
33 P32.(B.9)

Since \=P22 is invertible, A12 can be uniquely determined from (B.8). (B.9) is the same
as (B.3) given (B.4) and (B.6). Eliminate A12 similarly by conjugating (B.7) with
[ I \=P12

\=P - 1
22 ], which yields

(A11  - \=P12
\=P - 1
22 A21) \~P11 + \~P11(A

\top 
11  - A\top 

21
\=P - 1
22

\=P21) = \ast ,(B.10)

where \~P11 = \=P11  - \=P12
\=P - 1
22

\=P21, and the right-hand side is a negative definite matrix
determined by P . Since \~P11 is positive definite, its eigenvalue do not sum up to zero;
therefore, the solution A11 always exists and can be shrunk to a symmetric solution
that depends continuously on P , as explained in Theorem 7.1. Using \sim to denote the
equivalence of connected components,

\scrA \scrT \sim 

\left\{   
\left(  \left[  A11 A12 A13

A21 0 0
0 A32 0

\right]  ,

\left[  P11 P12 P13

P21 P22 P23

P31 P32 P33

\right]  \right)  : (B.1),

\left[  P11 P12 P13

P21 P22 P23

P31 P32 P33

\right]  \succ 0, (B.2)

\right\}   
(B.11)

\sim 
\biggl\{ \biggl( \biggl[ 

A11 A12

A21 0

\biggr] 
, A32, P23, P33,

\biggl[ 
\=P11

\=P12
\=P21

\=P22

\biggr] \biggr) 
: (B.4), (B.7), P33 \succ 0,\biggl[ 

\=P11
\=P12

\=P21
\=P22

\biggr] 
\succ 0, (B.2)

\biggr\} (B.12)

\sim 
\Bigl\{ \Bigl( 

A11, A21, A32, P23, P33, \=P12, \=P22, \~P11

\Bigr) 
: (B.4), (B.9), (B.10),

P33 \succ 0, \=P22 \succ 0, \~P11 \succ 0, (B.2)
\Bigr\} (B.13)

\sim 
\bigl\{ \bigl( 

A21, A32, P23, P33, \=P12, \=P22

\bigr) 
: (B.4), (B.9), P33 \succ 0, \=P22 \succ 0, (B.2)

\bigr\} 
(B.14)

\sim 
\bigl\{ \bigl( 

A21, A32, P33, \=P22

\bigr) 
: P33 \succ 0, \=P22 \succ 0, (B.2)

\bigr\} 
(B.15)

\sim \{ (A21, A32) : (B.2)\} .(B.16)

The first equivalence (B.11) is justified as in (7.7), with the additional condition that
A21 and A32 must have full row rank. (B.12) follows from the unique continuous
solution of A13 and P13 in (B.5)--(B.6). (B.13) follows from the unique solution of
A12 in (B.8). (B.14) follows from the retraction of the solutions to (B.10). Since
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CONNECTIVITY OF STATIC DECENTRALIZED CONTROLLERS 2815

A32 has full row rank, (B.4) is always solvable in P23, and the solution subspace
can be retracted to the pseudoinverse solution P23 = 1/2A+

32, which is a continuous
function over the full rank matrix A32. The same argument applies to (B.9), where
the solution \=P12 always exists and can be continuously retracted to the pseudoinverse
solution. This arrives at (B.15). (B.16) discards the redundant coordinates.

The proof above imposes no restriction on A21 and A32; it holds with any addi-
tional subspace constraint on them.

Appendix C. Proof of Theorem 7.6.

Proof. We show the proof for the case n = 3; the proof carries over to the general
case. The idea is the same as Theorem 7.4, with minor differences in the reduction
order and in the justification for full-rank blocks. Consider the solution pair (A,P )
to the Lyapunov equation
(C.1)\left[  a11 a12 a13

a21 0 a23
0 a32 0

\right]  \left[  p11 p12 p13
p21 p22 p23
p31 p32 p33

\right]  +

\left[  p11 p12 p13
p21 p22 p23
p31 p32 p33

\right]  \left[  a11 a21 0
a12 0 a32
a13 a23 0

\right]  =  - I.

where P \succ 0 is unique whenever A =
\bigl[ a11 a12 a13
a21 0 a23
0 a32 0

\bigr] 
is stable. Consider the (1, 3), (2, 3),

and (3, 3) blocks of (C.1),

a11p13 + a12p23 + a13p33 + p12a32 = 0,(C.2)

a21p13 + a23p33 + p22a32 = 0,(C.3)

a32p23 + p32a32 =  - 1.(C.4)

Since p33 is invertible, a13 and a23 are uniquely determined from (C.2) and (C.3).
The equation in the remaining blocks after eliminating a13 and a23 can be extracted
by premultiplying (C.1) by

W =

\biggl[ 
1 0  - p13p

 - 1
33

0 1  - p23p
 - 1
33

\biggr] 
and postmultiplying (C.1) by W\top :

(C.5)\biggl[ 
a11 a12  - p13p

 - 1
33 a32

a21  - p23p
 - 1
33 a32

\biggr] \biggl[ 
\=p11 \=p12
\=p21 \=p22

\biggr] 
+

\biggl[ 
\=p11 \=p12
\=p21 \=p22

\biggr] \biggl[ 
a11 a21

a12  - a32p
 - 1
33 p32  - a32p

 - 1
33 p32

\biggr] 
=

\biggl[ 
 - 1 - p13p

 - 2
33 p31  - p13p

 - 2
33 p32

 - p23p
 - 2
33 p31  - 1 - p23p

 - 2
33 p32

\biggr] 
,

where the partitioned Schur complement \=pij is equal to pij  - pi3p
 - 1
33 p3j for i, j = 1, 2.

The (1, 2) and (2, 2) blocks of (C.5) are

a11\=p12 + (a12  - p13p
 - 1
33 a32)\=p22 + \=p11a21  - \=p12a32p

 - 1
33 p32 =  - p13p

 - 2
33 p32,(C.6)

a21\=p12 + \=p21a21 =  - 1 - p23p
 - 2
33 p32 + p23p

 - 1
33 a32\=p22 + \=p22a32p

 - 1
33 p32.(C.7)

Similarly, since \=p22 is invertible, a12 can uniquely solved from (C.6). Eliminating a12
similarly by conjugating (C.5) with [ 1 \=p12 \=p

 - 1
22 ] gives
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2816 HAN FENG AND JAVAD LAVAEI

(a11  - \=p12\=p
 - 1
22 a21)\~p11 + \~p11(a11  - a21\=p

 - 1
22 \=p21) = \ast ,(C.8)

where \~p11 = \=p11  - \=p12\=p
 - 1
22 \=p21 and the right-hand side is a negative definite matrix

determined by P . Because \~p11 is positive definite, its eigenvalues do not sum up to
zero. As a result, the solution a11 always exists and can be shrunk to a symmetric
solution that depends continuously on P . We retract the solution set, where \sim denotes
the equivalence of connected components:

\scrA \scrT \sim 

\left\{   
\left(  \left[  a11 a12 a13

a21 0 a23
0 a32 0

\right]  ,

\left[  p11 p12 p13
p21 p22 p23
p31 p32 p33

\right]  \right)  : (C.1),

\left[  p11 p12 p13
p21 p22 p23
p31 p32 p33

\right]  \succ 0

\right\}   
\sim 
\biggl\{ \biggl( \biggl[ 

a11 a12
a21 0

\biggr] 
, a32, p13, p23, p33,

\biggl[ 
\=p11 \=p12
\=p21 \=p22

\biggr] \biggr) 
: (C.4), (C.5), p33 \succ 0,

\biggl[ 
\=p11 \=p12
\=p21 \=p22

\biggr] 
\succ 0

\biggr\} 
\sim \{ (a11, a21, a32, p13, p23, p33, \=p12, \=p22, \~p11) : (C.4), (C.7), (C.8),

p33 \succ 0, \=p22 \succ 0, \~p11 \succ 0\} 
\sim \{ (a21, a32, p13, p23, p33, \=p12, \=p22) : (C.4), (C.7), p33 \succ 0, \=p22 \succ 0\} .

The equivalence is justified similarly. We first add an additional Lyapunov matrix
P and then repeatedly discard the upper-triangular entries of A, which are uniquely
solved, while transforming the representation of P with the Schur complement until
we reach (C.8), which is always solvable in a11. This discarding procedure produces
a series of equations in the form of (C.7) and (C.4). Since scalar multiplication
commutes, we substitute (C.4) to (C.7) and find that the right-hand side of (C.7) is
strictly less than zero, hence a21 \not = 0. In the same vein, (C.4) implies a32 \not = 0. We have
proved that all lower subdiagonal entries of A cannot be zero. With nonzero a21 and
a32, the remaining equations uniquely determine the subdiagonal entries (\=p12, p23),
and we arrive at the final series of equivalences:

\scrA \scrT \sim \{ (a21, a32, p13, p23, p33, \=p12, \=p22) : (C.4), (C.7), p33 > 0, \=p22 > 0, a32 \not = 0, a21 \not = 0\} 
\sim \{ (a21, a32, p13, p33, \=p22) : p33 > 0, \=p22 > 0, a32 \not = 0, a21 \not = 0\} 
\sim \{ (a21, a32) : a32 \not = 0, a21 \not = 0\} .

After discarding the redundant coordinates, we are left with n - 1 nonzero conditions
on the subdiagonals of A, which give rise to 2n - 1 connected components.

Appendix D. Proof of Lemma 6.4. The proof follows directly from the lemma
below.

Lemma D.1. Suppose that Ex0x
\top 
0 = I, C = I, and K stabilizes both (A - \mu I,B)

and (A  - \lambda I,B). Define W (K) = (A + BK) + (A + BK)\top . We have the following
bound:

J2\mu (K)

J2\lambda (K)
\leq 

\left\{   
2\lambda  - \nu min(W (K))
2\mu  - \nu max(W (K)) if 2\mu > \nu max(W (K)),

2\lambda  - \nu max(W (K))
2\mu  - \nu min(W (K)) if 2\mu < \nu min(W (K)).

Proof. The quadratic costs J2\lambda (K) and J2\mu (K) can be written as tr(P\lambda (K)) and
tr(P\mu (K)), where

(A - \lambda I+BK)\top P\lambda (K) + P\lambda (K)(A - \lambda I+BK) +K\top RK +Q+DK +K\top D\top = 0,

(D.1a)

(A - \mu I+BK)\top P\mu (K) + P\mu (K)(A - \mu I+BK) +K\top RK +Q+DK +K\top D\top = 0.

(D.1b)
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Taking the difference of (D.1a) and (D.1b) yields

(A+BK)\top (P\lambda (K) - P\mu (K)) + (P\lambda (K) - P\mu (K))(A+BK) = 2\lambda P\lambda (K) - 2\mu P\mu (K).

(D.2)

Taking the trace of (D.2), we obtain

2\lambda tr(P\lambda (K)) - 2\mu tr(P\mu (K))

= tr
\bigl( 
((A+BK) + (A+BK)\top )P\lambda (K)

\bigr) 
 - tr

\bigl( 
((A+BK) + (A+BK)\top )P\mu (K)

\bigr) 
\geq \nu min(W (K)) tr(P\lambda (K)) - \nu max(W (K)) tr(P\mu (K)),

where the last step follows from the positive semidefinite property of P\lambda (K) and
P\mu (K). In the same vein,

2\lambda tr(P\lambda (K)) - 2\mu tr(P\mu (K)) \leq \nu max(W (K)) tr(P\lambda (K)) - \nu min(W (K)) tr(P\mu (K)).

Hence, if 2\mu > \nu max(W (K)), we have

tr(P\mu (K)) \leq 2\lambda  - \nu min(W (K))

2\mu  - \nu max(W (K))
tr(P\lambda (K)),

and if 2\mu < \nu min(W (K)), we have

tr(P\mu (K)) \leq 2\lambda  - \nu max(W (K))

2\mu  - \nu min(W (K))
tr(P\lambda (K)).

Appendix E. Proof of coerciveness. We show that the ODC problem has a
certain structure that disallows the locally optimal stabilizing K to have arbitrarily
large magnitude.

Lemma E.1. Consider the ODC problem with cost (2.1). Suppose that C has

full row rank, L =
\bigl[ Q D

D\top R

\bigr] 
is positive definite, D0 = Ex0x

\top 
0 is positive definite, and

K \in \scrS is stabilizing. Then, J0(K) \rightarrow \infty whenever \| K\| 2 \rightarrow \infty or when K approaches
the boundary of the set of stabilizing controllers.

Proof. We write

P (K) =

\int \infty 

0

et(A+BKC)\top \^R(K)et(A+BKC)dt,

where
\^R(K) = Q+DKC + C\top K\top D\top + C\top K\top RKC.

When K is stabilizing, P (K) is well-defined. As K approaches a finite K\dagger on the
boundary of the set of stabilizing controllers, we show that \| P (K)\| 2 \rightarrow \infty . By
assumption, the symmetric matrix \^R(K) in the integral is positive definite, because
it can be written as

\^R(K\dagger ) =
\bigl[ 
I C\top K\top 

\dagger 
\bigr] 
L

\biggl[ 
I

K\dagger C
\top 

\biggr] 
.

Therefore, its minimum eigenvalue \nu min( \^R(K\dagger )) > 0, and when K is close to K\dagger ,
\^R(K) \succeq 1

2\nu min( \^R(K\dagger ))I. We make the estimate
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2818 HAN FENG AND JAVAD LAVAEI

tr(P (K))\geq 1

2
\nu min( \^R(K\dagger ))

\int \infty 

0

tr
\Bigl( 
et(A+BKC)\top et(A+BKC)

\Bigr) 
dt

\geq 1

2
\nu min( \^R(K\dagger ))

\int \infty 

0

\| et(A+BKC)\| 22dt

=
1

2
\nu min( \^R(K\dagger ))

\int \infty 

0

e2t\cdot spabs(A+BKC)dt,

where spabs(\cdot ) denotes the spectral abscissa (maximum real part of the eigenvalues).
The estimate above shows that tr(P (K)) \rightarrow \infty as K approaches K\dagger from the stabi-
lizing set. Since J0(K) = tr(P (K)D0) \geq tr(P (K))\nu min(D0), J0(K) also approaches
infinity.

In case \| K\| 2 \rightarrow \infty from the stabilizing set, we use the fact that P (K) is the
unique solution to the equation

(A+BKC)\top P + P (A+BKC) + \^R(K) = 0.

Let \sigma min(C) denote the smallest singular value of C, which is positive by assumption.
From the triangle inequality,

\nu min(R)\sigma min(C)2\| K\| 22 \leq \| C\top K\top RKC\| 2
\leq 2\| A+BKC\| 2\| P (K)\| 2 + \| Q\| 2 + 2\| D\| 2\| K\| 2\| C\| 2
\leq 2(\| A\| 2 + \| B\| 2\| K\| 2\| C\| 2)\| P (K)\| 2
+ \| Q\| 2 + 2\| D\| 2\| K\| 2\| C\| 2,

Therefore,

\| P (K)\| 2 \geq \nu min(R)\sigma min(C)2\| K\| 22  - \| Q\| 2  - 2\| D\| 2\| K\| 2\| C\| 2
2(\| A\| 2 + \| B\| 2\| K\| 2\| C\| 2)

.

Hence, \| P (K)\| 2 \rightarrow \infty as \| K\| 2 \rightarrow \infty inside the stabilizing set. Similarly J(K) =
tr(P (K)D0) \geq \| P (K)\| 2\nu min(D) also approaches infinity.

Acknowledgments. The authors are grateful to Salar Fattahi for his comments
and feedback. The authors are indebted to Professor Mehran Mesbahi and Jingjing
Bu for fruitful discussions about the bound in Theorem 3.4. The valuable comments
from the anonymous reviewers have led to improvement of the paper.

REFERENCES

[1] R. Arastoo, M. Bahavarnia, M. V. Kothare, and N. Motee, Output feedback controller
sparsification via H2-approximation, IFAC PapersOnLine, 48 (2015), pp. 112--117, https:
//doi.org/10.1016/J.IFACOL.2015.10.316.

[2] B. Bamieh, F. Paganini, and M. Dahleh, Distributed control of spatially invariant systems,
IEEE Trans. Automat. Control, 47 (2002), pp. 1091--1107, https://doi.org/10.1109/TAC.
2002.800646.

[3] M.-A. Belabbas, Sparse Stable Systems, Systems Control Lett., 62 (2013), pp. 981--987, https:
//doi.org/10.1016/J.SYSCONLE.2013.07.004.

[4] D. S. Bernstein, Matrix Mathematics: Theory, Facts, and Formulas with Application to
Linear Systems Theory, Princeton University Press, Princeton, NJ, 2005.

[5] D. P. Bertsekas, Nonlinear Programming, Athena Scientific, Belmont, MA, 2016.
[6] V. D. Blondel and J. N. Tsitsiklis, A survey of computational complexity results in

systems and control, Automatica, 36 (2000), pp. 1249--1274, https://doi.org/10.1016/
S0005-1098(00)00050-9.

D
ow

nl
oa

de
d 

07
/1

3/
21

 to
 1

36
.1

52
.2

2.
14

1.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

https://doi.org/10.1016/J.IFACOL.2015.10.316
https://doi.org/10.1016/J.IFACOL.2015.10.316
https://doi.org/10.1109/TAC.2002.800646
https://doi.org/10.1109/TAC.2002.800646
https://doi.org/10.1016/J.SYSCONLE.2013.07.004
https://doi.org/10.1016/J.SYSCONLE.2013.07.004
https://doi.org/10.1016/S0005-1098(00)00050-9
https://doi.org/10.1016/S0005-1098(00)00050-9


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONNECTIVITY OF STATIC DECENTRALIZED CONTROLLERS 2819

[7] J. Bochnak, M. Coste, and M.-F. Roy, Real Algebraic Geometry, Ergeb. Math. Grenzgeb.
36, Springer, Berlin, 2013.

[8] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cam-
bridge, UK, 2004.

[9] S. P. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in
System and Control Theory, Stud. Appl. Math. 15, SIAM, Philadelphia, 1994.

[10] F. Bullo, J. Cortes, and S. Martinez, Distributed Control of Robotic Networks: A Math-
ematical Approach to Motion Coordination Algorithms, Princeton Ser. Appl. Math. 27,
Princeton University Press, Princeton, NJ, 2009.

[11] J. Doyle, K. Glover, P. Khargonekar, and B. Francis, State-space solutions to standard
H-2 and H-infinity control problems, IEEE Trans. Automat. Control, 34 (1989), pp. 831--
847, https://doi.org/10.1109/9.29425.

[12] G. E. Dullerud and F. Paganini, A Course in Robust Control Theory: A Convex Approach,
Texts in Appl. Math. 36, Springer, New York, 2013.

[13] S. Fattahi, J. Lavaei, and M. Arcak, A scalable method for designing distributed controllers
for systems with unknown initial states, in Proceedings of the 56th IEEE Conference on
Decision and Control, 2017.

[14] M. Fazel, R. Ge, S. M. Kakade, and M. Mesbahi, Global Convergence of policy gradient
methods for linearized control problems, in Proceedings of the 35th International Confer-
ence on Machine Learning, 2018.

[15] G. Fazelnia, R. Madani, and J. Lavaei, Convex relaxation for optimal distributed control
problem, in Proceedings of the 53rd IEEE Conference on Decision and Control, 2014,
pp. 896--903, https://doi.org/10.1109/CDC.2014.7039495.

[16] H. Feng and J. Lavaei, Damping with Varying Regularization in Optimal Decentralized Con-
trol, https://lavaei.ieor.berkeley.edu/ODC hom 2019 2.pdf, 2019.

[17] R. Ge, J. D. Lee, and T. Ma, Matrix completion has no spurious local minimum, in Advances
in Neural Information Processing Systems, 2016.

[18] E. N. Gryazina and B. T. Polyak, Stability regions in the parameter space: D-decomposition
revisited, Automatica, 42 (2006), pp. 13--26, https://doi.org/10.1016/j.automatica.2005.08.
010.

[19] E. N. Gryazina, B. T. Polyak, and A. A. Tremba, D-decomposition technique state-
of-the-art, Autom. Remote Control, 69 (2008), pp. 1991--2026, https://doi.org/10.1134/
S0005117908120011.

[20] C. Jin, R. Ge, P. Netrapalli, S. M. Kakade, and M. I. Jordan, How to Escape Saddle
Points Efficiently, http://arxiv.org/abs/1703.00887, 2017.

[21] C. Josz, Y. Ouyang, R. Zhang, J. Lavaei, and S. Sojoudi, A theory on the absence of
spurious solutions for nonconvex and nonsmooth optimization, in Advances in Neural In-
formation Processing Systems, 31 (2018), pp. 2441--2449.

[22] E. Kreindler and A. Jameson, Optimality of linear control systems, IEEE Trans. Automat.
Control, 17 (1972), pp. 349--351, https://doi.org/10.1109/TAC.1972.1099985.

[23] L. Lessard and S. Lall, An algebraic approach to the control of decentralized systems, IEEE
Trans. Control Network Syst., 1 (2014), pp. 308--317, https://doi.org/10.1109/TCNS.2014.
2357501.

[24] F. Lin, M. Fardad, and M. R. Jovanovic, Design of optimal sparse feedback gains via the
alternating direction method of multipliers, IEEE Trans. Automat. Control, 58 (2013),
pp. 2426--2431, https://doi.org/10.1109/TAC.2013.2257618.

[25] D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming, Vol. 2, Springer, New
York, 1984.

[26] N. Matni and J. C. Doyle, A heuristic for sub-optimal H-2 decentralized control subject
to delay in non-quadratically-invariant systems, in Proceedings of the American Control
Conference, IEEE, 2013, pp. 5803--5808.

[27] M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent Networks, Princeton
University Press, Princeton, NJ, 2010.

[28] D. K. Molzahn, F. Dorfler, H. Sandberg, S. H. Low, S. Chakrabarti, R. Baldick, and
J. Lavaei, A survey of distributed optimization and control algorithms for electric power
systems, IEEE Trans. Smart Grid, 8 (2017), pp. 2941--2962, https://doi.org/10.1109/TSG.
2017.2720471.

[29] R. J. Ober, Topology of the set of asymptotically stable minimal systems, Internat. J. Control,
46 (1987), pp. 263--280, https://doi.org/10.1080/00207178708933897.

[30] A. Ohara and T. Kitamori, Geometric structures of stable state feedback systems, IEEE
Trans. Automat. Control, 38 (1993), pp. 1579--1583, https://doi.org/10.1109/9.241581.

D
ow

nl
oa

de
d 

07
/1

3/
21

 to
 1

36
.1

52
.2

2.
14

1.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

https://doi.org/10.1109/9.29425
https://doi.org/10.1109/CDC.2014.7039495
https://lavaei.ieor.berkeley.edu/ODC_hom_2019_2.pdf
https://doi.org/10.1016/j.automatica.2005.08.010
https://doi.org/10.1016/j.automatica.2005.08.010
https://doi.org/10.1134/S0005117908120011
https://doi.org/10.1134/S0005117908120011
http://arxiv.org/abs/1703.00887
https://doi.org/10.1109/TAC.1972.1099985
https://doi.org/10.1109/TCNS.2014.2357501
https://doi.org/10.1109/TCNS.2014.2357501
https://doi.org/10.1109/TAC.2013.2257618
https://doi.org/10.1109/TSG.2017.2720471
https://doi.org/10.1109/TSG.2017.2720471
https://doi.org/10.1080/00207178708933897
https://doi.org/10.1109/9.241581


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2820 HAN FENG AND JAVAD LAVAEI

[31] A. Rantzer, Scalable control of positive systems, European J. Control, 24 (2015), pp. 72--80,
https://doi.org/10.1016/j.ejcon.2015.04.004.

[32] P. Shah and P. A. Parrilo, H 2-optimal decentralized control over posets: A state-space
solution for state-feedback, IEEE Trans. Automat. Control, 58 (2013), pp. 3084--3096, https:
//doi.org/10.1109/TAC.2013.2281881.

[33] S.-H. Wang and E. Davison, On the stabilization of decentralized control systems, IEEE Trans.
Automat. Control, 18 (1973), pp. 473--478, https://doi.org/10.1109/TAC.1973.1100362.

[34] S. Sojoudi and J. Lavaei, On the exactness of semidefinite relaxation for nonlinear optimiza-
tion over graphs: Part I, in Proceedings of the IEEE Conference on Decision and Control,
2013, pp. 1043--1050, https://doi.org/10.1109/CDC.2013.6760020.

[35] A. N. Venkat, I. A. Hiskens, J. B. Rawlings, and S. J. Wright, Distributed MPC strategies
with application to power system automatic generation control, IEEE Trans. Control Syst.
Technol., 16 (2008), pp. 1192--1206, https://doi.org/10.1109/TCST.2008.919414.

[36] Y. S. Wang, N. Matni, and J. C. Doyle, System level parameterizations, constraints and
synthesis, in Proceedings of the American Control Conference, 2017, pp. 1308--1315, https:
//doi.org/10.23919/ACC.2017.7963133.

[37] C. Wenk and C. Knapp, Parameter optimization in linear systems with arbitrarily constrained
controller structure, IEEE Trans. Automat. Control, 25 (1980), pp. 496--500, https://doi.
org/10.1109/TAC.1980.1102373.

[38] H. K. Wimmer, An inertia theorem for tridiagonal matrices and a criterion of Wall on con-
tinued fractions, Linear Algebra Appl., 9 (1974), pp. 41--44.

[39] H. S. Witsenhausen, A counterexample in stochastic optimum control, SIAM J. Control, 6
(1968), pp. 131--147, https://doi.org/10.1137/0306011.

[40] R. Y. Zhang, C. Josz, S. Sojoudi, and J. Lavaei, How Much Restricted Isometry is Needed
In Nonconvex Matrix Recovery?, in Advances in Neural Information Processing Systems,
2018.

D
ow

nl
oa

de
d 

07
/1

3/
21

 to
 1

36
.1

52
.2

2.
14

1.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

https://doi.org/10.1016/j.ejcon.2015.04.004
https://doi.org/10.1109/TAC.2013.2281881
https://doi.org/10.1109/TAC.2013.2281881
https://doi.org/10.1109/TAC.1973.1100362
https://doi.org/10.1109/CDC.2013.6760020
https://doi.org/10.1109/TCST.2008.919414
https://doi.org/10.23919/ACC.2017.7963133
https://doi.org/10.23919/ACC.2017.7963133
https://doi.org/10.1109/TAC.1980.1102373
https://doi.org/10.1109/TAC.1980.1102373
https://doi.org/10.1137/0306011

	Introduction
	Problem formulation
	Connectivity properties in special cases
	Exponential subclass
	Bounded connectivity number
	Highly damped systems
	Stable matrices with block patterns
	Two-by-two block
	More complicated block patterns

	Conclusion
	Appendix A. Proof of cor:randomfix
	Appendix B. Proof of thm:three-patternzerolyapunov
	Appendix C. Proof of thm:finalboring
	Appendix D. Proof of lem:Jratio
	Appendix E. Proof of coerciveness
	Acknowledgments
	References

