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CONNECTIVITY PROPERTIES OF THE SET OF STABILIZING
STATIC DECENTRALIZED CONTROLLERS*
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Abstract. The NP-hardness of the optimal decentralized control (ODC) problem is reflected
in the properties of its feasible set. We study the complexity of the ODC problem through an
analysis of the set of stabilizing static decentralized controllers and show that there is no polynomial
upper bound on its number of connected components. In particular, it is proved that this number
is exponential in the order of the system for a class of problems. Since every point in each of these
components is the unique solution of the ODC problem for some quadratic objective functional, the
results of this work imply that, without prior knowledge for initialization, local search algorithms
cannot solve the ODC problem to global optimality for all decentralized control structures. In an
effort to understand the connection between the geometric properties of the feasible set of the ODC
problem and the control structure, we further identify decentralized structures that admit tractable
connectivity properties, using a combination of the Routh-Hurwitz criterion and Lyapunov stability
theory.
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1. Introduction. Classical state-space solutions to optimal centralized control
problems do not scale well as the dimension increases [11]. Moreover, structural
constraints such as locality and delay are ubiquitous in real-world controllers. The
optimal decentralized control (ODC) problem has been proposed in the literature to
bridge this gap. The model has found wide applications in electric power systems
and robotics [28, 10, 35, 27]. On the one hand, ODC can have nonlinear optimal
solutions even for linear systems and is NP-hard in the worst case [39, 6]. On the
other hand, the existence of dynamic structured feedback laws is completely captured
by the notion of fixed modes [33], and several works have discovered structural con-
ditions on the system and/or the controller under which the ODC problem admits
tractable solutions. The conditions include spatial invariance [2], partial nestedness
[32], positiveness [31], and quadratic invariance [23]. More recently, the system level
approach [36] has convexified structural constraints at the expense of working with a
series of impulse response matrices. Promising approximation [13, 1, 26] and convex
relaxation techniques [34, 8, 15, 9] also exist in the literature.

A recent line of research, initiated in the machine learning community, suggests
using nonlinear programming methods based on local search for the optimal con-
trol problems [14]. These methods have been applied to instances of ODC to ob-
tain approximate solutions [37] and to promote sparsity in controllers [24]. Local
search methods are well-studied for convex problems, and they normally come with
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optimality guarantees [8]. However, when the problem is nonconvex, these methods
may converge to a saddle point or to a local minimum [5]. Local search algorithms are
effective: (i) when they are initialized at a point close enough to the optimal solution,
or (ii) when there is no spurious local optimum and it is possible to escape saddle
points [17, 21, 40, 20]. These conditions are not evidently verifiable for ODC and the
question whether local search is effective for ODC remains unanswered.

This paper shows that the chances of success for the global convergence of local
search methods applied to a general ODC problem are theoretically slim. Specifically,
we prove that the feasible set of the ODC problem in the static case, which includes
all structured static controllers that stabilize the system, can be not only nonconvex
but also disconnected where the number of connected components grows exponen-
tially in the order of the system. Since any point in the feasible set is the unique
globally optimal solution of ODC for some quadratic objective functional, this result
implies that no reformulation of the problem with a smooth change of variables could
convexify the problem. Moreover, if one seeks to solve a hard instance of the ODC
problem through local search, the algorithm needs to be initialized an exponential
number of times unless some prior information about the location of the solution is
available in order to start in the correct connected component. This result contrasts
with the recent findings in [14] and qualifies the applicability of local search methods
in optimal control problems.

Although the number of connected components is shown to be exponential in
this work, we also demonstrate that favorably structured systems can have a single
connected component. In particular, it is proved that the set of static stabilizing
controllers is connected for damped systems no matter what the control structure is.
Moreover, a bound on the number of connected components is provided in the scalar
case. For block structured systems with a sufficient number of free elements, we
develop a series of equivalence relations that describe the exact number of connected
components of structured stable matrices.

This work is related to several papers in the literature. The set of stabilizing
controllers has been studied from many angles. The work [30] parametrizes the set
of stable state-feedback controllers under no structural constraints. The paper [29]
studies the connectivity of stable linear systems and concludes that minimal single-
input single-output systems of order n have at most n + 1 connected components,
while stable and minimal multi-input multi-output systems have only one connected
component. The work [3] investigates what types of sparse patterns can sustain stable
dynamics using graph theory. For systems with a few parameters, the number of
stability regions can be bounded by the number of root-invariant regions using the D-
decomposition method [18, 19]. However, the connectivity of decentralized stabilizing
controllers, especially for multi-input multi-output systems, lacks a systematic study.

The remainder of this paper is organized as follows. Notation and problem for-
mulations are given in section 2. We derive elementary connectivity properties of
the set of stabilizing controllers and bound the number of connected components for
scalar controllers in section 3. Section 4 examines a subclass of decentralized control
problems for which the number of connected components is exponential and discusses
the implications of this result on the number of locally optimal solutions of ODC. Sec-
tion 5 extends the result to a board class of controllers with a tridiagonal-containing
structure and shows that the set of stabilizing controllers with a bounded norm has an
exponential number of connected components. Section 6 proves that highly damped
systems admit a connected set of decentralized controllers. The section further dis-
cusses how this property could be used to approximate the solution of the ODC
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problem. Section 7 describes the connectivity properties of structured stable matrices
with zero blocks. Concluding remarks are made in section 8.

2. Problem formulation. Consider the linear time-invariant system
#(t) = Az(t) + Bu(t),
y(t) = Cu(t),

where A € R"™*™ B € R™*™ and C € RP*™ are real matrices of compatible sizes.
The vector z(t) is the state of the system and y(¢) is the output. We focus on the static
case, where the control input u(t) is to be determined via a static output-feedback
law u(t) = Ky(t) with the gain K € R™*? such that some measure of performance is
optimized. Since the analysis to follow is on the feasible set, the initial state (being
deterministic or stochastic) and the objective function (being quadratic or some other
function of the system’s signals) are unimportant. With no loss of generality, we
assume that the initial state z(0) = z( is normally distributed with zero mean and
unit variance. The quadratic performance measure is defined by

oo
(2.1) I(K)=E / e M [z (6)Qu(t) + 22" (t)Du(t) +u' (t)Ru(t)] dt,
0
where the matrix L = [ QT D] is positive semidefinite and R is positive definite. We
use the notation L > 0 and R > 0 to denote positive semidefiniteness and positive

definiteness, respectively. The discount factor A is nonnegative. The expectation is
taken over xg. The closed-loop system is

i(t) = (A+ BKC)x(t).

A matrix is stable, or equivalently Hurwitz, if all its eigenvalues lie in the open left
half plane. K is said to stabilize the system if A + BKC is stable. All the matrices
considered in this work are real-valued unless otherwise noted. The objective is to
study the set of structured stabilizing controllers

(2.2) Ks ={K : A+ BKC is stable, K € S},

where & C R™*P is a linear subspace of matrices, often specified by fixing certain
entries of the matrix to zero. Decentralized and distributed controllers could be
specified by the set S with a prescribed sparsity pattern. The set of sparse stable
matrices

(2.3) Ar ={A: Astable and A € T}

is a special case of (2.2), where T C R™*™ is a linear subspace of matrices. When 7
is a linear subspace of sparse matrices, we represent 7 with a sparsity pattern where
* denotes the positions of entries that can be nonzero. As an example, the set of
tridiagonal matrices can be represented by the following sparsity pattern:

* * *
0 = *

0
L0 0 =« 1
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Let I+ € T denote the indicator of the sparsity pattern of 7 so that I7 has an entry 1
at all positions of 7 that can be nonzero and 0 otherwise. The connectivity properties
of s and A7 will be studied under Euclidean topology. We use 0K s to denote the
boundary of the set Ks. The notation diag(as,...,a,) denotes the n-by-n diagonal
matrix with diagonal entries a1, ...,a,. We write tr(A) for the trace of the matrix A
and ||A||2 for the 2-norm of A. The notation E[X|Y] denotes the expectation of the
random variable X conditioned on the random variable Y.

Geometrically, the set of stable matrices is an open nonconvex cone with the
origin removed. The sets Ks and A7 are obtained by slicing this open cone of stable
matrices along an affine subspace and a linear subspace, respectively. The slicing
affects the number of connected components for each of these sets and thereby reflects
the tractability of the ODC problem.

3. Connectivity properties in special cases. In this section, we prove global
geometric properties of the stabilizing set Kg for certain choices of B, C, and S using
elementary arguments.

The stability of matrices can be characterized in different ways. Lyapunov’s char-
acterization [12, section 4.1] states that a matrix M is stable if and only if there is a
solution P > 0 to the equation M P+ PM " +1 = 0. The Routh-Hurwitz criterion [4,
section 11.17] states that a matrix is stable if and only if the coefficients of its char-
acteristic polynomial satisfy a set of polynomial inequalities. These basic techniques
allow us to study the stabilizing set XC when there are no structural constraints and
full state measurements.

LEMMA 3.1. Assume that S = R™*P and C = I. The set Ks is connected but
generally nonconver.

Proof. Observe that Ks is the continuous image of the set
H={(R,P): AP+ BR+PA" +R'"B" = —I,P ~ 0}

through the map (R, P) — RP~!. Moreover, H is connected since it is the intersection
of a linear space and a convex cone. The map is well-defined as P is positive definite;
it is also surjective from the Lyapunov’s characterization: whenever A+ BK is stable,
there is a matrix P = 0 such that (A + BK)P + P(A+ BK)" = —I and the tuple
(R, P) can be mapped to the desired K under the formula K P = R.

To show that g is generally nonconvex, consider the second-order system

o5 Ao

—ap —ag 1 b ka1 koo

where A and the first column of B are in the canonical form to ensure controllability.
The closed-loop matrix is equal to

A+ BK — [ boko1 1+ bokao ] '

—ao + k11 + bika1  —a1 + k12 + bikas
To analyze the stability, we use the Routh-Hurwitz criterion and write
Ks={K :tr(A+ BK) < 0,det(A + BK) > 0}.

Notice that Ks is not convex in general since its intersection with the lower dimen-
sional subspace k21 = 0 is given by
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k k

K= 1 12 i —aq + k1o + b1kos <0, (1 + bok‘gz)(—ao + kn) <0,
ka1 koo

which turns out to be the union of two disjoint polyhedrons if by # 0 (due to the

product in the second condition). O

An implication of Lemma 3.1 is that the feasible set of the linear-quadratic opti-
mal centralized control problem is connected, which justifies the success of the local
search algorithm proven in [14] for centralized controllers. Another insightful, but
impractical, scenario is the case with B = C = I and a mostly arbitrary S. This is
studied below.

LEMMA 3.2. Assume that B = C = I and that S contains —1. Then, the set Ks
is connected.

Proof. Since S is a linear subspace, we have —AI € S for every A € R. Given two
arbitrary matrices K1, Ky € Kg, consider the following connected path from A + K,
to A + KQZ

A4 K U A4 K -
Fazie 44 K, AL

decrE;se A A + KQ,

where

e )\ > 0 is first increased to a large value;

e we move from A+ K; — A\l to A+ K5 — A\ via an arbitrary continuous path

between K7 and Ks in S;

e ) is decreased eventually.
The parameter A\ can be made so large that all matrices on the path from A+ K; — I
to A+ K5 — A could be regarded as a small (on the order of Ko — K7) perturbation
of the large matrix A + K7 — AI. Such small perturbation preserves the stability
condition of A + K7 — AI. The proof is completed by noting that the designed path,
which connects K7 and Ko, involves only controllers in & and passes through only
stabilizing matrices continuously. O

If the measurement matrix C' is not the identity matrix, the set could become
disconnected even in the simplest case K = k € R. This is demonstrated in the
example below. To differentiate vectors from matrices, we rewrite B as b and C as
¢, where b and ¢ are column vectors in R”.

Ezample 1. Assume that (A, b) is controllable and ¢ # 0, where A € R3*3. Then,
the set I can have at most two connected components. To prove this statement, with
no loss of generality we write the system in the controllable canonical form, i.e.,

0o 1 o0 0
A=10 0 1 ],b=|0|,c"=[c & c].
—ap —a; —ag 1

The Routh—Hurwitz criterion characterizes stability with the set of inequalities

ag — keg > 0,
a1 — kep > 0,
a2 _kCQ > 0,

(CLO — k'C()) < (G,Q — kcz)(al — kcl).
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max Releigla + BKC))

Fia. 1. As discussed in Example 1, the set of stabilizing controllers can have two connected
components for a third-order system. Observe that there are two intervals for k that produce eigen-
values in the left-half complex plane.

Consider the quadratic function f(k) = (az — kez)(a1 — keq), which can have at most
two branches that lie above the line ag — kcg. The intersection of these branches
with the interval defined by the first three linear inequalities leads to at most two
connected components. An example with exactly two components can be produced
by the parameters

(ao, ay, ag) = (—5, —1, 1), (CQ, Ccy, 02) = (0.85, 0.2, 0.2).
Figure 1 verifies the above result by plotting the maximum real part of the closed-loop

eigenvalues versus k.

It can be inferred from Example 1 that the coordinates of the set of stabilizing
controllers are “one-sided.” This is not surprising since when A + BKC' is stable, it
holds that tr(A + BKC) < 0. We elaborate on this result in Lemma 3.3.

LEMMA 3.3. Consider the case m = p = 1. Suppose that (A,b) is controllable
and ¢ # 0. Then, the scalar set Ks cannot extend to infinity on both sides.

Proof. As before, with no loss of generality consider the canonical form

A= 0 ! },b:[ﬂ,cT:[CO,...,cn_l].

_aO PR _an71
The matrix A + bkc' has the characteristic polynomial
(ag — cok) + (ay — crk)x 4 + (an_1 — cn1k)z™t + 2" = 0.

It follows from the Routh—Hurwitz criterion that the coefficients of this polynomial
must be positive. Since ¢ # 0, there is some entry ¢;, # 0 and, as a result, k is
prevented from extending to infinity on one side due to the inequality a;, —c; &k > 0.0

In what follows, we will bound the number of connected components for scalar
controllers. Compared with [19, Theorem 1], our bound is tighter under the assump-
tion of controllability. We denote by [£] the smallest integer greater than or equal to
the scalar £.

THEOREM 3.4. Consider the case m = p = 1. Suppose that (A, b) is controllable
and ¢ # 0. The scalar set Ks can have at most [ 5| connected components.
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Proof. If there is no stabilizing controller in S, then Ks = (); otherwise one can
first stabilize A with some controller kg and then analyze the set of shifted controllers
k — ko. As a result, without loss of generality one can assume that A is stable. We
call a controller k critical when it is on the boundary of the set stabilizing controllers,
implying the presence of a closed-loop eigenvalue on the imaginary axis. If necessary,
we replace A with A—el for a small € > 0 so that the number of connected components
remains the same and the intervals of g share no boundary points. Consider the
solution to the equation

0 =det(jwl — A — kbc")

(3.1) =det(jwl — A)det(1 — ke' (jwl — A)~'b)

(the symbol j denotes the imaginary unit). Since A is stable, the first term in the
second line of (3.1) is not zero and therefore the second term must be zero. Taking
its real and imaginary parts yields

(3.2) 1 -k x Re{c" (Gwl — A)~'b} =0,

(3.3) Im{c' (jwI — A)~'b} = 0.

Equation (3.3) is of the form Im{ gg:ﬁg} = 0 with g(jw) = det(jwl — A) # 0; equiv-

alently, one can write Im{f(jw)g(jw)} = 0, where f(jw) is a polynomial of degree
at most n — 1, g(jw) = det(jwI — A) is a polynomial of degree n, and the overline
denotes the complex conjugate. Im{ f(jw)g(jw)} is a polynomial of degree 2n —1 in w
with only odd degree terms; it can have at most 2n — 1 real roots that are symmetric
around 0. Because Re{f(jw)g(jw)} has only even degree terms, at most n distinct
pairs of the symmetric roots of (3.3) can be plugged into (3.2). This leads to at most
n critical values for the scalar k£ and divides the real line into at most n 4 1 intervals
of interlacing stable-unstable controller regions. At most [”T'HW of them are stable.
Note that when n+1 is odd, Lemma 3.3 rules out one interval that extends to infinity.
As a result, the upper bound can be sharpened to |2+ ] = [2]. 0

Theorem 3.4 states that the number of connected components would grow with
the dimension of the system even in the special case m = p = 1. Our bound is tight
when n = 3 in light of Example 1.

4. Exponential subclass. One of the main results of this paper is stated below.

THEOREM 4.1. There is no polynomial function with respect to the order of the
system that can serve as an upper bound on the number of connected components of
the set of decentralized stabilizing controllers.

To prove the theorem, it suffices to show the existence of a subclass of decentral-
ized control problems whose set of stabilizing controllers has an exponential number
of connected components. Our proof requires a lemma that characterizes the sta-
bility of tridiagonal matrices whose diagonal elements are mostly purely imaginary
complex numbers. Define the inertia In(G) of an n x n matrix G as the triplet
In(G) = (a(G), B(G),v(G)), where a(G), B(G), and v(G) count the eigenvalues of G
with positive, negative, and zero real parts, respectively.
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LEMMA 4.2 (from [38]). Consider the tridiagonal matric

2797

[fi+in  f2 O 0
—hs ig2 3
0 —h3 jg:
G 3 Jgs  fa
0
. _hn—l jgn—l fn
L O 0 _hn jgn_
where f;, g;, and h; are real for i =1,...,n, fi #0, and fih; #0 fori=2,...,n.
Then,
In(G) = In(D),
where

D = diag(fl, f1f2h2, f1f2f3h2h3a s

aflfnth/n)

A corollary of Lemma 4.2 for the stability of real tridiagonal matrices is given

below.

COROLLARY 4.3. Given the tridiagonal real matriz A of the form

fi fo O 0
“hy 0 f3 0
—h
(4.1) a=| " 2 0 fa ,
0
_hnfl 0 fn
L0 0 —h, O]

it holds that
o if f1 <0 and fih; >0 for alli € {2,...,n}, then A is stable;
e if fih; <0 for some index i € {2,...,n}, then A is unstable.

Remark 4.4. Sparse stable matrices theory [3] states that the graph associated
with the sparsity pattern of the matrix in (4.1) is a chain and has nested Hamiltonian
subgraphs. The graph is sufficient to sustain stable dynamics. Moreover, the sparse
matrix subspace is minimally stable because (i) if f; is set to zero, then the trace of
the matrix becomes zero and therefore at least one eigenvalue should be unstable, (ii)
if any nondiagonal element is set to zero, then the matrix decomposes into a block
triangular form where the lower diagonal block has a zero trace, leading to instability.

Due to Remark 4.4, Corollary 4.3 gives necessary and sufficient conditions for
the stability of a class of matrices, which can be used to analyze both connected
components and separating hypersurfaces. In what follows, we will first show the
possibility of 2~ connected components in the case with a nonidentity C' and then
develop a similar result for C = I.
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THEOREM 4.5. Let A € R™™ be in the form of (4.1), and set B € R**(2n=2),
Ce R(2n72)><n} and K € R(2n72)><(2n72) to

0O -+ -+ 0J]+1 0 -~ 0
-1 0
B = 0 ,
0 +1
| O 0 —-1]0 0 |
1 0 0 7
0
0
0 0 1 0
C= 0 1 0 0|’
: c. .0
0 -+ -+ 0 1|

K = diag(ks, ... kn, ko, ... k).

Suppose that fi < 0 and f; # h; fori=2,...,n. Then, the set K has at least 2!
connected components.

Proof. The closed-loop matrix A + BKC can be expressed as

T fo+ ko 0 0
~hy—ky 0 fs+ks :

0 —hz — k3

. . .

: - - 0 fn+En
L 0 0 _hn_kn 0 ]

It results from Corollary 4.3 and Remark 4.4 that the closed-loop stability is equivalent
to the conditions (h; + k;)(f; + k;) > 0 for ¢ = 2,...,n. Equivalently, either k; <
min(—h;, —f;) or k; > max(—h;, —f;) holds for i = 2,...,n. Therefore, the region of
stabilizing K, parametrized in (ka, ..., k,) € R"~1 is separated by n — 1 hyperplanes
ki = —(fi+h;)/2 fori=2,...,n. Since there are stable regions on both sides of each
of those hyperplanes, the overall number of connected components becomes at least
2n—1, d

The result of Theorem 4.5 is demonstrated in the left plot of Figure 2 for n = 3.
Note that the “one-sided” result of Lemma 3.3 does not hold here since K is not a
scalar.

Remark 4.6. Note that eigenvalues are continuous functions of the entries of a
matrix and that the connected components studied in the proof of Theorem 4.5 are
separated by a positive margin. Therefore, one may speculate that a small pertur-
bation of A will not change the number of connected components. This is not the
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6 &
4 4
2 2
g
< ~ =2 o 2 4 6 < - 2 [
k2 ]

k3
°

(a)e=0 (b) e=0.2

Fic. 2. We randomly sample K and check the closed-loop stability for an instance of the system
in Theorem 4.5. The controller is parametrized in terms of (ka, k3) where n = 3, with f; = —1 and
h; = 2 fori = 1,2,3. The projection of the set K onto the two-dimensional space corresponding
to (ka, k3) is shown in green. The left figure shows that there are 2"~ = 4 connected components,
where each coordinate takes values in (—oo, —2) or (1,00) to be stable. The right figure shows the
connected components when the number 0.2 is added to each diagonal entry of A.

k3
o

Fic. 3. If the diagonal entries of A are reduced by 0.2, then the set KC becomes connected. The
projection of the set KC onto the two-dimensional space corresponding to (k2,ks) is shown in green.

case in general since the eigenvalues of A + BKC can become arbitrarily close to the
imaginary axis when ||K|| is large, as illustrated in Figure 3. However, one part of
every connected component is resistant to perturbations. For example, with € > 0,
the set {K : (A+el)+ BKC stable} is a subset of {K : A4+ BKC stable}; the former
contains only those controllers that make the closed-loop eigenvalues at least € away
from the imaginary axis. The number € can be set so small that at least one point from
each component remains stable. In other words, a new matrix A obtained by adding e
to the diagonal of the matrix in (4.1) gives rise of an exponential number of connected
components where the number cannot change with a very small perturbation of its
elements. This is illustrated in the right plot of Figure 2.

The subclass of problems studied in Theorem 4.5 may be unsatisfactory as it
requires that the free elements of K repeat themselves and that C' # I. The next
theorem addresses these issues.
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THEOREM 4.7. Let A be in the form

fi+e fo O ce 07
—ha € f3 :
(4.2) A=| 0 Theoe ,
0
: o —hp € fn
L0 0 —hn €]

where € > 0, f1 <0, and (=1)*(f; — hiz1) >0 fori=2,...,n. Consider B € R"*",
C e R"™™ and K € R™™™ to be

K= diag(k:l,kg, .. 7kn)

For a small enough €, the set K has at least F,, connected components, where Fy =
1,Fi=1,F40 = Fiy1 + F; fori=0,1,... is the Fibonacci sequence, which is on the
order of (%)"

Proof. First, assume that ¢ = 0 and consider the closed-loop matrix A + BKC:

B fl f2_|_k2 0 0 ;
—hy—ki 0 fy+ks :

0 —hs — ko

: 0

: " . 0 fn+kn
i 0 0 —hy—Fkn1 O

In light of Corollary 4.3 and Remark 4.4, the necessary and sufficient conditions for
the closed-loop stability are (h; + k;—1)(f; +k;) > 0 for i = 2,...,n. As a result,
if hg + k1 > 0, then fs + ko > 0. Now, because hy < fo, the term hz + ko can be
positive or negative. If it is positive, then f3 4+ k3 must be positive, and we can move
on to study the sign of hy + k3. As we proceed, note that not all sign assignments for
hi+k;_1 and f;+k; are possible due to the assumptions on f; and h;. The enumeration
procedure is illustrated in Figure 4. Any path from the root to the bottom level leaf
passes through a set of linear inequalities that together enclose an open polyhedron
of stable regions. These stable regions are separated by the hyperplanes h;41+k; =0
fort=1,2,...,n—1and f; +k; =0fort=2,3,...,n.

Next, we count the number of branches. If h;+k;_1 > 0 (or equivalently f; +k; >
0) appears m; times and h; + k;—; < 0 (or equivalently f; + k; < 0) appears n; times,
assuming m; > n;, the next level will have at most (m; +n;)+max(m;, n;) = 2m; +n;
branches. This number is achievable if f; < h;y1, which means keeping all the children
of the inequalities f; + k; > 0 and pruning one child from each inequality f; + k; < 0.
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/o\

ho+ k1 >0 ho+ k1 <0
| |
fo+ka>0 fo+ka<O
— T~ RN
hs + ko >0 hs + ko <0 h3+k‘2>0(*) hs + ko <0
| | |
fa3+k3>0 fa+k3 <0 fa+ks <0
N VRN VRN
hgy +ks >0 h4+k3<0(*) hga+ks >0 hg+k3<O hg+ks >0 hg+k3 <O
| | | | |
fa+ks>0 fa+ka>0  fai+ks<O fa+tka>0 fa+ka<O

F1G. 4. This tree shows the enumerating signs of the closed-loop matriz entries for n = 4. The
branch marked with (%) has contradictory inequalities.

Then, m;11 = my, njy1 = m; + n;, and n;41 > m;y1, which reverses the order of m;
and n;. It can be verified that the total number of connected regions m; + n; satisfies
the iteration of the Fibonacci sequence.

The connected regions are separated by the hyperplanes k; = —f; or k; = —h; 41
with no margin. When € > 0, the connected components are strictly separated.
More precisely, whenever k; = —f; or k; = —h;11, the matrix A + BKC' decomposes
into a block triangular form where the lower diagonal block has a positive trace,
which means that the matrix cannot be stable. When € is small enough, the original
connected regions described by linear inequalities do not shrink abruptly—in fact, at
least one point from every polyhedron remains stable. As a result, the number of
shrinked stabilizing regions is no fewer than the number of unshrinked regions. 0

To illustrate Theorem 4.7, consider the matrix

—1+e¢ 2 0
—2 € 1 0
0 -1 € 2 0
(4.3) A= 0 -2 e 0

The corresponding set I obtained by sampling random matrices K and checking the
closed-loop stability is provided in Figure 5 for n = 3.

Our exponential examples are based on specific settings of the parameters f; and
h; in the matrix A that maximize the number of connected components. We next show
that even if the parameters f; and h; are considered random, the expected number of
connected components is still exponential.

THEOREM 4.8. Consider the matrices A, B, C, and K defined in Theorem 4.7,
and let f; and h; be independent random variables whose distribution are standard
normal fori = 1,...,n and j = 2,...,n. If € > 0 is small enough, the expected
number of connected component of Ks is at least (%)n_2

Proof. With the assumed distribution, f; < h;11 and f; > h;11 occur equally
likely, while f; = h;4+1 happens with zero probability. Our enumeration tree is random,
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(b) re = 0.52

Fi1c. 5. We randomly sample K and check the closed-loop stability for an instance of the system
in Theorem 4.7 with n = 3, the matriz A given in (4.3), and K = diag(k1, k2, k3). The projection
of the set K onto the three-dimensional space corresponding to (ki,kz,ks) is shown in blue.

and we count the number of leaves as follows. If f; + k; > 0 appears m; times and

fi + k; < 0 appears n; times for ¢ > 2, the next level has two possibilities:

(i) fi < hiy1, which keeps all the children of the inequalities f; + k; > 0 and prunes
one child from each inequality f; + k; < 0. Therefore, m;+; = m; and
Ni41 = My —+ n;.

(ii) f; > hit1, which keeps all the children of the inequalities f; + k; < 0 and prunes
one child from each inequality f; + k; > 0. Therefore, m;{; = m; + n; and
TNit1 = Ny

Combining the two cases, we can calculate the expected number of children m;y; +

n;4+1 conditioned on m; and n; in the previous level:

E[mit1 +nip1lmi, ni] = Elmigr +nipa|mi, ni, fivr < higa]P(firr < hiya)
+ E[mis1 + nig1|ma, ng, fixr > hig2|P(fiv1 > hite)

1 1 3

With the initial conditions E[mg +na|fi > 0] = 0 and E[ms +ns|fi1 < 0] = 2, we have
E[mq + ng] = 1. Using induction, it can be concluded that E[m,, + n,] = (%)n—2. O

By adopting a randomized setting, we are able to analyze the change of connected
components when one element k;, is fixed to zero for some index iy € {1,2,...,n—1}.
The proof is based on a careful counting of branches and is provided in the appendix.

PROPOSITION 4.9. With the same setting as in Theorem 4.8, assume that K =
diag(ky, ..., kn) and ki, is fized to zero for some index ig € {1,...,n}. Then, the
expected number of connected components of Ks for a small enough € is at least

(
(

The above results on connectivity reflect not only the computational complexity of
the original ODC problem with the hard constraint K € s but also the complexity of
a modified ODC formulation with soft constraints. We explain this implication below.
Consider an arbitrary continuous function h : R™*P — R that satisfies h(K) = 0 for
all K € Ks and h(K) > 0 for all K € R™*P\ Ks. h(K) serves as a penalty function

2 2 <ig<n—1,

N[= o=
Nlw ol

=2 ifig =1 orig = n.
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that can be used to replace the hard constraints of ODC with soft constraints. The
penalized form of ODC is given by

(4.4) min - Jo(K) + ¢ h(K),

where Jy(K) is defined in (2.1) and c is a large constant. The above optimization is
unconstrained and can be solved using standard numerical algorithms for nonlinear
optimization. Indeed, it is common in optimization to convert constrained problems
to unconstrained ones via penalty or barrier functions since most efficient numerical
algorithms for nonconvex optimization are designed for unconstrained problems. The
reason for such reformulation is that the constraints do not need to be satisfied in
each iteration of a numerical algorithm, and their satisfaction is only required asymp-
totically when many iterations are taken. In what follows, we study how numerical
algorithms perform on the unconstrained formulation (4.4).

LEMMA 4.10. Suppose that C has full row rank and [[?T D1 s positive definite.

]
R
There are instances of the ODC problem for which the penalized formulation (4.4) has

an exponential number of local minima if ¢ is sufficiently large.

Proof. Consider any instance of the class of ODC problems provided in The-
orem 4.7 for which the feasible set of the problem has an exponential number of
connected components. Due to the coercive property proven in Lemma E.1 in the
appendix, each connected component in s must have a local minimum for the un-
penalized objective Jo(K). Let O denote the set of all local minima in any arbitrary
connected component of the feasible set of ODC, and let O(e) C R™*? be the set of
all points in the feasible set of (4.4) that are at most € away from O, for any given
e > 0. If (4.4) is numerically solved using gradient descent with an initial point in
O(e), it follows from the proof in [25, section 13.1] that the algorithm will converge to
a local minimum that is in the interior of O(¢) and approaches O as ¢ goes to infinity.
This implies that (4.4) has at least one local minimum corresponding to the set O.
Therefore, (4.4) has an exponential number of local minima. |

Lemma 4.10 implies that common first-order and second-order numerical algo-
rithms that work on unconstrained formulations and are guaranteed to converge to a
stationary point may end up producing an exponential number of different solutions
depending on their initialization.

5. Bounded connectivity number. The results of the preceding section were
developed for systems with a very specific structure. We show in this section that for a
large class of systems that contain a tridiagonal structure, there exists a configuration
of the matrices (A, B) such that the set of static stabilizing controllers with a bounded
norm has an exponential number of connected components. The restriction to a
bounded control gain is natural since very high gain controllers cannot be implemented
in practice due to the sensitivity of the closed-loop system to noise and disturbance.

Given a linear subspace of sparse matrices! 7, we say that 7 is tridiagonal-
containing if it contains all tridiagonal matrices, i.e.,

T2{A:A;;=0forall |i —j| >2}.

We say that (A4, B) is compatible with T if both A and B’s sparsity patterns coincide
with I7. Since T is a linear subspace, A + BK € T for every diagonal matrix K.

1Recall in section 2 that a linear subspace of sparse matrices is specified by positions of nonzero

entries and I7 is the indicator matrix of the nonzero positions.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/13/21 to 136.152.22.141. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

2804 HAN FENG AND JAVAD LAVAEI

Given a set IC, let #/K denote the number of connected components of K. Given
system matrices (A, B) and a radius r» > 0, we define the set of bounded stabilizing
controllers K" (A, B) as

K"(A,B) ={K : A+ BK stable, K diagonal, |K|| < r},

where ||-|| denotes an arbitrary matrix norm. Note that K°°(A, B) coincides with the
set s defined in (2.2). We define the bounded connectivity number, which we denote
by ¢(A, B), as follows:

¢(A,B) = sg}g #K" (A, B).

The bounded connectivity number quantifies the number of connected components of
the set of stabilizing decentralized controllers with a bounded norm in the worst case.

THEOREM b5.1. Given any tridiagonal-containing sparse matriz subspace T, there
exist system matrices (A, B) compatible with T such that the bounded connectivity
number c(A, B) is exponential in the order of the system.

Proof. To prove that ¢(A, B) is exponential, it suffices to find a radius r and
system matrices (A, B) such that K" (A, B) has an exponential number of connected
components and that (A, B) has the same sparsity pattern as 7. We start with the
matrices (4, B) given in Theorem 4.7 with an € > 0, which may not be compatible
with 7. Since K*°(A, B) is exponential, by continuity there exists an r > 0 such
that K" (A, B) is exponential. Moreover, since € > 0, the connected components of
K" (A, B) are strictly separated in the sense that every component of K"(A, B) is
contained in a component of K"(A — $I,B), and when K € 0K"(A — £I, B), the
eigenvalues of the closed-loop matrix A + BK is at least 5 away from the imaginary
axis. Since eigenvalues of a matrix are continuous functions of the entries of the
matrix and K is bounded, we claim that for all small 6 > 0, the set K" (A + dI1, B +
0I7) is also exponential, because (1) by continuity when 6 > 0 is small, there exists
a controller in each connected component of K"(A, B) that remains stabilizing in
K"(A + 6I7,B + 6I7) and (2) no two connected components of K"(A, B) in this
bounded region can merge. We elaborate on the second point below. Let N denote
the number of connected components of K"(A, B). We select one controller from each
connected component of K" (A, B) and denote them by Kj,..., Ky. By continuity,
when ¢ is small, they remain stabilizing for the system (A 4 617, B 4 617). Consider
the quantity

(5.1) a(A,B) = min  min max spabs(4 + BK),
1<4,j<N pi;€Pij Kepij
i

where spabs(-) denotes the spectral abscissa (maximum real part of the eigenvalues).
The set P;; contains all paths p;; from K; to K; such that every controller K € P;;
satisfies |[K|| < r. We use min instead of inf because the minimum is achievable.?
We also have a(A, B) > § because all paths p;; € P;; with i # j must intersect
with a controller K € 0K"(A — 51, B), at which point spabs(A + BK) > §. Since
the continuous function spabs(-) is absolutely continuous in a compact region, for all

2Even though the minimization of (5.1) is over an infinite set P;;, we can replace it with the
minimization over the bounded part of a lower level set of spabs(A + BK), where the lower level set
is large enough so that K; and K are connected.
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small § > 0, we have [spabs(A + BK) — spabs(A + dI7 + (B + 6I7)K)| < § for all
K with |K|| < 7. As aresult, a(A+ 0Iy,B+0lr) > 0, ie, Kq,..., Kn belong to
different connected components of K"(A + dI7, B 4+ 617). The proof is concluded by

noting that § can be selected so that (A+d§I7, B+617) has the same sparsity pattern
as T. O

To understand the implication of Theorem 5.1, consider a multiagent system,
where each agent has a single state. As long as each agent interacts with its previ-
ous and next neighbors, no matter how many more interactions exist in the system,
the ODC problem has an exponential number of local solutions for certain system
parameters.

6. Highly damped systems. All previous results suggest that the diagonal
entries of A being positive contribute to the complexity of the feasible set K. Theo-
rem 6.1 below shows that the diagonal of A being negative is a desirable structure in
the sense that if A is highly dampened, the feasible set is connected independent of
control structures.

THEOREM 6.1. Given arbitrary matrices A, B, and C' of compatible dimensions
and a linear subspace of matrices S, the set

Ksx={K:A—- M+ BKC is stable ,K € S}

is connected when A > 0 is large enough.

Proof. Consider a number i and let A be a parameter that increases from p toward
0o. Since A > p, we have Ks x 2 Ks ,,, and therefore Ks » contains all components
of K, but could possibly connect them or add new components. The addition of new
components with the increase of A could occur only a finite number of times. Because
the Routh-Hurwitz criterion describes Ks » by polynomial inequalities in the entries
of A — Al + BKC, the set Ks ) is semialgebraic with a finite number of connected
components given the order of the system [7]. To connect all those components, we
first increase A until no new connected component appears, then select a controller
from each connected component, and cover all those controllers with a ball B C S.
By making A so large that all controllers in 5 become stabilizing, we glue all of the
connected components. 0

The interpretation of the result of Theorem 6.1 is that if the open-loop matrix of
the system can be written as A — Al for a large A, then the feasible set of ODC is
connected. This corresponds to highly damped systems.

Remark 6.2. It is noted in [22] that if we consider the discounted cost

oo
Jor(K) = E/ e M (.’L‘TQ,T + 22" Du + uTRu) dt,
0

or equivalently make a change of variables #(t) = e *x(t) and a(t) = e Mu(t), then
the closed-loop dynamics become equal to (t) = (A — Al + BKC)i(t). Therefore, it
follows from Theorem 6.1 that the feasible set of the ODC problem is connected for
discounted costs with a large discount factor.

Remark 6.3. It is known in the context of inverse optimal control [22] that any
static state-feedback gain K is the unique minimizer of some quadratic performance
measure (2.1) for all initial states. One such measure is
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/ " (ult) — K(t) " R (ult) — Ka(r)) dr,

where R is a positive definite matrix. As a result, every point in any connected
component is an optimal solution to some ODC problem. Since there is an exponential
number of connected components in certain cases, random initialization is unlikely to
successfully locate the optimal component unless prior information is available or the
system is favorably structured. Local search algorithms, therefore, fail for general
ODC problems.

A by-product of Theorem 6.1 is a new controller design strategy, which is based
on approximating the ODC problem with another one whose feasible set is connected.
This new problem is obtained by damping the system’s dynamics. Indeed, we have
shown in the technical report [16] that minimizing Jy(K) with a large A is more
tractable than solving the original ODC problem since the separate connected com-
ponents will be glued together via damping (as proved in Theorem 6.1). In the
following, we study the cost of this approximation by bounding the ratio of the two
objectives.

LEMMA 6.4. Suppose that Exozg = I and C = I. Let K+ be the solution of
ODC with the objective function Jy(K) and assume that K+ stabilizes (A, B). Let
W(K*)=(A+ BK?*)+(A+ BK™T)". We have the upper bound

Vmin + -\
Jo(K) Lain (LI if Ui (W (KT)) < 0,

7R - )
JA(KT) % if Vmin(W(KT)) >0

and lower bound

Vinax (W(KT)) =X .
Jo(K+) Sy Y s (WIET)) <A,

J K+ Vmin (W K+ A
AU | G o v (W (K)) > 0
where Vmin(+) and vmax(:) denote the smallest and largest eigenvalues of a matriz,
respectively.

The proof of Lemma 6.4 is provided in the appendix. We illustrate Lemma 6.4
with a numerical simulation in Figure 6. The system matrices are of the form (4.3),
which are specified below:

-1 05 0 1 .
A{—()_E) 0]’B{_1 0:|’OI’Kdlag(k17k2)7Q5I,RI,DO.

Using extensive search, it can be shown that the system has two locally optimal
controllers and their undamped costs Jo(K) are as follows:

K} ~ diag(0.7178,0.6643), Jo(K}) ~ 12.88,
K3 ~ diag(—1.5384, —1.4369), Jo(K3) ~ 18.08.

Starting from the initial stabilizing controller Ky = diag(—2,—2), we run gradient
descent twice to minimize the cost Jo(K) and its approximate function Ji(K). The
step sizes are selected by the Amijo rule as in [16] so that stability is preserved for all
iterations. The iterations are stopped when the norm of the gradient is less than 1076,
When minimizing Jo(K), the iterations converge to Kj. When minimizing J; (K),
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J(K)
J(K)

(a) minimize Jo (b) minimize Jy

F1G. 6. Cost surface and trajectory of gradient descent in the undamped regime and the damped
regime. In the undamped regime, gradient descent is trapped in the initial component. In the damped
regime, it almost reaches the globally optimal stabilizing controller.

the iterations converge to K = diag(0.4420,0.3836). We calculate the damped cost
J1(KT) ~ 5.98 and the undamped cost Jo(K ) &~ 13.44. The local search solution to
the approximate ODC is better than the solution to the original ODC. With

T _ |—3.0000 —0.0584
~ |-0.0584 —1.0000]’

we calculate Vipax(W(K 1)) & —1.00 and vmin (W (K ™)) &~ —3.00. The conclusion of
Lemma 6.4 is verified:

W(K')=(A+BK")+(A+BK™")

S
=

+ . +)) —
DUET) 995 < 4.00 ~ LmVIET)) — 1

1(K+) Vmax(W(K+)) ’
o(KT)

N - Vmax(W(K+)) —1
D) TR W E )

~

<
=

7. Stable matrices with block patterns. In this section, we analyze the
connectivity of the set of sparse stable matrices A7, defined in (2.3). It follows
from Lemma 3.2 that only in matrices with constrained diagonal entries do nontrivial
connectivity properties emerge, and we study sparse stable matrices with zero blocks
in the diagonal.

7.1. Two-by-two block. Below is the main theorem.

THEOREM 7.1. Consider the matriz subspace

All A12 :|
7- =
{ {Azl Otn—r)x(n—r)

A21€Z},
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where Z is any subspace of matrices in RM"=")%"  Then, the sets A+ and
{Ag1 : Aoy has full row rank, Ay € Z}

have the same number of connected components.

Proof. For clarity the proof is first stated without the constraint As; € Z; this
incurs no loss of generality. A is stable if and only if there is a matrix P = [ii 22}

0 partitioned accordingly that satisfies the Lyapunov equation

(7.1) A A |Pu P2 Py Pio| |Al, A |- 0
’ Ayy 0 | |PL P P, Pyl| |Al, 0 0 —I|

Note that P is unique and depends continuously on A whenever A is stable [12, section
4.1]. We solve the partitioned equation

(7.2) AP+ A12P1—; + P11A1rl + P12A1r2 =-1,
(7.3) A1 Py + A1pPoy + PriAg, =0,
(7.4) A1 Prg + PhAg, = —1.

Since Pag > 0, (7.3) uniquely determines the unconstrained block
Ay = —(A;1 Py + P11 Ag)) Py
Substituting it back to (7.2) yields
A1 Py + PriAfy — (A1 Pio + PiiAg )Py Pl — PiaPyy’ (Asi P + PLAL) = —1,
or equivalently
(7.5) A11(Pi1 — PiaPyy' Ph) + (Pi1 — PPy PL)A]
= —I+ P11 Ay P! Py + PiaPsy" Ay Pry.

The equation above can be simplified using the Schur complement Py = P —
P12P2_21P1T2, which is an arbitrary positive definite matrix. One can write

A1 Py + PrA]y = =1 4 P11 AJ, Py P, + PPy, " Ao Pyy + PiaPyy PLAS Pyt P
+ Pio Py, Agy Po Py, P,

In light of (7.4), this is equivalent to

(7.6) APy + PLA], = 1+ Py AJ Py Py + PioPyy! Ay Py — Pra Py Pl

Given Aoy, Pio, P - 0, and Ps > 0, the eigenvalues of P;1 do not sum to zero.
Therefore, (7.6) can be regarded as a Lyapunov equation where the unknown block
Aj; has a unique symmetric solution A;; = AJ;; all other solutions Ay lie in a linear
subspace that contains this symmetric solution. The symmetric solution, moreover,
depends continuously on 1511 as long as 1511 remains in the positive semidefinite cone,
which is connected. As a result, not only are all A1; connected to a symmetric Aqq, all
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symmetric A7 given Py; are connected to the symmetric solution Ayq given Pyy = I,
which we denote by ¢(A12, P12, PQQ)Z

1 _ . _
O(Avz, Pio, Pro) = 5 (= I+ AJy P Ply + PLaPy" Aoy — PPy P).

The above argument retracts the solutions of (7.2)—(7.4) while maintaining the topo-
logical property of connectivity. Using ~ to denote the equivalence of connected
components, we state the retraction procedure

Ann Aiz| |[Pu Pio Py Pris
7.7 ~ , L (7.1), -0
oo Al SR Re]) e (R B o

(7.8) ~ {(A11, Aoy, Py, Prio, Pog) : (7.4),(7.5), P11 = PiaPyy' P, Poy = 0}
(7.9) ~ {(A11, A9y, P11, Pia, Pyy) : (7.4),(7.6), P1y = 0, Pyy > 0}

(7.10) ~ {(A11, A1, Pig, Pas) : (7.4), A1y = (A1, Pia, Pay), Pagy > 0}
(7.11) ~ {(Ag1, Py, Pao) : (7.4), Pyy = 0}

(7.12) ~{(Ag1, Po) : (7.4)}.

The first equivalence (7.7) follows from the fact that for any stable matrix A, the
formula

o0 T
P:/ eATed Tdr
0

gives the unique solution to the Lyapunov equation and the solution depends con-
tinuously on the matrix A. (7.8) follows from the unique solution of A;s and the
characterization of partitioned positive definite matrices with Schur complements:

[% 22] =0 <= Py = P1aPy,' P, and Py > 0.
(7.9) follows from the simplification of the Lyapunov equation, and the one-one cor-
respondence between Pj; and Py; given (Py2, Pa3). (7.10) follows from the retraction
of the solutions to (7.6); (7.11) follows from the continuity of function ¢, and finally
(7.12) throws away the free variable P because it does not appear in the relationship
between A9, and Pis.

(7.12) can be further simplified. We first show that (7.4) has a solution if and only
if Ao; has full rank. If there is a vector € R® such that z " Ay, = 0, premultiplying
and postmultiplying (7.4) by z yields

0=2x(Ay Py + PLA) )z = 2z,

or equivalently, x = 0. Therefore, Ay has full row rank, and similarly, P;s has full
column rank. On the other hand, given any full row rank matrix As;, (7.4) has a
full rank solution Pjy = —1/2A3,, where AJ; is the Moore—Penrose inverse. This
completes the proof for the first equivalence in

{(A21, P12) : (7.4)} ~ {(A21, P12) : (7.4), A1 has full row rank}
~ {(Agl, —1/2A2+1) : Aoy has full row rank}
~ {Ag; : Aoy has full row rank}.
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The second equivalence follows from the fact that, given As; has full row rank, a
solution Py = —1/2A3; to (7.4) always exists and all solutions lie in a subspace that
can be retracted to that solution. The final equivalence comes from dropping the
redundant second coordinate, since the Moore—Penrose inverse is continuous over full
rank matrices.

The above proof imposes no restriction on Asq; it holds even if Asq is restricted
to a subspace Z. 0

In the special case where Z is the whole space and As; has more columns than
rows, the set is connected.

COROLLARY 7.2. Assume that Z = RU""")%" where 2r > n. Then, the set Ay
is connected.

Proof. From Theorem 7.1, if suffices to show the connectivity of
{A21 e R™®=7X7 . Ay has full row rank} .

This set is the image of the continuous map (U, D,V) — UDV from the connected
set U X D x V), where

U= {U e R=)x(n=7) . 1] is a orthogonal matrix with determinant 1} ,

D= {D e RM=X" . D> 0 for i = 1,...,r and all other entries are 0} ,
V ={V € R™":V is a orthogonal matrix with determinant 1} .

U and V are connected because the set of orthogonal matrices with positive deter-
minant is connected. The map is surjective, because every full rank matrix As; has
a singular value decomposition As; = UDV, where D;; > 0 for i = 1,...,r. If
det(U) = —1, we can flip the sign of the first column of U and the first row of V to
ensure that det(U) = 1 while preserving the product. If det(V) = —1, we can flip the
sign of the last row of V', and since n —r < r, the last row does not affect the product
UDV. |

COROLLARY 7.3. Suppose 2r > n and Z = { Ay € RO=7)x7 . A;; =0 for j #1i}.
Then, the set A1 has 2"~ " connected components.

Proof. We invoke Theorem 7.1. For a diagonal matrix to have full rank, all its
diagonal entries must be nonzero, and therefore, every diagonal entry of As; can be
either positive or negative. Those (n —r) diagonal entries give rise to 2"~ " connected
components. ]

7.2. More complicated block patterns. We generalize the results in the pre-
vious section to the case where the space of matrices 7 has a block structure as
in

A Aqz Ais
(7.13) T = Agy Orxr 07 x (n—2r) A9l € 21, A32 € 25
0(n—2r)><r A32 O(n—2r)><(n—2r)
where Z; C R™" and Z, C R(=21)%7" gpe arbitrary subsets of matrices.
THEOREM 7.4. The set Ay with T defined in (7.13) has the same number of

connected components as the set

{(Agl, A32) 1 Ao € 21, A3 € ZQ,AQl and Asy have Sfull row mnk}.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/13/21 to 136.152.22.141. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

CONNECTIVITY OF STATIC DECENTRALIZED CONTROLLERS 2811

20 -15 -10 05 0o 05 10 15 20

F1G. 7. Verifying the result of Theorem 7.4 in the case n =3 and r = 1, we plot the projection
of A onto (A21,As2). The entries of the matriz A are sampled uniformly over [—2,2]. The green
points marked those matriz A such that 0.2I + A is stable.

We provide the proof in the appendix. The result of Theorem 7.4 is verified
for n = 3 in Figure 7, where four connected components are found. In order to
strictly separate the components, we plot the samples of sparse stable matrices whose
eigenvalues are away from the imaginary axis by a fixed margin.

Remark 7.5. The result of Theorem 7.4 can be generalized to n-by-n block ma-
trices if the blocks are square and the first row and the lower diagonal blocks of A are
nonzero. The square block assumption on the subdiagonals of A ensures that, for any
full rank subdiagonals, the first row of A and the upper-triangular entries of P can
always be solved from the Lyapunov equation. Specially, in case of scalar blocks, the
set of stable matrices with the following pattern has 2" ! connected components:

0
0O --- 0 =x 0

This relaxes the condition 2r < n of Corollary 7.3.

The sparsity pattern discussed in Remark 7.5 seems to suggest that the sparsity
of the matrix space directly contributes to the number of connected components. The
connection between sparsity and connectivity is complicated in that the number of
connected components may remain exponential even when half of the matrix entries
are free (such matrices are often regarded as dense).

THEOREM 7.6. The set A has 2"~ connected components, where T is the subset
of matrices with the sparsity pattern

ek _
* 0
0 0
- .
10 0 * 0]
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The theorem can be proved in the same manner as Theorem 7.4 with a different
reduction order. The proof is provided in the appendix.

8. Conclusion. In this paper, we studied the connectivity properties of the set
of static stabilizing decentralized controllers. We demonstrated through a subclass
of problems that the NP-hardness of ODC could be attributed to a large number of
connected components. In particular, we proved that the number of connected compo-
nents for chain subsystems would follow a Fibonacci sequence. Even if the elements of
the system matrix are random, the expected number of connected components is still
exponential. A further implication of our study is that for any tri-diagonal-containing
structure, there exists a system with that structure and certain parameters for which
the bounded connectivity number is exponential. The fact that the structure of the
decentralized control problem can cause intractability leads to our study of specific
system and controller properties that have connectivity guarantees. We bound the
number of connected components for the scalar control case. We showed that connec-
tivity would not be an issue for highly damped systems independent of the control
structures. In case the system matrix has a certain block structure, we fully charac-
terized the number of connected components. Our results qualified the applicability of
local search algorithms to ODC problems and emphasized structural considerations.

One future research direction is the analysis of the connectivity properties of
dynamic controllers. Dynamic controllers have more flexibility in the choice of pa-
rameters and therefore we expect better connectivity properties to hold. On the
constructive side, it is important to identify system or control structural properties
that guarantee the connectivity of the feasible set. The connectivity result, combined
with an analysis of the absence of saddle points, will shed light on the possibility of
applying local search algorithms to decentralized control problems.

Appendix A. Proof of Proposition 4.9.

Proof. We adopt the same notation of m; and n; in Theorem 4.8. Let m;,, and
n; 41 denote the number of appearances of h;1+k; > 0 and h;1+k; < 0, respectively.
In Theorem 4.8, mj,; = m;41 and nj ; = n;41. The situation is different when some
k;. is set to zero. We first consider the case 2 < iy <n — 1.

The random variable m; + n; evolves from ¢ = 1 to i = ig — 1 in the same manner
as Theorem 4.8. Therefore, given m;,_;1 copies of the inequality f;,—1 + ki;—1 > 0
and n;,_1 copies of the inequality f;,—1 + ki,—1 < 0, conditioned on m;,_; and n;,_1,
we have

10

o (Miy—1,Mig—1 + niy—1) with probability %,
(Mg, niy) =
o (Mig—1 + Nig—1,Mi,—1) with probability %

Since k;, is fixed to zero, when f;, > 0, all inequalities f;, + k;, < 0 are pruned, and

when f;, <0, all inequalities f;, + k;, > 0 are pruned. Therefore, conditioned on m’io
and n} ,
0

(mj,,0) with probability %,
(miov nio) = . e 1
(0,n;,)  with probability 5.

Count similarly mio_H and ngo 41, We account for the loss of freedom in h; 41 + kiy:
(mi,,0)  with probability 3,

(M1 Mig41) = ) e 1
(0,m4,)  with probability 5.
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After this, the evolution of (m;,n;) from ¢ to i + 1 is the same as its evolution in the
proof of Theorem 4.8. It holds that m;,,1 = m; , and n;,41 = n; ;. In sum,

E[mig+1 + Mg [mig—1, nig—1] = E[m 1 + ng 1mig—1, 14y —1]

1
= §E[mlo + ny, |mi071a niofl]

1
= 1 Blmi, + niyImig—1, mig—1]

= g(mz‘rl +nip-1).
Hence, after fixing k;, = 0, the number of children is smaller by a factor of % compared
with Theorem 4.8.
When iy = 1, ho + k1 appears only once in the tree, and the expected number is
cut by one half, because after fixing k1 = 0, either ho > 0 or hy < 0 is kept. In the
same vein, when ig = n, only half of the leaves are kept. 0

Appendix B. Proof of Theorem 7.4.

Proof. Similar to Theorem 7.1, we first ignore the constraints Ay € Z; and
Aszg € Z9. A is stable if and only if there is a matrix P > 0 partitioned accordingly
that satisfies the Lyapunov equation

A Arg Ais| [P P2 Pis Py P Pig| [A{; AJ, 0
(Bl) Agl 0 0 P21 P22 P23 + P21 P22 P23 A]—2 0 A;—Z = —IL
0 Asz O P31 P3y Ps3 P31 P3y P3| |Af; 0 0

The solution P is unique whenever A is stable.
We first show that

(B.2) As1 and Aszs have full row rank.
Consider the (2,2) and (3, 3) blocks of (B.1):

(B.3) Az Pry + Py Agy = 1,
(B.4) A32Po3 + Psp A4,

|
I
=~

If x 7 Azy = 0, conjugate (B.4) with = to obtain
0= I'T(A32P23 + P32A;2)1' =—x'x

or, equivalently, x = 0, which means that Az has full row rank. Similarly, As; has
full row rank.
Next we consider the (1,3) and (2, 3) blocks of (B.1):

(B.5) A11Pi3 + A1pPos + A1sPas + Pia Ay = 0,
(B.6) Ao Pi3 + PQQA;—Q =0.
Because Ps3 is invertible, A3 can be uniquely determined from (B.5). Because Ao is
full row rank and square, P;3 can be uniquely determined from (B.6). The equation

corresponding to the remaining blocks after eliminating A;3 can be extracted by pre-
multiplying (B.1) by

W:{I 0 —Plgpg}

0 I —PyPg'
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and postmultiplying (B.1) by W', which yields

(B.7)
Ay Arp — P13P3_31A32 Py1 Pyy N Piy Pry Al Agy
Agy —P23P3_31Agg ]321 ]322 P21 P22 Airz - A;—grng?),lPSZ _A;2P351P32

—I — Pi3P3*Pyy — P3Py P
—Py3 P Py, —I — Py3Pg* Psy

7

where the partitioned Schur complement P;; is equal to P;; —Pingz,,l Psjfori,j=1,2.
The (1,2) and (2,2) blocks of (B.7) are

(B.8) A11Pia+ (A1a — P13P3_31A32)P22 + P Ay, — P12A3T2P3_31P32 = —P13P3_32P32,
(B.9) AgiPio+ Po1 Ay = —I — PagPy;® Pao + Pog Py Ao Pog + Pag Ay Pyy' Paa.

Since P,y is invertible, Aj5 can be uniquely determined from (B.8). (B.9) is the same
as (B.3) given (B.4) and (B.6). Eliminate Ajo similarly by conjugating (B.7) with
[1 Pi2P;,t ], which yields

(BIO) (A11 — p12P2_21A21)P11 —|— Pll(Airl — A;lpilpgl) = *,

where ]511 =P — ]512]52721]5217 and the right-hand side is a negative definite matrix
determined by P. Since Py is positive definite, its eigenvalue do not sum up to zero;
therefore, the solution A;; always exists and can be shrunk to a symmetric solution
that depends continuously on P, as explained in Theorem 7.1. Using ~ to denote the
equivalence of connected components,

(B.11)
A Arp Ags Py Pig Pi3 Py P Pi3

AT ~ A21 0 0 R P21 P22 P23 : (Bl), P21 P22 P23 - 0, (B?)
0 Az O P31 P3p Ps3 P31 P3y Ps3

A11 A12 -Pll -P12
~ , Asg, Pag, Ps, |20 12| ) . (B.4), (B.7), P33 = 0,
{<|:A21 0 :| 32,423,433 |:P21 P22:|) ( ) ( ) 33

pll plQ
1 12| (B2
[le P22] ( )}

~ {(A117A21a A327 P23a P337p127 P227 pll) : (B4>7 (B9)7 (B]‘O)’

(B.12)

(B.13) i )
Paz = 0, Py = 0, Py = 0, (B.Z)}

(B14) ~ {(AQl, A32, P23, P33, Plg, PQQ) : (]34)7 (Bg), P33 - 0, PQQ - O7 (BQ)}

(B15) ~ {(AQl, A32, Psgs, PQQ) 1 P33 >0, pgg >0, (BQ)}

(B16) ~ {(Agl,Agg) : (BQ)}

The first equivalence (B.11) is justified as in (7.7), with the additional condition that
As; and Ass must have full row rank. (B.12) follows from the unique continuous

solution of A3 and Pz in (B.5)—(B.6). (B.13) follows from the unique solution of
Ajz in (B.8). (B.14) follows from the retraction of the solutions to (B.10). Since
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Ass has full row rank, (B.4) is always solvable in Ps3, and the solution subspace
can be retracted to the pseudoinverse solution Py = 1/ 2A§r2, which is a continuous
function over the full rank matrix Ass. The same argument applies to (B.9), where
the solution P;5 always exists and can be continuously retracted to the pseudoinverse
solution. This arrives at (B.15). (B.16) discards the redundant coordinates.

The proof above imposes no restriction on As; and Asp; it holds with any addi-
tional subspace constraint on them. 0

Appendix C. Proof of Theorem 7.6.

Proof. We show the proof for the case n = 3; the proof carries over to the general
case. The idea is the same as Theorem 7.4, with minor differences in the reduction
order and in the justification for full-rank blocks. Consider the solution pair (A, P)
to the Lyapunov equation

(C.1)
air a2 ais P11 P12 P13 bP11 P12 P13 a1l as1 0
az1 0 as3| [p21 P22 p23| + P21 P22 pos| (a2 O aze| =-—1I.
0 azx2 0| |ps1 P32 P33 P31 P32 p33| |ai3 a0

ail a12 ai13

where P > 0 is unique whenever A = [a21 0 aga] is stable. Consider the (1,3), (2, 3),

0 a
and (3,3) blocks of (C.1), ”
(C.2) a11p13 + a12p23 + a13p33 + praaze = 0,
(C.3) a21p13 + G23p33 + pazaze = 0,
(C4) azap23 + p32azs = —1.

Since ps3 is invertible, a;3 and as3 are uniquely determined from (C.2) and (C.3).
The equation in the remaining blocks after eliminating a;3 and as3 can be extracted
by premultiplying (C.1) by

-1
W = [1 0 —p13p3131]
0 1 —pospss

and postmultiplying (C.1) by W T:

(C.5)
{an a1z —p13p331a32} {pu p12} I {Pu plz] { a1 . (1211
a1 —P23P33 32 D21 P22 D21 D22 |G12 — a32P33 P32 —(32D33 P32
_ [—1 —p13l)2§32p31 —p13p3_32p§2 ]
—D23D33 P31 —1 — pa3ps3 P32

where the partitioned Schur complement p;; is equal to p;; — pi3p§31 paj fori,j =1,2.
The (1,2) and (2,2) blocks of (C.5) are

(C.6) anpiz + (a12 — P13P§31a32)1522 + Pr1a21 — Pr2asaPas P32 = —P13P§32p32,
(C.7) az1p12 + Poraz; = —1 — p23p§32p32 + P23Pas Az2P22 + P22a32P533 P32-

Similarly, since pagy is invertible, a2 can uniquely solved from (C.6). Eliminating a;s
similarly by conjugating (C.5) with [1 pi255," | gives
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(C.8) (a11 — PraPas a21)P11 + Pr1(ai1 — az1pay Po1) = *,

where p11 = p11 — }312135211521 and the right-hand side is a negative definite matrix
determined by P. Because pi; is positive definite, its eigenvalues do not sum up to
zero. As a result, the solution a; always exists and can be shrunk to a symmetric
solution that depends continuously on P. We retract the solution set, where ~ denotes
the equivalence of connected components:

a11 @12 a13 P11 P12 P13 P11 P12 P13
Ar ~ as1 0 as3|, [Pp21 P22 P23 :(C.1), | p21 p22 P23 | = 0
0 az2 0 P31 P32 D33 D31 P32 P33
~ {<[a11 aw} » @32, P13, P23, P33, [pu p12}> : (C~4) (C 5) p33 = 0, [pu p12} >~ 0}
P21 P22 P21 P22

~ { 0117a21,03271313,P237P33ap127p22ap11) : (0-4)7 (0-7)7 (0-8)7
psg = 0,P22 > 0,p11 > 0}

~ {(@a21,as2, P13, P23, P33, D12, P22) : (C.4), (C.7),ps3 > 0, paz > 0} .

The equivalence is justified similarly. We first add an additional Lyapunov matrix
P and then repeatedly discard the upper-triangular entries of A, which are uniquely
solved, while transforming the representation of P with the Schur complement until
we reach (C.8), which is always solvable in a;;. This discarding procedure produces
a series of equations in the form of (C.7) and (C.4). Since scalar multiplication
commutes, we substitute (C.4) to (C.7) and find that the right-hand side of (C.7) is
strictly less than zero, hence as; # 0. In the same vein, (C.4) implies azs # 0. We have
proved that all lower subdiagonal entries of A cannot be zero. With nonzero as; and
asz, the remaining equations uniquely determine the subdiagonal entries (pi2,p23),
and we arrive at the final series of equivalences:

A1 ~ {(az1, a3z, p13,p23, 033, D12, P22) : (C.4), (C.7),p33 > 0,P22 > 0, a3z # 0,a21 # 0}
~ {(a21,a32,p13, P33, P22) : P33 > 0,P22 > 0,a32 # 0,a; # 0}
~ {(az21,as2) : az2 # 0,a21 # 0}.

After discarding the redundant coordinates, we are left with n — 1 nonzero conditions
on the subdiagonals of A, which give rise to 27! connected components. 0

Appendix D. Proof of Lemma 6.4. The proof follows directly from the lemma
below.

LEMMA D.1. Suppose that Ezox] = I, C =1, and K stabilizes both (A — ul, B)
and (A — X, B). Define W(K) = (A+ BK) + (A+ BK)". We have the following
bound:

2A— Umin (W (K))
J2#(K) < 22— Umax (W (K)) if 2 > Vmax(W(K))a

2A—Vmax (W (
Jar(K) S (EEE) if 2410 < iin (W (K)).

Proof. The quadratic costs Jox(K) and Jo,(K) can be written as tr(Py(K)) and
tr(P,(K)), where

(D.1a)

(A=X+BK)"P\(K) + P\(K)(A-~XM[+BK)+ K'RK+Q+ DK + K' D" =0,
(D.1b)
(A—pIl+BK)"P,(K) + P,(K)(A—puIl+BK)+ K'RK +Q+ DK+ K'D" =0.
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Taking the difference of (D.1a) and (D.1b) yields

(D.2)
(A+BEK)T(P\(K)—P,(K)) + (P\(K)— P, (K))(A+ BK) = 2\P\(K) — 2uP, (K).

Taking the trace of (D.2), we obtain

2Atr(Py(K)) — 2ptr(P,(K))
=tr ((A+ BK) + (A+ BK)")P\(K)) — tr (A+ BK) + (A+ BK) ") P,(K))
> Vinin(W(K)) tr(PA(K)) = Vmax(W(K)) tr(P.(K)),

where the last step follows from the positive semidefinite property of Py(K) and
P,(K). In the same vein,

A tr(PA(K)) = 2 t0(Pu(K) < thnas (W (K)) tr(PA(K)) = thain (W (K)) tr( P (K).

Hence, if 24 > vmax(W(K)), we have

(P (1) < e (1),
and if 2p < vyin (W(K)), we have
(P (1) < o= e T (P (). :

Appendix E. Proof of coerciveness. We show that the ODC problem has a
certain structure that disallows the locally optimal stabilizing K to have arbitrarily
large magnitude.

LEMMA E.1. Consider the ODC problem with cost (2.1). Suppose that C' has
full row rank, L = [DQT g] is positive definite, Dy = Exqx| is positive definite, and
K € S is stabilizing. Then, Jo(K) — oo whenever ||K||a — oo or when K approaches
the boundary of the set of stabilizing controllers.

Proof. We write

P(K) :/0 et(AJrBKC)TR(K)et(AJrBKC)dt’

where

R(K)=Q+DKC+CTK'D" + CTKTRKC.
When K is stabilizing, P(K) is well-defined. As K approaches a finite K; on the
boundary of the set of stabilizing controllers, we show that ||[P(K)||2 — oo. By
assumption, the symmetric matrix ]:E(K ) in the integral is positive definite, because
it can be written as

R(Ey)=[I CTK/]L {KTIC’T} :

Therefore, its minimum eigenvalue vyin(R(K)) > 0, and when K is close to Kj,
R(K) = 2vmin(R(K7))I. We make the estimate
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tr(P(K))zéumin(R(KT))/ tr (et(A+BKC)T6t(A+BKC)> dt
0

%

Vi (R()) / el A+ BRO) 2y

Vmin(R(KT)) /0 eZt-spabs(A+BKC)dt7

where spabs(+) denotes the spectral abscissa (maximum real part of the eigenvalues).
The estimate above shows that tr(P(K)) — oo as K approaches K; from the stabi-
lizing set. Since Jo(K) = tr(P(K)Dg) > tr(P(K))vmin(Do), Jo(K) also approaches
infinity.

In case |K|l2 — oo from the stabilizing set, we use the fact that P(K) is the
unique solution to the equation

(A+ BKC)"P+ P(A+ BKC) + R(K) = 0.

Let omin (C) denote the smallest singular value of C, which is positive by assumption.
From the triangle inequality,

Viin (R)0min(C)?[| K3 < |CT KT REKC]|2
< 2[[A+ BKC|]2||P(K)l2 + [|Qll2 + 2| Dll2 K [l2/C'll2
< 2([|Alle + [IBll2[l K2 Cll2) [P (E) |2
+lQll2 + 2 Dll2 [ K12l C]l2;

Therefore,

Vmin (R)0min (C)[| K3 — @Iz = 2| Pl K[2|Cll2

P(K >
1Pz = 2 Alls + Bl KTICTR)

Hence, ||P(K)||z2 — oo as ||[K|l2 — oo inside the stabilizing set. Similarly J(K) =
tr(P(K)Dg) > || P(K)||2vmin(D) also approaches infinity. |
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