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Sequential Change Detection by Optimal
Weighted ¢, Divergence

Liyan Xie

Abstract—We present a new non-parametric statistic, called
the weighed ¢, divergence, based on empirical distributions for
sequential change detection. We start by constructing the weighed
£, divergence as a fundamental building block for two-sample
tests and change detection. The proposed statistic is proved to
attain the optimal sample complexity in the offline setting. We
then study the sequential change detection using the weighed £,
divergence and characterize the fundamental performance met-
rics, including the average run length (ARL) and the expected
detection delay (EDD). We also present practical algorithms
to find the optimal projection to handle high-dimensional data
and the optimal weights, which is critical to quick detection
since, in such settings, there are not many post-change sam-
ples. Simulation results and real data examples are provided to
validate the good performance of the proposed method.

Index Terms—Change-point detection, convex optimization,
non-parametric methods, online algorithms, weighted Euclidean
distance.

I. INTRODUCTION

EQUENTIAL change detection is a classic problem in
statistics and information theory. The goal is to detect the
change in the underlying distribution as quickly as possible
after it occurs. There is a wide range of applications, includ-
ing sensor networks [1], seismology [2], social networks [3],
power systems [4], and genomics [5]. Many classic results
and detection procedures have been developed, see [6]—[8].
However, many widely used methods assume a parametric
form of the distributions before and after the change. For high-
dimensional data, such parametric methods can be difficult
to implement since the post-change distribution is typically
unknown. We cannot have a large number of samples to esti-
mate the distribution. Recently, there have been many interests
in developing a non-parametric change detection procedure
for high-dimensional streaming data when we have limited
post-change samples.
We focus on a type of distribution-free methods based on
empirical distributions. Compared with parametric methods,
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such non-parametric tests are more flexible and can be more
applicable for various real-world situations. They tend to per-
form better when (i) the data does not follow a parametric
distribution or (ii) we do not have enough samples to estimate
the underlying distribution reliably. However, one particular
challenge is to establish performance guarantees and improve
the sample efficiency of the non-parametric test statistic [9].

In this paper, we develop a new data-driven distribution-free
sequential change detection procedure based on the weighted
¢, divergence between empirical distributions as the test statis-
tic, which is related to the idea of testing closeness between
two distributions [10]. We introduce “weights” that are design
parameters, which can be particularly important in achieving
good performance in practice when we do not have a large
number of samples. We show the optimality of the proposed
procedure in achieving the theoretical lower bound of the
sample complexity required for a low-risk test that meets
the specifications. We also characterize the proposed detec-
tion procedure’s theoretical performance based on weighted
¢, divergence for data in a sliding window. Moreover, we
develop practical optimization procedures for selecting the
optimal weights and the low-dimensional projections for high-
dimensional data. The good performance of the proposed
procedure is demonstrated using synthetic and real data.

The rest of the paper is organized as follows. Section II
introduces preliminaries about the problem set-up and reviews
related work. Section III proposes the weighted ¢, test and
shows its optimality in £, sense. Section IV studies sequential
change detection using the proposed statistic. Section V dis-
cusses different aspects to optimize the parameters involved
in the proposed method. Section VI and Section VII demon-
strate the performance of the proposed detection procedure
using simulation and real-data study. All proofs are delegated
to the supplementary material.

II. PRELIMINARIES
A. Weighted €, Divergence for Two-Sample Test

We start by considering the problem of testing closeness
between two discrete distributions from samples observed. The
problem set-up is as follows. Let 2 be an n-element obser-
vation space. For notational convenience, we identify © with
{1,...,n} and a probability distribution on 2 with a vector
peN,={peR":p>0,>,pi =1}, where p; is the prob-
ability mass of the i-th element in 2. Suppose we are given
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two independent sample sets:

2_[.2 2
., m} and X —{xl,...,xnz],

x!' = {x{,.. xl

iid
where xi,... X~ p, and x%,.. X2

iid .
s X, -» %, ~ g. Our goal is to
design a fest which, given observations X! and X2, claims one

of the following hypotheses:

Ho:p=gq. Hi:llp—ql2=celpl2,

where ||- |2 is the £, norm on R” and € > 0 is a parameter that
represents the relative difference of magnitude. Note that the
alternative hypothesis H; considered here is slightly different
but closely related to the traditional setting where H; is defined
as [lp —qll2 = €.

Define the type-I risk of a test as the probability of rejecting
hypothesis Hy when it is true, i.e., the probability of claiming
lp — gll2 = €llpll2 when p = g. The type-II risk is the prob-
ability of claiming p = g when ||p — gll2 > €|p|l>. We aim
at building a test which, given 0 < «, 8 < 1/2, has the type-
I risk at most « (which we call at level «), and the type-II
risk at most B (of power 1 — B); and we aim to meet these
specifications with sample sizes n1 and n, as small as possible.

We propose a new type of test by considering a family
of distance-based divergence between empirical distributions
of the two sets of observations. More specifically, we con-
sider tests that reject the null hypothesis Hy (and accept the
alternative H{) when

D(Xl,Xz) >0,

where D(-,-) is a proxy for the weighted ¢, divergence
between distributions p and ¢ underlying X' and X2, and ¢
is a data-dependent (random) threshold.

Our motivation for considering the ¢ divergence for the
non-parametric test is twofold. First, the ¢> divergence-based
test has a certain (near) optimality that we will show in
Section III. Second, the ¢, divergence is more robust com-
pared to other divergences such as x>-divergence, which is
commonly used when ¢; separation between distributions
is of interest. The yx2-divergence becomes numerically dif-
ficult to evaluate when there are “small” p; (meaning some
atoms have small probability), while the £, distance remains
bounded and in such cases. Similar argument holds for
the a—and f—divergences [11]-[15] and detection statistic for
robust change detection [16]. Moreover, here we focus on a
new weighted £, divergence, which emphasizes atoms that
contribute most to ||p — ¢|2.

Below, we derive the optimality in the sense that the sample
size needed by the ¢, divergence test matches (up to a mod-
erate constant factor) the minimax lower bound in [17]. More
specifically, the optimal sample complexity of testing two dis-
tributions p and ¢ with ||[p—gqll» > €//nis O(1)/n/€? (ie., it
requires O(1)/n/ €2 samples from each distribution), whence
any low-risk test requiring € to be on the order of O(1)//n
requires a sample size at least O(1)./n.

We also propose a general framework for selecting optimal
test parameters utilizing convex optimization. Namely, when
extra prior information about unknown distributions p and

q is available, such information can be used to improve
the test’s quality by efficiently adjusting weights, which are
adaptive to the “closeness” at different parts of the two dis-
tributions. Furthermore, we develop optimal projection for
dimension reduction of high-dimensional data by maximizing
the Wasserstein distance between two samples [18]. This sheds
light on the potential extension of the proposed test statistic
to high-dimensional continuous distributions.

B. Related Work

There is a long history of studying similar problems in both
statistics and computer science. In statistics, a two-sample test
is a fundamental problem in which one aims to decide if
two sets of observations are drawn from the same distribu-
tion [19], with a wide range of applications [20]. Available
approaches to the two-sample test can be largely divided into
two categories: parametric and non-parametric. The parametric
approach assumes that the data distribution belongs to certain
parametric families, but the parameters can be unknown [21].
The non-parametric setting does not impose any assumption on
the underlying distribution and therefore is widely applicable
to real scenarios.

Classical approaches focus on the so-called “goodness-of-
fit” test to decide whether the observations follow a pre-
specified distribution. Non-parametric goodness-of-fit tests can
be generalized for two-sample (and multi-sample) tests; in this
case, the focus is the asymptotic analysis when the sample
size goes to infinity. For instance, the Kolmogorov-Smirnov
test [22], and the Anderson-Darling test [23] focus on uni-
variate distributions and compute divergences between the
empirical cumulative distributions of two (and multi) sam-
ples. The Wilcoxon-Mann-Whitney test [24], [25] is based on
the data ranks and is also limited to univariate distributions.
Van der Waerden tests are based on asymptotic approximation
using quantiles of the standard Gaussian distribution [26], [27].
The nearest neighbors test for multivariate data is based on the
proportion of neighbors belonging to the same sample [28].

There is much work aimed at extending univariate tests
to the multivariate setting. A distribution-free generalization
of the Smirnov two-sample test was proposed in [29] by
conditioning on the empirical distribution functions. Wald-
Wolfowitz run test and Smirnov two-sample test were gen-
eralized to multivariate setting using minimal spanning trees
in [30]. A class of distribution-free multivariate tests based
on nearest neighbors was studied in [28], [31], [32], and
a multivariate k-sample test based on Euclidean distance
between sample elements was proposed in [33]. Some recent
work includes methods based on maximum mean discrepancy
(MMD) [34] and the Wasserstein distance [35]. In particu-
lar, the £, test enables us to draw a conclusion directly based
on comparing empirical distributions. Compared with existing
methods such as the MMD test, which requires a huge gram
matrix when the sample size is large, the ¢, test enables us to
choose weights flexibly to better serve the testing task.

Another line of research in theoretical computer science
deals with closeness testing. It was first studied in [10], [36], in
which the testing algorithm with sub-linear sample complexity
was presented; the lower bound to the sample complexity was
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gave in [37]; a test that meets the optimal sample complexity
was proposed in [17]; see [38] and [39] for recent surveys. The
£> case has also been studied in [10], [17], [40], and optimal
algorithms are given. Many variants of closeness testing have
also been studied recently. In [41], sublinear algorithms were
provided for generalized closeness testing. In [42], the close-
ness testing was studied under the case where sample sizes are
unequal for two distributions. In [43], a nearly optimal algo-
rithm for closeness testing for discrete histograms was given.
In [44], the problem was studied from a differentially private
setting.

Outstanding early contributions of sequential change detec-
tion mainly focus on parametric methods [45]-[48] and is
well-summarized in recent books [8], [49]. Recently, there
have been growing interests in the non-parametric hypoth-
esis test used in change detection problems. In [50], the
“QuantTree” framework was proposed to define the bins
in high-dimensional cases recursively, and the resulted his-
tograms are used for change detection. In [51], a sequen-
tial change detection procedure using nearest neighbors was
proposed. In the seminal work [52], a binning strategy was
developed to discretize the sample space to construct the
detection statistic to approximate the well-known generalized
likelihood ratio test. The binned detection statistic’s asymptotic
properties were studied, and it was shown to be asymptotically
optimal when the pre-and post-change distributions are dis-
crete. Note that here we do not rely on likelihood ratios and
assume the pre- and post-change distributions are unknown,
and all we have are some possible “training data.”

III. WEIGHTED £, DIVERGENCE TEST

Our goal in this section is to develop a test statistic, the
weighted ¢, divergence, used as the basic building block of
the change detection procedure. We aim to construct a test with
the following properties. When applied to two independent sets
of size N, i.i.d. samples {xi, . ,x}v} and {x%, . ,xlzv} drawn
from unknown distributions p, g € A, the test

(1) rejects the null hypothesis with probability at most a
given « under Hy : p = g;

(i) accepts the null hypothesis with probability at most a
given B8 when there is a relative difference “of magnitude
at least a given € > 0,” i.e., under H; : ||[p—qll2 > €||pll2.

We want to meet these reliability specifications with as small
sample size N.

A. Test Statistic

The main ingredient of weighted ¢, divergence test is the
individual test built as follows. Let us fix “weights” o; > 0,
i =1,...,n and let ¥ = Diag{oy,...,0,} be a diag-
onal matrix with diagonal entries being o1, ..., 0,. Given
{xi, . ,x}v} and {x%, . ,xlzv}, we divide them into two con-
secutive (left) parts E, E', of cardinality L each, and (right)
parts F, F’, of cardinality R each, respectively. Note that the
cardinality L and R are at most N/2 and can be less than N /2
if we do not use all N samples. Set

R

y=7—%5 V=

L
l—y=—— M=2yL=2yR. (1
IR 14 14 1% (D

L+R

Let w, ', ¢, ¢’ € A, be the empirical distributions of obser-
vations in sets E,E',F,F’, and x be the weighted £, test
statistics defined as

Xx=(—-0TZ( =) Zm(cul (0 —¢f). @)

The weighted > divergence test T claims a change if and
only if

x| > ¢,

where £ is the threshold. The following lemma summarizes
the properties of 7.

Proposition 1 (Test Properties): Let T be the weighted
¢, divergence test applied to a pair of samples drawn from
distributions p, g € A, and let the threshold ¢ satisfy

¢ >23v/20M7! /Zo P2, 3)

for some 6 > 1. Then
1) Risk: The type-I risk of 7 is at most 1/62.
2) Power: Under the assumption

> oipi — ai)’

> (+2v29 Ml/z\/z of (i — 4> (ypi + 741)
i

Ml\/y Z:crizpi2 +y Zoizqiz ,
i i
4

the power of 7 is at least 1 — 3/62.

For simplicity, in the rest of this section we assume that
o; = 1,1 < i < n, so the left hand side of (4) reduces to
lp — q||%. In Section V-A, we will discuss how to utilize the
non-uniform weights.

B. Special Case: €5 Test With Uniform Weights

The individual test 7 in the previous section has two draw-
backs: (i) to control the type-I risk, the threshold £ in (3)
specifying 7 must be chosen with respect to the magnitude
llpll2 which is typically unknown; (ii) to achieve a small type-
I risk of 7 we need to set a large €, thus resulting in poor
power of the test. This section will show that we can reduce
these limitations by “moderately” increasing the sample sizes.
To simplify the notation, from now on, we use the fixed value
6 = 3 (i.e., the type-I risk is at most 1/9 and the power is
at least 2/3), and use M = L = R as a special case of the
definition in (1).

The testing procedure will be as follows. We first give the
Algorithm 1 to specify the threshold ¢ that satisfies the con-
dition (3) with high probability and then introduce the testing
procedure.
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Algorithm 1 Estimate a Tight Upper Bound on ||p||%
INPUT: Samples X 1. {x1,..
m = [logy(n)]; S in (6).
OUTPUT: A tight upper bound ¢ on || p||% satisfying the
condition (5).

., xn}; Reliability 1 — &;

for alli =1 to m do
pi = 27112
Set P; € R as the solution to

—1/2 32 _ 1

Set Q; = [Pi;

Use 4S5 consecutive segments, of cardinality Q; each, of
the sample X' to build 25 pairs {(&;, £),s=1,...,28} of
empirical distributions;

Set 6y = &J&! for s =1,...,2S;

Set ®; as the median of 6y, ..., b»s;

if © >2p?/30ri=morN <450, then

Terminate.

end if
end for
Return o = ©; + pi2/3.

1) Specifying Threshold: When the nominal distribution p
is unknown, we perform a training-step — use part of the first
set of observations to build, with desired reliability 1 — §, a
tight upper bound o (the output of Algorithm 1) on the squared
norm || p||% of the unknown distribution p such that

P[IpI3 < 0 < 3IpI3] = 1 -8, 5)

where the probability is taken with respect to the observations
sampled from distribution p.

The training-step is organized in Algorithm 1, where the
input parameter S is defined as

28

k 25—k
S = min SeN:Z<2S><l> (z) SL.
= k 3 3 [log,(n)]

(6)

The definition in (6) has an intuitive explanation: S is the
smallest number such that in 25 independent tosses of a coin,
with probability of getting a head in each toss being < 1/3,
the probability of getting at least S heads does not exceed §/m,
where m = [log,(n)].

Properties of the training-step in Algorithm 1 can be
summarized as follows.

Proposition 2 (Bounding ||p||§).' Let p; = 27i/2 and i(p)
be the smallest i < m such that p; < ||p|l> (note that i(p) is
well defined due to p,, < n~1/2). Assume that the size of the
first group of sample X' is at least 4SQ;(p)- Then the proba-
bility for the training-step to terminate in the first i(p) stages
and to output o satisfying the condition (5) is at least 1 — 4,
where § is the reliability tolerance specifying the training-
step. Besides this, the number of observations utilized in a
successful training-step is at most

480Qip) = O(1) In(In(n)/8) /| Ipl2- (7

2) Testing Procedure: After o is built, we use the part of
the first sample X' not used in the training-step and the entire
second sample X2 to run K = K(«, ) individual tests to make
a decision. Here « < 1/2 and B < 1/2 are pre-specified upper
bounds on the type-I and type-II risks of the testing problem,
and K («, B) is the smallest integer such that the probability of
getting at least K/2 heads in K independent tosses of a coin is

(i) < a, when the probability of getting head in a single toss
is <1/9,
(i) > 1 — B, when the probability of getting head in a single
toss is > 2/3.
It is easy to check that K < O(1)[In(1/&) 4+ In(1/8)].

The k-th individual test is applied to two 2M-long segments
of observations taken first from the sample X' (and these are
non-overlapping with the training-step observations), and sec-
ond from X2, with non-overlapping segments of observations
used in different individual tests. Here the positive integer M,
same as the reliability tolerances 8, o, B, is a parameter of
our construction, and the threshold ¢ for individual tests is
chosen as

¢ =6v2M' Ja. @®)

After running K individual tests, we claim H; if and only if
the number of tests where Hj is claimed is at least K/2. The
properties of the resulting £ test are presented as follows.
Theorem 1 (Sample Complexity): Consider the £, test
above with design parameters §, o, 8 € (0, 1/2) and M. Then
for properly selected absolute constants O(1), the following
holds true. Let p, ¢ be the true distributions from which X!
and X2 are sampled, and let the size N of X 1 X2 satisfies

N = 0()[In(In(n)/8)/|lpll2 + [In(1/e) 4+ In(1/B)M]. (9)

Then
1) The probability for the training-step in Algorithm 1 to
be successful is at least 1 — §, and when it happens
there are enough observations to carry out K subsequent
individual tests.
2) Under the condition that the training-step is successful:
a) The type-I risk (claiming H; when p = ¢q) is at

most «o;
b) For every € > 0, with positive integer M satisfying
1
M= 0()———, (10)
€“lpli2

the type-II risk (claiming Hy when [p — gl> >
€llpll2) is at most .

C. Near-Optimality of Proposed €, Divergence Test

From the above analysis, when testing a difference of mag-
nitude ||[p—gq|l> > €l|pll2, reliable detection is guaranteed when
the size N of samples X! and X? is at least O(n'/?¢~2) (due to
the fact that ||p|l> > n~!/2), with just logarithmic in the reli-
ability parameters factors hidden in O(-). We will show that
the O(n'/?) sample size is the best rate can achieve unless
additional a priori information on p and g is available.

Proposition 3 (Optimality): Given cardinality n of the set
Q and sample size N. For i.i.d. N-observation samples X' and
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X2, suppose there exists a low-risk test that can detect reliably
any difference of magnitude |[p—gql|l2 > €||p|l> for0 < e < 1/2
such that
1) for every distribution p, the type-I risk is at most a given
o < 1/2, and
2) for every distributions p, g satisfying ||[p —gll2 > €||pll2,
the type-II risk is at most a given 8 < 1/2.
Then N > O(1)4/n, with a positive absolute constant O(1)
that depends on «, S, €.

D. Illustrating Example: Quasi-Uniform Distribution

Now we present an illustrative example using “quasi-
uniform” distributions. Assume that the nominal distribution p
and the alternative distribution g are quasi-uniform, i.e., there
exists a known constant « satisfying 2 < x < n such that

IPllc < «/n and ||gllcc < &k/n. Since [xll2 < /lIx]l1[[x]loc,
we have max [||pll2, llgll2] < +/x/n, and hence the threshold

¢ =6v2M""Jk/n (an

satisfies the condition (3) with & = 3 (recall that we are in the
case of uniform weights o; = 1). With this choice of ¢, the
right hand side of condition (4) is at most 65/2[2M ' /k/n +
M~12 /i/n|lp — qll2]. To ensure the validity of condition (4)
with 0 = 3, it suffices to have

Ip— a3 = 6v2[ 27" ic/n+M~V2e/nllp — qll2,
which holds when
lp —ql3 = o(hHM™" /i /n,

with properly selected moderate absolute constant O(1). For
quasi-uniform distributions, ||p —¢||2 is no larger than 2./ /n.
Therefore, for ||p — gll2 > An~Y/? with some A € (0, 2./k],
the sample size M should satisfy

VKn
A2

(12)

M > 0(1)

in order to ensure condition (12). We see that in the case of

L =R, given o < 1, B < 1, the sample size of
0(1)[1n(1/<x) + ln(l/ﬂ)]g

ensures that for the ¢, test with the threshold (11), its

type-1 risk and type-II risk are upper bounded by « and g,

respectively.

In the following, we provide numerical examples to validate
the optimality results in Proposition 3. Suppose the support
size n is even and set L = R = M for simplicity. The
experiment set-up is described as the following two steps.

(i) Draw two n/2-element subsets independently, 21 and

), of © from the uniform distribution on the family of
all subsets of Q of cardinality n/2.

(ii)) The samples X I are i.i.d. drawn from the uniform dis-
tribution on €21, denoted as p; and the second group of
samples X2 are i.i.d. drawn from the uniform distribution
on $2;, denoted by gq.

Therefore we have max [||p|l2, lgll2] < +/2/n, implying that
we can set the threshold as

0=12M"'n" 12,

Seguence length M
ey
[-d © N (2] © N
=y (2] (-] o N S
T T T T T

w
N
)

16 80 144 208 272 336 400 464 528 592 656
atom size n

Fig. 1. Validation of the theoretical O(4/n) bound by plotting the empirical
test power of “quasi-uniform” in Section III-D, averaged over 1000 random
trials. The Type-I risk is controlled to be less than 10™~. The theoretical lower
bound to sample complexity O(y/n) is shown in red line, which match the
empirical phase-transition “watershed.”

In all simulations, the individual test was applied. We perform
the simulation for various n and M values. The power is shown
in Fig. 1, averaged over 1000 trials. The results show that for
magnitude ||p — gl = O(1/4/n), at least O(y/n) samples are
required in order to detect the difference between p and g with
high probability.

E. Comparison With Standard Identity Test

The most attractive feature of the ¢ test is that to eliably test
a distribution separation of relative “magnitude” €, the sizes
of samples should be of on the order of O(y/n/€?), just loga-
rithmic in n and reliability tolerance (type-I and type-II risks)
factors hidden in O(-). In contrast, the conceptually simplest
approach to test — comparing norm |[p — ql|, of the differ-
ence of two empirical distributions with theoretical quantile
of the recovery error as measured in the same norm — turns
out to require sample sizes of the order of n. To the best
of our knowledge, the only test proposed in the literature
where the required sample size grows with n sublinearly is
the “identity test” from [53] designed for the test with known
in advance nominal distribution p (the null distribution). It is
shown in [53] that the number of observations allowing for the
identity test to detect reliably the shift p to ¢ is, up to logarith-
mic in the reliability parameters factors, M, = \/n/|lp — q||%.
When applying in the same situation of known p the ¢, test,
invoking our Theorem 1, the required number of observations
is M = max[1, pll2/llp — ql3].

A natural way to compare the quality of the identity test and
the ¢5 tests is to look at the performance ratio C = M,/ M;
C > 1 means that the £, test outperforms the identity test,
while C <« 1 indicates the opposite situation. In the case of
pll2/llp — q||% > 1, the performance ratio becomes

_ Y llp—a4l3
el llp — gl

which is the product of two factors in the range of
[O(/n), O(n)] and [O(1/n), 1], respectively. Thus, C is in
the range [O(1/4/n), O(n)], implying that no one of the two
tests always outperforms the other one. However, with proper
implementation, ¢, test always outperforms the identity test.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 14,2021 at 02:42:07 UTC from IEEE Xplore. Restrictions apply.



752 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 2, JUNE 2021

Specifically, with p known in advance, let us apply ¢; test to
an equivalent problem built as follows. Given p, let us define
ki = |pin] for each point i € Q = {1,...,n} and define its
p-children (i, k), 1 < k < k;. Let Q be the set of children
of all points from 2. Observing a random variable £ taking
values in €2, we can convert these observations into obser-
vations of random variable £ taking values in € as follows:
observing value i of the random variable &, we throw a perfect
dice with k; faces and take (i, k) as the value of E, where k
being the observed face of the dice. Note that the distribution
p of & is obtained from the distribution p of & by spreading,
for every i € €, the probability mass p; of i in equal por-
tions p;/k; between the children of i. In particular, p has all
entries at most 1/n, while the cardinality 77 of Q clearly is
at most 2n. Now, given samples X! and X? of cardinality N
each, the distribution being (known) p and (unknown) g, let us
use the above randomization to convert the samples into i.i.d.
samples, of the same size, drawn from distributions p and g,
and use these resulting samples to perform testing. With this
approach, the sample size allowing to detect reliably the dif-
ference between p and ¢, up to factor logarithmic in reliability
tolerances, will become M = max [1, ||ﬁ||2/||c_]—ﬁ||%]. In this
case of [pll2/[g — pl3 = 1, we have

My Ip — gl3 (13)
M Pl lp - ql?
Taking into account that [|pll2 < v/2/1, llp — qlli = IIp — ll1

and 77 < 2n, the first factor in the right hand side of (13) is
at least O(n), and the second is at least O(1/n), meaning that
M, /M is at least O(1). Therefore, with the above implemen-
tation, ¢, test is never much worse and in fact can be much
better than the identity test.

F. Comparison With Generalized m-Tests

Here we compare £, test with m-tests based on estimating
||l |l - -distance between distribution p and ¢ given samples, and
will make an argument that ¢, metric is preferred than other
metrics. Specifically, given samples X' and X2 of cardinality
2N each and 7 € [1, oo], consider the test as follows:

(i) We split the first set of sample X' into two non-
overlapping samples — training subsample x and testing
subsample x*, of cardinality N each, and compute the
empirical distributions f[x"], [x**] of these samples. In
the same fashion, we divide the second set of sam-
ple X2, thus getting two N-observation non-overlapping
training subsample X" and testing subsample x** and the
corresponding empirical distributions f [x'r], f [X5];

(ii) We use the full training sample [x",x"] to build a
separator vector e € R" such that

e[y = 7e7] = 7] 71
where 77, = 7/(w — 1) and set h = e/|le]|oo;

(iii) We compute the quantity y = AT[f[x"] — FIx*]] and
claim H; if and only if

o lellr, =1,
T

x > £,

where the threshold ¢ is the parameter of our test.

The properties of the resulting test can be summarized as fol-
lows. Let pg n » (N) be an upper bound on the (1 — f8)-quantile
of the || - ||z -error of recovering a probability distribution p on
observation space Q2 = {I,...,n} by the empirical distribu-
tion of N-element i.i.d. sample drawn from p. In other words,
for every probability distribution f on €2, the empirical dis-
tribution f [xV] associated with drawn from f N-element i.i.d.
sample xV satisfies the relation

P{ Hf[xN] _fHﬂ = pﬂ,n,n(N)} <B.

It can be shown that a tight, within absolute constant factor,
choice of pg , »(N) is given by

Ppnx(N) =2/31nQ2n/B)n* /N, » = max[% - % 0}.
(14)

We have the following result.

Theorem 2 (Properties of Generalized m-Test): Let N be a
positive integer and 7w € [1, oo]. For « € (0, 1), let Ty («) be
the positive root of the equation

2

2
=~ InQ/a),

— (15)
1+ %‘L’ N

and define r](,(oz) = min{l, ty(«)}. For the m-test utilizing
samples X! and X? of cardinality 2N each, if the threshold is
set as

0 =213(a) (16)
(let us denote this test 7;%), one has:
1) The type-I risk of T, is < a;
2) Given B € (0, 1/4), under the assumption
P = qllx = 6pp.nx(N) + 275(a), a7

where p, ¢ are true distribuiton underlying samples X'
and X2, the type-II risk of the test 7;Na is at most 4.

Note that the power of 7;rNa is the same as of the “straight-
forward” test, which uses samples X' and X? to build empirical
approximations of the corresponding distributions and claims
H; when the ||-||,-distance between these approximations is
“essentially larger” than (theoretical upper bound on the)
(1 — av)-quantile of the || - || ;-norm of the approximation error.
The advantage of the m-test over the straightforward one is
that the m-test is less conservative in terms of the type-I risk.
Let us compare m-tests with the £>-test. It is easy to see that
there is no reason to use m-tests with 7 > 2; indeed, when
m > 2, the right hand side in (17) is the same as when &7 = 2,
see (14), while the left hand side in (17) is non-increasing
in . Thus, considering the power of m-tests, we can restrict
well,2].

Next, assume that o and N are such that T = ty(«) < 1 (this
is the only nontrivial case, since otherwise the test 7;’\'& never
claims Hjp). In this case, (15) implies that JO <7t < %«/@,
with ® = 21In(2/«)/N. Finally, assume that n/8 > 2/«; under
these assumptions (14) says that the first term in the right hand
side of (17) dominates the second one, so that (17) implies that
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in order for Hj to be detected with reliability 1—48, we should
have

Ip = qllx = O(1)n=~2/In(2n/B)/N,

with moderate absolute constant O(1). Condition (18) implies
that the best of m-tests is the one with w# = 2. Indeed,
when 7 € [1, 2], by Holder inequality, we have ||p — gl <
nnl_% llp — gll2, implying that whenever condition (18) is sat-
isfied by some p, g and some 7 € [1, 2], it is satisfied by the
same p, g with w = 2.

Another implication is that the ¢, test significantly out-
performs the best of m-tests. Indeed, by Theorem 1, for all
8,a, B € (0,1/2), samples of cardinality N, with

€2 In(In(n)/8) + In(1/a) + In(1/B)
€lpl>

allow to ensure conditional, the probability of the condition

being at least 1 — &, type-I and type-II risks are at most « and

B, respectively. By (18), to ensure similar reliability properties

for -test with m = 2, we should have a much larger, for small

llpll2, the sample size

(18)

N = Ng, = 0(1)

In(2n/B)
e2lpl3

In the “extreme case” of ||pll2 = O(1)//n, N2/Np, is as large
as O(1)+/n. The discussion above supports the near-optimality
of the £, test.

N >N, =0()

IV. SEQUENTIAL CHANGE DETECTION PROCEDURES

In this section, we construct the change detection procedure
based on the proposed weighted ¢, divergence test. Change
detection is an important instance of the sequential hypothesis
test, but it has unique characteristics that require a separate
study due to different performance metrics considered. Since
we do not know the change location, we have to perform
scanning when forming the detection statistic. We discuss two
settings: the offline scenario where we have fixed samples and
the online setting where the data come sequentially.

A. Offline Change Detection by “Scan” Statistic

In the offline setting, we observe samples XT = {x1,...,xr}
on a time horizon t =1, ..., T, with x,’s taking values in an
n-element set Q = {1, ..., n}. Assume there exists time K €
{1,..., T} such that for t < K, x; are i.i.d. drawn from some
pre-change distribution p, and for t > K+ 1, x; are i.i.d. drawn
from the post-change distribution g. Our goal is to design
a test which, based on the samples X7 decides on the null
hypothesis K = T (“no change”) versus the alternative K < T
(“‘change”). Meanwhile, we want to control the probability
of false alarm to be at most a given ¢ > 0, and under this
restriction to make the probability of successfully detecting
the change as large as possible, at least when K and 7 — K
both are moderately large and ¢ “significantly differs” from p.

We use the proposed test in Section III to construct a scan
statistic for change detection. Given T, we select a collec-
tion of bases Bj, 1 < j < J. A base B is a segment of
{1, ..., T} partitioned into three consecutive parts: pre-change

part By, middle part Bmg, and post-change part Bg; the last
instant in By is the first instant in Bpg, and the first instant
in By is by 1 larger than the last instant in By,g. For exam-
ple: Bif = {1,...,10}, Bna = {10, 11}, By = {12,...,20}.
We associate with base B an individual test Tg which oper-
ates with observations {x;, r € Bt U Byg} only. This test aims
at deciding on two hypotheses: (1) “No change:” there is no
change on B, that is, either K is less than the first, or larger
than or equal to the last time instant from B; (2) “Change:”
the change point K belongs to the middle set Bpg.

Given o > 0 and a base B, we call individual test Tg associ-
ated with this base «-feasible, if the probability of false alarm
for 7p is at most o, meaning that whenever there is no change
on the base B of the test, the probability for the test to claim
change is at most «. Our “overall” test 7 works as follows:
we equip bases Bj, 1 < j < J, with tolerances o; > 0 such
that } ;o = o, and then associate with each base B; with
a aj-feasible individual test 7p; (as given by the £, test in
Section III-A). Given observations X', we perform one by
one the individual tests in some fixed order, until either (i) the
current individual test claims change; when it happens, the
overall test claims change and terminates, or (ii) all J individ-
ual tests are performed and no one of them claimed change;
in this case, the overall test claims no change and terminates.

Proposition 4 (False Alarm Rate for Offline Change
Detection): With the outlined structure of the overall test and
under condition ZJ- aj = a, the probability of false alarms for
T (of claiming change when K = T) is at most «.

B. Online Change Detection

Instead of giving a fixed duration of samples in the offline
setting, the observations arrive sequentially for online detec-
tion tasks. The goal is to detect the change as quickly as
possible, under the constraint that the false alarm rate is under
control.

The proposed detection procedure based on {5 test is illus-
trated in Fig. 2. Given a sequence {x;,t = 1,2, ...}, as each
time ¢, we search over all possible change-points k£ < ¢. In par-
ticular, we form two sequences before k and two sequences
between [k, ] with the length all equal to M, = [(t — k)/2];
their corresponding empirical distributions are denoted as &; x,
ét/’ e and 07k, ’7;,1« The detection statistic x;x is formed as:

Xtk = Mt,k(ft,k - T)t,k)TE(E;,k - U;,k)~ (19)

We note that the multiplicative term M, can be viewed as a
scaling parameter (which is proportional to the standard devi-
ation of the test statistic) such that the variance of x;  is of a
constant order as t — k increases.

The online change-point detection procedure is given by a
stopping time
(20)

T = inf{t Domax xrx > b},

0<k<t

where b is a pre-specified threshold that needs to be deter-
mined by controlling the false alarm rate. An intuitive
interpretation of 7 is that at each time #, we search over all
possible change-pints k < ¢, and raise alarm if the maximum
statistic exceeds the threshold.
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Fig. 2. Tllustration of the sequential change detection procedure.

Remark 1 (Window-Limited Procedure): In practice, we can
also adopt a window-limited version of T as

max
mo<t—k<m

T = inf{t Xtk = b}, (21)
where mo and m are the lower and upper bounds of the win-
dow size that we would like to scan for the possible changes.
Usually mg can be set such that the resulted sequences are
long enough to have meaningful empirical distributions for
constructing the detection statistic in (19). For practical con-
siderations, we usually require the window size m; to be at
least the expected detection delay, as discussed in [54] where
the original theoretical study of the window-limited test was
proposed.

Remark 2 (Comparison With the Binning Approach [52]):
We note that the binning approach in [52] also considers
discretized space and scans over all possible change-points
when approximating log-likelihood ratio statistics. Compared
with [52] which assumes the pre-change distribution is known,
the detection procedure (20) and its window-limited ver-
sion (21) do not need the prior knowledge of the pre-change
distribution. We did not use the log-likelihood ratio statistic
here but scan over all neighboring time windows directly to
detect any significant difference in empirical distributions.

C. Theoretical Analysis for Online Change Detection

Now we characterize the two fundamental performance met-
rics for sequential change detection, namely the average run
length (ARL) and the expected detection delay (EDD). We
cannot use the previous method in Proposition 1 to determine
the threshold because the bound is too conservative and will
be intractable when the ARL is large. Here we present an
asymptotic theoretical approximation.

1) Theoretical Approximation to ARL: To compute the
ARL, we need to quantify the distribution of 7 when data are
sampled from the same distribution p. Intuitively, the detection
statistic y; x is small when the samples are from the same dis-
tribution. A relatively standard result is that when the threshold
b tends to infinity, the stopping time’s asymptotic distribution
is approximately exponential when there is no change. This is
proven true in various scenarios [55]-[57]. The main idea is to
show that the number of boundary cross events for detection
statistics over disjoint intervals converges to Poisson random
variable in the total variation norm; the result can be estab-
lished by invoking the Poisson limit theorem for dependent
samples. Detailed proofs by adapting those techniques into
the specific £; test setting are left for future work. Under such

approximation, we have

Poo (T’ > m) = IP’OO< max  max

1<t<m mgy<t—k<my

Xtk = b) A e

where Py, is the probability measure when the change-point
equals to oo, i.e., the change never happens; and E,, denotes
the corresponding expectation under this probability mea-
sure. Therefore, we only need to compute the probability
Po(7’ > m) and find the parameter A, then the expec-
tation of 7' equals 1/A. We adopt the change-of-measure
transformation [58]-[60] and characterize the local properties
of a random field. We first quantify the correlation between
Xtk ane s in order to find the probability Poo (7" > m)
theoretically.

Proposition 5 (Temporal — Correlation  of  Sequential
Detection Statistics): Suppose all samples are i.i.d. drawn
from the same distribution p, denote M =t — k = t — s, then
the correlation between x; and x; s is

2
Corr ()1, k» Xr,s) = 1 — =Tl lk=sh

(=) + (s —k)?
+ Y2 .

Based on the correlation result, we have the following
Theorem characterizing the ARL of the proposed ¢, sequential
detection procedure. The main idea is to use a linear approx-
imation for the correlation between detection statistics x;
and xcs. Then the behavior of the detection procedure can
be related to a random field. By leveraging the localization
theorem [60], we can obtain an asymptotic approximation for
ARL when the threshold b is large enough (in the asymptotic
sense). Define a special function v(-) which is closely related
to the Laplace transform of the overshoot over the boundary
of a random walk [61]:

2[a(3) - 03]
O () 160) 22

where ¢(x) and ®(x) are the probability density function
and cumulative density function of the standard Gaussian
distribution. For simplicity, we denote the variance of x;x as

n
oy = Var[ x| = 4 Z olpi(l —pi)? + Z o0} p;
i=1 i

(23)

Theorem 3 (ARL Approximation): For large values of
threshold b — oo, the ARL of the test 7' can be approxi-
mated as

]1 /2

y2(y)dy

L b Ralc [
Exo[T'] == (1+o0(1). (24

2 [

)]

The main contribution of Theorem 3 is to provide a theo-
retical method to set the threshold that can avoid the Monte
Carlo simulation, which could be time-consuming, especially
when ARL is large. Although there is no close-form ana-
Iytical solution for b, when we let the right-hand side of
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TABLE I
COMPARISON OF THE THRESHOLD b OBTAINED FROM SIMULATIONS AND
THE APPROXIMATION (24). SCANNING WINDOW mq = 10, m; = 50,
SUPPORT SIZE n = 20, NOMINAL DISTRIBUTION p IS UNIFORM

ARL S5k 10k 20k
Simulation 2.0000 2.1127 2.2141
Theoretical 1.8002 1.8762 1.9487

30k 40k 50k
2.2857 2.3333 2.3750
1.9897 2.0183 2.0398

Equation (24) equals to a specific ARL value (lower bound),
we can numerically compute the right-hand side of (24) for any
given threshold value b. Then we search over a grid to find the
corresponding threshold values. Table I validates the approxi-
mation’s good accuracy by comparing the threshold obtained
from Equation (24) and compares it with that obtained by the
Monte Carlo simulation. In detail, we generate 2000 indepen-
dent trials of data from nominal distribution p and perform the
detection procedure 7~ for each trial; the ARL for each thresh-
old b is estimated by the average stopping time over 2000
trials. In Table I, we report the threshold obtained through
Monte Carlo simulation (as a proxy for the ground-truth) and
on the approximation (24), for a range of ARL values. The
ARL values in Table I correspond to the lower bound of an
ARL; since ARL will increase when increasing the thresh-
old. So if we have a good approximation, this can help us
to calibrate the threshold and control the false alarm rate. The
results in Table I indicate that the approximation is reasonably
accurate since the relative error is around 10% for all specified
ARL values. It is worth mentioning that ARL is very sensitive
to the choice of threshold, making it challenging to estimate
the threshold with high precision. However, the EDD is not
that sensitive to the choice of the threshold, which means that
a small difference in the threshold will not significantly change
EDD.

2) Theoretical Characterization of EDD: After the change
occurs, we are interested in the expected detection delay,
i.e., the expected number of additional samples to detect the
change. There are a variety of definitions for the detection
delay [8], [48], [62], [63]. To simplify the study of EDD, it
is customary to consider a specific definition Eg[7"], which is
the expected stopping time when the change happens at time 0
and only depends on the underlying distributions p, g. It is not
always true that Eg[77] is equivalent to the standard worst-case
EDD in literature [48], [62]. However, since E¢[7"] is cer-
tainly of interest and is reasonably easy to approximate, we
consider it as a surrogate here. We adopt the convention that
there are certain pre-change samples {x_1,x_», ...} available
before time 0, which can be regarded as reference samples.

Note that for any + > 0 and k = 0, the sequences
&0 and sz/,o come from the pre-change distribution p since
they belong to the reference sequence {x_1,x_», ...}, and the
sequences 1o and '7;,0 are from the post-change distribu-
tion g. Therefore, the expectation of the detection statistic y;
is Elxixl = [t —k)/21(p — ¢9)TEZ(p — q), which determines
the asymptotic growth rate of the detection statistic after the
change. Using Wald’s identity [64], we are able to obtain a
first-order approximation for the detection delay, provided that
the maximum window size m; is large enough compared to
the EDD.

Theorem 4 (EDD Approximation): Suppose b — oo, with
other parameters held fixed. If the window size m; is suffi-
ciently large and greater than 2b/[(p — ¢)T X (p — ¢)], then the
expected detection delay

b(1 + o(1))
P-—9T=P-9/2

From the approximation result in Theorem 3, we note that
the ARL is of order O(ebz/ (20 )) with respect to the thresh-
old value b, which means that the threshold b chosen for a
fixed ARL value y should be on the order of O(log /).
Moreover, by taylor expansion and Csiszar-Kullback-Pinsker
inequality [65], we have the Kullback—Leibler (KL) diver-
gence is equivalent to squared £, norm up to certain constants,
ie., Collp—qll3 < KL(p, 9) < Cilp—qlI3, therefore the EDD
is also of order b/KL(p, g), which matches the theoretical
lower bound of EDD in first-order.

Remark 3 (Optimize Weights to Minimize EDD): From the
EDD approximation in (25), it is obvious that we can minimize
EDD by optimizing over the weights matrix . In particular,
the EDD can be minimized when we can find the weights
% such that the weighted ¢, divergence between p and ¢
is maximized. This is consistent with the subsequent discus-
sion in Section V-A. In particular, when we have certain prior
information about the distributions p and g, we could apply the
optimization-based method in Section V-A to find the optimal
weights to reduce the detection delay.

Eo[T] = (25)

V. OPTIMIZED WEIGHTS AND PROJECTION OF
HIGH-DIMENSIONAL DATA

This section discusses setting optimal weights that adapt to
the closeness at different elements in €2, given some a prior
information on p and ¢. In addition, we tackle the data high-
dimensionality by adopting the Wasserstein-based principal
differences analysis [18] to find the optimal projection.

A. Optimize Weights for £, Test

So far, we primarily focused on the case with uniform
weights o; = 1. In this section, we will discuss how to further
improve performance by choosing the optimal weights. In the
simplest case, when we know in advance (or can infer from
additional “training” samples) that the distribution shift p — ¢
(nearly) does not affect probabilities with indexes from some
known set I, we can set 0; =0 foriel and o; =1 fori & I.
This will keep the magnitude ) ; oi(p; — gi)? on the left hand
side of (4), as compared to uniform weights, intact, but will
reduce the right hand side of (4).

A framework to optimize over o;’s is as follows. Assume
that we know distributions p, g belong to a set X C A,,, which
is defined by a set of quadratic constraints:

X={per,:pTOw=1k=1,...K} (26)

where Q € R™" are positive semi-definite (Qy > 0).

A natural way to measure “magnitude of difference” is to
use ||[p — qll2 (the case using ||p —¢||1 can be similarly defined
and solved). Assume we want to select o = [01,...,0,] >0
to make reliable detection of difference ||p — ¢|l2 > p, for
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some given p > 0. To achieve this, we can impose a fixed
upper bound on the right hand side in (4) when p = g € &,
i.e., to require o to satisfy

2.2
g+ (0) = max oip;i <a
* pe?('; i Fi

with some given a, and to maximize under this constraint the
quantity

fulo) = r;liqnizai(pi —a)’ :pgeX, Ip—qll = p]'
i

For any o that satisfies g.(0) < a, the associated test
which claims H; when the statistics (defined in (2)) |x| >
2v260M~'/a is with type-I risk at most 1/62. At the same
time, large fi (o) is in favor of good detection of distribution
shift of magnitude ||p — g|l2 > p. By the homogeneity in o,
we can set a = 1 without loss of generality.

In general, both g, and f, are difficult to compute.
Therefore, we replace the problem

maz)({f*((f) : g«(0) < 1}

with its safe tractable approximation:

max{f(o) : g(o) < 1}, (27
>0
where f is a concave efficiently computable lower bound on f,
and g is a convex efficiently computable upper bound on g..
To build g, note that when p € X, the matrix P = ppT €
R™" is positive semi-definite (P > 0), non-negative in each
entry (P > 0), 327, Py = 1, and Tr(PQx) < 1, k < K,
by (26). Consequently, the function

n
g(0) == max Tr(ZzP) P=0.P>0,) Pyj=1,
ij=1

Tr(PQ) <1, 1 =k =<K

with ¥ := Diag{oy, ..., 0y} is an efficiently computable con-
vex upper bound on g,. Similarly, to build f, observe that the
matrix S = (p — ¢)(p — ¢)7 stemming from p,q € X with
lp — qll2 > p belongs to the convex set

n n
S = S:SzO,ZlSzj/|§4,ZSU:O’

ij=1
Te(S) = p2. Te(SQ) <4, 1 <k < K}

ij=1

Therefore,
f«(0) > f(0) = min Tr(ZS)
SeS

and the function f (o) is concave and efficiently computable.

To implement the problem (27) efficiently, we derive the
tractable dual formulation in the following. Note that these
constraints can be greatly simplified if Q are diagonal
matrices, especially for the high dimensional case.
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Fig. 3. [Illustration of optimal weights on a simulated example. (a): Optimal
weights; (b): The ROC curves under optimal weights and equal weights.

Proposition 6 (Dual Reformulation): The dual formulation
of the optimization problem (27) is

max Ap2—42xk—45
k
st. A>0,P>=0,E>0,x>0,U>=0,W=>0,
Az0,V=20,u20,1<k=<K,

ZXka—IrU—W—P_rJ_M”?_E’
k
Uj+W;<§g 1<i<nl<j<n,

Domk—vs1 —A=V+Y Q] T
k k

where ¥ = Diag{oy, ..., 0,} and J € R"™" is a matrix with
all elements equal to 1.

We present an illustrative simulation example to show the
benefits of optimizing weights o. The experimental set-up
is as follows. Consider the sample space Q@ = {1,...,n}
with n = 48. The distributions p and ¢ are set as uniform
distributions on the subset 21 = {1,...,3n/4} and @2, =
{n/4+1, ..., n}, respectively. The common support of p and
q consists of n/2 elements. We first use training data to esti-
mate the matrix Q in our formulation. Specifically, we sample
32 observations from each distribution and compute the empir-
ical distribution of all observations. This process is repeated
for m = 50 trials, and the resulting Q is solved from the
following optimization problem

min logdetA~!

sit. 1Apill, <1, i=1,...,m,

where A = Q'/? and p; is the empirical distribution in the i-th
trial. The volume of the ellipsoid defined with Q is propor-
tional to detA~!. Thus the solution to the above optimization
problem is the minimum ellipsoid that contains the m empirical
distributions [66]. The optimal weights are shown in Fig. 3(a).
Moreover, we compare the ROC curve of the test under equal
weights o; = 1 and optimal weights in Fig. 3(b), averaged over
10,000 trials. The result shows the benefits of using optimal
weights.

B. Optimal Projection for High-Dimensional Data

Assume that the two distributions p and g, rather than
discrete distributions on a given finite set, are continuous dis-
tributions on R?. In this situation, we may try to convert
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observations x € R? into observations f(x) taking values in
a finite set and apply the proposed test to the transformed
observations.

One way to build f is to project observations x onto one-
dimensional subspace and then split the range of the projection
into bins. We propose to select this subspace using, when
available, “training sample” x1, . .., xo1, with the first T obser-
vations drawn, independently of each other, from the nominal
distribution p, and the last 7" observations drawn independently
of each other and of xi,...,xr, from the distribution g. A
natural selection of the one-dimensional subspace can be as
follows. Denote by e the unit vector spanning the subspace.
Let us look at the sample empirical distributions of the pro-
jections of the observations xi, ..., x>7 on e, and try to find
unit vector e for which the Wasserstein distance between the
distributions of the first half and the second half of the pro-
jections is as large as possible [18]. The distance above is, up
to factor 1/T, the quantity

— 1 T(v. — v L
¢(e) = w,-j,lg?gzr iZj}e (xi = x7) |y -
l,i<T « [0, j<T
iju—{o, i>T’Ziwl]_{l, j>T}
wj>0,1<i,j<2T
T 2T
=m§1x Z)\i_,z )\il
i=1 i=T+1
A=A <|eT(x—x)|, 1 <ij<2T
= ®(Ele]),
where
Ele] = eeT,
T 2T
(E) = max Z,\i— Z At Ai— A
i=1 i=T+1

= \/[xi —x5]"E[xi—x]. 1 <ij<2T

Note that function @ (E) is concave and the goal is to maximize
@ (E) over positive semi-definite rank-one matrices £ = eeT
with trace 1. An efficiently solvable convex relaxation after
relaxing the rank-one constraints is:
T 2T
max D hi— Y M:iEx0.Te(E) =1,
i=1 i=T+1

A — )\j < \/[x,' —xj]TE[xi —)Cj], 1<i,j<?2T

After the optimal solution E, to the problem is found, we can
use standard methods to obtain a reasonably good e, e.g., take
e as the leading eigenvector of E,.

Here we present a simple numerical illustration for the
optimal project. Consider the two-dimensional Gaussian dis-
tributions with same mean value and different covariance

© data1

* data2
. optimal projection —— Random projection, AUC =0.89

— Optimal projection, AUC = 0.99

o
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Fig. 4. TIllustration of optimal projection on simulated data. (a): Optimal
projection for two training sets; (b): The ROC curves for optimal projection
and random projection.

structures. More specifically, let the data X; to be sampled i.i.d.
from N (i1, £1) and data X5 to be sampled from N (u2, X2),
where 1 =[0 0]", uo =[2 0], and

s _[303 —241] _ _[550 330
P= 1241 155 |© “27 (330 2.53|

Fig. 4 shows the optimal projection obtained from 50 training
samples from each distribution (which can be seen to optimally
“separate” the two distributions), and the ROC curve averaged
over 10,000 trials that demonstrates the performance gain of
the optimal projection.

VI. NUMERICAL EXAMPLES

In this section, we perform some simulations to validate
the performance of the ¢, test and compare with two bench-
marks: (i) the classical parametric Hotelling’s T2 test [67]; and
(ii) the non-parametric maximum mean discrepancy (MMD)
test [34]. More specifically, we study the test power of the two-
sample test for Gaussian distributions under various dimen-
sions. Moreover, we show the performance in change detection
by studying the detection power in the offline case and the
expected detection delay in the online case, respectively.

We first introduce briefly the two benchmark procedures.

a) Hotelling’s T? statistic: The Hotelling’s T2 statistic is
a classical parametric test designed utilizing the mean and
covariance structures of data, and thus it can detect both the
mean and covariance shifts [67]. Given two set of samples

{x1,...,x,} and {y1, ..., yn,}, the Hotelling’s T2 statistic is
defined as
2 ninz T [P,
= ———G@x-NTE T (x-Y), (28)
(n1 +n2)

where x and y are the sample mean and S is the pooled
covariance matrix estimate.

b) MMD statistic: The MMD test is a non-parametric bench-
mark for two-sample test and change detection [34], [68].
Given a class of functions F and two distributions p and ¢, the
MMD distance between p and g is defined as MMD £ (p, ¢) =
SUpfe FEplf ()] — Eyylf 1. For MMD in reproducing
kernel Hilbert spaces (RKHS), given samples {x1, ..., x,,} and
{y1, ..., ¥n,}, an unbiased estimate of squared MMD distance
is given by

1 "
2_ - 2 2 ' .
MMD;, = i — 1) 4 k(x,,x])

i=1 j#i
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Fig. 5. Comparison of test power of the proposed test versus classic
Hotelling’s T2 statistic and the MMD statistic, when performing a two-sample
test on two Gaussian distributions, with significance level @ = 0.05. (Left)
Gaussian distributions having the same variance and different means; (Right)
Gaussian distributions having same mean and different variances.

1 2
+— k(vi, j
ny(ny — 1) ;; (i 3)
2 ni ny
- = k(x;, vi),
i 2 2 K)

(29)

where k(-, -) is the kernel function associated with RKHS.

A. Two-Sample Test

Following a similar setup as in [34], we investigate the
performance of various tests as a function of the dimension
d of the sample space R?, when both p and ¢ are Gaussian
distributions. We consider values of d up to 256. The type-I
risk for all tests is set as @ = 0.05. The sample size is chosen
as n1 = np = 100, and results are averaged over 500 indepen-
dent trials. In the first case, the distributions p, ¢ have different
means and the same variance. More specifically, p = N (0, I)
and g = N(,ul/\/c_i, 1;) with u = 0.8. Note that the division
of each element of the mean vector by +/d makes the diffi-
culty of the hypothesis testing similar across all d values. In
the second case, the distributions p, ¢ have the same means
but different variance. More specifically, p = N(0, ;) and
g = N(0, %) with £ = Diag{0.25, 1, ..., 1}, i.e., we only
scale the first diagonal entry in the covariance matrix to make
the hypothesis testing problem challenging to perform.

The test power for different methods is shown in Fig. 5.
The test power drops when the dimension increases, which is
consistent with the results in [9]. Hotelling’s 77 test performs
good in low dimensions, but its performance degrades quickly
when we consider higher dimensional problems. The MMD
test is comparable to ¢, test in low dimensions, but the £, test
tends to outperform the MMD test in high dimensions. The
reason can be that by projecting to one-dimensional spaces
using a good projection, the power of £, test tends to decrease
slower compared to Hotelling’s 7> and MMD tests.

B. Offline Change Detection

As an extension and application of the proposed £, test,
we investigate the performance for the offline change detec-
tion and compare the detection power, i.e., the probability of
successfully detecting the change when there is a change.

Assume we have sample xp, ..., xy with a fixed time hori-
zon T = 200, when there is a change, we set the change-point
K = 100. The £, detection statistic at each time ¢ is My with

TABLE II
DETECTION POWER IN OFFLINE CHANGE DETECTION. THE SEQUENCE
OF LENGTH IS 200. THRESHOLDS FOR ALL METHODS ARE CALIBRATED
SO THAT THE SIGNIFICANCE LEVEL IS « = 0.10 AND « = 0.25.
AVERAGED OVER 500 TRIALS

a=0.10
Case 1Case 2Case 3Case 4
lo test 0.52 0.85 0.18 0.56
MMD 0.32 090 0.16 043
Hotelling’s 72 0.07 023 0.09 0.06

a=0.25
Case 1Case 2Case 3Case 4
0.70 090 035 0.71
0.60 095 0.34 0.69
0.20 0.23 023 0.23

x defined in (2) (here M = 2LR/(L + R) is the normalizing
constant). To avoid the segment being too short, we compute
the detection statistics for time instances ¢t € [w, T — w] with
w = 20, and then take the maximum. Similarly, the Hotelling’s
T? statistic at each time 7 is computed using (28) by treating
data before ¢t as one sample and after ¢ as another sample;
the MMD statistic is computed in a similar way from (29).
We claim there is a change-point when the maximum of the
detection statistics within window ¢ € [w, T — w] exceeds the
threshold. The thresholds for different methods will be chosen
by Monte Carlo simulation to control the false alarm rate.

We consider the following cases (distribution changes) in
the numerical experiments.

Case 1 (Discrete distributions): The support size is n = 10,
distribution shifts from p = 1/10 (uniform) to
qg = [1/30,2/30,...,5/30,5/30,...,2/30, 1/30]
(non-uniform).

(Gaussian distributions): The distribution shifts
from two-dimensional standard Gaussian N (0, I7)
to AN([0.5 o7, [1 0.71T[1 0.7] +
[—1 0.4]T[—1, 0.4]).

(Gaussian to Gaussian mixture): The distribution
shifts from A(0, Ig) to the Gaussian mixture
0.8N(0, I29) + 0.2N (0, 0.110).

(Gaussian to Laplace): The distribution shifts from
standard Gaussian N'(0, 1) to Laplace distribution
with zero mean and standard deviation 0.8.

The detection power is averaged over 500 repetitions and is
reported in Table II. It shows that the proposed ¢, test outper-
forms the classic Hotelling’s 72 and MMD tests, especially
when the distribution change is difficult to detect (such as
Case 3 and Case 4, where pre- and post-change distributions
are close). For Case 2 detecting mean and covariance shifts,
the MMD test performs slightly better. A possible explanation
is that the MMD metric can capture the difference between
pre- and post-change Gaussian distributions well in a fairly
low-dimensional setting.

Case 2

Case 3

Case 4

C. Online Change Detection

We further investigate the performance for online change
detection and compare the average detection delay, i.e.,
the number of samples it takes to detect the change after
the change happens. More specifically, the detection delay
is the difference between the stopping time and the true
change-point.

Assume we have samples {x;, = 1, 2, ...} that are available
sequentially. We adopt the convention that there are pre-
change samples available as {xg, x_1, ...}, which are referred
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as historical data and can be used during the detection pro-
cedure. Consider the window-limited ¢, detection procedure
defined in (21) with parameter mg = 20 and m; = 100. The
Hotelling’s 77 detection statistic at each time 7 is constructed
as (x; — ,&)Tf_l()'ct — (1) where X; is the average of samples
within window [f — mg + 1, ¢], and [, S are estimated from
historical data. The MMD statistic is constructed in the same
way as in [68] with block size By = 20 and number of blocks
N = 5. We will claim change and stop the detection proce-
dures when the detection statistic exceeds the threshold; the
thresholds for different methods are chosen by Monte Carlo
simulation to control the average run length.

We consider the following four cases, which are modified
slightly from the offline case. We have increased the signal-
to-noise ratio in certain cases to increase the detectability in
the online setting.

Case 1 (Discrete distributions): The support size is n =
10, distribution shifts from p = 1/10 (uniform)
to g =[0.04,0.14,0.32,0,0, 0, 0, 0.32, 0.14, 0.04]
(non-uniform).

(Gaussian distributions): The distribution shifts
from two-dimensional standard Gaussian A (0, 1)
to N([0.5 o7, [1 0.7]7[1 0.71 +
[—1 0.4]T[—1 0.4]).

(Gaussian to Gaussian mixture): The distribution
shifts from N(0, o) to the Gaussian mixture
0.4N (0, I9) + 0.6 (0, 0.11).

(Gaussian to Laplace): The distribution shifts from
standard Gaussian A(0, 1) to Laplace distribution
with zero mean and standard deviation 0.7.

The evolution paths of detection statistics for all cases are
given in Fig. 6. To simulate EDD, we let the change occur at
the first time instant of the testing data. The detection delay
is averaged over 500 repetitions and reported in Table III.

Case 2

Case 3

Case 4

VII. REAL-DATA STUDY: ONLINE GESTURE CHANGE
DETECTION

In this section, we apply our method to the sequen-
tial gesture detection problem using a real dataset: the
Microsoft Research Cambridge-12 (MSRC-12) Kinect ges-
ture dataset [69]. This dataset consists of sequences of human
skeletal body part movements (represented as body part loca-
tions) collected from 30 people performing 12 gestures. There
are 18 sensors in total, and each sensor records the coordinates
in the three-dimensional Cartesian coordinate system at each
time. Therefore there are 54 attributes, denoted by y; € R,
t=1,2,...,T. The goal is to detect the transition of gestures
from the sequences of sensor observations.

We apply the proposed online change detection procedure
defined in (21) to the MSRC-12 dataset, and the detailed
scheme is outlined as follows. We first preprocess the data
by removing the frames that the person is standing still or
with little movements. Then we select a unit-norm vector
u € R>* and project data into this direction to obtain a univari-
ate sequence: x; = uTy,. The projection vector u is found by
finding the optimal projection to maximize the Wasserstein
distance described in Section V-B. Then we discretize the
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Fig. 6. Illustration of online change detection using the ¢, divergence under
four simulated cases explained in Section VI-C. For each case, the upper plot
shows the raw data and the bottom plot shows the evolution path of the ¢;
detection statistic, with true change-point indicated in red dash lines.

TABLE IIT
COMPARISON OF EDD FOR ONLINE CHANGE DETECTION USING THE
PROPOSED STATISTIC, THE MMD, AND THE HOTELLING’S T2 STATISTIC.
THE PARAMETER IS n = 10, my = 20, m; = 100 AND THRESHOLDS FOR
ALL METHODS ARE CALIBRATED SO THAT ARL = 500. THE DASHED
LINE INDICATES THE METHOD FAILS TO DETECT THE CHANGE (I.E., THE
DELAY IS LARGER THAN THE TIME HORIZON)

Case 1 Case2 Case3 Case4

lo test 20.34 89.66 69.23 92.49
MMD 258.02 47.72 — 39491
Hotelling’s T2 406.42 36.79 — 370.61

univariate sequence into n bins. At each time #, we con-
struct the detection statistic maX,<;—k<m; X,k as illustrated
in Fig. 2.

The parameters are set as mg = 20, m; = 300 for the detec-
tion procedure. The detection statistics are shown in Fig. 7,
with the true change indicated by red dash lines. We also
compare the £, test with tests based on Hotelling’s 77 statis-
tic, £1 distance, and KL divergence. Using the ¢; approach
detailed in Section III-F, we build the test statistic d; x for time
t and potential change-point k < ¢, then the detection statistic
is computed by maximizing over all potential change-points:
maX,<i—k<m, Or,k- For the KL divergence test, at time ¢ and
for k < t, set Ny = [t —k] and denote the empirical distribu-
tion of two segments [k — Ny + 1, k], [k+1: ] as fl and f‘z
(with zero value adjusted to a small constant § = 0.01), then
compute their KL divergence as detection statistic.

From the results in Fig. 7, we can observe that our sequen-
tial detection procedure based on the ¢, divergence can detect
the change right after it happens. This is because the detection
statistic before the change has a smaller variance, which indi-
cates that we can set the threshold to be reasonably low for
quicker detection. Moreover, there is a clear linear increasing
trend after the change, enabling quick and reliable detection.
In contrast, Hotelling’s T2 statistic does not have the desired
online change detection behavior. The detection statistic is
noisy before the change and does not have a consistent positive
shift after the change; the KL test is even worse in this regard.
The ¢; divergence-based test has a similar behavior as the £»
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Fig. 7. Real-data example using online gesture change detection. Comparison
of detection statistics (under uniform weights) for “bow” to “throw,” for the
proposed procedure, the Hotelling’s T2 test, £1 test, and the KL test. Red
dash lines indicate the true change-point (hand-labeled).

divergence. However, the ¢; divergence has smaller “signal-to-
noise” ratio in that the variance between the change is larger,
and post-change distribution drift seems to be smaller.

VIII. CONCLUSION

We have presented a new non-parametric change detection
procedure based on the optimal weighted ¢ divergence. We
studied the optimality and various theoretical properties of the
weighted ¢, divergence for the offline and online change-point
detection. We also studied the practical aspects, including cal-
ibration threshold using training data, optimizing weights, and
finding an optimal projection for high-dimensional data. We
demonstrate the good performance of the proposed method
using simulated and real-data for human gesture detection.
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