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Testing Rank of Incomplete Unimodal Matrices

Rui Zhang ¥, Junting Chen"”, Yao Xie

Abstract—Several statistics-based detectors, based on unimodal
matrix models, for determining the number of sources in a field
are designed. A new variance-ratio statistic is proposed, and its
asymptotic distribution is analyzed. The variance-ratio detector
is shown to outperform the alternatives. It is shown that further
improvements are achievable via optimally selected rotations. Nu-
merical experiments demonstrate the performance gains of our
detection methods over the baseline approach.

Index Terms—Detector, low-rank matrices, statistical hypothesis
testing.

I. INTRODUCTION

OURCE localization based on received signal strength

(RSS) [1] is challenged in environments where universal
signal models are absent, such as underwater scenarios. Re-
cently, a semi-parametric method based on sparsely spatially
sampled RSS values and unimodal matrix factorizations has
shown strong promise [2] for localizing multiple sources. How-
ever, [2] requires a priori knowledge of the number of sources.
In practice, such information is unknown and must be learned.
Herein, we design methods for estimating the number of sources
when the signal propagation model is unknown save for the
general property that the signal strength decreases with range.
While the rank of the observation matrix, in specific cases, can be
indicative of the number of sources, this is not true in general.
For example, a single source can yield an observation matrix
with rank two or more. Alternatively, if sources are co-linear,
the rank of the observation matrix can be less than the number
of sources.

Prior art on source localization also required the number
of sources (e.g., [3]). If specific parametric models for signal
strength exist, they can be leveraged to estimate the number of
sources as in [4], [5]. Our goal, herein, is to provide methods for
very general signal models such as unimodality.
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This paper develops a statistical test on the rank of the sparse
observation matrix to estimate the number of sources based
on RSS measurements from different locations. Our proposed
method does not require a parametric model for the signal, and
we also assume the noise variance is unknown. We tackle the
challenge of testing the rank of a low-rank matrix using incom-
plete observations while assuming the signal energy field is uni-
modal. The proposed method is based on extending the results
in [6], [7] to unimodal matrices. Moreover, we develop a new
variance-ratio statistic and the corresponding test procedure.
We further derive the asymptotic distribution of our proposed
statistic, enabling the design of a threshold to control the false
alarm rate. The proposed detection statistic is asymptotically
efficient compared to an alternative estimator with an indepen-
dent numerator and denominator. Furthermore, to improve our
detector performance, we compute an optimal rotation to avoid
the scenario of worst-case co-linearity of sources [2]. Numerical
experiments validate the theory and demonstrate the proposed
procedure’s good performance.

II. PROBLEM SETUP

Consider the problem of /-source localization. Each source
emits a signal that is unimodal: maximum signal strength for a
measurement made at the source location, with reduced signal
strength for measurements made away from the source location,
decaying with the distance from the source location. For a single
source, k, there is an N x N signal strength matrix H *) e
RN*N et the singular value decomposition (SVD) of H*) be

N
H® =3 " imeivi k=1, K,
=1

where Ay 1 > Ag2,..., > Ap . Akey result from [2] is that if
the source signal is unimodal, then the singular vectors (uy, 1
and vy, 1) associated with the dominant singular value are also
unimodal. Thus, we approximate the signal matrix for source &k
as,
H(k) ~ A.k71uk71v;€r717 k= 1, ey K.
With our approximation in hand, the composite energy field

is the superposition of the matrices of the K sources, which can
be written as:

K K K N
e k) __ T T
H = E H® = E Ak,luk,lvk’l + E E )»Muk,ivk’i
k=1 k=1 k=1 1:=2

=5+U,
where the second double sum is due to contributions of the non-
dominant singular values and H ~ S. The first term is referred
to as the structured component, comprised of the sum of K

rank-one matrices due to the dominant singular values, and U is
the unstructured component.
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Fig. 1. (a) Partially observed energy field with four sources; (b) QQ-plot:
635(2)/6%(Z) against quantiles of N'(1, (c + 2)/(2cL)); the parameter val-
ues are ¢ = 20, L = 150.

We assume access to a limited number of measurements at a
subset of all possible locations. The partially observed matrix
M is then given by,

S@j + €i,j V(Z,j) S Q,
Mii=10 (i, 5) ¢ Q
(1,5) &,

where €2 is the set of observation locations, and ¢ is the mea-
surement error on the (7, j)th observation which encapsulates
both measurement noise as well as the contributions due to the
unstructured components. Our goal is to identify the number of
sources, K, given the partially observed matrix M. In Fig. 1(a),
we see examples of unimodal energy fields with four sources.

ey

III. METHODS

In this section, we propose two methods to identify the number
of sources. As shown above, the rank of S is closely related
to the number of sources. The rank of S is precisely equal to
the number of sources if the unimodal property holds, and no
rank-degeneracy is induced due to the summing of the contri-
butions of the multiple sources, such as co-linearity. Therefore,
determining the number of sources can be posed as finding a
low-rank representation of M.

Our first method exploits the idea of rotation as proposed in [2]
to mitigate the possibility of rank-degeneracy and thus improve
performance. In the second strategy, we develop a heuristic
method that considers multiple rotations and computes a statistic
based on summing the dominant singular values obtained from
each rotation.

A. Method I: Variance-Ratio Statistics With Optimal Rotation

Herein, we adapt our prior statistical analysis in [6] to the
signal model herein Equation (1). Let M, S € R™**"2 and r* =
rank(S). We assume ¢; ; S N(0,0?), V(i,j) € Q.

In practice, the variance of the noise is often unknown and
needs to be estimated. In [7], a method to estimate the o2 and
determine the rank heuristically is proposed. In contrast, here,
we propose a statistic that does not depend on the scale of o2 and
derive the asymptotic distribution. Therefore, we can provide a
statistical hypothesis test for the rank.

To construct the statistic, we sub-sample from {2 to create a
sequence of observations sets, such that Q = Qg D Q; D -+ D
Qr and || — |Q-1] = ¢, V1 <1 < L, where L is the number
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of times we sub-sample the observations and c is the number of
observations we “leave-out” between two consecutive sets.

Let SSE; denote the the sum of squared errors of the matrix
completion solution at rank-r:

SSE; = S (M - Yiy)? 2)

Y:rank(Y)=r 4%
(3,5)€
According to Proposition IV.3 in [6], if r = 77, as o2 =0,

Z E;_1 — SSE
Zi _SSB ZSSEL iy vi<i< L

o2 o2
Let
AQ(Z) Zf:l Zl (3)
o1 o cL '
and

2¢cL

where Z = (Zy,...,Z1)and Z = (Zle Z,)/ L. Here, we es-
sentially use the method of moments to estimate the o2 the first
sample moment in Equation (3) for 6% and the second sample
moment in Equation (4) for &%.

From the law of large numbers, &f — 02 and &% — 02, as
L — oo. Moreover, we have the following theorem:

Theorem 1 (Asymptotic distribution of variance-ratio test
statistic): Suppose Z1, ..., Zy, are i.i.d. random variables, and
Z1/a* ~ x?(c). Then, 62 and 63 defined in (3) and (4), respec-
tively, satisfy

cL (63(Z) d c+2
V7 (g ) v (05,
as L — co. % denotes convergence in distribution.

The experiments in this paper and those in [7] show that
the asymptotic result provides good performance under fi-
nite sample application. To illustrate the approximation of
Theorem 1, we show an example in Fig. 1(b). In the QQ-plot, we
can see the sample quantiles and target quantiles are very close.
To statistically validate the approximation quality, we perform
KS-test [8] and Anderson-Darling test [9]. In this example,
KS-test and Anderson-Darling test accept that the sample and
the target distribution are the same with significance levels 0.05
and 0.005, respectively.

Since the parameters of sub-sampling, ¢ and L, which are
defined above Equation (2), are known in practice, we can
control the type-I error with the threshold determined by The-
orem 1. From our numerical results, we observe that when the
matrix approximation problem in Equation (2) is solved with
the estimated rank smaller than the true rank, we tend to have
&2 > 62. When the estimated rank 7 is larger than the true rank
7*, the proposed statistics 62 /6% tends to be close to 1 with
larger variance than the statistics computed with the true rank.
More discussion can be found in section IV-A. This observation
suggests a rank-estimation strategy as shown in Algorithm 1:
for each assumed rank r, we form the statistics and select the
smallest r such that the statistic fails to reject the null hypothesis.

In the experiments, we used singular-value-thresholding algo-
rithms [10]. However, the results are independent of the choice

of the algorithm as long as it provides a good approximation
for (2).
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Algorithm 1: Rank Detection with Variance-Ratio.
Input: M, Q, ryax, ¢, L, b.
7,7 =0;
while r + 1 < rp. do
r=r-4+1;
compute 62 and 63 as in eq. (2), (3) and (4);
if 63/67 < b then
F=r;
exit while;
end
end
Result: 7

1) Relative Efficiency: Notice that 6%(Z) and 63(Z) are
dependent. One can construct two independent estimates by per-
forming more sub-sampling, i.e. 2 =Qp D Q; D -+ D Qar.
Let Z 1.1, denote the first half of (Z1,...,Z>1) and Z 1 11.01
denote the second half. Then 6%(Z1.;) and 63(Z 1 41.01) are
independent. The following proposition shows that our proposed
variance-ratio statistic 63(Z1.1)/63(Z1.) is asymptotically
more efficient than 63(Z 14 1.21.)/67(Z1.1,), i.e. the asymptotic
variance of our proposed statistic is smaller.

Proposition 2 (Alternative variance-ratio statistic): Suppose

Z = (Z1,...,7)and X = (Xq,...,X), where Z; and X;
are 7.7.d. random variables, and

Zy a4 X1

o2 = o) XQ(C),

Ef% and 67% are constructed as in (3) and (4), respectively. Then
as L — oo, we have

(338 x(0722)

Comparing Theorem 1 with Proposition 2, we can con-
clude that 63(Z)/63(Z) is asymptotically more efficient than
63(Z)/62(X). In practice, we only have a limited number
of observations and can not sub-sample many times. With
Theorem 1 and Proposition 2, we have shown that we can con-
struct a better statistic, with fewer samples, and attain improved
performance by exploiting the dependence of the statistics in the
numerator and estimator of our test.

2) Optimal Rotation: To achieve a better result in practice,
we incorporate a rotation step before applying Algorithm 1.
In [2], it is observed that colinearity of sources can lead to
rank degeneracy, and thus the number of sources may be larger
than the rank of S. It was further shown in [2], that rotations
can mitigate this issue and improve performance. Thus, herein
we consider multiple rotations of various degrees, and E is a
permutation matrix if and only if each row and column contains
a single non-zero component of value one. Rotating a matrix
A € RN*N with degree # can be achieved in the following way:
A(0) = vec™t(Epvec(A)), where vec(A) is the vectorization of
A which stack columns of A in a vector, vec™! is the inverse
function of vec, and Ey € RN**N? is the permutation matrix
corresponding the degree 6.

As stated previously, to avoid rank-degeneracy when applying
the statistic in Theorem 1, we need to look for a rotation such that
most of the sources are not co-linear. We employ the following
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Fig. 2.  Left: Rotation with degree 0,p¢. Right: Rotation with degree O ax.
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Fig. 3. Sum of first 20 singular values of 100 rotation degrees. Left: K = 3.
Right: K = 4.

Algorithm 2: Rank Detection with Averaging Rotations.
Input: M, Q, n, D, b, rotation degrees (01, ...,0p).
while i < D do

rotation M with 60; degree;
complete M with nuclear-norm minimization;
compute first n singular values: A; 1, Ai2,..., A n;

i=1+1
>b}

end

. . S T A
Result: 7 = min {T e
7L1| Z,’—| Aji

strategy as suggested in [2] to determine the optimal rotation,
A(H(0))
Saly M (H(9))

Numerical results suggest that the optimal rotation achieves
the goal of avoiding rank degeneracy with high probability; fur-
thermore, the use of 6, further improves the performance of our
detector (see Theorem 1). As a validating example, we examine
the effect of rotatint the partially observed matrix by 0,p¢ in
Equation (5), the optimal degree. Define 6,,,, = arg max,p(6).
Fig. 2 shows the matrix after rotation with degree 0, and pax,
respectively. We can see rotation with 6, avoids the alignment
of the sources; whereas rotating with 6, actually aligns the
sources leading to rank degeneracy.

)

Oopt = arg min

B. Method II: Averaging Effects of Rotations

Here, we introduce a heuristic approach that can be applied in
general. Instead of looking for an optimal rotation, we can rotate
the matrix with multiple different degrees. For each rotation,
matrix completion via nuclear norm minimization is conducted
and the first few dominant singular values are computed. The
resultant singular values are averaged over the multiple rotations.
This averaging reduces the effect of degeneracy by reducing the
effects of “bad degrees”. Fig. 3 shows the result for 100 rotation
degrees. We clearly see that that there are K dominant singular
values for K sources, where K = 3, 4 respectively.
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Fig.4. A low-rank matrix with r* = 3: Solid lines: empirical density estima-
tion at each rank with 200 experiments. Dash line: probability density function
of A'(1,0.005), which is the asymptotic approximation by Theorem 1. Clearly,
it is a good fit when we compute our proposed statistics with the true rank.

IV. EXPERIMENTS

A. Theory Validation for Exact Low Rank Matrix

In this experiment, we show the distribution of our proposed
statistics, when the data comes from the low rank matrix model
in[7],ie. M; ; =Y, ; + ¢, Y(i,j) € Qand Y is a low rank
matrix. We performed 200 experiments. In each experiment, a
rank-3 matrix Y € R190%100 jg oenerated and € is uniformly
randomly chosen, s.t. |2 = 7500. ¢; ; ~ AN(0,1). Then, we
compute the proposed statistics, under the assumption that the
rank varies from to 1,...,4, with ¢ =30 and L = 100. In
Fig. 4, we show the empirical density estimates of our proposed
statistics for each rank. When r = 3, which is the actual rank,
by Theorem 1, our proposed statistics can be approximated by
a normal random variable with mean 1, and variance equal
to 0.005. Fig. 4 shows a good fit for the empirical density
corresponding to the true rank. For the rank less than the true
rank, the density is well separated from the density with true
rank. However, when the rank is larger than the true rank, it
is not. Therefore, by choosing the smallest rank such that the
p-value of proposed statistic is larger than some threshold, we
can find the true rank with high probability.

B. Determining Number of Sources in Energy Field

We next examine the efficacy of our method for detecting the
number of sources via the confusion matrix and the Fj score.
Given multiple classes, we use the average Fj score in [11],
which is defined as follows:

S Sii 1 2 2P R;

S ~ DO - Lrith
Zi:l Six o Zi:l Sai o 2 i=2 P+ R; ,
where ¢ is the estimated number of sources, j is the true value
and s;; denotes the number of occurences wherein the method
estimates j sources given ¢. We consider both isotropic and skew
energy sources.

e Jsotropic sources: For isotropic sources, the sampled
energy is purely range-dependent and thus independent
of the rotation of the coordinator. In this experiment,
we generate the energy field as the following. afsp =

P, =
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Fig.5. Skewed energy source modeled by bivariate skew-normal distribution.
Left: 67 = 02 = 0.8, w = —0.5. Right: §; = 03 = 0.35, w = —0.25.

TABLE I
CONFUSION MATRICES OF DETECTION STATISTICS
isotropic sources skew sources
b 1 2 3 4 Iy b 1 2 3 4 Fy
2 0 192 0 0 0.98 0 192 6 1
! ‘3 225 10 193 0] osn | O 30 196 1]
2 0 200 0 0 0 200 0 0
‘ I ‘ 3 ‘ 0.8 0 0 5000 1.00 ‘ 0.82 0 0 2000 1.00 ‘
2 0 106 94 0 0 121 79 0
‘ I ‘ 3 ‘ 0.42 0 30 700 0.68 ‘ 0.575 0 71 1290 0.62 ‘

011 x f2/(1 + f?) + 44x f2/(4100 + f%) +
2.75 x 107% x f2 +0.003 with f = 5. a(x) = d(x)* x
10~afas/10xd()  P(x) = p/(a(x) 4 1), where e = 3 and
p = 6. The field is square with diameter 15 km.

e Skew sources: To generate the energy field with skew
sources, we use the bivariate skew-normal distribution.
According to Section 3 of [12], §1, 02 and w are the param-
eters to control the skewness. Fig. 5 displays examples of
skew sources. In all experiments, d1, doand w are generated
uniformly from [—0.25, 0.25] for each energy source.

All the experiments are repeated 200 times each for the
number of sources K* = 2, 3. The standard variance of ambient
noise is 0.01. The number of sensors is 4500, and we map them
onto a matrix M € R190%100 Notice that with the mapping,
|Q2] < 4500. Our proposed methods are compared with a base-
line method.

® Method I: Variance-ratio statistic with optimal rotation. In
each experiment, we find the optimal rotation first, and then
apply Algorithm 1 with r.x =4, ¢ = 2 and L = 750.

® Method Il: Averaging effect of rotation. In each experiment,
we apply Algorithm 2 withn = 20, D = 20and 6; = (i —
Vn/(2D),Vi=1,...,20.

o Method Il (baseline): Zero filling. We apply singular value
decomposition to the observation matrix M in eq.(1) and
determine the number of source by thresholding the per-
centage of leading singular values, i.e., given threshold
b, the estimated number of source of baseline method,
fpr =min{r: S0 %/ S0 4 > b}

Results for isotropic and skew sources are provided in Table I.
For the isotropic sources, the methods I, II, and baseline thresh-
olds are 2.25, 0.8, and 0.42, respectively. For the skew sources,
the thresholds of the Methods I, II, and baseline are 1.57, 0.82,
and 0.575, respectively. For both types of energy sources, the
proposed methods outperform the baseline. Furthermore, the
use of the optimal rotation for isotropic sources also offers an
improvement over no rotation. The F score of it is shown in
parenthesis, and the detailed results are shown in Table II in the
appendix.
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