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Controlling Human Utilization of Failure-Prone
Systems via Taxes
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Abstract—We consider a game-theoretic model where individ-
uals compete over a shared failure-prone system or resource.
We investigate the effectiveness of a taxation mechanism in
controlling the utilization of the resource at the Nash equilibrium
when the decision-makers have behavioral risk preferences,
captured by prospect theory. We first observe that heterogeneous
prospect-theoretic risk preferences can lead to counter-intuitive
outcomes. In particular, for resources that exhibit network effects,
utilization can increase under taxation and there may not exist
a tax rate that achieves the socially optimal level of utilization.
We identify conditions under which utilization is monotone and
continuous, and then characterize the range of utilizations that
can be achieved by a suitable choice of tax rate. We further
show that resource utilization is higher when players are charged
differentiated tax rates compared to the case when all players
are charged an identical tax rate, under suitable assumptions.

Index Terms—Game theory, Network Effects, Common Pool
Resource, Cyber-Physical & Human Systems, Prospect Theory,
Taxation.

I. INTRODUCTION

Large-scale cyber-physical systems form the basis of much
of society’s critical infrastructure [2], and thus must be de-
signed to be resilient to failures and attacks in order to avoid
catastrophic social and economic consequences. While there
are a variety of angles to designing such systems to be more
resilient (including the design of secure control schemes [3],
[4], interconnection topologies [5], [6], and resilient commu-
nication mechanisms [7]), there is an increasing realization
that the resilience of these systems also depends crucially
on the humans that use them [8], [9]. Therefore, in order
to design more resilient socio-cyber-physical systems, it is
critical to understand (in a rigorous mathematical framework)
the decisions made by humans in decentralized and uncertain
environments, and to influence those decisions to obtain better
outcomes for the entire system [9]–[11].

In this paper, we investigate the impacts of human decision-
making on the resilience of a shared system in a game-
theoretic framework. Game theory has emerged as a natural
framework to investigate the impacts of decentralized decision-
making on the efficiency, security and robustness of large-scale
systems [9], [12]. When the utilities of the decision-makers or
players are uncertain (e.g., due to risk of system failure or
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cyber-attack), their risk preferences play a significant role in
shaping their behavior. With the exception of a few recent
papers, most of the existing theoretical literature involving
uncertainty models decision-makers as risk neutral (expecta-
tion maximizers) or risk averse (expected utility maximizers
with respect to a concave utility function). However, empirical
evidence has shown that the preferences of human decision-
makers systematically deviate from the preferences of a risk
neutral or risk averse decision-maker [13], [14]. Specifically,
humans compare outcomes with a reference utility level, and
exhibit different attitudes towards gains and losses. In their
Nobel-prize winning work, Kahneman and Tversky proposed
prospect theory [13] in order to capture these attitudes with
appropriately defined utility and probability weighting func-
tions.1 Prospect theory has been one of the most widely
accepted models of human decision-making, and has shown its
relevance in a broad range of disciplines [14]–[16], including
recent applications in engineering [17]–[21].

Motivated by the strong empirical and behavioral foun-
dations of prospect theory, we study how to control the
behavior of human decision-makers with prospect-theoretic
utilities in a game-theoretic setting. We consider a broad class
of games where users compete over a shared failure-prone
system. We use the term “resource” to refer to this shared
system to maintain consistency with related game-theoretic
models. Specifically, in our setting, a set of players split their
budget between a safe resource with a constant return and a
shared “common pool” resource (CPR). As total investment
or utilization by all players in the CPR increases, it becomes
more likely for the CPR to fail, in which case the players
do not receive any return from it. If the CPR does not fail,
then the players receive a return per unit investment according
to a rate of return function. Shared resources with increasing
rates of return exhibit so-called network effects [22]; examples
include online platforms for gaming, peer-to-peer file sharing
systems, and social networks.2 CPRs with decreasing rates
of return model congestion effects and describe engineered
systems such as transportation and communication networks
[25], [26] and natural resources such as fisheries [27]. We
consider CPRs with both network and congestion effects in
this work. In Section III, we further discuss how this general
model captures the externalities present in several applications.

1The probability weighting function captures the transformation of true
probabilities into perceived probabilities by humans. We do not consider the
impact of probability weighting in this work.

2However, there are instances where authorities have shut down large online
platforms that encourage illegal activities [23], [24]. This is captured by
resource failure in our setting.

Authorized licensed use limited to: Purdue University. Downloaded on July 14,2021 at 03:06:59 UTC from IEEE Xplore.  Restrictions apply. 



0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.3042481, IEEE
Transactions on Automatic Control

2

A. Contributions

We study a tax mechanism where each player is charged
a tax amount proportional to her investment in the CPR. A
central authority chooses the tax rate to control the utilization
of the shared resource. Analysis of this taxation scheme is
quite challenging under prospect-theoretic preferences. Build-
ing upon the analysis in [28] (where we analyzed users’
equilibrium strategies in the absence of taxation), we first show
that the game admits a unique pure Nash equilibrium (PNE).
We refer to the total investment in the CPR at a PNE as its
utilization, and the failure probability as its fragility.

In particular, our focus on resource utilization is driven by
the fact that it is an important metric relevant in many applica-
tions; e.g., the total traffic on a highway gives an indication of
the level of congestion and throughput. Furthermore, in failure-
prone systems, fragility also depends on the utilization rather
than utility. In contrast with the total utility of all users, which
is often used as a metric to capture the effects of decentralized
decision-making [25], utilization is agnostic to the behavioral
risk preferences of the users. Thus, our primary goal is to
identify conditions under which:

1) there exists a tax rate that achieves a desired (e.g.,
socially optimal) level of CPR utilization, and

2) there exists an optimal tax rate that maximizes a con-
tinuous function of the tax rate and utilization (such as
the revenue).

In order to answer these questions, we provide conditions
under which utilization is monotone and continuous in the
tax rate. It is perhaps natural to expect that a higher tax rate
will reduce the utilization in a continuous manner. However,
for CPRs that exhibit network effects, we find that behavioral
risk preferences can sometimes cause utilization (and fragility)
to increase with a higher tax rate. Furthermore, we illustrate
that utilization can be discontinuous as the tax rate increases,
both as a consequence of the shape of the utility function,
and under heterogeneous prospect-theoretic preferences. We
(separately) identify (i) conditions on the CPR characteristics
and prospect-theoretic parameters under which utilization de-
creases monotonically with tax rate, and (ii) the range of tax
rates over which the utilization varies continuously.

In contrast to CPRs that exhibit network effects, we show
that for CPRs that exhibit congestion effects, utilization is
continuous and monotonically decreasing in the tax rate under
general prospect-theoretic preferences of the players. Building
upon these insights, we then identify the range of utilization
that can be achieved via our taxation scheme.

Finally we show that imposing different tax rates on a
set of homogeneous loss averse players leads to a higher
utilization than imposing a uniform tax rate (equal to the mean
of the heterogeneous tax rates). In addition, when players
have different sensitivities to taxes, imposing discriminatory
taxes inversely proportional to the tax sensitivity parameters
minimizes the utilization.

B. Related work

Within the game-theoretic framework, controlling resource
utilization levels through economic incentives such as taxes

True Value (z)
-2 -1 0 1 2

Pe
rc

ei
ve

d 
Va

lu
e 

(u
(z

))

-3

-2

-1

0

1 k=0.75
k=1.5
k=2.25

Fig. 1: Prospect-theoretic utility function (1) with α = 0.5 and
reference point z0 = 0.

and rewards has been studied extensively [29]–[31]. In [29],
the authors study how a taxation scheme known as Pigovian
tax improves social welfare at a PNE in a CPR game.
The effect of player-specific tax sensitivities on the price of
anarchy were studied in [30], [32] in the context of nonatomic
congestion games. In contrast, our game formulation is an
instance of atomic splittable congestion games [33]. To the
best of our knowledge, there has been no investigation of the
impact of behavioral risk preferences on users’ strategies under
taxation in congestion or CPR games.

II. PROSPECT THEORY

As discussed in the previous section, our focus is on
behavioral preferences captured by the utility function of
prospect theory [13]. Specifically, consider a gamble that has
an outcome with value z ∈ R. A prospect-theoretic individual
perceives its utility in a skewed manner, via the function

u(z, z0) =

{
(z − z0)α, when z ≥ z0

−k(z0 − z)α otherwise,
(1)

where z0 is the reference point, α ∈ (0, 1] is the sensitivity
parameter and k ∈ (0,∞) is referred to as the loss aversion
index. Increase in utility with respect to the reference point
(z ≥ z0) is referred to as a gain and decrease in utility is
referred to as a loss (z < z0).

The parameter α shapes the utility function according to
observed behavior, i.e., the utility function is concave in
the domain of gains and convex in the domain of losses.
Accordingly, the decision maker is said to be “risk averse”
in gains and “risk seeking” in losses. As its name indicates,
the parameter k captures loss aversion behavior. Specifically,
when α = 1, a loss of $1 feels like a loss of $k to the player.
A value of k > 1 implies that the individual is loss averse,
while k < 1 implies that the individual is gain seeking. When
the reference point is an exogenous constant, the values k = 1
and α = 1 capture risk neutral behavior. A smaller α implies
greater deviation from risk neutral behavior. The shape of the
value function is shown for different values of k in Figure 1.

III. FRAGILE COMMON POOL RESOURCE GAME

We start by introducing the Fragile Common Pool Resource
game [28]. Let N = {1, 2, . . . , n} be the set of players. Each
player has an endowment or wealth equal to 1 which she
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must split between a safe resource and a shared common pool
resource (CPR). We define the strategy of a player i ∈ N
as her investment in the CPR, denoted by xi ∈ [0, 1]. The
total investment by all players in the CPR is denoted by
xT =

∑
i∈N xi. Following conventional notation, we denote

the profile of investments by all players other than i as
x−i ∈ [0, 1]n−1. Furthermore, let x̄−i =

∑n
j=1,j 6=i xj , be the

total investment of all players other than i.
Players receive returns on their investments from both re-

sources. The return per unit investment from the safe resource
is normalized to 1, i.e., player i investing 1 − xi in the safe
resource receives a return of 1−xi. The return from the CPR
is subject to risk, captured by a probability of failure p(xT ),
which is a function of the aggregate investment in the CPR. If
the CPR fails, players do not receive any return from it. If the
CPR does not fail, it has a per unit return that is a function
of the total investment xT , denoted by r̃(xT ). In other words,
player i gets xir̃(xT ) from the CPR when it does not fail.

The above formulation has been studied in many different
contexts as described below.

1) The above formulation was studied as common pool
resource games to model competition over failure-prone
shared resources such as fisheries [27], [34].

2) CPR games, without resource failure, are equivalent
to an instance of atomic splittable congestion games
(studied in the context of traffic routing [26], [33]) on a
network with two nodes and two parallel links joining
them. One link corresponds to the CPR described above
and the second has a constant delay of 1.

3) Fragile CPR games are related to the setting in [18],
where players are microgrid operators who decide the
fraction of energy to store for potentially selling at a
higher price in the event of an emergency.3 Both settings
are related if we define the investment of a player as the
fraction of stored energy, and p(xT ) as the probability
that the energy requirement during emergency is smaller
than the total stored energy (i.e., energy price does not
increase and the players incur losses).

4) In resource dilemma games [35], players bid for utilizing
a fraction of a shared resource with unknown size. If the
total demand exceeds the size of the resource, no player
receives any benefit. This model is potentially relevant
when a set of users compete over a shared energy storage
system [36]. This class of games is closely related to
Fragile CPR games where xi is the bid of player i, and
p(xT ) is the distribution of resource size.

In addition, two recent applications in the context of 5G
wireless networks [37], [38] and collaborative tasks [39] have
been modeled in the framework of Fragile CPR games. We
provide a brief discussion of those models in Section VII.

Given the breadth of applications where this formulation
arises, the goal of this paper is to understand to what extent
we can control the utilization (xT ) of the resource at the Nash
equilibrium by imposing taxes on players’ investments.

3While the authors of [18] model microgrid operators as prospect-theoretic
agents, the utilities are defined quite differently, and their objective is to study
the effects of variations in reference points.
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Fig. 2: Central authority sets a tax rate t to control human
utilization of a failure-prone common pool resource (CPR).

IV. PROSPECT-THEORETIC UTILITY AND PURE NASH
EQUILIBRIUM UNDER TAXATION

We first consider the case where a central authority imposes
a uniform tax rate t ≥ 0 per unit investment in the CPR on
the players. Figure 2 represents the schematic of our setting.

Under this taxation scheme, a player i with investment
xi ∈ [0, 1] in the CPR is charged txi as tax. We will
consider the implications of player-specific tax rates in Section
VI. Each player is prospect-theoretic, with a player-specific
loss aversion index ki ∈ (0,∞) and sensitivity parameter
αi ∈ (0, 1]. We define the reference utility of a player i as
her utility when she invests entirely in the safe resource, i.e.,
chooses xi = 0. Accordingly, the reference utility is 1 for
every player. Now consider a strategy profile {xj}j∈N with
total investment xT . In the event of CPR failure, each player
i with a nonzero xi experiences a loss −(1 + t)xi, which
comprises of the lost income from not investing xi in the
safe resource, and the tax payment. If the CPR succeeds, the
reference-dependent return is xi(r̃(xT )−1−t), which could be
positive (representing a gain) or negative (representing a loss)
depending on the values of t and xT . For ease of exposition,
we define r(xT ) := r̃(xT )− 1, and henceforth refer to r(xT )
as the rate of return function.

Using the prospect-theoretic utility function (1), player i’s
perception of gains and losses is

ui(xi,x−i) :=


x
αi
i [(max(r(xT )− t, 0))αi

−ki(−min(r(xT )− t, 0))αi ],w.p. 1− p(xT ),

−ki(1 + t)αix
αi
i ,w.p. p(xT ).

(2)
Player i maximizes the expected utility with respect to the
above utility function given by

E(ui(xi,x−i)) = xαi
i fi(xT , t), (3)

where

fi(xT , t) :=


(r(xT )− t)αi (1− p(xT ))− ki(1 + t)αip(xT ),

when r(xT )− t ≥ 0,

−ki [(t− r(xT ))αi (1− p(xT )) + (1 + t)αip(xT )] ,

otherwise.
(4)

We refer to fi(xT , t) as the effective rate of return of player i.
The shapes of fi(xT , t) for different parameters are shown in
Figure 4 in Appendix A. We denote this class of Fragile CPR
games as Γ(N , {ui}i∈N ). In this paper, we consider Fragile
CPR games under the following assumptions.

Assumption 1. The class of Fragile CPR games
Γ(N , {ui}i∈N ) has the following properties.
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1) The failure probability p(xT ) is convex, strictly increas-
ing and continuously differentiable for xT ∈ [0, 1) and
p(xT ) = 1 for xT ≥ 1.

2) The rate of return r(xT ) is concave, positive, strictly
monotonic and continuously differentiable.

3) Define

t̄ := sup{t ≥ 0|max
i∈N

max
xT∈[0,1]

fi(xT , t) > 0}. (5)

We assume that t̄ > 0, and the tax rate t ∈ [0, t̄).

These assumptions capture a fairly broad class of resources,
while retaining analytical tractability.

To explain the third point in Assumption 1, note from the
definition of t̄ that for any tax rate t ≥ t̄, the effective rate of
return is nonpositive for every player and every xT ∈ [0, 1].
Accordingly, all players invest 0 in the CPR at any PNE. On
the other hand, for t < t̄, there exist player(s) who make a
nonzero investment leading to nontrivial PNE investments.

Remark 1. The taxation scheme introduced here can be
viewed as a subsidy on the safe resource (which increases
the rate of return of the safe resource to 1+ t). The reference-
dependent utility under this subsidy is identical to (2). Such a
subsidy scheme was studied in [29] outside of the context of
behavioral decision-making.

We now establish the existence and uniqueness of PNE in
Fragile CPR games under taxes.

Proposition 1. Consider a Fragile CPR game with a fixed tax
rate t satisfying Assumption 1. Then there exists a unique joint
strategy profile {x∗i }i∈N which is a PNE.

The proof is analogous to the PNE characterization estab-
lished in [28]. The details are presented in Appendix A. The
proof of existence of a PNE is based on Brouwer’s fixed
point theorem, while the uniqueness result follows from certain
structural properties of the best response map.

At a given tax rate t, we denote the total investment in
the CPR at the corresponding PNE as xtNE, and refer to it
as the utilization (of the CPR). Furthermore, we refer to the
corresponding failure probability p(xtNE) as its fragility. With
a slight abuse of notation, we sometimes denote xtNE as a
function of t, i.e., we let xNE : [0, t̄)→ [0, 1] denote a function
such that xNE(t) := xtNE.

A. Social Welfare

As discussed in the introduction, one of the key motivations
behind this work is to identify conditions under which a
socially desired level of utilization can be achieved under
decentralized decision-making via taxation. In the game theory
literature [25], a metric that is often used to capture a socially
desired level of utilization is the resource utilization that
maximizes the sum of utilities of all players (also referred to
as the social welfare). Formally, the social welfare at a joint
strategy profile x ∈ [0, 1]n and a given tax rate t ∈ [0, t̄) is
defined as

Ψ(x, t) =
∑
i∈N

Eui(xi,x−i) =
∑
i∈N

xαi
i fi(xT , t), (6)

where ui is defined in (2). Due to the continuity of Ψ, there
always exists a social welfare maximizing set of investments.
The following result shows that the CPR utilization and
fragility are higher at the PNE compared to their counterparts
at a social welfare maximizing strategy profile.

Proposition 2. For t ∈ [0, t̄), let xtOPT be a joint investment
profile that maximizes Ψ(x, t). Then, the resulting total CPR
investment at the social optimum xtOPT satisfies xtOPT ≤ xtNE.

The result holds under general (heterogeneous) prospect-
theoretic preferences of the users. We refer to Appendix A for
the proof. In particular, we have x0

OPT ≤ x0
NE.

In the context of congestion games and CPR games, the
utilization that maximizes the social welfare in the absence of
taxation, i.e., x0

OPT, is often treated as a socially desired level of
utilization. Indeed, in the context of transportation networks,
this quantity represents the traffic flow that minimizes the total
congestion for all users. Existing literature, such as [30], [31],
[40], has primarily investigated the existence and computation
of taxes such that the utilization at the PNE under taxes equals
x0
OPT in the absence of resource failure and behavioral decision-

making. In the following section, we investigate this in Fragile
CPR games and under prospect-theoretic preferences.

V. MAIN RESULTS

Recall from the introduction that our goal is to characterize
the range of utilizations (including x0

OPT) that can be achieved
at the PNE by a suitable choice of tax rate. We provide this
characterization in this section.

A. CPRs with network effects

We first investigate CPRs with increasing rates of return.
Recall that online platforms such as peer-to-peer file sharing
systems are instances of CPRs that exhibit network effects.
Note from (3) that the utility of a player in a game with a tax
rate t is equivalent to that in a game without taxes, but with a
smaller rate of return function (r(xT )− t), and a larger index
of loss aversion ki(1 + t)αi . Therefore, intuition suggests that
an increase in tax rate would lead to smaller utilization and
fragility. However, the following example shows that imposing
a higher tax rate can lead to higher utilization and fragility (at
the PNE) under prospect theory and network effects.

Example 1. Consider a Fragile CPR game with n = 3
players. Let r(xT ) = 8xT + 5 and p(xT ) = xT . Let α = 0.15
and k = 1.2 for all players, i.e., all players are loss averse,
and the deviation from risk neutral behavior (α = 1 and
k = 1) is significant. As shown in Figure 3a, when t increases
from 0 to 4.9, the fragility is not monotonically decreasing.
Since p(xT ) = xT , fragility equals utilization in this case.

Remark 2. In the above and subsequent examples, we com-
pute the PNE strategy profile via sequential best response
dynamics, which as argued in [28], converges to the PNE in
this class of games. After convergence, we also verified that the
strategy profiles satisfy the necessary optimality conditions.

Recall from Figure 1 that α < 1 gives rise to risk seeking
behavior in losses and risk averse behavior in gains. When

Authorized licensed use limited to: Purdue University. Downloaded on July 14,2021 at 03:06:59 UTC from IEEE Xplore.  Restrictions apply. 



0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.3042481, IEEE
Transactions on Automatic Control

5

0 1 2 3 4 5
Tax Rate (t)

0.15

0.155

0.16

0.165

0.17

0.175

R
es

ou
rc

e 
Fr

ag
ilit

y 
(p

(X
t N

E))

(a) In Example 1, fragility is not monotone
w.r.t. the tax rate (k = 1.2 and α = 0.15)

0 1 2 3 4
Tax Rate (t)

-0.2

0

0.2

0.4

0.6

0.8

U
til

iz
at

io
n 

(x
t N

E)

xt
NE when n=8

xt
NE when n=2

x0
OPT

(b) In Example 2, utilization is not continuous
in the tax rate. There does not exist a tax rate
which achieves the socially optimal level of
utilization.

0 1 2 3
Tax Rate (t)

0

0.2

0.4

0.6

0.8

1

U
til

iz
at

io
n 

(x
t N

E)

xt
1,NE

xt
2,NE

xt
NE

(c) In Example 3, there are two points of dis-
continuity due to players with heterogeneous
preferences.

Fig. 3: Illustration of lack of monotonicity and continuity of utilization and fragility in the tax rate under network effects.

the value of α is close to 0, the modified loss aversion index
k(1+ t)α does not increase by much at a higher tax rate. This
encourages players to increase their investment into the CPR.
Such behavior is not limited to the case when α is very small.
In the conference version of this paper [1], we showed that a
higher tax rate can lead to higher utilization when α = 1 and
k < 1. In both instances, players increase their investments to
receive a higher return from the CPR and compensate for the
tax payment (at the cost of increased risk of resource failure).

In addition to the general lack of monotonicity, we now
illustrate that utilization can be discontinuous in the tax rate.

Example 2. Consider a Fragile CPR game with p(xT ) =
0.2+0.8x4

T , and r(xT ) = 3xT +1. We consider homogeneous
players with α = 1, k = 0.05. As shown in Figure 3b for n =
2, xtNE increases continuously as t increases until t̄ = 3.21,
and then drops to 0. On the other hand, when n = 8, xtNE is
decreasing in t, and once again, has a discontinuous jump at t̄.
The socially optimal utilization x0

OPT = 0.7351 is not achieved
at any tax rate as shown in the figure.

In the above example, players were homogeneous with k <
1. Note that xtNE remained continuous for t ∈ [0, t̄), but there
did not exist a tax rate that could achieve the socially optimal
level of utilization at a PNE. We now show that heterogeneity
in prospect-theoretic preferences can induce discontinuity at
tax rates smaller than t̄.

Example 3. Consider a Fragile CPR game with p(xT ) =
0.2+0.8x4

T and r(xT ) = 3xT +1, as before. Let there be two
players, with prospect-theoretic parameters α1 = 1, k1 = 1.1
and α2 = 0.3, k2 = 1.5. In this case, t̄ = 2.19. Figure 3c
shows that for t < 1.583, player 1 has a larger investment
than player 2. As t becomes slightly larger than 1.583, the
investment by player 1 drops to 0, while player 2 increases her
investment. However, the total investment has a discontinuous
jump from 0.5612 to 0.4667. As t increases from 1.583 to
2.19, the investment by player 2 increases continuously, and
at t = 2.19, her investment drops to 0.

Motivated by the above observations, we now identify
conditions under which xtNE is monotone and continuous in
t. We first introduce some notation. Let at = 0 if r(0) ≥ t;

otherwise, let at ∈ [0, 1) be the unique investment such that
r(at) = t.4 For t ∈ [0, t̄), xT ∈ (at, 1], let

qi(xT , t) :=
r′(xT )(1− p(xT ))2

(r(xT ) + 1)p′(xT )− αir′(xT )(1− p(xT ))p(xT )

×
(

1 + t

r(xT )− t

)1−αi

. (7)

We show that if the index of loss aversion is larger than
qi(xT , t) for every player i at suitable values of xT and t
identified below, then utilization is monotone in t.

In addition, let t̄i := sup{t ≥ 0|maxxT∈[at,1] fi(xT , t) >
0}, i.e., t̄i is the highest tax rate such that player i makes a
nonzero investment in the CPR when investing in isolation.
Recall from Appendix A that zti := argmaxxT∈[at,1] fi(xT , t)
is defined as the unique maximizer of fi(xT , t) under network
effects. We now state the following main result.

Theorem 1. Consider a Fragile CPR game satisfying Assump-
tion 1 with an increasing r(xT ) and player-specific prospect-
theoretic preferences.

1) Let 0 ≤ t2 < t1 < t̄ with xNE(t2) > at1 . Suppose ki >
qi(xNE(t2), t1) > 0 for every player i. Then, xNE(t1) ≤
xNE(t2).

2) xNE(t) is continuous in t for t ∈ [0,mini∈N t̄i).
3) For all continuous functions w(xNE(t), t) and constants

δ ∈ (0,mini∈N t̄i), there exists a t∗ ∈ [0,mini∈N t̄i−δ]
that maximizes w(xNE(t), t) over [0,mini∈N t̄i − δ].

4) Let j ∈ argmini∈N t̄i, and let x̄j := limt↑t̄j z
t
j . If

xNE(0) > x̄j (respectively, xNE(0) < x̄j), then for any
given level of utilization x∗ ∈ (x̄j , xNE(0)] (respectively,
x∗ ∈ [xNE(0), x̄j)) there exists a tax rate t such that
x∗ = xNE(t).

5) If x̄j < x0
OPT, then there exists a tax rate t∗ such that

xNE(t
∗) = x0

OPT.

The proof is presented in Appendix B. We now describe
several implications of the above result. The first statement is
a condition that we can check to ensure that a higher tax rate
will lead to smaller utilization. Furthermore, when all players

4Since t < t̄, there exists a player i such that maxxT∈[0,1] fi(xT , t) > 0.
Therefore, we must have r(1) ≥ t.
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have identical α, we only need to check the condition for the
player with the smallest loss aversion index.5

The second statement guarantees that utilization remains
continuous over a subset of tax rates for which utilization
is nonzero. When all players have identical α, the player
with the largest loss aversion index has the smallest t̄i. When
all players have identical α and k, t̄i is identical for every
player, and thus t̄ = mini∈N t̄i. Thus, the conclusions of
the above result holds over the entire range of tax rates over
which PNE utilization is nonzero as is the case in Example
2. In contrast, in Example 3, the players had heterogeneous
preferences with t̄1 = 1.583, while t̄2 = 2.19. As shown
in Figure 3c, utilization is continuous for t ∈ [0, 1.583) in
accordance with the above result, and has a discontinuous
jump at t = 1.583.

Finally, let all players have homogeneous preferences with
α = 1 and k ≥ 1. Recall that in this case, the prospect-
theoretic utility (1) is either linear or piecewise concave, and
reflects risk neutral or risk averse preferences. We have the
following corollary whose proof is stated in Appendix B.

Corollary 1. Let all players have α = 1 and k ∈ [1,∞). Let
0 ≤ t2 < t1 < t̄. Then, xNE(t1) ≤ xNE(t2). Furthermore, there
exists a tax rate t∗ such that xNE(t∗) = x0

OPT.

Thus, it follows that the lack of monotonicity observed
earlier is a consequence of prospect-theoretic risk preferences.

B. CPRs with congestion effects

The counterpart of Theorem 1 is stronger for CPRs with
congestion effects. In contrast with the observations in the
above subsection, for resources with a decreasing r(xT ), we
show here that an increase in tax rate always leads to smaller
utilization of the CPR. Furthermore, the total investment at
the PNE is continuous in t for t ∈ [0, t̄], i.e., the entire range
of tax rates with nonzero utilization. The results hold when
ki ∈ (0,∞) and αi ∈ (0, 1] are player-specific.

Theorem 2. Consider a Fragile CPR game satisfying Assump-
tion 1 with a decreasing r(xT ) and player-specific prospect-
theoretic preferences.

1) Let 0 ≤ t2 < t1 < t̄. Then, xNE(t1) ≤ xNE(t2).
2) The function xNE(t) is continuous in t for t ∈ [0, t̄].
3) For all continuous functions w(xNE(t), t), there exists

a tax rate t∗ ∈ [0, t̄] that maximizes w(xNE(t), t) over
[0, t̄].

4) For any given level of utilization x∗ ∈ [0, x0
NE], there

exists a tax rate t ∈ [0, t̄] such that x∗ = xNE(t). Specifi-
cally, there exists a tax rate t∗ such that x0

OPT = xNE(t
∗).

In addition, for any x∗ > x0
NE, there does not exist a

positive tax rate that achieves it.

In other words, any desired utilization x∗ ∈ [0, x0
NE] can be

achieved by an appropriate choice of tax rate. We present the
formal proof in Appendix C.

Our discussion thus far assumes that the central authority
imposes an identical tax rate t on every player. In the following

5In [28], we showed that when players have identical α, the player with
the smallest loss aversion index always has the largest investment at the PNE.

section, we compare the utilization when the central authority
imposes different tax rates on different players with the
utilization under a uniform tax rate for all players.

VI. UNIFORM VERSUS DIFFERENTIATED TAX RATES

In order to isolate the effects of differentiated tax rates, we
assume that all players have identical loss aversion indices
k ∈ (1,∞) and α = 1. Let γi ∈ [0, 1] be the tax sensitivity of
player i, and let t̂i ≥ 0 be the tax rate imposed on player i by
the central authority. The tax sensitivity is an inherent property
of the players: a player i with sensitivity γi perceives the tax
rate t̂i imposed on her as γit̂i. We define ti := γit̂i as the
effective tax rate experienced by player i. The expected utility
only depends on the effective tax rate ti as shown below.

Let Sti ⊆ [0, 1] be the interval such that r(xT ) − ti ≥ 0
for xT ∈ Sti . Following equation (3), the expected utility of
player i at a strategy profile with xT ∈ Sti is

E(ui(xi,x−i)) = xi(r(xT )− γit̂i)(1− p(xT ))

− k(1 + γit̂i)xip(xT )

= xifi(xT , t) =: xi[f̂(xT )− tiv(xT )], (8)

where f̂(xT ) := r(xT )(1 − p(xT )) − kp(xT ), and v(xT ) :=
1 + (k − 1)p(xT ) for xT ∈ [0, 1].

Impacts of tax sensitivities on price of anarchy in congestion
games were studied recently in [30], outside of the context
of behavioral risk attitudes. Under prospect theory, player-
specific tax sensitivities can arise when players have different
reference utilities. In particular, the utility in (8) arises if the
reference utility of player i is 1 − (1 − γi)t̂ixi. In this case,
player i perceives her tax payment as part of her reference
utility as opposed to treating it entirely as a loss. If γi = 0,
the tax payment is included in the reference utility, and
consequently, the results are same as the case without taxation.

Remark 3. Our results on PNE existence and uniqueness rely
on the uniqueness, continuity and monotonicity properties of
the best response. These properties remain unchanged with a
linear scaling of the tax rate, and accordingly a PNE exists
and is unique when the utilities are defined as in (8).

Before we compare the PNE utilization of the CPR under
uniform and player-specific tax rates, we first identify con-
ditions for the existence of a uniform tax rate such that the
PNE utilization under taxation is equal to the utilization at
the social welfare maximizing solution under player-specific
tax sensitivities. The following result is analogous to the prior
results (Proposition 2, Theorem 1 and Theorem 2) which did
not consider tax sensitivities.

Proposition 3. Consider a Fragile CPR game satisfying
Assumption 1 with α = 1 and k > 1 for all players, player-
specific tax sensitivity γi ∈ [0, 1], and a uniform tax rate t ∈
[0, t̄) where t̄ = sup{t ≥ 0|maxi∈N maxx∈[0,1] fi(x, t) > 0}
with fi defined in (8). Then,

1) at a given t ∈ [0, t̄), we have xOPT(t) ≤ xNE(t), and
2) for 0 ≤ t2 < t1 < t̄, xNE(t1) < xNE(t2).

Furthermore,
1) when r(xT ) is increasing, xNE(t) is continuous in t

for t ∈ [0, t∗) where t∗ := mini∈N t̄i, t̄i = sup{t ≥
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0|maxx∈[0,1] fi(x, t) > 0}, and if xOPT(0) > xNE(t
∗)

then there exists a tax rate such that utilization at the
NE is equal to xOPT(0), and

2) when r(xT ) is decreasing, xNE(t) is continuous in t for
t ∈ [0, t̄), and for any x∗ ∈ [0, xNE(0)], there exists a
tax rate t∗ such that x∗ = xNE(t

∗).

The proof is analogous to the proofs of Theorems 1 and 2,
and a sketch of the proof is presented in Appendix D.

We now establish that the PNE utilization is smaller when
the effective tax rate is identical for all players compared to
the utilization when the effective tax rates are heterogeneous,
provided that the mean effective tax rates are identical. Con-
sider the family Γm of Fragile CPR games with n players
each with α = 1 and k > 1, r(xT ) and p(xT ) satisfying
Assumption 1, and the mean of the effective tax rates being tm.
With a slight abuse of notation, we sometimes refer a player
with effective tax rate tm as player m. Let t̄m := sup{t ≥
0|maxxT∈Stm

fm(xT , t) > 0}. The following result holds for
both increasing and decreasing rate of return functions.

Proposition 4. Let tm ∈ [0, t̄m). Let ΓM ∈ Γm be the game
where the effective tax rate is tm for every player. Then, among
all games in Γm, CPR utilization is smallest in ΓM .

The main ideas behind the proof are analogous to the ideas
used in the proof of Theorem 5 in [28]. The proof is presented
in Appendix D. When the sensitivity parameters are known
to the central authority, then the following corollary states the
differentiated tax rates to be imposed on the players (subject to
a mean tax rate constraint) in order to minimize the utilization.

Corollary 2. Let Γ be a Fragile CPR game with n players
each with α = 1, k > 1, and satisfying Assumption 1. Let the
tax sensitivity of player i be denoted as γi with γi > 0. Then,
among all differentiated tax rates with a given mean tax rate
t̂m, the choice t̂i := nt̂m

γi

(∑n
i=1

1
γi

)−1
, i ∈ N minimizes the

utilization at the PNE.

The above result shows that when players are loss averse
(i.e., k > 1) with α = 1, then the central authority should
impose differentiated taxes inversely proportional to their
tax sensitivities in order to minimize the utilization of the
shared resource at the PNE. The proof is a straightforward
consequence of Proposition 4. In particular, when players have
identical sensitivity parameters, charging different tax rates to
different players leads to higher utilization and fragility of the
CPR. The analysis is significantly more involved when α < 1.
On the other hand, since the utilities are continuous in α, we
expect the above results to hold when α is close to 1.

The results thus far assume that the players are homoge-
neous vis-a-vis their loss aversion indices. Preliminary inves-
tigations show that imposing a higher tax rate on users with
smaller (or larger) loss aversion indices does not always lead
to a smaller level of resource utilization. Thus, a counterpart of
Corollary 2 does not hold when we consider heterogeneity in
loss aversion instead of tax sensitivity. Further investigations
on computing differentiated tax rates to minimize utilization
(or any other objective such as maximizing revenue) remain
open for future work (see the discussion below).

VII. DISCUSSIONS

A. Recent applications of Fragile CPR games

We note that a detailed illustration of the proposed taxation
scheme in an application is beyond the scope of this paper.
Nevertheless, we highlight two recent applications that have
been modeled in the framework of Fragile CPR games subse-
quent to the publication of our earlier works [1], [28].
• The authors in [37], [38] consider a 5G non-orthogonal

multiple access (NOMA) wireless network where users
split their transmission powers via the licensed band
(with a flat fee and guaranteed quality of service) and
an unlicensed band. The latter is a congestible resource
that can be used without restrictions, but is constrained,
and hence subject to overexploitation and collapse. The
authors model the competition between users in this set-
ting via a Fragile CPR game, and largely rely on the proof
techniques developed in our prior work [28] to show the
existence, uniqueness and convergence results pertaining
to the pure Nash equilibrium. Furthermore, [37] numer-
ically illustrates the performance of a quadratic pricing
scheme to control the utilization of the unlicensed band
modeled as the fragile resource.

• In [39], the authors consider a setting where a group
of players collaborate to serve a set of consumers, and
to review their quality of service. Players choose their
rate of service and rate of review subject to constraints.
While the return from service tasks is proportional to the
service rate chosen by the player, the rate of return from
review tasks is an increasing function of the total review
rate chosen by all players. Furthermore, if the aggregate
review rate chosen by the players is high, it could lead to
insufficient service rates and possible delay in reviewing.
The authors model this interaction as a Fragile CPR game
with review tasks modeled as a CPR with an increasing
rate of return, characterize the pure Nash equilibrium,
and empirically analyze the price of anarchy.

Our findings on incentivizing users in Fragile CPR games
to control the utilization of the CPR are applicable in both the
above settings.

B. Perspectives on incentive design

As discussed in the introduction, our focus has been to
identify conditions under which there exists a tax rate that
achieves a desired level of utilization of the fragile CPR under
decentralized decision-making. An equally pertinent question
is how to compute taxes to achieve this desired level of
utilization in both cases when the parameters in the utility
functions of the players (such as αi or γi) are known and
when these parameters unknown/uncertain. This is a fairly
fundamental question for this class of games, and is beyond
the scope of this paper. We add the following discussion in
this regard and highlight some avenues for future research.

Our approach can be viewed in the framework of closed-
loop or inverse Stackelberg games studied in [41], [42]. In
this paradigm, the social planner is viewed as a leader who
announces a mapping that maps the actions of the agents
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into an incentive signal or tax, and the players are viewed as
followers who choose their actions to minimize their payment-
dependent cost functions. Similarly, in this paper, we consider
tax payments that are proportional to the investments of the
players (i.e., the mapping mentioned above is linear), and
the goal is to understand whether a given level of aggregate
utilization can be achieved at the equilibrium for this class of
taxation schemes. Nevertheless, with the exception of specific
choices of utility functions, there is no general theory (that we
know of) for computing those incentives both when the utility
functions (or parameters therein) of the players are known and
when they are unknown/uncertain [43].

To the best of our knowledge, the only exception is a recent
working paper [44] which assumed that the utility functions of
the players are given by a linear combination of a set of basis
functions with coefficients being the preferences of the players
that are not known to the social planner. In this case, they
showed that the social planner can choose a set of incentives,
observe the decisions made by the players, and adjust the
incentive signals such that the actions of the agents at the
equilibrium and the corresponding incentives coincide with
the values desired by the social planner. Nevertheless, there
are two important differences between the problem studied
in this paper and the setting in [44]. In our setting, (i) the
utilities of the players are not linear in the parameters, and
(ii) the social planner is primarily interested in the aggregate
level of utilization as opposed to the individual decisions of
the players. We envision that an adaptive taxation approach
inspired by [44] can be designed and shown to converge to
a desired level of utilization (provided that there exists a tax
rate that can achieve the desired level of utilization in the first
place, the conditions for which are derived in this paper).

Another potential approach would be to use feedback to
compute the tax rate as a function of the desired aggregate
outcome and the observed aggregate outcome. With a suitable
design of taxes, the “closed-loop system” would be such that
its equilibrium point would coincide with the Nash equilibrium
with utilization coinciding with the desired utilization. A
similar approach was studied in [45] in the context of dynamic
pricing in transportation systems, albeit for the case when there
is a single decision-maker, and in [46] for a class of congestion
games. Extending this approach to the class of games studied
here is a promising future research direction.

VIII. CONCLUSION

We investigated the effectiveness of a taxation mechanism
in controlling the utilization of a failure-prone shared resource
under prospect-theoretic risk preferences of users. We first
showed the existence and uniqueness of PNE in Fragile CPR
games under taxation. We then showed that for resources
that exhibit network effects, heterogeneous prospect-theoretic
utilities of the players can lead to increase in utilization and
fragility with higher tax rates, and the utilization at the Nash
equilibrium can be discontinuous in the tax rate. In contrast,
for resources with a decreasing rate of return or congestion
effects, utilization is always decreasing and continuous in the
tax rate. Building upon these insights, we identified the range

of utilization that can be achieved by a suitable choice of tax
rate for both classes of resources. Finally, we showed that
for homogeneous loss averse players, imposing differentiated
tax rates results in higher utilization compared to the case
where all players are charged an identical tax rate. Our
results highlight the nuances of controlling human behavior
under uncertainty, and provide compelling insights on how
to identify and control their utilization of shared systems via
economic incentives.
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APPENDIX A
CHARACTERIZATION OF PURE NASH EQUILIBRIUM AND

SOCIAL OPTIMUM

In this section, we first prove the existence and uniqueness
of a PNE in Fragile CPR games under taxation. We further
show that the total investment in the CPR at a social optimum
is at most that at the PNE. Specifically, we introduce several
useful notations and preliminary results that are essential for
subsequent analysis.

A. Existence and Uniqueness of PNE

We first describe the approach behind our analysis. We
define the best response correspondence of a player i as
Bi(x−i) := argmaxxi∈[0,1] Eui(xi,x−i), where Eui(·) is de-
fined in (3). Let B(x) := [B1(x−1), B2(x−2), . . . , Bn(x−n)].
We rely on the characterization that a joint strategy profile
x∗ = {x∗i }i∈N is a PNE if and only if it is a fixed point of
the best response map, i.e., x∗ ∈ B(x∗) [47]. We show that
a PNE exists by establishing the existence of a fixed point by
applying Brouwer’s fixed point theorem. For this purpose, it
is sufficient to show that Bi is single-valued and continuous
in x−i. The subsequent analysis follows in this direction.

We first introduce some relevant notation. Consider a Fragile
CPR game with a fixed tax rate t ∈ [0, t̄). Then, the PNE
(if one exists) has nonzero CPR investments, and the total
investment must be such that r(xT ) − t ≥ 0 (from (4), we
have fi(xT , t) ≥ 0 =⇒ r(xT ) − t ≥ 0). Accordingly, most
of our analysis will focus on the range of total investments
that lie within a subset St ⊆ [0, 1] such that r(xT ) − t ≥ 0
for xT ∈ St. When r(xT ) is strictly decreasing, we have
St := [0, bt], where

bt :=

{
1, if r(1) ≥ t,
r−1(t), if r(1) < t,

(9)

where r−1(t) = {y ∈ [0, 1]|r(y) = t}. On the other hand,
when r(xT ) is strictly increasing, we have St := [at, 1], where

at :=

{
0, if r(0) ≥ t,
r−1(t), if r(0) < t.

(10)

Note that for t ∈ [0, t̄), St is well defined and is nonempty.
We start with the following lemma. While the proof largely

follows from identical arguments as the proof of Lemma 1 in
[28] (where we considered Fragile CPR games without taxa-
tion), we present it here as the proof formally defines several
important quantities that are useful in the analysis throughout
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(a) Effective rate of return under r(xT ) =
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3xT + 1, p(xT ) = 0.2 + 0.8x4T , α = 1 and
k = 0.05. Here y0 = 0.9961, z0 = 0.6083,
y1.5 = 0.9845, z1.5 = 0.6952, y3.21 = 0,
and z3.21 = 0.85.
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at t = 1.583 under r(xT ) = 3xT + 1, and
p(xT ) = 0.2 + 0.8x4

T . Here f1(xT , t) ≤ 0
for all xT ∈ [0, 1], and yt1 = 0. Furthermore,
yt2 = 0.6663 and zt2 = 0.4476.

Fig. 4: Shapes of the effective rate of return function under different CPR characteristics, risk preferences, and tax rates. The
second argument t is suppressed.

the paper. Recall that x̄−i denotes the total investment by all
players other than i.

Lemma 1. Consider a Fragile CPR game with a fixed tax rate
t ∈ [0, t̄). Then, for any player i, the following are true.

1) There exists a unique yti ∈ [0, 1] such that if x̄−i ≥ yti ,
then B(x−i) = {0}. Furthermore, if 0 ∈ B(x−i), then
x̄−i ≥ yti .

2) When yti > 0, fi(yti , t) = 0, and there exists an interval
Iti ⊆ [0, yti) ⊂ St such that if x̄−i < yti , then each best
response bi ∈ Bi(x−i) (i) is positive, and (ii) satisfies
bi + x̄−i ∈ Iti .

3) For xT ∈ Iti , we have fi(xT , t) > 0 and fi,x(xT , t) :=
∂fi(xT ,t)
∂xT

< 0.

Proof: We first prove all three statements for CPRs with
decreasing r(xT ) in Case 1, and then consider CPRs with
increasing r(xT ) in Case 2.
Case 1: r(xT) is decreasing. From the definition of bt in
(9), we obtain fi(bt, t) < 0 in (4). Straightforward calculation
shows that fi(xT , t) is strictly decreasing in xT when xT ∈
[0, bt]. If fi(0, t) ≤ 0, we define yti = 0.

On the other hand, if fi(0, t) > 0, we define yti ∈ St as
the unique investment where fi(yti , t) = 0. If x̄−i ≥ yti , an
investment ε > 0 by player i will lead to fi(ε + x̄−i, t) < 0,
and consequently a negative utility. Therefore, Bi(x−i) = {0}
in this case. On the other hand, if x̄−i < yti , there exists δ > 0
such that δ+x̄−i < yti , and therefore, fi(δ+x̄−i, t) > 0. Thus,
the optimal CPR investment x∗i is nonzero and x∗i + x̄−i < yti .
Accordingly, we define Iti := [0, yti). Since fi(xT , t) is strictly
decreasing in xT in this case, we have fi(xT , t) > 0 and
fi,x(xT , t) < 0 for xT ∈ Iti .
Case 2: r(xT) is increasing. If fi(xT , t) ≤ 0 for xT ∈ [at, 1],
we define yti = 0, and Bi(x−i) := {0} for every x−i.

Now suppose there exists xT ∈ [at, 1] where fi(xT , t) > 0.
Straightforward calculation shows that fi(xT , t) is strictly
concave in xT when xT ∈ [at, 1]. Therefore, there ex-
ists a unique maximizer of fi(xT , t) given by zti :=
argmaxxT∈[at,1] fi(xT , t). Note that we must have zti < 1
since fi(1, t) < 0. From the strict concavity of fi, we have

fi,x(xT , t) := ∂fi(xT ,t)
∂xT

< 0 for xT > zti . Thus, there exists
a unique investment yti ∈ (zti , 1) such that fi(yti , t) = 0.
In this case, we define Iti := (zti , y

t
i). Since fi(xT , t) is

strictly concave in xT , and zti is its unique maximizer, we
have fi(xT , t) > 0, and fi,x(xT , t) < 0 for xT ∈ Iti .

Now suppose the total investment by players other than i
satisfies x̄−i ≥ yti . Then any xi > 0 would imply fi(xi +
x̄−i) < 0, and 0 is the unique best response. On the other hand,
if x̄−i < yti , there exists δ > 0 such that fi(δ+ x̄−i) > 0, and
thus, all best responses must be positive. Note that we must
necessarily have δ + x̄−i > at. Now suppose x∗i ∈ Bi(x−i).
Then it must necessarily satisfy the first order condition of
optimality ∂E(ui)

∂xi
= 0 for the utility in (3), leading to

x∗i fi,x(x∗i + x̄−i, t) + αifi(x
∗
i + x̄−i, t) = 0. (11)

Since fi(x∗i +x̄−i, t) > 0, we must have fi,x(x∗i +x̄−i, t) < 0,
and therefore, x∗i + x̄−i ∈ Iti .

Remark 4. Figure 4 illustrates the quantities introduced in
the above lemma; the subscript i is dropped for convenience.
Figure 4a shows that y0 = 0.8359 and y1 = 0.6166 for a
CPR with a decreasing rate of return. Note from the figure that
f(yt, t) = 0 in both cases. Figure 4b and 4c show the values
of yti and zti for a CPR with r(xT ) = 3xT + 1 and p(xT ) =
0.2 + 0.8x4

T for different tax rates and risk preferences. Note
from the figures that zti is the maximizer of fi(xT , t), and
fi(y

t
i , t) = 0. The kinks in the last two figures occur at the

respective at values.

We now build upon the above discussion, and introduce a
few other important quantities. For a player i, we define

gi(xT , t) :=
αifi(xT , t)

−fi,x(xT , t)
, xT ∈ St. (12)

It follows from the first order optimality condition in (11)
that a nonzero best response x∗i ∈ Bi(x−i) satisfies x∗i =
gi(x

∗
i + x̄−i, t). Note that gi(xT , t) is a natural extension of

the function g(xT ) defined in [28]. Accordingly, at a fixed tax
rate t, we have the following result on the monotonicity of the
function gi(xT , t) with respect to xT .

Lemma 2. For a fixed t > 0, ∂gi(xT ,t)
∂xT

< 0 for xT ∈ Iti .
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The proof is analogous to the proof of Lemma 4 in [28], and
thus we omit it. However, gi(xT , t) is not always decreasing
in t as we will explore later. As a consequence of the above
two lemmas, we have the following result.

Proof of Proposition 1. In Lemma 1, we showed that when
a player i has a nonzero best response, the total investment
in the CPR lies in the interval Iti . When xT ∈ St, the rate of
return function is monotone, concave and positive. Therefore,
the results on the uniqueness and continuity of best responses
from Lemma 2 and 3 in [28] carry over to the present setting
under taxation. As a consequence of Brouwer’s fixed point
theorem [47], there exists a fixed point x∗ ∈ B(x∗) which
corresponds to a PNE. The uniqueness of PNE follows the
monotonicity of nonzero best responses shown in Lemma 2;
its proof follows identical arguments as the proof of Theorem
1 in [28].

B. Utilization at a Social Optimum and the PNE

Proof of Proposition 2. Recall from Assumption 1
that t < t̄. Therefore, there exists a player k with
maxxT∈[0,1] fk(xT , t) > 0. As a result, Ψ(xtOPT, t) > 0. In
the rest of the proof, we omit the superscript t and the second
argument from f and Ψ for better readability.

Now, assume on the contrary that xOPT > xNE. Then there
exists a player i with respective CPR investments satisfying
xi,OPT > xi,NE > 0.

First we claim that fi(xOPT) > 0. Suppose otherwise,
and let j be a different player with fj(xOPT) > 0.6 Let
ε ∈ [0, xi,OPT), and consider a different strategy profile
x̂OPT = (x1,OPT, . . . , xi,OPT − ε, . . . , xj,OPT + ε, . . . , xn,OPT) with
total utilization xOPT. Then

(xi,OPT)
αifi(xOPT) + (xj,OPT)

αjfj(xOPT)

< (xi,OPT − ε)αifi(xOPT) + (xj,OPT + ε)αjfj(xOPT)

=⇒ Ψ(xOPT) < Ψ(x̂OPT),

since fi(xOPT) ≤ 0 and fj(xOPT) > 0. This contradicts the
optimality of xOPT. Thus, we must have fi(xOPT) > 0.

Since xOPT > xNE and fi(xOPT) > 0, xOPT ∈ Ii, where
Ii is the interval defined in Lemma 1. From the first order
optimality condition for player i at the PNE (11), we obtain

xi,NEfi,x(xNE) + αifi(xNE) = 0

=⇒ xi,OPT > xi,NE =
αifi(xNE)

−fi,x(xNE)
>

αifi(xOPT)

−fi,x(xOPT)

=⇒ αifi(xOPT) + xi,OPTfi,x(xOPT) < 0,

where fi,x(xT ) = ∂fi
∂xT

(xT ), and the second inequality in the
second line follows from Lemma 2.

We now show that for every player j other than i,
x
αj

j,OPTfj,x(xOPT) ≤ 0. For decreasing rate of return functions,
this is true since fj(·) is strictly decreasing in the total
investment. On the other hand, for increasing rate of return
functions, we have the following two cases.

Case 1: maxxT∈[0,1] fj(xT ) > 0. Following the discussion
in Lemma 1, we have xNE > zj in this case. Therefore,

6Note that such a player always exists; otherwise we have fj(xOPT) ≤ 0
for every player j, which implies Ψ(xOPT) ≤ 0.

fj,x(xNE) < 0. Furthermore, fj(·) is concave (following
Lemma 1), and xOPT > xNE, which implies fj,x(xOPT) < 0.

Case 2: maxxT∈[0,1] fj(xT ) ≤ 0. Following identical argu-
ments as the second paragraph of the proof, we have xj,OPT = 0
in this case.

We are now ready to complete the proof. From the first
order optimality condition for the social optimum, we obtain

0 =
∂Ψ

∂xi

∣∣∣
x=xOPT

= xαi−1
i,OPT [xi,OPTfi,x(xOPT) + αifi(xOPT)]

+
n∑

j=1,j 6=i

x
αj

j,OPTfj,x(xOPT) < 0,

following the above discussion. This contradicts our initial
claim, and we must have xOPT ≤ xNE.

C. Support of a PNE and Preliminary Results

We now define the support of a PNE.

Definition 1. The support of the PNE of the game Γ, denoted
Supp(Γ), is the set of players who have a nonzero investment
in the CPR. In particular, at a tax rate t, Supp(Γ) := {i ∈
N|xtNE < yti} following Lemma 1.

Accordingly, the total investment at the PNE satisfies

xtNE =
∑

i∈Supp(Γ)

gi(x
t
NE, t). (13)

This characterization of PNE investment or utilization will
be exploited in many of our subsequent proofs. For a player
i ∈ Supp(Γ), her investment in the CPR is nonzero. Thus,
from Lemma 1, we have xtNE ∈ Iti . Recall that for increasing
rate of return functions, Iti = (zti , y

t
i), and therefore, xtNE > zti

for every i ∈ Supp(Γ). We now present two lemmas that will
be useful in several subsequent proofs.

Let Γ1 and Γ2 be two instances of Fragile CPR games
with identical resource characteristics and tax rates t1 and t2,
respectively. Let the respective total PNE investments be xt1NE
and xt2NE. We prove the following result which holds for CPRs
with both increasing and decreasing r(xT ).

Lemma 3. If t1 > t2 ≥ 0, we have yt1i ≤ y
t2
i for every player

i with αi ∈ (0, 1] and ki ∈ (0,∞). In addition, if t1 > t2 and
xt1NE > xt2NE, we have Supp(Γ1) ⊆ Supp(Γ2).

Proof: Let maxx∈St1
fi(x, t1) > 0; otherwise yt1i = 0,

and the first statement trivially holds. When yt1i > 0, it follows
from Lemma 1 that fi(yt1i , t1) = 0. When t2 < t1, it is
easy to see (from (9) and (10)) that St1 ⊆ St2 . Furthermore,
note from (4) that fi is decreasing in the second argument
t for both increasing and decreasing rate of return functions.
Accordingly, fi(yt1i , t2) > 0, and therefore, yt1i ≤ y

t2
i .

For the second part of the proof, let j ∈ Supp(Γ1). From
Definition 1, we have

xt1NE < yt1j =⇒ xt2NE < xt1NE < yt1j ≤ y
t2
i .

As a result, j ∈ Supp(Γ2). This concludes the proof.
The next lemma shows the monotonicity of zti in t for

certain risk preferences.
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Lemma 4. Consider a Fragile CPR game with increasing
r(xT ), and a player i with αi = 1, and let 0 ≤ t2 < t1 < t̄.
If ki < 1, then zt2i ≤ z

t1
i , and vice versa.

Proof: When xT ∈ St, the effective rate of return function
in (4) for player i is given by

fi(xT , t)=r(xT )(1− p(xT ))−kip(xT )−t(ki −1)p(xT )−t.
(14)

Let zt2i > at1 > 0; otherwise the result follows directly.
According to the first order optimality condition for zti , we
have fi,x(zt2i , t2) = ∂fi

∂xT
(zt2i , t2) = 0. Since ki < 1, and

p(xT ) is strictly increasing, it is easy to see that fi,x(zt2i , t1) >
0 implying zt2i ≤ zt1i . The same reasoning applies to the
converse.

Indeed, observe that in Figure 4b, zti is increasing in t in
accordance with the above lemma. Before we conclude this
section, we state Berge’s maximum theorem which is used in
proving our subsequent results on the continuity of utilization.

D. Berge’s Maximum Theorem

Theorem 3 (from [47]). Let Θ and X be two metric spaces,
and let C : Θ ⇒ X be a compact-valued correspondence. Let
the function Φ : X ×Θ→ R be jointly continuous in both X
and Θ. Define

σ(θ) := argmax
x∈C(θ)

Φ(x, θ), and

Φ∗(θ) := max
x∈C(θ)

Φ(x, θ), ∀θ ∈ Θ.

If C is continuous at θ ∈ Θ, then
1) σ : Θ ⇒ X is compact-valued, upper hemicontinuous

and closed at θ.
2) Φ∗ : Θ→ R is continuous at θ.

In many instances, the correspondence C takes the form of
a parametrized constraint set, i.e., C(θ) = {x ∈ X|lj(x, θ) ≤
0, j ∈ {1, 2, . . . ,m}}. For this class of constraints, we have
the following sufficient conditions for the upper and lower
hemicontinuity of C [48, Theorem 10,12].

Theorem 4. Let C : Θ ⇒ X ⊆ Rk be given by C(θ) = {x ∈
X|lj(x, θ) ≤ 0, j ∈ {1, 2, . . . ,m}}.

1) Let X be closed, and all lj’s be continuous on X . Then,
C is upper hemicontinunous on Θ.

2) Let lj’s be continuous and convex in x for each θ. If there
exists (x, θ) such that lj(x, θ) < 0 for all j, then C is
lower hemicontinuous at θ, and in some neighborhood
of θ.

APPENDIX B
PROOFS PERTAINING TO CPRS WITH NETWORK EFFECTS

Our goal in this section is to prove Theorem 1 and Corollary
1. We start with some preliminary lemmas that are used in
proving the monotonicity and continuity of utilization in the
tax rate. The following lemma proves a few useful properties
of the function qi introduced in (7).

Lemma 5. The function qi defined in (7) has the following
properties.

1) Let xT ∈ [0, 1] and t ∈ {t ≥ 0|xT ∈ (at, 1]}. If ki >
qi(xT , t) > 0, then ∂gi(xT ,t)

∂t < 0.
2) Let qi(z, t) > 0 for z ∈ (at, 1]. Then, qi(xT , t) is

positive, and is strictly decreasing in xT for xT ∈ [z, 1].

Proof: When it is clear from the context, we omit the
arguments xT , t and i in the following analysis for better
readability. We now state the effective rate of return function
under taxation, and compute its derivatives with respect to xT
and t. Let t ∈ [0, t̄) and xT ∈ (at, 1]. Recall from Assumption
1 that r(·) is strictly increasing and concave, and p(·) is strictly
increasing and convex. From (4), we have

f(xT , t) = (r − t)α(1− p)− k(1 + t)αp (15)

=⇒ fx(xT , t) =
∂f

∂xT
(xT , t) = α(r − t)α−1r′(1− p)

− (r − t)αp′ − k(1 + t)αp′. (16)

Differentiating f(xT , t) with respect to t for t ∈ {t ≥ 0|xT ∈
(at, 1]}, we obtain

ft(xT , t) =
∂f

∂t
(xT , t) = −α(r − t)α−1(1− p)

− αk(1 + t)α−1p, and (17)

fx,t(xT , t) =
∂2f

∂xT∂t
(xT , t) = −α(α− 1)(r − t)α−2×

r′(1− p) + α(r − t)α−1p′ − αk(1 + t)α−1p′.
(18)

Since ∂g
∂t =

ffx,t−fxft
f2
x

, we now compute

ffx,t = −α(α− 1)(r − t)2α−2r′(1− p)2

+ α(r − t)2α−1(1− p)p′

− αk(r − t)α(1 + t)α−1p′(1− p)
− αk(r − t)α−1(1 + t)αpp′

+ α(α− 1)k(r − t)α−2r′(1 + t)αp(1− p)
+ αk2(1 + t)2α−1pp′.

Similarly,

fxft = −α2(r − t)2α−2r′(1− p)2

+ α(r − t)2α−1(1− p)p′

− α2k(r − t)α−1r′(1 + t)α−1p(1− p)
+ αk(r − t)α(1 + t)α−1pp′

+ αk(r − t)α−1(1 + t)αp′(1− p)
+ αk2(1 + t)2α−1pp′.

From the above analysis, we obtain

ffx,t − fxft
= α(r − t)2α−2r′(1− p)2

− αk(r − t)α−1(1 + t)αp′ − αk(r − t)α(1 + t)α−1p′

+ α2k(r − t)α−1r′(1 + t)α−1p(1− p)
+ α(α− 1)k(r − t)α−2r′(1 + t)αp(1− p) (19)

= α(α− 1)k(r − t)α−2r′(1 + t)αp(1− p)
− αk(r − t)α−1(1 + t)α−1p′(r + 1)

+ α(r − t)α−1r′(1− p)×
[(r − t)α−1(1− p) + αk(1 + t)α−1p]. (20)
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Since α < 1, and r′ > 0, the first term in (20) is negative.
Therefore, a sufficient condition for ffx,t − fxft < 0 is

k(1 + t)α−1p′(r + 1)

> r′(1− p)[(r − t)α−1(1− p) + αk(1 + t)α−1p]

⇐⇒ k(1 + t)α−1[(r + 1)p′ − αr′(1− p)p]
> r′(r − t)α−1(1− p)2

⇐⇒ k >
r′(1− p)2

(r + 1)p′ − αr′(1− p)p

(
1 + t

r − t

)1−α

= q(xT , t);

note that q(xT , t) > 0 implies its denominator is positive
which is necessary for the above equivalence to hold.

Now, let l1 := r′(1−p)2 and l2 := (r+1)p′−αr′(1−p)p >
0 be functions of xT with the argument suppressed for better
readability. Then

l′1 = r′′(1− p)2 − 2r′(1− p)p′ < 0, and
l′2 = (r + 1)p′′ + r′p′ − αr′′p(1− p)− αr′p′(1− p) + αr′p′p

= (r + 1)p′′ − αr′′p(1− p) + r′p′(1− α+ 2αp) > 0.

Suppose q(z, t) > 0, i.e., its denominator is positive. Then, for
every xT ∈ [z, 1], the denominator of q(xT , t) is positive and
increasing in xT , and the numerator of q(xT , t) is decreasing
in xT . This concludes the proof.

Monotonicity of gi in the tax rate t, established above, will
be required while proving the monotonicity of the utilization
in the tax rate. We now prove several intermediate lemmas
towards proving the continuity of utilization in the tax rate.

A. Preliminary results pertaining to continuity of utilization
We first introduce certain notation, and prove some prelimi-

nary lemmas. In appropriate places in this subsection, we treat
yti , z

t
i , and xtNE as functions of t (from [0, t̄)→ [0, 1]), with a

slight abuse of notation. Furthermore, we denote the utilization
xT as x, and ∂fi

∂x (x, t) as fi,x(x, t).
Recall from (10) that St := [at, 1] when r(x) is strictly

increasing. Furthermore, t̄i := sup{t ≥ 0|maxx∈St fi(x, t) >
0}. For t < t̄i, zti := argmaxx∈St

fi(x, t), and yti ∈ (zti , 1)
such that fi(yti , t) = 0. In addition, fi(x, t) is positive and
decreasing for x ∈ (zti , y

t
i). We now define

ẑti := argmax
x∈[zti ,y

t
i ]

−[αifi(x, t) + fi,x(x, t)]2. (21)

Note that at a given t < t̄i, fi(x, t) is concave, and therefore,
αifi(x, t) + fi,x(x, t) is strictly decreasing for x ∈ [zti , y

t
i ].

Thus, ẑti = zti when zti = 0 and fi,x(0, t) < 0. Otherwise,
αifi(ẑ

t
i , t)+fi,x(ẑti , t) = 0. With the above quantities, we are

now ready to define the following function. For a player i,
x ∈ [0, 1] and t ∈ [0, t̄i), let

ĝNi (x, t) :=


1, x ∈ [0, ẑti),
αifi(x,t)
−fi,x(x,t) , x ∈ [ẑti , y

t
i),

0, otherwise.

(22)

Note that ĝNi (x, t) is well-defined. It follows from (21)
that when ẑti > 0, the maximum value of αifi(x,t)

−fi,x(x,t) = 1

for x ∈ [ẑti , y
t
i ] occurs at x = ẑti . As a result, ĝNi (x, t) is

bounded.7 In Figure 5, we illustrate the shape of the function

7If we had defined the range of x to be [zti , y
t
i) in the second line of (22),

then the denominator of ĝNi (x, t) would be 0 at x = zti .
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Fig. 5: Illustrating the function ĝN (x, t) for a CPR with r(x) =
3x + 1, p(x) = 0.2 + 0.8x4, and t = 1.5, and a player with
α = 0.3, k = 1.5. In this example, zt = 0.4402 ẑt = 0.4502,
and yt = 0.6737. Note that g(x, t) is undefined at x = zt.

ĝNi (x, t), and how it compares with gi(x, t) defined in (12)
for the CPR with the same characteristics as Example 3. Note
that the denominator of gi(x, t) is 0 at x = zti , while ĝNi (x, t)
is bounded for x ∈ [0, 1] as it is defined in terms of ẑti .

We first establish the continuity of zti ,ẑ
t
i , and yti , and then

prove the (joint) continuity of ĝNi (·, ·).

Lemma 6. When viewed as functions of t, zti ,ẑ
t
i , and yti are

continuous in t for t ∈ [0, t̄i).

Proof: With a slight abuse of notation, we view the set
St as a compact-valued correspondence S : [0, t̄i) ⇒ [0, 1]
with S(t) := {x ∈ [0, 1]|t − r(x) ≤ 0}. Since r(x) is
continuous, concave, and for every t < t̄i, t − r(1) < 0, it
follows from Theorem 4 that S(t) is both upper and lower
hemicontinuous. Note that fi(x, t) is defined for x ∈ [0, 1],
t ∈ [0, t̄i), and is jointly continuous in x and t. Recall further
that zti := argmaxx∈S(t) fi(x, t); zti is single-valued since
fi(x, t) is strictly concave in x ∈ S(t) at a given t. Therefore,
following Berge’s maximum theorem, zti is continuous in t.

Recall that yti ∈ [zti , 1] such that fi(zti , t) = 0. Furthermore,
fi(x, t) is strictly decreasing in x for x ∈ (zti , 1]. Therefore,
we can alternatively let yti := argmaxx∈[zti ,1]−(fi(x, t))

2.
Since zti is continuous in t, the correspondence t ⇒ [zti , 1] is
continuous following Theorem 4. Berge’s maximum theorem
now implies that yti is continuous in t.

Following the above discussion, we have t ⇒ [zti , y
t
i ]

as continuous. From its definition (21), ẑti is the unique
maximizer of a function that is jointly continuous in both x and
t. Once again, from Berge’s maximum theorem, we conclude
that ẑti is continuous in t.

Lemma 7. The function ĝNi (x, t), x ∈ [0, 1], t ∈ [0, t̄i) defined
in (22) is jointly continuous in x and t.

Proof: First observe that at a given t, ĝNi (x, t) is con-
tinuous and monotone in x for x ∈ [0, 1]. In particular,
ĝNi (yti , t) = fi(y

t
i , t) = 0, and the monotonicity follows from

Lemma 2. Following [49], it now suffices to show that ĝNi (x, t)
is continuous in t at a given x. However, this is true because
ẑti and yti are continuous in t following Lemma 6, together
with αifi(ẑ

t
i ,t)

−fi,x(ẑti ,t)
= 1, and αifi(y

t
i ,t)

−fi,x(yti ,t)
= 0.

We now show that the total PNE investment can be stated
as a maximizer of a function that is continuous in both the
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total investment and the tax rate.

Lemma 8. For x ∈ [0, 1], t ∈ [0,mini∈N t̄i), define

hN (x, t) := −[x−
∑
i∈N

ĝNi (x, t)]2.

Then, at a given t, argmaxx∈[0,1] h
N (x, t) is single-valued,

and is equal to xtNE.

Proof: From its definition, hN (x, t) ≤ 0. Suppose there
exists xt ∈ [0, 1) such that hN (xt, t) = 0, or equivalently
xt =

∑
i∈N ĝ

N
i (xt, t). First we claim that xt > ẑtj for every

player j. If this is not the case, then for a player j with xt ≤ ẑtj ,
we have ĝNj (xt, t) = 1 which implies xt <

∑
i∈N ĝ

N
i (xt, t).

Now consider the strategy profile {xtj}j∈N where xtj =
ĝNj (xt, t) for each player j. Consider a player j with xt ≥ ytj .
Then, xtj = ĝNj (xt, t) = 0. Following Lemma 1, the strategy of
player j, xtj , is her best response. Now suppose xt < ytj . From
the definition of ĝN , we have xtjfj,x(xt, t) + αjfj(x

t, t) = 0.
Following (11), the investment of player j satisfies the first
order optimality condition for her utility. Furthermore, the
proof of Lemma 2 in [28] showed that the utility of player j
is strictly concave in the range of investments which contains
the investment at which the first order optimality condition is
satisfied. Therefore, xtj is the unique best response of player j
for the given strategies of others. Thus, {xti}i∈N corresponds
to a PNE strategy profile. Conversely, it is easy to see that at
any PNE strategy profile, hN (xtNE, t) = 0.

Recall that a PNE exists, and is unique. Following Theorem
1 in [28], the total investment at the PNE is unique as well.
Therefore, there is a unique x = xtNE with hN (x, t) = 0, which
also maximizes hN (x, t) at a given t.

With the above preliminary results in place, we are now
ready to prove Theorem 1.

B. Proof of Theorem 1
Proof: Part 1 (monotonicity). Assume on the contrary

that xt1NE > xt2NE > 0. According to Lemma 3, we have
Supp(Γ1) ⊆ Supp(Γ2). From the characterization of PNE
in equation (13), we obtain

xt1NE > xt2NE

=⇒
∑

j∈Supp(Γ1)

gj(x
t1
NE, t1) >

∑
j∈Supp(Γ2)

gj(x
t2
NE, t2)

=⇒
∑

j∈Supp(Γ1)

gj(x
t1
NE, t1) >

∑
j∈Supp(Γ1)

gj(x
t2
NE, t2). (23)

In the remainder of the proof, our goal is to contradict the
inequality in equation (23). In particular, for each player j ∈
Supp(Γ1), we show that gj(xt1NE, t1) < gj(x

t2
NE, t2).

Consider a player j ∈ Supp(Γ1). From Lemma 1, xt1NE <
yt1j . Furthermore, from Lemma 3, we have yt1j ≤ y

t2
j . Together

with our assumption, we obtain

xt2NE < xt1NE < yt1j ≤ y
t2
j =⇒ [xt2NE, x

t1
NE] ⊂ I

t2
j .

From the monotonicity of gj(xT , t) in xT in Lemma 2, we
obtain gj(xt1NE, t2) < gj(x

t2
NE, t2).

It is now sufficient to show that gj(xt1NE, t1) < gj(x
t1
NE, t2).

Since xt1NE > xt2NE > at1 , part two of Lemma 5 yields

qj(x
t2
NE, t1) > qj(x

t1
NE, t1).

Furthermore, from its definition, qj(x, t) is strictly increasing
in t. Thus, for t ∈ [t2, t1],

qj(x
t1
NE, t1) ≥ qj(xt1NE, t);

note that xt1NE > at1 ≥ at for t ∈ [t2, t1]. Combining these
observations, we obtain

kj > qj(x
t2
NE, t1) > qj(x

t1
NE, t1) ≥ qj(xt1NE, t) > 0

=⇒ ∂gj(x
t1
NE, t)

∂t
< 0,

for t ∈ [t2, t1] (following the first part of Lemma 5). Therefore,
gj(x

t1
NE, t1) < gj(x

t1
NE, t2), which contradicts (23).

Part 2 (continuity). Let C : [0,mini∈N t̄i) ⇒ [0, 1] such that
C(t) = [0, 1] for t ∈ [0,mini∈N t̄i). From its definition, C is
compact-valued, and is both upper and lower hemicontinuous
at every t ∈ [0,mini∈N t̄i). From Lemma 7, hN (x, t) is
jointly continuous in x and t. Following Berge’s maximum
theorem, argmaxx∈C(t) h

N (x, t) is upper hemicontinuous.
From Lemma 8, hN (x, t) is single-valued. Therefore, xNE(t)
is continuous in t for t ∈ [0,mini∈N t̄i).
Part 3 (existence of suitable tax rates). The third statement
now follows from the extreme value theorem. For the fourth
statement, note from the definition of t̄i that it is the smallest
tax rate at which the maximum value of fi(xT , t̄i) = 0, xT ∈
St̄i . From the definitions of zti and yti , we have limt↑t̄i z

t
i =

limt↑t̄i y
t
i . The continuity of xNE(t), and the intermediate value

theorem now suffice. The fifth statement now follows from
Proposition 2 which states that x0

OPT ≤ x0
NE.

C. Proof of Corollary 1

Proof: Assume on the contrary that xt1NE > xt2NE. Following
analogous arguments as the first part of the proof of Theorem
1, it suffices to show that for a player j ∈ Supp(Γ1),
gj(x

t1
NE, t1) < gj(x

t1
NE, t2).

Note that xt1NE > at1 ≥ at2 . Therefore, fj(xt1NE, t) is defined
for t ∈ [t2, t1]. Since αj = 1, we have

fj(xT , t) = (r(xT )− t)(1− p(xT ))− kj(1 + t)p(xT )− t,

fj,x(xT , t) =
∂fj
∂xT

(xT , t) = r′(xT )(1− p(xT ))

− r(xT )p′(xT )− kjp′(xT )− tp′(xT )(kj − 1).

It is easy to see that ∂fj∂t (xt1NE, t) < 0. Furthermore, when kj ≥
1, ∂2fj

∂xT ∂t
(xt1NE, t) ≤ 0 for t ∈ [t2, t1]. Therefore, gj(xt1NE, t) is

decreasing in t for t ∈ [t2, t1]. The monotonicity part now
follows from identical arguments as the proof of Theorem 1.

Recall now that zti := argmaxx∈[at,1] fi(x, t), and Lemma
4 states that as the tax rate increases, zt decreases for every
player. In addition, since all players have identical α and k,
it follows from [28, Proposition 4] that x0

OPT is equal to the
investment by a single player when she invests in isolation. In
that case, x0

OPT satisfies the first order optimality condition

αf(x0
OPT) + x0

OPTfx(x0
OPT) = 0.

Consequently, following the proof of Lemma 1, in particular
equation (11), we have x0

OPT ∈ I0, or z0 < x0
OPT. Therefore,

x̄ = limt↑t̄ z
t < z0 < x0

OPT. The result now follows from
Theorem 1.
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APPENDIX C
PROOFS PERTAINING TO CPRS WITH CONGESTION

EFFECTS

Our approach for proving Theorem 2 is along similar lines
as Appendix B. We start with a lemma which holds for the
general form of the utility function (4) with αi ∈ (0, 1].

Lemma 9. Let r(xT ) be decreasing in xT . For a player j and
a given xT ∈ [0, 1], let T xT

j := {t ∈ [0, t̄)|fj(xT , t) > 0}. Let
gj(xT , t) be the function defined in (12). Then, ∂gj(xT ,t)

∂t < 0
for t ∈ T xT

j .

Proof: Let k̄ := k(1+t)α, and k̄t := kα(1+t)α−1. From
(19), we obtain

ffx,t − ftfx
=α(r − t)2α−2r′(1− p)2 − (r − t)αk̄tp′

− α(1− α)(r − t)α−2r′k̄p(1− p)
+ α(r − t)α−1r′k̄t(1− p)p− α(r − t)α−1k̄p′

=α(1− p)r′(r − t)α−2[(r − t)α(1− p)− (1− α)k̄p

+ (r − t)k̄tp]− α(r − t)α−1k̄p′ − (r − t)αk̄tp′

=α(1− p)r′(r − t)α−2[f + αk̄p+ (r − t)k̄tp]
− α(r − t)α−1k̄p′ − (r − t)αk̄tp′ < 0,

when r′ < 0 and f > 0. This concludes the proof.
In other words, at a given utilization level xT , the func-

tion gj(xT , t) is strictly decreasing in the tax rate t over
the range of tax rates at which the effective rate of return
remains positive. This property will be key towards proving
the monotonicity of utilization in the tax rate.

In order to prove the continuity of utilization, we rely
on Berge’s maximum theorem as before. In order to apply
Berge’s maximum theorem, we need to express the total PNE
investment xtNE as the unique maximizer of a function that is
jointly continuous in the total investment and the tax rate.

First we define the following function. For a player i, xT ∈
[0, 1] and t ∈ [0, t̄), let

ĝi(xT , t) :=

{
αifi(xT ,t)
−fi,x(xT ,t)

, xT ∈ [0, yti)

0, otherwise.
(24)

Note that ĝi(xT , t) is bounded8, and therefore well-defined. In
the following lemma, we prove the (joint) continuity of ĝi(·, ·).

Lemma 10. The function ĝi(xT , t), xT ∈ [0, 1], t ∈ [0, t̄)
defined in (24) is jointly continuous in xT and t.

Proof: First observe that at a given t, ĝi(xT , t) is contin-
uous and monotone in xT for xT ∈ [0, 1]; since fi(yti , t) = 0,
we have ĝi(y

t
i , t) = 0, and the monotonicity follows from

Lemma 2. Following [49], it now suffices to show that
ĝi(xT , t) is continuous in t at a given xT .

Since fi(xT , t) is strictly decreasing in t, the condition xT ∈
[0, yti) is equivalent to t ∈ [0, t̂xT

i ), where t̂xT
i := min{t ∈

[0, t̄] : fi(xT , t) ≤ 0}. For t ∈ [0, t̂xT
i ), ĝi(xT , t) is continuous

8For xT ∈ [0, 1], and nonempty T
xT
j := {t ∈ [0, t̄)|fj(xT , t) > 0},

Lemma 9 shows that ∂gj(xT ,t)

∂t
< 0 for t ∈ T

xT
j . In this case,

αifi(xT ,t)
−fi,x(xT ,t)

<
αifi(xT ,0)
−fi,x(xT ,0)

. Furthermore, fi,x(xT , 0) (with expression
(16)) is strictly smaller than 0 under Assumption 1.

in t as both numerator and denominator are continuous in t.
For t ≥ t̂xT

i , ĝi(xT , t) = 0. Furthermore, when t̂xT
i > 0,

fi(xT , t̂
xT
i ) = 0. Thus, ĝi(xT , t) is continuous in t at a given

xT ∈ [0, 1].
We now show that the total PNE investment can be stated

as a maximizer of a function that is continuous in both the
total investment and the tax rate.

Lemma 11. Define

hC(xT , t) := −[xT −
∑
i∈N

ĝi(xT , t)]
2, xT ∈ [0, 1], t ∈ [0, t̄).

Then, at a given t, argmaxxT∈[0,1] h
C(xT , t) is single-valued,

and is equal to xtNE.

The proof follows from identical arguments as the proof of
Lemma 8 in Appendix B, and is omitted.

Proof of Theorem 2. The proof of monotonicity relies on
similar arguments as the proof of Theorem 1. Specifically, a
contradiction to (23) is obtained from Lemma 2 and Lemma
9 which for every player j ∈ Supp(Γ1) imply gj(x

t1
NE, t1) <

gj(x
t2
NE, t1) and gj(xt2NE, t1) < gj(x

t2
NE, t2), respectively. We omit

the details in the interest of space; the complete proof can be
found in [1].

Now we focus on the proof of continuity. Consider a
set-valued map or correspondence C : [0, t̄) ⇒ [0, 1]
such that C(t) = [0, 1] for every t ∈ [0, t̄). From its
definition, C is compact-valued, and is both upper and
lower hemicontinuous at every t ∈ [0, t̄). From Lemma 10,
hC(xT , t) is jointly continuous in xT and t. Following Berge’s
maximum theorem (see Appendix A), the set-valued map
argmaxxT∈C(t) h

C(xT , t) is upper hemicontinuous. From
Lemma 11, we have argmaxxT∈C(t) h

C(xT , t) = {xNE(t)},
i.e., the set-valued map is in fact single-valued. Therefore,
xNE(t) is continuous in t for t ∈ [0, t̄).

We now show that xNE(t) is continuous at t = t̄. From the
strict monotonicity and continuity of f(·, ·) and the definition
of t̄, we have maxi∈N fi(0, t̄) = 0. Therefore, xNE(t̄) = 0.
Now, recall from Lemma 1 and Definition 1 that xNE(t) <
maxi∈N y

t
i at any tax rate t. Furthermore, as t ↑ t̄, we have

max
i∈N

fi(0, t)→ 0 =⇒ max
i∈N

yti → 0 =⇒ xNE(t)→ 0.

The third statement follows from the continuity property
and the extreme value theorem. Furthermore, Proposition 2
states that x0

OPT ≤ x0
NE. Therefore, the fourth part follows from

the monotonicity and continuity of utilization in the tax rate
shown above.

APPENDIX D
PROOFS PERTAINING TO DIFFERENTIATED TAX RATES

Proof of Proposition 3. (Sketch) First we observe that the
effective rate of return fi(x, t) defined in (8) for the case
with player-specific γi’s is analogous to the effective rate of
return in a game without taxes with a modified rate of return
r(xT )− γit and a modified index of loss aversion k(1 + γit).
Consequently, if r(xT ) and p(xT ) satisfy Assumption 1, then
for t ∈ [0, t̄), so do r(xT ) − γit and p(xT ). Accordingly,
Lemma 1 and Lemma 2 continue to hold for each player i.
Furthermore, since the proof of Proposition 2 relies on Lemma
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1 and Lemma 2, we have xOPT(t) ≤ xNE(t) at a given tax rate
t ∈ [0, t̄) in the case with heterogeneous γi’s.

For CPRs with increasing rate of return functions, following
an analogous approach to the proof of Corollary 1, we can
show that the function gj(xT , t) is a decreasing function of
t over a suitable domain; this result is a consequence of
our assumption that α = 1 and k > 1. As a consequence,
utilization is monotonically decreasing in the tax rate. Further-
more, Lemmas 6, 7 and 8 continue to hold with analogous
arguments which imply that utilization is continuous as a
function of t for t ∈ [0,mini∈N t̄i) where t̄i = sup{t ≥
0|maxx∈[0,1] fi(x, t) > 0}. Therefore, if xOPT(0) > xNE(t

∗),
then there exists a tax rate such that utilization at the NE is
equal to xOPT(0). Now for CPRs with decreasing rate of return
functions, it can be shown that Lemmas 9 and 10 continue to
hold in the case with player-specific γi’s. As a result, Theorem
2 holds, and there exists a uniform tax rate such that any
desired utilization in the range [0, xNE(0)] can be achieved.
Proof of Proposition 4. Let ΓH ∈ Γm be a Fragile CPR game
where the effective tax rates are heterogeneous. Without loss of
generality, let 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn, with

∑n
i=1 ti = ntm.

Furthermore, let the utilizations at the respective PNEs of ΓH
and ΓM be xH and xM .

Suppose xH = 0. Then, we have f̂(xT )− t1v(xT ) ≤ 0 for
xT ∈ St1 . Since tm ≥ t1, we also have f̂(xT )− tmv(xT ) ≤ 0
for xT ∈ Stm , which implies xM = 0. Since tm < t̄m, we
must have xM > 0, and thus, the case xH = 0 does not arise.

Therefore, xH > 0. For j /∈ Supp(ΓH), we have

f̂(xH)− tjv(xH) ≤ 0 =⇒ f̂(xH)− tv(xH) ≤ 0,

for every t ≥ tj . Therefore, Supp(ΓH) consists of a set of
players with smallest effective tax rates. Since xH > 0, player
1 ∈ Supp(ΓH). From equation (13) for ΓH , we have

xH =
∑

i∈Supp(ΓH)

gi(xH , ti) =
n∑
i=1

max(gi(xH , ti), 0)

=
n∑
i=1

max

(
f̂(xH)− tiv(xH)

−f̂ ′(xH) + tiv′(xH)
, 0

)

=:
n∑
i=1

max(hxH
(ti), 0),

where hxH
(·) is a function of t at a given total investment xH .

Note that, since the players are loss averse, we have v′(xH) =
(k − 1)p′(xH) > 0. As a result, for t ≥ t1, the numerator of
hxH

(t) is strictly decreasing in t, while the denominator is
strictly increasing in t.

We now define an interval J ⊆ [t1, ntm] as follows. If
hxH

(ntm) > 0, then J = [t1, ntm]. Otherwise, J = [t1, t
u),

where tu ≤ ntm is the unique effective tax rate at which
hxH

(tu) = 0, and every player i ∈ Supp(ΓH) satisfies ti ∈ J .
For t ∈ J , we have f̂(xH) − tv(xH) > 0 and −f̂ ′(xH) +
tv′(xH) > 0, which implies

f̂(xH)v′(xH) > tv(xH)v′(xH) > f̂ ′(xH)v(xH). (25)

For t ∈ J , straightforward calculations yield

h′xH
(t) =

(f̂ ′(xH)v(xH)− f̂(xH)v′(xH))

(−f̂ ′(xH) + tv′(xH))2
< 0,

h′′xH
(t) =

−2v′(xH)(f̂ ′(xH)v(xH)− f̂(xH)v′(xH))

(−f̂ ′(xH) + tv′(xH))3
.

Following (25), we have h′′xH
(t) > 0 for t ∈ J . Therefore,

max(hxH
(t, 0)) is continuous and convex for t ∈ [t1, ntm].

Applying Jensen’s inequality, we obtain

xH =
n∑
i=1

max(hxH
(ti), 0) ≥ nmax(hxH

(tm), 0).

We now consider two cases. First, suppose hxH
(tm) ≤ 0.

Note that −f̂ ′(xH) + tmv
′(xH) > 0 (since tm ≥ t1 and

v′(xH) > 0). Thus, we have f̂(xH) − tmv(xH) ≤ 0. When
r(xT ) is decreasing, it is easy to see that f̂(xT )− tmv(xT ) <
0 for xT ∈ (xH , 1]. For an increasing and concave r(xT ),
f̂(xT ) − tmv(xT ) is strictly concave in xT . Since f̂ ′(xH) −
tmv

′(xH) < 0 and f̂(xH)− tmv(xH) ≤ 0, we have f̂(xT )−
tmv(xT ) < 0 for xT ∈ (xH , 1]. Thus, xM ≤ xH .

Now suppose hxH
(tm) > 0, i.e., f̂(xH) − tmv(xH) > 0

and f̂ ′(xH) − tmv
′(xH) < 0. Assume on the contrary that

xM > xH . Thus, we have [xH , xM ] ⊂ Im, where Im is the
interval defined in Lemma 1 for a player m with effective tax
rate tm. Following Lemma 2, we obtain

xH ≥ nhxH
(tm) = ngm(xH , tm) > ngm(xM , tm) = xM ,

which is a contradiction. Therefore, xH ≥ xM .
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