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Abstract

How do people distribute defenses over a directed network attack graph, where they
must defend a critical node? This question is of interest to computer scientists, infor-
mation technology and security professionals. Decision-makers are often subject to
behavioral biases that cause them to make sub-optimal defense decisions, which can
prove especially costly if the critical node is an essential infrastructure. We posit that
non-linear probability weighting is one bias that may lead to sub-optimal decision-
making in this environment, and provide an experimental test. We find support for
this conjecture, and also identify other empirically important forms of biases such as
naive diversification and preferences over the spatial timing of the revelation of an
overall successful defense. The latter preference is related to the concept of anticipa-
tory feelings induced by the timing of the resolution of uncertainty.
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1 Introduction

Economic resources spent on securing critical infrastructure from malicious
actors are substantial and increasing, with worldwide expenditure estimated to
exceed $124 billion in 2019 (Gartner 2018). Cybersecurity defense is becoming
increasingly difficult, as systems are frequently connected to the outside world
through the Internet, and attackers innovate many new methods of attack. The
interaction of computers, networks, and physical processes (termed ‘Cyber-Phys-
ical Systems’, or CPS) has a wide variety of applications, such as manufactur-
ing, transportation, medical care, power generation and water management (Lee,
2015), and has both practical and theoretical importance. Proposed CPS such as
the ‘Internet of Things’ promise vast benefits and efficiencies, but at the cost of
increased attack vectors and targets (see Alaba et al., 2017; Humayed et al., 2017
for surveys). To realize the potential gains that these new technologies can pro-
vide, we must understand and maximize their security.

To reduce interference with their systems, institutions allocate a security
budget and hire managers responsible for minimizing the probability of success-
ful attacks on important assets and other vital parts of the infrastructure. Such
decision-makers, however, are subject to behavioral biases that can lead to sub-
optimal security decisions (Abdallah et al., 2019a, b; Acquisti & Grossklags,
2007). Human decision-makers can exhibit many possible biases. The security
decisions they face broadly involve probabilistic assessments across multiple
assets and attack vectors, many featuring low individual likelihood. We therefore
ex-ante focus on the possibility that people incorrectly weight the actual prob-
ability of attack and defense (Tversky & Kahneman, 1992). We ex-post find that
people also exhibit locational and spreading biases in their defense resource allo-
cations, due to the directional and compartmentalized nature of these systems.
Given the immense size of global expenditures on cybersecurity, as well as suc-
cessful attacks being potentially very damaging, it is important to understand the
nature and magnitude of any biases that can lead to sub-optimal security deci-
sions. Such insights on biases can then be applied by security professionals to
reduce their impact.

We focus on human biases as infrastructure security decisions have not yet
been given over to algorithmic tools. They are still mostly made by human secu-
rity managers (Paté-Cornell et al., 2018). Adoption of automated tools are sty-
mied by legacy components in these interconnected systems, so instead manag-
ers use threat assessment tools which return the likely probability that individual
components of the infrastructure will be breached (Jauhar et al., 2015). These
probabilities must be interpreted by the human manager, which motivates our ini-
tial emphasis on non-linear probability weighting. Evidence also exists that secu-
rity experts ignore more accurate algorithmic advice when available and instead
rely more on their own expertise (Logg et al., 2019).

We model a security manager’s problem as allocating his budget over edges in
a directed attack graph with the nodes representing various subsystems or com-
ponents of the overall CPS. An example of a directed attack graph is shown in
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Fig. 1. The manager’s goal is to prevent an attacker who starts at the red node
on the left from reaching the critical green node on the far right. The inter-con-
nectivity of different systems is represented by connections between nodes, and
alternative paths to a given node represent different methods of attack. Allocat-
ing more of the security budget to a given edge increases the probability that
an attack through that edge will be stopped. Such an ‘interdependency attack
graph’ model is considered an appropriate abstraction of the decision environ-
ment a security professional faces in large-scale networked systems.! The proba-
bility of successful defense along an edge is weighted according to the manager’s
probability weighting function. We use the common Prelec (1998) probability
weighting function, but similar comparative statics can be obtained with any
‘inverse S-shaped’ weighting function. We assume the attacker is sophisticated
and observes the manager’s allocation decision, and does not mis-weight prob-
abilities. This reflects a ‘worst-case’ approach to security (discussed further in
Sect. 2.1), and represents a necessary first step in investigating the impact of
probability weighting and other biases on security expenditures.

The manager’s mis-weighting of probabilities can cause investment decisions
to substantially diverge from optimal decisions based on objectively correct true
probabilities, depending on network structure and the security production function.
The security production function maps defense resources allocated to an edge to
the probability that an attack along that edge will be stopped. Empirical evidence
has shown probability weighting to be relatively non-linear on the aggregate sub-
ject level (Bleichrodt & Pinto, 2000), so the impact on security decisions could be
substantial. Probability weighting is also heterogeneous across individuals (Tanaka
et al., 2010; Bruhin et al. 2010). Therefore, if probability weighting affects choices
in this environment, individuals should exhibit heterogeneity in their sub-optimal
security decisions.

We seek to address the following research questions:

Question 1: What is the effect of probability weighting on security investments
over a directed network graph?

Question 2: Is probability weighting an empirically relevant factor in human
security decision-making?

Question 3: What other behavioral biases significantly affect decision-making in
this environment?

To address Question 1, we numerically solve the security manager’s problem
described above. In practical situations the relationship between investment spend-
ing and reductions in the probability of an attack is far from explicit to an outside
observer. Moreover, investigations of successful breaches are often not revealed
until months or years later. Furthermore, information on security investments is
highly confidential for obvious reasons, making it difficult or impossible to obtain

! A non-exhaustive list of research considering the attack graph model from the Computer Security lit-
erature includes Sheyner and Wing (2003), Nguyen et al. (2010), Xie et al. (2010), Homer et al. (2013),
and Hota et al. (2018). The length of this list and the ease in which it could be extended is indicative of
the prominence that this literature places on the attack graph model.
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Fig. 1 Example directed net-
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directly from firms. We therefore conduct an incentivized laboratory experiment to
address Questions 2 and 3. We employ networks that cleanly identify the impact of
non-linear probability weighting on security investment decisions, and the generated
data also reveal other behavioral biases that exist in this environment.

Our experiment elicits separate measures of probability weighting outside the
network defense problem to help address Question 2. One measure uses binary
choices between lotteries which is relatively standard, and elicits probability weight-
ing while controlling for the confound of utility curvature. The other measure is
novel, and uses a similar network path framing to the network defense environment.
This new measure reduces procedural variance relative to the main network defense
task. It also exploits the irrelevance of utility curvature when there are only two out-
comes to focus solely on probability weighting.

We find that the network-framed measure of non-linear probability weighting is
statistically significantly correlated with all the network defense allocations situa-
tions we consider. However, this correlation exists even in cases where probability
weighting should have no impact. This suggests that subjects may exhibit limited
sophistication beyond probability weighting alone. We therefore conduct a cluster
analysis to identify heterogeneous patterns of behavior not predicted by probability
weighting. This identifies additional behavioral biases. The first is a form of ‘naive
diversification’ (Benartzi & Thaler, 2001), where subjects have a tendency towards
allocating their security budget evenly across the edges. The second is a preference
for stopping the attacker earlier or later along the attack path. Stopping an attack
earlier can be seen as reducing the anticipatory emotion of ‘dread’ (Loewenstein,
1987) while stopping it later can be seen as delaying the revelation of potentially
bad news (e.g., see Caplin & Leahy, 2004 for a strategic environment). Account-
ing for these additional biases, we continue to find some evidence that non-linear
probability weighting influences subject behavior, as well as strong evidence for the
additional biases. In our environment the additional biases seem especially naive, as
edges are not different options with benefits beyond defending the critical node, and
information on the attacker’s progress is not presented to the subjects sequentially.
These inconsistencies possibly reflect a subject’s own mental model (e.g., of how
an attack proceeds), but should be accounted for in future directed network decision
environments.

This paper contributes to the theoretical literature on attack and defense games
over networks of targets, most of which can be related to computer network security
in some fashion.? Our attack graph environment is rather flexible, and can represent

2 A non-exhaustive list of related theory papers include Clark and Konrad (2007), Acemoglu et al.
(2016), Dziubinski and Goyal (2013), Goyal and Vigier (2014), Dziubinski and Goyal (2017), Kovenock
and Roberson (2018), and Bloch et al. (2020).
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some of the strategic tensions present in alternative network environments. Instead
of focusing on attack graph representations of these other environments (which
can be quite complex), we utilize more parsimonious networks in order to specifi-
cally parse out the effect of probability weighting. We have the ‘security manager’
play against a sophisticated computerized attacker who moves after observing the
manager’s allocation. Playing against a computer dampens socially related behav-
ioral preferences.’ It also removes the need for defenders to form beliefs about the
attacker’s probability weighting. This allows us to more cleanly identify the empiri-
cal relevance of non-linear probability weighting in this spatial network defense
environment. If probability weighting is important empirically, then future research
should incorporate it into models to better understand the decisions of real-world
decision-makers.

This paper also contributes to the experimental literature of attack and defense
games in network environments.* One set of related experimental studies test ‘Net-
work Disruption’ environments. McBride and Hewitt (2013) consider a problem
where an attacker must select a node to remove from a partially obscured network,
with the goal to remove as many edges as possible. Djawadi et al. (2019) consider
an environment where the defender must both design the network structure as
well as allocate defenses to nodes, with the goal of maintaining a network where
all nodes are linked after an attack. Hoyer and Rosenkranz (2018) consider a simi-
lar but decentralized problem where each node is represented by a different player.
Our environment differs from these Network Disruption games as we consider a
directed attack graph network, i.e. the attacker must pass through the network to
reach the critical node rather than remove a node to disrupt the network. Some other
related experimental papers include ‘multi-battlefield’ attack and defense games,
such as Deck and Sheremeta (2012), Chowdhury et al. (2013) and Kovenock et al.
(2019). The most closely related of these types of papers is Chowdhury et al. (2016),
who find experimental evidence for the bias of salience in a multi-battlefield con-
test, which induces sub-optimal allocations across battlefields. We are the first to
investigate empirically the bias of probability weighting in networks and attack and
defense games.

3 Sheremeta (2019) posits that things such as inequality aversion, spite, regret aversion, guilt aversion,
loss aversion (see also Chowdhury, 2019), overconfidence and other emotional responses could all be
important factors in (non-networked) attack and defense games. Preferences and biases have not received
substantial attention in the experimental or theoretical literature in these games, although it should be
noted that Chowdhury et al. (2013) and Kovenock et al. (2019) both find that utility curvature does not
appear to be an important factor in multi-target attack and defense games.

4 See Kosfeld (2004) for a survey of network experiments more generally.
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2 Theory and hypotheses
2.1 Attacker model

In order to describe the security manager’s (henceforth defender) problem, it is
necessary to describe and justify the assumptions we make about the nature of the
attacker that he faces. As our focus is on network defense by humans, in our main
experimental task we automate the role of the attacker and describe their decision
process to a human defender. We assume that the attacker observes the defender’s
decision, has some fixed capability of attack, and linearly weights probabilities.
While these assumptions may seem strong, they are consistent with a ‘worst-case’
approach, the motivation of which we now describe.

Due to the increasing inter-connectivity of cyber-physical systems to the out-
side world (e.g. through the internet), a defender faces a wide variety of possible
attackers who can differ substantially in their resources, abilities and methods. The
defender could undertake the challenging exercise of considering the attributes of
all possible attackers, but this would involve many assumptions that the defender
might get wrong. Instead, we assume that the defender takes a worst-case approach
and defends against a sophisticated attacker, so that he can achieve a certain level of
defense regardless of what type of attacker eventuates. The sophisticated attacker
can be interpreted as the aggregate of all attackers perfectly colluding. They may
also have the ability to observe the defender’s decision either through a period of
monitoring or by using informants. Taking a worst-case approach is common in the
security resource allocation literature (e.g. Yang et al. 2011; Nikoofal and Zhuang
2012; Fielder et al. 2014), as is the assumption that the attacker observes the defend-
er’s allocation.’

2.2 Defender model

The defender faces a network consisting of J total paths from the start node to the
critical node, with each edge belonging to one or more of the J paths. The defend-
er’s security decision is to allocate a security budget of B € R, units across the
edges; this is represented by a vector x with N elements, where N is the number of
edges. The edge defense function p(x;) is a production technology that transforms
the number of units allocated to edge i (denoted by x;) to the probability of stop-
ping an attack (from the worst-case attacker) as it passes along edge i. We assume
the defender has probability weighting from the one parameter model described in
Prelec (1998), i.e. w(p(x,);a) = exp[—(—log(p(x;)))*] with a € (0, 1], although our
findings hold with other ‘inverse-S’ shaped weighting functions (e.g., Tversky and
Kahneman 1992). For ease of notation we will frequently shorten w(p(x;);a) to w(p)

or w(p(x;)).

5 For example, Bier et al. (2007), Modelo-Howard et al. (2008), Dighe et al. (2009), An et al. (2013),
Hota et al. (2016), Nithyanand et al. (2016), Guan et al. (2017), Wu et al. (2018), and Leibowitz et al.
(2019).
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The defender gains a payoff of 1 if the critical node is not breached by the
attacker, and gains a payoff of 0 if the attacker breaches the critical node. As the
attacker observes the defender’s allocation and chooses the objectively most vulner-
able path (i.e. the attacker has a = 1), the attacker’s action directly follows from a
given allocation. However, the defender’s non-linear weighting of probabilities
(¢ < 1) may cause him to have a different perception about which paths are the most
vulnerable. Thus, the defender thinks the attacker will choose the path with the low-
est perceived probability of successful defense (from the defender’s perspective,
in accordance with their probability weighting parameter). The defender’s goal is
to maximize his perceived probability of successfully defending the critical node,
which is determined by his weakest perceived path. The defender’s optimization
problem depends on the network structure, edge allocations, edge defense function
p(x;), and his probability weighting parameter . We denote the defender’s overall
perceived probability of defense along path j as f;(x;a).

An attacker passing along an edge to reach a specific node is a separate and inde-
pendent event from all other edges.® We assume the defender applies his weight-
ing function to each probability individually before calculating the probability of
overall defense along a path. The defender ranks the event of stopping an attack
along a given edge higher than the event of an attack proceeding. Therefore, in
accordance with rank dependent utility (RDU) (Quiggin, 1982) and cumulative
prospect theory (CPT) (Tversky & Kahneman, 1992), he applies his weighting
function to the probability of stopping an attack along an edge (w(p)), and consid-
ers the other event (the attack proceeding) to have a probability of 1 — w(p). There-
fore, a path j with three edges has an overall perceived probability of defense of
fa) = wpG) + [1 = wpon)] [wp(n) + (1 = wp@)wps)}’ The

defender’s constrained objective problem is presented in Eq. (1).
argmax min{f;(x;a),f>(x;a), ..., [;(e)}

st x20,i=1,2,...,N (1)
ZévxisB

We now consider the impact that non-linear probability weighting by a defender
has on various network structures and defense production functions. We analyze the
situation in a general setting, before considering the experimental design that we
implement in the laboratory.

% The events are independent as each edge represents a unique layer of security that is unaffected by the
events in other edges/layers of security. Breaches of other layers of security can affect whether a specific
layer is encountered, but they do not change the probability that layer is compromised.

7 This approach is similar to the concept of ‘folding back’ sequential prospects, as described
in Epper and Fehr-Duda (2018) with regards to ‘process dependence’. The alternative (i.e.,
fia) = wpx,) + [1 - p(xl)] [p(xz) +(1- p(xz))p(x3)])) does not yield interesting comparative statics
in & due to the monotonicity of the probability weighting function, so we do not consider it further.
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2.3 Common edges

The described objective in Eq. (1) is a straightforward constrained optimization
problem. Unfortunately, the problem is analytically intractable and no closed-form
solution exists. Consider our first type of network structure, presented in Fig. 1. The
key feature of this network is that one of the edges is common to both paths, while
the other edges belong only to the top or bottom path. We denote x; = y, and assume
that v = x; = x, = x, = x5, an edge defense function of p(x;) =1 — e (where z is
some normalization parameter), and that v > 0, y > 0. Even with these simplifica-
tions and assumptions, taking the first order conditions of the associated Lagrangian
yields a set of equations that is intractable to solve for a closed form solution for
either y or v.® Fortunately, it is possible to numerically solve the defender’s opti-
mization problem. For example (and anticipating our experimental design), when
z=18.2, B =24 and @ = 0.6, the optimal allocationisv =x; =x, =x, = x5 = 1.26
and y = x; = 18.96. Appendix A provides more analysis on how the numerical solu-
tion is calculated and whether the solution is unique.

The main trade-off in this type of network is the allocation to edges that are com-
mon to both paths or to edges that are only on one path. Consider taking a small
amount e from the common edge x; and placing it on a non-common edge. Placing
the € only on one edge is non-optimal for any a, as the sophisticated attacker will
attack the weaker path, meaning e should be split across paths. This need to split
over paths reduces the marginal impact of units allocated to the non-common edges
on the overall probability of defense, making them relatively less attractive com-
pared to the common edge. However, with non-linear probability weighting (a < 1),
small probabilities are over-weighted, i.e. perceived to be higher than their actual
probabilities. This increases the perceived impact of units placed on non-common
edges, and can exceed the loss of having to split the allocation across more than
one path. This makes expenditures on non-common edges more likely for those with
non-linear probability weighting.

We can confirm this intuition numerically for a variety of edge defense functions.
We mainly consider concave functions in our experiment, which have a natural
interpretation of diminishing marginal returns of prodgction.g In particular, consider
the edge defense function from before (p(x;) =1 — e). Figure 2 plots the optimal
amount to allocate to the common edge for different values of z and different levels
of probability weighting a. At @ = 1 the optimal allocation is to place all B =24
units on the common edge. A defender with @ = 1 will always place all of his units
on the common edge for the exponential family of edge defense functions (Abdallah
et al., 2019b). As «a decreases, i.e., the defender exhibits increasing levels of non-
linear probability weighting, he places fewer units on the common edge (and more
units on the non-common edges).

8 Weighting the probability of a successful attack along an edge instead is analytically tractable as terms
conveniently cancel, as shown in Abdallah et al. (2019b). However, this would be inconsistent with how
events are ranked and weights are applied in RDU and CPT. Despite the lack of symmetry in the one
parameter Prelec weighting function, the qualitative comparative statics presented in Abdallah et al.
(2019b) have been numerically confirmed to hold in the current environment.

° Concavity and diminishing marginal returns is a common assumption in the computer security litera-
ture (e.g., Pal and Golubchik 2010; Boche et al. 2011; Sun et al. 2018; Feng et al. forthcoming)
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Consider next a non-exponential edge defense function p(x;) = (%)b, where z is

again a normalization factor and b € (0, ). If b < 1, this function is concave, if
b =11t is linear and if b > 1 it is convex. Figure 3 illustrates that regardless of the
convexity of the edge defense function, the amount allocated to the common edge
decreases as « decreases from 1. Note also that for concave functions of this form, it
is no longer optimal for @ = 1 defenders to place all of their allocation on the com-
mon edge. This is because the slope of the edge defense function for small values is
sufficiently steeper than the slope of the function when all units are allocated to one
edge. To see this, consider some p(x;) and denote the number of units allocated to
the non-common edges as v, and the number of units allocated to the common edge
as y. Denoting the overall probability of a successful defense as F(v, y), then:
Fo,y) =p(5) +(1=p(3))(p(5) + (1 =p(3))pO)). Taking the first order conditions:
LD = Ly (5)[1-p(2) - p@) - p(4)pe)] and L2 = p)[1-2p(3) +p(%)7] At the
boundary solution corresponding to v =0 and y = B, if p(0) =0 the above expres-
sions show that allocating all units to the common edge is optimal if
P’ (0)(1 — p(B)) <2p'(B), i.e., the marginal return to placing another unit on y
exceeds that of v at the boundary It follows that if the slope is sufficiently steep for

small v’s (i.e. p’(0) > 2 (5;)) then an & = 1 defender will allocate a strictly positive
10

amount to non-common edges.
These observations lead to our first testable hypotheses:

Hypothesis 1 The amount allocated to common edges (weakly) decreases as a
decreases from 1.

Hypothesis 2 If p'(0) > 2p ((BB)) (such as for a concave power function), then a deci-
sion-maker with linear probablllty weighting (a = 1) will allocate a strictly positive

amount to non-common edges.

We now present the three color-coded networks from our experiment that are
designed to explore these two hypotheses.

2.3.1 Network Red
Network Red employs the network structure presented earlier in Fig. 1, and has an edge

defense function of p(x;) =1— et According to Hypothesis 1, a defender with
a < 1 will place less than 24 units on the common edge, and the amount placed on the

OF(v.y) :
o against

10" Any a € (0, 1] defender is making a similar trade-off of aF;‘t"‘V)

, either equating them if the
solution is interior, or allocating to whichever is greater at the boundary. We do not present these first
order conditions here as they are not as succinct due to the presence of w(p;a), although we do report the
first order condition in Appendix A. Where exactly the trade-off is resolved depends on a as well as the
specific functional form of p(x;). This is why the optimal allocation differs over « for a given p(x;), as
well as over different p(x;) for a given a. Both patterns are displayed in Figs. 2 and 3.

' The normalization factor z = 18.2 was chosen such that 1 unit allocated to an edge would yield a com-
monly overweighted probability (p = 0.05), while 24 units allocated to an edge would yield a commonly
underweighted probability (p = 0.73).
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Fig.3 Allocation to common edge for p(x;) = (%)”

common edge is decreasing as a decreases from 1. For example, a defender witha = 0.5
will allocate x3 = 17.36, and x; = x, = x, = x5 = 1.66, while other a’s are displayed
graphically in Fig. 2 by the line associated with z = 18.2.!> According to Hypothesis 2,
a defender with @ = 1 would allocate x; = 24, and x; = x, = x, = x5 = 0.

12 These numerical solutions are continuous, although subjects were restricted to discrete (integer-val-
ued) allocations.
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2.3.2 Network Orange

Network Orange also takes place on the network shown in Fig. 1, but differs in having
an edge defense function of p(x;) = 1 — 311 i. The prediction for a defender with @ = 1
remains unchanged from Network Red. Because p(x;) < 0.46 Vx; € [0, 24], edge allo-
cations in Network Orange mostly result in probabilities that a defender with & < 1 will
overweight. Therefore, the predictions for a defender with a particular value of @ < 1
will differ from Network Red. For example, a defender with @ = 0.5 will now allocate
=14.92, and x; = x, = x4 = x5 = 2.27. The prediction for other a’s is displayed
in Fig. 2 on the line associated with z = 31.1. The change in the edge defense func-
tion increases the separation of behavior between moderate to high levels of non-linear
probability weighting, increasing our ability to detect differences between a types.

2.3.3 Network Yellow

Network Yellow also takes place on the network shown in Fig. 1. Tbe edge defense
function is now of a different concave functional form, p(x;) = o0 Unlike Net-
works Red and Orange, it is now optimal for a non-behavioral defender to allocate
units to the non-common edges, in accordance with Hypothesis 2. In particular, a
defender with @ = 1 will allocate x; = 15.64, and x; = x, = x4, = x5 = 2.09, while a
defender with @ = 0.5 will allocate x; = 12.68, and x; = x, = x4, = x5 = 2.83. Pre-
dictions for other a’s are presented in Fig. 3, on the line associated with z = 70,
b =04

Networks Red, Orange, and Yellow are jointly designed to test Hypotheses 1 and
2. In all three of these networks, the amount allocated to the common edge should
decrease as a decreases, according to Hypothesis 1. In Networks Red and Orange,
Hypothesis 2 predicts that those with @ = 1 should place all 24 units on the common
edge, while in Network Yellow, Hypothesis 2 predicts those with a = 1 should place
less than 24 units on the common edge.

2.4 Extraneous edges

Consider the network displayed in Fig. 4. The new feature of this network is the
edge denoted x;, which creates a third possible path from the red node to the green
node. In this network, a defender’s overall perceived probability of defense is:

F(xa) =min{w(p(x,);a) + [1 — w(p(x) ;)| w(p(x,):a),
w(p(x4);a) + [1 - w(p(x4);a)]w(p(x5);a),
w(p(xl);a) + [1 - w(p(xl);a)] [w(p(x3);a)
+(1 = wp(xs)sa) Jw(p(xs):a)] }

2
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Call the possible paths as top (through x, then x,), middle (through x,, then x5, then
Xs), and bottom (through x, then xs). The optimal allocation will always equalize
the perceived probability of successful defense for these three paths. Otherwise, the
defender could increase utility by allocating an infinitesimal amount from a non-
minimum path to the minimum path. Suppose x; =x, =x, = x5 = 8 The top, mid-
dle, and bottom paths all have the same perceived probability of successful defense
at this allocation. Taking an infinitesimal e from any (or all) of these edges and plac-
ing it on x5 increases the perceived probability of defense of the middle path, but at
the expense at the top and/or bottom path, which would now become the minimum
path.

This solution of x; =x, =x;, = x5 = g and x; =0 is unique for any a € (0, 1)
whenever the edge defense function has p’(x;) > 0 Vx,. For a = 1 with the exponen-
tial defense function the solution is not unique, since any combination that allocates
g to the top and bottom paths (which implies x; = 0) is an optimal solution.'® These
results lead to our next testable Hypothesis:

Hypothesis 3 The amount allocated to extraneous edges is 0, and is invariant in a.
2.4.1 Network Blue

Network Blue takes place on the network with an extraneous edge, as shown in
Fig. 4, with an edge defense function of p(x;,) =1—e 2. The edge defense function
for Network Blue (as well as the subsequent Network Green) is the same as Network
Red, which reduces the number of different edge defense functions subjects have to
consider in our within-subjects design. Network Blue is designed to test Hypothesis
3, as no subject with any a € (0, 1] should place any number of defense units on the
extraneous edge labeled x;. This network is useful to identify subjects with alterna-
tive behavioral biases.

2.5 Unequal path lengths

Consider the network displayed in Fig. 5. The key feature of this network is
the different number of edges on each path. With an edge defense function of
p(x;) =1—e=, a defender with linear probability weighting should place half of
his budget on each path. A defender with non-linear probability weighting, however,
will place less of his budget on the top path (with more edges), and more of his
budget on the bottom path (with fewer edges). To see the intuition behind this, con-
sider a case where the defender starts with his allocation split equally across the two
paths. Assume he spreads units allocated to a path equally across all edges in that
path, and that the edge defense function yields a probability of less than (i.e. the
Prelec inflection point) on each edge along the top path but more than X on each edge
along the bottom path. A defender with o < 1 over-weights small probabﬂltles and

13 Further details are presented in Appendix A.
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Fig.4 Network graph with an T2

extraneous edge (x3) 21 -
3

Z5

T4

perceives the small investments across the many edges along the top path as pro-
viding more protection that they actually do. Conversely, the a < 1 defender under-
weights large probabilities and perceives investments across the two edges along the
bottom path as providing less protection that they actually do. Consequently, such
a defender should reallocate his investment to equalize his perceived probability of
successful defense on the two paths, and this requires shifting some of the allocation
from the top path to the bottom path.

This is also true for any combination of the top and bottom path edge prob-
abilities that are above or below the inflection point of the probability weighting
function. If both are above the inflection point, the defender perceives both paths
as being weaker than they actually are, but perceives the bottom path as being rela-
tively weaker due to the more extreme under-weighting of larger probabilities. Simi-
lar logic applies if both probabilities are below the inflection point, since the over-
weighting is stronger for the smaller probabilities along the top path.

Again, the analytical solution proves intractable, but Fig. 6 shows the numeri-
cal solutions considering the total relative allocations to edges in the top and bot-
tom paths of the exponential edge defense functions of p(x;) =1-— e~ for vari-
ous values of z. The overall optimal allocation for a € (0, 1) occurs when equally
spreading the total allocation to a path across each edge along a path, and this
optimal allocation is unique. For example, for a = .9 the optimal allocation is
X, =Xy =Xx3 =X, =x5 =2.23, and x;, =x; = 6.43. For « =1 the solution is not
unique, as any solution that allocates 5 over the top and bottom paths is an optimal
allocation. These results lead to our final testable hypothesis:

Hypothesis 4 The total amount allocated to a path with more edges decreases as a
decreases from 1.

2.5.1 Network Green

Network Green takes place on the network shown in Fig. 5, again with an edge
defense function of p(x;) =1 — ensa. It is designed to test Hypothesis 4, as defend-
ers with @ < 1 should place fewer units on paths with fewer edges. For example, a
defender with @ = 0.5 would place x; =x, = x; = x, = x5 = 0.964 on each edge in
the top path, and xq = x; = 9.59 on each edge in the bottom path.

The most simple network that could address Hypothesis 4 is that of 2 edges for
one path and 1 edge for the other path. However, we deliberately exaggerated the
difference between the two paths in Network Green by having 5 edges on the top
path and 2 edges on the bottom path. This results in increased separation in pre-
dicted behavior between subjects with different a’s.
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Fig.5 Network graph with
unequal path lengths

Table 1 summarizes the predictions for all five networks in the experiment for
three levels of a.

3 Experimental design
3.1 Probability weighting elicitation

Our main ex ante research question as well as our hypotheses focus on how the level
of non-linear probability weighting affects security investment decisions. To directly
relate subjects’ allocation behavior to probability weighting, we would like some
external measure of probability weighting. In other words, we wish to have an accu-
rate measure of « that has good internal validity with the network security prob-
lem, while also not taking a substantial period of time away from the main Network
Defense Task.

Many ways exist to elicit an individual’s probability weighting parameter. Typi-
cally researchers control for or simultaneously elicit risk preferences (taken here to
mean the curvature of the utility function) when measuring probability weighting.
This is because the specific range of probability weighting parameters that are con-
sistent with a decision depends on the level of utility curvature assumed, and vice
versa. However, in the defender’s problem considered here, utility curvature does
not play a role as there are only two payoff outcomes. The defender either success-
fully defends the critical node, or does not. This means that the defender always
wants to maximize their (perceived) probability of the high payoff outcome, which
is invariant to utility curvature. Therefore, for the Network Defense Task we are not
concerned about risk preferences, other than to parse out their effect to obtain an
accurate measure of probability weighting.

With that in mind, we employ a new Network Affack Task as a way to measure
probability weighting. In this task, we have subjects swap roles, i.e., they encounter
a simplified version of this network environment in the role of an attacker against
a computerized defender. Not only does this elicitation task reduce the procedural
variance with respect to the main defense task, it also exploits the irrelevance of util-
ity curvature in situations with two outcomes.

Consider the network in Fig. 7, where the attacker’s goal is to successfully com-
promise the critical node, by choosing the top or bottom path to attack. The attacker
receives 3000 points for compromising the critical node, and 0 points otherwise,
meaning there are only two payoff outcomes. The numbers given on each edge rep-
resent the probability of a successful attack along this edge. Because the subject
plays the role of an attacker (who ranks a successful attack along an edge higher
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Difference between Units on Top and Bottom Paths
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Fig.6 Allocation to top (long) minus bottom (short) path for p(x;) = 1 —e=

Table 1 Theoretical predictions for selected a with B = 24
a=0.6 a=0.8 a=

1.26 O\QG‘ 0.4:
< o189 g

Network Red 1.2 OA/ZG' 0.4:
pla;) =1—eFt

1.8 O\KS-L‘ 0.69
1661 g .<
Network Orange 1.84 O/ .84 0.6

pla;) =1— et
13.2 O
Network Yellow 2.7 2.7 242
204
p(xi) = o
6 6 ) 6*
6 :k 0 O 6 % 0 6* :<0*
6 6 6*
e 6 6
p(x;) =1— et
Ottt > > > NPTy
o iotiol ON oo gm O\Q i OH-02q,,.
Network Green _ WO — WO — O,,ﬂf’:o

plz;) =1— et

Network Blue

*Any combination that allocates g units to the top and bottom paths is optimal for @ = 1

than an unsuccessful attack) in this preliminary task, he weights the probability of
successful attack along an edge when making his decision.

An attacker with a = 1 should choose the top path, which has a greater probability
of overall success than the bottom path (0.42 X 0.41 = 0.1722 > 0.06 = 0.06 x 1.00).
However, an attacker with @ < 1 may instead prefer to attack along the bottom path,
due to over-weighting 0.06 and under-weighting 0.41 and 0.42. Assuming that the
attacker applies his probability weighting function to each individual probability
and then calculates the probability of success of each path, then the attacker would
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Fig.7 Network attack task 0.4 O\%i
example Start < @ End
0.06

1.00

choose the top path if @ > 0.597 and the bottom path if « < 0.597. By asking for
multiple responses with different probabilities (which imply different @ cutoffs),
can be bounded.

Using a dynamic bisection or staircase method could recover increasingly tight
bounds on a, assuming subjects respond without error. Of course, subjects typically
exhibit some level of noise in their decisions. Any mistake, especially early on in the
elicitation procedure, would cause a bisection method to never be able to recover
the subject’s true a. A dynamic method that allows for the subject to make some
errors is the dynamically optimized sequential experimentation (DOSE) method,
as described in Chapman et al. (2018). In DOSE, the most informative question is
asked based on the current Bayesian update of the subject’s parameters. The sub-
ject’s response is then used to update the current belief that the subject is of a given
type, and this is then used to ask another question. The DOSE process recovers from
errors as specific a types are not ruled out completely as being the subject’s true type
after an inconsistent response. Therefore, a subject’s consistent future responses can
raise the procedure’s belief of the true type, and adapt future questions accordingly.
DOSE always asks the most informative question given the current belief distribu-
tion over types, meaning that fewer questions are required for an accurate measure.
A full description of the DOSE procedure that was implemented for this task is pre-
sented in Appendix B.

One potential concern with the Network Attack Task is that calculating the prob-
ability of a successful attack along a path is simply a case of multiplying the proba-
bilities along the path.'* Subjects may instead perform this step before applying their
subjective probability weighting, instead of after as we have assumed. We therefore
take two steps to make it more difficult for a subject to trivially multiply along paths.
First, we avoid using probabilities that are more easily multiplied together (such as
those that end in multiples of O or 5). Second, we did not allow subjects to use writ-
ing utensils or calculators during this task.

In our analyses we focus on a estimates from this Network Attack Task because
it reduces procedural variance from the main Network Defense Tasks and focuses
solely on probability weighting. We also measured @ using binary lottery choices
derived from multiple price lists (MPL) used to measure probability weighting (e.g.,
Tanaka et al. 2010; Bruhin et al. 2010). Subjects choose between two lotteries one
at a time (i.e., consider one row of an MPL in isolation), again using the DOSE
procedure, also estimating an additional risk preference parameter. Details are also
presented in Appendix B.

4 Another potential issue for both tasks is that subjects may not understand this point at all, instead of
finding it simple. The number of such subjects should be limited due to our subject pool being drawn
from a university student population.
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3.2 Network defense tasks

For the Network Defense Tasks, subjects had a 24 ‘defense unit’ budget to use each
period. These defense units could be allocated in integer amounts across edges.
Defense units not used in one period did not roll over to the next period (i.e., this
was a ‘use it or lose it’ situation). Subjects could submit a defense allocation of less
than 24 units, but the software would prompt them to confirm they actually wanted
to submit such an allocation.'> Subjects chose the number of defense units to allo-
cate to an edge using a dropdown menu that automatically updated the possible
options based on the remaining number of units available. The initial value of this
dropdown menu was not a number, meaning subjects had to make a selection for
each edge, even if the desired allocation was zero. An example of the interface is
shown in Appendix F. Subjects play each of the five different networks 10 consecu-
tive times to allow for some feedback and learning. The ordering of these five blocks
was varied randomly across subjects.

3.3 Procedures

The experiments were conducted at the Vernon Smith Experimental Economics
Laboratory (VSEEL). In total, 91 subjects participated, all students at Purdue Uni-
versity recruited from a subject database using ORSEE (Greiner, 2015).'® Subjects
received a packet of written instructions, some of which were printed on color paper
that aligned with the color of the Network Defense Task.!” Subjects were instructed
to refer to specific instructions when the software (implemented in olree (Chen
et al., 2016)) prompted them to do so. Subjects participated in the Binary Lottery
Task first, followed by the Network Attack Task. During these first two tasks, as
noted above subjects were not allowed to use calculators or writing utensils, and this
was strictly enforced. Subjects then completed the colored Network Defense Tasks
in an order that was varied randomly and unique to each subject. Subjects could
request a calculator and pen from the experimenter during the Network Defense
Tasks, due to the increased computational difficulty of these tasks. To simplify prob-
ability calculations, the instructions included a table for every network indicating
how allocated defense resources mapped numerically into defense likelihood for any
edge.

All payoffs were denoted in experimental points, with 350 points = $1.00. Subjects
received 3000 points in a round for successfully reaching the end node in the Network
Attack Task, and 1500 points for successfully preventing the computerized attacker
from reaching the end node in a Network Defense Task. One round from each task
was randomly selected for payment at the end of the experiment. Subjects were able to

15 In only 5 of the 4550 total decisions did subjects allocate less than all 24 units.

'6 Due to an error with the software, decision times were not recorded for 4 subjects. For consistency,
we present our results only considering the remaining 87 subjects. Where the inclusion of decision times
is not necessary, our results do not substantially change if the dropped observations are included.

17 These instructions are available in Appendix G.
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proceed through the tasks at their own pace, with most taking between 30-90 minutes
(about 45 minutes on average) and earning an average of $20.10. To ensure subjects
had read the instructions carefully, before each Network Defense Task subjects were
asked to report the probability of two randomly selected rows (one from 1-12, one from
13-24) of the edge defense function for that task, and were paid an additional 50 points
if they answered correctly.

4 Results

We begin the results with an overview of the probability weighting () elicitation
from the Network Attack Task. We then consider the consistency of subject behavior
between and within the Network Attack Task and Network Defense Tasks, including
non-parametric tests of our Hypotheses. We then present a cluster analysis to broadly
summarize the heterogeneity in the strategies that subjects employ. This identifies other
possible biases that subjects exhibit. Finally, we present a regression analysis on key
defense allocations that controls for the identified biases and other important factors
like cognitive ability and decision time.

4.1 Network attack task

The main purpose of the Network Attack Task is to obtain an estimate of an individual
subject’s probability weighting, parameterized by a. A useful comparison point for our
results comes from Bruhin et al. (2010), who estimate a finite mixture model on cer-
tainty equivalents for lotteries elicited over many Multiple Price Lists. They find evi-
dence for two groups, with approximately 20% of subjects exhibiting near linear prob-
ability weighting, and the remaining 80% of subjects exhibiting non-linear probability
weighting.

Figure 8 presents the CDF for the subjects’ elicited a’s from the Network Attack
Task. Considerable heterogeneity exists in the degree of non-linear probability weight-
ing, so our Hypotheses predict heterogeneity in the Network Defense Tasks as well.
Considering the quintiles of the distribution, we have 20% of subjects with a > 0.95,
20% with 0.90 < @ < 0.95, 20% with 0.80 < a < 0.90, 20% with 0.64 < a < 0.80,
and finally the bottom quintile with « < 0.64. This suggests the presence of both rela-
tively linear and non-linear probability weighting groups. Our results are in line with
the 20% of subjects exhibiting linear weighting as in Bruhin et al. (2010), albeit with
our second highest quintile being somewhat linear as well.

Result 1 Considerable heterogeneity exists in the inferred a from the Network Attack
Task. The quintile cutoff points are a = 0.64, « = 0.80, = 0.90, a = 0.95.
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4.2 Network defense tasks
4.2.1 Summary

Figure 9 presents the CDF’s of mean defense allocations for key subject decisions
in each of the five Network Defense Tasks. This also indicates substantial heteroge-
neity in subject behavior. In the Red and Orange networks, 26.4 and 16.1% of sub-
jects respectively allocate all units to the common edge, and this fraction of subjects
decreases to 13.8% in Network Yellow. This suggests that a relatively small propor-
tion of subjects exhibit behavior consistent with an a near 1. However, about 40% of
subjects in all three of these networks allocate less defense to the common edge than
can be justified even for very low levels of «, suggesting a role for additional behav-
ioral biases. About one-third of subjects allocate no units to the extraneous edge in
Network Blue, in accordance with Hypothesis 3, while 46.0% allocate more than 1
unit on average to the extraneous edge. This again suggests a role for other behavio-
ral biases. The Network Green CDF indicates that 19.5% of subjects allocate equal
amounts to the top and bottom paths, consistent with « = 1, and 25.3% of subjects
allocate less units to the top path, consistent with @ < 1. However, over half of the
subjects allocate more to the top path (and many quite substantially so), which is the
opposite of what Hypotheses 4 predicts for @ < 1. Overall, the CDFs provide some
casual evidence in support of probability weighting playing a role in subject behav-
ior, but that other biases appear to influence behavior as well.

4.2.2 Subject consistency and non-parametric tests

We first consider individual subject consistency between and within network
defense and attack tasks. Recall that our measure of « is derived from the Net-
work Attack Task, which we use to test our Hypotheses in the Network Defense
Task. Table 2 presents the non-parametric Spearman’s p between the elicited
probability weighting («) and decision noise (4) from the Network Attack Task
and key average subject behavior in each of the Network Defense Tasks.'®!
The decision noise parameter A is estimated by the logit function, a commonly
used structure in Quantal Response Equilibria (McKelvey and Palfrey 1995).2
A higher A is consistent with less noisy behavior, meaning subjects choose their
payoff maximizing action more frequently. Table 2 indicates consistency within
the Network Defense Tasks as correlations are strongly statistically significant in
all but one of the pairwise comparisons between these tasks. We also observe

18 We consider the same analysis including the Binary Lottery Task in Appendix D. The elicited a’s of
these tasks are not correlated (p = 0.166, p = 0.117), suggesting the procedural differences are impor-
tant, or that cognitive ability may play a role.

19 Unless otherwise stated, all p-values and statistical tests are two-sided.
2 1 - 1 .
0 PVOb(TOp) = FFwErTTmT— if U(TO,D) > U(Bottom), Prob(Top) = T oAU Gorom Ui otherwise, where

U(Top) is the weighted then compounded probability of successful attack multiplied by the payoff from a
successtul attack.

@ Springer



D. Woods et al.

Fraction of Subjects
© o o © o o o r
w » w o ~ © o o

o
N

0.1

0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0
Estimated a

Fig.8 CDF of elicited a from the network attack task

consistency between behavior in the Network Attack and Defense Tasks, with the
leftmost column of Table 2 reporting statistically significant correlations in all
but one comparison.

We now consider non-parametric tests of Hypotheses 1, 3, and 4, all of which
are included in the leftmost column of Table 2. The elicited a from the Network
Attack Task is strongly and significantly correlated with defense in all Network
Defense Tasks except Network Yellow.?! The correlations of a with the common
edge networks are positive, consistent with Hypothesis 1. The negative correla-
tion in Network Green indicates that subjects with estimated a’s closer to 1 tend
to place less defense on the top path. This is the opposite of Hypothesis 4. The
negative correlation in Network Blue for defense resources placed on the extrane-
ous edge provides evidence against Hypothesis 3. This suggests that our external
measure of a from the Network Attack Task also captures some element of cogni-
tive ability. This interpretation is consistent with the strong correlation of deci-
sion noise (4) with probability weighting (a).

To conduct a non-parametric test of Hypothesis 2, we use the Wilcoxon
signed-rank test. In particular, we compare the paired observations of an indi-
vidual subject’s average allocation to the common edge in Network Yellow to
Networks Red and Orange. According to Hypothesis 2, those with an a close
to 1 should exhibit a particularly pronounced decrease in this key allocation for
Network Yellow. As we have a clear directional theoretical prediction we report
one-sided p-values for this test. Considering subjects with an estimated o > .9
(i.e. the 40th percentile closest to the linear @ = 1), we find a statistically signifi-
cant decrease at the five percent level when testing Network Red against Yellow

21 The lack of a significant correlation in Network Yellow is not necessarily surprising, due to the delib-
erate reduction of the separation of & types in this network to evaluate Hypothesis 2.
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Fig.9 CDFs of per-subject average behavior across all rounds in the network defense tasks

(p = 0.031), as well as when we test Network Orange against Yellow (p = 0.017).
We find no similar difference in subjects with an estimated « < .9 (p = 0.451 and
p = 0.447 respectively). These results are robust at the five percent level for any «
cutoff € [0.86,0.95] (see Appendix C).

Result 2 The probability weighting parameter a is positively correlated with alloca-
tions to the common edge in the Red and Orange Networks, consistent with Hypoth-
esis 1. Subjects with a > 0.9 allocate less to the common edge in Network Yellow as
compared to Networks Red and Orange, consistent with Hypothesis 2. a is negatively
correlated with allocations to the extra edge in Network Blue and the top path in
Network Green, inconsistent with Hypotheses 3 and 4.

These initial results should be considered more as a guide to the analysis
rather than an exhaustive test of our hypotheses. For instance, the Spearman cor-
relation is a bivariate measure that does not control for any other possible biases
and observed characteristics of the subject. We therefore conduct a cluster anal-
ysis in the following subsection to identify additional biases. We then conduct a
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Table2 Spearman’s p correlation table

a A Red Orange Yellow Blue extra
common common common edge
edge edge edge
A p=0.764"* p=1
Red common  p =0.260" p=0.151 p=1
edge
Orange com- p=0.226" p=0.056 p=0.654"* p=1
mon edge

Yellow com- p=0.072 p=-0.058 p=0.622""* p=0.646"* p=1
mon edge
Blue extra edge p = —0.286™* p = —0.230** p = —0.352"* p = —-0.308"* p=-0.112 p=1

Green top— p=-0255" p=-0.139 p=-0.241" p=-0.292""* p=-0.237" p=0.241"
bottom

*p<0.10,* p < 0.05,** p < 0.01

regression analysis that controls for the identified biases and other factors like
cognitive ability.

4.2.3 Cluster analysis

The previous subsection documents that probability weighting is associated with
defense misallocation in this network defense environment, but not always in the
manner originally hypothesized. Other behavioral biases also appear important, but
these biases are not clear ex-ante. It is also likely that subjects exhibit heterogeneity
in these biases and that these biases may interact, making them difficult to predict
or otherwise identify. One way to summarize general patterns of subject behavior
is using a cluster analysis. In particular, we use the method of Affinity Propagation
(Frey & Dueck, 2007), which endogenously determines the number of clusters. We
cluster at the session level, i.e., a subject’s average behavior across individual net-
works, as we consider their behavior to be related across tasks.?>

Table 3 presents the ‘exemplar’ of each of the 10 clusters, summarizing an indi-
vidual subject’s behavior that is the most representative of that cluster. The leftmost
column presents the percentage of subjects represented by that cluster, alongside a
descriptive name to aid exposition.

Clusters 1 and 2 appear largely consistent with an a = 1, meaning that approxi-
mately 17% of subjects exhibit linear probability weighting through their network
defense decisions. This is close to the 20% as reported in Bruhin et al. (2010).

The cluster analysis identifies three additional biases, which along with probabil-
ity weighting can describe the behavior of the cluster exemplars. The first bias is that
of naive diversification: when subjects are given n options to invest in, they have a

22 We also cluster at the individual network task level in an alternative estimation presented in Appendix
E. That analysis identifies similar patterns of behavior.
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Table 3 Cluster analysis

Cluster Name Network Red Network Orange Network Yellow Network Blue Network Green
. 03 17
0.0,AAN04 00,AN03 09AA09 120 92
83 86 04 00,
0—0 0—0 0—0 120 0
C1: Near Optimal o = 1 - Late Revelation 004 y03 0.0%Y00 09 Y09 00 96
12.60%
X TNy 10,000 uw
288 C 210 ' 200 1207\00
C2: Near Optimal o = 1 - Early Revelation 003y 01 00400 1% Y10 10

46

C3: Late Revelation - Some Diversification
46

C4: Naive Diversification
16.1%

(C5: o< 1- Some Diversification
126%

(6: Early Revelation - Some Diversifiation
9.2

C7: o <1- Mild Divensification
161%

C8: Naive Diversification and Late Revelation
5.7

(Y: Late Revelation - mild Diversification
138%

C10: Early Revelation - mild Diversification
46

Left column displays the percentage of subjects classified in each cluster. Numbers on edges denote aver-
age DU (out of 24 total) allocated by the exemplar subject for that cluster

tendency towards investing 1/z units to each option (Benartzi & Thaler, 2001). Note
that this is especially naive naive diversification, as the edges do not represent dif-
ferent assets, just different ways to protect the same asset (the critical node). Naive
diversification explains Cluster 4 particularly well, but can also explain situations
where less units are placed on the common edge that can be justified by probability
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weighting alone. A defender with @ < 1 as well as some mild preference towards
evening out his allocation on the common and non common edges would place even
less on the common edge than his level of @ would predict. Some level of naive
diversification clearly explains non-zero allocations to the extraneous edge in Net-
work Blue. Naive diversification can also explain the tendency for subjects to place
more units on the top rather than the bottom path in Network Green; as the top path
has more edges, a 1/n heuristic would place more units overall on the top path.

The second and third biases are related to each other, and we term them early or
late revelation of the overall outcome. Early revelation means that subjects try to
stop the attack as soon as possible, and thus allocate more to edges nearer to the start
node on the left. Clusters 6 and 10 are good examples of early revelation. Late reve-
lation is the opposite, referring to subjects that allocate more units to edges nearer to
the critical node, as exemplified by Cluster 9. Early revelation can explain an exces-
sively low allocation to the common edge, in a manner similar to naive diversifica-
tion except that more units are placed on the front two non-common edges instead
of equally to all non-common edges. Late revelation can explain the failure of some
subjects to reduce their common edge allocation in Network Yellow. Note that, like
the naive diversification bias, this is an especially naive preference as the outcome
is revealed immediately after the allocation decision is made, and importantly, all at
once. In the experiment there is no animation that sequentially displays the attack-
er’s progress. Therefore, holding anticipatory emotions such as dread over a period
of time is minimized within an attack.?* The concepts of early and late revelation are
related to the literature on anticipatory utility with regards to the revelation of uncer-
tainty (e.g., Loewenstein, 1987; Caplin & Leahy, 2001).

4.2.4 Regression analysis

The cluster analysis identifies additional biases that may interact with probabil-
ity weighting and influence subject behavior. To address more directly our origi-
nal hypotheses regarding the behavioral implications of probability weighting, we
account for these other biases by including appropriate measures in a regression
analysis. In addition to these control variables, we include additional independent
variables to investigate systematically how they influence behavior.

Ex-ante we did not anticipate the additional biases, and therefore did not spe-
cifically design separate elicitation tasks to identify them. Fortunately, our Blue and
Green networks allow us to measure subjects’ naive diversification and early/late
revelation preferences, which can then be used as controls when considering behav-
ior in other networks.

Our main naive diversification measure is calculated from a subject’s allocation
to the extraneous edge in Network Blue. Specifically, we calculate each individual’s
average allocation to this extra edge. However, this measure clearly does not work
for Network Blue, as it is based on behavior in this network. Therefore, in order to

2 Tt is of course possible that subjects are playing out the attack process in their imagination, while
reading the outcomes sequentially.
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Table 4 Tobit regression analysis

Red common Orange Yellow Blue extra Green top—
edge common common edge bottom
edge edge
a (attacker task) 15.89 19.06* 27.86"* —3.928 — 4.341*
(1.28) (1.66) (2.73) (-1.19) (-2.24)
1 (attacker task) —0.0110 —0.0220 —0.0823*** —0.0116 0.00745
(—0.30) (—0.65) (—2.78) (-1.12) (1.30)
Naive diversificationt ~ — 3.395"* —2.830" - 1.713" 1.425 0.578"*
(-3.13) (—2.81) (—-2.04) (4.10) (3.40)
Early revelation* — 11.24% —9.604""* — 12747
(=3.65) (—3.34) (-5.32)
Time spent on decision — 0.0119 — 0.0220%* —0.00924 0.00133 —0.000939
(—1.46) (—2.05) (-1.21) (0.44) (—0.32)
Total time spent on —0.00492 —0.00598 —0.0109 —0.00604**  0.000438
instructions (=0.57) (=0.74) (-1.61)  (-2.53) 0.33)
Age —0.144 0.492 0.615* 0.0103 0.0646
(—=0.31) (1.13) (1.65) (0.08) (0.89)
Born in USA - 1.107 —4.795* —2.621 1.081 —0.898"
(-0.35) (—1.66) (—1.09) (1.28) (—1.86)
Period 0.188" 0.4917* 0.0911 — 0.246"** 0.0110
(2.18) (4.28) (1.1 (-5.15) 0.22)
Male 3.908 3.978 1.763 —1.351 —0.200
(1.25) (1.39) 0.73) (—1.58) (—0.41)
Economics major 8.190 3.155 3.147 0.114 1.167
(1.34) (0.56) (0.66) (0.07) (1.23)
Engineering major 9.388** 7.358* 3.273 1.523 — 1.887%**
(2.03) (1.72) (0.92) 1.15) (=2.63)
Science major 2.574 3.318 1.476 1.443 —0.500
(0.56) 0.77) 0.41) (1.14) (—0.70)
Management major —3.095 —-0.754 —3.492 —0.0188 —1.034
(—0.63) (—=0.17) (—0.92) (—=0.01) (-1.34)
GPA > 3.5 2.108 — 6.652** 1.431 0.514 - 0479
(0.70) (—2.38) 0.61) 0.62) (-1.02)
Graduate student 3.447 —3.169 —4.232 - 1.117 0.0124
(0.81) (—0.81) (-1.27) (—0.94) (0.02)
Constant 8911 —2.588 —9.053 10.54* 3.125
(0.56) (—=0.17) (-0.70) (2.49) (1.24)
Observations 870 870 870 870 870

t Statistics in parentheses
*p<0.10," p <0.05, " p <0.01
fGenerated from Blue for Red, Orange, and Yellow, and from Green for Blue.

iGenerated from the average of Blue and Green
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obtain a measure of naive diversification for Network Blue, we use behavior from
Network Green. A fully naive individual would allocate 27—4 = 3.4 units to each edge
in Network Green, so we calculate the average absolute distance of each edge from
this equal spread. A fully naive individual would have a measure of 0, and the most
extreme optimal allocation of 12 units to one top and bottom edge would have a
measure of 225802 — 4 88 We then multiply this measure by —1, so that the com-
parative static is comparable with the measure based on Network Blue, which has
naive individuals having a higher (rather than lower) value of this measure.

For early/late revelation we consider the Blue and Green networks without
the common edge, as expressing this preference is far less costly in these net-
works. Furthermore, early and late revelation should not impact allocations to
the dependent variable in the regressions for Networks Blue and Green, so we
omit this particular independent variable for those networks. The early revelation
measure is based on the ratio of units allocated to the nearest two edges to the
start node, and the nearest two edges to the critical node, averaged for the Blue
and Green networks.

The regressions also add variables to account for cognitive ability, as the
results from Table 2 suggest that @ may be picking up some measure of cognitive
ability.>* We include information self-reported by subjects in a post-experiment
survey, such as field of study, a high GPA, and whether a subject is a graduate
student. We also include decision times and time spent with the instructions, as
this may be correlated with subjects’ understanding. Finally, we note that gender
is of particular interest ex-ante based on previous observations that women tend
to exhibit greater non-linear probability weighting on average than men (Fehr-
Duda et al., 2006; Bruhin et al., 2010; Fehr-Duda et al., 2011).

Table 4 reports a series of censored tobit regressions, with the dependent vari-
able for each network corresponding to the key summary statistics shown earlier
in Fig. 9: the allocation to the common edge for Networks Red, Orange, and Yel-
low, the allocation to the extraneous edge in Network Blue, and the difference in
allocations to the top and bottom paths for Network Green. The regressions are
censored at 0 to 24 for all networks except Network Green, which is censored -24
to 24.

The top row shows the effect that our measure of probability weighting (a,
estimated from the Attacker task) has after controlling for the identified addi-
tional biases and the other subject characteristics. Consistent with Hypothesis 1,
amounts allocated to the common edge in Networks Red, Orange and Yellow are
increasing in a. These coefficients are statistically significant in Networks Orange
and Yellow, but not in Network Red. These results provide partial further evi-
dence in support of Hypothesis 1 when combined with our correlation results.
According to Hypothesis 3, @ should not have an effect on the amount allocated
to the extra edge in Network Blue. After controlling for naive diversification,
we no longer find a statistically significant affect of a on this allocation. Finally,

24 Choi et al. (2018) reports evidence suggesting a correlation between cognitive ability and probability
weighting.
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Hypothesis 4 predicts that increasing @ should increase the amount allocated to
the top path in Network Green. While there is a statistically significant affect of «,
it is not in the direction predicted by Hypothesis 4. This is surprising because the
regression controls for naive diversification, which should account for some sub-
jects’ tendency to allocate relatively more to the top path than the bottom.

Result 3 After controlling for other biases, a is a statistically significant predictor of
behavior in Networks Orange and Yellow (evidence in support of Hypothesis 1), and
not in Network Blue (evidence in support of Hypothesis 3). a is a statistically sig-
nificant predictor of behavior in Network Green, but in the opposite direction than
predicted (evidence against Hypothesis 4).

We now consider the impact of naive diversification, which is predicted to
decrease the amount allocated to the common edge, increase the amount allocated
to the extra edge in Network Blue, and increase the amount allocated to paths
with more edges (i.e. the top path in Network Green). Table 4 shows that naive
diversification has a negative and significant impact on the amount allocated to
the common edge in all three common edge networks. Naive diversification also
has a positive effect on the number of units allocated to the extra edge in Network
Blue, and to the top path in Network Green, all as predicted.

Result 4 A higher level of preference for naive diversification is correlated with a
lower allocation to the common edge in Networks Red, Orange, and Yellow. It is also
correlated with a higher allocation to the extra edge in Network Blue, and the longer
top path in Network Green.

Finally we consider early/late revelation, which only impacts the dependent vari-
able for the common edge networks. Early revelation is predicted to decrease the
amount allocated to the (late) common edge. The results show that a preference for
early revelation has a strong and highly significant negative effect on the amount
allocated to the common edge in all common edge networks.

Result 5 A higher preference for early revelation, measured using Networks Blue
and Green, is correlated with a lower allocation to the common edge in Networks
Red, Orange, and Yellow.

The other independent variables include a period variable to capture the time
trend, which suggests that some learning occurs as subjects gain experience with
a particular network. The only other independent variable that is statistically sig-
nificant over more than two networks is whether the student was an Engineering
major, which has a statistically significant effect in the direction of optimal behavior
in three networks. This suggests that cognitive ability or mathematical sophistica-
tion could promote better understanding and performance in this network defense
problem.
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5 Conclusion and discussion

Cybersecurity and network defense is becoming increasingly important for eco-
nomic, social, and even political activity. Both the financial and non-pecuniary costs
of successful cyberattacks can be substantial, and thus it is important to minimize
their likelihood. We investigate how behavioral biases, in particular probability
weighting, could lead to sub-optimal defense allocations. We modeled the situation
as a directed network graph, to capture in a simple way some trade-offs that security
professionals face. Probability weighting has differing effects on various network
structures and defense functions, which generates testable hypotheses. We found
that a separately elicited measure of probability weighting () has a statistically sig-
nificant correlation with key defense allocations in most Network Defense Tasks,
including a network where probability weighting is predicted to have no effect.
Motivated by this finding, we used a cluster analysis to identify additional biases
that could also influence defense behavior. We identify preferences for naive diver-
sification and for earlier or later revelation of attack outcomes. Controlling for these
biases and other subject characteristics, we find evidence that probability weighting
has predictive power in this environment, as as do preferences for both naive diversi-
fication and early/late revelation.

An important question is how applicable are the findings from our student sub-
ject pool for security experts. We are not excessively concerned about this for sev-
eral reasons. Firstly, a security expert may exhibit ‘other-evaluation’ (Curley et al.,
1986). In the event of a successful attack, a security expert must justify his decision
to others within his or her organization. If these other individuals exhibit biases,
the expert may allocate in accordance to these biases to more easily justify their
decision post-attack. Secondly, even if security experts exhibit fewer or weaker
biases, given the magnitude of potential losses even very small biases could have a
large impact on welfare. Finally, the empirical evidence on differences in behavior
between students and experts is weak. Fréchette (2015) conducts a survey of experi-
ments that considered behavior of students compared to experts in a wide variety of
professions. This survey reports only one out of thirteen considered studies found
that professionals make decisions more closely in line with standard economic
theory. Considering security professionals specifically, Mersinas et al. (2016) find
that while security professionals do calculate expected values better than students,
they also exhibit systematic biases such as ambiguity aversion and framing effects.
We therefore consider the findings from our student subject pool to be sufficiently
informative and useful to be taken seriously by cyber-security researchers.

Another important question is how robust our findings are to learning. We find
some evidence of learning in our networks, suggesting that biases may reduce over
time as subjects receive feedback and become more familiar with the task. The ques-
tion is whether these biases vanish in the long run, or whether they persist. The ten
rounds used for each network environment is likely insufficient for subjects to fully
learn given the complexity of the environment. The number of rounds was a practi-
cal constraint, trading-off time spent in the lab against the overall number of network
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structures. It would be interesting to see how behavior evolves over longer repeti-
tions of play, but that is beyond the scope of this paper.

There are many possible avenues for future research. First, theoretical work could
incorporate the additional biases into a model over directed networks. This would
be a very challenging endeavor. For example, consider observing an allocation of
2 on each non-common edge and 16 on the common edge in Network Red. A wide
variety of situations could be consistent with this allocation, such as a = 0.66, or
any a € [.66, 1] with some level of naive diversification, or an @ < .66 but with some
preference for late revelation, or @ = 1 having mild diversification preferences inter-
acting with a stronger preference for late revelation, and so on. Adding to this com-
plexity, it is not clear how the additional biases should be defined across different
types of networks, or how they should interact with each other. For example, con-
sider a subject who consistently places 2 units on the extraneous edge in Network
Blue. This subject clearly has some preference for diversification, but what does that
imply for his decision in Network Red? Many possibilities exist. He could be facing
a minimum constraint of 2 units per edge to satisfy a diversification preference, or
he could allocate 2 units to each edge initially and allocate the remaining 14 units
according to his weighting parameter « (either disregarding or regarding the 2 units
already allocated). Or he could be willing to give up a small amount in terms of per-
ceived probability from his optimal strategy in order to more evenly spread his allo-
cation, etc. Although there are many different ways that this could be modeled over
different networks, the literature currently offers no guidance for explicit functional
forms over directed networks to discipline these modeling decisions.

A second line of future research could incorporate strategic considerations by
having human decision-makers interact with each other, in either roles of attacker
and a defender, or multiple defenders on the same network defending the same or
different critical nodes. For example, it may be in a defender’s best interest to allo-
cate his resources differently if he believes the attacker to have a < 1. Alternative
network structures in both the Network Defense and Network Attack Tasks could
also be worth investigating, particularly in light of the identified naive diversifica-
tion and early/late revelation biases. Third, it is not clear why a has a significant
impact of behavior in Network Green in the opposite direction that is predicted.
It may be the case that our elicitation of « is only picking up on cognitive ability.
Future research could investigate why results from Network Green are anomalous,
perhaps with an alternative elicitation of « or naive diversification or additional con-
trols of cognitive ability. Finally, the effect of probability weighting in more stand-
ard attack and defense games has not yet received much attention. Given the empiri-
cal relevance of it in the current environment, this may prove to be an interesting
avenue to explore.

Supplementary Information The online version supplementary material available at https://doi.org/10.
1007/s10683-021-09714-x.
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