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Abstract
How do people distribute defenses over a directed network attack graph, where they 
must defend a critical node? This question is of interest to computer scientists, infor-
mation technology and security professionals. Decision-makers are often subject to 
behavioral biases that cause them to make sub-optimal defense decisions, which can 
prove especially costly if the critical node is an essential infrastructure. We posit that 
non-linear probability weighting is one bias that may lead to sub-optimal decision-
making in this environment, and provide an experimental test. We find support for 
this conjecture, and also identify other empirically important forms of biases such as 
naive diversification and preferences over the spatial timing of the revelation of an 
overall successful defense. The latter preference is related to the concept of anticipa-
tory feelings induced by the timing of the resolution of uncertainty.
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1  Introduction

Economic resources spent on securing critical infrastructure from malicious 
actors are substantial and increasing, with worldwide expenditure estimated to 
exceed $124 billion in 2019 (Gartner 2018). Cybersecurity defense is becoming 
increasingly difficult, as systems are frequently connected to the outside world 
through the Internet, and attackers innovate many new methods of attack. The 
interaction of computers, networks, and physical processes (termed ‘Cyber-Phys-
ical Systems’, or CPS) has a wide variety of applications, such as manufactur-
ing, transportation, medical care, power generation and water management (Lee, 
2015), and has both practical and theoretical importance. Proposed CPS such as 
the ‘Internet of Things’ promise vast benefits and efficiencies, but at the cost of 
increased attack vectors and targets (see Alaba et al., 2017; Humayed et al., 2017 
for surveys). To realize the potential gains that these new technologies can pro-
vide, we must understand and maximize their security.

To reduce interference with their systems, institutions allocate a security 
budget and hire managers responsible for minimizing the probability of success-
ful attacks on important assets and other vital parts of the infrastructure. Such 
decision-makers, however, are subject to behavioral biases that can lead to sub-
optimal security decisions (Abdallah et  al., 2019a, b; Acquisti & Grossklags, 
2007). Human decision-makers can exhibit many possible biases. The security 
decisions they face broadly involve probabilistic assessments across multiple 
assets and attack vectors, many featuring low individual likelihood. We therefore 
ex-ante focus on the possibility that people incorrectly weight the actual prob-
ability of attack and defense (Tversky & Kahneman, 1992). We ex-post find that 
people also exhibit locational and spreading biases in their defense resource allo-
cations, due to the directional and compartmentalized nature of these systems. 
Given the immense size of global expenditures on cybersecurity, as well as suc-
cessful attacks being potentially very damaging, it is important to understand the 
nature and magnitude of any biases that can lead to sub-optimal security deci-
sions. Such insights on biases can then be applied by security professionals to 
reduce their impact.

We focus on human biases as infrastructure security decisions have not yet 
been given over to algorithmic tools. They are still mostly made by human secu-
rity managers (Paté-Cornell et  al., 2018). Adoption of automated tools are sty-
mied by legacy components in these interconnected systems, so instead manag-
ers use threat assessment tools which return the likely probability that individual 
components of the infrastructure will be breached (Jauhar et  al., 2015). These 
probabilities must be interpreted by the human manager, which motivates our ini-
tial emphasis on non-linear probability weighting. Evidence also exists that secu-
rity experts ignore more accurate algorithmic advice when available and instead 
rely more on their own expertise (Logg et al., 2019).

We model a security manager’s problem as allocating his budget over edges in 
a directed attack graph with the nodes representing various subsystems or com-
ponents of the overall CPS. An example of a directed attack graph is shown in 
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Fig.  1. The manager’s goal is to prevent an attacker who starts at the red node 
on the left from reaching the critical green node on the far right. The inter-con-
nectivity of different systems is represented by connections between nodes, and 
alternative paths to a given node represent different methods of attack. Allocat-
ing more of the security budget to a given edge increases the probability that 
an attack through that edge will be stopped. Such an ‘interdependency attack 
graph’ model is considered an appropriate abstraction of the decision environ-
ment a security professional faces in large-scale networked systems.1 The proba-
bility of successful defense along an edge is weighted according to the manager’s 
probability weighting function. We use the common Prelec (1998) probability 
weighting function, but similar comparative statics can be obtained with any 
‘inverse S-shaped’ weighting function. We assume the attacker is sophisticated 
and observes the manager’s allocation decision, and does not mis-weight prob-
abilities. This reflects a ‘worst-case’ approach to security (discussed further in 
Sect.  2.1), and represents a necessary first step in investigating the impact of 
probability weighting and other biases on security expenditures.

The manager’s mis-weighting of probabilities can cause investment decisions 
to substantially diverge from optimal decisions based on objectively correct true 
probabilities, depending on network structure and the security production function. 
The security production function maps defense resources allocated to an edge to 
the probability that an attack along that edge will be stopped. Empirical evidence 
has shown probability weighting to be relatively non-linear on the aggregate sub-
ject level (Bleichrodt & Pinto, 2000), so the impact on security decisions could be 
substantial. Probability weighting is also heterogeneous across individuals (Tanaka 
et al., 2010; Bruhin et al. 2010). Therefore, if probability weighting affects choices 
in this environment, individuals should exhibit heterogeneity in their sub-optimal 
security decisions.

We seek to address the following research questions:
Question 1: What is the effect of probability weighting on security investments 

over a directed network graph?
Question 2: Is probability weighting an empirically relevant factor in human 

security decision-making?
Question 3: What other behavioral biases significantly affect decision-making in 

this environment?
To address Question 1, we numerically solve the security manager’s problem 

described above. In practical situations the relationship between investment spend-
ing and reductions in the probability of an attack is far from explicit to an outside 
observer. Moreover, investigations of successful breaches are often not revealed 
until months or years later. Furthermore, information on security investments is 
highly confidential for obvious reasons, making it difficult or impossible to obtain 

1  A non-exhaustive list of research considering the attack graph model from the Computer Security lit-
erature includes Sheyner and Wing (2003), Nguyen et al. (2010), Xie et al. (2010), Homer et al. (2013), 
and Hota et al. (2018). The length of this list and the ease in which it could be extended is indicative of 
the prominence that this literature places on the attack graph model.
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directly from firms. We therefore conduct an incentivized laboratory experiment to 
address Questions 2 and 3. We employ networks that cleanly identify the impact of 
non-linear probability weighting on security investment decisions, and the generated 
data also reveal other behavioral biases that exist in this environment.

Our experiment elicits separate measures of probability weighting outside the 
network defense problem to help address Question 2. One measure uses binary 
choices between lotteries which is relatively standard, and elicits probability weight-
ing while controlling for the confound of utility curvature. The other measure is 
novel, and uses a similar network path framing to the network defense environment. 
This new measure reduces procedural variance relative to the main network defense 
task. It also exploits the irrelevance of utility curvature when there are only two out-
comes to focus solely on probability weighting.

We find that the network-framed measure of non-linear probability weighting is 
statistically significantly correlated with all the network defense allocations situa-
tions we consider. However, this correlation exists even in cases where probability 
weighting should have no impact. This suggests that subjects may exhibit limited 
sophistication beyond probability weighting alone. We therefore conduct a cluster 
analysis to identify heterogeneous patterns of behavior not predicted by probability 
weighting. This identifies additional behavioral biases. The first is a form of ‘naive 
diversification’ (Benartzi & Thaler, 2001), where subjects have a tendency towards 
allocating their security budget evenly across the edges. The second is a preference 
for stopping the attacker earlier or later along the attack path. Stopping an attack 
earlier can be seen as reducing the anticipatory emotion of ‘dread’ (Loewenstein, 
1987) while stopping it later can be seen as delaying the revelation of potentially 
bad news (e.g., see Caplin & Leahy, 2004 for a strategic environment). Account-
ing for these additional biases, we continue to find some evidence that non-linear 
probability weighting influences subject behavior, as well as strong evidence for the 
additional biases. In our environment the additional biases seem especially naive, as 
edges are not different options with benefits beyond defending the critical node, and 
information on the attacker’s progress is not presented to the subjects sequentially. 
These inconsistencies possibly reflect a subject’s own mental model (e.g., of how 
an attack proceeds), but should be accounted for in future directed network decision 
environments.

This paper contributes to the theoretical literature on attack and defense games 
over networks of targets, most of which can be related to computer network security 
in some fashion.2 Our attack graph environment is rather flexible, and can represent 

Fig. 1   Example directed net-
work attack graph

2  A non-exhaustive list of related theory papers include Clark and Konrad (2007), Acemoglu et  al. 
(2016), Dziubiński and Goyal (2013), Goyal and Vigier (2014), Dziubiński and Goyal (2017), Kovenock 
and Roberson (2018), and Bloch et al. (2020).
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some of the strategic tensions present in alternative network environments. Instead 
of focusing on attack graph representations of these other environments (which 
can be quite complex), we utilize more parsimonious networks in order to specifi-
cally parse out the effect of probability weighting. We have the ‘security manager’ 
play against a sophisticated computerized attacker who moves after observing the 
manager’s allocation. Playing against a computer dampens socially related behav-
ioral preferences.3 It also removes the need for defenders to form beliefs about the 
attacker’s probability weighting. This allows us to more cleanly identify the empiri-
cal relevance of non-linear probability weighting in this spatial network defense 
environment. If probability weighting is important empirically, then future research 
should incorporate it into models to better understand the decisions of real-world 
decision-makers.

This paper also contributes to the experimental literature of attack and defense 
games in network environments.4 One set of related experimental studies test ‘Net-
work Disruption’ environments. McBride and Hewitt (2013) consider a problem 
where an attacker must select a node to remove from a partially obscured network, 
with the goal to remove as many edges as possible. Djawadi et al. (2019) consider 
an environment where the defender must both design the network structure as 
well as allocate defenses to nodes, with the goal of maintaining a network where 
all nodes are linked after an attack. Hoyer and Rosenkranz (2018) consider a simi-
lar but decentralized problem where each node is represented by a different player. 
Our environment differs from these Network Disruption games as we consider a 
directed attack graph network, i.e. the attacker must pass through the network to 
reach the critical node rather than remove a node to disrupt the network. Some other 
related experimental papers include ‘multi-battlefield’ attack and defense games, 
such as Deck and Sheremeta (2012), Chowdhury et al. (2013) and Kovenock et al. 
(2019). The most closely related of these types of papers is Chowdhury et al. (2016), 
who find experimental evidence for the bias of salience in a multi-battlefield con-
test, which induces sub-optimal allocations across battlefields. We are the first to 
investigate empirically the bias of probability weighting in networks and attack and 
defense games.

3  Sheremeta (2019) posits that things such as inequality aversion, spite, regret aversion, guilt aversion, 
loss aversion (see also Chowdhury, 2019), overconfidence and other emotional responses could all be 
important factors in (non-networked) attack and defense games. Preferences and biases have not received 
substantial attention in the experimental or theoretical literature in these games, although it should be 
noted that Chowdhury et al. (2013) and Kovenock et al. (2019) both find that utility curvature does not 
appear to be an important factor in multi-target attack and defense games.
4  See Kosfeld (2004) for a survey of network experiments more generally.
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2 � Theory and hypotheses

2.1 � Attacker model

In order to describe the security manager’s (henceforth defender) problem, it is 
necessary to describe and justify the assumptions we make about the nature of the 
attacker that he faces. As our focus is on network defense by humans, in our main 
experimental task we automate the role of the attacker and describe their decision 
process to a human defender. We assume that the attacker observes the defender’s 
decision, has some fixed capability of attack, and linearly weights probabilities. 
While these assumptions may seem strong, they are consistent with a ‘worst-case’ 
approach, the motivation of which we now describe.

Due to the increasing inter-connectivity of cyber-physical systems to the out-
side world (e.g. through the internet), a defender faces a wide variety of possible 
attackers who can differ substantially in their resources, abilities and methods. The 
defender could undertake the challenging exercise of considering the attributes of 
all possible attackers, but this would involve many assumptions that the defender 
might get wrong. Instead, we assume that the defender takes a worst-case approach 
and defends against a sophisticated attacker, so that he can achieve a certain level of 
defense regardless of what type of attacker eventuates. The sophisticated attacker 
can be interpreted as the aggregate of all attackers perfectly colluding. They may 
also have the ability to observe the defender’s decision either through a period of 
monitoring or by using informants. Taking a worst-case approach is common in the 
security resource allocation literature (e.g. Yang et al. 2011; Nikoofal and Zhuang 
2012; Fielder et al. 2014), as is the assumption that the attacker observes the defend-
er’s allocation.5

2.2 � Defender model

The defender faces a network consisting of J total paths from the start node to the 
critical node, with each edge belonging to one or more of the J paths. The defend-
er’s security decision is to allocate a security budget of B ∈ ℝ>0 units across the 
edges; this is represented by a vector x with N elements, where N is the number of 
edges. The edge defense function p(xi) is a production technology that transforms 
the number of units allocated to edge i (denoted by xi ) to the probability of stop-
ping an attack (from the worst-case attacker) as it passes along edge i. We assume 
the defender has probability weighting from the one parameter model described in 
Prelec (1998), i.e. w(p(xi);�) = exp[−(− log(p(xi)))

�] with � ∈ (0, 1] , although our 
findings hold with other ‘inverse-S’ shaped weighting functions (e.g., Tversky and 
Kahneman 1992). For ease of notation we will frequently shorten w(p(xi);�) to w(p) 
or w(p(xi)).

5  For example, Bier et al. (2007), Modelo-Howard et al. (2008), Dighe et al. (2009), An et al. (2013), 
Hota et al. (2016), Nithyanand et al. (2016), Guan et al. (2017), Wu et al. (2018), and Leibowitz et al. 
(2019).
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The defender gains a payoff of 1 if the critical node is not breached by the 
attacker, and gains a payoff of 0 if the attacker breaches the critical node. As the 
attacker observes the defender’s allocation and chooses the objectively most vulner-
able path (i.e. the attacker has � = 1 ), the attacker’s action directly follows from a 
given allocation. However, the defender’s non-linear weighting of probabilities 
( 𝛼 < 1 ) may cause him to have a different perception about which paths are the most 
vulnerable. Thus, the defender thinks the attacker will choose the path with the low-
est perceived probability of successful defense (from the defender’s perspective, 
in accordance with their probability weighting parameter). The defender’s goal is 
to maximize his perceived probability of successfully defending the critical node, 
which is determined by his weakest perceived path. The defender’s optimization 
problem depends on the network structure, edge allocations, edge defense function 
p(xi) , and his probability weighting parameter � . We denote the defender’s overall 
perceived probability of defense along path j as fj(x;�).

An attacker passing along an edge to reach a specific node is a separate and inde-
pendent event from all other edges.6 We assume the defender applies his weight-
ing function to each probability individually before calculating the probability of 
overall defense along a path. The defender ranks the event of stopping an attack 
along a given edge higher than the event of an attack proceeding. Therefore, in 
accordance with rank dependent utility (RDU) (Quiggin, 1982) and cumulative 
prospect theory (CPT) (Tversky & Kahneman, 1992), he applies his weighting 
function to the probability of stopping an attack along an edge (w(p)), and consid-
ers the other event (the attack proceeding) to have a probability of 1 − w(p) . There-
fore, a path j with three edges has an overall perceived probability of defense of 
fj(x;�) = w(p(x1)) +

[

1 − w(p(x1))
][

w(p(x2)) + (1 − w(p(x2)))w(p(x3))
]

.7 The 
defender’s constrained objective problem is presented in Eq. (1).

We now consider the impact that non-linear probability weighting by a defender 
has on various network structures and defense production functions. We analyze the 
situation in a general setting, before considering the experimental design that we 
implement in the laboratory.

(1)

argmax
x

min{f1(x;�), f2(x;�),… , fJ(x;�)}

s.t. xi ≥ 0, i = 1, 2,… ,N
∑N

i
xi ≤ B

6  The events are independent as each edge represents a unique layer of security that is unaffected by the 
events in other edges/layers of security. Breaches of other layers of security can affect whether a specific 
layer is encountered, but they do not change the probability that layer is compromised.
7  This approach is similar to the concept of ‘folding back’ sequential prospects, as described 
in Epper and Fehr-Duda (2018) with regards to ‘process dependence’. The alternative (i.e., 
fj(x;�) = w(p(x1) +

[

1 − p(x1)
][

p(x2) + (1 − p(x2))p(x3)
]

) ) does not yield interesting comparative statics 
in � due to the monotonicity of the probability weighting function, so we do not consider it further.
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2.3 � Common edges

The described objective in Eq.  (1) is a straightforward constrained optimization 
problem. Unfortunately, the problem is analytically intractable and no closed-form 
solution exists. Consider our first type of network structure, presented in Fig. 1. The 
key feature of this network is that one of the edges is common to both paths, while 
the other edges belong only to the top or bottom path. We denote x3 = y , and assume 
that v = x1 = x2 = x4 = x5 , an edge defense function of p(xi) = 1 − e

−xi

z  (where z is 
some normalization parameter), and that v > 0 , y > 0 . Even with these simplifica-
tions and assumptions, taking the first order conditions of the associated Lagrangian 
yields a set of equations that is intractable to solve for a closed form solution for 
either y or v.8 Fortunately, it is possible to numerically solve the defender’s opti-
mization problem. For example (and anticipating our experimental design), when 
z = 18.2 , B = 24 and � = 0.6 , the optimal allocation is v = x1 = x2 = x4 = x5 = 1.26 
and y = x3 = 18.96 . Appendix A provides more analysis on how the numerical solu-
tion is calculated and whether the solution is unique.

The main trade-off in this type of network is the allocation to edges that are com-
mon to both paths or to edges that are only on one path. Consider taking a small 
amount � from the common edge x3 and placing it on a non-common edge. Placing 
the � only on one edge is non-optimal for any � , as the sophisticated attacker will 
attack the weaker path, meaning � should be split across paths. This need to split 
over paths reduces the marginal impact of units allocated to the non-common edges 
on the overall probability of defense, making them relatively less attractive com-
pared to the common edge. However, with non-linear probability weighting ( 𝛼 < 1 ), 
small probabilities are over-weighted, i.e. perceived to be higher than their actual 
probabilities. This increases the perceived impact of units placed on non-common 
edges, and can exceed the loss of having to split the allocation across more than 
one path. This makes expenditures on non-common edges more likely for those with 
non-linear probability weighting.

We can confirm this intuition numerically for a variety of edge defense functions. 
We mainly consider concave functions in our experiment, which have a natural 
interpretation of diminishing marginal returns of production.9 In particular, consider 
the edge defense function from before ( p(xi) = 1 − e

−xi

z  ). Figure 2 plots the optimal 
amount to allocate to the common edge for different values of z and different levels 
of probability weighting � . At � = 1 the optimal allocation is to place all B = 24 
units on the common edge. A defender with � = 1 will always place all of his units 
on the common edge for the exponential family of edge defense functions (Abdallah 
et al., 2019b). As � decreases, i.e., the defender exhibits increasing levels of non-
linear probability weighting, he places fewer units on the common edge (and more 
units on the non-common edges).
8  Weighting the probability of a successful attack along an edge instead is analytically tractable as terms 
conveniently cancel, as shown in Abdallah et al. (2019b). However, this would be inconsistent with how 
events are ranked and weights are applied in RDU and CPT. Despite the lack of symmetry in the one 
parameter Prelec weighting function, the qualitative comparative statics presented in Abdallah et  al. 
(2019b) have been numerically confirmed to hold in the current environment.
9  Concavity and diminishing marginal returns is a common assumption in the computer security litera-
ture (e.g., Pal and Golubchik 2010; Boche et al. 2011; Sun et al. 2018; Feng et al. forthcoming)
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Consider next a non-exponential edge defense function p(xi) = (
xi

z
)b , where z is 

again a normalization factor and b ∈ (0,∞) . If b < 1 , this function is concave, if 
b = 1 it is linear and if b > 1 it is convex. Figure 3 illustrates that regardless of the 
convexity of the edge defense function, the amount allocated to the common edge 
decreases as � decreases from 1. Note also that for concave functions of this form, it 
is no longer optimal for � = 1 defenders to place all of their allocation on the com-
mon edge. This is because the slope of the edge defense function for small values is 
sufficiently steeper than the slope of the function when all units are allocated to one 
edge. To see this, consider some p(xi) and denote the number of units allocated to 
the non-common edges as v, and the number of units allocated to the common edge 
as y. Denoting the overall probability of a successful defense as F(v,  y), then: 
F(v, y) = p

(

v

4

)

+
(

1 − p
(

v

4

))(

p
(

v

4

)

+
(

1 − p
(

v

4

))

p(y)
)

 . Taking the first order conditions: 
�F(v,y)

�v
=

1

2
p�
(

v

4

)[

1 − p
(

v

4

)

− p(y) − p
(

v

4

)

p(y)
] and �F(v,y)

�y
= p�(y)

[

1 − 2p
(

v

4

)

+ p
(

v

4

)2] . At the 
boundary solution corresponding to v = 0 and y = B , if p(0) = 0 the above expres-
sions show that allocating all units to the common edge is optimal if 
p�(0)(1 − p(B)) ≤ 2p�(B) , i.e., the marginal return to placing another unit on y 
exceeds that of v at the boundary. It follows that if the slope is sufficiently steep for 
small v’s (i.e. p�(0) > 2p�(B)

1−p(B)
 ), then an � = 1 defender will allocate a strictly positive 

amount to non-common edges.10

These observations lead to our first testable hypotheses:

Hypothesis 1  The amount allocated to common edges (weakly) decreases as � 
decreases from 1.

Hypothesis 2  If p�(0) > 2p�(B)

1−p(B)
 (such as for a concave power function), then a deci-

sion-maker with linear probability weighting (� = 1) will allocate a strictly positive 
amount to non-common edges.

We now present the three color-coded networks from our experiment that are 
designed to explore these two hypotheses.

2.3.1 � Network Red

Network Red employs the network structure presented earlier in Fig. 1, and has an edge 
defense function of p(xi) = 1 − e

−xi

18.2.11 According to Hypothesis 1, a defender with 
𝛼 < 1 will place less than 24 units on the common edge, and the amount placed on the 

10  Any � ∈ (0, 1] defender is making a similar trade-off of �F(v,y)
�v

 against �F(v,y)
�y

 , either equating them if the 
solution is interior, or allocating to whichever is greater at the boundary. We do not present these first 
order conditions here as they are not as succinct due to the presence of w(p;�) , although we do report the 
first order condition in Appendix A. Where exactly the trade-off is resolved depends on � as well as the 
specific functional form of p(xi) . This is why the optimal allocation differs over � for a given p(xi) , as 
well as over different p(xi) for a given � . Both patterns are displayed in Figs. 2 and 3.
11  The normalization factor z = 18.2 was chosen such that 1 unit allocated to an edge would yield a com-
monly overweighted probability ( p = 0.05 ), while 24 units allocated to an edge would yield a commonly 
underweighted probability ( p = 0.73).
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common edge is decreasing as � decreases from 1. For example, a defender with � = 0.5 
will allocate x3 = 17.36 , and x1 = x2 = x4 = x5 = 1.66 , while other � ’s are displayed 
graphically in Fig. 2 by the line associated with z = 18.2.12 According to Hypothesis 2, 
a defender with � = 1 would allocate x3 = 24 , and x1 = x2 = x4 = x5 = 0.

Fig. 2   Allocation to common edge for p(xi) = 1 − e
−xi

z

Fig. 3   Allocation to common edge for p(xi) = (
xi

z
)b

12  These numerical solutions are continuous, although subjects were restricted to discrete (integer-val-
ued) allocations.
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2.3.2 � Network Orange

Network Orange also takes place on the network shown in Fig. 1, but differs in having 
an edge defense function of p(xi) = 1 − e

−xi

31.1 . The prediction for a defender with � = 1 
remains unchanged from Network Red. Because p(xi) ≤ 0.46 ∀xi ∈ [0, 24] , edge allo-
cations in Network Orange mostly result in probabilities that a defender with 𝛼 < 1 will 
overweight. Therefore, the predictions for a defender with a particular value of 𝛼 < 1 
will differ from Network Red. For example, a defender with � = 0.5 will now allocate 
x3 = 14.92 , and x1 = x2 = x4 = x5 = 2.27 . The prediction for other � ’s is displayed 
in Fig. 2 on the line associated with z = 31.1 . The change in the edge defense func-
tion increases the separation of behavior between moderate to high levels of non-linear 
probability weighting, increasing our ability to detect differences between � types.

2.3.3 � Network Yellow

Network Yellow also takes place on the network shown in Fig. 1. The edge defense 
function is now of a different concave functional form, p(xi) =

x0.4
i

700.4
 . Unlike Net-

works Red and Orange, it is now optimal for a non-behavioral defender to allocate 
units to the non-common edges, in accordance with Hypothesis 2. In particular, a 
defender with � = 1 will allocate x3 = 15.64 , and x1 = x2 = x4 = x5 = 2.09 , while a 
defender with � = 0.5 will allocate x3 = 12.68 , and x1 = x2 = x4 = x5 = 2.83 . Pre-
dictions for other � ’s are presented in Fig.  3, on the line associated with z = 70 , 
b = 0.4.

Networks Red, Orange, and Yellow are jointly designed to test Hypotheses 1 and 
2. In all three of these networks, the amount allocated to the common edge should 
decrease as � decreases, according to Hypothesis 1. In Networks Red and Orange, 
Hypothesis 2 predicts that those with � = 1 should place all 24 units on the common 
edge, while in Network Yellow, Hypothesis 2 predicts those with � = 1 should place 
less than 24 units on the common edge.

2.4 � Extraneous edges

Consider the network displayed in Fig.  4. The new feature of this network is the 
edge denoted x3 , which creates a third possible path from the red node to the green 
node. In this network, a defender’s overall perceived probability of defense is:
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Call the possible paths as top (through x1 then x2 ), middle (through x1 , then x3 , then 
x5 ), and bottom (through x4 then x5 ). The optimal allocation will always equalize 
the perceived probability of successful defense for these three paths. Otherwise, the 
defender could increase utility by allocating an infinitesimal amount from a non-
minimum path to the minimum path. Suppose x1 = x2 = x4 = x5 =

B

4
 . The top, mid-

dle, and bottom paths all have the same perceived probability of successful defense 
at this allocation. Taking an infinitesimal � from any (or all) of these edges and plac-
ing it on x3 increases the perceived probability of defense of the middle path, but at 
the expense at the top and/or bottom path, which would now become the minimum 
path.

This solution of x1 = x2 = x4 = x5 =
B

4
 and x3 = 0 is unique for any � ∈ (0, 1) 

whenever the edge defense function has p�(xi) > 0 ∀xi . For � = 1 with the exponen-
tial defense function the solution is not unique, since any combination that allocates 
B

2
 to the top and bottom paths (which implies x3 = 0 ) is an optimal solution.13 These 

results lead to our next testable Hypothesis:

Hypothesis 3  The amount allocated to extraneous edges is 0, and is invariant in �.

2.4.1 � Network Blue

Network Blue takes place on the network with an extraneous edge, as shown in 
Fig. 4, with an edge defense function of p(xi) = 1 − e

−xi

18.2 . The edge defense function 
for Network Blue (as well as the subsequent Network Green) is the same as Network 
Red, which reduces the number of different edge defense functions subjects have to 
consider in our within-subjects design. Network Blue is designed to test Hypothesis 
3, as no subject with any � ∈ (0, 1] should place any number of defense units on the 
extraneous edge labeled x3 . This network is useful to identify subjects with alterna-
tive behavioral biases.

2.5 � Unequal path lengths

Consider the network displayed in Fig.  5. The key feature of this network is 
the different number of edges on each path. With an edge defense function of 
p(xi) = 1 − e

−xi

z  , a defender with linear probability weighting should place half of 
his budget on each path. A defender with non-linear probability weighting, however, 
will place less of his budget on the top path (with more edges), and more of his 
budget on the bottom path (with fewer edges). To see the intuition behind this, con-
sider a case where the defender starts with his allocation split equally across the two 
paths. Assume he spreads units allocated to a path equally across all edges in that 
path, and that the edge defense function yields a probability of less than 1

e
 (i.e. the 

Prelec inflection point) on each edge along the top path but more than 1
e
 on each edge 

along the bottom path. A defender with 𝛼 < 1 over-weights small probabilities and 

13  Further details are presented in Appendix A.
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perceives the small investments across the many edges along the top path as pro-
viding more protection that they actually do. Conversely, the 𝛼 < 1 defender under-
weights large probabilities and perceives investments across the two edges along the 
bottom path as providing less protection that they actually do. Consequently, such 
a defender should reallocate his investment to equalize his perceived probability of 
successful defense on the two paths, and this requires shifting some of the allocation 
from the top path to the bottom path.

This is also true for any combination of the top and bottom path edge prob-
abilities that are above or below the inflection point of the probability weighting 
function. If both are above the inflection point, the defender perceives both paths 
as being weaker than they actually are, but perceives the bottom path as being rela-
tively weaker due to the more extreme under-weighting of larger probabilities. Simi-
lar logic applies if both probabilities are below the inflection point, since the over-
weighting is stronger for the smaller probabilities along the top path.

Again, the analytical solution proves intractable, but Fig.  6 shows the numeri-
cal solutions considering the total relative allocations to edges in the top and bot-
tom paths of the exponential edge defense functions of p(xi) = 1 − e

−xi

z  for vari-
ous values of z. The overall optimal allocation for � ∈ (0, 1) occurs when equally 
spreading the total allocation to a path across each edge along a path, and this 
optimal allocation is unique. For example, for � = .9 the optimal allocation is 
x1 = x2 = x3 = x4 = x5 = 2.23 , and x6 = x7 = 6.43 . For � = 1 the solution is not 
unique, as any solution that allocates B

2
 over the top and bottom paths is an optimal 

allocation. These results lead to our final testable hypothesis:

Hypothesis 4  The total amount allocated to a path with more edges decreases as � 
decreases from 1.

2.5.1 � Network Green

Network Green takes place on the network shown in Fig.  5, again with an edge 
defense function of p(xi) = 1 − e

−xi

18.2 . It is designed to test Hypothesis 4, as defend-
ers with 𝛼 < 1 should place fewer units on paths with fewer edges. For example, a 
defender with � = 0.5 would place x1 = x2 = x3 = x4 = x5 = 0.964 on each edge in 
the top path, and x6 = x7 = 9.59 on each edge in the bottom path.

The most simple network that could address Hypothesis 4 is that of 2 edges for 
one path and 1 edge for the other path. However, we deliberately exaggerated the 
difference between the two paths in Network Green by having 5 edges on the top 
path and 2 edges on the bottom path. This results in increased separation in pre-
dicted behavior between subjects with different �’s.

Fig. 4   Network graph with an 
extraneous edge ( x3)
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Table  1 summarizes the predictions for all five networks in the experiment for 
three levels of �.

3 � Experimental design

3.1 � Probability weighting elicitation

Our main ex ante research question as well as our hypotheses focus on how the level 
of non-linear probability weighting affects security investment decisions. To directly 
relate subjects’ allocation behavior to probability weighting, we would like some 
external measure of probability weighting. In other words, we wish to have an accu-
rate measure of � that has good internal validity with the network security prob-
lem, while also not taking a substantial period of time away from the main Network 
Defense Task.

Many ways exist to elicit an individual’s probability weighting parameter. Typi-
cally researchers control for or simultaneously elicit risk preferences (taken here to 
mean the curvature of the utility function) when measuring probability weighting. 
This is because the specific range of probability weighting parameters that are con-
sistent with a decision depends on the level of utility curvature assumed, and vice 
versa. However, in the defender’s problem considered here, utility curvature does 
not play a role as there are only two payoff outcomes. The defender either success-
fully defends the critical node, or does not. This means that the defender always 
wants to maximize their (perceived) probability of the high payoff outcome, which 
is invariant to utility curvature. Therefore, for the Network Defense Task we are not 
concerned about risk preferences, other than to parse out their effect to obtain an 
accurate measure of probability weighting.

With that in mind, we employ a new Network Attack Task as a way to measure 
probability weighting. In this task, we have subjects swap roles, i.e., they encounter 
a simplified version of this network environment in the role of an attacker against 
a computerized defender. Not only does this elicitation task reduce the procedural 
variance with respect to the main defense task, it also exploits the irrelevance of util-
ity curvature in situations with two outcomes.

Consider the network in Fig. 7, where the attacker’s goal is to successfully com-
promise the critical node, by choosing the top or bottom path to attack. The attacker 
receives 3000 points for compromising the critical node, and 0 points otherwise, 
meaning there are only two payoff outcomes. The numbers given on each edge rep-
resent the probability of a successful attack along this edge. Because the subject 
plays the role of an attacker (who ranks a successful attack along an edge higher 

Fig. 5   Network graph with 
unequal path lengths
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than an unsuccessful attack) in this preliminary task, he weights the probability of 
successful attack along an edge when making his decision.

An attacker with � = 1 should choose the top path, which has a greater probability 
of overall success than the bottom path ( 0.42 × 0.41 = 0.1722 > 0.06 = 0.06 × 1.00 ). 
However, an attacker with 𝛼 < 1 may instead prefer to attack along the bottom path, 
due to over-weighting 0.06 and under-weighting 0.41 and 0.42. Assuming that the 
attacker applies his probability weighting function to each individual probability 
and then calculates the probability of success of each path, then the attacker would 

Fig. 6   Allocation to top (long) minus bottom (short) path for p(xi) = 1 − e
−xi

z

Table 1   Theoretical predictions for selected � with B = 24

*Any combination that allocates B
2
 units to the top and bottom paths is optimal for � = 1
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choose the top path if 𝛼 > 0.597 and the bottom path if 𝛼 < 0.597 . By asking for 
multiple responses with different probabilities (which imply different � cutoffs), � 
can be bounded.

Using a dynamic bisection or staircase method could recover increasingly tight 
bounds on � , assuming subjects respond without error. Of course, subjects typically 
exhibit some level of noise in their decisions. Any mistake, especially early on in the 
elicitation procedure, would cause a bisection method to never be able to recover 
the subject’s true � . A dynamic method that allows for the subject to make some 
errors is the dynamically optimized sequential experimentation (DOSE) method, 
as described in Chapman et al. (2018). In DOSE, the most informative question is 
asked based on the current Bayesian update of the subject’s parameters. The sub-
ject’s response is then used to update the current belief that the subject is of a given 
type, and this is then used to ask another question. The DOSE process recovers from 
errors as specific � types are not ruled out completely as being the subject’s true type 
after an inconsistent response. Therefore, a subject’s consistent future responses can 
raise the procedure’s belief of the true type, and adapt future questions accordingly. 
DOSE always asks the most informative question given the current belief distribu-
tion over types, meaning that fewer questions are required for an accurate measure. 
A full description of the DOSE procedure that was implemented for this task is pre-
sented in Appendix B.

One potential concern with the Network Attack Task is that calculating the prob-
ability of a successful attack along a path is simply a case of multiplying the proba-
bilities along the path.14 Subjects may instead perform this step before applying their 
subjective probability weighting, instead of after as we have assumed. We therefore 
take two steps to make it more difficult for a subject to trivially multiply along paths. 
First, we avoid using probabilities that are more easily multiplied together (such as 
those that end in multiples of 0 or 5). Second, we did not allow subjects to use writ-
ing utensils or calculators during this task.

In our analyses we focus on � estimates from this Network Attack Task because 
it reduces procedural variance from the main Network Defense Tasks and focuses 
solely on probability weighting. We also measured � using binary lottery choices 
derived from multiple price lists (MPL) used to measure probability weighting (e.g., 
Tanaka et al. 2010; Bruhin et al. 2010). Subjects choose between two lotteries one 
at a time (i.e., consider one row of an MPL in isolation), again using the DOSE 
procedure, also estimating an additional risk preference parameter. Details are also 
presented in Appendix B.

Fig. 7   Network attack task 
example

14  Another potential issue for both tasks is that subjects may not understand this point at all, instead of 
finding it simple. The number of such subjects should be limited due to our subject pool being drawn 
from a university student population.
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3.2 � Network defense tasks

For the Network Defense Tasks, subjects had a 24 ‘defense unit’ budget to use each 
period. These defense units could be allocated in integer amounts across edges. 
Defense units not used in one period did not roll over to the next period (i.e., this 
was a ‘use it or lose it’ situation). Subjects could submit a defense allocation of less 
than 24 units, but the software would prompt them to confirm they actually wanted 
to submit such an allocation.15 Subjects chose the number of defense units to allo-
cate to an edge using a dropdown menu that automatically updated the possible 
options based on the remaining number of units available. The initial value of this 
dropdown menu was not a number, meaning subjects had to make a selection for 
each edge, even if the desired allocation was zero. An example of the interface is 
shown in Appendix F. Subjects play each of the five different networks 10 consecu-
tive times to allow for some feedback and learning. The ordering of these five blocks 
was varied randomly across subjects.

3.3 � Procedures

The experiments were conducted at the Vernon Smith Experimental Economics 
Laboratory (VSEEL). In total, 91 subjects participated, all students at Purdue Uni-
versity recruited from a subject database using ORSEE (Greiner, 2015).16 Subjects 
received a packet of written instructions, some of which were printed on color paper 
that aligned with the color of the Network Defense Task.17 Subjects were instructed 
to refer to specific instructions when the software (implemented in oTree (Chen 
et al., 2016)) prompted them to do so. Subjects participated in the Binary Lottery 
Task first, followed by the Network Attack Task. During these first two tasks, as 
noted above subjects were not allowed to use calculators or writing utensils, and this 
was strictly enforced. Subjects then completed the colored Network Defense Tasks 
in an order that was varied randomly and unique to each subject. Subjects could 
request a calculator and pen from the experimenter during the Network Defense 
Tasks, due to the increased computational difficulty of these tasks. To simplify prob-
ability calculations, the instructions included a table for every network indicating 
how allocated defense resources mapped numerically into defense likelihood for any 
edge.

All payoffs were denoted in experimental points, with 350 points = $1.00. Subjects 
received 3000 points in a round for successfully reaching the end node in the Network 
Attack Task, and 1500 points for successfully preventing the computerized attacker 
from reaching the end node in a Network Defense Task. One round from each task 
was randomly selected for payment at the end of the experiment. Subjects were able to 

15  In only 5 of the 4550 total decisions did subjects allocate less than all 24 units.
16  Due to an error with the software, decision times were not recorded for 4 subjects. For consistency, 
we present our results only considering the remaining 87 subjects. Where the inclusion of decision times 
is not necessary, our results do not substantially change if the dropped observations are included.
17  These instructions are available in Appendix G.
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proceed through the tasks at their own pace, with most taking between 30-90 minutes 
(about 45 minutes on average) and earning an average of $20.10. To ensure subjects 
had read the instructions carefully, before each Network Defense Task subjects were 
asked to report the probability of two randomly selected rows (one from 1-12, one from 
13-24) of the edge defense function for that task, and were paid an additional 50 points 
if they answered correctly.

4 � Results

We begin the results with an overview of the probability weighting ( � ) elicitation 
from the Network Attack Task. We then consider the consistency of subject behavior 
between and within the Network Attack Task and Network Defense Tasks, including 
non-parametric tests of our Hypotheses. We then present a cluster analysis to broadly 
summarize the heterogeneity in the strategies that subjects employ. This identifies other 
possible biases that subjects exhibit. Finally, we present a regression analysis on key 
defense allocations that controls for the identified biases and other important factors 
like cognitive ability and decision time.

4.1 � Network attack task

The main purpose of the Network Attack Task is to obtain an estimate of an individual 
subject’s probability weighting, parameterized by � . A useful comparison point for our 
results comes from Bruhin et al. (2010), who estimate a finite mixture model on cer-
tainty equivalents for lotteries elicited over many Multiple Price Lists. They find evi-
dence for two groups, with approximately 20% of subjects exhibiting near linear prob-
ability weighting, and the remaining 80% of subjects exhibiting non-linear probability 
weighting.

Figure 8 presents the CDF for the subjects’ elicited � ’s from the Network Attack 
Task. Considerable heterogeneity exists in the degree of non-linear probability weight-
ing, so our Hypotheses predict heterogeneity in the Network Defense Tasks as well. 
Considering the quintiles of the distribution, we have 20% of subjects with � ≥ 0.95 , 
20% with 0.90 ≤ 𝛼 < 0.95 , 20% with 0.80 ≤ 𝛼 < 0.90 , 20% with 0.64 ≤ 𝛼 < 0.80 , 
and finally the bottom quintile with 𝛼 < 0.64 . This suggests the presence of both rela-
tively linear and non-linear probability weighting groups. Our results are in line with 
the 20% of subjects exhibiting linear weighting as in Bruhin et al. (2010), albeit with 
our second highest quintile being somewhat linear as well.

Result 1  Considerable heterogeneity exists in the inferred � from the Network Attack 
Task. The quintile cutoff points are � = 0.64 , � = 0.80 , � = 0.90 , � = 0.95.
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4.2 � Network defense tasks

4.2.1 � Summary

Figure 9 presents the CDF’s of mean defense allocations for key subject decisions 
in each of the five Network Defense Tasks. This also indicates substantial heteroge-
neity in subject behavior. In the Red and Orange networks, 26.4 and 16.1% of sub-
jects respectively allocate all units to the common edge, and this fraction of subjects 
decreases to 13.8% in Network Yellow. This suggests that a relatively small propor-
tion of subjects exhibit behavior consistent with an � near 1. However, about 40% of 
subjects in all three of these networks allocate less defense to the common edge than 
can be justified even for very low levels of � , suggesting a role for additional behav-
ioral biases. About one-third of subjects allocate no units to the extraneous edge in 
Network Blue, in accordance with Hypothesis 3, while 46.0% allocate more than 1 
unit on average to the extraneous edge. This again suggests a role for other behavio-
ral biases. The Network Green CDF indicates that 19.5% of subjects allocate equal 
amounts to the top and bottom paths, consistent with � = 1 , and 25.3% of subjects 
allocate less units to the top path, consistent with 𝛼 < 1 . However, over half of the 
subjects allocate more to the top path (and many quite substantially so), which is the 
opposite of what Hypotheses 4 predicts for 𝛼 < 1 . Overall, the CDFs provide some 
casual evidence in support of probability weighting playing a role in subject behav-
ior, but that other biases appear to influence behavior as well.

4.2.2 � Subject consistency and non‑parametric tests

We first consider individual subject consistency between and within network 
defense and attack tasks. Recall that our measure of � is derived from the Net-
work Attack Task, which we use to test our Hypotheses in the Network Defense 
Task. Table  2 presents the non-parametric Spearman’s � between the elicited 
probability weighting ( � ) and decision noise ( � ) from the Network Attack Task 
and key average subject behavior in each of the Network Defense Tasks.18,19 
The decision noise parameter � is estimated by the logit function, a commonly 
used structure in Quantal Response Equilibria (McKelvey and Palfrey 1995).20 
A higher � is consistent with less noisy behavior, meaning subjects choose their 
payoff maximizing action more frequently. Table 2 indicates consistency within 
the Network Defense Tasks as correlations are strongly statistically significant in 
all but one of the pairwise comparisons between these tasks. We also observe 

18  We consider the same analysis including the Binary Lottery Task in Appendix D. The elicited � ’s of 
these tasks are not correlated ( � = 0.166 , p = 0.117 ), suggesting the procedural differences are impor-
tant, or that cognitive ability may play a role.
19  Unless otherwise stated, all p-values and statistical tests are two-sided.
20  Prob(Top) = 1

1+e−�(U(Top)−U(Bottom))
 if U(Top) ≥ U(Bottom) , Prob(Top) = 1

1+e−�(U(Bottom)−U(Top))
 otherwise, where 

U(Top) is the weighted then compounded probability of successful attack multiplied by the payoff from a 
successful attack.
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consistency between behavior in the Network Attack and Defense Tasks, with the 
leftmost column of Table  2 reporting statistically significant correlations in all 
but one comparison.

We now consider non-parametric tests of Hypotheses 1, 3, and 4, all of which 
are included in the leftmost column of Table 2. The elicited � from the Network 
Attack Task is strongly and significantly correlated with defense in all Network 
Defense Tasks except Network Yellow.21 The correlations of � with the common 
edge networks are positive, consistent with Hypothesis 1. The negative correla-
tion in Network Green indicates that subjects with estimated � ’s closer to 1 tend 
to place less defense on the top path. This is the opposite of Hypothesis 4. The 
negative correlation in Network Blue for defense resources placed on the extrane-
ous edge provides evidence against Hypothesis 3. This suggests that our external 
measure of � from the Network Attack Task also captures some element of cogni-
tive ability. This interpretation is consistent with the strong correlation of deci-
sion noise ( � ) with probability weighting ( �).

To conduct a non-parametric test of Hypothesis 2, we use the Wilcoxon 
signed-rank test. In particular, we compare the paired observations of an indi-
vidual subject’s average allocation to the common edge in Network Yellow to 
Networks Red and Orange. According to Hypothesis 2, those with an � close 
to 1 should exhibit a particularly pronounced decrease in this key allocation for 
Network Yellow. As we have a clear directional theoretical prediction we report 
one-sided p-values for this test. Considering subjects with an estimated � ≥ .9 
(i.e. the 40th percentile closest to the linear � = 1 ), we find a statistically signifi-
cant decrease at the five percent level when testing Network Red against Yellow 

Fig. 8   CDF of elicited � from the network attack task

21  The lack of a significant correlation in Network Yellow is not necessarily surprising, due to the delib-
erate reduction of the separation of � types in this network to evaluate Hypothesis 2.
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( p = 0.031 ), as well as when we test Network Orange against Yellow ( p = 0.017 ). 
We find no similar difference in subjects with an estimated 𝛼 < .9 ( p = 0.451 and 
p = 0.447 respectively). These results are robust at the five percent level for any � 
cutoff ∈ [0.86, 0.95] (see Appendix C).

Result 2  The probability weighting parameter � is positively correlated with alloca-
tions to the common edge in the Red and Orange Networks, consistent with Hypoth-
esis 1. Subjects with � ≥ 0.9 allocate less to the common edge in Network Yellow as 
compared to Networks Red and Orange, consistent with Hypothesis 2. � is negatively 
correlated with allocations to the extra edge in Network Blue and the top path in 
Network Green, inconsistent with Hypotheses 3 and 4.

These initial results should be considered more as a guide to the analysis 
rather than an exhaustive test of our hypotheses. For instance, the Spearman cor-
relation is a bivariate measure that does not control for any other possible biases 
and observed characteristics of the subject. We therefore conduct a cluster anal-
ysis in the following subsection to identify additional biases. We then conduct a 

Fig. 9   CDFs of per-subject average behavior across all rounds in the network defense tasks
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regression analysis that controls for the identified biases and other factors like 
cognitive ability.

4.2.3 � Cluster analysis

The previous subsection documents that probability weighting is associated with 
defense misallocation in this network defense environment, but not always in the 
manner originally hypothesized. Other behavioral biases also appear important, but 
these biases are not clear ex-ante. It is also likely that subjects exhibit heterogeneity 
in these biases and that these biases may interact, making them difficult to predict 
or otherwise identify. One way to summarize general patterns of subject behavior 
is using a cluster analysis. In particular, we use the method of Affinity Propagation 
(Frey & Dueck, 2007), which endogenously determines the number of clusters. We 
cluster at the session level, i.e., a subject’s average behavior across individual net-
works, as we consider their behavior to be related across tasks.22

Table 3 presents the ‘exemplar’ of each of the 10 clusters, summarizing an indi-
vidual subject’s behavior that is the most representative of that cluster. The leftmost 
column presents the percentage of subjects represented by that cluster, alongside a 
descriptive name to aid exposition.

Clusters 1 and 2 appear largely consistent with an � = 1 , meaning that approxi-
mately 17% of subjects exhibit linear probability weighting through their network 
defense decisions. This is close to the 20% as reported in Bruhin et al. (2010).

The cluster analysis identifies three additional biases, which along with probabil-
ity weighting can describe the behavior of the cluster exemplars. The first bias is that 
of naive diversification: when subjects are given n options to invest in, they have a 

22  We also cluster at the individual network task level in an alternative estimation presented in Appendix 
E. That analysis identifies similar patterns of behavior.

Table 2   Spearman’s � correlation table

∗ p < 0.10 , ∗∗ p < 0.05 , ∗∗∗ p < 0.01

� � Red  
common  
edge

Orange  
common  
edge

Yellow  
common  
edge

Blue extra 
edge

� � = 0.764∗∗∗ � = 1

Red common 
edge

� = 0.260∗∗ � = 0.151 � = 1

Orange com-
mon edge

� = 0.226∗∗ � = 0.056 � = 0.654∗∗∗ � = 1

Yellow com-
mon edge

� = 0.072 � = −0.058 � = 0.622∗∗∗ � = 0.646∗∗∗ � = 1

Blue extra edge � = −0.286∗∗∗ � = −0.230∗∗ � = −0.352∗∗∗ � = −0.308∗∗∗ � = −0.112 � = 1

Green top– 
bottom

� = −0.255∗∗ � = −0.139 � = −0.241∗∗ � = −0.292∗∗∗ � = −0.237∗∗ � = 0.241∗∗
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tendency towards investing 1/n units to each option (Benartzi & Thaler, 2001). Note 
that this is especially naive naive diversification, as the edges do not represent dif-
ferent assets, just different ways to protect the same asset (the critical node). Naive 
diversification explains Cluster 4 particularly well, but can also explain situations 
where less units are placed on the common edge that can be justified by probability 

Table 3   Cluster analysis

Left column displays the percentage of subjects classified in each cluster. Numbers on edges denote aver-
age DU (out of 24 total) allocated by the exemplar subject for that cluster
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weighting alone. A defender with 𝛼 < 1 as well as some mild preference towards 
evening out his allocation on the common and non common edges would place even 
less on the common edge than his level of � would predict. Some level of naive 
diversification clearly explains non-zero allocations to the extraneous edge in Net-
work Blue. Naive diversification can also explain the tendency for subjects to place 
more units on the top rather than the bottom path in Network Green; as the top path 
has more edges, a 1/n heuristic would place more units overall on the top path.

The second and third biases are related to each other, and we term them early or 
late revelation of the overall outcome. Early revelation means that subjects try to 
stop the attack as soon as possible, and thus allocate more to edges nearer to the start 
node on the left. Clusters 6 and 10 are good examples of early revelation. Late reve-
lation is the opposite, referring to subjects that allocate more units to edges nearer to 
the critical node, as exemplified by Cluster 9. Early revelation can explain an exces-
sively low allocation to the common edge, in a manner similar to naive diversifica-
tion except that more units are placed on the front two non-common edges instead 
of equally to all non-common edges. Late revelation can explain the failure of some 
subjects to reduce their common edge allocation in Network Yellow. Note that, like 
the naive diversification bias, this is an especially naive preference as the outcome 
is revealed immediately after the allocation decision is made, and importantly, all at 
once. In the experiment there is no animation that sequentially displays the attack-
er’s progress. Therefore, holding anticipatory emotions such as dread over a period 
of time is minimized within an attack.23 The concepts of early and late revelation are 
related to the literature on anticipatory utility with regards to the revelation of uncer-
tainty (e.g., Loewenstein, 1987; Caplin & Leahy, 2001).

4.2.4 � Regression analysis

The cluster analysis identifies additional biases that may interact with probabil-
ity weighting and influence subject behavior. To address more directly our origi-
nal hypotheses regarding the behavioral implications of probability weighting, we 
account for these other biases by including appropriate measures in a regression 
analysis. In addition to these control variables, we include additional independent 
variables to investigate systematically how they influence behavior.

Ex-ante we did not anticipate the additional biases, and therefore did not spe-
cifically design separate elicitation tasks to identify them. Fortunately, our Blue and 
Green networks allow us to measure subjects’ naive diversification and early/late 
revelation preferences, which can then be used as controls when considering behav-
ior in other networks.

Our main naive diversification measure is calculated from a subject’s allocation 
to the extraneous edge in Network Blue. Specifically, we calculate each individual’s 
average allocation to this extra edge. However, this measure clearly does not work 
for Network Blue, as it is based on behavior in this network. Therefore, in order to 

23  It is of course possible that subjects are playing out the attack process in their imagination, while 
reading the outcomes sequentially.
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Table 4   Tobit regression analysis

t Statistics in parentheses
∗ p < 0.10 , ∗∗ p < 0.05 , ∗∗∗ p < 0.01

†Generated from Blue for Red, Orange, and Yellow, and from Green for Blue.
‡Generated from the average of Blue and Green

Red common 
edge

Orange  
common  
edge

Yellow 
common 
edge

Blue extra 
edge

Green top–
bottom

� (attacker task) 15.89 19.06∗ 27.86∗∗∗ − 3.928 − 4.341∗∗

(1.28) (1.66) (2.73) (−1.19) (−2.24)
� (attacker task) − 0.0110 − 0.0220 − 0.0823∗∗∗ − 0.0116 0.00745

(−0.30) (−0.65) (−2.78) (−1.12) (1.30)
Naive diversification† − 3.395∗∗∗ − 2.830∗∗∗ − 1.713∗∗ 1.425∗∗∗ 0.578∗∗∗

(−3.13) (−2.81) (−2.04) (4.10) (3.40)
Early revelation‡ − 11.24∗∗∗ − 9.604∗∗∗ − 12.74∗∗∗

(−3.65) (−3.34) (−5.32)
Time spent on decision − 0.0119 − 0.0220∗∗ − 0.00924 0.00133 − 0.000939

(−1.46) (−2.05) (−1.21) (0.44) (−0.32)
Total time spent on 

instructions
− 0.00492 − 0.00598 − 0.0109 − 0.00604∗∗ 0.000438
(−0.57) (−0.74) (−1.61) (−2.53) (0.33)

Age − 0.144 0.492 0.615∗ 0.0103 0.0646
(−0.31) (1.13) (1.65) (0.08) (0.89)

Born in USA − 1.107 − 4.795∗ − 2.621 1.081 − 0.898∗

(−0.35) (−1.66) (−1.09) (1.28) (−1.86)
Period 0.188∗∗ 0.491∗∗∗ 0.0911 − 0.246∗∗∗ 0.0110

(2.18) (4.28) (1.11) (−5.15) (0.22)
Male 3.908 3.978 1.763 − 1.351 − 0.200

(1.25) (1.39) (0.73) (−1.58) (−0.41)
Economics major 8.190 3.155 3.147 0.114 1.167

(1.34) (0.56) (0.66) (0.07) (1.23)
Engineering major 9.388∗∗ 7.358∗ 3.273 1.523 − 1.887∗∗∗

(2.03) (1.72) (0.92) (1.15) (−2.63)
Science major 2.574 3.318 1.476 1.443 − 0.500

(0.56) (0.77) (0.41) (1.14) (−0.70)
Management major − 3.095 − 0.754 − 3.492 − 0.0188 − 1.034

(−0.63) (−0.17) (−0.92) (−0.01) (−1.34)
GPA > 3.5 2.108 − 6.652∗∗ 1.431 0.514 − 0.479

(0.70) (−2.38) (0.61) (0.62) (−1.02)
Graduate student 3.447 − 3.169 − 4.232 − 1.117 0.0124

(0.81) (−0.81) (−1.27) (−0.94) (0.02)
Constant 8.911 − 2.588 − 9.053 10.54∗∗ 3.125

(0.56) (−0.17) (-0.70) (2.49) (1.24)
Observations 870 870 870 870 870
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obtain a measure of naive diversification for Network Blue, we use behavior from 
Network Green. A fully naive individual would allocate 24

7
= 3.4 units to each edge 

in Network Green, so we calculate the average absolute distance of each edge from 
this equal spread. A fully naive individual would have a measure of 0, and the most 
extreme optimal allocation of 12 units to one top and bottom edge would have a 
measure of 3.4×5+8.6×2

7
= 4.88 . We then multiply this measure by −1 , so that the com-

parative static is comparable with the measure based on Network Blue, which has 
naive individuals having a higher (rather than lower) value of this measure.

For early/late revelation we consider the Blue and Green networks without 
the common edge, as expressing this preference is far less costly in these net-
works. Furthermore, early and late revelation should not impact allocations to 
the dependent variable in the regressions for Networks Blue and Green, so we 
omit this particular independent variable for those networks. The early revelation 
measure is based on the ratio of units allocated to the nearest two edges to the 
start node, and the nearest two edges to the critical node, averaged for the Blue 
and Green networks.

The regressions also add variables to account for cognitive ability, as the 
results from Table 2 suggest that � may be picking up some measure of cognitive 
ability.24 We include information self-reported by subjects in a post-experiment 
survey, such as field of study, a high GPA, and whether a subject is a graduate 
student. We also include decision times and time spent with the instructions, as 
this may be correlated with subjects’ understanding. Finally, we note that gender 
is of particular interest ex-ante based on previous observations that women tend 
to exhibit greater non-linear probability weighting on average than men (Fehr-
Duda et al., 2006; Bruhin et al., 2010; Fehr-Duda et al., 2011).

Table 4 reports a series of censored tobit regressions, with the dependent vari-
able for each network corresponding to the key summary statistics shown earlier 
in Fig. 9: the allocation to the common edge for Networks Red, Orange, and Yel-
low, the allocation to the extraneous edge in Network Blue, and the difference in 
allocations to the top and bottom paths for Network Green. The regressions are 
censored at 0 to 24 for all networks except Network Green, which is censored -24 
to 24.

The top row shows the effect that our measure of probability weighting ( � , 
estimated from the Attacker task) has after controlling for the identified addi-
tional biases and the other subject characteristics. Consistent with Hypothesis 1, 
amounts allocated to the common edge in Networks Red, Orange and Yellow are 
increasing in � . These coefficients are statistically significant in Networks Orange 
and Yellow, but not in Network Red. These results provide partial further evi-
dence in support of Hypothesis 1 when combined with our correlation results. 
According to Hypothesis 3, � should not have an effect on the amount allocated 
to the extra edge in Network Blue. After controlling for naive diversification, 
we no longer find a statistically significant affect of � on this allocation. Finally, 

24  Choi et al. (2018) reports evidence suggesting a correlation between cognitive ability and probability 
weighting.
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Hypothesis 4 predicts that increasing � should increase the amount allocated to 
the top path in Network Green. While there is a statistically significant affect of � , 
it is not in the direction predicted by Hypothesis 4. This is surprising because the 
regression controls for naive diversification, which should account for some sub-
jects’ tendency to allocate relatively more to the top path than the bottom.

Result 3  After controlling for other biases, � is a statistically significant predictor of 
behavior in Networks Orange and Yellow (evidence in support of Hypothesis 1), and 
not in Network Blue (evidence in support of Hypothesis 3). � is a statistically sig-
nificant predictor of behavior in Network Green, but in the opposite direction than 
predicted (evidence against Hypothesis 4).

We now consider the impact of naive diversification, which is predicted to 
decrease the amount allocated to the common edge, increase the amount allocated 
to the extra edge in Network Blue, and increase the amount allocated to paths 
with more edges (i.e. the top path in Network Green). Table 4 shows that naive 
diversification has a negative and significant impact on the amount allocated to 
the common edge in all three common edge networks. Naive diversification also 
has a positive effect on the number of units allocated to the extra edge in Network 
Blue, and to the top path in Network Green, all as predicted.

Result 4  A higher level of preference for naive diversification is correlated with a 
lower allocation to the common edge in Networks Red, Orange, and Yellow. It is also 
correlated with a higher allocation to the extra edge in Network Blue, and the longer 
top path in Network Green.

Finally we consider early/late revelation, which only impacts the dependent vari-
able for the common edge networks. Early revelation is predicted to decrease the 
amount allocated to the (late) common edge. The results show that a preference for 
early revelation has a strong and highly significant negative effect on the amount 
allocated to the common edge in all common edge networks.

Result 5  A higher preference for early revelation, measured using Networks Blue 
and Green, is correlated with a lower allocation to the common edge in Networks 
Red, Orange, and Yellow.

The other independent variables include a period variable to capture the time 
trend, which suggests that some learning occurs as subjects gain experience with 
a particular network. The only other independent variable that is statistically sig-
nificant over more than two networks is whether the student was an Engineering 
major, which has a statistically significant effect in the direction of optimal behavior 
in three networks. This suggests that cognitive ability or mathematical sophistica-
tion could promote better understanding and performance in this network defense 
problem.
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5 � Conclusion and discussion

Cybersecurity and network defense is becoming increasingly important for eco-
nomic, social, and even political activity. Both the financial and non-pecuniary costs 
of successful cyberattacks can be substantial, and thus it is important to minimize 
their likelihood. We investigate how behavioral biases, in particular probability 
weighting, could lead to sub-optimal defense allocations. We modeled the situation 
as a directed network graph, to capture in a simple way some trade-offs that security 
professionals face. Probability weighting has differing effects on various network 
structures and defense functions, which generates testable hypotheses. We found 
that a separately elicited measure of probability weighting ( � ) has a statistically sig-
nificant correlation with key defense allocations in most Network Defense Tasks, 
including a network where probability weighting is predicted to have no effect. 
Motivated by this finding, we used a cluster analysis to identify additional biases 
that could also influence defense behavior. We identify preferences for naive diver-
sification and for earlier or later revelation of attack outcomes. Controlling for these 
biases and other subject characteristics, we find evidence that probability weighting 
has predictive power in this environment, as as do preferences for both naive diversi-
fication and early/late revelation.

An important question is how applicable are the findings from our student sub-
ject pool for security experts. We are not excessively concerned about this for sev-
eral reasons. Firstly, a security expert may exhibit ‘other-evaluation’ (Curley et al., 
1986). In the event of a successful attack, a security expert must justify his decision 
to others within his or her organization. If these other individuals exhibit biases, 
the expert may allocate in accordance to these biases to more easily justify their 
decision post-attack. Secondly, even if security experts exhibit fewer or weaker 
biases, given the magnitude of potential losses even very small biases could have a 
large impact on welfare. Finally, the empirical evidence on differences in behavior 
between students and experts is weak. Fréchette (2015) conducts a survey of experi-
ments that considered behavior of students compared to experts in a wide variety of 
professions. This survey reports only one out of thirteen considered studies found 
that professionals make decisions more closely in line with standard economic 
theory. Considering security professionals specifically, Mersinas et  al. (2016) find 
that while security professionals do calculate expected values better than students, 
they also exhibit systematic biases such as ambiguity aversion and framing effects. 
We therefore consider the findings from our student subject pool to be sufficiently 
informative and useful to be taken seriously by cyber-security researchers.

Another important question is how robust our findings are to learning. We find 
some evidence of learning in our networks, suggesting that biases may reduce over 
time as subjects receive feedback and become more familiar with the task. The ques-
tion is whether these biases vanish in the long run, or whether they persist. The ten 
rounds used for each network environment is likely insufficient for subjects to fully 
learn given the complexity of the environment. The number of rounds was a practi-
cal constraint, trading-off time spent in the lab against the overall number of network 
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structures. It would be interesting to see how behavior evolves over longer repeti-
tions of play, but that is beyond the scope of this paper.

There are many possible avenues for future research. First, theoretical work could 
incorporate the additional biases into a model over directed networks. This would 
be a very challenging endeavor. For example, consider observing an allocation of 
2 on each non-common edge and 16 on the common edge in Network Red. A wide 
variety of situations could be consistent with this allocation, such as � ≈ 0.66 , or 
any � ∈ [.66, 1] with some level of naive diversification, or an 𝛼 < .66 but with some 
preference for late revelation, or � = 1 having mild diversification preferences inter-
acting with a stronger preference for late revelation, and so on. Adding to this com-
plexity, it is not clear how the additional biases should be defined across different 
types of networks, or how they should interact with each other. For example, con-
sider a subject who consistently places 2 units on the extraneous edge in Network 
Blue. This subject clearly has some preference for diversification, but what does that 
imply for his decision in Network Red? Many possibilities exist. He could be facing 
a minimum constraint of 2 units per edge to satisfy a diversification preference, or 
he could allocate 2 units to each edge initially and allocate the remaining 14 units 
according to his weighting parameter � (either disregarding or regarding the 2 units 
already allocated). Or he could be willing to give up a small amount in terms of per-
ceived probability from his optimal strategy in order to more evenly spread his allo-
cation, etc. Although there are many different ways that this could be modeled over 
different networks, the literature currently offers no guidance for explicit functional 
forms over directed networks to discipline these modeling decisions.

A second line of future research could incorporate strategic considerations by 
having human decision-makers interact with each other, in either roles of attacker 
and a defender, or multiple defenders on the same network defending the same or 
different critical nodes. For example, it may be in a defender’s best interest to allo-
cate his resources differently if he believes the attacker to have 𝛼 < 1 . Alternative 
network structures in both the Network Defense and Network Attack Tasks could 
also be worth investigating, particularly in light of the identified naive diversifica-
tion and early/late revelation biases. Third, it is not clear why � has a significant 
impact of behavior in Network Green in the opposite direction that is predicted. 
It may be the case that our elicitation of � is only picking up on cognitive ability. 
Future research could investigate why results from Network Green are anomalous, 
perhaps with an alternative elicitation of � or naive diversification or additional con-
trols of cognitive ability. Finally, the effect of probability weighting in more stand-
ard attack and defense games has not yet received much attention. Given the empiri-
cal relevance of it in the current environment, this may prove to be an interesting 
avenue to explore.

Supplementary Information  The online version supplementary material available at https://​doi.​org/​10.​
1007/​s10683-​021-​09714-x.
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