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Abstract—A Cyber-Physical System (CPS) is usually composed
of subnetworks where each subnetwork is under ownership of
one defender. Security threats on such CPS can be represented
by an attack graph where the defenders are required to invest
wisely their limited budget in order to protect their critical
assets from being compromised. We model such CPS using
hybrid input/output automaton (HIOA) where each subnetwork
is represented by a HIOA module. We first establish the building
blocks needed in our sefting. We then present our model that
characterizes the continuous time evolution of the investments
and discrete transitions between different system’s states (where
each state represents a different condition within the system).
Finally, we provide a representative real-world CPS to validate
our modeling and show its benefit for CPS security.

Index Terms—Cyber-Physical Systems, Hybrid Input/Output
Automaton, Game Theory, Attack Graphs.

[. INTRODUCTION

Cyber-physical systems (CPS) demand a high degree of
criticality, i.e., safety, security, and reliability [1]-[3]. How-
ever, such CPS are increasingly facing sophisticated attacks
which motivates the fundamental problem we set out to solve
— how to create such CPS out of the inherently unreliable
building blocks. In this context, significant research has been
performed on understanding how to better secure CPS [4]-
[6]. This research involved both mathematical and applied
frameworks that have been developed in order to precisely
model the security of CPS.

There exist several challenges that have not been tackled
for modeling CPS’s security precisely [7]. [8]. One main
challenge is the dynamic nature of CPS that represents the
change of the state of the system with time has not been
considered. For example, the state of an autonomous vehicle
model has to include variables representing physical quantities
like position, velocity, and angular speed of wheels, efc., as
well as variables representing the state of the software modules
used for perception, planning, and control [9]. Moreover, a
CPS model has two broad kinds of such variables: continuous
variables, such as security mechanisms that can be modeled
as continuous variables (e.g., the fraction of ftraffic that is
monitored for malicious packets on a network link) and
discrete variables (e.g., the number of security personnel to
deploy to a given site). Therefore, the question that needs to
be answered is how to create a security model for CPS that
involves both these types of variables.

In addition to defining the state variables, a CPS model
also has to describe how the values of system variables can
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change. Such changes are naturally described by programs and
the natural language for describing the laws of the physical
world is the language of ordinary differential equations (ODE).
Bringing together discrete and continuous variables, programs,
and ODEs within the same mathematical model gives rise to
the so-called hybrid models. There are several different model
classes that fall under the umbrella term hybrid systems, such
as hybrid automata [10], hybrid input/output automata [11],
hybrid dynamical systems [12], and switched systems [13].

In all of these works, there exist two fundamental gaps
between the goal of modeling resilient CPS precisely and the
current state-of-the-art, in the areas of modeling, security, and
distributed algorithms for CPS. First, the models typically do
not capture all the facets required to answer the two modeling
requirements (e.g., they may focus on detailed element-level
modeling or only the static modeling that can inform only the
deployment decision). Second, most of the security algorithms
that consider interdependent systems are oblivious to the
requirements that arise due to the legacy nature of assets or
the presence of multiple stakeholders (defenders).

Exceptions include the recent works [2], [14] that studied
the interdependency between multiple stakeholders with a
security game setting, and provided a method to calculate the
optimal investments by the defenders to minimize their loss.
However, they did not model the continuous time nature of
the system and the transitions between different system states.
In other words, they only solved (partially) the second gap in
the state-of-the-art for precisely securing CPS.

In this paper, we combine hybrid input/output automaton
modeling with game theory — to the best of our knowledge,
this hybrid has never been attempted before. We demonstrate
that this hybrid can be put to good use to model CPS in-
volving multiple defenders who are responsible for defending
interdependent subnetworks within the system. Fundamentally,
our hybrid modeling enables us to model both continuous and
discrete transitions of large-scale CPS together. Specifically,
we build-up our modeling framework based on the hybrid 1/0
automata (HIOA) of [11]. We choose this framework because
it explicitly identifies input/output variables and actions of the
automata, which makes it particularly suitable for defining
externally visible interfaces across different types of modules
(or players) in the CPS in a precise manner. We show the
applicability and benefits of our proposed framework via
a representative CPS. In particular, our model captures the
evolution of resources allocation unlike previous works and
can lead to better resource utilization. The differences between
our proposed hybrid model and the related work is shown in
Table 1.

An implicit, but crucial factor that can enable our modeling
is the availability of enormous amounts of data. Such data
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TABLE I: Comparison between the prior related work and
HIOA-CPS in terms of the available features.
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would be needed to fit the state changes of the discrete as
well as continuous variables. The fidelity of our modeling
approach and consequently its utility depends on such “big
data™ being collected and then synthesized to generate the
model parameters (see Section III).

In summary, this paper makes the following contributions:

o We propose a hybrid modeling that incorporates both
game-theory and HIOA modeling for precisely modeling
security investments in dynamic interdependent systems.
Our system model captures both continuous variables and
discrete modes of such systems.

We propose a first effort to incorporate both adversarial
and stochastic choices withing HIOA model for security
analysis. This model can be applied to different applica-
tions, e.g., CPS, and autonomous driving.

We validate our hybrid model via a representative real-
world CPS and show its benefits for precise security
modeling.

The remainder of this paper is organized as follows. We
introduce the preliminaries of our framework in Section II,
followed by the proposed HIOA hybrid framework in Section
HI. In Section IV, we apply our framework to a real-world
CPS. Section VI presents the related literature. We discuss
the applicability of our model and associated challenges in
Section V. We conclude the paper in Section VIIL.

II. PRELIMINARIES AND NOTATIONS

Now, we introduce the notations of our framework, includ-
ing the HIOA framework, and the game-theoretic setup.

A. Hybrid Input/Output Automaton (HIOA)

A hybrid automaton is a useful model of a system that
displays continuous-time behavior interleaved with discrete
jumps. Hybrid automata with inputs and outputs allow ex-
ogenous time-varying inputs, and observable outputs.

A hybrid input/output automaton (HIOA) A is defined as a
tuple (£, X, U, M, G, R,A, T, V,T), where
L is a finite set of system’s discrete modes.

X ={xy,20,...,2,} is a finite set of n state variables,
and X denotes the set of all valuations of X'. We denote
any particular vector of states by x = (xy,a0,...,7,).
Thus, the hybrid state space is a subset of the set £ x X.
U = {uy,us,...,uy} denotes the set of m typed input
variables. We emphasize that these variables can be of
different types (e.g., Real (IR), Integers (Z), or Boolean).
We denote 1 = (1w, us,
M maps each mode [ € £ with a mode invariant M (1) €
X xU.

G is a set of predicates over X x .
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‘R is a set of functions from X x i to X.
A e LxGxRxLisa finite set of transitions. For each
transition § € A, g € G is its guard predicate, and r € R
is its reset map.
T € R represent the domain of time values.
A trajectory 7(X,U{) is a function from T to (X x )
that describes the valuations of the input variables and
state variables over time. A trajectory is often a sequence
of alternating flows (within modes) and resets (consistent
with mode transitions).
The set of all trajectories for the set of variables V' is
denoted by trajs(V) where T C trajs(V).
YV € X denotes the set of typed outpul variables.
T e £ x X is the set of possible initial discrete modes
and valuations of the state variables.
Note that for a given mode ! the flow within [ is typically the
solution trajectory x(-) of an initial value problem as described
by ODE % = fi(x,u) with the initial condition v(x) = xq at
t = 5. In addition, A satisfies the following axioms:

E; (Input transition enabled) For every [ € £ and a € A,
there exists I € £ such that | = I’

E2 (Input trajectory enabled) For every [ € £ and every
v € trajs(l), there exists 7 € T, such that 7.fstate = [,
7 LU < v, and either (a) 7 | I = v, or (b) 7 is closed and
some [ € L is enabled in 7.lstate.!

B. Properties of HIOA

A large CPS is typically composed of smaller modules
where putting the modules together creates increasingly larger
and more complex pieces until we build the whole system.
For instance, operators of large-scale CPS have subordinates
operating subsystems of this CPS. In this context, we exploit
powerful properties of HIOA to represent large-scale CPS. In
this context, we introduce one main property of HIOA that are
useful in our setting of modeling CPS security.

Closure under decomposition: We build large HIOA mod-
els from smaller modules, using the composition operation
which is denoted by ||. Composing two HIOA A; and A,
results in a new object A A, || Az, The compatibility
conditions (axioms E; and E3) ensure that A is also a valid
HIOA. This property is called closure wunder composition.
For example, consider a cyber attack scenario involving a
networked CPS such as the smart grid in Section IV, where
each different subnetwork is managed by a different defender.
In the HIOA framework, each of these components would
be represented as an automaton and composition leads to the
whole smart grid.

C. Game Theoretic Framework

1) Arntack Graph: We represent the assets in a CPS as nodes
of a directed graph G = (V,&) where each node v; € V
represents an asset. A directed edge (v;,v;) € & means that
if node wv; is successfully compromised, it can be used to

INote that 7.fstate and 7.lstate are the first state and last state of a

trajectory T, respectively. Also, a | b denotes the restriction of the function
a into the set b [11].
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launch an attack on node v;. We assume that the success of
attacks across different edges in the network are captured by
independent random variables. Each edge (v;,v;) € £ has an
associated weight p ; € (0,1], denoting the probability of
successfully attacking asset v; starting at v; (in the absence
of any security investments). The graph contains a designated
source node v,, which is used by the attacker to initiate her
attack on the network. For a general asset v, € V, we define
‘P to be the set of directed paths from the source v, to v,
on the graph, where a path P € P, is a collection of edges
{(ve,11), (v1,09), ..., (v, v¢) }. The attacker can choose any
path from the multiple attack paths in P, to attack v;. Figure 2
shows an example of attack graph modeling of CPS.

2) Strategic Defenders: Let D be the set of all defenders
of the network. Each defender Dy, € D is responsible for
defending a subnetwork (i.e., a set Vi, €V \ {v.} of assets).
For each compromised asset v, € Vi, the defender Dy
will incur a financial loss L,, € R-;. To reduce the attack
success probabilities on edges interconnecting assets inside the
network, a defender can allocate security resources on these
edges, subject to the constraints described below.

Let £. C £ be the subset of edges that defender [J;. can
allocate security resources on. We assume that each defender
Dy has a security budget By, € R-q. Thus, we define the
defense strategy space of each defender Dy € D by

X & {.:f‘“.'r € Ruo, (vi,v5) € Ek: Z 1-‘?,; < Bi}. ()
(vi,vy)eli

We denote any particular vector of investments by defender
Dy, by . € X2

Under a joint defense strategy, the total investment on edge
(vi,v5) I8 Ziy = {Lp,cpTh;  (viiv;) € &} Let pig :
R-o — [0, 1] be a function mapping the total investment ; ;
to an attack success probability, and with p; ;(0) = p?, 4

The goal of each defender Dy is to choose her investment
vector xy. in order to best protect her assets from being
attacked. In this paper, we consider the scenario where each
defender minimizes the highest probability path to each of
her assets; and thus the defender seeks to make the most
vulnerable path to each of her assets as secure as possible.
Mathematically, this is captured via the cost function

> Lm.(fl,liu};i\ 11 ?Jf,j(i-‘e..j))

U Vi (vi,vj)eP

C(x) (2)

subject to x, € Xj. Note that C(x) is a function of the
investments of all defenders, and thus we denote the cost by
Cr(ap,x ) where x_; is the vector of investments by de-
fenders other than Dj.. Each defender chooses her investment
vector x, € X to minimize the cost Cy(xy,x_j ), given the
investments x_ by the other defenders.

Remark 1. For each HIOA module, we will consider the
investinents of other defenders as part of the inpuis to that
HIOA module. Thus, within specific modes, the valuation of the

Each element in this investment vector represent the security effort by
the operators to reduce the probability of successful attack on an edge which
arises from the associated vulnerability that is represented by that edge in the
attack graph (see Table 1 for examples for such vulnerabilities).
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internal state variables will be calculated via the best response
notion that we define below.

Definition 1. The best response of player D). at a given
investment profile X . by other defenders is the set X,
argming, -y, Cr(Xk, X_i)-

&

The recent works [14], [18] studies the above security
game setting, and provides a method to calculate the optimal
investments by the defenders with respect to the cost function
(2). However, they did not model the continuous time nature of
the system and the transitions between different modes (states).
In the next section, we will combine HIOA with this game
theoretic framework to model large-scale CPS. To the best of
our knowledge, our proposed model is the first effort to model
both adversarial and stochastic choices for security analysis.

ITI. THE PROPOSED HIOA FRAMEWORK FOR MODELLING
INTERDEPENDENT SYSTEM WITH MULTIPLE DEFENDERS

Having introduced the notations of multiple-defender setup
and the HIOA framework, we now present our hybrid model
to capture the modes and the continuous time evolution of
variables (within each mode) where the interdependent system
contains different subnetworks with one defender responsible
for defending each subnetwork (as shown earlier in Section II).

To the best of our knowledge, our work is the first step in
the direction of developing this extension of the framework
and applying it for security analysis of the target applications
by introducing the notion of rewards (or utility functions).

We now introduce the model’s main components: the modes
of operation, the variables, the trajectories, and valuations.

A. Modes of Operation

We assume that each HIOA has four modes of operation.

o Startup mode: This mode represents the initial state of
each subnetwork (defender).

Normal mode: In this mode, each subnetwork should
be in a normal operation status where the defender is
allocating the investments by best responding to other
defenders’ optimal investments.

o Alternate mode: This mode represents the state in which
the defender alternates her investments from the normal
mode. This can happen due to any external event (e.g.,
detecting attacks) or when one of the other defenders
change her security investments.

Fail mode: This mode represents one or more node
failures (i.e., when one of the subnetwork components
is successfully compromised).

We emphasize the reachability of each mode from some
other modes via triggering specific events. For example, the
“normal” mode is reachable from “alternate” mode by external
stability event. We acknowledge that in a real system, it is
certainly possible for the system to encounter a failure in
startup mode, however we choose not to model this scenario
for simplicity in modeling and analysis.
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B. Input, State, and Output Variables

In our model, each subnetwork (managed by defender Dy, €
‘D) can be viewed as a HIOA module with the following inputs,
outputs and internal states:

« The set of stale variables X is {xy, 7,p}}, where x;, is
the defender’s defense investment vector over the edges
and p{ is the vector of initial attack probabilities.

o The set of input variables 2/ is {Altack_Risk, Fail_Event,
x_ 1}, where Attack_Risk is an indicator of the risk on
the subnetwork and has a value of O if there is no attack
mcident and non-zero otherwise, Fail_Iivent represents
the triggering event of failure (or compromise) and x_
is the investment of all defenders except defender Dy.

« The set of output variables is {p, X« }.

Remark 2. The estimation of model’s parameters (e.g., the
Attack_Risk) can be inferred from the alerts provided by
intrusion detection sensors deploved in various parts of the
CPS’s subnetworks. Such collection of data have been a chal-
lenging issue, however, there are recent efficient algorithms
Jfor collecting this data for a large-scale CPS (e.g., smart
agriculture [19] and Cvyber attacks [20]). Thus, it becomes
Jeasible for us to collect such parameters to build our model.

C. Trajectories and Valuations

Now, we provide the trajectories that describe the relations

between the different variables, the guards, and reset functions.

« For any trajectory in 7, the flow function for the trajec-
tory in any mode is described by the ODE x;, = 0.

« For each mode [ € £, M maps [ to the negation of the
conjunction of all the guards on its outgoing (ransitions.

o« The set of guards is {Fail_Event = true, 7 = 77}.

« The set of reset functions is a union of two functions g(-)
and g,(-) that are given in our update formulas.

» The transitions are as depicted in Figure 1. These transi-
tions between different modes are represented by directed
arrows. Note that the valuations functions are given in (3).
Such valuation gives the probability of successful attack
pr(t), and the investments x(¢) that minimize the cost
in each mode (given by (2)) throughout the time horizon.

« The set of initial states is the singleton set: {(startup,
p, = 0, 7 — 0, p;, — 0)}. Noe that these set of initial
states can be chosen arbitrarily for different CPS models
based on the initial conditions of that CPS.

A summary of our HIOA module is given below.
HIOA: Subnetwork of defender Dy,
Variables
input: Attack_Risk: Boolean, investment of other defend-
ers (x_p): Float.

internal: Defense investments (xj): Real vector, Initial
Success Prob. (p(,;l): Real vector.

output: Probability of Successtul attack (pg(?)).

Real trajectories
Pi(t) = pi f(xk(t)) ©)

if Att_Risk =0

Otherwise

# a0

X . =
k(1) ming, ex, Cr(xp(l),x_%(L))
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Fig. 1: An HIOA module for one subnetwork. This HIOA
module has four modes and the transitions between different
modes are represented by directed arrows (where the corre-
sponding conditions for such transitions are given above each
arrow). The ODEjs that represent the continuous time evolution
of intcrnal variablces inside cach modc arc represented inside
the four modes. ~ denotes the sample period for the decision,
where t = mh, and m € K¢ i1s a sample number.

t
Startup d =
[

t

Xy

3y

Update Functions

Startup Mode Dynamics. We assume that a timer is used
by the system to count up to 77 seconds. The update function
¢:(+) (in Figure 1) consists of two update equations given by

pi[m + 1] = pi[m] + p;[m],

Tlm -+ 1] = 7[m] + h. &

Normal and Alternate Modes Dynamics: Here, we assume
that the update function depends on the best response to other
defenders’ investments and previous state. Note that the timer
is not used in these modes, thus we have 7[m + 1] = 0. The
update function g(-) is given by

e[+ 1] = 1) (xe[m — 1] + x5 [m]),

Tlm+ 1] =0. &)

Note that x;[m] € argminy, |pm| Cr(xg[m], x_p[m]).

Fail Mode Dynamics: In this mode, we assume that the
system goes into failure where the probability of successful
attack goes to one. Again, note that timer is not used in this
mode, thus the update function g,(+) in fail mode is given by

pilm+1 =1,

Tlm+ 1] — 0. (6)

Now, we introduce the parallel decomposition result that
enables us composing subnetworks of different defenders to
represent the whole large-scale CPS.

D. Parallel Decomposition

Lemma 1. Given two HIOA Ay and A,, where A, is defined
as the tuple (Li, X, U, My, Gi, Ry LT Vi Th) for i €
{1,2}, we say that Ay and A, are compatible if X NXs = &,
NNV = ¢ Vi Cls, and Vo C U
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Fig. 2: An attack graph of a DER.1 failure scenario adapted
from [14]. It shows stepping-stone attack steps that can lead
to the compromise of PV (i.e., Gy) or EV (ie., G1).

[V. EVALUATING HYBRID MODEL ON REAL-WORLD CPS

In this section, we use our proposed hybrid HIOA and game
theory model to model a real-world CPS to validate our hybrid
model idea and show the flexibility of such idea in modeling
large-scale CPS. We first describe the real-world CPS and then
we show how to apply our hybrid model for such CPS in an
experimental setting with considering related parameters.

A. DER.] system description:

The US National Electric Sector Cybersecurity Organization
Resource (NESCOR) Technical Working Group has proposed
a framework for evaluating the risks of cyber attacks on the
smart electric grid [21]. A distributed energy resource (DER)
is described as a cyber-physical system consisting of entities
such as generators, storage devices, and electric vehicles, that
are part of the energy distribution system [21]. The DER.1
failure scenario has been identified as the riskiest failure
scenario affecting distributed energy resources according to
the NESCOR ranking. Here, there are two critical equip-
ment assets: a PhotoVoltaic (PV) generator and an electric
vehicle (EV) charging station. Each piece of equipment is
accompanied by a Human Machine Interface (HMI), the only
gateway through which the equipment can be controlled. The
DER.1 failure scenario is triggered when the attacker gets
access to the HMI. The vulnerability of the system may arise
due to various reasons, such as hacking of the HMI, or an
insider attack. Once the attacker gets access to the system,
she changes the DER settings and gets physical access to the
DER equipment. Through this manipulation, the attacker can
cause physical damage to the system.

B. Experimental Setup

Attack Graph: To analyze the above system within our
HIOA model, we follow the model proposed by [14], which
maps the above high level system overview into an attack
graph as shown in Figure 2. In this attack graph, node
labels starting with “w” are used to denote the non-critical
assets/equipment used as part of the attack steps, and Gy, G,
and G represent the critical assets which are the attacker’s
goals. For the attacker’s goals, (G represents a physical failure
of the PV system, GGy represents a physical failure of the EV
system, and GG means that a failure of either type has occurred.
The goal G may signify non-physical losses (e.g., reputation
losses) for the DER operator as a result of a successful
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TABLE II: Baseline probability of successful attack for the
vulnerabilities in the DER.1 failure scenario.

Vulnerability (CVE-ID) | Edge(s) | Attack Vector = Score
DER.1 application

Physical access (CVE-2017-10125) (wy. wy)(wig. wie) | Physical 0.71
Network a (CVL-2019-2413) (wy. wx){wis. wi7) | Network (.61
Software access (CVLE-2018-2791) (wy. we){ws, ws) Network 0.82
Sending emd (CVE-2018-1000093) (we. ws) (w5, wia) | Nelwork 0.88

EV HIOA Module (4, ) PV HIOA Module (4;)

X,
Q__._—/

Fig. 3: An Example HIOA module for the real-world CPS sys-
tem (DER.1) composed of two subnetworks. Each subnetwork
is represented by a HIOA module.

compromise. The first defender is responsible for defending
the critical asset Gy, the second defender for defending Gi.
Both defenders share the common asset G.

Baseline Probabilities of successful attack: Each edge in
the attack graphs represents a real vulnerability within the
CPS. To create the baseline probability of attack on each
edge (i.e., without any security investment), we first create
a table of CVE-IDs (from real vulnerabilities reported in the
CVE database for 2000-2020). We then followed [20], [22]
to convert the main attack’s metrics (i.e., attack vector (AV),
attack complexity (AC)) to a baseline probability of successful
attack. Table II illustrates such process for our DER.1 failure
scenario.

Hybrid modeling of DER.1: Here, we show the modeling
of DER.1 using our hybrid model. Figure 3 shows such
modeling example where each CPS physical component and
its HMI can be represented by a HIOA module. Note that
the dynamics and the transitions of each subnetwork are
encapsulated in its HIOA hybrid model. We emphasize that
the compatibility condition (in Lemma 1) is satisfied since the
output variables of each module (i.e., the investment of the
defender of the corresponding subnetwork) is the input to the
other hybrid HIOA module. We now present the variables of
each HIOA module.

o The set of state variables of EV subnetwork module is X}
= {x1, 7, p{}. On the other hand, the set of state var1ables
of PV subnetwork module is Xo = {x2, 7, pY}, where p
is the vector of initial successful attack probabilities over
the corresponding edges within the attack graph.
» The set of output variables for EV module is {p1, X1}.
The set of output variables for PV module is {p2, X2}.
e The set of input variables of EV module U
{Attack_Risk, Fail_Fvent,x_1 = Xz} and similarly
Us = {Attack_Risk, Fail_Fvent,x_o = X1 }.
The update functions (that captures the dynamics as explained
earlier in Section IIl) are calculated using Equations (4)—(6)
and the trajectories by Equation (3).
Experimental Results: We assume that there is no attack
risk on the startup time as mentioned earlier. Then, we
calculate the dynamics of the investments for both our hybrid
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Fig. 4. Comparison of evolution of defense resources alloca-
tion in game-theoretic-only (dashed blue line) vs our hybrid
model (red solid line). Our model is more efficient on security
resources utilization.

model and the game-theoretic only model. Figure 4 shows
such comparison on normal and alternate modes.?> We empha-
size that our model is more efficient on security resources
utilization since it takes account both current investments
from the game and the memory given by investments in the
previous time sample. On the contrary, the game-theoretic only
model does not take account of such memorization. Another
merit from our hybrid model is that it can give the dynamic
nature of the system’s security state and the evolution of the
allocation process. On the other hand, existing works with
only game-theoretic investments (e.g., [2], [14]) for attack
graph consider only repeated single shot and do not consider
any dynamic nature of the CPS and do not study alternation
between different modes. We believe that these two main
distinctions along with the utilization of security resources
make our proposed hybrid model more efficient in modeling
dynamics of CPS compared to those works.

V. DISCUSSION
A. Applicability of the proposed hybrid model

We emphasize that our modeling can effectively model any
interdependent CPS that can be represented by attack graphs
(e.g., SCADA [14], IEEE 300 BUS [2], E-Commerce [23], and
VOIP [2]). A second application domain that seems a natural
fit to our hybrid modeling formulation is embedded systems
that are often the core of autonomous systems like autonomous
driving. Thus, we believe that our work can have a crucial role
in improving the security modeling of autonomous systems.

B. Computing investments under hybrid modeling for un-
known costs

Note that the existing literature does not effectively cap-
ture the significantly more complex scenarios that we are
considering as part of this paper, involving a mix of static
and dynamical nodes. Thus, filling this critical gap is es-
sential when the defenders’ costs are unknown. One partic-
ular approach that can be pursued is to leverage simulation
based optimization (SO) techniques into a broader optimiza-
tion framework for computing optimal security deployments.

3Note that the two approaches would give same insights under full failure
(fail mode). We omit the details of such experiment in the interest of space.
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Such SO techniques have been widely applied for optimizing
complex systems [24], but their use in the broader context
of security policies for interdependent CPS is lacking in
the literature. SO techniques involve iteratively tuning the
optimization parameters based on evaluations of the objective
function through a simulator, but face challenges due to the
difficulty of evaluating gradients, and in the time taken to
run each simulation. Such challenges can be tackled via the
use of approximations to the objective functions (i.e., f(:)
and Cy(-) in our context) (learned via regression), and by
switching between multiple simulators at different levels of
resolution, depending on the operating points that are being
evaluated [24]. Note that creating a systematic approach to
integrate such techniques into an optimization framework for
computing security deployments for CPS would be an avenue
for future work.

VI. RELATED WORK
A. Security in interdependent systems

There exist several prior works that have studied the prob-
lem of securing systems with interdependent assets [23], [25].
These works have a common theme of modeling the stepping-
stone attacks in which the successful attack of one asset can
lead to compromise a dependent asset. The popular abstraction
notion for modeling such stepping-stone attacks is attack
graphs [20]. We follow such works for creating attack graphs,
however we do not rely only on investments from the attack
graph game but we model the dynamics evolution of the
investments with time, from the hybrid model, which has not
been studied in all of these works.

B. Game-theoretic modeling of security

The interaction between defenders and attackers is an im-
portant aspect when securing interdependent systems since it
affects the security state of the system. Such interaction has
been modeled using game theory by modeling the interaction
between one defender and one attacker [6], [26], one defender
and multiple attackers [27], [28]. Our work differs from these
works in that we consider the interdependencies between mul-
tiple defenders in an interdependent network. The exceptions
that provide a theoretical treatment of multiple defenders in
interdependent security games include [2], [5], [14]. These
works, however, do not consider the more realistic attack
scenarios that we consider, do not consider the evolution of
investments by, HIOA hybrid model, and do not involve HIOA
with game theory in one framework that we consider in our
current work.

C. HIOA (hybrid) modeling

The combination of discrete-continuous variables, pro-
grams, and ODEs within the same mathematical model to
describe the dynamics of control systems (e.g., controlling
valves) have been handled in the literature via the language
of hybrid models that can have different structure (e.g., hy-
brid automata [10], hybrid input/output automata [11], hybrid
dynamical systems [12], and the switched systems [13]). In
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contrast to those works, we extend this framework and apply
it to CPS security where stochastic and adversary notations
are considered. We also incorporate game-theory within the
update functions for each hybrid module.

VII. CONCLUSION AND FUTURE WORK

This paper presented a hybrid framework that combined
HIOA and game theory for modeling interdependent system
with multiple defenders, who place their invesiments to protect
the target assets. We first established the objective function
of each defender and then provided the HIOA hybrid model;
in particular, we modeled the continuous time evolution of
the investments within the CPS and the transitions between
different system’s states. We then validated our model using
a real-world CPS, a smart grid system. We showed that our
hybrid model captures the evolution of resource allocation in
CPS and can lead to better resource utilization. We emphasize
that our model can be applied to model the resource alloca-
tion in different domains that are represented via large-scale
interdependent systems. A future avenue of research would
be using simulation based techniques for computing security
deployments for complex CPS with unknown costs aided by
our combined (hybrid) modeling scheme. Moreover, exploring
the effect of human decision-making on our proposed hybrid
model (similar to the recent works [5], [29] on game-theoretic
formulations of interdependent systems using attack graphs)
would be another avenue for future research.
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