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HIOA-CPS: Combining Hybrid Input-Output Automaton and Game 

Theory for Security Modeling of Cyber-Physical Systems
Mustafa Abdallah, Sayan Mitra, Shreyas Sundaram, and Saurabh Bagchi

Abstract—A Cyber-Physical System (CPS) is usually composed 
of subnetworks where each subnetwork is under ownership of 
one defender. Security threats on such CPS can be represented 
by an attack graph where the defenders are required to invest 
wisely their limited budget in order to protect their critical 
assets from being compromised. We model such CPS using 
hybrid input/output automaton (HIOA) where each subnetwork 
is represented by a HIOA module. We first establish the building 
blocks needed in our setting. We then present our model that 
characterizes the continuous time evolution of the investments 
and discrete transitions between different system’s states (where 
each state represents a different condition within the system). 
Finally, we provide a representative real-world CPS to validate 
our modeling and show its benefit for CPS security.

Index Terms—Cyber-Physical Systems, Hybrid Input/Output 
Automaton, Game Theory, Attack Graphs.

I. In t r o d u c t i o n

Cyber-physical systems (CPS) demand a high degree of 

criticality, i.e., safety, security, and reliability [1]-[3]. How-

ever, such CPS are increasingly facing sophisticated attacks 

which motivates the fundamental problem we set out to solve 

— how to create such CPS out of the inherently unreliable 

building blocks. In this context, significant research has been 

performed on understanding how to better secure CPS [4]- 

[6]. This research involved both mathematical and applied 

frameworks that have been developed in order to precisely 

model the security of CPS.

There exist several challenges that have not been tackled 

for modeling CPS’s security precisely [7], [8]. One main 

challenge is the dynamic nature of CPS that represents the 

change of the state of the system with time has not been 

considered. For example, the state of an autonomous vehicle 

model has to include variables representing physical quantities 

like position, velocity, and angular speed of wheels, etc., as 

well as variables representing the state of the software modules 

used for perception, planning, and control [9]. Moreover, a 

CPS model has two broad kinds of such variables: continuous 

variables, such as security mechanisms that can be modeled 

as continuous variables (e.g., the fraction of traffic that is 

monitored for malicious packets on a network link) and 

discrete variables (e.g., the number of security personnel to 

deploy to a given site). Therefore, the question that needs to 

be answered is how to create a security model for CPS that 

involves both these types of variables.

In addition to defining the state variables, a CPS model 

also has to describe how the values of system variables can
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change. Such changes are naturally described by programs and 

the natural language for describing the laws of the physical 

world is the language of ordinary differential equations (oDE). 

Bringing together discrete and continuous variables, programs, 

and oDEs within the same mathematical model gives rise to 

the so-called hybrid models. There are several different model 

classes that fall under the umbrella term hybrid systems, such 

as hybrid automata [10], hybrid input/output automata [11], 

hybrid dynamical systems [12], and switched systems [13].

In all of these works, there exist two fundamental gaps 

between the goal of modeling resilient CPS precisely and the 

current state-of-the-art, in the areas of modeling, security, and 

distributed algorithms for CPS. First, the models typically do 

not capture all the facets required to answer the two modeling 

requirements (e.g., they may focus on detailed element-level 

modeling or only the static modeling that can inform only the 

deployment decision). Second, most of the security algorithms 

that consider interdependent systems are oblivious to the 

requirements that arise due to the legacy nature of assets or 

the presence of multiple stakeholders (defenders).

Exceptions include the recent works [2], [14] that studied 

the interdependency between multiple stakeholders with a 

security game setting, and provided a method to calculate the 

optimal investments by the defenders to minimize their loss. 

However, they did not model the continuous time nature of 

the system and the transitions between different system states. 

In other words, they only solved (partially) the second gap in 

the state-of-the-art for precisely securing CPS.

In this paper, we combine hybrid input/output automaton 

modeling with game theory — to the best of our knowledge, 

this hybrid has never been attempted before. We demonstrate 

that this hybrid can be put to good use to model CPS in-

volving multiple defenders who are responsible for defending 

interdependent subnetworks within the system. Fundamentally, 

our hybrid modeling enables us to model both continuous and 

discrete transitions of large-scale CPS together. Specifically, 

we build-up our modeling framework based on the hybrid I/o  

automata (HIOA) of [11]. We choose this framework because 

it explicitly identifies input/output variables and actions of the 

automata, which makes it particularly suitable for defining 

externally visible interfaces across different types of modules 

(or players) in the CPS in a precise manner. We show the 

applicability and benefits of our proposed framework via 

a representative CPS. In particular, our model captures the 

evolution of resources allocation unlike previous works and 

can lead to better resource utilization. The differences between 

our proposed hybrid model and the related work is shown in 

Table I.

An implicit, but crucial factor that can enable our modeling 

is the availability of enormous amounts of data. Such data

© 2021, Mustafa Abdallah. Under license to IEEE. 
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TABLE I: Comparison between the prior related work and 

HIOA-CPS in terms of the available features.

S y s te m

M u l t ip l e

D e f e n d e r s

I n te r d e p e n d e n t

s u b n e t w o r k s

A n a ly t i c a l

F r a m e w o r k
C P S

S e c u r i t y

D y n a m ic s

M o d e l in g

T A C 0 3  [ 1 0 ] ,  M I T 0 7  [1 1 ] X X / X /
S & P 0 9  [1 5 ] ,  E C 1 8  [1 6 ] X X X / X

J D A 1 7  [1 7 ] ,  C D C 1 9  [6] X X / / X

T C N S 2 0  [ 1 4 ] ,  A s i a C C S 2 1  [2] / / / / X

H I O A - C P S / / / / /

would be needed to fit the state changes of the discrete as 

well as continuous variables. The fidelity of our modeling 

approach and consequently its utility depends on such “big 

data” being collected and then synthesized to generate the 

model parameters (see Section III).

In summary, this paper makes the following contributions:

• We propose a hybrid modeling that incorporates both 

game-theory and HIOA modeling for precisely modeling 

security investments in dynamic interdependent systems. 

Our system model captures both continuous variables and 

discrete modes of such systems.

• We propose a first effort to incorporate both adversarial 

and stochastic choices withing HIOA model for security 

analysis. This model can be applied to different applica-

tions, e.g., CPS, and autonomous driving.

• We validate our hybrid model via a representative real- 

world CPS and show its benefits for precise security 

modeling.

The remainder of this paper is organized as follows. We 

introduce the preliminaries of our framework in Section II, 

followed by the proposed HIOA hybrid framework in Section 

III. In Section IV, we apply our framework to a real-world 

CPS. Section VI presents the related literature. We discuss 

the applicability of our model and associated challenges in 

Section V. We conclude the paper in Section VII.

II. Pr e l i m i n a r i e s  a n d  N o t a t i o n s

Now, we introduce the notations of our framework, includ-

ing the HIOA framework, and the game-theoretic setup.

A. Hybrid Input/Output Automaton (HIOA)
A hybrid automaton is a useful model of a system that 

displays continuous-time behavior interleaved with discrete 

jumps. Hybrid automata with inputs and outputs allow ex-

ogenous time-varying inputs, and observable outputs.

A hybrid input/output automaton (HIOA) A is defined as a 

tuple (L, X , U , M ,  G, R , A , T , Y, I ) ,  where

• L is a finite set of system’s discrete modes.

• X  = { x i ,x 2, . . .  , x n} is a finite set of n  state variables, 

and X  denotes the set of all valuations of X . We denote 

any particular vector of states by x  =  (xi , x2, . . . ,  xn). 

Thus, the hybrid state space is a subset of the set L x  X .

• U =  {u1, u2, . . . ,  u m} denotes the set of m  typed input 

variables. We emphasize that these variables can be of 

different types (e.g., Real (R), Integers (Z), or Boolean). 

We denote u =  (u1, u2, . . . ,  um) as the the input vector.

• M  maps each mode l e  L with a mode invariant M (l) e 

X  x U .

• G is a set of predicates over X  x U .

• R  is a set of functions from X  x U to X .

• A e L x G x R x  L  is a finite set of transitions. For each 

transition 5 e  A, g e G is its guard predicate, and r e  R  

is its reset map.

• T e  R>o represent the domain of time values.

• A trajectory t (X , U) is a function from T to (X x U) 

that describes the valuations of the input variables and 

state variables over time. A trajectory is often a sequence 

of alternating flows (within modes) and resets (consistent 

with mode transitions).

• The set of all trajectories for the set of variables V  is 

denoted by tra js (V ) where T  C tra js (V ).

• Y e  X denotes the set of typed output variables.

• I  e L x X  is the set of possible initial discrete modes 

and valuations of the state variables.

Note that for a given mode l the flow within l is typically the 

solution trajectory x (-) of an initial value problem as described 

by ODE X =  fi(x , u ) with the initial condition v(x) = x 0 at 

t =  t 0. In addition, A satisfies the following axioms:

E i (Input transition enabled) For every l e  L and a e  A, 

there exists l  e L  such that l A  l .
E 2 (Input trajectory enabled) For every l e  L and every 

v e  tra js(U), there exists t  e  T , such that T .fsta te  = l, 
t  l  U < v, and either (a) t  l  U = v, or (b) t  is closed and 

some l e  L is enabled in T.lstate.1

B. Properties of HIOA
A large CPS is typically composed of smaller modules 

where putting the modules together creates increasingly larger 

and more complex pieces until we build the whole system. 

For instance, operators of large-scale CPS have subordinates 

operating subsystems of this CPS. In this context, we exploit 

powerful properties of HIOA to represent large-scale CPS. In 

this context, we introduce one main property of HIOA that are 

useful in our setting of modeling CPS security.

Closure under decomposition: We build large HIOA mod-

els from smaller modules, using the composition operation 

which is denoted by ||. Composing two HIOA A 1 and A 2 

results in a new object A =  A 1||A 2. The compatibility 

conditions (axioms E 1 and E 2) ensure that A is also a valid 

HIOA. This property is called closure under composition. 

For example, consider a cyber attack scenario involving a 

networked CPS such as the smart grid in Section IV, where 

each different subnetwork is managed by a different defender. 

In the HIOA framework, each of these components would 

be represented as an automaton and composition leads to the 

whole smart grid.

C. Game Theoretic Framework
1) Attack Graph: We represent the assets in a CPS as nodes 

of a directed graph G = (V, E) where each node vi e  V  

represents an asset. A directed edge (v i,v j) e  E means that 

if node vi is successfully compromised, it can be used to

'Note that T . f s ta te  and T.lstate  are the first state and last state of a 
trajectory t , respectively. Also, a f  b denotes the restriction of the function 
a into the set b [11].
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launch an attack on node v j . We assume that the success of 

attacks across different edges in the network are captured by 

independent random variables. Each edge (vi ,v j ) e  E has an 

associated weight p0 j e  (0,1], denoting the probability of 

successfully attacking asset vj starting at vi (in the absence 

of any security investments). The graph contains a designated 

source node vs, which is used by the attacker to initiate her 

attack on the network. For a general asset vt e  V , we define 

Vt to be the set of directed paths from the source vs to vt 
on the graph, where a path P  e  Vt is a collection of edges 

{(vs,v 1), (v1,v2),..., (vk,v t)}. The attacker can choose any 

path from the multiple attack paths in Vt to attack vt . Figure 2 

shows an example of attack graph modeling of CPS.

2) Strategic Defenders: Let D be the set of all defenders 

of the network. Each defender D k e  D is responsible for 

defending a subnetwork (i.e., a set Vk C V  \  {vs} of assets). 

For each compromised asset vm e  Vk, the defender D k 
will incur a financial loss L m e  R>0. To reduce the attack 

success probabilities on edges interconnecting assets inside the 

network, a defender can allocate security resources on these 

edges, subject to the constraints described below.

Let Ek C E be the subset of edges that defender D k can 

allocate security resources on. We assume that each defender 

D k has a security budget B k e  R>0. Thus, we define the 

defense strategy space of each defender D k e  D by

X k = {x k,j e  R>o, (vi, v j) e  Ek : ^  x k,j <  Bk}. (1)

(vi,vj )e£k

We denote any particular vector of investments by defender

Dk by xk e  Xk.2

Under a joint defense strategy, the total investment on edge

(vi , vj ) is x i,j : =  { E d 46D xk,j : (vi , vj ) e  Ek}. Let Pi,j :
R>0 A  [0,1] be a function mapping the total investment x^j 
to an attack success probability, and with p ij  (0) =  p0 j.

The goal of each defender Dk is to choose her investment 

vector xk in order to best protect her assets from being 

attacked. In this paper, we consider the scenario where each 

defender minimizes the highest probability path to each of 

her assets; and thus the defender seeks to make the most 

vulnerable path to each of her assets as secure as possible. 

Mathematically, this is captured via the cost function

Ck (x) =  ^  L m (  max n  Pi,j (xi,j ̂  (2)
vmeVk (vi,vj )eP

subject to x k e  X k. Note that Ck (x) is a function of the 

investments of all defenders, and thus we denote the cost by 

Ck (xk, x - k ) where x -k  is the vector of investments by de-

fenders other than D k . Each defender chooses her investment 

vector x k e  X k to minimize the cost Ck(xk, x -k ), given the 

investments x -k  by the other defenders.

Remark 1. For each HIOA module, we will consider the 

investments o f other defenders as part o f the inputs to that 
HIOA module. Thus, within specific modes, the valuation o f the

2Each element in this investment vector represent the security effort by 
the operators to reduce the probability of successful attack on an edge which 
arises from the associated vulnerability that is represented by that edge in the 
attack graph (see Table II for examples for such vulnerabilities).

internal state variables will be calculated via the best response 

notion that we define below.

Definition 1. The best response o f player Dk at a given 

investment profile x _k by other defenders is the set xk =
argminXfc6x k Ck (xk, x _k).

The recent works [14], [18] studies the above security 

game setting, and provides a method to calculate the optimal 

investments by the defenders with respect to the cost function 

(2). However, they did not model the continuous time nature of 

the system and the transitions between different modes (states). 

In the next section, we will combine HIOA with this game 

theoretic framework to model large-scale CPS. To the best of 

our knowledge, our proposed model is the first effort to model 

both adversarial and stochastic choices for security analysis.

III. Th e  Pr o p o s e d  HIOA f r a m e w o r k  f o r  m o d e l l i n g  

i n t e r d e p e n d e n t  s y s t e m  w i t h  m u l t i p l e  d e f e n d e r s

Having introduced the notations of multiple-defender setup 

and the HIOA framework, we now present our hybrid model 

to capture the modes and the continuous time evolution of 

variables (within each mode) where the interdependent system 

contains different subnetworks with one defender responsible 

for defending each subnetwork (as shown earlier in Section II).

To the best of our knowledge, our work is the first step in 

the direction of developing this extension of the framework 

and applying it for security analysis of the target applications 

by introducing the notion of rewards (or utility functions).

We now introduce the model’s main components: the modes 

of operation, the variables, the trajectories, and valuations.

A. Modes o f Operation

We assume that each HIOA has four modes of operation.

• Startup mode: This mode represents the initial state of 

each subnetwork (defender).

• Normal mode: In this mode, each subnetwork should 

be in a normal operation status where the defender is 

allocating the investments by best responding to other 

defenders’ optimal investments.

• Alternate mode: This mode represents the state in which 

the defender alternates her investments from the normal 

mode. This can happen due to any external event (e.g., 

detecting attacks) or when one of the other defenders 

change her security investments.

• Fail mode: This mode represents one or more node 

failures (i.e., when one of the subnetwork components 

is successfully compromised).

We emphasize the reachability of each mode from some 

other modes via triggering specific events. For example, the 

“normal” mode is reachable from “alternate” mode by external 

stability event. We acknowledge that in a real system, it is 

certainly possible for the system to encounter a failure in 

startup mode, however we choose not to model this scenario 

for simplicity in modeling and analysis.
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B. Input, State, and Output Variables
In our model, each subnetwork (managed by defender D k e  

D) can be viewed as a HIOA module with the following inputs, 

outputs and internal states:

• The set of state variables X is j x fc , t , pk}, where x k is 

the defender’s defense investment vector over the edges 

and p k is the vector of initial attack probabilities.
• The set of input variables U is {Attack_Risk, Fail_Event, 

x _ k}, where Attack_Risk is an indicator of the risk on 

the subnetwork and has a value of 0 if there is no attack 

incident and non-zero otherwise, Fail_Event represents 

the triggering event of failure (or compromise) and x _ k 
is the investment of all defenders except defender Dk.

• The set of output variables is {pk, x k}.

Remark 2. The estimation o f model’s parameters (e.g., the 

Attack_Risk) can be inferred from the alerts provided by 

intrusion detection sensors deployed in various parts o f the 

CPS’s subnetworks. Such collection o f data have been a chal-
lenging issue, however, there are recent efficient algorithms 

for collecting this data for a large-scale CPS (e.g., smart 
agriculture [19] and Cyber attacks [20]). Thus, it becomes 

feasible for us to collect such parameters to build our model.

C. Trajectories and Valuations
Now, we provide the trajectories that describe the relations 

between the different variables, the guards, and reset functions.

• For any trajectory in T , the flow function for the trajec-

tory in any mode is described by the ODE x k =  0.

• For each mode l e  L, M  maps l to the negation of the 

conjunction of all the guards on its outgoing transitions.

• The set of guards is {Fail_Event = true, t  =  t j  }.

• The set of reset functions is a union of two functions g( ) 

and go(•) that are given in our update formulas.

• The transitions are as depicted in Figure 1. These transi-

tions between different modes are represented by directed 

arrows. Note that the valuations functions are given in (3). 

Such valuation gives the probability of successful attack 

Pfc (t), and the investments x k (t) that minimize the cost 

in each mode (given by (2)) throughout the time horizon.

• The set of initial states is the singleton set: {(startup, 

pk a  0, t  a  0, p k a  0)}. Noe that these set of initial 

states can be chosen arbitrarily for different CPS models 

based on the initial conditions of that CPS.

A summary of our HIOA module is given below.

HIOA: Subnetwork of defender D k
Variables

input: Attack_Risk: Boolean, investment of other defend-

ers (x_ k): Float.

internal: Defense investments (xk): Real vector, Initial 

Success Prob. (pk): Real vector.

output: Probability of Successful attack (pk(t)).

Real trajectories

pk(t) = pk f  (x k (t)) (3)

(t) =  ( 0 if  A tt_R isk  =  0

x k ( ) m inxke x k Ck(x k(t), x _ k (t)) Otherwise

Fig. 1: An HIOA module for one subnetwork. This HIOA 

module has four modes and the transitions between different 

modes are represented by directed arrows (where the corre-

sponding conditions for such transitions are given above each 

arrow). The ODEs that represent the continuous time evolution 

of internal variables inside each mode are represented inside 

the four modes. h denotes the sample period for the decision, 

where t =  mh, and m e  R>0 is a sample number.

Update Functions

Startup Mode Dynamics: We assume that a timer is used 

by the system to count up to t j  seconds. The update function 

gi( j  (in Figure 1) consists of two update equations given by

p fc[m +  1] =  p fc[m] +  p k [m], 

t  [m +  1] =  t  [m] +  h. (4)

Normal and Alternate Modes Dynamics: Here, we assume 

that the update function depends on the best response to other 

defenders’ investments and previous state. Note that the timer 

is not used in these modes, thus we have t  [m +  1] = 0 . The 

update function g( ) is given by

x k [m +  1] =  2 ( x fc [m -  1] +  x k [m]), 

t  [m +  1] =  0. (5)

Note that x*k [m] e  argm inxk[m] Ck(xk [m], x _ k [m]).

Fail Mode Dynamics: In this mode, we assume that the 

system goes into failure where the probability of successful 

attack goes to one. Again, note that timer is not used in this 

mode, thus the update function go(•) in fail mode is given by

pk [m +  1] =  1 ,

t  [m +  1] =  0. (6)

Now, we introduce the parallel decomposition result that 

enables us composing subnetworks of different defenders to 

represent the whole large-scale CPS.

D. Parallel Decomposition
Lemma 1. Given two HIOA A 1 and A2, where A  is defined 

as the tuple (Li, Xi, Ui, M i, Gi, R i, A*, Ti, Yi, I f )  for i e 

{1,2}, we say that A 1 and A2 are compatible if  X1 nX 2 =  fi, 
Y1 n  Y2 =  fi, Y1 C U2, and Y2 C U1.

256

Authorized licensed use limited to: Purdue University. Downloaded on July 14,2021 at 02:48:17 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2: An attack graph of a DER.1 failure scenario adapted 

from [14]. It shows stepping-stone attack steps that can lead 

to the compromise of PV (i.e., G0) or EV (i.e., G1).

IV. Ev a l u a t i n g  h y b r i d  m o d e l  o n  Re a l -w o r l d  CPS

In this section, we use our proposed hybrid HIOA and game 

theory model to model a real-world CPS to validate our hybrid 

model idea and show the flexibility of such idea in modeling 

large-scale CPS. We first describe the real-world CPS and then 

we show how to apply our hybrid model for such CPS in an 

experimental setting with considering related parameters.

A. DER.1 system description:
The US National Electric Sector Cybersecurity Organization 

Resource (NESCOR) Technical Working Group has proposed 

a framework for evaluating the risks of cyber attacks on the 

smart electric grid [21]. A distributed energy resource (DER) 

is described as a cyber-physical system consisting of entities 

such as generators, storage devices, and electric vehicles, that 

are part of the energy distribution system [21]. The DER.1 

failure scenario has been identified as the riskiest failure 

scenario affecting distributed energy resources according to 

the NESCOR ranking. Here, there are two critical equip-

ment assets: a PhotoVoltaic (PV) generator and an electric 

vehicle (EV) charging station. Each piece of equipment is 

accompanied by a Human Machine Interface (HMI), the only 

gateway through which the equipment can be controlled. The 

DER.1 failure scenario is triggered when the attacker gets 

access to the HMI. The vulnerability of the system may arise 

due to various reasons, such as hacking of the HMI, or an 

insider attack. Once the attacker gets access to the system, 

she changes the DER settings and gets physical access to the 

DER equipment. Through this manipulation, the attacker can 

cause physical damage to the system.

B. Experimental Setup
Attack Graph: To analyze the above system within our 

HIOA model, we follow the model proposed by [14], which 

maps the above high level system overview into an attack 

graph as shown in Figure 2. In this attack graph, node 

labels starting with “w” are used to denote the non-critical 

assets/equipment used as part of the attack steps, and G0, G i, 

and G represent the critical assets which are the attacker’s 

goals. For the attacker’s goals, G0 represents a physical failure 

of the PV system, G i represents a physical failure of the EV 

system, and G means that a failure of either type has occurred. 

The goal G may signify non-physical losses (e.g., reputation 

losses) for the DER operator as a result of a successful

TABLE II: Baseline probability of successful attack for the 

vulnerabilities in the DER.1 failure scenario.

V u lnerability  (C V E -ID ) I E dge(s) A ttack  Vector Score
D E R .1  app lication
Physical access (CVE-2017-10125) ( w q  , W 7 ) , ( w  18 , W 1 6) Physical 0.71
Network access (CVE-2019-2413) (W 9 , W 8),(W 1 8 , W 17) Network 0.61
Software access (CVE-2018-2791) (W7 , W 6),(W 8 , W 6) Network 0.82
Sending cmd (CVE-2018-1000093) (W 6 , W 5),(W 1 5 , W 14) Network 0.88

Fig. 3: An Example HIOA module for the real-world CPS sys-

tem (DER.1) composed of two subnetworks. Each subnetwork 

is represented by a HIOA module.

compromise. The first defender is responsible for defending 

the critical asset G0, the second defender for defending G1. 

Both defenders share the common asset G .

Baseline Probabilities of successful attack: Each edge in 

the attack graphs represents a real vulnerability within the 

CPS. To create the baseline probability of attack on each 

edge (i.e., without any security investment), we first create 

a table of CVE-IDs (from real vulnerabilities reported in the 

CVE database for 2000-2020). We then followed [20], [22] 

to convert the main attack’s metrics (i.e., attack vector (AV), 

attack complexity (AC)) to a baseline probability of successful 

attack. Table II illustrates such process for our DER.1 failure 

scenario.

Hybrid modeling of DER.1: Here, we show the modeling 

of DER.1 using our hybrid model. Figure 3 shows such 

modeling example where each CPS physical component and 

its HMI can be represented by a HIOA module. Note that 

the dynamics and the transitions of each subnetwork are 

encapsulated in its HIOA hybrid model. We emphasize that 

the compatibility condition (in Lemma 1) is satisfied since the 

output variables of each module (i.e., the investment of the 

defender of the corresponding subnetwork) is the input to the 

other hybrid HIOA module. We now present the variables of 

each HIOA module.

• The set of state variables of EV subnetwork module is X1 
= {x1, t , p 0}. On the other hand, the set of state variables 

of PV subnetwork module is X2 = {x2, t , p 0}, where pk 

is the vector of initial successful attack probabilities over 

the corresponding edges within the attack graph.

• The set of output variables for EV module is {p1, x 1}. 

The set of output variables for PV module is {p2, x 2}.

• The set of input variables of EV module U1 =

{A ttack_R isk,F ail_E vent, x -1 =  x 2} and similarly 

U2 =  {A ttack_R isk,F ail_E vent, x -2 =  x 1}.

The update functions (that captures the dynamics as explained 

earlier in Section III) are calculated using Equations (4)-(6) 

and the trajectories by Equation (3).

Experimental Results: We assume that there is no attack 

risk on the startup time as mentioned earlier. Then, we 

calculate the dynamics of the investments for both our hybrid
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Evoultion of Allocated Defense Resources for game-theoritic vs hybrid models

Fig. 4: Comparison of evolution of defense resources alloca-

tion in game-theoretic-only (dashed blue line) vs our hybrid 

model (red solid line). Our model is more efficient on security 

resources utilization.

model and the game-theoretic only model. Figure 4 shows 

such comparison on normal and alternate modes.3 We empha-

size that our model is more efficient on security resources 

utilization since it takes account both current investments 

from the game and the memory given by investments in the 

previous time sample. On the contrary, the game-theoretic only 

model does not take account of such memorization. Another 

merit from our hybrid model is that it can give the dynamic 

nature of the system’s security state and the evolution of the 

allocation process. On the other hand, existing works with 

only game-theoretic investments (e.g., [2], [14]) for attack 

graph consider only repeated single shot and do not consider 

any dynamic nature of the CPS and do not study alternation 

between different modes. We believe that these two main 

distinctions along with the utilization of security resources 

make our proposed hybrid model more efficient in modeling 

dynamics of CPS compared to those works.

V. Di s c u s s i o n

A. Applicability o f the proposed hybrid model
We emphasize that our modeling can effectively model any 

interdependent CPS that can be represented by attack graphs 

(e.g., SCADA [14], IEEE 300 BUS [2], E-Commerce [23], and 

VOIP [2]). A second application domain that seems a natural 

fit to our hybrid modeling formulation is embedded systems 

that are often the core of autonomous systems like autonomous 

driving. Thus, we believe that our work can have a crucial role 

in improving the security modeling of autonomous systems.

B. Computing investments under hybrid modeling for un-
known costs

Note that the existing literature does not effectively cap-

ture the significantly more complex scenarios that we are 

considering as part of this paper, involving a mix of static 

and dynamical nodes. Thus, filling this critical gap is es-

sential when the defenders’ costs are unknown. One partic-

ular approach that can be pursued is to leverage simulation 

based optimization (SO) techniques into a broader optimiza-

tion framework for computing optimal security deployments.

3Note that the two approaches would give same insights under full failure 
(fail mode). We omit the details of such experiment in the interest of space.

Such SO techniques have been widely applied for optimizing 

complex systems [24], but their use in the broader context 

of security policies for interdependent CPS is lacking in 

the literature. SO techniques involve iteratively tuning the 

optimization parameters based on evaluations of the objective 

function through a simulator, but face challenges due to the 

difficulty of evaluating gradients, and in the time taken to 

run each simulation. Such challenges can be tackled via the 

use of approximations to the objective functions (i.e., f  (■) 
and Ck(-) in our context) (learned via regression), and by 

switching between multiple simulators at different levels of 

resolution, depending on the operating points that are being 

evaluated [24]. Note that creating a systematic approach to 

integrate such techniques into an optimization framework for 

computing security deployments for CPS would be an avenue 

for future work.

VI. Re l a t e d  Wo r k

A. Security in interdependent systems
There exist several prior works that have studied the prob-

lem of securing systems with interdependent assets [23], [25]. 

These works have a common theme of modeling the stepping- 

stone attacks in which the successful attack of one asset can 

lead to compromise a dependent asset. The popular abstraction 

notion for modeling such stepping-stone attacks is attack 

graphs [20]. We follow such works for creating attack graphs, 

however we do not rely only on investments from the attack 

graph game but we model the dynamics evolution of the 

investments with time, from the hybrid model, which has not 

been studied in all of these works.

B. Game-theoretic modeling o f security
The interaction between defenders and attackers is an im-

portant aspect when securing interdependent systems since it 

affects the security state of the system. Such interaction has 

been modeled using game theory by modeling the interaction 

between one defender and one attacker [6], [26], one defender 

and multiple attackers [27], [28]. Our work differs from these 

works in that we consider the interdependencies between mul-

tiple defenders in an interdependent network. The exceptions 

that provide a theoretical treatment of multiple defenders in 

interdependent security games include [2], [5], [14]. These 

works, however, do not consider the more realistic attack 

scenarios that we consider, do not consider the evolution of 

investments by, HIOA hybrid model, and do not involve HIOA 

with game theory in one framework that we consider in our 

current work.

C. HIOA (hybrid) modeling
The combination of discrete-continuous variables, pro-

grams, and ODEs within the same mathematical model to 

describe the dynamics of control systems (e.g., controlling 

valves) have been handled in the literature via the language 

of hybrid models that can have different structure (e.g., hy-

brid automata [10], hybrid input/output automata [11], hybrid 

dynamical systems [12], and the switched systems [13]). In
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contrast to those works, we extend this framework and apply 

it to CPS security where stochastic and adversary notations 

are considered. We also incorporate game-theory within the 

update functions for each hybrid module.

VII. Co n c l u s i o n  a n d  Fu t u r e  Wo r k

This paper presented a hybrid framework that combined 

HIOA and game theory for modeling interdependent system 

with multiple defenders, who place their investments to protect 

the target assets. We first established the objective function 

of each defender and then provided the HIOA hybrid model; 

in particular, we modeled the continuous time evolution of 

the investments within the CPS and the transitions between 

different system’s states. We then validated our model using 

a real-world CPS, a smart grid system. We showed that our 

hybrid model captures the evolution of resource allocation in 

CPS and can lead to better resource utilization. We emphasize 

that our model can be applied to model the resource alloca-

tion in different domains that are represented via large-scale 

interdependent systems. A future avenue of research would 

be using simulation based techniques for computing security 

deployments for complex CPS with unknown costs aided by 

our combined (hybrid) modeling scheme. Moreover, exploring 

the effect of human decision-making on our proposed hybrid 

model (similar to the recent works [5], [29] on game-theoretic 

formulations of interdependent systems using attack graphs) 

would be another avenue for future research.
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