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We introduce a method for constructing Weil-Petersson 
(WP) geodesics with certain behavior in the Teichmüller 
space. This allows us to study the itinerary of geodesics 
among the strata of the WP completion and its relation to 
subsurface projection coefficients of their end invariants. As 
an application we demonstrate the disparity between short 
curves in the universal curve over a WP geodesic and those 
of the associated hyperbolic 3–manifold.
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1. Introduction

In this paper we explore some questions about visibility in the Weil-Petersson geodesic 
flow in Teichmüller space, and its connections to synthetic aspects of the flow, by which 
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we mean the combinatorial behavior of geodesic flow lines for large times. Our mo-
tivation is partly the analogy between Weil-Petersson flow and Teichmüller flow, and 
partly the connections between Weil-Petersson geometry and the geometry of hyper-
bolic 3–manifolds.

Our main result is a criterion (Theorem 1.2) for existence of bottlenecks between 
certain (non-recurrent) pairs of geodesics, and its consequences for visibility, that is to 
say connectivity by geodesics of certain points at infinity. We use this result to construct 
examples of geodesics whose approach pattern to the completion strata of the Teichmüller 
space exhibits some new phenomena (Theorems 1.3, and 5.5), and related examples 
in which the connection between WP geometry and hyperbolic geometry breaks down 
(Theorems 1.4 and 1.5).

Bottlenecks and visibility. A bottleneck for a pair R, R′ of subsets of a geodesic metric 
space X is a compact set K � X such that every geodesic segment with endpoints on R
and R′ meets K.

For two geodesic rays r, r′, visibility of their endpoints at infinity is the existence of 
a geodesic g strongly asymptotic to r in forward time and r′ in backward time. The 
existence of a bottleneck is an important step in the proof of visibility.

For example, it is shown in [7, Theorem 1.3] that any two recurrent geodesic rays 
have a bottleneck and satisfy the corresponding visibility property. To consider the 
non-recurrent case we start with geodesics that are asymptotic to completion strata in 
Teichmüller space. If ω is a multicurve in S, let �ω : Teich(S) → R+ be its geodesic length 
function on Teichmüller space. The stratum S(ω) is the locus in the Weil-Petersson com-
pletion of Teich(S) where the curves of ω are replaced by punctures (hence �ω = 0). The 
following conjecture seems reasonable but is currently beyond our reach:

Conjecture 1.1. Let ω, ω′ be two multicurves in S that fill the surface. Then S(ω) and 
S(ω′) have a bottleneck.

Our main technical result will be the following restricted version:

Theorem 1.2. Let ω, ω′ be two co-large multicurves that fill S. Let ε̄ > 0, and let r and 
r′ be infinite length WP geodesic rays in Teich(S) that are strongly asymptotic to (or 
contained in) the ε̄–thick parts of the strata S(ω) and S(ω′), respectively. Then r and r′

have a bottleneck.

Here a multicurve is co-large if it is the boundary of a subsurface all of whose com-
plementary subsurfaces are annuli and three-holed spheres. See Section 2 for details.

The corresponding visibility statement is given in Theorem 4.5.

Itinerary and subsurface projections. A motivating question for us is finding a combina-
torial or symbolic description of the itinerary of a Weil-Petersson geodesic, by which we 
mean the list of completion strata that the geodesic approaches. The classical analogue 
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is a geodesic in the modular surface H2 /SL(2, Z) whose approaches to the cusp are 
determined by the continued-fraction expansion of its endpoint in RP1 = ∂H2.

A natural generalization of the continued-fraction coefficients is given by subsurface 
projection coefficients (or just subsurface coefficients), as developed in [24] and [22]. Rafi 
studied the relation of these projections to the itineraries of Teichmüller geodesics in 
[29–31]. A geodesic (in both the Teichmüller and Weil-Petersson settings) has a pair 
(ν+, ν−) of endpoints, which can be points in Teich(S), or laminations (with or without 
transverse measure), and for any essential subsurface Y ⊆ S we consider

dY (ν+, ν−) := diamC(Y )

(
πY (ν+), πY (ν−)

)
where πY is the projection to the curve complex C(Y ) (see Section 2 for detailed defini-
tions).

Very roughly, when these coefficients are large, the geodesic makes close approaches 
to the strata of Teich(S) (equivalently, infg �γ is small for some γ), but the complete 
correspondence is not fully understood.

Rafi showed, for a Teichmüller geodesic g with end invariant (ν+, ν−), that lower 
bounds on dY (ν+, ν−) imply upper bounds on infg �∂Y . However he developed sequences 
of examples showing that the opposite implication fails.

Using Theorem 1.2 we are able to produce examples of WP geodesics for which the 
analogue of Rafi’s result holds:

Theorem 1.3. There exist A ≥ 1, ε0 > 0 so that for any ε > 0 there is a WP geodesic 
segment pq whose endpoints are in the ε0–thick part of Teich(S), and a curve γ so that

inf
x∈pq

�γ(x) < ε

whereas

sup
{
dY (p, q) | Y ⊆ S, γ ⊆ ∂Y

}
≤ A.

A more detailed description of this construction appears in Theorem 5.5. We obtain 
a phenomenon we might call indirect shortening, in which, while a curve γ with small 
infx∈g �γ(x) is not in the boundary of any subsurface Z with large dZ(ν−, ν+), it is in 
the boundary of a subsurface Z which in turn contains enough subsurfaces Y with large 
dY (ν+, ν−) to fill it. We discuss this further in Section 5.

In Section 3, we consider one case in which the correspondence between large sub-
surface projections and close approaches to strata is simple and direct: A geodesic has 
non-annular bounded combinatorics when there is an upper bound on all projection coef-
ficients dY (ν+, ν−) except when Y is an annulus. Theorem 3.2 shows that, for a geodesic 
g satisfying such a condition, a curve α with small infg �α is the core of an annulus 
Y with large dY (ν+, ν−), and vice versa. The proof of this mostly assembles existing 
techniques, as outlined in Section 2, and we include it here for completeness.
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Comparison with Kleinian groups. Using the methods developed in [22,1], one can con-
vert Theorem 1.3 to a statement comparing the geometry of WP geodesics and hyperbolic 
3-manifolds. For any two points p, q ∈ Teich(S) there is a quasi-Fuchsian representation 
ρ : π1(S) → PSL(2, C) such that QF (p, q) := H3 /ρ(π1(S)) has conformal boundary 
surfaces p and q. One can ask, as in [21] for Teichmüller geodesics, about the corre-
spondence between short geodesic curves in QF (p, q) and curves with short length along 
the WP geodesic pq. The following theorem indicates that the correspondence is not 
complete:

Theorem 1.4. There exists ε1 > 0 so that for any ε > 0 there is a pair (p, q) ∈ Teich(S) ×
Teich(S) and a curve γ in S such that

inf
x∈pq

�γ(x) < ε

whereas

�γ(QF (p, q)) ≥ ε1.

With some more care one can obtain a similar statement for fibered 3-manifolds and 
their associated WP geodesic loops. For a pseudo-Anosov map Φ ∈ Mod(S) let MΦ
denote the associated hyperbolic mapping torus and AΦ the WP axis of Φ in Teich(S).

Theorem 1.5. There exists ε1 > 0 so that for any ε > 0 there is a pseudo-Anosov Φ ∈
Mod(S) and a curve γ in S such that

inf
x∈AΦ

�γ(x) < ε

whereas

�γ(MΦ) > ε1.

We note that similar statements, for comparing Teichmüller geodesics and Kleinian 
groups, follow from Rafi’s results (see discussion in [21]), but the actual set of examples, 
as well as the proofs, are quite different. These results also provide counterexamples for 
Conjecture 1.8 of [7].

Brief historical sketch. Several important geometric and dynamical properties of the 
Weil-Petersson metric were established over the last decade; see Wolpert [35] for a sum-
mary of some these results. Our point of view begins with [7,8] which introduced ending 
laminations for WP geodesics and studied the question of itineraries and their relation 
to subsurface projections.

Some of these techniques were developed further in [25,26], and recently ending lami-
nations were applied successfully to determine limit sets of WP geodesics in Thurston’s 
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compactification of Teichmüller space [5,4] exhibiting various exotic asymptotic behav-
ior of the geodesics; for example geodesics with non simply connected (circle) limit sets. 
Moreover, Hamenstädt [16] used ending laminations to establish certain measure theo-
retic properties of the WP geodesic flow. On the other hand, Brock and Modami in [6]
showed that an analogue of the Masur criterion [19] does not hold for WP geodesics and 
the associated ending laminations.

However a complete description of the WP geodesic flow in terms of ending laminations 
remains elusive. It is our hope that the examples and techniques developed here will add 
to the toolkit for addressing the issue more fully.

1.1. Plan of the paper

In Section 2 we provide some background and supplementary results about coarse 
geometry of curve complexes and other related complexes, and recall definitions and 
techniques for handling the Weil-Petersson metric. In Section 3 we prove Theorem 3.2
which completes the itinerary picture for geodesics satisfying the non-annular bounded 
combinatorics condition (no indirect curve shortening occurs in this situation). In sec-
tion 4 we prove our main theorem about the existence of bottlenecks for certain families 
of geodesic segments (Theorem 1.2). In Section 5 we prove Theorem 5.5, which uses 
the Bottleneck theorem to construct WP geodesic segments that have the indirect curve 
shortening property. In particular we obtain a proof of Theorem 1.3. In Section 6 we 
prove Theorem 6.1, which produces closed WP geodesics that have the indirect curve 
shortening property. The delicacy here is to approximate the segments constructed in 
Theorem 5.5 with arcs of closed geodesics while controlling end invariants and their sub-
surface projection coefficients. In Section 7 we show how Theorems 5.5 and 6.1 translate 
to Theorem 1.4 and Theorem 1.5, which indicate a mismatch between the short curves 
of WP geodesics and the short curves of the corresponding hyperbolic 3–manifolds.

2. Background

In this section we set notation and recall a variety of facts from the literature. Some 
results are just quoted from the literature, for some we outline the proofs, and a few 
require a short argument which we supply.

2.1. Curves and surfaces

Let S be a connected, orientable surface of finite type. In this paper by a curve
α on S we mean the homotopy class of an essential (i.e. homotopically nontrivial and 
nonperipheral – not homotopic to a puncture or boundary) simple closed curve on S, and 
by a subsurface Y ⊆ S we mean the homotopy class of a closed, connected, nonperipheral, 
π1-injective subsurface of S. A multicurve on S is a set of pairwise disjoint non-parallel 
curves on S.
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We abuse notation a bit to blur the distinction between a subsurface and its interior; 
for example if Y ⊆ S is a subsurface we take Teich(Y ) to mean the same thing as 
Teich(int(Y )). This is convenient when we consider subsurfaces in the complement of 
multicurves or other subsurfaces on S.

When two curves or multicurves α, β cannot be realized disjointly on a surface we 
say that they overlap and denote α � β. Similarly, when a curve α and a subsurface 
Y cannot be realized disjointly, we say that they overlap and denote α � Y . We say 
that two (multi)curves α, β fill the surface S if their union intersects every curve in S; 
equivalently if, when realized with minimal intersection number, the complement of α∪β
is a union of disks and peripheral annuli.

Thurston’s measured lamination space ML(S) is a natural completion of the set of 
curves and multicurves, and we will also consider the space of geodesic laminations (with-
out measures) GL(S). (Laminations are geodesic with respect to a reference hyperbolic 
metric as usual, but the choice of metric doesn’t matter here.) See [13,9] for basic facts 
about these spaces. Within GL(S) let EL(S) denote the space of minimal filling lamina-
tions: A lamination is filling if it intersects every simple closed geodesic; equivalently if 
its complementary regions are ideal polygons or once-punctured ideal polygons.

The natural weak-∗ topology on ML(S) descends to the coarse Hausdorff topology 
on the supports in GL(S). In particular EL(S) with the coarse Hausdorff topology is a 
Hausdorff space (no pun intended), and convergence is characterized as follows: λn → λ

in the coarse Hausdorff topology on EL(S) if any accumulation point of {λn}n in the 
Hausdorff metric on closed subsets of S contains λ as a sublamination. See [15] and [14, 
§2] for details.

The following class of subsurfaces and multicurves plays a special role throughout the 
paper:

Definition 2.1. We say that a subsurface Z ⊆ S is large if each connected component of 
S � Z is either a three holed sphere or an annulus. The boundary of a large subsurface 
is called a co-large multicurve.

Remark 2.2. It is easy to verify that any submulticurve of a co-large multicurve is a 
co-large multicurve.

2.2. Weil-Petersson geometry

Consider now S with negative Euler characteristic, and let Teich(S) denote the Te-
ichmüller space of marked complete finite-area hyperbolic surfaces homeomorphic to S. 
The mapping class group of the surface, Mod(S), is the group of orientation preserving 
homeomorphisms of the surface up to isotopy. The mapping class group acts on the Te-
ichmüller space by remarking (precomposition with homeomorphisms) and the quotient 
is the moduli space of Riemann surfaces M(S).
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The Weil-Petersson (WP) metric on Teich(S) is an incomplete Riemannian metric 
which is invariant under the action of Mod(S) and hence descends to a metric on M(S). 
We will recall the basic facts about the WP metric that we will need; for a more complete 
account see Wolpert’s survey [35].

The curvature of the metric is strictly negative, but not bounded away from 0 or −∞. 
Moreover, the WP metric is geodesically convex [35, Theorem 3.10]: there is a unique 
geodesic between any two points x, y ∈ Teich(S) which we denote by xy. We typically 
think of geodesics parameterized by arclength.

We denote the WP distance function as dwp, or just d when confusion is unlikely. 
The completion of (Teich(S), dwp), denoted by Teich(S), is a stratified CAT(0) space 
where each stratum consists of marked surfaces pinched at a multicurve σ. We denote 
the stratum of the multicurve σ by S(σ), with S(∅) = Teich(S). To describe the metric 
on S(σ), let surfaces Xj , j = 1, . . . , k, be the connected components of S � σ which 
are not three-holed spheres, where punctures are introduced on Xj at curves in σ. Then 
S(σ) is totally geodesic in Teich(S), and can be identified with

Teich(S � σ) ∼=
∏
j

Teich(Xj)

where the completed WP metric on S(σ) is isometric to the Riemannian product of WP 
metrics on Teich(Xj); see [18].

Length-functions. For a curve or multicurve α ⊆ C(S) the length-function

�α : Teich(S) → R+

assigns to a point x the sum of the lengths of the geodesic representatives of connected 
components of α at x.

We also note that �α extends continuously to

�α : Teich(S) → [0,∞],

where {�α = 0} is the closure of S(α) and {�α = ∞} is the union of strata S(σ) for 
which α � σ.

Given ε > 0 recall that the ε–thick part of Teichmüller space consists of all points 
x ∈ Teich(S) so that �α(x) ≥ 2ε for all curves α. Its complement is called the ε–thin 
part.

The Bers constant LS > 0 of a surface S with negative Euler characteristic is a 
number depending only on the topological type of the surface so that any x ∈ Teich(S)
has a pants decomposition, called a Bers pants decomposition, with the property that 
the length of all curves in the pants decomposition are at most LS; see [11, §4.1].

We recall also that Wolpert proved that the length-functions �α are strictly convex in 
Teich(S), that is, for any WP geodesic g the function �α◦g has positive second derivatives 
[32, Corollary 4.7] (see also §3 of [35]; in particular Theorem 3.9).
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Thick regions of strata. For ε > 0 we define the ε–thick part of a stratum, denoted by 
Sε(σ), to be the product of the ε–thick parts of its factors Teich(Xj) where Xj are the 
connected components of S � σ.

For d > 0 we denote the d–neighborhood of Sε(σ) in Teich(S) by

Ud,ε(σ) := N d(Sε(σ)). (2.1)

For sufficiently small neighborhoods of Sε(σ) we retain some control of length-
functions:

Lemma 2.3. For any ε > 0 sufficiently small there is b > 0 so that: For any β /∈ ω and 
x ∈ Ub,ε(ω), �β(x) is uniformly bounded below.

Given b there is εb > 0 such that, in the b–neighborhood of any point in Teich(S), 
there is a point with injectivity radius εb outside the cusps.

Proof. Let Γ ⊂ Mod(S) be the stabilizer of ω, or equivalently the stabilizer of S(ω). Note 
that Sε(ω)/Γ is a compact subset of Teich(S)/Γ (it is the ε–thick part of the moduli space 
of S � ω).

Define f(x) := inf{�β(x) : β /∈ ω} on Teich(S). This is a continuous, Γ-invariant 
function and it is strictly positive on Sε(ω), by definition. It descends to a continuous 
function on Teich(S)/Γ and, since Sε(ω)/Γ is compact, there is some b > 0 such that it 
is still strictly positive on the closure of the b–neighborhood of Sε(ω)/Γ. Lifting back to 
Teich(S) we have the desired first statement.

The second statement follows directly from compactness of the completion of the 
moduli space. �
2.3. Coarse geometric models

We recall here the system of complexes and their projection maps which can be used 
to give rough models for Teichmüller space and for the mapping class group. We refer to 
[23,24] and [10,3] for the details and basic facts about these complexes.

Curve complexes. We denote the curve complex of S by C(S), defined so that k-simplices 
are (k + 1)-component multicurves (with minor exceptions for one-holed tori, 4-holed 
spheres and annuli). We may turn the complex to a metric complex by declaring that 
each simplex is the Euclidean simplex with side lengths 1. The seminal result of Masur 
and Minsky [23] showed that this metric complex is Gromov hyperbolic.

The pants graph P(S) is the graph whose vertices are pants decompositions, i.e. max-
imal simplices of C(S), and whose edges are pairs of pants decompositions related by an 
elementary move consisting of replacing a curve with another that intersects it as few 
times as possible. We can turn the graph to a metric graph by assigning length 1 to each 
edge.
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A marking of S is a filling collection of curves consisting of a pants decomposition, 
called the base of marking, together with curves transverse to each component, as dis-
cussed in [24]. The marking graph Mark(S) is formed by defining elementary moves 
between markings, in such a way that Mark(S) is connected and quasi-isometric to 
Mod(S).

Subsurface projections. If Y is a non-annular subsurface of S and α is a curve in S
intersecting Y , we can define πY (α) by taking arcs of intersection of α with Y (once 
they are in minimal position) and replacing them by curves using a mild surgery (closing 
up with subarcs of ∂Y ). When Y is an annulus we define C(Y ) to be the complex of 
essential arcs in the natural compactified annular cover Ŷ of S associated to Y , and 
form πY (α) by lifting α to this cover (see e.g. [24, §2] or [22, §4]). One way to handle 
the arbitrary choices involved in these definitions is to let πY (α) denote the set of all 
possibilities and check that this set has uniformly bounded diameter. If α does not 
intersect Y we let πY (α) = ∅.

The definition extends to pants decompositions and markings by taking a union over 
their components, and to laminations provided their intersection with Y does not contain 
infinite leaves. In particular πY (λ) makes sense if λ ∈ EL(S).

Finally we extend the definition to πY (x) where x ∈ Teich(S) by letting μ(x) denote 
a Bers marking of S, namely a marking whose base pants decomposition is a Bers 
pants decomposition and whose transversal curves are chosen with minimal lengths. (If 
there is more than one such marking we make an arbitrary choice.) We then define 
πY (x) := πY (μ(x)).

The Y subsurface coefficient dY (p, q), for any p, q whose projections to Y are defined 
as above and are nonempty, is now defined by

dY (p, q) := diamC(Y )

(
πY (p) ∪ πY (q)

)
. (2.2)

We usually do not distinguish between an annulus Y and its core curve α, for example 
denoting πY by πα and dY by dα. From the definition it is clear that dY satisfies the 
triangle inequality, provided all three projections are nonempty.

Hierarchy paths. We recall that hierarchy (resolution) paths form a transitive set of quasi-
geodesics in the pants or marking graph of a surface with quasi-geodesic constants that 
depend only on the topological type of the surface. An important property of hierarchy 
paths is the no–backtracking property [24, §4], which we state here in a form that will 
serve our purpose in Section 3.

Proposition 2.4 (No-backtracking property). Let ρ : I → P(S) be a hierarchy resolution 
path, and let i, j, k, l ∈ I with i ≤ j ≤ k ≤ l, then for a non-annular subsurface Y we 
have that

dY (ρ(i), ρ(l)) ≥ dY (ρ(j), ρ(k)) −M
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For a more complete list of properties of hierarchy paths see [24, §4,5], [22, §5], [8, 
Theorem 2.6] and [25, Theorem 2.17].

Pants graph and WP metric. Brock [10, Theorem 3.2] showed that the (coarse) map

Q : Teich(S) → P(S) (2.3)

that assigns to a point x ∈ Teich(S) a Bers pants decomposition is a quasi-isometry with 
constants that depend only on the topological type of the surface.

Here we also recall the Masur-Minsky distance formula [24, Theorem 6.12] which 
provides a coarse estimate for the distance of any two pants decompositions P, Q ∈ P(S): 
Given A > 0 large enough there are K ≥ 1 and C ≥ 0 so that

dP(P,Q) �K,C

∑
Y⊆S: na

{dY (P,Q)}A (2.4)

holds, where {x}A =
{
x if x ≥ A

0 if x < A
is the cut-off function. The “na” in the above for-

mula stands for non-annular and indicates that the sum is over non-annular subsurfaces.
Brock’s quasi-isometry (2.3) combined with the distance formula (2.4) gives us a coarse 

formula for the Weil-Petersson distance:

dwp(x, y) �K,C

∑
Y⊆S: na

{dY (x, y)}A (2.5)

where A ≥ 1 is large enough and K, C depend on A.
The following immediate consequence of the distance formula can also be obtained by 

more elementary means:

Lemma 2.5. For any a > 0, there is a D ≥ 1, so that if dwp(x, y) ≤ a then

sup
Y⊆S: na

dY (x, y) ≤ D

We also need the following lemma which gives bounds on subsurface projections for 
convergent sequences of laminations:

Lemma 2.6. Let λ be a lamination in EL(S) and γ a curve on S. Then, there is a neigh-
borhood U of λ in the coarse Hausdorff topology on EL(S) such that for all laminations 
μ in U we have

sup dY (λ, μ) ≤ 4.

Y⊆S:γ⊆∂Y
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Proof. Equip the surface S with a complete hyperbolic metric and realize γ and λ
geodesically. Let l be a leaf of λ that intersects γ, and let a be a subarc of l with 
end points on γ that is essential in the subsurface S � γ. When γ is a separating curve 
choose an arc as above in each connected component of S � γ.

Let Ra denote a small regular neighborhood of a in S�γ which is of the form a × [0, 1]
where (∂a) × [0, 1] is two arcs on γ.

A sequence of laminations μi ∈ EL(S) converges in the coarse Hausdorff topology to 
λ if any accumulation point of μi in the Hausdorff metric is a lamination containing λ, 
and in particular the leaf l. Thus, we can choose a neighborhood U of λ in the coarse 
Hausdorff topology such that any μ ∈ U (realized geodesically) has a leaf l′ passing 
through Ra from one side on γ to the other side on γ. Denote the subarc of l′ with end 
points on γ by a′.

Now let Y ⊆ S be a non-annular subsurface with geodesic boundary ∂Y such that 
γ ⊆ ∂Y . Then a must intersect Y (when S � γ has two components one of the two arcs 
must intersect Y ). For any boundary component γ′ �= γ which intersects a or a′, each 
intersection point lies in a segment of γ′ that passes between the “long” boundary edges 
a × {0} and a × {1} of Ra, since the other two edges are on γ. Hence such a segment 
must intersect both a and a′. It follows that λ ∩ Y and μ ∩ Y must contain arcs which 
are parallel to each other, which implies πY (μ) and πY (λ) share a component. It follows 
that dY (λ, μ) = diamC(Y )(πY (λ) ∪ πY (μ)) ≤ 4.

When Y is an annulus with core curve γ, denote the compactified annular cover of S
corresponding to Y by Ŷ . Let a be an arc of l spanned by three successive intersection 
points with γ. Let γ̂ be the lift of γ to a core curve of Ŷ . Lift l to a geodesic l̂ crossing γ̂
and connecting the components of ∂Ŷ , and let â be the lift of a in l̂ that crosses γ̂. The 
endpoints of â lie in lifts γ̂1 and γ̂2 of γ which are lines bounding disks H1, H2 which 
meet the components of ∂Ŷ in arcs. If λ′ is sufficiently close to λ it contains a leaf l′

that has a lift l̂′ which passes close enough to â that its endpoints lie in the disks H1 and 
H2 respectively. Then l̂ and l̂′ are distance at most 2 in C(Y ), since there is a regular 
neighborhood of â∪H1∪H2 whose boundary contains an arc connecting the components 
of ∂Ŷ which is disjoint from both l̂ and l̂′. �
2.4. End invariants

The end invariants introduced by Brock, Masur and Minsky in [7] are pairs of mark-
ings or laminations, denoted by (ν−, ν+) associated to WP geodesics. These invariants 
and the associated subsurface coefficients are quite instrumental in the study of the 
global geometry and dynamics of the WP metric.

Let r : [a, b) → Teich(S) be a complete WP geodesic ray (the domain of r does not 
extend to the end point b). First, an ending measure of r is a limit (in the projective 
measured lamination space) of distinct Bers curves αi at times ti → b. Moreover, a 
pinching curve along r is any curve with limt→∞ �α(r(t)) = 0. Then the union of the 
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supporting laminations of all ending measures of r and all pinching curves along r is 
shown in [7] to be a lamination, and this is the ending lamination ν(r).

Now let g : I → Teich(S) be a WP geodesic, where I = (a, b), [a, b) or [a, b] (a, b ∈
R∪{±∞}), and let c be a point in the interior of I. When g extends to b (including the 
situation that b ∈ I) the forward end invariant of g is a Bers marking at g(b). Otherwise, 
the forward end invariant (ending lamination) of g is the ending lamination of the ray 
g|[c,b) as we defined above. We denote the forward end invariant of g by ν+(g). The 
backward end invariant (ending lamination) of g is defined similarly considering the ray 
g(−t)|[−c,−a) and is denoted by ν−(g). The pair (ν+(g), ν−(g)) is the end invariant of 
g. We usually suppress the reference to the geodesic g and denote the end invariant by 
(ν+, ν−).

2.5. Partial pseudo-Anosov maps

A partial pseudo-Anosov map supported on a subsurface X � S is a map f ∈ Mod(S)
which fixes X, is homotopic to the identity on S � X, and restricts to a pseudo-Anosov 
map on X.

Any pseudo-Anosov map f on X has a unique geodesic axis Af in Teich(X), 
by Daskalapoulos-Wentworth [12, Theorem 1.1]. For a partial pseudo-Anosov map 
supported on X we obtain a family of axes in S(∂X) which can be written as 
Af × Teich(S � X) in the natural product structure. If X is large this is again a single 
axis which we continue to denote Af .

We have the following lemma about subsurface coefficients of points along an axis of 
a partial pseudo-Anosov map:

Lemma 2.7. Let g be an axis of a pseudo-Anosov map or a partial pseudo-Anosov map 
f supported on a subsurface X. There exists D ≥ 1 so that

dY (x, y) ≤ D

for all x, y ∈ g and all Y ⊆ S which are not X itself or annuli with cores in ∂X.
Moreover, for K ≥ 1, C ≥ 0 depending only on f we have

dwp(x, y) �K,C dX(x, y).

Here U �K,C V means, as usual, that U ≤ KV + C and V ≤ KU + C.

Proof. The first statement is a corollary of [25, Lemma 7.4] (see also [20, pages 120-122], 
[17, Theorem 3.9]), which states that for any curve α ∈ C(S) there is a bound Dα such 
that

dY (α, fn(α)) ≤ Dα (2.6)
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for all n ∈ Z and Y not equal to X or an annulus with core in ∂X, provided α and fn(α)
intersect Y .

Let Γ be the union of all curves in Bers markings μ(x) for x ∈ g. Since g is invariant 
under f with compact quotient, we know that there is a finite subset Γ̂ ⊂ Γ such that 
Γ = ∪n∈Zf

n(Γ̂).
Applying (2.6) to the curves of Γ̂ we obtain the first inequality of the lemma.
The second inequality follows from the first one and the distance formula (2.5), after 

setting the threshold larger than D. �
2.6. Length-function control

In this section we assemble some of the length-function controls which we will use to 
extract information about behavior of WP geodesics from the combinatorial information.

The first result is an improved version of Wolpert’s Geodesic Limit Theorem [33, 
Proposition 32] which is Theorem 4.5 of [25]. This theorem gives us a limiting picture 
for sequences of bounded length WP geodesic segments, where the overall idea is that 
the only obstruction to such a sequence converging to a geodesic segment in Teich(S) or 
in a stratum is the appearance of high twists along short curves.

Given a multicurve σ denote by tw(σ) the subgroup of Mod(S) generated by Dehn 
twists about the curves in σ.

Theorem 2.8 (Geodesic Limits). Given T > 0, let ζn : [0, T ] → Teich(S) be a sequence of 
WP geodesic segments parametrized by arclength. After possibly passing to a subsequence 
there is a partition 0 = t0 < . . . < tk+1 = T of [0, T ], multicurves σ0, . . . , σk+1 and τ̂
where σ0 and σk+1 (and τ̂) may be empty such that

σi ∩ σi+1 ≡ τ̂

for all i = 0, . . . , k, and a piecewise geodesic segment

ζ̂ : [0, T ] → Teich(S),

with the following properties:

(GLT1) ζ̂((ti, ti+1)) ⊆ S(τ̂) for i = 0, . . . , k;
(GLT2) ζ̂(ti) ∈ S(σi) for i = 0, . . . , k + 1;
(GLT3) There are elements ψn ∈ Mod(S) and Ti,n ∈ tw(σi � τ̂) for i = 1, . . . , k and 

n ∈ N so that, writing

ϕi,n = Ti,n ◦ . . . ◦ T1,n ◦ ψn (2.7)

for i = 1, . . . , k, and ϕ0,n := ψn, we have
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lim
n→∞

ϕi,n(ζn(t)) = ζ̂(t)

for any t ∈ [ti, ti+1], where i = 0, . . . , k.

Let us also recall the Non-refraction theorem of Daskalopoulos and Wentworth [12, 
Theorem 3.6] (see also [33, Theorem 13]) which specifies the stratum of the interior of 
the geodesic segment connecting two points in Teich(S) depending on the location of the 
end points.

Theorem 2.9 (Non-refraction). Let σ1 and σ2 be two multicurves, and x1x2 be a WP 
geodesic segment with x1 ∈ S(σ1) and x2 ∈ S(σ2). Then the interior of x1x2 is inside 
S(σ1 ∩ σ2).

Formally speaking one can derive the non-refraction theorem from Theorem 2.8. We 
will actually need the following quantified variation on non-refraction which is also a 
corollary of Theorem 2.8.

Lemma 2.10. For any a > 0 and ε1 > 0 there exists ε2 > 0 such that, if ζ : [−a, a] →
Teich(S) is a WP geodesic segment and γ a curve in S such that

max
[0,a]

�γ ◦ ζ ≥ ε1

then

max
[−a,0]

�γ ◦ ζ ≥ ε2.

Proof. Supposing the lemma fails, there is a sequence of geodesics ζn : [−a, a] → Teich(S)
and curves γn such that �γn

(ζn(tn)) ≥ ε1 for some tn ∈ [0, a] while max[−a,0] �γn
◦ζn → 0

as n → ∞.
Note, by convexity of length-functions we may assume that tn = a.
Use Theorem 2.8 (GLT) to obtain (passing to a subsequence if necessary) a partition 

t0, . . . , tk+1 of [−a, a], multicurves σ0, . . . , σk+1 and τ̂ , mapping classes ψn, Ti,n and a 
piecewise geodesic ζ̂ satisfying the conclusions of the theorem. In particular, by GLT3, 
ψn(ζn) → ζ̂ on the interval (a, t1) as n → ∞, and this limit by GLT1 lies in S(τ̂). So we 
conclude ψn(γn) is eventually a component γ of τ̂ , and hence �γ ◦ ζ̂ ≡ 0 on [−a, a].

Now since τ̂ ⊆ σi for each i, each Ti,n, which is in the twist group of σi, must fix 
γ. This means that ϕi,n(γn) = γ (with ϕi,n defined as in (GLT3)), and since by GLT3, 
ϕi,n(ζn) → ζ̂ on [ti, ti+1], we conclude that �γn

◦ ζn → �γ ◦ ζ̂ on [−a, a]. But �γ ◦ ζ̂ ≡ 0
so we have a contradiction to the lower bound for �γn

(ζn(tn)). �
The following two results from [25, §4], obtained there as consequences of Theorem 2.8, 

provide us with control of the length of a curve along WP geodesics in terms of the asso-
ciated annular coefficient of the curve. Roughly speaking, along a WP geodesic segment 
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of bounded length with suitable assumptions at the endpoints, the length of a curve γ
gets very short somewhere in the middle if and only if the twisting of the endpoints 
around γ grows very large.

Theorem 2.11 ([25, Corollary 4.10]). Given T, ε0 and ε < ε0 positive, there is an N ∈
N with the following property. Let ζ : [0, T ′] → Teich(S) be a WP geodesic segment 
parameterized by arclength with T ′ ≤ T such that for a curve γ

max
t∈[0,T ′]

�γ(ζ(t)) > ε0

and

dγ(ζ(0), ζ(T ′)) ≥ N.

Then we have

min
t∈[0,T ′]

�γ(ζ(t)) < ε.

Theorem 2.12 ([25, Corollary 4.11]). Given ε0, T, s positive with T > 2s and N ∈ N, 
there is an ε < ε0 with the following property. Let ζ : [0, T ′] → Teich(S) be a WP geodesic 
segment parametrized by arclength with T ′ ∈ [2s, T ]. Let J ⊆ [s, T ′ − s] be a subinterval, 
and suppose that for some γ ∈ C0(S) we have

max
t∈[0,T ′]

�γ(ζ(t)) > ε0

and

min
t∈J

�γ(ζ(t)) < ε.

Then we have

dγ(ζ(0), ζ(T ′)) ≥ N.

We will need the following variant on Theorem 2.12 as well:

Theorem 2.13. Given ε0, T > 0 and N ∈ N, there is an ε < ε0 with the following 
property. Let ζ : [0, T ′] → Teich(S) be a WP geodesic segment parametrized by arclength 
with T ′ ≤ T . Suppose that for some γ ∈ C0(S) we have

�γ(ζ(0)) > ε0, �γ(ζ(T ′)) > ε0

and
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min
t∈[0,T ′]

�γ(ζ(t)) < ε.

Then we have

dγ(ζ(0), ζ(T ′)) ≥ N.

Proof. First we quote the following direct consequence of [25, Corollary 3.5]:

Lemma 2.14. For any l > 0 there is an s > 0 so that if for a curve β ∈ C(S), �β(x) ≥ l, 
then for all x′ ∈ Teich(S) with d(x, x′) ≤ s we have that �β(x′) ≥ l/2.

Now let s > 0 be the constant given by this lemma for l = ε0, and let ε be the 
constant from Theorem 2.12 given ε0, T and s. Now if ε′ < min{ε, ε0/2} we find that, if 
�γ(ζ(t)) < ε′ then T ′ > 2s and t ∈ J = [s, T ′ − s]. Therefore Theorem 2.12 applies to 
give us the desired conclusion. �

The following theorem which relies on convexity of length-functions provides us with 
conditions for approach to strata or having short curves along WP geodesics (see also 
[25, Lemma 6.9]).

Theorem 2.15. Let c1, c2 > 0, and let σ be a co-large multicurve. Let ζn : In → Teich(S)
be a sequence of WP geodesic segments, where I1 ⊂ I2 ⊂ · · · and ∪nIn = R. Suppose 
that �α ◦ ζn(t) < c1 for all α ∈ σ and t ∈ In. Let J be a compact interval for which 
�β ◦ ζn(t) > c2 for all β disjoint from σ and t ∈ J ∩ In. Then, after possibly passing to a 
subsequence, for all α ∈ σ we have

�α ◦ ζn → 0

uniformly on J as n → ∞

Proof. First we record the following elementary fact. In the following for an interval 
I = [a, b] we denote by 1

2I the interval with the same center and half the diameter.

Lemma 2.16. Let f : I → R be a C2 function that satisfies 0 ≤ f ≤ c1 and f̈ > 0. Then

|ḟ(t)| ≤ 4c1/|I| (2.8)

for all t ∈ 1
2I.

Proof. This is an exercise in calculus. For t ∈ 1
2I, if ḟ(t) ≥ 0 we have

c1 ≥ f(b) − f(t) =
bˆ
ḟ(s)ds ≥ (b− t)ḟ(t),
t
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because ḟ is increasing. Then since b − t ≥ |I|/4 we have ḟ(t) ≤ 4c1/|I|. When ḟ(t) ≤ 0
the argument is similar (integrating on [a, t]). �

Now let α ∈ σ. Note for large enough n that J ⊂ 1
2In. Since �α ◦ ζn is bounded by 

c1 on In and �̈α ◦ ζn(t) > 0 for all t ∈ In ([32, Corollary 4.7]), Lemma 2.16 applies and 
gives us

|�̇α ◦ ζn| = O(1/|In|)

on J for all n large enough. Since |In| → ∞, we have �̇α ◦ ζn → 0 uniformly on J , and 
thus, possibly passing to a subsequence, we have a constant cα ≥ 0 for each α ∈ σ such 
that �α ◦ ζn → cα uniformly on J .

Partition σ into τ � κ, where cα = 0 for α ∈ κ and cα > 0 for α ∈ τ . Now, note that 
by the assumption of the theorem the length of any curve disjoint from σ is bounded 
below by c2, and by the Collar Lemma [11, §4.1] the length of every curve that overlaps 
σ is at least the size of the standard collar neighborhood of a curve with length at most 
c1. Thus, the only curves whose lengths go to 0 on J are the ones in κ. In the following 
we show that τ is empty, which means κ = σ, and hence the lengths of all curves in σ
converge to 0 uniformly on J as is desired.

Seeking a contradiction suppose τ �= ∅. By compactness of the completed moduli 
space we may assume, up to composing ζn by mapping classes in Stab(σ) and passing to 
a subsequence, that ζn|J converge pointwise to a geodesic ζ. Since �α ◦ ζn|J → 0 for all 
α ∈ κ, and the length of every curve which is not in κ is bounded below together with 
the fact that length-functions extend continuously to the WP completion of Teichmüller 
space imply that ζ lies in the stratum S(κ). Hence for an α ∈ τ , the function �α ◦ ζn
converges to �α ◦ ζ pointwise, which implies �α ◦ ζ ≡ cα > 0 on J . But κ is a co-large 
multicurve (see Remark 2.2) and hence S(κ) ∼= Teich(S � κ), so again by [32, Corollary 
4.7] the function �α ◦ ζ is strictly convex. This contradiction shows that τ is empty, and 
completes the proof of the theorem. �

We also will use the following result which was proved in the setting of hierarchy paths 
in [25, Lemma 6.4]:

Theorem 2.17. For any k, K ≥ 1, c, C ≥ 0 and D ≥ 0, there exist constants w, B > 0
so that the following hold: Let ρ : I → P(S) be a (k, c)–quasi-geodesic with the property 
that for a non-annular subsurface X ⊆ S, and any i, j ∈ I we have

dP(ρ(i), ρ(j)) �K,C dX(ρ(i)), ρ(j)). (2.9)

Moreover, let γ be a curve with γ � X which is in the pants decomposition Q where 
d(Q, ρ(i)) ≤ D, and let P ∈ P(S) be so that d(P, ρ(j)) ≤ D for a j ∈ I where |j− i| ≥ w. 
Then we have that
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dγ(P, ρ(j)) ≤ B (2.10)

Moreover, if P is a Bers pants decomposition at a point x ∈ Teich(S), then we have

�γ(x) ≥ ω (2.11)

where ω > 0 is the width of the standard collar neighborhood of a Bers curve on x.

Proof. Here we just sketch the proof and refer the reader to [25, Lemma 6.4]. The 
assumption (2.9) and the fact that ρ is a quasi-geodesic imply that ρ advances at a 
definite rate in the curve complex C(X). This together with the Lipschitz property of 
πγ : C(X) → C(γ) outside a bounded neighborhood of πX(γ) in C(X) shows that: 
choosing w large enough for i, j ∈ I and a P ∈ P(S) satisfying assumptions of the lemma 
a shortest path of length D that connects P and ρ(j) in P(S) passes only through pants 
decompositions that intersect γ. Thus the inequality (2.10) holds for a B > 0 depending 
only on D.

Moreover, the inequality (2.11) follows from the fact that γ intersects a Bers curve 
at x, and hence by the Collar Lemma ([11, §4.1]) the length of γ is at least ω > 0 the 
width of the standard collar neighborhood of a Bers curve. �
2.7. Ruled surfaces in Weil-Petersson metric

In this subsection we assemble some facts and results about ruled surfaces in the 
Weil-Petersson metric, mainly drawn from §4, 6 of [26].

Let ζ be a WP geodesic in Teich(S) and πζ : Teich(S) → ζ the nearest-point projec-
tion. Because of the negative curvature of the WP metric this map is well-defined, and is 
smooth at points x with πζ(x) in the interior of ζ [26, Proposition 4.1]. We will consider 
ruled surfaces over ζ as follows:

Let η be a path in Teich(S). Then the geodesic segments xπζ(x) for x ∈ η form 
a ruled surface which we denote Q[η; ζ]. Given a parameterization of η by arclength, 
written η : [0, T ] → Teich(S), we can parameterize Q[η; ζ] as

Q : ΔQ → Teich(S)

where ΔQ is the planar region{
(t, s) : t ∈ [0, T ], s ∈ [0, λ(t)]

}
and λ(t) is d(η(t), ζ), which is the length of η(t)πζ(η(t)). Thus t �→ Q(t, λ(t)) parametrizes 
η and t �→ Q(t, 0) parameterizes πζ ◦ η. For each t, s �→ Q(t, s) parametrizes η(t)πζ(η(t))
by arclength. See Fig. 1.

Regions inside Q: Note that Q(t, s) is at distance s from ζ. Thus, for 0 ≤ s < s′ <

dist(η, ζ) we can restrict Q to [0, T ] × [s, s′] and we denote this by Qs′
s [η; ζ] or just Qs′

s . 
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Fig. 1. A ruled surface Q[η; ζ] over a geodesic ζ. The shaded region corresponds to Qs′

s [η; ζ].

Similarly we denote by Qs the level curve Q restricted to [0, T ] × s. Note that Q0 is a 
(not necessarily injective) parametrization of ζ.

If πζ(η) is contained in the interior of ζ, and if η is smooth, then Q[η; ζ] is smooth and 
for each x ∈ η the geodesic segment xπζ(x) is orthogonal to ζ. In fact the level curves 
Qs are orthogonal to the rulings xπζ(x) at all intersection points.

We can define the pullback metric on Q[η; ζ] (or on the parametrizing domain) and 
denote its Gaussian curvature κ. We also define the intrinsic geodesic curvature kg along 
horizontal curves Qs for s > 0, oriented so that is positive if Qs is curved away from 
the bottom curve Q0. With this convention −kg is non-negative [26, Theorem 4.2]. We 
let dms be the measure on the level curve Qs induced by integrating −kg. Negative 
curvature implies that this family of measures is monotonic and weak-∗ converges to a 
measure m on Q0 [26, Claim 4.3], in particular

ˆ

Q0

dm = lim
s→0

ˆ

Qs

−kg.

This provides the curvature term for the bottom edge of Q which allows us to write a 
version of the Gauss-Bonnet theorem (this is formula (4.5) in [26, §4.1]):

Theorem 2.18 (Gauss-Bonnet). Let Q = Q[η; ζ] where η is also a geodesic, and let θi, i =
1, 2, 3, 4 be the exterior angles at the four corners of Q. Then

¨

Q

κdA−
ˆ

Q0

dm = 2π −
4∑

i=1
θi.

It is helpful to define, for any Q,

I(Q) =
¨

Q

−κdA +
ˆ

Q0

dm (2.12)

Note that I(Q) ≥ 0 and is monotonic, so that for example if s ≤ dist(η, ζ) and η′ is a 
sub-path of η, we have

I(Qs
0[η′; ζ]) ≤ I(Q[η; ζ]). (2.13)
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Moreover, all the exterior angles are at most π and the exterior angles at the bottom 
corners are π2 , (since we are in the case where the rulings of Q are orthogonal to ζ). Thus 
Theorem 2.18 gives us

I(Q) ≤ π. (2.14)

Lower bounds on I. When ζ is close to the thick part of the stratum of a co-large 
multicurve, we obtain lower bounds on I(Q) for certain ruled surfaces Q. Recall large 
subsurfaces from Definition 2.1. Then, Lemma 6.3 in [26] importing some of the infor-
mation from the statement of Theorem 5.14 of the paper can be rephrased as follows:

Lemma 2.19. Let ε̄ > 0 and let b > 0 be the corresponding constant from Lemma 2.3. 
Then, for any d ∈ (0, b) and e > 0 there exists a K0 > 0 such that the following holds: 
Let σ be a co-large multicurve, and let ζ be a geodesic segment in Teich(S) ∩Ud,ε̄(σ) with 
length at least 1. Let Q[η; ζ] be a ruled surface with dist(η, ζ) > e. Then

I(Qe
0) ≥ K0.

Proof. Here we only sketch the proof of the lemma. The detailed analysis, using suitable 
frame fields introduced by Wolpert [34, §4], and standard properties of Jacobi fields is 
carried out in §5 and Lemma 6.3 of [26].

Negative curvature implies that the level sets Qt are expanding with t, so that the area 
of Qe

0 is bounded below by e. Hence the first term in the definition of I(Qe
0) would give 

the desired lower bound provided that the sectional curvatures (in the planes tangent to 
Q) are bounded away from 0. These sectional curvatures are indeed strictly negative in 
the thick part of Teichmüller space, as well as, near the stratum of σ, in the directions 
nearly tangent to the stratum (this last fact follows from the assumption that S � σ is 
large, hence the stratum has no nontrivial product structure). Thus one may consider, 
pointwise on Q, two cases: if the ruling geodesic direction of Q is nearly tangent to 
the stratum direction, one obtains a strictly negative curvature bound. If the ruling is 
transverse to the stratum direction, then in one direction or the other the ruling geodesic 
exits a neighborhood of the stratum, and enters the regime of strictly negative curvature 
in all directions. This again gives a definite contribution to the integral. �
2.8. Asymptotic rays

In this subsection we prove a result on asymptotic and strongly asymptotic rays that 
will be useful in Section 4. The first statement of the proposition is a variation on The-
orem 6.2 of [26], giving a criterion for promoting asymptoticity to strong asymptoticity 
in our setting.

(Recall that a ray r : [0, ∞) → X in a metric space is asymptotic to a subset Y ⊆ X
if dist(r(t), Y) is bounded above for all t ∈ [0, ∞). The ray is strongly asymptotic to the 
subset if limt→∞ dist(r(t), Y) = 0.)
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Proposition 2.20. Let r and r′ be two asymptotic geodesic rays in Teich(S) such that 
r([T, ∞]) ⊂ Ud,ε̄(ω) for d < b, T ≥ 0 and a co-large multicurve ω. Then r and r′ are in 
fact strongly asymptotic.

For any ray r contained in S ε̄(ω) there is a ray r1 in Teich(S) which is strongly 
asymptotic to r.

Proof. We begin by proving the first statement in the case where r and r′ are in the 
interior of Teich(S) i.e. Teich(S).

Following the notation of §2.7 let Q be the ruled surface Q[r′; r]. Let πr denote the 
nearest point projection to r. Since it is continuous, for each n there is an interval Jn
such that πr(r′(Jn)) = r([0, n]). Similarly for each i there is an interval Ii such that 
πr(r′(Ii)) = r([i, i + 1]).

Suppose by way of contradiction that the distance from r′(t) to r remains bounded 
below by e > 0 for all t. Then, since r([i, i + 1]) ⊂ Ud,ε̄(ω), by Lemma 2.19 we have 
I(Qe

0[r′|Ii , r|[i,i+1]]) ≥ K0 for a uniform K0 > 0, and hence

I(Q[r′|Jn
, r|[0,n]) ≥ K0n.

Moreover, by (2.14) the left-hand side of the above inequality is bounded above by π, 
which implies that n ≤ π

K0
. However n could be chosen arbitrarily large which is a 

contradiction. Therefore, r and r′ are strongly asymptotic.
Now we prove the second part. Let r lie in S ε̄(ω), where ω is co-large. As in the proof 

of Theorem 1.3 of [7], we fix a basepoint x ∈ Teich(S) within b of r(0), let yn = r(n)
and use CAT(0) geometry of Teich(S) (via Lemma 8.3 in [2, §II.8]) to conclude that the 
segments xyn converge to an infinite ray r1 in Teich(S), which is asymptotic to r.

We claim that r1 is entirely inside Teich(S). Suppose that T > 0 is the first time that 
r1 intersects a completion stratum S(σ). The segment r1([0, T + 1]) then has at least 
one endpoint in Teich(S) and hence by Theorem 2.9 (Nonrefraction) its interior maps 
to Teich(S). This contradicts the assumption that r1(T ) ∈ S(σ).

To see that r1 is strongly asymptotic to r, for a δ > 0 let xδ be the point on the geodesic 
segment r(0)r1(0) at distance δ from r(0). (it must be in Teich(S) by Theorem 2.9). Let rδ
be the geodesic obtained as above as the limit of xδyn. As we saw above rδ is an infinite 
ray in Teich(S) which remains in a δ-neighborhood of r and in particular in Uδ,ε̄(ω). 
Since the rays rδ and r1 are asymptotic and in Teich(S), the first part of the proposition 
implies (for sufficiently small δ) that r1 and rδ are in fact strongly asymptotic. Letting 
δ → 0, the strong asymptoticity of r1 to r follows.

Finally, we prove the first part of the proposition in the general case. Using the second 
part, r and r′ are strongly asymptotic to r1 and r′1 respectively, which lie in the interior. 
The version of first part that we already proved shows that r1 and r′1 are strongly 
asymptotic, and this concludes the proof. �
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3. Non-annular bounded combinatorics

In this section we study the case that the end invariant of a WP geodesic satisfies the 
non-annular bounded combinatorics condition:

Definition 3.1 (Bounded combinatorics). We say that a pair of markings or laminations 
(μ, μ′) satisfies R–bounded combinatorics if

dY (μ, μ′) ≤ R

for all proper subsurfaces Y � S. If the bound holds for non-annular proper subsurfaces, 
we say the pair satisfies non-annular R–bounded combinatorics.

When the end invariant of a WP geodesic satisfies non-annular bounded combina-
torics, the short curves correspond exactly to the annuli with big subsurface coefficients 
(this is in contrast to Rafi’s examples in the Teichmüller setting, see [29, §7] and Section 5
of this paper). More precisely:

Theorem 3.2. For any R, ε0 > 0 there are functions N̂ : R>0 → R>0 and ε̂ : R>0 → R>0
such that the following holds.

Suppose that g is a WP geodesic with end invariant (ν+, ν−), where ν± are either 
laminations in EL(S) or points in the ε0-thick part, which satisfy non-annular R–bounded 
combinatorics. Then

(1) for any N ≥ 1, if inft �γ(g(t)) < ε̂(N) then dγ(ν−, ν+) ≥ N ;
(2) for any ε > 0, if dγ(ν−, ν+) ≥ N̂(ε) then inft �γ(g(t)) < ε.

Proof. Let ρ : I → P(S), I ⊆ R∪{±∞}, be a hierarchy path in the pants graph of 
S that connects the points ν− and ν+; see §2.3. Let Q : Teich(S) → P(S) be Brock’s 
map (see (2.3)). The non-annular R–bounded combinatorics property implies, via [8, 
Theorem 4.4] (also [25, Theorem 5.13]), that Q ◦ g and ρ are D–fellow-travelers in P(S), 
where D is a constant depending only on R. Moreover, the non-annular R-bounded 
combinatorics condition together with the distance formula (2.4) implies that condition 
(2.9) in Theorem 2.17 holds with the whole surface S playing the role of X. That is,

dP(ρ(i), ρ(j)) �K,C dS(ρ(i)), ρ(j))

with constants K, C depending only on R.

Proof of part (1): Given ε > 0 and less than the Bers constant LS , suppose for some 
t ∈ R that �γ(g(t)) < ε. Then γ is in a Bers pants decomposition Q(g(t)) at g(t), and by 
the fellow traveling of Q(g) and ρ, Q(g(t)) is within distance D of ρ(i) for some i ∈ I.
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Let w, B > 0 be the constants provided by Theorem 2.17. Then let t1, t2 be so that the 
pants decompositions Q(g(t1)), Q(g(t2)) are within distance D of ρ(i −w) and ρ(i +w), 
respectively, then the inequality (2.10) from the theorem gives us∣∣∣dγ (Q(g(t1)), Q(g(t2))) − dγ (ρ(i− w), ρ(i + w))

∣∣∣ ≤ 2B. (3.1)

Moreover, by (2.11) from the theorem we have that:

min{�γ(g(t1)), �γ(g(t2))} > ω. (3.2)

Now, note that the length of [t1, t2] is bounded independently of g and t with a 
constant that depends only on R and D. Thus we can apply Theorem 2.13 to the geodesic 
segment g|[t1,t2] to conclude that, for any N ∈ N, there is an ε < min{ω, LS}, so that if 
inft∈[t1,t2] �γ(g(t)) < ε, then

dγ(Q(g(t1)), Q(g(t2))) ≥ N + 2B + M,

where the constant M is from Proposition 2.4 (no-backtracking). By the inequality (3.1)
this implies that

dγ(ρ(i− w), ρ(i + w)) ≥ N + M.

Then by Proposition 2.4 we have

dγ(ν−, ν+) ≥ N

which concludes the proof of part (1).

Proof of part (2): By [24, Lemma 6.2] if dγ(ν−, ν+) ≥ N where N ∈ N is larger than 
a threshold, the curve γ appears as a curve in a pants decomposition ρ(i) where i ∈ I. 
Then similar to part (1) by Theorem 2.17 there are constants w, B > 0 and ω > 0, so 
that the inequalities (3.1) and (3.2) hold.

Moreover, appealing again to the no-backtracking property of hierarchy paths, we 
have

dγ(ρ(i− w), ρ(i + w)) ≥ N −M.

The fellow-traveling property of ρ and Q(g) guarantees that there are t1, t2 so that 
Q(g(t1)) and Q(g(t2)) are within distance D of ρ(i −w) and ρ(i +w) respectively. So by 
(3.1) we have

dγ(Q(g(t1)), Q(g(t2))) ≥ N −M − 2B.
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Also, the length of the interval [t1, t2] is bounded independently of g, thus appealing to 
Theorem 2.11, for any ε > 0, there is an N ∈ N so that

inf
t∈[t1,t2]

�γ(g(t)) < ε,

which gives us part (2) of the theorem. �
4. Bottlenecks and visibility

The main result of this section is Theorem 1.2 on existence of bottlenecks, which we 
restate here:

Theorem 1.2. Let ω, ω′ be two co-large multicurves that fill S. Let ε̄ > 0 and let r and 
r′ be infinite length WP geodesic rays in Teich(S) that are strongly asymptotic to (or 
contained in) the ε̄–thick parts of the strata S(ω) and S(ω′), respectively. Then r and r′

have a bottleneck.

As a consequence of the above theorem we will also obtain a visibility theorem, which 
is Theorem 4.5 stated in Subsection 4.2.

We start with the following observation about the rays r and r′:

Lemma 4.1. The rays r and r′ diverge; that is

lim
t→∞

dist(r′(t), r) = ∞

and the corresponding statement holds when interchanging r and r′.

Proof. The lemma would follow once we show that, for any R > 0, the intersection of 
R–neighborhoods NR(S(ω)) ∩NR(S(ω′)) has finite diameter. This fact does not use the 
hypothesis that ω and ω′ are co-large.

To see it, we start with a consequence of the distance formula (2.5):

dist(x,S(ω)) �
∑

Y⊆S: na, ω�Y

{dY (x, ω)}A (4.1)

with constants that depend only on A. This follows by checking that, for any y ∈ S(ω)
minimizing pants distance to x, the projections to subsurfaces in the complement of ω
do not contribute to the sum. The argument appears, in a slightly different context, in 
Proposition 3.1 of [3].

Now if x ∈ NR(S(ω)) ∩NR(S(ω′)) we apply (4.1) to both ω and ω′. Since ω ∪ω′ fills 
S, every Y ⊆ S intersects ω or ω′, so we obtain an upper bound independent of x for∑

{dY (x, ω ∪ ω′)}A.

Y⊆S: na
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Fig. 2. The ruled triangle Q[ζ; r] determined by u, p, q. The ruled subsurface Q[J; r] is shaded.

But since ω ∪ ω′ is a fixed collection of curves this gives a uniform upper bound on 
d(x, x0) for a fixed basepoint x0 and all x ∈ NR(S(ω)) ∩ NR(S(ω′)). This gives the 
desired diameter bound. �

For the rest of the proof let us assume that r and r′ are in the interior Teich(S). At 
the end we will derive the full statement.

4.1. The ruled triangle argument

Let u = r(0) and u′ = r′(0). We will show that for any two points p on r and q
on r′ the geodesic segment pq meets a compact subset of Teichmüller space. The first 
ingredient of the proof is the following:

Lemma 4.2. The distance dist(u, pq) is bounded independently of p and q.

Proof. Let ζ denote the composed path −→uq∗−→qp. Then let Q = Q[ζ; r] be the ruled surface 
over r parametrized by ζ (as defined in §2.7).

Let b > 0 be the constant from Lemma 2.3 corresponding to ε̄ > 0, and let J ⊂ ζ be 
the subset of ζ at distance greater than b/2 from r i.e.

J := {v ∈ ζ : d(v, r) ≥ b/2}. (4.2)

By convexity of the distance function in a CAT(0) metric the interval J , if nonempty, is 
an interval containing the apex q of the geodesic triangle �uqp (Fig. 2).

Claim 4.3. There is a bounded interval I of r containing πr(J) for any p, q.

To see this, we first show that the left endpoint of πr(J) is a bounded distance from 
u.

We know from Lemma 4.1 that dist(r′(t), r) → ∞. Thus let t0 be such that t > t0
implies dist(r′(t), r) > b/2 + D, where D = d(u, u′). Now if y is any point in uq with 
d(y, u) > t0 + 2D, let y′ ∈ r′ be such that d(y, y′) ≤ D. Note that such a y′ exists from 
the CAT(0) comparison for the triangle �uu′q. Then d(y′, u′) > t0, so d(y′, r) > b/2 +D. 
We conclude that d(y, r) > b/2, and in particular y ∈ J . Hence the left endpoint of J
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must be at most distance t0 + 2D apart from u, which means the left endpoint of πr(J)
is at most distance t0 + 2D + b/2 apart from u.

Next, we prove that the length of πr(J) is bounded. Let d ∈ (0, b/2) be small enough 
(say less than b/4) and let K0 > 0 be the constant from Lemma 2.19 corresponding to 
e = b/2, ̄ε and d. Let T > 0 be such that r([T, ∞)) is contained in Ud,ε̄(ω), which is 
possible by the hypothesis that r is strongly asymptotic to the ε̄–thick part of S(ω).

If πr(J) has length greater than n + 1 + T , then there exist n disjoint intervals of 
length 1, Ii, i = 1, . . . , n in the interior of πr(J) and in Ud,ε̄(ω). For i = 1, . . . , n let Ji
be the subinterval of J whose πr-image is the interval Ii. We may choose the Ii so that 
each Ji is disjoint from q (possibly discarding one if necessary). Then Q contains the 
regions Q[Ji; r], and each of these contains a subrectangle Qb/2

0 [Ji; r]. From Lemma 2.19
then we have

I(Qb/2
0 [Ji; r]) ≥ K0

where K0 depends only on b and ε̄.
Thus by the monotonicity of I (2.13), I(Q) ≥ nK0. However, I(Q) is controlled by 

the Gauss-Bonnet theorem (Theorem 2.18), which as in (2.14) gives I(Q) ≤ π. This 
bounds n, and hence the length of πr(J), giving Claim 4.3.

The right endpoint of πr(J), then is a bounded distance from u and at distance b/2
from pq. This proves the lemma. �
Proof of Theorem 1.2. The proof will reduce easily to the following statement:

Lemma 4.4. There is a compact subset K1 � Teich(S) so that, for points p ∈ r, q ∈ r′

sufficiently far out, the segment pq intersects K1.

Proof. The proof of Lemma 4.2 actually gave us a point ẑ on pq such that d(ẑ, r) ≤ b/2
(the right end point of J). Then since r is strongly asymptotic to S ε̄(ω), moving ẑ along 
pq toward p a bounded distance we obtain a point z ∈ pq, and the point y = πr(z) on r, 
such that:

(1) d(y, S ε̄(ω)) < b/4
(2) d(z, y) ≤ b/2
(3) 1 < d(z, ̂z) < c where c is independent of p and q
(4) d(z, u) is bounded independently of p and q.

We can similarly move ẑ toward q to obtain z′ and y′ = πr′(z′) so that the inequalities 
(1)-(4) hold for the points u′, y′, z′ and the multicurve ω′. Thus the geodesic hexagon H
joining the vertices

u′, u, y, z, z′, y′
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Fig. 3. The bounded diameter hexagon H determined by u′, u, y, z, z′, y′.

in cyclic order has bounded total length independently of p and q (Fig. 3).
We will next show that

(*) dα(z, z′) is bounded above for each curve α, by a quantity independent of α, p and 
q, and

(**) �α is bounded below on zz′ by a positive constant independent of α, p and q.

Fix any curve α. Since the multicurves ω and ω′ fill S, α must intersect at least one of 
them. Suppose that α � ω. Then we have the following uniform bounds (all independent 
of p, q and α) for the α coefficients:

(i) dα(u, u′) is uniformly bounded; because the points u, u′ are fixed.
(ii) dα(u, y) is uniformly bounded; this is because y varies along a compact interval in 

r. To see that the bound is independent of α, note that the set of Bers markings 
that can occur for values of y in this interval is finite, and the set of α with dα(u, μ)
large for any given marking μ is finite, by an application of the distance formula 
(2.4).

(iii) dα(y, z) is uniformly bounded; by inequalities (1) and (2), we have that yz is in 
Ub,ε̄(ω). Within this neighborhood there is an upper bound on the length of ω, and 
since α � ω this means that πα(yz) is uniformly close to πα(ω).

Now further suppose that α /∈ ω′. Then we have the bounds:

(a) dα(u′, y′) is uniformly bounded; this follows just as in (ii) above.
(b) dα(y′, z′) is uniformly bounded; since y′z′ is in Ub,ε̄(ω′) and α /∈ ω′ the bound may 

be obtained similarly to (iii). Here, while α may not intersect ω′, it does intersect 
curves in S � ω′ whose lengths can only vary by a bounded amount in y′z′ because 
S � ω′ is uniformly thick along y′z′ by Lemma 2.3.
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Combining (i)-(iii) and (a) and (b), we obtain a uniform bound on dα(z, z′) for all 
curves α such that α � ω and α /∈ ω′, and all p ∈ r and q ∈ r′.

Now since z ∈ Uε̄,b(ω) and z′ ∈ Uε̄,b(ω′), there is a positive lower bound for the length 
of any α as above at the points z and z′ by Lemma 2.3. Combining this with the bound 
for dα(z, z′) and appealing to Theorem 2.13, we obtain a uniform positive lower bound 
for the length of α along zz′.

Now suppose that α � ω and α ∈ ω′. Just as above we have a positive lower bound 
on �α(z), and now we show that �α is uniformly bounded below on zz′. If not, we can 
fix α among the finitely many choices, and obtain a sequence of segments {pnqn}n with 
subsegments znz′n, and xn ∈ znz′n such that �α(xn) → 0 as n → ∞. We may assume 
that qn goes to ∞ along r′.

Now since qn goes to infinity along r′, and r′ is strongly asymptotic to S ε̄(ω′), we 
have �α(qn) → 0 as n → ∞. Convexity of length-functions then implies that the length 
of α goes to 0 uniformly along xnqn. Using the lower bound on �α(zn) and the fact that 
zn stays a bounded distance away, we may find subintervals ηn of pnqn of fixed length, 
centered at xn so that the length of α goes to 0 on one side of xn and is bounded away 
from 0 on the opposite endpoint of ηn. This contradicts Lemma 2.10. Thus we obtain 
the desired lower bound for the length of α.

Now we show that dα(z, z′) is uniformly bounded. If not, again we can fix α among 
the finitely many choices, and obtain a sequence of segments {pnqn}n with subsegments 
znz′n such that dα(zn, z′n) → ∞ as n → ∞.

Since zn ∈ Ub,ε̄(ω) and α � ω, again by Lemma 2.3 �α(zn) is bounded below by a 
positive constant for all n. Moreover, the lengths of znz′n are bounded below by (3) and 
bounded above by (4) independently of n. Thus we may apply Theorem 2.11 to see that 
after possibly passing to a subsequence there is a point xn ∈ znz′n such that �α(xn) → 0
as n → ∞. But then as we saw above this leads to a contradiction, showing that dα(z, z′)
must be uniformly bounded above.

Thus we obtain both (*) and (**) for all α � ω. The case of α � ω′ proceeds similarly, 
exchanging the roles of ω and ω′.

With (**) established, we conclude that zz′ lies in the ε-thick part of Teich(S), for 
ε > 0 independent of p and q. Since there is an upper bound on the ratio of Teichmüller 
norm over WP norm in the ε-thick part, and the WP length of zz′ is bounded above 
by (4), we conclude that zz′ has bounded Teichmüller length, and hence dα(m, z) and 
dα(m, z′) are uniformly bounded above for any m ∈ zz′.

Now when α � ω we extract an upper bound for dα(u, z) from (ii-iii), and when α � ω′

we similarly extract an upper bound for dα(u, z′) from the analogues of (i-iii). Putting 
these bounds together we obtain a uniform upper bound for dα(u, m) for all m ∈ zz′.

We claim now that this implies that m (and hence all of zz′) must remain in some 
compact subset K1 of Teich(S). For we have an upper bound on d(u, m) by the bounds 
on the hexagon H, and by Lemma 2.13, a sequence of segments um (for varying p, q) 
degenerates only by producing arbitrary large twistings about a collection of curves, 
which is impossible by the bounds we just established on all dα(u, m). Thus um has a 
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uniformly bounded length and remains in some thick part of Teich(S) (independently of 
p, q), so again has uniformly bounded Teichmüller length. But balls in the Teichmüller 
metric are compact and this gives us K1. �

From the lemma we obtain points p̂ ∈ r, q̂ ∈ r′ so that all geodesics with end points 
p, q on r, r′, further out than p̂, q̂ respectively, intersect K1. Now letting K be the union 
of K1 and the segments up̂ and u′q̂, we have the desired bottleneck. This concludes the 
proof in the case that r, r′ ⊂ Teich(S).

If r is in S ε̄(ω), using Proposition 2.20 we can find r1 in Teich(S) strongly asymptotic 
to it, and similarly r′1 strongly asymptotic to r′. The interior version of the theorem gives 
a compact bottleneck K for r1, r′1. There exists δ1 > 0 so that the δ1-neighborhood of 
K is still contained in a compact set K2 ⊂ Teich(S). Now choose T sufficiently large 
that d(r(t), r1(t)) and d(r′(t), r′1(t)) are less than δ1 for all t > T . Thus any geodesic γ
joining r(t) and r′(s) for t, s > T lies within δ1 of a geodesic passing through K, and 
hence passes through K2. �
4.2. Visibility

In this subsection we apply the Bottleneck theorem (Theorem 1.2) to show that any 
two geodesic rays that are strongly asymptotic to the ε̄–thick parts of two strata deter-
mined by two filling co-large multicurves have the visibility property.

Theorem 4.5 (Asymptotic large visibility). Suppose r, r′ are two infinite rays in Teich(S)
that are strongly asymptotic to, or contained in, S ε̄(ω) and S ε̄(ω′), respectively, where 
ω and ω′ are co-large multicurves that fill S. Then there exists a biinfinite geodesic 
g � Teich(S) which is strongly asymptotic to r in forward time and is strongly asymptotic 
to r′ in backward time.

Proof. The argument is essentially the same as in Theorem 1.3 of [7], which obtains the 
visibility property when r and r′ are recurrent. We sketch here the mild changes needed 
in our setting.

Let gn denote the geodesic segment r(n)r′(n). By Theorem 1.2 there is a compact set 
K � Teich(S) so that gn ∩K �= ∅.

Let vn be a point of gn ∩ K. After possibly passing to a subsequence the points vn
converge to a point v ∈ K.

Reparametrize gn so that gn(0) = vn. To extract a limit of the gn we use the CAT(0) 
geometry of Teich(S), via Lemma 8.3 in [2, §II.8], together with the fact that gn(0) → v, 
to show that for each t ∈ R the sequence gn(t) (defined for large n) is a Cauchy sequence. 
We thus obtain a limiting geodesic g in Teich(S), which is asymptotic to r in forward 
time and to r′ in backward time.

As in [7] and Proposition 2.20, we use the non-refraction property (Theorem 2.9) to 
argue that g is in fact contained in Teich(S).
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Finally, Proposition 2.20 implies that g is strongly asymptotic to r in forward time 
and r′ in backward time. �
5. Indirect shortening along geodesic segments

This section is devoted to the proof of Theorem 1.3, which follows very directly from 
Theorem 5.5 below. We begin with a discussion of the phenomenon of indirect shortening.

5.1. Indirect curve shortening

In the setting of Teichmüller geodesics the connection between short curves and large 
subsurface coefficients was explored by Rafi in [29]. He showed that given ε > 0 there 
exists A ≥ 1 so that, if g : I → Teich(S) is a Teichmüller geodesic with end invariant 
(ν+, ν−), then for any subsurface Z ⊆ S we have

dZ(ν+, ν−) ≥ A =⇒ inf
t
�∂Z(g(t)) < ε.

The natural converse statement, which is motivated by the situation for Kleinian surface 
groups (see Theorem 7.1), would be that given A ≥ 1 there exists ε > 0 such that, if a 
curve γ satisfies

inf
t
�γ(g(t)) < ε

then there exists a subsurface Z with γ ⊆ ∂Z, and

dZ(ν+, ν−) ≥ A.

This converse, however, does not hold in general. Rafi in the proof of Theorem 1.7 in [29]
gave and analyzed examples of sequences of geodesic segments gn with end invariants 
(ν+

n , ν−n ) and a curve γ for which inft �γ(gn(t)) is arbitrarily small, while dZ(ν+
n , ν−n )

remains bounded for all Z ⊆ S with γ ⊆ ∂Z.
Rafi’s examples exhibited a somewhat more complex feature we might call indirect 

shortening. To present the example we start with two definitions:

Definition 5.1. Given A ≥ 1, a subsurface Z ⊆ S and a pair of markings or laminations 
(μ, μ′) we define

LA(Z, μ, μ′) := {X ⊆ Z : dX(μ, μ′) > A}.

We define Lna
A (Z, μ, μ′) as the subset of non-annular surfaces in LA(Z, μ, μ′).

Definition 5.2 (Filling a subsurface). Let Z ⊆ S, we say that a collection Z of subsurfaces 
of Z fills Z if any curve α ∈ C(Z) intersects at least one X ∈ Z essentially.
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In fact, Rafi in [29, §6] gave examples of geodesics g with the following property:

Definition 5.3 (Indirect curve shortening). Given ε > 0 and A ≥ 1, inft �γ(g(t)) < ε

and there exists a subsurface Z with γ ⊆ ∂Z that LA(Z, ν+, ν−) fills Z, but Z /∈
LA(Z, ν+, ν−).

We call the property indirect curve shortening because the subsurface Z itself does 
not have a big projection coefficient.

More recently it has become clear that this condition, also, does not hold for Teich-
müller geodesics in general; see [27]. Nevertheless let us state as a conjecture the following 
characterization for short curves of Weil-Petersson geodesics.

Conjecture 5.4. For any ε > 0, there exists A(ε) ≥ 1, and for any A ≥ 1 there exists 
ε(A) > 0, such that the following holds. Let g : I → Teich(S) be a WP geodesic with end 
invariant (ν+, ν−),

(1) If Z is a non-annular subsurface for which Lna
A(ε)(Z, ν−, ν+) fills Z or Z is an annulus 

with dZ(ν+, ν−) > A(ε), then inft �∂Z(g(t)) < ε.
(2) If inft �α(g(t)) < ε(A) for a curve α, then either there exists a subsurface Z with 

α ∈ ∂Z such that Lna
A (Z, ν+, ν−) fills Z, or dα(ν+, ν−) > A.

5.2. The basic example

To set the stage for our example of WP geodesics with indirect curve shortening 
property, consider the configuration of subsurfaces of S:

S

Z

X1 X2

(5.1)

where we assume Z is large in S, and Xj is large in Z for j = 1, 2. We moreover assume 
that ∂X1 and ∂X2 fill Z and that no boundary curve of Xj is a boundary curve of Z for 
j = 1, 2. We call this a one-step large filling configuration; see Fig. 4 for an example.

We can now state the main theorem of Section 5. The proof will follow over the next 
few subsections.

Theorem 5.5. There exist A1 ≥ 1, ε0 > 0 such that for each ε > 0 and a one-step large 
filling configuration Z, X1, X2, there is a Weil-Petersson geodesic segment pq in Teich(S)
such that

• Lna
A1

(S, p, q) = {X1, X2}, and dγ(p, q) ≤ 1 for all γ ⊆ ∂Z.
• The endpoints p, q are in the ε0–thick part of Teich(S), and
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Fig. 4. One-step large filling: The subsurface Z is a two-holed torus. In its abelian cover on the left we 
indicate two arcs a1, a2 connecting the components of ∂Z which fill Z. A regular neighborhood of ai ∪ ∂Z
is a three-holed sphere Ui, and we define Xi = Z � Ui. Note that ∂Xi and ∂Z have no components in 
common. On the right we indicate Z as a subset of S.

• infx∈pq �∂Z(x) < ε.

5.3. Using visibility in a stratum

Fix for the rest of the section a one-step large filling configuration Z, X1, X2 in S.
Since Z is large the stratum S(∂Z) can be identified with Teich(Z) after replacing 

boundary curves with punctures, and similarly the strata of ∂Xi within this stratum, 
namely S(∂Xi) ∩ S(∂Z), can be identified with Teich(Xi) for i = 1, 2. Let f1 and f2 be 
partial pseudo-Anosov maps supported in X1 and X2 respectively, so that their axes g1

and g2 lie in the ε-thick part of Teich(Xi) for some ε̄ > 0. Fix rays g+
2 and g−1 on these 

axes.
We can apply Theorem 4.5, with Z playing the role of S in that theorem, to obtain a 

biinfinite geodesic h in Teich(Z) asymptotic to the rays g−1 in backward time and g+
2 in 

forward time.
The geodesic segment examples for Theorem 5.5 will be obtained from h, viewed in 

S(∂Z), by pushing points far out along h slightly away from the stratum. The key will 
then be to show that, for these geodesics, the subsurface coefficients behave as required, 
and the length of ∂Z becomes very small near the center.

5.4. Controlling subsurface coefficients along h

Recall that g1 and g2 are geodesics in the ε̄–thick parts of Teich(X1) and Teich(X2), 
respectively, and let b > 0 be the corresponding constant to ε̄ from Lemma 2.3 (note 
that any b sufficiently small will do).

Let us fix a parametrization of the bi-infinite geodesic h : R → Teich(Z) and of the 
geodesics g1, g2 by arclength, so that d(h(t), g2(t)) → 0 and d(h(−t), g1(−t)) → 0 as 
t → ∞. We may also assume, possibly choosing b smaller, that h(0) is at least distance 
b away from the strata containing g1 and g2.
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Let s1 < 0 be so that h|(−∞,s1] and g1|(−∞,s1] are the largest portions of h and g1 that 
b–fellow travel, and let s2 > 0 be so that h|[s2,∞) and g2|[s2,∞) are the largest portions 
of h and g2 that b–fellow travel.

Lemma 5.6. There is an A ≥ 1, so that for any t, t′ ∈ (−∞, s1] we have

• LA(S, h(t), h(t′)) ⊆ {X1, γ ∈ ∂X1},
• dX1(h(t), h(t′)) � d(h(t), h(t′)),

where the constants of the coarse inequality depend only on f1. A similar statement holds 
for t, t′ ∈ [s2, ∞) the subsurface X2 and f2.

Moreover, for any t, t′ ∈ R we have

LA(S, h(t), h(t′)) ⊆ {X1, X2, γ ∈ ∂X1 ∪ ∂X2}.

Proof. When t, t′ ∈ (−∞, s1] the points h(t) and h(t′) are within distance b of points 
yt and yt′ on g1. Then by the coarse Lipschitz property of subsurface projections 
(Lemma 2.5) we have ∣∣∣dY (h(t), h(t′)) − dY (yt, yt′)

∣∣∣ ≤ D (5.2)

for some D > 0 and all non-annular subsurface Y ⊆ S. Moreover, the segments h(t)yt
and h(t′))yt′ are in the b–neighborhood of g1 which is in Sε(∂X1), thus by Lemma 2.3
the segments are away from all strata except S(σ) with σ ⊆ ∂X1. Now let γ be a curve 
which is not in ∂X1, then we have a uniform lower bound for the length of γ along 
h(t)yt and h(t′)yt′ . Applying Theorem 2.11 then we obtain a uniform upper bound for 
dγ(h(t), yt) and dγ(h(t), yt′). This implies that (5.2) also holds for all annuli whose core 
curves are not in ∂X1.

Now note that yt and yt′ are on an axis of f1, so by Lemma 2.7, dY (yt, yt′) is uniformly 
bounded for all subsurfaces Y except X1 and the annuli with core curves in ∂X1. Thus 
by (5.2) dY (h(t), h(t′)) is uniformly bounded for all subsurfaces Y except X1 and the 
annuli with core curves in ∂X1. This is the first bullet of the lemma.

Moreover, note that by Lemma 2.7,

dX1(yt, yt′) � d(yt, yt′)

so by (5.2) we obtain the second bullet of the lemma. When t, t′ ∈ [s2, ∞) the bullets 
are proved similarly where X1 is replaced by X2.

To see the second part of the lemma, note that the segment h(s1)h(s2) is fixed, so there 
is a D1 ≥ 1 that bounds all projection coefficients of any pair of points on h(s1)h(s2). 
Combining this bound and the bounds from the first part of the lemma with the triangle 
inequality for each non-annular subsurface Y which is not X1, X2 or an annulus with 
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core curve a boundary component of X1 or X2 we find that the projection coefficient of 
the subsurface is uniformly bounded giving us the second part of the lemma. �
5.5. Controlling the length of ∂Z

The following theorem is the main ingredient of the proof of Theorem 5.5. It says 
roughly that, in a geodesic fellow-traveling a sufficiently long part of our geodesic h, if 
the length of ∂Z is bounded at the endpoints then it becomes very short near the center.

Theorem 5.7. Let h be the geodesic constructed above using a one-step large filling con-
figuration Z, X1, X2. Let D ≥ 1 and let In = [an, bn] be a sequence of intervals so that 
0 ∈ In and In ⊆ In+1 for n ∈ N, and ∪nIn = R. Let {ζn : In → Teich(S)} be a sequence 
of WP geodesic segments such that ζn and h|In are D-fellow travelers as parameterized 
geodesics. Moreover, suppose that the length of ∂Z is bounded above at the end points of 
ζn independently of n. Then, there is a compact interval J so that after possibly passing 
to a subsequence

�∂Z ◦ ζn → 0

uniformly on J .

We wish to apply Theorem 2.15 to the sequence of geodesics ζn : In → Teich(S) to 
prove the theorem. By the hypothesis of the theorem and convexity of length-functions, 
�∂Z ◦ ζn is uniformly bounded above on the intervals In, so we only require to show that 
there is an interval J over which the lengths of all curves which are not a component 
curve of ∂Z are uniformly bounded below. More precisely,

Lemma 5.8. There is an interval J ⊆ R and c1 > 0 such that, for all curves γ that are 
not components of ∂Z, there is a lower bound

�γ ◦ ζn > c1 (5.3)

on J for all n.

The proof of Lemma 5.8 requires two lemmas. First we obtain a lower bound for 
lengths of most curves along ζn:

Lemma 5.9. There exist j, ε > 0 and A ≥ 1 such that, letting I−n := [an + j, −j] and 
I+
n := [j, bn − j], for any curve γ which is not in ∂Z and intersects X1 we have the 

length lower bound

�γ(ζn(t)) > ε (5.4)

for all t ∈ I−n . Similarly if γ � X2 then (5.4) holds when t ∈ I+
n .
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Proof. Note that I±n are defined for large enough n since an → −∞ and bn → ∞. The 
idea of the lemma is that, because ζn in the interval [an, 0] is roughly controlled by the 
geodesic g1, the only subsurface projections that can build up along ζn are in C(X1)
(Lemma 5.6), but on the other hand short curves that appear in this interval must give 
rise to large twists, using Theorem 2.13.

First note that by Lemma 5.6,

d(h(t), h(t′)) � dX1(h(t), h(t′)),

for all t, t′ ∈ (−∞, s1]. Moreover, note that by (2.3) ρ := Q ◦ h : (−∞, s1] → P(S) is 
a quasi-geodesic in P(S) with quantifiers depending only on the topological type of S. 
Also ρ|In and Q ◦ζn|In , D′ = KWPD+CWP fellow travel in P(S) as parametrized quasi-
geodesics, where KWP and CWP are the constants in (2.3). Then Theorem 2.17 applied 
to ρ, the part of ζn that D′–fellow travels ρ and the subsurface X1 gives us constants 
B, w > 0 and ω > 0 as follows: Let γ be a curve such that γ � X1 and �γ(ζn(t)) < LS , 
so that γ is in a Bers pants decomposition Q(ζn(t)). Let t1 = t −w and t2 = t +w then

dγ(h(t1), ζn(t1)) ≤ B and dγ(h(t2), ζn(t2)) ≤ B (5.5)

thus ∣∣∣dγ(h(t1), h(t2)) − dγ(ζn(t1), ζn(t2))
∣∣∣ ≤ 2B. (5.6)

Moreover,

min{�γ(ζn(t1)), �γ(ζn(t2))} ≥ ω. (5.7)

Now let j > |s1| + w and let n ∈ N be large enough and t ∈ I−n .
Suppose that �γ(ζn(t)) < ε for an ε < min{ω, LS} and t ∈ [t1, t2]. Then, noting that 

|t1 − t2| is bounded independently of n and t, we can apply Theorem 2.13 to ζn|[t1,t2] to 
conclude that there is a choice of ε that implies dγ(ζn(t1), ζn(t2)) > A + 2B.

But then by (5.6), dγ(h(t1), h(t2)) > A, which contradicts the upper bound for sub-
surface coefficients from Lemma 5.6. The contradiction shows that in fact the above ε is 
the desired lower bound for the length of a curve γ � X1 on the interval I−n . The lower 
bound for the length of a curve γ � X2 on the interval I+

n can be obtained similarly 
choosing j > s2 + w. �

Next we obtain upper length bounds along ζn for ∂X1 and ∂X2 over intervals I−n and 
I+
n , respectively:

Lemma 5.10. There exists c > 0 such that for any n ∈ N,

�∂X1(ζn(t)) ≤ c (5.8)
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for all t ∈ I−n , and

�∂X2(ζn(t)) ≤ c (5.9)

for all t ∈ I+
n .

Proof. Let t ∈ I−n and let η : [0, l] → Teich(S) be the geodesic segment connecting h(t) to 
ζn(t). The idea of the proof is to first obtain a lower bound along η for the length of every 
curve that intersects ∂X1, which is similar to the proof of the previous lemma. Then, 
by a compactness argument appealing to the Geodesic Limit theorem (Theorem 2.8) we 
establish the desired upper bound for the length of ∂X1.

Let γ � ∂X1, and let t ∈ I−n and η be as above. We have �γ(ζn(t)) > ε where ε is the 
constant from Lemma 5.9 above. Moreover, we also have a lower bound �γ(h(t)) > ε′ > 0
using the Collar Lemma ([11, §4.1]) with the fact that the length of ∂X1 is bounded above 
along h((−∞, s1]). We may as well assume that, for some u ∈ [0, l], �γ(η(u)) ≤ LS .

To bound the length of γ from below on η, we will first obtain a bound on 
dγ(η(0), η(l)) = dγ(h(t), ζn(t)).

Since γ is in the pants decomposition Q(η(u)) which is at most D′ from Q(ζn(t))
(because there is a bound on the length of η), we can use Theorem 2.17, just as in the 
proof of Lemma 5.9, to find parameter t2 > t with t2 − t bounded above, and a bound 
B1 such that

dγ(ζn(t2), h(t2)) ≤ B1. (5.10)

(Recall this is done by moving forward along h and ζn just enough to obtain points so 
far from πX1(γ) in C(X1) that the path from Q ◦ h to Q ◦ ζn passes only through curves 
transverse to γ.)

Next, we obtain

dγ(ζn(t), ζn(t2)) ≤ B2 (5.11)

by recalling from Lemma 5.9 that �γ ◦ ζn > ε on [t, t2], and then applying Theorem 2.11.
Finally, we get

dγ(h(t), h(t2)) ≤ B3 (5.12)

directly from Lemma 5.6.
Putting (5.10), (5.11) and (5.12) together we obtain a bound on dγ(h(t), ζn(t)). Now, 

using Theorem 2.13, this gives us a lower bound

�γ(η(u)) > ε′′ > 0 (5.13)

for all u ∈ [0, l], and all γ � ∂X1.
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Now assume that there is a sequence of geodesic segments ηn : [0, ln] → Teich(S) as 
above, connecting h(tn) to ζn(tn) (for tn ∈ I−n ), and un ∈ [0, ln] and α ∈ ∂X1 so that 
�α(ηn(un)) → ∞ as n → ∞.

Let the piece-wise geodesic segment η̂ be obtained from {ηn} as in Theorem 2.8 (GLT), 
and multicurves σi, i = 0, . . . , k + 1 and τ̂ be from the theorem. Since ηn(0) is in the 
b–neighborhood of the axis of f1 we may choose ψn in GLT3 to be a power of f1, which 
since f1 is supported in X1 does not change the homotopy classes of curves in ∂X1. 
Moreover, the lower bound (5.13) over ηn for the lengths of all curves that intersect ∂X1
shows that σi is disjoint from ∂X1 and hence ϕi,n which is a composition of ψn and 
Dehn twists about curves in σj , j = 0, . . . , i does not change homotopy classes of curves 
in ∂X1.

After possibly passing to a subsequence un → u∗, so the fact that �α(ηn(un)) → ∞
as n → ∞ and GLT3 imply that �α(η̂(u∗)) = ∞. This means that α intersects a pinched 
curve along η̂ and hence a multicurve σi. But we just said that ∂X1 and σi are disjoint. 
This contradiction shows that the lengths of curves α ∈ ∂X1 are uniformly bounded 
along η and in particular at the end point ζn(t), as was desired. This concludes the proof 
of (5.8). The proof of (5.9) for the length of ∂X2 proceeds similarly. �

With Lemmas 5.9 and 5.10 in hand we can complete the proof of Lemma 5.8.

Proof of Lemma 5.8. Let γ be any curve which is not in ∂Z. If γ intersects ∂Z we already 
have a lower bound for the length of γ everywhere on ζn. Since Z is large, we are left 
with the case that γ is in Z.

When γ overlaps both X1 and X2, let w > 0 be as in the proof of Lemma 5.9. Moreover 
let t1 = −j − w and t2 = j + w and observe that t1 ∈ I−n and t2 ∈ I+

n where I±n are the 
intervals from Lemma 5.9. Then by Lemma 5.9 we have that �γ(ζn(t1)) and �γ(ζn(t2))
are at least ε.

Thus we may apply Theorem 2.13 to conclude that there is an ε′′ < min{ε, LS} so that 
if mint∈[t1,t2] �γ(ζ(t)) < ε′′, then dγ(ζn(t1), ζn(t2)) > A +2B. From (5.5) then we see that 
dγ(h(t1), h(t2)) > A. But this again contradicts the bound for subsurface coefficients in 
Lemma 5.6. The contradiction shows that ε′′ is a lower bound for the lengths of all curves 
that are disjoint from ∂X1 and are inside Z on [t1, t2] and in particular on [−j, j] ⊆ [t1, t2].

Now consider γ inside Z which does not overlap X1. Then it must be a boundary 
component of X1 and must intersect X2.

By Lemma 5.9 we know that �γ(ζn(j)) > ε, and by Lemma 5.10, �γ(ζn(t)) ≤ c for 
all t < −j. Suppose now that there is a sequence tn ∈ [−j, j] with �γ(ζn(tn)) → 0 as 
n → ∞.

We may restrict to a subsequence such that tn → t∗. Since �γ(ζn(j)) > ε we know 
that t∗ ≤ j. Now since �γ ◦ ζn is convex and bounded on the intervals I−n whose lengths 
go to ∞, we conclude that �γ ◦ ζn(t) → 0 for all t < t∗. We can therefore find a sequence 
of intervals [tn − a, tn + a] with fixed a > 0 such that �γ ◦ ζn → 0 on [tn − a, tn] while 
�γ(tn + a) is bounded away from 0. This contradicts Lemma 2.10.
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The contradiction shows that there is a lower bound for the lengths of curves that 
are inside Z and are disjoint from ∂X1 on [−j, j] as well. Therefore, J := [−j, j] is the 
desired compact interval of the lemma. �
Proof of Theorem 5.7. Lemma 5.8 gives us an interval J over which the length of every 
curve that does not intersect ∂Z is bounded below. Moreover by the assumption of the 
theorem and convexity of length-functions the lengths of all curves in ∂Z are bounded 
along ζn. Thus the theorem follows from Theorem 2.15. �
5.6. Completing the proof of Theorem 5.5

Proof of Theorem 5.5. Let an → −∞ and bn → ∞, and let In = [an, bn]. Also let pn, qn
be two points in the b–neighborhoods of h(an), h(bn), respectively, that have injectivity 
radii at least εb; see Lemma 2.3. Moreover, applying Dehn twists about curves in ∂Z we 
can assume that

dγ(pn, qn) ≤ 1

for all γ ⊆ ∂Z.
After a slight adjustment of parameters let

ζn : In → Teich(S)

be a parameterization of the geodesic segment pnqn by arclength where d(ζn(0), h(0)) ≤
b.

First, note that the points pn and qn are in the b–neighborhoods of the points h(an)
and h(bn), respectively, so by Lemma 2.5, dY (pn, h(an)) and dY (qn, h(bn)) are uniformly 
bounded for all non-annular subsurfaces Y ⊆ S and n ∈ N.

Now note that by the second part of Lemma 5.6 there is an A ≥ 1 so that 
Lna
A (S, h(an), h(bn)) ⊆ {X1, X2}. Thus enlarging A we obtain an A1 ≥ 1 so that 

Lna
A1

(S, pn, qn) ⊆ {X1, X2}.
Now we show that X1 and X2 are in fact in Lna

A1
(S, pn, qn) for n large enough, note 

that by the second bullet of Lemma 5.6 we have

dX1(h(s1), h(an)) � d(h(s1), h(an))

which implies that dX1(h(s1), h(an)) is arbitrary large for n large enough (because 
d(h(s1), h(an)) gets arbitrary large). By the first bullet of Lemma 5.6 dX1(h(s2), h(bn))
is bounded independently of n. Moreover, dX1(h(s1), h(s2)) is bounded since h(s1) and 
h(s2) are fixed. The above bounds combined with the triangle inequality show that 
dX1(h(an), h(bn)) is larger than A1 for all n large enough.

The fact that dX2(h(an), h(bn)) is larger than A1 for all n large enough can be proved 
similarly. Thus the first bullet of theorem holds for pnqn and n large enough.
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The second bullet of the theorem holds immediately for all pn, qn by the choice of the 
points.

Now note that the points pn and qn are in the b–neighborhood of S(∂Z) so by 
Lemma 2.3) we have an upper bound for the length of ∂Z at pn and qn independently 
of n. Also, since pn, qn are in the b–neighborhoods of two points on h, pnqn and h|In
b–fellow travel. Thus, Theorem 5.7 applies to pnqn, giving us infx∈pnqn �∂Z(x) < ε for all 
n large enough. Thus the third bullet of the theorem also holds for pnqn and all n large 
enough.

As we saw above all of the bullets of the theorem hold for pnqn when n is large enough 
completing the proof of the theorem. �
5.7. Completing the proof of Theorem 1.3

Take a one-step filling configuration Z, X1, X2 in S, let γ be a component of ∂Z, 
and let p, q be as constructed in Theorem 5.5. Then the conditions of Theorem 1.3 are 
satisfied, where one detail to check carefully is the second bound

sup
{
dY (p, q) | Y ⊆ S, γ ⊆ ∂Y

}
≤ A.

But according to Theorem 5.5 the only subsurfaces where dY (p, q) > A are Y = X1
and X2, and by definition those subsurfaces cannot have γ in their boundaries. This 
concludes the proof.

6. Indirect shortening along closed geodesics

In this section we construct examples of closed Weil-Petersson geodesics which satisfy 
the indirect curve shortening property in Definition 5.3. We construct such geodesics by 
approximation of the segments constructed in Theorem 5.5 with arcs of closed geodesics 
while controlling end invariants and their subsurface coefficients.

Theorem 6.1. There exists A ≥ 1 such that for each ε > 0 there is a pseudo-Anosov map 
Φ with stable/unstable laminations (ν+, ν−) and axis AΦ, and a subsurface Z � S that 
for each γ in ∂Z we have

sup
Y⊆S:γ⊆∂Y

dY (ν+, ν−) ≤ A, (6.1)

but

inf
x∈AΦ

�∂Z(x) < ε.

In the proof we use the following notation: If f is a pseudo-Anosov or a partial 
pseudo-Anosov supported in a subsurface let ν+(f) and ν−(f) be the stable and unstable 



40 Y. Minsky, B. Modami / Advances in Mathematics 381 (2021) 107628
Fig. 5. The construction of Φn and its axis An.

laminations of f (considered without their measures). Similarly if G is a directed WP 
geodesic let ν+(G) and ν−(G) be the ending laminations of the forward and backward 
rays G+ := G|[0,∞) and G− := G|(−∞,0]. The axis Af of f is always oriented so that 
ν±(Af ) = ν±(f).

The main idea is to approximate the configuration of §5.2 and Theorem 5.5 by axes of 
pseudo-Anosov maps. For this we can use the density of closed WP geodesics [7, Theorem 
1.6], but it will take some care to do it while controlling the ending laminations and their 
projections to the various subsurfaces of interest.

Let X1, X2 and Z be the subsurfaces from the one-step large filling configuration in 
§5.2. Let f1, f2 be the partial pseudo-Anosov maps supported on X1, X2 respectively, 
with (oriented) axes g1, g2, respectively. Let h be the biinfinite geodesic constructed in 
Theorem 4.5, which is forward asymptotic to g2 and backward asymptotic to g1.

6.1. Overall construction

Fix an oriented axis G of a pseudo-Anosov map which is an ε0–thick WP geodesic (a 
geodesic that is entirely in the ε0–thick part of Teichmüller space), and a point x on G. 
Define a sequence (Gn, xn) with n ∈ Z as follows: For n ≥ 0, set

Gn = fn
2 (G), xn = fn

2 (x),

and

G−n = f−n
1 (G), x−n = f−n

1 (x).

We construct our desired sequence of pseudo-Anosov maps Φn, n ∈ N, in two steps (see 
Fig. 5).

Step 1: Use the Recurrent Visibility Theorem [7, Theorem 1.3] to obtain an oriented 
geodesic Bn strongly asymptotic to G+

n in forward time and G−
−n in backward time. 

Since strongly asymptotic rays have the same ending laminations (a consequence of the 
definition), we see that ν+(Bn) = ν+(Gn) and ν−(Bn) = ν−(G−n).

Step 2: The Closed orbit density theorem [7, Theorem 1.6] implies that we can ap-
proximate Bn as closely as we like by axes of pseudo-Anosov mapping classes. We select 
such an approximation An = axis(Φn) according to the criteria below.
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The challenge will be to show that, with appropriate choices in Step 2, we obtain axes 
An which uniformly fellow-travel large segments of the geodesic h, which have sufficient 
geometric control to enable us to apply Theorem 5.7 to show that, in the middle of An

that fellow-travels h there are points where the length of ∂Z becomes arbitrarily short, 
and to control the ending laminations ν±(Φn) sufficiently well to obtain the bound (6.1)
on subsurface projections.

6.2. Geometric control of {Gn}n

Recall that Gn and G−n are ε0–thick so there is a δ > 0 so that the δ–neighborhoods 
of the geodesics are disjoint from all completion strata and there is a positive lower 
bound for all sectional curvatures in the δ–neighborhoods of the geodesics. By definition 
Gn and G−n are strongly asymptotic to Bn in forward and backward time, respectively, 
but we will need uniform control, independent of n, on how quickly they approach. This 
is the purpose of the following lemma:

Lemma 6.2. There exists D > 0 so that for each n ∈ N large enough there is a point yn
forward of xn in Gn such that

d(xn, yn) ≤ D and d(yn, Bn) < δ/2.

Similarly we have y−n behind x−n in G−n with

d(x−n, y−n) ≤ D and d(y−n, Bn) < δ/2.

Proof. The proof uses the same ruled polygon technique as in [7, §4] [26, §6] and Section 4
of this paper. In preparation we first need the following estimate on the shape of the 
configuration of {Gn}n.

Lemma 6.3. There exists an affine function ϕ : R → R with positive slope so that, for all 
n ∈ N large enough, and any z ∈ Gn

d(z, x−nxn) ≥ ϕ(d(z, xn))

and similarly d(z, x−nxn) ≥ ϕ(d(z, x−n)) for any z ∈ G−n.

Proof. Note first that G and g2 are not asymptotic since G is a thick geodesic and g2
is contained in a stratum. Since the WP metric is CAT(0), distances to geodesics are 
convex so there is an affine function ϕ0(t) = a0t − c0 with a0 > 0 so that for any z ∈ G

we have

d(z, g2) ≥ ϕ0(d(z, x)).
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Now since f2 preserves g2, for all z ∈ Gn we have

d(z, g2) ≥ ϕ0(d(z, xn)). (6.2)

We next want to prove a similar inequality for h replacing g2.
Let q be the nearest point to x on g2 and let qn = fn

2 (q). Then, we have d(xn, qn) =
d(x, q) ≡ d0. Moreover, since h is asymptotic to g2 in forward time, there is a sequence 
τn → ∞ so that the interval of radius τn in g2 around qn is within distance 1 of h for all 
n large enough.

Fix d1 > d0 +4 and let s ≥ 0 be such that ϕ0(s) ≥ d1. We claim that, for large enough 
n and for a point zn ∈ Gn with d(zn, xn) = s we have that

d(zn, h) > d1 − 2. (6.3)

Suppose not, and choose n so that τn � d1 +d0 +s. The nearest point to zn on h is then 
within the interval that 1-fellow-travels g2, so we have that d(zn, g2) ≤ d1 − 2 + 1 < d1; 
but this contradicts (6.2), and thus (6.3) holds.

Now note that the distance of xn ∈ Gn to h is at most d0 + 1 and the distance of 
zn ∈ Gn to h is between d1 − 2 (by (6.3)) and d0 + 1 + s (by the triangle inequality). 
For any positive convex function f : [0, ∞) → R with f(0) < f(s) we have f(t) ≥
f(s)−f(0)

s t − f(s). Applying this to f(t) = d(Gn(t), h) where Gn is parameterized so 
Gn(0) = xn and Gn(s) = zn, we have the inequality

d(z, h) > (d1 − 2) − (d0 + 1)
s

d(z, xn) − d(zn, h) (6.4)

≥ d1 − d0 − 3
s

d(z, xn) − (d0 + 1 + s)

where z = Gn(t) ∈ Gn.
Now since x−nxn lies in a d0 + 1 neighborhood of h, the desired inequality follows, 

for an affine function ϕ with slope (d1 − d0 − 3)/s.
The argument for points on G−n is the same, with suitable replacements. �
Now build polygonal loops Pn, n ∈ N as follows: Choose a point ξn on Gn forward of 

xn so that d(ξn, Bn) < δ/2, and a point ξ−n on G−n behind x−n so that d(ξ−n, Bn) <
δ/2. This is possible because Bn is strongly asymptotic to G−n and Gn in backward and 
forward times, and we may choose ξ±n as far away from x±n as we like. Let ξ′±n denote 
the nearest points on Bn to ξ±n, respectively. Then the loop Pn is the hexagon obtained 
by connecting the six points

x−n, xn, ξn, ξ
′
n, ξ

′
−n, ξ−n

in cyclic order using geodesic segments, seen in Fig. 6 as the boundary of the shaded 
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Fig. 6. The ruled hexagon for measuring rate of approach of Bn to G±n.

region. We can triangulate Pn and fill it in with ruled triangles, to obtain a disk Qn with 
negatively curved interior, sides that are geodesic, and six corners at which the exterior 
angles (from the point of view of Qn) are at most π. The Gaussian curvature κ in Qn is 
negative, so the Gauss-Bonnet theorem gives us

ˆ

Qn

|κ|dA ≤ 4π.

Now since Gn and G−n are in the ε0–thick part, we were able to choose δ above so that 
there is an upper bound −K0 < 0 for all ambient sectional curvatures at points on a 
δ–neighborhood of G±n. This gives a bound |κ| ≥ K0 for all points of Qn that are within 
distance δ of the edges xnξn and x−nξ−n.

Now if σ is a boundary segment of Qn on Gn or G−n of length λ and σ is distance 
more than δ/2 from all of the other boundary edges, then it bounds a strip of width δ/2
where |κ| ≥ K0, and we conclude

K0λδ/2 ≤
ˆ

Qn

|κ|dA ≤ 4π (6.5)

so that λ ≤ 8π/K0δ.
Now by Lemma 6.3, for y ∈ xnξn we have

d(y, xnx−n) ≥ ad(y, xn) − c

for a > 0 and c independent of n. Let σ ⊆ xnξn be a segment of length at least 8π/K0δ

(larger than λ) starting at distance (δ + c)/a from xn. Then every point in σ is at least 
distance δ from x−nxn. The points on σ are also at least distance δ from G−n, for large 
n, because d(xn, x−n) → ∞ as n → ∞, which implies that d(xn, G−n) → ∞ using 
Lemma 6.3 again. The “short” sides of Pn (the boundary of Qn) connecting ξ±n to ξ′±n

may be assumed as far away as we like, so that they are not within distance δ of σ. Since 
the inequality (6.5) is violated by Qn as above and n large enough, it follows that there 
is a point in σ which is within distance δ/2 of the remaining side, which lies on Bn. This 
is the desired point yn which is within distance D := (δ+c)

a + 8π
K0δ

of xn.
We may find y−n using the same argument on G−n. �
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6.3. Choosing Φn to control the length of ∂Z

Lemma 6.4. There exist D′, L > 0 so that for each n, if Φn is chosen with axis An

sufficiently close to Bn, then there are points vn, v−n ∈ An with

�∂Z(v±n) ≤ L

and

d(v±n, x±n) ≤ D′

Proof. Let y±n be the points obtained in Lemma 6.2. These points are within δ/2 of Bn, 
so let us choose Φn so that An is also within distance δ/2 of Bn from ξ−n to ξn which is 
again possible by the Density theorem [7, Theorem 6.1]. Let then v±n denote points in 
An that are within δ of y±n respectively.

Now �∂Z(x±n) = �∂Z(x) because f1 and f2 fix ∂Z. The segment from xn to yn (and 
x−n to y−n) is of length at most D and is in the ε0–thick part of Teichmüller space 
(by definition all G±n are in an ε0–thick part of Teichmüller space), so the lengths of 
all curves can change only by a bounded factor along such a segment (a thick bounded 
length WP segment has bounded Teichmüller length). This gives some uniform bound 
L1 on �∂Z(y±n).

Now by the convexity of the δ–neighborhood of G±n, the geodesic segment from 
y±n to v±n also stays in the δ–neighborhood of G±n and hence is in the thick part of 
Teichmüller space, and this gives us the desired bound on �∂Z(v±n). �
6.4. Choosing Φn to control ending laminations

Lemma 6.5. There exists A ≥ 1 so that for each n ∈ N, if Φn is chosen with axis An

sufficiently close to Bn, then there is an upper bound

dY (ν+(Φn), ν−(Φn)) ≤ A

for all Y ⊆ S sharing a boundary component with ∂Z.

(Note the statement includes annuli Y with core a component of ∂Z.)

Proof. First we show the bound holds for the laminations ν+(Gn), ν−(G−n). Recalling 
the inequality (2.6) in the proof of Lemma 2.7 for any curve α in a Bers marking at x
we have that dY (α, f−n

1 (α)) ≤ Dα for all subsurfaces Y ⊆ S except X1 and annuli with 
core curves in ∂X1. This implies that for an A1 ≥ 1 we have

dY (x, x−n) ≤ A1,
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for all subsurfaces Y as above. Similarly, we can see that

dY (x, xn) ≤ A1

holds for all subsurfaces Y ⊆ S except X2 and annuli with core curve in ∂X2. Combining 
the above two inequalities with the triangle inequality we see that

dY (x−n, xn) ≤ A2

holds for all subsurfaces Y ⊆ S except X1, X2 and annuli with core curves in ∂X1 and 
∂X2.

Moreover, since G is the axis of a pseudo-Anosov map, diamC(Y )(Q ◦G) is uniformly 
bounded for all Y � S (Lemma 2.7), and it follows (applying powers of f2 or f1) that

dY (xn, ν
+(Gn)) ≤ A3, dY (x−n, ν

−(G−n)) ≤ A3

holds for an A3 ≥ 1 independent of n.
Putting these bounds together we find that

dY (ν+(Gn), ν−(G−n)) ≤ A4 (6.6)

for all Y except X1, X2 and annuli with core curves in ∂X1 and ∂X2. Note that this 
bound holds for all Y sharing a boundary curve with Z, since X1 and X2 share no 
boundary curves with Z.

Next we recall that ν+(Bn) = ν+(Gn) and ν−(Bn) = ν−(G−n). Thus (6.6) holds for 
(ν+(Bn), ν−(Bn)) too.

Finally, Lemma 2.6 gives us a neighborhood U+ of ν+(Bn) in the coarse Hausdorff 
topology such that, for any subsurface Y sharing a boundary component with Z,

dY (λ, ν+(Bn)) ≤ 4

for any λ ∈ U+. Similarly there is a neighborhood U− of ν−(Bn) with the corresponding 
property.

Now, the continuity theorem [7, Theorem 4.7] states that, if r is a recurrent ray 
and rn → r on compact sets, then the laminations ν+(rn) converge to ν+(r) in the 
coarse Hausdorff topology (the theorem in [7] is stated for a sequence of rays sharing a 
basepoint, but the proof applies in general). Thus it follows that, if Φn is chosen so that 
An is sufficiently close to Bn, then ν+(Φn) ∈ U+ and ν−(Φn) ∈ U−. We thus obtain a 
bound of the form

dY (ν+(Φn), ν−(Φn)) ≤ A5

for all Y sharing a boundary component with Z (this includes the annuli with core curves 
in ∂Z). This concludes the lemma. �
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Now we may finish the

Proof of Theorem 6.1. For each n, choose Φn so that the conclusions of both Lemma 6.4
and Lemma 6.5 hold.

Let vn, v−n be the points on An given by Lemma 6.4. Then the segments v−nvn
satisfy the hypotheses of Theorem 5.7: that is, the endpoints are uniformly close to 
x−n, xn respectively, and each of those is uniformly close to p−n and qn respectively, 
which are points far along the axes g1 and g2, where the geodesic h is close to those 
axes. Hence v−nvn is a D′′-fellow traveler of a long segment In in h so that ∪nIn = h, 
for some fixed D′′. Moreover the length of ∂Z is bounded at the endpoints v±n. Thus 
Theorem 5.7 implies that inf{�∂Z(x)|x ∈ v−nvn} → 0 as n → ∞.

Lemma 6.5 gives us the inequality (6.1) for each Φn. Thus the sequence {Φn}n provides 
the desired pseudo-Anosov maps to complete the proof of Theorem 6.1. �

7. Comparison with Kleinian surface groups

In this final section we indicate how Theorems 1.4 and 1.5 can be derived from The-
orems 1.3 and 6.1, respectively, using the work of Brock-Canary-Minsky on Kleinian 
surface groups [22,1]. This will show that the set of short curves along a WP geodesic 
and the set of short curves in the corresponding hyperbolic 3-manifold do not necessarily 
coincide.

Recall first that a Kleinian surface group is a discrete, faithful representation ρ :
π1(S) → PSL(2, C) which takes punctures of S to parabolic elements (is type preserv-
ing). Such a representation has a pair (ν+, ν−) of end invariant, which in particular are 
points of Teich(S) when ρ is quasi-Fuchsian, and are laminations in EL(S) when ρ is 
doubly degenerate.

Let Nρ = H3 /ρ(π1(S)) be the quotient hyperbolic 3–manifold of ρ. Given ρ and a 
curve γ in S we let �γ(ρ) or �γ(Nρ) denote the length of the geodesic representative of ρ
in Nρ. The Short Curve Theorem of [22] gives the following relationship between small 
values of �γ and large subsurface projections of the end invariant.

Theorem 7.1. Suppose that ρ : π1(S) → PSL(2, C) is a Kleinian surface group with end 
invariant (ν+, ν−) and let Nρ = H3 /ρ(π1(S)), then

(1) for any A ≥ 1 there is an ε > 0 so that if �γ(Nρ)<ε, then supY �S:γ⊆∂Y dY (ν+, ν−) >
A;

(2) for any ε > 0 there is an A ≥ 1 so that if supY �S:γ⊆∂Y dY (ν+, ν−) > A, then 
�γ(Nρ) < ε.
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7.1. Quasi-Fuchsian mismatch

If p, q ∈ Teich(S) we can compare the WP geodesic segment pq with the Kleinian 
surface group ρ that QF (p, q) = Nρ has end invariant the pair of Bers markings at p, q. 
We recall the statement of Theorem 1.4:

Theorem 1.4. There exists ε1 > 0 so that for any ε > 0 there is a pair (p, q) ∈ Teich(S) ×
Teich(S) and a curve γ in S such that

inf
x∈pq

�γ(x) < ε

whereas

�γ(QF (p, q)) ≥ ε1.

Proof. Given ε > 0, let p, q and γ be given by Theorem 1.3, so that

inf
x∈pq

�γ(x) < ε

but

sup
{
dY (p, q) | Y ⊆ S, γ ⊆ ∂Y

}
≤ A,

where A is independent of ε. Then part (1) of Theorem 7.1 gives an ε1 such that 
�γ(QF (p, q)) ≥ ε1. �
7.2. Fibered mismatch

If MΦ is the mapping torus of a pseudo-Anosov homeomorphism Φ ∈ Mod(S) then 
MΦ admits a complete hyperbolic metric by Thurston’s geometrization theorem (see 
e.g. [28]). The manifold MΦ fibers over the circle with fiber S, and the representation ρ
associated to the fiber subgroup has end invariant (ν+, ν−) equal to the supports of the 
stable and unstable laminations of Φ.

We are therefore led to compare the short curves of ρ with those of the Weil-Petersson 
axis AΦ of Φ. We restate Theorem 1.5 here:

Theorem 1.5. There exists ε1 > 0 so that for any ε > 0 there is a pseudo-Anosov Φ ∈
Mod(S) and a curve γ ∈ S such that

inf
x∈AΦ

�γ(x) < ε

whereas

�γ(MΦ) > ε1.
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Proof. Given ε > 0 let Φ be the pseudo-Anosov provided by Theorem 6.1, and γ the 
curve such that

inf
x∈g

�γ(x) < ε

while

sup
Y⊆S:γ⊆∂Y

dY (ν+, ν−) ≤ A.

Again by part (1) of Theorem 7.1, this produces a lower bound

�γ(MΦ) ≥ ε1. �
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