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1. Introduction

In this paper we explore some questions about visibility in the Weil-Petersson geodesic
flow in Teichmiiller space, and its connections to synthetic aspects of the flow, by which
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we mean the combinatorial behavior of geodesic flow lines for large times. Our mo-
tivation is partly the analogy between Weil-Petersson flow and Teichmiiller flow, and
partly the connections between Weil-Petersson geometry and the geometry of hyper-
bolic 3—manifolds.

Our main result is a criterion (Theorem 1.2) for existence of bottlenecks between
certain (non-recurrent) pairs of geodesics, and its consequences for visibility, that is to
say connectivity by geodesics of certain points at infinity. We use this result to construct
examples of geodesics whose approach pattern to the completion strata of the Teichmiiller
space exhibits some new phenomena (Theorems 1.3, and 5.5), and related examples
in which the connection between WP geometry and hyperbolic geometry breaks down
(Theorems 1.4 and 1.5).

Bottlenecks and visibility. A bottleneck for a pair R, R’ of subsets of a geodesic metric
space X is a compact set K C X such that every geodesic segment with endpoints on R
and R’ meets K.

For two geodesic rays r,r’, visibility of their endpoints at infinity is the existence of
a geodesic g strongly asymptotic to r in forward time and 7’ in backward time. The
existence of a bottleneck is an important step in the proof of visibility.

For example, it is shown in [7, Theorem 1.3] that any two recurrent geodesic rays
have a bottleneck and satisfy the corresponding visibility property. To consider the
non-recurrent case we start with geodesics that are asymptotic to completion strata in
Teichmiiller space. If w is a multicurve in S, let £, : Teich(S) — R4 be its geodesic length
function on Teichmiiller space. The stratum S(w) is the locus in the Weil-Petersson com-
pletion of Teich(S) where the curves of w are replaced by punctures (hence £, = 0). The
following conjecture seems reasonable but is currently beyond our reach:

Conjecture 1.1. Let w,w’ be two multicurves in S that fill the surface. Then S(w) and
S(w') have a bottleneck.

Our main technical result will be the following restricted version:

Theorem 1.2. Let w,w’ be two co-large multicurves that fill S. Let € > 0, and let v and
r’ be infinite length WP geodesic rays in Teich(S) that are strongly asymptotic to (or
contained in) the é-thick parts of the strata S(w) and S(W'), respectively. Then r and r'
have a bottleneck.

Here a multicurve is co-large if it is the boundary of a subsurface all of whose com-
plementary subsurfaces are annuli and three-holed spheres. See Section 2 for details.
The corresponding visibility statement is given in Theorem 4.5.

Itinerary and subsurface projections. A motivating question for us is finding a combina-
torial or symbolic description of the itinerary of a Weil-Petersson geodesic, by which we
mean the list of completion strata that the geodesic approaches. The classical analogue
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is a geodesic in the modular surface H? /SL(2,7Z) whose approaches to the cusp are
determined by the continued-fraction expansion of its endpoint in RP! = § H?.

A natural generalization of the continued-fraction coefficients is given by subsurface
projection coefficients (or just subsurface coefficients), as developed in [24] and [22]. Rafi
studied the relation of these projections to the itineraries of Teichmiiller geodesics in
[29-31]. A geodesic (in both the Teichmiiller and Weil-Petersson settings) has a pair
(v*,v7) of endpoints, which can be points in Teich(S), or laminations (with or without
transverse measure), and for any essential subsurface Y C S we consider

dy (vt v7) = diamey (7Ty(1/+),7l'y(V_))

where 7y is the projection to the curve complex C(Y') (see Section 2 for detailed defini-
tions).

Very roughly, when these coefficients are large, the geodesic makes close approaches
to the strata of Teich(S) (equivalently, inf, ¢, is small for some ), but the complete
correspondence is not fully understood.

Rafi showed, for a Teichmiiller geodesic g with end invariant (v*,v7), that lower
bounds on dy (v, ™) imply upper bounds on inf, /9y . However he developed sequences
of examples showing that the opposite implication fails.

Using Theorem 1.2 we are able to produce examples of WP geodesics for which the
analogue of Rafi’s result holds:

Theorem 1.3. There exist A > 1,eqg > 0 so that for any € > 0 there is a WP geodesic
segment pq whose endpoints are in the eg—thick part of Teich(S), and a curve v so that

inf £ (z) <
Jnf £y(xz) <e

whereas
sup {dy(pwz) |Y C S,y C 8Y} <A

A more detailed description of this construction appears in Theorem 5.5. We obtain
a phenomenon we might call indirect shortening, in which, while a curve v with small
infyey £y (2) is not in the boundary of any subsurface Z with large dz(v—,v"), it is in
the boundary of a subsurface Z which in turn contains enough subsurfaces Y with large
dy (vt,v7) to fill it. We discuss this further in Section 5.

In Section 3, we consider one case in which the correspondence between large sub-
surface projections and close approaches to strata is simple and direct: A geodesic has
non-annular bounded combinatorics when there is an upper bound on all projection coef-
ficients dy (vT, v ™) except when Y is an annulus. Theorem 3.2 shows that, for a geodesic
g satisfying such a condition, a curve o with small inf, ¢, is the core of an annulus
Y with large dy (v*,v7), and vice versa. The proof of this mostly assembles existing
techniques, as outlined in Section 2, and we include it here for completeness.
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Comparison with Kleinian groups. Using the methods developed in [22,1], one can con-
vert Theorem 1.3 to a statement comparing the geometry of WP geodesics and hyperbolic
3-manifolds. For any two points p, g € Teich(S) there is a quasi-Fuchsian representation
p: m(S) = PSL(2,C) such that QF(p,q) := H? /p(m1(S)) has conformal boundary
surfaces p and ¢. One can ask, as in [21] for Teichmiiller geodesics, about the corre-
spondence between short geodesic curves in QF(p, ¢) and curves with short length along
the WP geodesic pg. The following theorem indicates that the correspondence is not
complete:

Theorem 1.4. There exists €1 > 0 so that for any € > 0 there is a pair (p,q) € Teich(S) x
Teich(S) and a curve v in S such that

inf £ <
Jnf V() <€

whereas

(QF(p.q)) = &1

With some more care one can obtain a similar statement for fibered 3-manifolds and
their associated WP geodesic loops. For a pseudo-Anosov map ® € Mod(S) let Mg
denote the associated hyperbolic mapping torus and Ag the WP axis of ® in Teich(S).

Theorem 1.5. There exists €1 > 0 so that for any € > 0 there is a pseudo-Anosov & €
Mod(S) and a curve v in S such that

£1€n£¢ ly(x) <€

whereas
Z»Y(Mq:‘) > €1.

We note that similar statements, for comparing Teichmiiller geodesics and Kleinian
groups, follow from Rafi’s results (see discussion in [21]), but the actual set of examples,
as well as the proofs, are quite different. These results also provide counterexamples for
Conjecture 1.8 of [7].

Brief historical sketch. Several important geometric and dynamical properties of the
Weil-Petersson metric were established over the last decade; see Wolpert [35] for a sum-
mary of some these results. Our point of view begins with [7,8] which introduced ending
laminations for WP geodesics and studied the question of itineraries and their relation
to subsurface projections.

Some of these techniques were developed further in [25,26], and recently ending lami-
nations were applied successfully to determine limit sets of WP geodesics in Thurston’s
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compactification of Teichmiiller space [5,4] exhibiting various exotic asymptotic behav-
ior of the geodesics; for example geodesics with non simply connected (circle) limit sets.
Moreover, Hamenstadt [16] used ending laminations to establish certain measure theo-
retic properties of the WP geodesic flow. On the other hand, Brock and Modami in [6]
showed that an analogue of the Masur criterion [19] does not hold for WP geodesics and
the associated ending laminations.

However a complete description of the WP geodesic flow in terms of ending laminations
remains elusive. It is our hope that the examples and techniques developed here will add
to the toolkit for addressing the issue more fully.

1.1. Plan of the paper

In Section 2 we provide some background and supplementary results about coarse
geometry of curve complexes and other related complexes, and recall definitions and
techniques for handling the Weil-Petersson metric. In Section 3 we prove Theorem 3.2
which completes the itinerary picture for geodesics satisfying the non-annular bounded
combinatorics condition (no indirect curve shortening occurs in this situation). In sec-
tion 4 we prove our main theorem about the existence of bottlenecks for certain families
of geodesic segments (Theorem 1.2). In Section 5 we prove Theorem 5.5, which uses
the Bottleneck theorem to construct WP geodesic segments that have the indirect curve
shortening property. In particular we obtain a proof of Theorem 1.3. In Section 6 we
prove Theorem 6.1, which produces closed WP geodesics that have the indirect curve
shortening property. The delicacy here is to approximate the segments constructed in
Theorem 5.5 with arcs of closed geodesics while controlling end invariants and their sub-
surface projection coefficients. In Section 7 we show how Theorems 5.5 and 6.1 translate
to Theorem 1.4 and Theorem 1.5, which indicate a mismatch between the short curves
of WP geodesics and the short curves of the corresponding hyperbolic 3—manifolds.

2. Background

In this section we set notation and recall a variety of facts from the literature. Some
results are just quoted from the literature, for some we outline the proofs, and a few
require a short argument which we supply.

2.1. Curves and surfaces

Let S be a connected, orientable surface of finite type. In this paper by a curve
a on S we mean the homotopy class of an essential (i.e. homotopically nontrivial and
nonperipheral — not homotopic to a puncture or boundary) simple closed curve on S, and
by a subsurface Y C S we mean the homotopy class of a closed, connected, nonperipheral,
mi-injective subsurface of S. A multicurve on S is a set of pairwise disjoint non-parallel
curves on S.
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We abuse notation a bit to blur the distinction between a subsurface and its interior;
for example if Y C S is a subsurface we take Teich(Y) to mean the same thing as
Teich(int(Y)). This is convenient when we consider subsurfaces in the complement of
multicurves or other subsurfaces on S.

When two curves or multicurves a, 3 cannot be realized disjointly on a surface we
say that they overlap and denote a h (. Similarly, when a curve « and a subsurface
Y cannot be realized disjointly, we say that they overlap and denote a m Y. We say
that two (multi)curves «, 8 fill the surface S if their union intersects every curve in S;
equivalently if, when realized with minimal intersection number, the complement of aUf
is a union of disks and peripheral annuli.

Thurston’s measured lamination space ML(S) is a natural completion of the set of
curves and multicurves, and we will also consider the space of geodesic laminations (with-
out measures) GL(S). (Laminations are geodesic with respect to a reference hyperbolic
metric as usual, but the choice of metric doesn’t matter here.) See [13,9] for basic facts
about these spaces. Within GL(SS) let ££(S) denote the space of minimal filling lamina-
tions: A lamination is filling if it intersects every simple closed geodesic; equivalently if
its complementary regions are ideal polygons or once-punctured ideal polygons.

The natural weak-* topology on ML(S) descends to the coarse Hausdorff topology
on the supports in GL(S). In particular ££(S) with the coarse Hausdorff topology is a
Hausdorff space (no pun intended), and convergence is characterized as follows: A, — A
in the coarse Hausdorff topology on £L£(S) if any accumulation point of {A,}, in the
Hausdorff metric on closed subsets of S contains A as a sublamination. See [15] and [14,
§2] for details.

The following class of subsurfaces and multicurves plays a special role throughout the

paper:

Definition 2.1. We say that a subsurface Z C S is large if each connected component of
S\ Z is either a three holed sphere or an annulus. The boundary of a large subsurface
is called a co-large multicurve.

Remark 2.2. It is easy to verify that any submulticurve of a co-large multicurve is a
co-large multicurve.

2.2. Weil-Petersson geometry

Consider now S with negative Euler characteristic, and let Teich(S) denote the Te-
ichmiiller space of marked complete finite-area hyperbolic surfaces homeomorphic to S.
The mapping class group of the surface, Mod(S), is the group of orientation preserving
homeomorphisms of the surface up to isotopy. The mapping class group acts on the Te-
ichmiiller space by remarking (precomposition with homeomorphisms) and the quotient
is the moduli space of Riemann surfaces M(S).
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The Weil-Petersson (WP) metric on Teich(S) is an incomplete Riemannian metric
which is invariant under the action of Mod(S) and hence descends to a metric on M(S).
We will recall the basic facts about the WP metric that we will need; for a more complete
account see Wolpert’s survey [35].

The curvature of the metric is strictly negative, but not bounded away from 0 or —oo.
Moreover, the WP metric is geodesically convex [35, Theorem 3.10]: there is a unique
geodesic between any two points x,y € Teich(S) which we denote by Ty. We typically
think of geodesics parameterized by arclength.

We denote the WP distance function as dp, or just d when confusion is unlikely.
The completion of (Teich(S), dwp), denoted by Teich(S), is a stratified CAT(0) space
where each stratum consists of marked surfaces pinched at a multicurve o. We denote
the stratum of the multicurve o by S(o), with S(0) = Teich(S). To describe the metric
on S(o), let surfaces X;, j = 1,...,k, be the connected components of S \ o which
are not three-holed spheres, where punctures are introduced on X; at curves in o. Then
S(o) is totally geodesic in Teich(S), and can be identified with

Teich(S \ o) = HTeich(Xj)
J

where the completed WP metric on S(o) is isometric to the Riemannian product of WP
metrics on Teich(X)); see [18].

Length-functions. For a curve or multicurve o C C(S) the length-function
£y Teich(S) — R4

assigns to a point x the sum of the lengths of the geodesic representatives of connected
components of « at x.
We also note that ¢, extends continuously to

£y : Teich(S) — [0, oo],

where {¢, = 0} is the closure of S(«) and {¢, = oo} is the union of strata S(o) for
which o h 0.

Given ¢ > 0 recall that the e—thick part of Teichmiiller space consists of all points
x € Teich(S) so that £y (z) > 2¢ for all curves a. Its complement is called the e-thin
part.

The Bers constant Lg > 0 of a surface S with negative Euler characteristic is a
number depending only on the topological type of the surface so that any a € Teich(S)
has a pants decomposition, called a Bers pants decomposition, with the property that
the length of all curves in the pants decomposition are at most Lg; see [11, §4.1].

We recall also that Wolpert proved that the length-functions ¢, are strictly convez in
Teich(S), that is, for any WP geodesic g the function £, 0g has positive second derivatives
[32, Corollary 4.7] (see also §3 of [35]; in particular Theorem 3.9).
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Thick regions of strata. For ¢ > 0 we define the e—thick part of a stratum, denoted by
Sc(0), to be the product of the e-thick parts of its factors Teich(X;) where X are the
connected components of S\ o.

For d > 0 we denote the d-neighborhood of S.(o) in Teich(.S) by

Ug,e(0) :=Ng(Sc(0)). (2.1)

For sufficiently small neighborhoods of S.(o) we retain some control of length-
functions:

Lemma 2.3. For any € > 0 sufficiently small there is b > 0 so that: For any 8 ¢ w and
x € Upe(w), £(z) is uniformly bounded below.

Given b there is €, > 0 such that, in the b-neighborhood of any point in Teich(S),
there is a point with injectivity radius €, outside the cusps.

Proof. Let I' € Mod(S) be the stabilizer of w, or equivalently the stabilizer of S(w). Note
that S¢(w) /I is a compact subset of Teich(S)/T" (it is the e-thick part of the moduli space
of S\ w).

Define f(z) := inf{lg(z) : 8 ¢ w} on Teich(S). This is a continuous, I'-invariant
function and it is strictly positive on S¢(w), by definition. It descends to a continuous
function on Teich(S)/I" and, since S.(w)/T" is compact, there is some b > 0 such that it
is still strictly positive on the closure of the b-neighborhood of S.(w)/I". Lifting back to
Teich(S) we have the desired first statement.

The second statement follows directly from compactness of the completion of the

moduli space. O
2.3. Coarse geometric models

We recall here the system of complexes and their projection maps which can be used
to give rough models for Teichmiiller space and for the mapping class group. We refer to
[23,24] and [10,3] for the details and basic facts about these complexes.

Curve complezes. We denote the curve complex of S by C(S), defined so that k-simplices
are (k + 1)-component multicurves (with minor exceptions for one-holed tori, 4-holed
spheres and annuli). We may turn the complex to a metric complex by declaring that
each simplex is the Euclidean simplex with side lengths 1. The seminal result of Masur
and Minsky [23] showed that this metric complex is Gromov hyperbolic.

The pants graph P(S) is the graph whose vertices are pants decompositions, i.e. max-
imal simplices of C(S), and whose edges are pairs of pants decompositions related by an
elementary move consisting of replacing a curve with another that intersects it as few
times as possible. We can turn the graph to a metric graph by assigning length 1 to each
edge.
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A marking of S is a filling collection of curves consisting of a pants decomposition,
called the base of marking, together with curves transverse to each component, as dis-
cussed in [24]. The marking graph Mark(S) is formed by defining elementary moves
between markings, in such a way that Mark(S) is connected and quasi-isometric to
Mod(S).

Subsurface projections. If Y is a non-annular subsurface of S and « is a curve in S
intersecting Y, we can define my () by taking arcs of intersection of a with Y (once
they are in minimal position) and replacing them by curves using a mild surgery (closing
up with subarcs of 9Y). When Y is an annulus we define C(Y') to be the complex of
essential arcs in the natural compactified annular cover Y of S associated to Y, and
form 7y (e) by lifting « to this cover (see e.g. [24, §2] or [22, §4]). One way to handle
the arbitrary choices involved in these definitions is to let my(«) denote the set of all
possibilities and check that this set has uniformly bounded diameter. If o does not
intersect Y we let my (a) = 0.

The definition extends to pants decompositions and markings by taking a union over
their components, and to laminations provided their intersection with Y does not contain
infinite leaves. In particular my (A) makes sense if A € EL£(.5).

Finally we extend the definition to 7y (z) where z € Teich(.S) by letting p(x) denote
a Bers marking of S, namely a marking whose base pants decomposition is a Bers
pants decomposition and whose transversal curves are chosen with minimal lengths. (If
there is more than one such marking we make an arbitrary choice.) We then define
Ty () = my (u(2)).

The Y subsurface coefficient dy (p, q), for any p, ¢ whose projections to Y are defined
as above and are nonempty, is now defined by

dy (p.q) i= diame(y) (v (p) Uy (0)). (2:2)

We usually do not distinguish between an annulus Y and its core curve «, for example
denoting 7y by 7, and dy by d,. From the definition it is clear that dy satisfies the
triangle inequality, provided all three projections are nonempty.

Hierarchy paths. We recall that hierarchy (resolution) paths form a transitive set of quasi-
geodesics in the pants or marking graph of a surface with quasi-geodesic constants that
depend only on the topological type of the surface. An important property of hierarchy
paths is the no—backtracking property [24, §4], which we state here in a form that will
serve our purpose in Section 3.

Proposition 2.4 (No-backtracking property). Let p : I — P(S) be a hierarchy resolution
path, and let i,j,k,1 € T with i < j < k <, then for a non-annular subsurface Y we
have that

dy (p(i), p(1)) = dy (p(j), p(k)) — M
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For a more complete list of properties of hierarchy paths see [24, §4,5], [22, §5], [8,
Theorem 2.6] and [25, Theorem 2.17].

Pants graph and WP metric. Brock [10, Theorem 3.2] showed that the (coarse) map
Q : Teich(S) — P(S) (2.3)

that assigns to a point « € Teich(S) a Bers pants decomposition is a quasi-isometry with
constants that depend only on the topological type of the surface.

Here we also recall the Masur-Minsky distance formula [24, Theorem 6.12] which
provides a coarse estimate for the distance of any two pants decompositions P, Q € P(.S):
Given A > 0 large enough there are K > 1 and C > 0 so that

dp(P,Q) <k.c Y {dv(P,Q)}a (2.4)
YCS: na
zife>A | . )
holds, where {2} 4 = is the cut-off function. The “na” in the above for-
0ifz<A

mula stands for non-annular and indicates that the sum is over non-annular subsurfaces.
Brock’s quasi-isometry (2.3) combined with the distance formula (2.4) gives us a coarse
formula for the Weil-Petersson distance:

dup(@,y) =x0 Y {dv(z,y)}a (2.5)
YCS: na

where A > 1 is large enough and K, C depend on A.
The following immediate consequence of the distance formula can also be obtained by
more elementary means:

Lemma 2.5. For any a > 0, there is a D > 1, so that if dwp(z,y) < a then

sup dy(z,y) <D
YCS: na

We also need the following lemma which gives bounds on subsurface projections for
convergent sequences of laminations:

Lemma 2.6. Let \ be a lamination in EL(S) and v a curve on S. Then, there is a neigh-
borhood U of X in the coarse Hausdorff topology on EL(S) such that for all laminations
win U we have

sup dY(A7:LL) <4.
Y CS:yCoY
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Proof. Equip the surface S with a complete hyperbolic metric and realize v and A
geodesically. Let [ be a leaf of A that intersects -y, and let a be a subarc of [ with
end points on ~ that is essential in the subsurface S \ . When = is a separating curve
choose an arc as above in each connected component of S \ ~.

Let R, denote a small regular neighborhood of @ in S\ which is of the form a x [0, 1]
where (da) x [0, 1] is two arcs on 7.

A sequence of laminations p; € EL(S) converges in the coarse Hausdorff topology to
A if any accumulation point of u; in the Hausdorff metric is a lamination containing A,
and in particular the leaf [. Thus, we can choose a neighborhood U of A in the coarse
Hausdorff topology such that any p € U (realized geodesically) has a leaf I’ passing
through R, from one side on « to the other side on ~y. Denote the subarc of I’ with end
points on ~y by a’.

Now let Y C S be a non-annular subsurface with geodesic boundary 9Y such that
v C 9Y. Then a must intersect Y (when S \ + has two components one of the two arcs
must intersect Y). For any boundary component v/ # ~ which intersects a or a’, each
intersection point lies in a segment of 7/ that passes between the “long” boundary edges
a x {0} and a x {1} of R,, since the other two edges are on . Hence such a segment
must intersect both a and a’. It follows that ANY and x4 NY must contain arcs which
are parallel to each other, which implies 7y (1) and 7y (A) share a component. It follows
that dy (A, u) = diamey) (my (N Umy () < 4.

When Y is an annulus with core curve -, denote the compactified annular cover of S
corresponding to Y by Y. Let a be an arc of [ spanned by three successive intersection
points with ~. Let 4 be the lift of v to a core curve of Y. Lift [ to a geodesic [ crossing 4
and connecting the components of 5‘}?, and let @ be the lift of @ in { that crosses 4. The
endpoints of @ lie in lifts 47 and 45 of 4 which are lines bounding disks H;, Ho which
meet the components of dY in arcs. If X' is sufficiently close to A it contains a leaf I’
that has a lift I’ which passes close enough to a that its endpoints lie in the disks H; and
H, respectively. Then [ and I’ are distance at most 2 in C(Y), since there is a regular
neighborhood of aU H1 U Hy whose boundary contains an arc connecting the components
of &Y which is disjoint from both { and I'. O

2.4. End invariants

The end invariants introduced by Brock, Masur and Minsky in [7] are pairs of mark-
ings or laminations, denoted by (v~,v™) associated to WP geodesics. These invariants
and the associated subsurface coefficients are quite instrumental in the study of the
global geometry and dynamics of the WP metric.

Let r : [a,b) — Teich(S) be a complete WP geodesic ray (the domain of r does not
extend to the end point b). First, an ending measure of r is a limit (in the projective
measured lamination space) of distinct Bers curves «; at times t; — b. Moreover, a
pinching curve along r is any curve with lim;_, o €4 (r(t)) = 0. Then the union of the
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supporting laminations of all ending measures of r and all pinching curves along r is
shown in [7] to be a lamination, and this is the ending lamination v(r).

Now let g : I — Teich(S) be a WP geodesic, where I = (a,b), [a,b) or [a,b] (a,b €
R U{£o0}), and let ¢ be a point in the interior of I. When g extends to b (including the
situation that b € T) the forward end invariant of g is a Bers marking at g(b). Otherwise,
the forward end invariant (ending lamination) of g is the ending lamination of the ray
lie,p) as we defined above. We denote the forward end invariant of g by vt (g). The
backward end invariant (ending lamination) of g is defined similarly considering the ray
g(—t)|[=¢,—q) and is denoted by v~ (g). The pair (v*(g),v~(g)) is the end invariant of
g. We usually suppress the reference to the geodesic g and denote the end invariant by
(vt v).

2.5. Partial pseudo-Anosov maps

A partial pseudo-Anosov map supported on a subsurface X C S is a map f € Mod(S)
which fixes X, is homotopic to the identity on S \ X, and restricts to a pseudo-Anosov
map on X.

Any pseudo-Anosov map f on X has a unique geodesic axis Ay in Teich(X),
by Daskalapoulos-Wentworth [12, Theorem 1.1]. For a partial pseudo-Anosov map
supported on X we obtain a family of axes in S(0X) which can be written as
Ay x Teich(S \ X) in the natural product structure. If X is large this is again a single
axis which we continue to denote Ay.

We have the following lemma about subsurface coefficients of points along an axis of
a partial pseudo-Anosov map:

Lemma 2.7. Let g be an axis of a pseudo-Anosov map or a partial pseudo-Anosov map
f supported on a subsurface X. There exists D > 1 so that

dy(x,y) < D

forall x,y € g and allY C S which are not X itself or annuli with cores in 0X.
Moreover, for K > 1,C > 0 depending only on f we have

de(xa y) =K,C dX(xa y)
Here U <k ,c V means, as usual, that U < KV 4+ C and V < KU + C.
Proof. The first statement is a corollary of [25, Lemma 7.4] (see also [20, pages 120-122],
[17, Theorem 3.9]), which states that for any curve a € C(S) there is a bound D,, such

that

dy (e, f"(a)) < Dq (2.6)
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for all n € Z and Y not equal to X or an annulus with core in X, provided o and f™(«)
intersect Y.

Let T" be the union of all curves in Bers markings p(x) for 2 € g. Since g is invariant
under f with compact quotient, we know that there is a finite subset I' c T such that
F:Unern(f‘)' N

Applying (2.6) to the curves of I' we obtain the first inequality of the lemma.

The second inequality follows from the first one and the distance formula (2.5), after
setting the threshold larger than D. O

2.6. Length-function control

In this section we assemble some of the length-function controls which we will use to
extract information about behavior of WP geodesics from the combinatorial information.

The first result is an improved version of Wolpert’s Geodesic Limit Theorem [33,
Proposition 32] which is Theorem 4.5 of [25]. This theorem gives us a limiting picture
for sequences of bounded length WP geodesic segments, where the overall idea is that
the only obstruction to such a sequence converging to a geodesic segment in Teich(.S) or
in a stratum is the appearance of high twists along short curves.

Given a multicurve o denote by tw(o) the subgroup of Mod(S) generated by Dehn
twists about the curves in o.

Theorem 2.8 (Geodesic Limits). Given T > 0, let (, : [0,T] — Teich(S) be a sequence of
WP geodesic segments parametrized by arclength. After possibly passing to a subsequence
there is a partition 0 = tg < ... < tp41 = T of [0,T), multicurves oo, ...,0k11 and 7
where g and oi4+1 (and 7) may be empty such that

oiNoi1 =7
foralli=0,...,k, and a piecewise geodesic segment
¢ :[0,T] — Teich(S),

with the following properties:

(GLT1) {((tistis1)) C S(F) fori=0,... k;

(GLT2) ((t;) € S(0y) fori=0,...,k+1;

(GLTS8) There are elements ¢, € Mod(S) and T;, € tw(o; N 7) fori=1,...,k and
n € N so that, writing

Pin = 7;,71 0...0 71,n o wn (27)

fori=1,...,k, and @gn = ¥n, we have
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im0 5 (Ga (1)) = C(2)
for any t € [t;, tiv1], where i =0,... k.

Let us also recall the Non-refraction theorem of Daskalopoulos and Wentworth [12,
Theorem 3.6] (see also [33, Theorem 13]) which specifies the stratum of the interior of
the geodesic segment connecting two points in Teich(S) depending on the location of the
end points.

Theorem 2.9 (Non-refraction). Let o1 and o9 be two multicurves, and T1Z3 be a WP
geodesic segment with 1 € S(o1) and xo € S(o2). Then the interior of T1T3 is inside
8(01 N 0'2).

Formally speaking one can derive the non-refraction theorem from Theorem 2.8. We
will actually need the following quantified variation on non-refraction which is also a
corollary of Theorem 2.8.

Lemma 2.10. For any a > 0 and €; > 0 there exists e3 > 0 such that, if ¢ : [—a,a] —
Teich(S) is a WP geodesic segment and vy a curve in S such that

4 >
o oe=a

then

max £y o ¢ > €.

[—a,0]
Proof. Supposing the lemma fails, there is a sequence of geodesics ¢, : [—a, a] — Teich(S)
and curves 7y, such that £, (Cn(tn)) > € for some ¢, € [0, a] while max|_, o) £+, ©¢n — 0
as n — oo.

Note, by convexity of length-functions we may assume that ¢, = a.

Use Theorem 2.8 (GLT) to obtain (passing to a subsequence if necessary) a partition
to, ..., tkt1 of [—a,a], multicurves oy, ...,o41 and 7, mapping classes ¢y, T;, and a
piecewise geodesic f satisfying the conclusions of the theorem. In particular, by GLT3,
¥n(Cn) — € on the interval (a,t1) as n — oo, and this limit by GLT1 lies in S(7). So we
conclude ,,(7,,) is eventually a component v of 7, and hence £, o ( = 0 on [—a, a).

Now since 7 C o; for each i, each 7;,, which is in the twist group of o;, must fix
~. This means that ¢; ,(v,) = v (with ¢; ,, defined as in (GLT3)), and since by GLT3,
@in(Ca) — C on [ti, ti11], we conclude that £, o ¢, — £, 0 on [~a,a]. But £, 0 =0
so we have a contradiction to the lower bound for ¢, (¢, (t,)). O

The following two results from [25, §4], obtained there as consequences of Theorem 2.8,
provide us with control of the length of a curve along WP geodesics in terms of the asso-
ciated annular coefficient of the curve. Roughly speaking, along a WP geodesic segment
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of bounded length with suitable assumptions at the endpoints, the length of a curve ~
gets very short somewhere in the middle if and only if the twisting of the endpoints
around ~ grows very large.

Theorem 2.11 (/25, Corollary 4.10]). Given T, ey and € < €y positive, there is an N €
N with the following property. Let ¢ : [0,T'] — Teich(S) be a WP geodesic segment
parameterized by arclength with T' < T such that for a curve v

e £y(C(t)) > €

and

d(¢(0),¢(T7)) = N.

Then we have

Shin, £y(C(1) <e.

Theorem 2.12 (/25, Corollary 4.11]). Given €y, T, s positive with T > 2s and N € N,
there is an € < ey with the following property. Let ¢ : [0, T'] — Teich(S) be a WP geodesic
segment parametrized by arclength with T' € [2s,T). Let J C [s,T" — s] be a subinterval,
and suppose that for some v € Cy(S) we have

0, (C(t
s, 4(C(1)) > €0

and

min £, (C(t)) <e.

Then we have

dy(¢(0),¢(T7)) = N.
We will need the following variant on Theorem 2.12 as well:

Theorem 2.13. Given ¢y, T > 0 and N € N, there is an € < €y with the following
property. Let ¢ : [0,T'] — Teich(S) be a WP geodesic segment parametrized by arclength
with T' < T. Suppose that for some v € Cy(S) we have

6(C0) > e, 4(L(T) >

and
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Chin, £,(¢(1) <.

Then we have

dy(¢(0),¢(T")) = N.
Proof. First we quote the following direct consequence of [25, Corollary 3.5]:

Lemma 2.14. For any [ > 0 there is an s > 0 so that if for a curve 5 € C(S), £g(x) > 1,
then for all x' € Teich(S) with d(z,z") < s we have that lg(x’) > 1/2.

Now let s > 0 be the constant given by this lemma for [ = ¢, and let € be the
constant from Theorem 2.12 given €y, T and s. Now if ¢ < min{¢, €9/2} we find that, if
£4(¢(t)) < € then T > 2s and t € J = [s,T" — s]. Therefore Theorem 2.12 applies to
give us the desired conclusion. 0O

The following theorem which relies on convexity of length-functions provides us with
conditions for approach to strata or having short curves along WP geodesics (see also
[25, Lemma 6.9]).

Theorem 2.15. Let ¢1,c2 > 0, and let o be a co-large multicurve. Let ¢, : I,, — Teich(S)
be a sequence of WP geodesic segments, where Iy C Iy C --- and U,I, = R. Suppose
that £y 0 () < c1 for all @ € o and t € I,,. Let J be a compact interval for which
lg 0 Cn(t) > co for all B disjoint from o and t € JNI,. Then, after possibly passing to a
subsequence, for all a € o we have

loaoCn—0
uniformly on J as n — oo

Proof. First we record the following elementary fact. In the following for an interval
I = [a,b] we denote by 31 the interval with the same center and half the diameter.

Lemma 2.16. Let f : I — R be a C? function that satisfies 0 < f < ¢ and f > 0. Then
[f(6)] < der /1] (2.8)
forallt e %I.

Proof. This is an exercise in calculus. For t € %I ,if f(t) > 0 we have

b

e > f(b) - f(t) = / F(s)ds > (b— 1) (1),

t
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because f is increasing. Then since b — t > |I|/4 we have f(t) < 4¢1/|I|. When f(t) <0
the argument is similar (integrating on [a,?]). O

Now let o € o. Note for large enough n that J C %In. Since £, o (, is bounded by
c1on I, and ly 0 (p(t) > 0 for all ¢ € I, ([32, Corollary 4.7]), Lemma 2.16 applies and
gives us

|éa o Cul = O(1/[1])

on J for all n large enough. Since |I,,| = co, we have ¢, o ¢,, — 0 uniformly on J, and
thus, possibly passing to a subsequence, we have a constant ¢, > 0 for each a € ¢ such
that ¢, o (;, — ¢, uniformly on J.

Partition o into 7 U k, where ¢, = 0 for a € k and ¢, > 0 for @ € 7. Now, note that
by the assumption of the theorem the length of any curve disjoint from o is bounded
below by ¢z, and by the Collar Lemma [11, §4.1] the length of every curve that overlaps
o is at least the size of the standard collar neighborhood of a curve with length at most
c1. Thus, the only curves whose lengths go to 0 on J are the ones in k. In the following
we show that 7 is empty, which means k = o, and hence the lengths of all curves in o
converge to 0 uniformly on J as is desired.

Seeking a contradiction suppose 7 # (). By compactness of the completed moduli
space we may assume, up to composing ¢, by mapping classes in Stab(c) and passing to
a subsequence, that ¢,|; converge pointwise to a geodesic . Since £, o (,|; — 0 for all
«a € K, and the length of every curve which is not in  is bounded below together with
the fact that length-functions extend continuously to the WP completion of Teichmiiller
space imply that ¢ lies in the stratum S(k). Hence for an « € 7, the function ¢, o ¢,
converges to £, o { pointwise, which implies £, o { = ¢, > 0 on J. But & is a co-large
multicurve (see Remark 2.2) and hence S(x) = Teich(S \ k), so again by [32, Corollary
4.7] the function ¢, o ¢ is strictly convex. This contradiction shows that 7 is empty, and
completes the proof of the theorem. O

We also will use the following result which was proved in the setting of hierarchy paths
in [25, Lemma 6.4]:

Theorem 2.17. For any k, K > 1,¢,C > 0 and D > 0, there exist constants w, B > 0
so that the following hold: Let p : I — P(S) be a (k,c)—quasi-geodesic with the property
that for a non-annular subsurface X C S, and any 1,5 € I we have

dp(p(i), p(4)) =x,c dx (p(i)), p(5))- (2.9)

Moreover, let v be a curve with v h X which is in the pants decomposition Q where
d(Q, p(i)) < D, and let P € P(S) be so that d(P,p(j)) < D for a j € I where |j—i| > w.
Then we have that
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4, (P, p(j)) < B (2.10)
Moreover, if P is a Bers pants decomposition at a point x € Teich(S), then we have
ly(z) > w (2.11)
where w > 0 is the width of the standard collar neighborhood of a Bers curve on x.

Proof. Here we just sketch the proof and refer the reader to [25, Lemma 6.4]. The
assumption (2.9) and the fact that p is a quasi-geodesic imply that p advances at a
definite rate in the curve complex C(X). This together with the Lipschitz property of
7wy + C(X) — C(v) outside a bounded neighborhood of mx(v) in C(X) shows that:
choosing w large enough for i, 7 € I and a P € P(S) satisfying assumptions of the lemma
a shortest path of length D that connects P and p(j) in P(S) passes only through pants
decompositions that intersect . Thus the inequality (2.10) holds for a B > 0 depending
only on D.

Moreover, the inequality (2.11) follows from the fact that + intersects a Bers curve
at x, and hence by the Collar Lemma ([11, §4.1]) the length of ~ is at least w > 0 the
width of the standard collar neighborhood of a Bers curve. O

2.7. Ruled surfaces in Weil-Petersson metric

In this subsection we assemble some facts and results about ruled surfaces in the
Weil-Petersson metric, mainly drawn from §4, 6 of [26].

Let ¢ be a WP geodesic in Teich(S) and m¢ : Teich(S) — ¢ the nearest-point projec-
tion. Because of the negative curvature of the WP metric this map is well-defined, and is
smooth at points  with m¢(z) in the interior of ¢ [26, Proposition 4.1]. We will consider
ruled surfaces over ( as follows:

Let n be a path in Teich(S). Then the geodesic segments zm:(z) for € n form
a ruled surface which we denote Q[n;(]. Given a parameterization of 1 by arclength,
written 7 : [0, 7] — Teich(S), we can parameterize Q[n; ] as

Q : Ag — Teich(S)

where Ag is the planar region
{(t.s):te0,7],5 € 0,20}

and A(t) is d(n(t), ¢), which is the length of n(t)m¢(n(t)). Thus t — Q(¢, A(t)) parametrizes
n and t — Q(t,0) parameterizes m¢ on. For each ¢, s — Q(t, s) parametrizes n(t)m¢(n(t))
by arclength. See Fig. 1.

Regions inside Q: Note that Q(¢,s) is at distance s from ¢. Thus, for 0 < s < &' <
dist(n, ¢) we can restrict Q to [0,T] x [s, s'] and we denote this by Q% [n;¢] or just Q.
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Fig. 1. A ruled surface Q[n; (] over a geodesic (. The shaded region corresponds to Q:/ [n; ¢].

Similarly we denote by Q° the level curve @ restricted to [0,7] x s. Note that Q° is a
(not necessarily injective) parametrization of (.
If m¢(n) is contained in the interior of ¢, and if 7 is smooth, then @Q[n; (] is smooth and

for each € 7 the geodesic segment xm¢(z) is orthogonal to ¢. In fact the level curves
@Q° are orthogonal to the rulings zm¢(x) at all intersection points.

We can define the pullback metric on Q[n;¢] (or on the parametrizing domain) and
denote its Gaussian curvature x. We also define the intrinsic geodesic curvature k, along
horizontal curves @°® for s > 0, oriented so that is positive if Q° is curved away from
the bottom curve Q°. With this convention —k,, is non-negative [26, Theorem 4.2]. We
let dms be the measure on the level curve @° induced by integrating —k,. Negative
curvature implies that this family of measures is monotonic and weak-* converges to a
measure m on Q° [26, Claim 4.3], in particular

/dm = lim [ —k,.
s—0
Q° Qs

This provides the curvature term for the bottom edge of Q which allows us to write a
version of the Gauss-Bonnet theorem (this is formula (4.5) in [26, §4.1]):

Theorem 2.18 (Gauss-Bonnet). Let Q = Q[n; (] wheren is also a geodesic, and let 6;, i =
1,2,3,4 be the exterior angles at the four corners of Q. Then

4
//ﬂdA—/dm:%r—ZGi.
Q QO =t

It is helpful to define, for any @,
Q) = // —kdA + / dm (2.12)
Q Q°

Note that Z(Q) > 0 and is monotonic, so that for example if s < dist(n, () and 7 is a
sub-path of 1, we have

Z(Qoln'; ¢ < Z(Qm: <)) (2.13)



mm Wondershare
PDFelement

Trial Version g

20 Y. Minsky, B. Modami / Advances in Mathematics 381 (2021) 107628

Moreover, all the exterior angles are at most m and the exterior angles at the bottom
corners are 7, (since we are in the case where the rulings of ) are orthogonal to ¢). Thus
Theorem 2.18 gives us

7(Q) < . (2.14)

Lower bounds on Z. When ( is close to the thick part of the stratum of a co-large
multicurve, we obtain lower bounds on Z(Q) for certain ruled surfaces @. Recall large
subsurfaces from Definition 2.1. Then, Lemma 6.3 in [26] importing some of the infor-
mation from the statement of Theorem 5.14 of the paper can be rephrased as follows:

Lemma 2.19. Let € > 0 and let b > 0 be the corresponding constant from Lemma 2.35.
Then, for any d € (0,b) and e > 0 there exists a Ko > 0 such that the following holds:
Let o be a co-large multicurve, and let ¢ be a geodesic segment in Teich(S)NUge(o) with
length at least 1. Let Q[n;C] be a ruled surface with dist(n,{) > e. Then

7(Qg) > Ko.

Proof. Here we only sketch the proof of the lemma. The detailed analysis, using suitable
frame fields introduced by Wolpert [34, §4], and standard properties of Jacobi fields is
carried out in §5 and Lemma 6.3 of [26].

Negative curvature implies that the level sets Q* are expanding with ¢, so that the area
of Q§ is bounded below by e. Hence the first term in the definition of Z(Q§) would give
the desired lower bound provided that the sectional curvatures (in the planes tangent to
Q) are bounded away from 0. These sectional curvatures are indeed strictly negative in
the thick part of Teichmiiller space, as well as, near the stratum of ¢, in the directions
nearly tangent to the stratum (this last fact follows from the assumption that S \ o is
large, hence the stratum has no nontrivial product structure). Thus one may consider,
pointwise on @, two cases: if the ruling geodesic direction of @) is nearly tangent to
the stratum direction, one obtains a strictly negative curvature bound. If the ruling is
transverse to the stratum direction, then in one direction or the other the ruling geodesic
exits a neighborhood of the stratum, and enters the regime of strictly negative curvature
in all directions. This again gives a definite contribution to the integral. 0O

2.8. Asymptotic rays

In this subsection we prove a result on asymptotic and strongly asymptotic rays that
will be useful in Section 4. The first statement of the proposition is a variation on The-
orem 6.2 of [26], giving a criterion for promoting asymptoticity to strong asymptoticity
in our setting.

(Recall that a ray r : [0,00) — X in a metric space is asymptotic to a subset Y C X
if dist(r(t), ) is bounded above for all ¢ € [0,00). The ray is strongly asymptotic to the
subset if lim;_, o dist(r(t),Y) = 0.)
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Proposition 2.20. Let r and 1’ be two asymptotic geodesic rays in Teich(S) such that
r([T,00]) C Uge(w) for d <b, T >0 and a co-large multicurve w. Then r and r' are in
fact strongly asymptotic.

For any ray r contained in S¢(w) there is a ray r1 in Teich(S) which is strongly
asymptotic to r.

Proof. We begin by proving the first statement in the case where r and r’ are in the
interior of Teich(S) i.e. Teich(S).

Following the notation of §2.7 let @ be the ruled surface Q[r’;7]. Let m, denote the
nearest point projection to r. Since it is continuous, for each n there is an interval J,
such that m.(r'(J,)) = r([0,n]). Similarly for each i there is an interval I; such that
w7 (1)) = (i + 1),

Suppose by way of contradiction that the distance from '(¢) to r remains bounded
below by e > 0 for all t. Then, since r([i,7 + 1]) C Uge(w), by Lemma 2.19 we have

Z(Q5l

1,5 7|ji,i+1)]) = Ko for a uniform Ky > 0, and hence

I(Q[T/lJnvrl[Om]) > Kon.

Moreover, by (2.14) the left-hand side of the above inequality is bounded above by m,

which implies that n < Klo However n could be chosen arbitrarily large which is a
contradiction. Therefore, r and ' are strongly asymptotic.

Now we prove the second part. Let r lie in S¢(w), where w is co-large. As in the proof
of Theorem 1.3 of [7], we fix a basepoint x € Teich(S) within b of r(0), let y, = r(n)
and use CAT(0) geometry of Teich(S) (via Lemma 8.3 in [2, §I1.8]) to conclude that the
segments Ty, converge to an infinite ray r; in Teich(S), which is asymptotic to 7.

We claim that 7 is entirely inside Teich(.S). Suppose that T' > 0 is the first time that
r1 intersects a completion stratum S(o). The segment r1([0,T + 1]) then has at least
one endpoint in Teich(S) and hence by Theorem 2.9 (Nonrefraction) its interior maps
to Teich(.S). This contradicts the assumption that r1(T") € S(o).

To see that r; is strongly asymptotic to r, for a § > 0 let x5 be the point on the geodesic
segment 7(0)r1(0) at distance § from r(0). (it must be in Teich(S) by Theorem 2.9). Let 75
be the geodesic obtained as above as the limit of T5y,. As we saw above rs is an infinite
ray in Teich(S) which remains in a §-neighborhood of r and in particular in Use(w).
Since the rays rs and r; are asymptotic and in Teich(.S), the first part of the proposition
implies (for sufficiently small ¢) that 1 and rs are in fact strongly asymptotic. Letting
0 — 0, the strong asymptoticity of r; to r follows.

Finally, we prove the first part of the proposition in the general case. Using the second
part, r and ' are strongly asymptotic to 1 and r{ respectively, which lie in the interior.
The version of first part that we already proved shows that r; and r| are strongly
asymptotic, and this concludes the proof. O
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3. Non-annular bounded combinatorics

In this section we study the case that the end invariant of a WP geodesic satisfies the
non-annular bounded combinatorics condition:

Definition 3.1 (Bounded combinatorics). We say that a pair of markings or laminations
(1, p') satisfies R—bounded combinatorics if

dy(p, ') <R

for all proper subsurfaces Y C S. If the bound holds for non-annular proper subsurfaces,
we say the pair satisfies non-annular R—bounded combinatorics.

When the end invariant of a WP geodesic satisfies non-annular bounded combina-
torics, the short curves correspond exactly to the annuli with big subsurface coefficients
(this is in contrast to Rafi’s examples in the Teichmiiller setting, see [29, §7] and Section 5
of this paper). More precisely:

Theorem 3.2. For any R, ey > 0 there are functions N: Rso = Rspand € : Rsg — Ry
such that the following holds.

Suppose that g is a WP geodesic with end invariant (v*,v™), where vt

are either
laminations in EL(S) or points in the ey-thick part, which satisfy non-annular R—bounded
combinatorics. Then

(1) for any N > 1, if inf, £,(g(t)) < é(N) then d,(v~,v") > N;
(2) for any € > 0, if d,(v=,vT) > N(e) then inf, £,(g(t)) < e.

Proof. Let p : I — P(S), I C RU{£oc}, be a hierarchy path in the pants graph of
S that connects the points v~ and v*; see §2.3. Let Q : Teich(S) — P(S) be Brock’s
map (see (2.3)). The non-annular R-bounded combinatorics property implies, via [8,
Theorem 4.4] (also [25, Theorem 5.13]), that Qo g and p are D—fellow-travelers in P(S5),
where D is a constant depending only on R. Moreover, the non-annular R-bounded
combinatorics condition together with the distance formula (2.4) implies that condition
(2.9) in Theorem 2.17 holds with the whole surface S playing the role of X. That is,

dp(p(i), p(4)) <K,c ds(p(i)), p(4))
with constants K, C' depending only on R.
Proof of part (1): Given € > 0 and less than the Bers constant Lg, suppose for some

t € R that ¢,(g(t)) < e. Then v is in a Bers pants decomposition Q(g(t)) at g(¢), and by
the fellow traveling of Q(g) and p, Q(g(t)) is within distance D of p(i) for some ¢ € I.
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Let w, B > 0 be the constants provided by Theorem 2.17. Then let 1, t2 be so that the
pants decompositions Q(g(t1)), Q(g(t2)) are within distance D of p(i — w) and p(i + w),
respectively, then the inequality (2.10) from the theorem gives us

dy (Q(g(t1)), Q(g(t2))) — dy (p(i — w), p(i + w)) | < 2B. (3.1)

Moreover, by (2.11) from the theorem we have that:

min{t, (g(t1)), £ (g(t2))} > w. (3.2)

Now, note that the length of [t1,t5] is bounded independently of ¢ and ¢ with a
constant that depends only on R and D. Thus we can apply Theorem 2.13 to the geodesic
segment gl;, ¢,) to conclude that, for any N € N, there is an € < min{w, Ls}, so that if
infyepr, 4, 4 (9(t)) < €, then

dy(Qg(t1)), Q(g(t2))) = N + 2B + M,

where the constant M is from Proposition 2.4 (no-backtracking). By the inequality (3.1)
this implies that

dy(p(i —w), p(i +w)) > N + M.
Then by Proposition 2.4 we have
dy(v=,vT) >N
which concludes the proof of part (1).

Proof of part (2): By [24, Lemma 6.2] if d,(v~,v") > N where N € N is larger than
a threshold, the curve v appears as a curve in a pants decomposition p(i) where i € I.
Then similar to part (1) by Theorem 2.17 there are constants w, B > 0 and w > 0, so
that the inequalities (3.1) and (3.2) hold.

Moreover, appealing again to the no-backtracking property of hierarchy paths, we
have

dy (pli = w), pli + w)) = N = M.
The fellow-traveling property of p and Q(g) guarantees that there are ¢1,t3 so that

Q(g(t1)) and Q(g(t2)) are within distance D of p(i — w) and p(i + w) respectively. So by
(3.1) we have

dy(Q(g(t1)),Q(g(t2))) > N — M — 2B.
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Also, the length of the interval [¢, ¢5] is bounded independently of g, thus appealing to
Theorem 2.11, for any € > 0, there is an N € N so that

which gives us part (2) of the theorem. O
4. Bottlenecks and visibility

The main result of this section is Theorem 1.2 on existence of bottlenecks, which we
restate here:

Theorem 1.2. Let w,w’ be two co-large multicurves that fill S. Let € > 0 and let r and
r’ be infinite length WP geodesic rays in Teich(S) that are strongly asymptotic to (or
contained in) the e-thick parts of the strata S(w) and S(w'), respectively. Then r and v’
have a bottleneck.

As a consequence of the above theorem we will also obtain a visibility theorem, which
is Theorem 4.5 stated in Subsection 4.2.
We start with the following observation about the rays r and »':

Lemma 4.1. The rays v and v’ diverge; that is
. . 12 _
tlgrolo dist(r'(¢),r) = o0
and the corresponding statement holds when interchanging v and r'.

Proof. The lemma would follow once we show that, for any R > 0, the intersection of
R-neighborhoods N g(S(w)) NN r(S(w’)) has finite diameter. This fact does not use the
hypothesis that w and w’ are co-large.

To see it, we start with a consequence of the distance formula (2.5):

dist(z, S(w)) < Z {dy(z,w)}a (4.1)

Y CS: na, whY

with constants that depend only on A. This follows by checking that, for any y € S(w)
minimizing pants distance to x, the projections to subsurfaces in the complement of w
do not contribute to the sum. The argument appears, in a slightly different context, in
Proposition 3.1 of [3].

Now if z € Ng(S(w)) NN r(S(w’)) we apply (4.1) to both w and w’. Since w Uw’ fills
S, every Y C S intersects w or w’, so we obtain an upper bound independent of x for

Z {dy (z,wUw)}a.

YCS: na
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Fig. 2. The ruled triangle Q[(; r] determined by w, p, g. The ruled subsurface Q[J; ] is shaded.

But since w U w' is a fixed collection of curves this gives a uniform upper bound on
d(z,z0) for a fixed basepoint z and all z € Ng(S(w)) N Nr(S(w’)). This gives the
desired diameter bound. O

For the rest of the proof let us assume that r and r’ are in the interior Teich(S). At
the end we will derive the full statement.

4.1. The ruled triangle argument

Let v = r(0) and v = r/(0). We will show that for any two points p on r and ¢
on r’ the geodesic segment pg meets a compact subset of Teichmiiller space. The first
ingredient of the proof is the following;:

Lemma 4.2. The distance dist(u,pq) is bounded independently of p and q.

Proof. Let ¢ denote the composed path @*@ Then let @ = QI[(; 7] be the ruled surface
over r parametrized by ¢ (as defined in §2.7).

Let b > 0 be the constant from Lemma 2.3 corresponding to € > 0, and let J C ¢ be
the subset of ¢ at distance greater than b/2 from r i.e.

J:={ve(:dv,r)>b/2}. (4.2)

By convexity of the distance function in a CAT(0) metric the interval J, if nonempty, is
an interval containing the apex ¢ of the geodesic triangle Augp (Fig. 2).

Claim 4.3. There is a bounded interval I of r containing m.(J) for any p,q.

To see this, we first show that the left endpoint of m,.(.J) is a bounded distance from

u.
We know from Lemma 4.1 that dist(r'(¢),7) — oo. Thus let ¢y be such that ¢ > #g
implies dist(r'(¢),r) > b/2 + D, where D = d(u,u’). Now if y is any point in @g with
d(y,u) > to+ 2D, let y’ € 7" be such that d(y,y’) < D. Note that such a ¢’ exists from
the CAT(0) comparison for the triangle Auu'q. Then d(y',u’) > to, so d(y',r) > b/2+D.
We conclude that d(y,r) > b/2, and in particular y € J. Hence the left endpoint of J
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must be at most distance ¢y + 2D apart from u, which means the left endpoint of m,.(J)
is at most distance ¢y + 2D + b/2 apart from w.

Next, we prove that the length of 7,.(J) is bounded. Let d € (0,b/2) be small enough
(say less than b/4) and let Ky > 0 be the constant from Lemma 2.19 corresponding to
e =b/2,¢ and d. Let T > 0 be such that r([T,00)) is contained in Uy¢(w), which is
possible by the hypothesis that r is strongly asymptotic to the é-thick part of S(w).

If m.(J) has length greater than n + 1 + T, then there exist n disjoint intervals of
length 1, I;, i = 1,...,n in the interior of m,.(J) and in Uy e(w). For i =1,...,n let J;
be the subinterval of J whose 7,.-image is the interval I;. We may choose the I; so that
each J; is disjoint from ¢ (possibly discarding one if necessary). Then @ contains the
regions Q[J;; 7], and each of these contains a subrectangle Qg/ 2[Ji; r]. From Lemma 2.19
then we have

QY17 7)) > Ko

where Ky depends only on b and €.

Thus by the monotonicity of Z (2.13), Z(Q) > nKy. However, Z(Q) is controlled by
the Gauss-Bonnet theorem (Theorem 2.18), which as in (2.14) gives Z(Q) < . This
bounds n, and hence the length of m,.(J), giving Claim 4.3.

The right endpoint of m,.(J), then is a bounded distance from » and at distance b/2
from pq. This proves the lemma. O

Proof of Theorem 1.2. The proof will reduce easily to the following statement:

Lemma 4.4. There is a compact subset K1 C Teich(S) so that, for points p € r,q € 1’

=

sufficiently far out, the segment pq intersects K.

Proof. The proof of Lemma 4.2 actually gave us a point 2 on pg such that d(2,r) < b/2
(the right end point of J). Then since r is strongly asymptotic to Sg(w), moving 2 along
pq toward p a bounded distance we obtain a point z € pg, and the point y = 7.(2) on r,
such that:

(1) d(y,Se(w)) < b/4

(2) d(z,y) < b/2

(3) 1 <d(z,%) < ¢ where c is independent of p and ¢
(4) d(z,u) is bounded independently of p and q.

We can similarly move 2 toward ¢ to obtain 2z’ and y’ = m,+(2’) so that the inequalities
(1)-(4) hold for the points u’, 3y, 2’ and the multicurve w’. Thus the geodesic hexagon H
joining the vertices

’ ’oor
u?u7y7z723y
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Fig. 3. The bounded diameter hexagon H determined by ', u, vy, z, 2", y’.

in cyclic order has bounded total length independently of p and ¢ (Fig. 3).
We will next show that

(*) da(z,2") is bounded above for each curve «, by a quantity independent of a, p and
q, and
(**) £, is bounded below on 22’ by a positive constant independent of «, p and q.

Fix any curve «. Since the multicurves w and w’ fill S, @ must intersect at least one of
them. Suppose that o h w. Then we have the following uniform bounds (all independent
of p, ¢ and «) for the « coeflicients:

(i) du(u,u’) is uniformly bounded; because the points u, v’ are fixed.

(i) do(u,y) is uniformly bounded; this is because y varies along a compact interval in
r. To see that the bound is independent of «, note that the set of Bers markings
that can occur for values of y in this interval is finite, and the set of a with dg (u, 1)
large for any given marking p is finite, by an application of the distance formula
(2.4).

(iii) dq(y,2) is uniformly bounded; by inequalities (1) and (2), we have that gz is in
Up e(w). Within this neighborhood there is an upper bound on the length of w, and
since o M w this means that 7, (7Zz) is uniformly close to 74 (w).

Now further suppose that a ¢ w’. Then we have the bounds:

(a) do(v',y") is uniformly bounded; this follows just as in (ii) above.

(b) do(y',2") is uniformly bounded; since 'z’ is in U ¢(w’) and o ¢ w’ the bound may
be obtained similarly to (iii). Here, while o may not intersect w’, it does intersect
curves in S \ w’ whose lengths can only vary by a bounded amount in 3z’ because
S\ w' is uniformly thick along y’z’ by Lemma, 2.3.
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Combining (i)-(iii) and (a) and (b), we obtain a uniform bound on d,(z,z’) for all
curves « such that e Mw and « ¢ w’, and all p € r and g € 7.

Now since z € Ugp(w) and 2’ € Ugp(w’), there is a positive lower bound for the length
of any « as above at the points 2z and 2’ by Lemma 2.3. Combining this with the bound
for d,(z,2') and appealing to Theorem 2.13, we obtain a uniform positive lower bound
for the length of a along zz'.

Now suppose that a h w and a € w'. Just as above we have a positive lower bound
on /4(z), and now we show that £, is uniformly bounded below on zz’. If not, we can
fix @ among the finitely many choices, and obtain a sequence of segments {p,q, }» with

subsegments z,z!, and z, € z,z! such that £,(x,) — 0 as n — co. We may assume
that ¢, goes to oo along r'.

Now since g, goes to infinity along ', and 7’ is strongly asymptotic to Sz(w’), we
have £, (g,) — 0 as n — oco. Convexity of length-functions then implies that the length
of « goes to 0 uniformly along 7, g,. Using the lower bound on ¢, (z,) and the fact that
zn stays a bounded distance away, we may find subintervals n,, of p,¢q, of fixed length,
centered at x,, so that the length of o goes to 0 on one side of z,, and is bounded away
from O on the opposite endpoint of 7,. This contradicts Lemma 2.10. Thus we obtain
the desired lower bound for the length of «.

Now we show that d,(z,z’) is uniformly bounded. If not, again we can fix o among
the finitely many choices, and obtain a sequence of segments {P,, Gy, }» with subsegments
2n2!, such that dy(zy,,2),) — 00 as n — oo.

Since z, € Upe(w) and a th w, again by Lemma 2.3 £,(z,) is bounded below by a
positive constant for all n. Moreover, the lengths of 2,2/, are bounded below by (3) and
bounded above by (4) independently of n. Thus we may apply Theorem 2.11 to see that
after possibly passing to a subsequence there is a point x,, € 2,2/, such that £, (z,) — 0
as n — 0o. But then as we saw above this leads to a contradiction, showing that d,(z, 2’)
must be uniformly bounded above.

Thus we obtain both (*) and (**) for all « h w. The case of « M w’ proceeds similarly,
exchanging the roles of w and w’.

With (**) established, we conclude that 22’ lies in the e-thick part of Teich(S), for
€ > 0 independent of p and ¢. Since there is an upper bound on the ratio of Teichmiiller
norm over WP norm in the e-thick part, and the WP length of zz’ is bounded above
by (4), we conclude that z2’ has bounded Teichmiiller length, and hence d,(m, z) and
de(m, 2') are uniformly bounded above for any m € zz’.
we similarly extract an upper bound for d,(u,z") from the analogues of (i-iii). Putting
these bounds together we obtain a uniform upper bound for d(u, m) for all m € z2.

We claim now that this implies that m (and hence all of zz’) must remain in some
compact subset K of Teich(S). For we have an upper bound on d(u, m) by the bounds
on the hexagon H, and by Lemma 2.13, a sequence of segments uwm (for varying p, q)
degenerates only by producing arbitrary large twistings about a collection of curves,
which is impossible by the bounds we just established on all d,(u, m). Thus wm has a
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uniformly bounded length and remains in some thick part of Teich(.S) (independently of
D,q), so again has uniformly bounded Teichmiiller length. But balls in the Teichmiiller
metric are compact and this gives us K;. O

From the lemma we obtain points p € r,§ € r’ so that all geodesics with end points
p,q on r, ', further out than p, § respectively, intersect K;. Now letting K be the union
of K, and the segments up and u/§, we have the desired bottleneck. This concludes the
proof in the case that r, 7’ C Teich(S5).

If r is in Sg(w), using Proposition 2.20 we can find r; in Teich(S) strongly asymptotic
to it, and similarly ] strongly asymptotic to 7. The interior version of the theorem gives
a compact bottleneck K for ri,7]. There exists §; > 0 so that the d;-neighborhood of
K is still contained in a compact set Ko C Teich(S). Now choose T sufficiently large
that d(r(t),r1(t)) and d(r'(t), | (t)) are less than 07 for all ¢ > T. Thus any geodesic
joining r(t) and 7'(s) for ¢,s > T lies within d; of a geodesic passing through K, and
hence passes through Ks. O

4.2. Visibility

In this subsection we apply the Bottleneck theorem (Theorem 1.2) to show that any
two geodesic rays that are strongly asymptotic to the e-thick parts of two strata deter-
mined by two filling co-large multicurves have the visibility property.

Theorem 4.5 (Asymptotic large visibility). Suppose r, 1" are two infinite rays in Teich(S)
that are strongly asymptotic to, or contained in, Sz(w) and Sz(w'), respectively, where
w and W' are co-large multicurves that fill S. Then there exists a biinfinite geodesic
g € Teich(S) which is strongly asymptotic to r in forward time and is strongly asymptotic
to v’ in backward time.

Proof. The argument is essentially the same as in Theorem 1.3 of [7], which obtains the
visibility property when r and r’ are recurrent. We sketch here the mild changes needed
in our setting.

Let g, denote the geodesic segment r(n)r’(n). By Theorem 1.2 there is a compact set
K C Teich(S) so that g, N K # 0.

Let v, be a point of g, N K. After possibly passing to a subsequence the points v,
converge to a point v € K.

Reparametrize g, so that g,(0) = v,. To extract a limit of the g, we use the CAT(0)
geometry of Teich(S), via Lemma 8.3 in [2, §IL.8], together with the fact that ¢,,(0) — v,
to show that for each t € R the sequence g, (t) (defined for large n) is a Cauchy sequence.
We thus obtain a limiting geodesic g in Teich(S), which is asymptotic to r in forward
time and to 7’ in backward time.

As in [7] and Proposition 2.20, we use the non-refraction property (Theorem 2.9) to
argue that ¢ is in fact contained in Teich(S).



mm Wondershare
PDFelement

Trial Version g

30 Y. Minsky, B. Modami / Advances in Mathematics 381 (2021) 107628

Finally, Proposition 2.20 implies that g is strongly asymptotic to r in forward time
and 7’ in backward time. O

5. Indirect shortening along geodesic segments

This section is devoted to the proof of Theorem 1.3, which follows very directly from
Theorem 5.5 below. We begin with a discussion of the phenomenon of indirect shortening.

5.1. Indirect curve shortening

In the setting of Teichmiiller geodesics the connection between short curves and large
subsurface coefficients was explored by Rafi in [29]. He showed that given € > 0 there
exists A > 1 so that, if g : I — Teich(S) is a Teichmiiller geodesic with end invariant
(v*,v7), then for any subsurface Z C S we have

dz(vT,v7) > A = iItleaZ(g(t)) < e

The natural converse statement, which is motivated by the situation for Kleinian surface
groups (see Theorem 7.1), would be that given A > 1 there exists € > 0 such that, if a
curve 7y satisfies

inf £, (g(1)) < ¢
then there exists a subsurface Z with v C 07, and
dz(vt,v7) > A

This converse, however, does not hold in general. Rafi in the proof of Theorem 1.7 in [29]
gave and analyzed examples of sequences of geodesic segments g, with end invariants
(v, vy ) and a curve 7 for which inf; £,(g,(t)) is arbitrarily small, while dz (v, v, )
remains bounded for all Z C S with v C 0Z.

Rafi’s examples exhibited a somewhat more complex feature we might call indirect
shortening. To present the example we start with two definitions:

Definition 5.1. Given A > 1, a subsurface Z C S and a pair of markings or laminations
(1, 1) we define

La(Zp, ') ={X C Z:dx(p, 1) > A}.
We define L3 (Z, u, p’) as the subset of non-annular surfaces in L4(Z, u, p').

Definition 5.2 (Filling a subsurface). Let Z C S, we say that a collection Z of subsurfaces
of Z fills Z if any curve o € C(Z) intersects at least one X € Z essentially.
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In fact, Rafi in [29, §6] gave examples of geodesics g with the following property:

Definition 5.3 (Indirect curve shortening). Given € > 0 and A > 1, inf, £4(g(t)) < €
and there exists a subsurface Z with v C 97 that La(Z,vT,v7) fills Z, but Z ¢
La(Z,vT,v7).

We call the property indirect curve shortening because the subsurface Z itself does
not have a big projection coefficient.

More recently it has become clear that this condition, also, does not hold for Teich-
miiller geodesics in general; see [27]. Nevertheless let us state as a conjecture the following
characterization for short curves of Weil-Petersson geodesics.

Conjecture 5.4. For any € > 0, there exists A(e) > 1, and for any A > 1 there exists
€(A) > 0, such that the following holds. Let g : I — Teich(S) be a WP geodesic with end
invariant (v, v7),

(1) If Z is a non-annular subsurface for which L (Z,v~,v") fills Z or Z is an annulus
with dz(vT,v™) > Ale), then inf; Loz (g(t)) < e.

(2) If inf, £, (g(t)) < €(A) for a curve a, then either there exists a subsurface Z with
a € 0Z such that L% (Z,vT,v™) fills Z, or do(vT,v™) > A.

5.2. The basic example

To set the stage for our example of WP geodesics with indirect curve shortening
property, consider the configuration of subsurfaces of S:

5
Z (5.1)

%4 N

X3 X5

[

where we assume Z is large in S, and X is large in Z for j = 1,2. We moreover assume
that 0X; and 0X5 fill Z and that no boundary curve of X is a boundary curve of Z for
j =1,2. We call this a one-step large filling configuration; see Fig. 4 for an example.

We can now state the main theorem of Section 5. The proof will follow over the next
few subsections.

Theorem 5.5. There exist Ay > 1,e9 > 0 such that for each € > 0 and a one-step large
filling configuration Z, X1, Xa, there is a Weil-Petersson geodesic segment pq in Teich(S)
such that

o L (S,p,q) = {X1,Xo}, and dy(p,q) <1 for all v C 0Z.
o The endpoints p,q are in the eq—thick part of Teich(S), and
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O -
&

Fig. 4. One-step large filling: The subsurface Z is a two-holed torus. In its abelian cover on the left we
indicate two arcs a1, as connecting the components of 9Z which fill Z. A regular neighborhood of a; U 9Z
is a three-holed sphere U;, and we define X; = Z ~\ U;. Note that 0X; and Z have no components in
common. On the right we indicate Z as a subset of S.

. lnfzemgaz(w) < €.

5.8. Using visibility in a stratum

Fix for the rest of the section a one-step large filling configuration Z, X, X5 in S.

Since Z is large the stratum S(9Z) can be identified with Teich(Z) after replacing
boundary curves with punctures, and similarly the strata of 0.X; within this stratum,
namely S(0X;) N S(0Z), can be identified with Teich(X;) for i = 1,2. Let f; and fa be
partial pseudo-Anosov maps supported in X; and X5 respectively, so that their axes ¢y
and g lie in the e-thick part of Teich(X;) for some € > 0. Fix rays g5 and g; on these
axes.

We can apply Theorem 4.5, with Z playing the role of S in that theorem, to obtain a
biinfinite geodesic h in Teich(Z) asymptotic to the rays g; in backward time and g5 in
forward time.

The geodesic segment examples for Theorem 5.5 will be obtained from h, viewed in
S(0Z), by pushing points far out along h slightly away from the stratum. The key will
then be to show that, for these geodesics, the subsurface coefficients behave as required,
and the length of 0Z becomes very small near the center.

5.4. Controlling subsurface coefficients along h

Recall that g; and go are geodesics in the é-thick parts of Teich(X;) and Teich(X3),
respectively, and let b > 0 be the corresponding constant to € from Lemma 2.3 (note
that any b sufficiently small will do).

Let us fix a parametrization of the bi-infinite geodesic h : R — Teich(Z) and of the
geodesics g1, g2 by arclength, so that d(h(t),g2(t)) — 0 and d(h(—t),g1(—t)) — 0 as
t — oo. We may also assume, possibly choosing b smaller, that h(0) is at least distance
b away from the strata containing g; and gs.
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Let s1 < 0 be so that h|(_u s, and g1|(—oc,s,] are the largest portions of i and g; that
b—fellow travel, and let s > 0 be so that h|[32,oo) and 92|[327DO) are the largest portions
of h and gy that b—fellow travel.

Lemma 5.6. There is an A > 1, so that for any t,t' € (—o0, s1] we have

« LA(S,h(t),h(t) C {X1,7 € 9X1},
o dx, (h(t),h(t")) < d(h(t), h(t)),

where the constants of the coarse inequality depend only on f1. A similar statement holds
for t,t' € [s2,00) the subsurface Xo and fo.
Moreover, for any t,t' € R we have

LA(S, h(t), h(t")) C {X1, Xa,~ € 0X; UDXo).

Proof. When ¢,t' € (—o0, s1] the points h(t) and h(t') are within distance b of points
y; and yp on g;. Then by the coarse Lipschitz property of subsurface projections
(Lemma 2.5) we have

dy (h(t), h(t')) — dy (ye, ye)| < D (5.2)

for some D > 0 and all non-annular subsurface Y C S. Moreover, the segments h(t)y,
and h(t'))yy are in the b-neighborhood of gy which is in S.(0X1), thus by Lemma 2.3
the segments are away from all strata except S(o) with o C 0X;. Now let v be a curve
which is not in X7, then we have a uniform lower bound for the length of v along

h(t)y: and h(t')yy. Applying Theorem 2.11 then we obtain a uniform upper bound for
d(h(t),y:) and d(h(t),ys ). This implies that (5.2) also holds for all annuli whose core
curves are not in 9X;.

Now note that y; and y are on an axis of f1, so by Lemma 2.7, dy (y¢, y¢) is uniformly
bounded for all subsurfaces Y except X; and the annuli with core curves in 0.X;. Thus
by (5.2) dy (h(t), h(t')) is uniformly bounded for all subsurfaces Y except X; and the
annuli with core curves in 0X;. This is the first bullet of the lemma.

Moreover, note that by Lemma 2.7,

dx, (Ye, yer) =< d(ye, yer)

so by (5.2) we obtain the second bullet of the lemma. When ¢,¢ € [s2,00) the bullets
are proved similarly where X is replaced by Xs.

To see the second part of the lemma, note that the segment h(s1)h(s2) is fixed, so there
is a Dy > 1 that bounds all projection coefficients of any pair of points on h(s1)h(sz).
Combining this bound and the bounds from the first part of the lemma with the triangle
inequality for each non-annular subsurface Y which is not X;, X5 or an annulus with
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core curve a boundary component of X; or X5 we find that the projection coefficient of
the subsurface is uniformly bounded giving us the second part of the lemma. O

5.5. Controlling the length of 0Z

The following theorem is the main ingredient of the proof of Theorem 5.5. It says
roughly that, in a geodesic fellow-traveling a sufficiently long part of our geodesic h, if
the length of 07 is bounded at the endpoints then it becomes very short near the center.

Theorem 5.7. Let h be the geodesic constructed above using a one-step large filling con-
figuration Z, X1, X5. Let D > 1 and let I, = [an,by] be a sequence of intervals so that
0€l, and I, C I 41 forn € N, and U,I, = R. Let {(, : I, — Teich(S)} be a sequence
of WP geodesic segments such that (, and h|;, are D-fellow travelers as parameterized
geodesics. Moreover, suppose that the length of 0Z is bounded above at the end points of
Cn independently of n. Then, there is a compact interval J so that after possibly passing
to a subsequence

EBZ o Cn —0
uniformly on J.

We wish to apply Theorem 2.15 to the sequence of geodesics ¢, : I, — Teich(S) to
prove the theorem. By the hypothesis of the theorem and convexity of length-functions,
Loz o (, is uniformly bounded above on the intervals I,,, so we only require to show that
there is an interval J over which the lengths of all curves which are not a component
curve of 07 are uniformly bounded below. More precisely,

Lemma 5.8. There is an interval J C R and ¢; > 0 such that, for all curves v that are
not components of 0Z, there is a lower bound

lyoln>ar (5.3)
on J for all n.

The proof of Lemma 5.8 requires two lemmas. First we obtain a lower bound for
lengths of most curves along (,:

Lemma 5.9. There exist j,e > 0 and A > 1 such that, letting I, = [an, + j,—j] and
LT = [j,bn, — j], for any curve v which is not in 8Z and intersects X, we have the
length lower bound

G Ga() > € (5.4)

for all t € I,;. Similarly if v h Xo then (5.4) holds when t € I,F.
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Proof. Note that I:* are defined for large enough n since a,, — —oco and b, — co. The
idea of the lemma is that, because ¢, in the interval [a,, 0] is roughly controlled by the
geodesic g1, the only subsurface projections that can build up along (, are in C(X;)
(Lemma 5.6), but on the other hand short curves that appear in this interval must give
rise to large twists, using Theorem 2.13.

First note that by Lemma 5.6,

d(h(t), h(t)) =< dx, (h(t), h(t")),

for all t,t' € (—o0, s1]. Moreover, note that by (2.3) p := Qo h : (—o0,s1] = P(5) is
a quasi-geodesic in P(S) with quantifiers depending only on the topological type of S.
Also p|;, and Qo (|1, D' = KwpD+ Cwp fellow travel in P(S) as parametrized quasi-
geodesics, where Kwp and Cywp are the constants in (2.3). Then Theorem 2.17 applied
to p, the part of ¢, that D'—fellow travels p and the subsurface X; gives us constants
B,w >0 and w > 0 as follows: Let v be a curve such that v M X; and ¢,((,(t)) < Ls,
so that 7 is in a Bers pants decomposition Q((,(t)). Let t; =t — w and ¢ = ¢ + w then

dy(h(t1),a(t1)) < B and dy(h(t2), Ca(t2)) < B (5.5)
thus
dy (h(t1), h(t2)) = dy (Ca(tr), Gn(t2))| < 2B. (56)
Moreover,
min{ly (a(t1)), & (Cn(t2))} = w. (5.7)

Now let j > |s1| +w and let n € N be large enough and ¢t € I, .

Suppose that £, ((,(t)) < € for an € < min{w, Ls} and t € [t1,t2]. Then, noting that
[t1 — t2] is bounded independently of n and ¢, we can apply Theorem 2.13 to Cy[, 5] to
conclude that there is a choice of € that implies d.,((,(t1), G (t2)) > A + 2B.

But then by (5.6), dy(h(t1), h(t2)) > A, which contradicts the upper bound for sub-
surface coefficients from Lemma 5.6. The contradiction shows that in fact the above ¢ is
the desired lower bound for the length of a curve v M X; on the interval I, . The lower
bound for the length of a curve v M X5 on the interval I, can be obtained similarly
choosing j > se +w. O

Next we obtain upper length bounds along (,, for X7 and 0X5 over intervals I, and
IF, respectively:

Lemma 5.10. There exists ¢ > 0 such that for any n € N,

lox, (Cn(t)) < ¢ (5-8)
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forallte I, and

n

lox,(Ca(t)) <c (5.9)

forallt e IF.

Proof. Let t € I, and let i) : [0,1] — Teich(S) be the geodesic segment connecting h(t) to
¢n(t). The idea of the proof is to first obtain a lower bound along 7 for the length of every
curve that intersects 0X;, which is similar to the proof of the previous lemma. Then,
by a compactness argument appealing to the Geodesic Limit theorem (Theorem 2.8) we
establish the desired upper bound for the length of 0X;.

Let v 0X1, and let ¢ € I, and n be as above. We have £,((,(t)) > € where € is the
constant from Lemma 5.9 above. Moreover, we also have a lower bound ¢, (h(t)) > ¢ >0
using the Collar Lemma ([11, §4.1]) with the fact that the length of 0X is bounded above
along h((—o0,s1]). We may as well assume that, for some u € [0,1], £, (n(u)) < Lg.

To bound the length of ~ from below on 7, we will first obtain a bound on
d, (n(0), (D)) = dy (h(2), Gu(2)).

Since « is in the pants decomposition Q(n(u)) which is at most D’ from Q({,(t))
(because there is a bound on the length of 1), we can use Theorem 2.17, just as in the
proof of Lemma 5.9, to find parameter to > t with to — ¢t bounded above, and a bound
B such that

dW(Cn(tQ)?h(tQ)) < B;. (5'10)

(Recall this is done by moving forward along h and (, just enough to obtain points so
far from 7x, (7) in C(X7) that the path from Qo h to Q o ¢, passes only through curves
transverse to 7.)

Next, we obtain

dy (G (1), Cn(t2)) < Bo (5.11)

by recalling from Lemma 5.9 that £, 0, > € on [t, 2], and then applying Theorem 2.11.
Finally, we get

d(h(t), h(t2)) < Bs (5.12)

directly from Lemma 5.6.
Putting (5.10), (5.11) and (5.12) together we obtain a bound on d- (h(t), ,()). Now,
using Theorem 2.13, this gives us a lower bound

ly(n(u)) > €' >0 (5.13)

for all uw € [0,!], and all v h 0X;.
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Now assume that there is a sequence of geodesic segments 7, : [0,1,] — Teich(S) as
above, connecting h(t,) to (,(t,) (for ¢, € I,;), and u, € [0,1,,] and a € 9X; so that
Lo (Mn(uy)) = 00 as n — 0.

Let the piece-wise geodesic segment # be obtained from {7, } as in Theorem 2.8 (GLT),
and multicurves o;, ¢ = 0,...,k + 1 and 7 be from the theorem. Since 7, (0) is in the
b—neighborhood of the axis of f; we may choose v,, in GLT3 to be a power of f;, which
since f1 is supported in X; does not change the homotopy classes of curves in 9Xj.
Moreover, the lower bound (5.13) over 7, for the lengths of all curves that intersect 9.X;
shows that o, is disjoint from 0X; and hence ;, which is a composition of ¢, and
Dehn twists about curves in 0, 7 =0, ...,7 does not change homotopy classes of curves
in 8X1

After possibly passing to a subsequence w,, — u*, so the fact that £, (9, (u,)) — oo
as n — oo and GLT3 imply that £, (7(u*)) = oco. This means that « intersects a pinched
curve along 7 and hence a multicurve o;. But we just said that 0X; and o; are disjoint.
This contradiction shows that the lengths of curves a € 0X; are uniformly bounded
along 7 and in particular at the end point (,(t), as was desired. This concludes the proof
of (5.8). The proof of (5.9) for the length of 0X5 proceeds similarly. O

With Lemmas 5.9 and 5.10 in hand we can complete the proof of Lemma 5.8.

Proof of Lemma 5.8. Let v be any curve which is not in 0Z. If 7y intersects 0Z we already
have a lower bound for the length of v everywhere on (,. Since Z is large, we are left
with the case that v is in Z.

When ~ overlaps both X7 and X5, let w > 0 be as in the proof of Lemma 5.9. Moreover
let t1 = —j —w and {3 = j + w and observe that ¢t; € I, and ty € I;7 where If are the
intervals from Lemma 5.9. Then by Lemma 5.9 we have that £,({,(t1)) and £ (¢ (t2))
are at least e.

Thus we may apply Theorem 2.13 to conclude that there is an €’ < min{e, Lg} so that
if minge, ¢, £ (C(t)) < €”, then d-((n(t1), Cn(t2)) > A+2B. From (5.5) then we see that
d~(h(t1), h(t2)) > A. But this again contradicts the bound for subsurface coefficients in
Lemma 5.6. The contradiction shows that € is a lower bound for the lengths of all curves
that are disjoint from 0X; and are inside Z on [t1, t2] and in particular on [—j, 5] C [t1, t2].

Now consider v inside Z which does not overlap X;. Then it must be a boundary
component of X; and must intersect Xs.

By Lemma 5.9 we know that ¢,(¢,(j)) > €, and by Lemma 5.10, £,({,(t)) < ¢ for
all t < —j. Suppose now that there is a sequence ¢, € [—j,j] with £,((,(¢,)) — 0 as
n — oo.

We may restrict to a subsequence such that ¢, — t*. Since €,((,(j)) > € we know
that ¢* < j. Now since £, o ¢, is convex and bounded on the intervals I, whose lengths
go to oo, we conclude that £, o ¢, (t) — 0 for all ¢ < t*. We can therefore find a sequence
of intervals [t, — a,t, + a] with fixed a > 0 such that £, o (,, — 0 on [t, — a,t,] while
L (tn + a) is bounded away from 0. This contradicts Lemma 2.10.
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The contradiction shows that there is a lower bound for the lengths of curves that
are inside Z and are disjoint from 9X; on [—j, j] as well. Therefore, J := [—j, j] is the
desired compact interval of the lemma. O

Proof of Theorem 5.7. Lemma 5.8 gives us an interval J over which the length of every
curve that does not intersect 07 is bounded below. Moreover by the assumption of the
theorem and convexity of length-functions the lengths of all curves in 0Z are bounded
along (,,. Thus the theorem follows from Theorem 2.15. O

5.6. Completing the proof of Theorem 5.5

Proof of Theorem 5.5. Let a,, = —o0 and b,, — oo, and let I,, = [ay, by,]. Also let p,,, ¢,
be two points in the b—neighborhoods of h(ay), h(b,), respectively, that have injectivity
radii at least €p; see Lemma 2.3. Moreover, applying Dehn twists about curves in 07 we
can assume that

dv(men) <1

for all v C 0Z.
After a slight adjustment of parameters let

Cn ¢ I, — Teich(S)

be a parameterization of the geodesic segment p,q, by arclength where d(¢,(0), h(0)) <
b.

First, note that the points p,, and g, are in the b—neighborhoods of the points h(ay,)
and h(b, ), respectively, so by Lemma 2.5, dy (pn, h(a,)) and dy (gn, h(b,)) are uniformly
bounded for all non-annular subsurfaces Y C S and n € N.

Now note that by the second part of Lemma 5.6 there is an A > 1 so that
LS, h(ap), h(by)) € {X1,X2}. Thus enlarging A we obtain an A; > 1 so that

r;ﬁ (S’pmqﬂ) < {Xl’XQ}'

Now we show that X; and X, are in fact in L (S,pn,¢n) for n large enough, note

that by the second bullet of Lemma 5.6 we have

dx, (h(s1), h(an)) = d(h(s1), h(an))

which implies that dx, (h(s1),h(ay)) is arbitrary large for n large enough (because
d(h(s1), h(ay)) gets arbitrary large). By the first bullet of Lemma 5.6 dx, (h(s2), h(by,))
is bounded independently of n. Moreover, dx, (h(s1), h(s2)) is bounded since h(s;) and
h(sz) are fixed. The above bounds combined with the triangle inequality show that
dx, (h(an), h(by)) is larger than A; for all n large enough.

The fact that dx,(h(ay), (b)) is larger than A; for all n large enough can be proved
similarly. Thus the first bullet of theorem holds for p,¢q, and n large enough.
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The second bullet of the theorem holds immediately for all p,,, g, by the choice of the
points.

Now note that the points p, and g, are in the b—neighborhood of S(9Z) so by
Lemma 2.3) we have an upper bound for the length of 07 at p,, and ¢, independently
of n. Also, since p,, ¢, are in the b—neighborhoods of two points on h, p,q, and h|;,
b—fellow travel. Thus, Theorem 5.7 applies to Pngy, giving us inf,cpg- loz(z) < € for all
n large enough. Thus the third bullet of the theorem also holds for p,q, and all n large
enough.

As we saw above all of the bullets of the theorem hold for p,,¢, when n is large enough
completing the proof of the theorem. 0O

5.7. Completing the proof of Theorem 1.3

Take a one-step filling configuration Z, X7, Xs in S, let v be a component of 07,
and let p, ¢ be as constructed in Theorem 5.5. Then the conditions of Theorem 1.3 are
satisfied, where one detail to check carefully is the second bound

sup {dy(p,q) | Y CS,yC aY} <A

But according to Theorem 5.5 the only subsurfaces where dy(p,q) > A are Y = X3
and Xo, and by definition those subsurfaces cannot have v in their boundaries. This
concludes the proof.

6. Indirect shortening along closed geodesics

In this section we construct examples of closed Weil-Petersson geodesics which satisfy
the indirect curve shortening property in Definition 5.3. We construct such geodesics by
approximation of the segments constructed in Theorem 5.5 with arcs of closed geodesics
while controlling end invariants and their subsurface coeflicients.

Theorem 6.1. There exists A > 1 such that for each ¢ > 0 there is a pseudo-Anosov map
O with stable/unstable laminations (v*,v™) and azis Ae, and a subsurface Z C S that
for each v in 0Z we have

sup dy(vT,v7) < A, (6.1)
YCS:vCoY

but

inf .
mler}% Loz () < €

In the proof we use the following notation: If f is a pseudo-Anosov or a partial
pseudo-Anosov supported in a subsurface let v (f) and v~ (f) be the stable and unstable
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Fig. 5. The construction of ®,, and its axis A,,.

laminations of f (considered without their measures). Similarly if G is a directed WP
geodesic let 1 (@) and v~ (G) be the ending laminations of the forward and backward
rays G* := G[p,00) and G~ := G|(_,0]- The axis Ay of f is always oriented so that
vE(Ap) = v(f).

The main idea is to approximate the configuration of §5.2 and Theorem 5.5 by axes of
pseudo-Anosov maps. For this we can use the density of closed WP geodesics [7, Theorem
1.6], but it will take some care to do it while controlling the ending laminations and their
projections to the various subsurfaces of interest.

Let X1, X5 and Z be the subsurfaces from the one-step large filling configuration in
§5.2. Let f1, fo be the partial pseudo-Anosov maps supported on X7, Xo respectively,
with (oriented) axes g1, g2, respectively. Let h be the biinfinite geodesic constructed in
Theorem 4.5, which is forward asymptotic to go and backward asymptotic to g;.

6.1. Qverall construction

Fix an oriented axis G of a pseudo-Anosov map which is an ep—thick WP geodesic (a
geodesic that is entirely in the eg—thick part of Teichmiiller space), and a point = on G.
Define a sequence (G, z,) with n € Z as follows: For n > 0, set

and

Gon=0H"G), zn=[f1"()

We construct our desired sequence of pseudo-Anosov maps ®,,,n € N, in two steps (see
Fig. 5).

Step 1: Use the Recurrent Visibility Theorem [7, Theorem 1.3] to obtain an oriented
geodesic B, strongly asymptotic to G, in forward time and G—,, in backward time.

Since strongly asymptotic rays have the same ending laminations (a consequence of the
definition), we see that v (B,,) = v (G,) and v~ (B,) = v~ (G_,).

Step 2: The Closed orbit density theorem [7, Theorem 1.6] implies that we can ap-
proximate B, as closely as we like by axes of pseudo-Anosov mapping classes. We select
such an approximation A, = axis(®,) according to the criteria below.
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The challenge will be to show that, with appropriate choices in Step 2, we obtain axes
A,, which uniformly fellow-travel large segments of the geodesic h, which have sufficient
geometric control to enable us to apply Theorem 5.7 to show that, in the middle of A,
that fellow-travels h there are points where the length of 0Z becomes arbitrarily short,
and to control the ending laminations v*(®,,) sufficiently well to obtain the bound (6.1)
on subsurface projections.

6.2. Geometric control of {Gp}n

Recall that G,, and G_,, are ep—thick so there is a § > 0 so that the —neighborhoods
of the geodesics are disjoint from all completion strata and there is a positive lower
bound for all sectional curvatures in the é—neighborhoods of the geodesics. By definition
G, and G_,, are strongly asymptotic to B, in forward and backward time, respectively,
but we will need uniform control, independent of n, on how quickly they approach. This
is the purpose of the following lemma:;:

Lemma 6.2. There exists D > 0 so that for each n € N large enough there is a point y,
forward of x,, in G, such that

d(xmyn) <D and d(ym Bn) < 6/2
Similarly we have y_,, behind x_, in G_,, with
dx_pyy—n) <D and d(y—n, Bn) < /2.

Proof. The proof uses the same ruled polygon technique as in [7, §4] [26, §6] and Section 4
of this paper. In preparation we first need the following estimate on the shape of the
configuration of {G,}.

Lemma 6.3. There exists an affine function ¢ : R — R with positive slope so that, for all
n € N large enough, and any z € G,

d(z,7=0Ty) = (d(z, 2n))
and similarly d(z,T—nZn) > p(d(z,2_y)) for any z € G_,,.

Proof. Note first that G and g» are not asymptotic since G is a thick geodesic and g
is contained in a stratum. Since the WP metric is CAT(0), distances to geodesics are
convex so there is an affine function ¢o(t) = agt — ¢ with ag > 0 so that for any 2 € G
we have

d(z,92) > pold(z, x)).



mm Wondershare
PDFelement

Trial Version g

42 Y. Minsky, B. Modami / Advances in Mathematics 381 (2021) 107628

Now since fo preserves gs, for all z € G,, we have

d(z,92) > ¢o(d(z, ). (6.2)

We next want to prove a similar inequality for h replacing gs.

Let g be the nearest point to x on go and let ¢, = f3'(¢). Then, we have d(zp,q,) =
d(z,q) = dy. Moreover, since h is asymptotic to g in forward time, there is a sequence
Tn, — 00 so that the interval of radius 7, in go around ¢, is within distance 1 of h for all
n large enough.

Fix d; > dp+4 and let s > 0 be such that ¢g(s) > dy. We claim that, for large enough
n and for a point z,, € G,, with d(z,,x,) = s we have that

d(zn, h) > di — 2. (6.3)

Suppose not, and choose n so that 7, > dy +dy + s. The nearest point to z,, on h is then
within the interval that 1-fellow-travels go, so we have that d(z,,¢2) < dj —2+1 < dy;
but this contradicts (6.2), and thus (6.3) holds.

Now note that the distance of z,, € G,, to h is at most dg + 1 and the distance of
zn € Gy, to h is between dy — 2 (by (6.3)) and do + 1 + s (by the triangle inequality).
For any positive convex function f : [0,00) — R with f(0) < f(s) we have f(t) >
Mt — f(s). Applying this to f(t) = d(G,(t),h) where G,, is parameterized so
G, (0) = z,, and G,,(S) = 2, we have the inequality

d1—2)—(d0+1)

S
Zdl—dQ—S
S

d(z,h) > ( d(z,xp) — d(zn, h) (6.4)

d(z,zp) — (do+ 1+ )

where z = G, (t) € G,

Now since T_,x,, lies in a dy + 1 neighborhood of h, the desired inequality follows,
for an affine function ¢ with slope (dy — dp — 3)/s.

The argument for points on G_,, is the same, with suitable replacements. 0O

Now build polygonal loops P,, n € N as follows: Choose a point £, on G,, forward of
xy, so that d(&,, Bn) < §/2, and a point £_,, on G_,, behind x_,, so that d({_,, B,) <
/2. This is possible because B, is strongly asymptotic to G_,, and G,, in backward and
forward times, and we may choose &4, as far away from x4, as we like. Let £ ,, denote
the nearest points on B,, to 4, respectively. Then the loop P, is the hexagon obtained
by connecting the six points

x—na xna€n7§;7£l—n)£—n

in cyclic order using geodesic segments, seen in Fig. 6 as the boundary of the shaded
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e, B, &

Fig. 6. The ruled hexagon for measuring rate of approach of B,, to G4,,.

region. We can triangulate P, and fill it in with ruled triangles, to obtain a disk @,, with
negatively curved interior, sides that are geodesic, and six corners at which the exterior
angles (from the point of view of @) are at most 7. The Gaussian curvature  in @, is
negative, so the Gauss-Bonnet theorem gives us

/ |k|dA < 4.
Qn

Now since G, and G_,, are in the ep—thick part, we were able to choose § above so that
there is an upper bound —Ky < 0 for all ambient sectional curvatures at points on a
d—neighborhood of G 1,,. This gives a bound |k| > K for all points of @Q,, that are within
distance § of the edges x,&, and x_,&_,.

Now if ¢ is a boundary segment of @,, on G, or G_,, of length A and o is distance

more than §/2 from all of the other boundary edges, then it bounds a strip of width §/2
where |k| > Ky, and we conclude

KoM /2 < / IK|dA < 47 (6.5)
Qn

so that A < 87/K;d.
Now by Lemma 6.3, for y € x,&, we have

d(yv Z’n.’E,n) > a‘d(yv xn) —C

for a > 0 and ¢ independent of n. Let 0 C z,£, be a segment of length at least 87/Kyd
(larger than ) starting at distance (6 4+ ¢)/a from x,. Then every point in o is at least
distance d from T_,,T,,. The points on o are also at least distance ¢ from G_,,, for large
n, because d(x,,x_,) — 00 as n — oo, which implies that d(z,,G_,) — oo using
Lemma 6.3 again. The “short” sides of P,, (the boundary of @,,) connecting &1, to &,
may be assumed as far away as we like, so that they are not within distance ¢ of o. Since
the inequality (6.5) is violated by @, as above and n large enough, it follows that there
is a point in o which is within distance 6/2 of the remaénir;g side, which lies on B,,. This
+c

is the desired point y,, which is within distance D := *— + ;—2'5 of z,.

We may find y_,, using the same argument on G_,,. 0O
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6.3. Choosing ®,, to control the length of 0Z

Lemma 6.4. There exist D', L > 0 so that for each n, if ®, is chosen with axis A,
sufficiently close to By, then there are points v,,v_, € A, with

Loz (vey) < L

and
d(”:ﬁ:vw l'in) < D’

Proof. Let y+, be the points obtained in Lemma 6.2. These points are within /2 of B,,,
so let us choose ®,, so that A, is also within distance 6/2 of B,, from £_,, to &, which is
again possible by the Density theorem [7, Theorem 6.1]. Let then vy, denote points in
A, that are within § of y4,, respectively.

Now loz(x4n) = Loz(x) because f; and fy fix Z. The segment from z,, to y, (and
Z_p to y_p) is of length at most D and is in the ey—thick part of Teichmiiller space
(by definition all G4,, are in an ¢y—thick part of Teichmiiller space), so the lengths of
all curves can change only by a bounded factor along such a segment (a thick bounded
length WP segment has bounded Teichmiiller length). This gives some uniform bound
Ly on Loz (y+n)-

Now by the convexity of the d—neighborhood of Gi,, the geodesic segment from
Y+n t0 v4, also stays in the d—neighborhood of G4, and hence is in the thick part of
Teichmiiller space, and this gives us the desired bound on lyz(viy). O

6.4. Choosing ®,, to control ending laminations

Lemma 6.5. There exists A > 1 so that for each n € N, if ®,, is chosen with azis Ay,
sufficiently close to B, then there is an upper bound

dy (v (®,), v (9,)) < A
for all Y C S sharing a boundary component with 0Z.
(Note the statement includes annuli Y with core a component of 9Z.)
Proof. First we show the bound holds for the laminations v (G,,), v~ (G_,,). Recalling
the inequality (2.6) in the proof of Lemma 2.7 for any curve « in a Bers marking at x

we have that dy («, f{ "(a)) < D, for all subsurfaces Y C S except X; and annuli with
core curves in 0X;. This implies that for an A; > 1 we have

dy (z,x_p) < Aq,
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for all subsurfaces Y as above. Similarly, we can see that
dy (z,z,) < Ay

holds for all subsurfaces Y C S except X5 and annuli with core curve in 0 X5. Combining
the above two inequalities with the triangle inequality we see that

dy(l',n,xn) S A2

holds for all subsurfaces Y C S except X1, X5 and annuli with core curves in 0X; and
0Xs.

Moreover, since G is the axis of a pseudo-Anosov map, diame(yy(Q o G) is uniformly
bounded for all Y C S (Lemma 2.7), and it follows (applying powers of fo or f1) that

dY(xna V+(Gn)) S AS; dY(x—vu v (G—n)) S AB

holds for an A3 > 1 independent of n.
Putting these bounds together we find that

dy (v (Gr), v~ (G_p)) < Ay (6.6)

for all Y except X1, X5 and annuli with core curves in 0X; and 0X5. Note that this
bound holds for all Y sharing a boundary curve with Z, since X; and X5 share no
boundary curves with Z.

Next we recall that v*(B,,) = v*(G,,) and v~ (B,,) = v~ (G_,,). Thus (6.6) holds for
(v (By), v~ (By)) too.

Finally, Lemma 2.6 gives us a neighborhood U™T of v (B,,) in the coarse Hausdorff
topology such that, for any subsurface Y sharing a boundary component with Z,

dy (N, vT(B,)) <4

for any A € U™. Similarly there is a neighborhood U~ of v~ (B,,) with the corresponding
property.

Now, the continuity theorem [7, Theorem 4.7] states that, if r is a recurrent ray
and 7, — r on compact sets, then the laminations v*(r,) converge to v*(r) in the
coarse Hausdorfl topology (the theorem in [7] is stated for a sequence of rays sharing a
basepoint, but the proof applies in general). Thus it follows that, if ®,, is chosen so that
A,, is sufficiently close to By, then v*(®,) € UT and v~ (®,,) € U~. We thus obtain a
bound of the form

dY(V+((I)n), V_((I)n» < As

for all Y sharing a boundary component with Z (this includes the annuli with core curves
in 0Z). This concludes the lemma. O
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Now we may finish the

Proof of Theorem 6.1. For each n, choose ®,, so that the conclusions of both Lemma 6.4
and Lemma 6.5 hold.

Let v,,v_, be the points on A, given by Lemma 6.4. Then the segments v_,v,
satisfy the hypotheses of Theorem 5.7: that is, the endpoints are uniformly close to
T_p, Ty respectively, and each of those is uniformly close to p_, and g, respectively,
which are points far along the axes g; and g, where the geodesic h is close to those
axes. Hence v_,0,, is a D"-fellow traveler of a long segment I,, in h so that U,I, = h,
for some fixed D”. Moreover the length of 9Z is bounded at the endpoints v4,,. Thus
Theorem 5.7 implies that inf{lyz(z)|x € v_,v,} — 0 as n — oc.

Lemma 6.5 gives us the inequality (6.1) for each ®,,. Thus the sequence {®,, },, provides
the desired pseudo-Anosov maps to complete the proof of Theorem 6.1. O

7. Comparison with Kleinian surface groups

In this final section we indicate how Theorems 1.4 and 1.5 can be derived from The-
orems 1.3 and 6.1, respectively, using the work of Brock-Canary-Minsky on Kleinian
surface groups [22,1]. This will show that the set of short curves along a WP geodesic
and the set of short curves in the corresponding hyperbolic 3-manifold do not necessarily
coincide.

Recall first that a Kleinian surface group is a discrete, faithful representation p :
m1(S) = PSL(2,C) which takes punctures of S to parabolic elements (is type preserv-
ing). Such a representation has a pair (v, ™) of end invariant, which in particular are
points of Teich(S) when p is quasi-Fuchsian, and are laminations in ££(S) when p is
doubly degenerate.

Let N, = H? /p(m1(S)) be the quotient hyperbolic 3-manifold of p. Given p and a
curve v in S we let £, (p) or £,(N,) denote the length of the geodesic representative of p
in N,. The Short Curve Theorem of [22] gives the following relationship between small
values of £, and large subsurface projections of the end invariant.

Theorem 7.1. Suppose that p : 71(S) = PSL(2,C) is a Kleinian surface group with end
invariant (v, v™) and let N, = H® /p(m1(S)), then

(1) for any A > 1 there is an e > 0 so that if {,(N,)<e, then supy cg.,coy dy(v",v™) >
A;

(2) for any € > 0 there is an A > 1 so that if supycg.,coy dy(vT,v™) > A, then
l(N,) <e.
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7.1. Quasi-Fuchsian mismatch

If p,q € Teich(S) we can compare the WP geodesic segment pg with the Kleinian
surface group p that QF(p,q) = N, has end invariant the pair of Bers markings at p, g.
We recall the statement of Theorem 1.4:

Theorem 1.4. There exists e; > 0 so that for any € > 0 there is a pair (p, q) € Teich(S) x
Teich(S) and a curve v in S such that

inf
;gﬁév(x) <€

whereas

(4 (QF (p,q)) > €.

Proof. Given € > 0, let p,q and v be given by Theorem 1.3, so that

inf /. (z) <
Jnf £y(z) <e

but
sup {dy(m) |Y €S,y C 8Y} < A,

where A is independent of e. Then part (1) of Theorem 7.1 gives an €; such that
(QF(pq) 2 1. O

7.2. Fibered mismatch

If Mg is the mapping torus of a pseudo-Anosov homeomorphism ® € Mod(S) then
Mg admits a complete hyperbolic metric by Thurston’s geometrization theorem (see
e.g. [28]). The manifold Mg fibers over the circle with fiber S, and the representation p
associated to the fiber subgroup has end invariant (v, ™) equal to the supports of the
stable and unstable laminations of ®.

We are therefore led to compare the short curves of p with those of the Weil-Petersson
axis Ag of ®. We restate Theorem 1.5 here:

Theorem 1.5. There exists €1 > 0 so that for any ¢ > 0 there is a pseudo-Anosov ® €
Mod(S) and a curve v € S such that

zlenjq) ly(z) <e

whereas

f»y(M(I)) > €.
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Proof. Given € > 0 let ® be the pseudo-Anosov provided by Theorem 6.1, and ~ the
curve such that

achéf; ly(x) <€

while

sup  dy(vT,v7) < A
YCS:vCOY

Again by part (1) of Theorem 7.1, this produces a lower bound
Ev(Mq;) >e€. O
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