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ABSTRACT

Long, high-quality time-series data provided by previous space missions such as CoRoT and Kepler have made it possible to

derive the evolutionary state of red giant stars, i.e. whether the stars are hydrogen-shell burning around an inert helium core

or helium-core burning, from their individual oscillation modes. We utilize data from the Kepler mission to develop a tool to

classify the evolutionary state for the large number of stars being observed in the current era of K2, TESS, and for the future

PLATO mission. These missions provide new challenges for evolutionary state classification given the large number of stars

being observed and the shorter observing duration of the data. We propose a new method, Clumpiness, based upon a supervised

classification scheme that uses ‘summary statistics’ of the time series, combined with distance information from the Gaia mission

to predict the evolutionary state. Applying this to red giants in the APOKASC catalogue, we obtain a classification accuracy

of ∼ 91 per cent for the full 4 yr of Kepler data, for those stars that are either only hydrogen-shell burning or also helium-core

burning. We also applied the method to shorter Kepler data sets, mimicking CoRoT, K2, and TESS achieving an accuracy

> 91 per cent even for the 27 d time series. This work paves the way towards fast, reliable classification of vast amounts of

relatively short-time-span data with a few, well-engineered features.

Key words: asteroseismology – methods: data analysis – methods: statistical.

1 IN T RO D U C T I O N

Stars in the red clump (RC), i.e. low-mass core-helium-burning

(CHeB) stars, are a prominent feature in the colour–magnitude

diagram of, for instance, open or globular clusters due to their narrow

luminosity distribution. This narrow distribution is a result of the

near-constant core mass at helium ignition of stars with degenerate

cores. RC stars are widespread throughout the Galaxy and are

used as distance indicators (e.g. Girardi et al. 1998; Paczyński &

Stanek 1998; Groenewegen 2008). Furthermore, their function as

standard candles provides the possibility to use the parallaxes from

the Gaia mission (Gaia Collaboration 2016, 2018) to calibrate the

absolute magnitude of the RC (e.g. Hawkins et al. 2017; Chan &

Bovy 2020; Hall et al. 2019). The RC has also been used as

a benchmark to investigate possible systematics in the parallax

measurements when combined with, for example, asteroseismology

(e.g. Davies et al. 2017; Huber et al. 2017; Khan et al. 2019; Zinn

et al. 2019).

The identification of field RC stars is not trivial because they have

very similar surface properties to red giant branch (RGB) stars. To

add to this, not all field stars are at the same distance and so the

typical ‘clump’ seen in the colour–magnitude diagram of clusters is

smeared out. There are also additional dependences on parameters

such as extinction and metallicity (e.g. Girardi & Salaris 2001).

� E-mail: kuszlewicz@mps.mpg.de

†NSF Astronomy and Astrophysics Postdoctoral Fellow and DIRAC Fellow.

Bovy et al. (2014) identified RC stars in APOGEE data by not

only searching luminosity space, but also colour–metallicity-surface-

gravity-effective temperature space in order to reduce the amount of

contamination from RGB stars.

With the advent of CoRoT (Baglin et al. 2006) and Kepler (Borucki

et al. 2010), the evolutionary state of red giant stars can now also

be classified through asteroseismology (e.g. Bedding et al. 2011;

Mosser et al. 2011; Kallinger et al. 2012; Stello et al. 2013; Mosser

et al. 2014; Vrard, Mosser & Samadi 2016; Elsworth et al. 2017;

Hekker et al. 2017; Hon, Stello & Yu 2018). The majority of these

methods rely on the detection of individual mixed oscillation modes

(those that have a gravity-mode-like character in the stellar core

and pressure-mode-like character in the convective envelope) in the

power spectrum. These modes are indeed resolved for 4 yr of Kepler

data (hereby defined as long data sets). However, for the shorter

80-d data sets of K2 (Howell et al. 2014) or the 27-d time series

of TESS (Ricker et al. 2015; hereby referred to as short data sets),

the frequency resolution is coarser, hampering the evolutionary state

classification via mixed modes. To distinguish between RC and RGB

stars, it is therefore important to have classification methods that do

not rely on the determination of individual mixed oscillation modes

a priori. This will also be of importance for future space missions

such as PLATO (Rauer et al. 2014).

Evolutionary state determination does not have to be undertaken

in the frequency domain and we show in this work how the time-

series data can be used directly. In this way, we are not limited by

the reduced frequency resolution in the power spectra for shorter

time-series data.

C© 2020 The Author(s)
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It is common practice to classify the variability of stellar light

curves in the time domain using machine-learning techniques.

Unsupervised techniques (those where the stellar classification is

not known beforehand) have been applied to intrinsically variable

stars (e.g. Cepheids/RR Lyraes, delta-Scuti pulsators etc.) and

extrinsically variable stars (e.g. eclipsing binaries) in K2 data by

Armstrong et al. (2015, 2016), who used a combination of self-

organizing maps (to extract salient features from the data) and

random forests to classify the data. Valenzuela & Pichara (2018)

used a different approach to classify variable stars, applied to data

from OGLE (Udalski et al. 1996, 2008), MACHO (Alcock et al.

1997, 2003), and Kepler, based upon the similarity between different

time series using a variability tree, which ranks light curves by

their similarity. Naul et al. (2018) took a different approach still

and successfully used a ‘novel’ recurrent autoencoder structure to

classify variable stars with irregularly sampled data from ASAS

(Pojmanski 2002). The advantage of such a method is that no

features are chosen a priori and the autoencoder instead extracted

them automatically. This method was only optimized for periodic

variables. Kügler, Gianniotis & Polsterer (2015) chose yet another

method and adopted featureless classification by decomposing data

into a mixture of Gaussians and using a distance matrix to classify

similar targets, with applications to OGLE and ASAS. Many of the

cases mentioned above used short or sparsely sampled data sets,

whereas in the case of Kepler data the sheer amount of data collected

can be a bottleneck in the extraction of important features. For

many types of intrinsically variable stars, the periods of oscillation

dictate that densely sampled time series is necessary to resolve the

underlying signal.

In this work, we introduce Clumpiness, an approach aimed at

deducing the evolutionary state of red giants in the time domain,

while retaining interpretability and computational efficiency to create

a classification tool that performs as well as possible on both long

and short time-series data using the fewest number of features.

2 FEATU R ES

A key component of any machine -learning scheme is the set of

features that are extracted from the data. The features form the

backbone of the analysis and are what the chosen algorithm will

use to predict the class an object belongs to. In our case, this is the

evolutionary state of a red giant star.

There are a number of packages in the literature for computing very

general features for time-series classification, for example, TSFRESH

(Christ, Kempa-Liehr & Feindt 2016), FATS (Feature Analysis for

Time Series; Nun et al. 2015), UPSILON (Kim & Bailer-Jones 2015),

and PTSA
1 to name but a few. Rather than computing a large number of

very general features, we instead compute a small number of features

in this work that contain relevant information about the evolutionary

state of the stars in question.

2.1 Time-series features

In this work, we focused on red giants that show solar-like oscillations

that are excited and damped by near-surface turbulent convection.

The near-surface turbulent convection displays itself as granulation

that is present in the power spectrum as a frequency-dependent

signal (commonly modelled as red noise). Whereas the solar-like

oscillations are only present in the power spectrum at specific

1https://github.com/compmem/ptsa

frequencies, as defined by the underlying stellar properties. The

dominant process contributing approximately 85 per cent of the

variability power in the time series is the granulation, determined by

integrating separately the granulation and oscillations components of

models fit to the power spectrum. However, both the granulation and

oscillation signals can provide insights into the evolutionary state of

the star.

2.1.1 Time-series MAD

The variance of time-series data of a star with a convective enve-

lope containing granulation and solar-like oscillations scales with

νmax (the frequency of maximum oscillation power, Hekker et al.

2012), which in turn scales with the stellar surface gravity (e.g.

Brown et al. 1991; Kjeldsen & Bedding 1995).

To capture a measure of the variance, we compute the MAD

(median absolute deviation from the median)

MAD(X0) = median
(∣

∣X0,i − median(X0)
∣

∣

)

, (1)

where X0 represents the whole time series, and X0, i is a single data

point from that time series. We prefer the MAD over the variance

as a feature because it is more resistant to outliers (e.g. Leys et al.

2013).2

2.1.2 MAD of time-series first differences

Alongside computing the MAD of the time series, we also look at the

MAD of the first differences, where we define the first differences

X1 of a time-series X0 to be

X1,i = X0,i − X0,i−1. (2)

The first differences remove any long term trends from the data

revealing additional time-scales in the data. The MAD (equation 1)

of the first differences provides information regarding the magnitude

of the rate of change of the signal. Therefore, stars with longer period

granulation will have lower first-difference MAD values compared

to those with shorter period granulation. The MAD of the first

differences acts as a rudimentary high-pass filter and removes power

from the low-frequency regime of the signal. This will, in general,

suppress the contribution of the granulation to the signal and enhance

the contribution from the oscillations (and possibly the white noise

if the level is very high). This offers a different view of the data that

is complementary with taking the MAD of the time series.

2.1.3 Normalized number of zero-crossings

To capture the dominant time-scale, we compute the normalized (by

the number of data points) number of zero-crossings in the time-series

data. This normalization assumes that the time stamps where there

are no data points (i.e. during gaps) are dropped and so the number

of data points used to normalize the data are the actual number of

data points irrespective of their distribution in time, i.e. in the case

of gaps. This normalization is to place all stars on to the same scale

enabling direct comparisons between data sets of different length.

We also correct the normalized number of zero-crossings for gaps in

the data if needed (see Appendix A for more information).

2Note that the MAD can be converted to the variance by assuming that the

data are Gaussian-distributed, which may not always be the case.
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Clumpiness 4845

We compute the zero-crossings by first constructing a ‘clipped’

time series, Z0, from the original time-series X0 of length N such

that

Z0,i =

{

1 if X0,i ≥ 0,

0 if X0,i < 0.
(3)

The number of zero-crossings, D0, is then given by the number of

value changes in the new ‘clipped’ time series, computed as

D0 =

N−1
∑

i=1

(

Z0,i − Z0,i−1

)2
, (4)

where 0 ≤ D0 ≤ N − 1.

The total number of zero-crossings are normalized to obtain the

relative number of zero-crossings for a time series of a given length,

as described in Appendix A.

2.1.4 Signal coherency

We can expand on the idea of the number of zero-crossings in the

time series by going to higher order differences, i.e. first differences

of the time series (equation 2), first differences of the first differences,

and so on. We compute the ‘clipped’ time series of the higher order

crossings (HOCs) in exactly the same way as for the original time-

series data, as given by equation (4), except now we use the time

series of higher order differences as an input. The time series of the

kth HOCs is defined by

Xk,i = Xk−1,i − Xk−1,i−1. (5)

Denoting the original ‘clipped’ time series as Z0, we define the

‘clipped’ time series of the kth HOC time series by Zk such that

Zk,i =

{

1 if Xk,i ≥ 0,

0 if Xk,i < 0.
(6)

The number of HOCs becomes

Dk =

N−1
∑

i=1

(Zk,i − Zk,i−1)2. (7)

We combine the information contained within the number of

HOCs to maximize the information content of this set of features.

Solar-like oscillations and granulation are stochastically driven with

lifetimes/time-scales that change depending on the size of the star.

For a fixed length of time-series data, the signal from a star that is

more evolved (i.e. with longer granulation time-scales) will appear

more coherent than that of a star that is less evolved. In contrast

to the more coherent signal as a star evolves, the incoherent nature

of a white noise signal forms the lower boundary of the coherency

measure. Therefore, we will make use of the HOCs to compute a

measure of the coherency of the time series.

To compute a measure of the coherency, we look at the increments

of the HOCs (Bae et al. 1996), i.e. the rate of change of the HOCs as

a function of their order. These are defined as

�k =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

D0 if k = 0,

Dk − Dk−1 if k = 1, ..., N − 2,

(N − 1) − Dk−2 if k = N − 1.

(8)

Kedem & Slud (1981) have shown that for N ≥ 300 (where N is

the number of data points in the time series), the number of HOCs

increases for k ≤ 7. We can therefore assuming that our HOCs are

ordered such that the increments by which they increase are always

positive. Kedem & Slud (1982) also showed that when k = 8, Dk/N

(the high-order crossings normalized by the number of data points

N) is already as large as 0.9. As a result, the discriminatory power is

greatly reduced when k is larger because Dk/N levels off and slowly

approaches unity. In this work, we found that k = 5 is an acceptable

upper limit that balances discriminatory power with computation

time.

The increments are combined into the coherency measure ψ2

ψ2 =

K−1
∑

k=0

(�k − φk)2

φk

. (9)

For k = 0, ..., K, where K = 5 the increments simulated for a white

noise time series of length 100 000 points are given by φk = (0.167,

0.066, 0.038, 0.025, 0.018).

The coherency measure ψ2 provides a way to discriminate between

white noise-like signals and those that are more coherent. For

instance, for a purely sinusoidal (coherent) signal the increments

�k will be zero for all k. This is because the period of the signal does

not change when the differences are taken and so

ψ2
sin =

K
∑

k=0

φk . (10)

For a completely incoherent signal (i.e. white noise), the increments

are equal to φk because they are generated from the same underlying

process and therefore

ψ2
white = 0. (11)

Therefore, the upper and lower bounds of ψ2 are defined such that

0 ≤ ψ2 ≤
∑K

k=0 φk . Note that we normalize ψ2 in the same way as

the number of zero-crossings (see Appendix A).

2.2 Absolute K-band magnitude

Alongside information gathered from the time series, we include

external information that contributes to improving the classification.

We mentioned in the introduction that the RC forms a well-defined

region in luminosity and therefore absolute magnitude space, so

leveraging this information is particularly helpful. We therefore use

parallax data from the Gaia mission (Gaia Collaboration 2016, 2018).

Rather than using the parallax as a feature, we link this back to

an intrinsic property of the star, namely the absolute magnitude,

that can help distinguish RGB from RC. We choose to compute

the absolute magnitude in the K band because the contribution of

interstellar extinction is greatly reduced and in most cases negligible.

This reduces the effect of any possible sources of bias in the dust

maps used to calculate the absolute magnitude accurately.

The absolute magnitude is calculated in the K band according to

MKs
= mKs

− μ0 − AKs
. (12)

The apparent K-band magnitude of the star mKs
is taken from the

Two Micron All Sky Survey (2MASS; Cutri et al. 2003; Skrutskie

et al. 2006). We compute the interstellar extinction in the K band,

AKs
, from the 3D dust map of Green et al. (2015). The distance

modulus, μ0 = 5log10(d) − 5 where the distance, d, (in parsecs)

is taken from Bailer-Jones et al. (2018). We use a 4 arcsec cross-

match between the asteroseismic and Gaia data sets, as given by

gaia-kepler.fun, and take the brightest G-band magnitude source in

the case of multiple Gaia sources for a single asteroseismic object.

We adopt the following selection criterion (Lindegren et al. 2018) to

MNRAS 497, 4843–4856 (2020)
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ensure that the stars that satisfy this have well-derived parallaxes:
√

χ2

ν
< 1.2 × max {1, exp [−0.2 (G − 19.5)]} , (13)

where χ2 is the goodness-of-fit of the single-star astrometric model

as provided by Gaia, ν is the number of degrees of freedom in the

astrometric model, and G is the mean Gaia magnitude. If a star does

not satisfy the above criterion then it is not included in the training

data (see next section) for the full classification algorithm, but is

instead included in the training of a version of the algorithm without

MKs
included as a feature.

3 TR A I N I N G DATA

In this work, we use red giants from the APOKASC sample (Pinson-

neault et al. 2018) observed by Kepler with long-cadence (29.42 min)

time-series observations as training data. This is a sample of well-

studied red giant stars that have consolidated evolutionary states from

four different methods (Elsworth et al. 2019). We also include the

sample of 472 main-sequence and subgiant stars from Chaplin et al.

(2014) and a random sample of 1500 Kepler objects of interest (KOIs)

from the NASA Exoplanet Archive (Akeson et al. 2013) with log g

> 3.5 in the training data. These stars are not expected to show solar-

like oscillations in the frequency range associated with long-cadence

observations but are common contaminants in red giant samples (e.g.

Yu et al. 2016) and act here as a representation of those contaminants

that could find their way into such samples.

3.1 Time-series preparation

All the time series used as training data are from long-cadence Kepler

observations produced using the pipeline developed by Jenkins et al.

(2010) with an additional Savitzky–Golay filter of width 20 d applied

to remove any residual long-term trends. We use the LIGHTKURVE

package (Lightkurve Collaboration 2018) for all pre-processing of

the data. There are regular gaps in the time series caused by the

desaturation of the reaction wheels on the Kepler spacecraft, typically

the duration of one long-cadence (29.42 min) observation every 3 d.

These were filled using linear interpolation according to Garcı́a et al.

(2014). The data are then concatenated if segments of the data are

separated by a long gap (over 20 d) following Hekker et al. (2010).

Alongside the full 4 yr of data, we also produce reduced length

data sets that correspond to the time base of other missions, such as

80 d for K2 (Howell et al. 2014), 180 d for CoRoT (Baglin et al.

2006), and 27 d for TESS (Ricker et al. 2015). For TESS, we consider

only the shortest length data sets as the limiting case in terms of data

set length.

To prepare shorter length data sets for algorithm training, we cut

down the raw (now concatenated) data into chunks of the desired

length (in time) and filter them with a Savitzky–Golay filter of width

10 d for the 180 d data sets, 5 d for 80 d data sets, and 3 d for

27 d data sets. These filters mimic the detrending that would be used

for the shorter data sets. In the case of the shortest length of 27 d, a

linear trend is subtracted after the filtering to account for any possible

trends in the data as a result of the short baseline. If any chunk of data

has a duty cycle lower than 0.5 (i.e. more than 50 per cent of data are

missing), then the chunk is discarded. This rarely happens since the

data are concatenated in the presence of large gaps and so in most

cases the duty cycle is above 0.9. Due to the stochastic nature of

solar-like oscillations, we are essentially gaining more independent

training time series when cutting the longer time series down. This

is due to the fact that the phase is incoherent in solar-like oscillators.

There is the possibility for a time series of a given star to be

contaminated by a nearby star due to the mask chosen for the

extraction of the data. We do not want contaminated time series

to be used in our training set since this will confuse the classification

algorithm. To remove contaminated time series, we use a metric

based on the quarter-by-quarter variance, σ 2
q,i . We use the following

metric on the filtered data (see above):

c = median

⎛

⎝

Nquarters
∑

i=2

∣

∣σ 2
q,i − σ 2

q,i−1

∣

∣

⎞

⎠ . (14)

This is the median of the absolute values of the first differences

of the quarter-by-quarter variances. When log10c > 2.5, which is

determined empirically, the time series is considered contaminated

and is therefore no longer used.

3.2 Class labels

The evolutionary states for the red giants that make up our ground

truth labels are taken from the consolidated classifications of the

APOKASC sample by Elsworth et al. (2019). Based on their

classification and the inclusion of the main-sequence/KOI targets,

we define three classes: RGB, CHeB stars, and main-sequence

stars/KOIs (noise).

In order to aid the classifier and given that the RGB class stretches

over a wide range of parameter space, we split up the RGB class (for

training purposes) into three subclasses

(i) Low-luminosity RGB (LLRGB) with νmax > 130 µHz.

(ii) High-luminosity RGB (HLRGB) with νmax < 15 µHz.

(iii) Confusion region RGB (ConfRGB) with 15 < νmax < 130

µHz.

In this way, the classifier can focus on disentangling CHeB stars from

RGB stars in the region where they overlap (the so-called confusion

region). We do not disentangle the low-mass RC stars from the

higher mass stars in the secondary clump. However, this could be

performed afterwards using the probabilities from the classifier as

an initial guide. Final probabilities are produced for the three main

classes RGB, CHeB, and noise.

4 SUPERVI SED C LASSI FI CATI ON

The task of inferring the stellar evolutionary states from a set of

derived features constitutes a supervised classification problem. In

Fig. 1, we plot each feature against every other for our training set,

coloured by class label. This shows that the interactions between our

features are not necessarily linear. They may be linear in log-space or

under a more complicated transformation. In order to take advantage

of this, we use an ensemble algorithm xgboost (Chen & Guestrin

2016). An ensemble algorithm creates a sequence of weak classifiers

whose individual performances are only slightly better than random

guessing. When these weak classifiers are combined they produce

a single strong classifier (e.g. Friedman, Tibshirani & Hastie 2000;

Hastie, Tibshirani & Friedman 2001).

The xgboost algorithm is a variant of ensemble algorithms that

falls under the umbrella of gradient-boosting methods. In boosting

algorithms, models are constructed sequentially to correct the errors

from the existing models until no further improvement can be made

(according to some chosen criterion). In xgboost, these models are

decision trees. A gradient-boosting algorithm is a boosting algorithm

where a gradient-descent algorithm is used to minimize the objective

function (e.g. negative log-likelihood) to train the model. At each

MNRAS 497, 4843–4856 (2020)
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Clumpiness 4847

Figure 1. A pairplot showing kernel density estimates (KDE) of all of the features (Section 2) broken down into individual classes as shown on the diagonal:

HLRGB, RGB stars that overlap with CHeB stars (RGBConf), CHeB, LLRGB, and the noise class. The relationships between each set of features are shown

on the off-diagonal panels.

iteration, the data that are misclassified by the previous classifier in

the sequence are upweighted such that the next classifier focuses

more on those data.

In order to fit the model to the data during training, an objective

function needs to be chosen. This is the function that we are

minimizing via gradient descent in order to find the best fit to the

data. We adopt the multiclass logarithmic loss since our problem is

multiclass classification. This essentially acts as a measure of the

degree of similarity between the ground truth and the predicted class

probability, which is defined by

lnL = −
1

N

N
∑

i=1

M
∑

j=1

yij ln pij +
∑

k

	(fk). (15)

The double summation is over each of the N time series in our

training set and M classes, yij is a binary indicator showing whether

the label j is the correct classification of the ith data point, and pij is

the probability of the ith data point belonging to the jth class. 	(fk)

is an extra term specific to xgboost which acts as a regularization

term for the kth tree (fk) used to construct the model (see Chen &

Guestrin 2016, for more details) which essentially penalizes the size

of the tree.

There are a number of hyperparameters in xgboost that can

affect the performance of the classifier and need to be optimized,

such as the size of each tree. This is performed using the HYPEROPT

package (Bergstra, Yamins & Cox 2013) (see Appendix B for more

details). Once the hyperparameter values are chosen, the classifier

is trained according to a 10-fold stratified cross-validation scheme

to choose the optimal number of trees (up to a limit of 1000). The

stratification of the cross-validation folds ensures that there is the

same relative number of stars in each class in the training and

validation sets. At each step, a new tree is added to the model and
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Table 1. Classification accuracy of the validation set for each time-series

length with and without the inclusion of MKs as a feature.

Length of data set Accuracy (per cent)

Accuracy (per cent) without

MKs

4 yr 92.6 87.2

180 d 91.2 87.1

80 d 91.2 87.2

27 d 91.3 86.5

the loss function is evaluated on both a training set and validation set

defined by the cross-validation fold. The training is stopped when

the loss of validation set no longer decreases and starts to increase

(signifying overfitting). The optimally trained model is taken as the

last iteration with a decreasing validation set loss.

5 R ESULTS

We train the classification algorithm on the data sets of different

lengths and assess the accuracy (i.e. the percentage of stars correctly

classified) and reliability of each case. The classifier produces a

probability that the star belongs to each class. It is common to select

the final class labels as the class with the largest probability, which

is the same as choosing a probability threshold of 1/C where C is

the number of classes.3 However, in this work we opt to tune the

threshold to produce the largest number of true positives and lower

number of false positives for the trained classifier. The details of this

are explained later in this section. The classification accuracy of the

classifier for each data set length is shown in Table 1. We achieve

greater than 91 per cent accuracy across all the different lengths of

time series. The quoted accuracies take into account the three classes

we want to classify the data into.

It is important not to disregard the class probabilities as they

can provide useful information about the star being classified that

is not apparent from the label alone. If the class probabilities are

very similar then this means that the star could reasonably belong

to any class, which would not be known if only the label is taken

into account. In addition, the probabilities themselves can be used in

subsequent probabilistic analyses as priors on the evolutionary state,

for example in the classification effort being undertaken by the TESS

Asteroseismic Consortium (TASC; Tkachenko et al., in preparation)

or in studies of the RC (e.g. Hall et al. 2019; Khan et al. 2019).

5.1 Model evaluation

The performance of the trained models can also be assessed using

the receiver-operator characteristic (ROC) curve that shows the

diagnostic ability of a classifier. The curve is built up by computing

the number of true and false positives in a given class for a number

of different probability thresholds (decreasing from 1 to 0). The

true positive rate is plotted against the false positive rate which

gives us the ability to see how well the classifier correctly predicts

the class for different thresholds. The ROC curves are shown for

each class (using a one versus rest methodology, e.g. Bishop 2006)

and each data set length in Fig. 2. The probability threshold for a

star to belong to a certain class is chosen using the threshold that

maximizes Youden’s J statistic (defined by the difference between

the true positive rate and the false positive rate for a given threshold;

3If more than one class exceeds the chosen threshold, we assign the class

with the highest probability.

Youden 1950). The probability thresholds are therefore different for

each class, reflecting the differing ability of the classifier to infer

certain classes. The probability thresholds used are given in Table 2

and indicated by the coloured points in Fig. 2.

Ideally, the ROC curve should be as close to the top left corner

as possible, showing that there is a threshold for which the classifier

makes overwhelmingly accurate predictions with very few false

positives. In our case, the ROC curves show that for the Noise class

the curve is very close to the ideal top left corner and so for each

time-series length the classifier is able to infer this class very well,

with a very low number of false positives. For the CHeB and RGB

classes, the performance is also very good, although we can see the

interaction between the two classes manifesting itself as a reduction

in the increase of the true positive rate above a value of 0.8. This

provides important information about the false positive rates for the

two classes. The fact that the CHeB class true positive rate increases

faster than the RGB class shows that the CHeB class contains RGB

false positives (as can be seen in Fig. 3), which is something we

expect given the overlapping of the classes in feature space. While

the RGB class will also contain CHeB false positives there are far

fewer of these cases.

The area-under-the-curve (AUC) of the ROC curve gives the

probability that the classifier will assign a higher probability to a

random sample drawn from a chosen class (i.e. the class the AUC

is computed for) compared to a random sample from a different

class. The higher the AUC, the better the classifier is at predicting

the correct class. For all of our classifiers these values, given in the

legends of Fig. 2, are close and show that the overall classification

for all the classes is very good. The confusion region where the RGB

stars and CHeB stars overlap is what causes the AUC values for the

RGB and CHeB classes to be slightly lower than the AUC value for

the Noise class.

In addition to the accuracy of the trained classification models, we

also look at the confusion matrices to gain a sense of which classes

the classifier predicts correctly and which provide the most difficulty,

as shown in Fig. 3. The diagonal of the confusion matrix shows the

proportion of stars in a given class that have been correctly classified

and the off-diagonal elements show how a star of a given class has

been misclassified. Looking at Fig. 3 it is apparent that the main

source of confusion is between the CHeB class and the RGB class.

This is expected as in the confusion region the two classes overlap

that will cause confusion and results in a drop in accuracy.

5.2 Model intepretation

The interpretability of the trained model is key to understanding how

it performed and, more importantly, why it is performing in such

a way. We use the feature importance of the classifier to interpret

the model and which features it uses to classify stars belonging to

different classes. We choose to use SHapely Additive exPlanation

(SHAP) values (see Lundberg & Lee 2017; Lundberg, Erion & Lee

2018; for a more in-depth overview) to provide feature importances.

The feature importance information is presented in Fig. 4 as a ‘feature

matrix’, which contains the SHAP value averaged over each star in a

given class normalized such that the rows sum to 1. Each row of the

matrix then tells us the feature importance for the class represented

by that row, and the column shows us the relative feature importance

between each class.

We do not necessarily expect the same ranking of features for each

length of data set since differences in the data set length may have an

effect on the ability to derive given features. For example, the shorter

the data set the more likely the variance is to differ from realization
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(a) (b)

(c) (d)

Figure 2. ROC curves for each of the different time-series lengths. The AUC (see text) for each curve is indicated in the legend and the coloured dots show the

false positive and true positive rates for the chosen probability threshold. The dashed line indicates the 1-to-1 relation.

Table 2. Probability thresholds for a given class as a

function of data set length.

Class

Length of data set RGB RC ‘Noise’

4 yr 0.385 0.493 0.427

180 d 0.395 0.283 0.378

80 d 0.420 0.307 0.102

27 d 0.393 0.349 0.145

to realization due to the stochastic nature of the data. Across the

different lengths of data, MKs
is the most important feature for the

majority of classes, which is to be expected. Whereas for the LLRGB

stars, the most important feature is ψ2 because this provides the best

way to distinguish between the nearby Noise class. Therefore, it

is important to consider a local treatment of feature importance,

otherwise a feature may be disregarded when looking globally when

in fact it is vital to the accurate classification of a specific class.

6 A P P LIC ATION TO THE FULL KEPLER

L O N G - C A D E N C E DATA S E T

The subsample of data that we are looking at in this work, red

giants showing solar-like oscillations, may not give us a full insight

into feature space. Since all of our stars are stochastic oscillators,

the underlying process generating the oscillations is the same. In

order to interpret the features fully it is helpful to expand the

region of parameter space with more stars with different types

of intrinsic variability (e.g. activity and stellar oscillations) and

extrinsic variability (e.g. eclipsing binaries). This can help identify

contaminants in future samples. For instance, a star that has more

than one type of variability, e.g. solar-like oscillations and eclipses,

or this can be used to classify a wider range of stellar variability

types. To help with our interpretation, we opt to extract features from

every object observed in long cadence with Kepler. Since we will

now have many different types of objects, e.g. eclipsing binaries,

classical pulsators etc., this will not only enable us to improve the

interpretation of our features, but also show the viability of using the

derived features to discern other variable classes of star.

Let us focus on two parameters in particular, the number of

normalized zero-crossings and the coherency parameter ψ2. These

two parameters provide information regarding the time-scale of the

dominant contribution to the light curve and the degree of coherency

(or stochasticity). Fig. 5 shows these features for the full Kepler

sample in a reduced region of parameter space, which we shall

explain before moving to the larger view. There are two visible

strands that extend with decreasing zero-crossings and increasing

coherency, which are indicative of distinct populations. The strands
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(a) (b)

(c) (d)

Figure 3. Confusion matrices for the classifier over each times-series length, starting with 4 yr in panel (a) to 27 d in panel (d).

cross at very long time-scales (i.e. a low number of normalized zero-

crossings), with the lower strand crossing over the more coherent,

higher strand at ∼0.1 in the normalized number of zero-crossings.

The visible separation leaves the impression that stars with

different properties can lie on each of these strands and so we

overplot the populations of known types to investigate where they

fall in parameter space. This is shown in Fig. 5(b). We include

stars showing rotation from McQuillan, Mazeh & Aigrain (2014),

solar-like oscillators from Hon et al. (2019) that have a detection

probability of 1, eclipsing binaries from the Kepler Eclipsing Binary

Catalogue (Prša et al. 2011; Abdul-Masih et al. 2016; Kirk et al.

2016), and a sample of A and F-type stars that lie in the δ-Scuti

instability strip that include δ-Scuti and γ -Doradus variables from

Murphy et al. (2019).

The higher, more coherent strand is populated by stars exhibiting

some degree of rotational modulation and the lower, less coherent

strand is in fact populated by solar-like oscillators. This conforms

with expectations, since solar-like oscillators are inherently stochas-

tic and their oscillations are mostly much less coherent than signal

from rotational modulation, and so for any given time-scale (inferred

by proxy from the number of zero-crossings) a solar-like oscillator

and rotational variable can be distinguished through the coherency

of the signal. However, the strands do cross at a value of 0.1 in

normalized zero-crossings. This is due to the fact that the granulation

time-scale is closely linked to the radius of the star, the larger the

radius of the star, the larger the convective cells which leads to a larger

granulation time-scale, i.e. a decreasing number of zero-crossings.

The rate of ascent of a star up the RGB is not linearly proportional

to the number of zero-crossings. Therefore, we interpret this sudden

rapid increase in the coherency of the signal as due to the increasingly

fast evolution of the star towards the tip of the RGB.

Eclipsing binaries appear in Fig. 5(b) in two different configura-

tions depending on the dominant contribution to the signal in the

data. If the dominant contribution is stellar in origin, i.e. pulsations,

then the star will appear on the strands following the stellar signal.

However, if the dominant contribution is instead from the eclipses

then they will lie away from the strands with a high coherency

corresponding to the regularity of the eclipse signal and a normalized

zero-crossing value proportional to the binary period.

Finally, we have the classical pulsators that appear at two different

extremes of Fig. 5 due to the different pulsations observed. γ Dor

pulsators are gravity-mode pulsators (where buoyancy is the restoring

force of the pulsations) and so oscillate at long periods, this is evident

by the low normalized number of zero-crossing values and high

coherency of the signal. Whereas δ Sct pulsators are pressure-mode

pulsators (where pressure is the restoring force of the pulsations) and

oscillate at much higher frequencies placing them at the high extreme

in normalized zero-crossings. Their signals in long cadence are seen
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(a) (b)

(c) (d)

Figure 4. Feature matrices for each trained model, arranged according to descending time-series length. The normalized number of zero-crossings are labelled

as ‘zc’.

to be less coherent than the γ Dor pulsators, most likely due to the

fact that they oscillate above the long-cadence Nyquist frequency (of

∼24 d−1) and so it is likely that the lack of coherency comes from

the undersampling of the data rather than from the oscillation modes

themselves.

The investigation of the time-series features chosen in Section 2

applied to the full Kepler data set shows that not only can these

features distinguish RGB from CHeB stars, but they could also

potentially be used to classify a wider range of variable stars.

7 D ISCUSSION

The trained classifiers perform very well over each data set length,

however there are a few assumptions that we have made that should be

addressed. Like any machine-learning task, the ability to generalize

to unseen data can be affected by the quality of the training data.

There could be an issue if the underlying populations between the

new data and the training data differ significantly. We are therefore

making the assumption that the underlying population observed by

Kepler would be close to other observed underlying populations,

for example, observed by K2 or TESS. Given that Kepler stared at

a single patch of sky for 4 yr and other missions, such as K2 and

TESS, look over more and larger patches of sky this assumption

may not be strictly valid. This also applies to the properties of the

particular mission. Time series that this classifier can be applied to

must have a cadence that is similar to the training data. Otherwise

this will introduce biases into the computed features and lead to

incorrect classification. The feature that the differences between the

training data and new unseen data have the largest effect on is the

K-band absolute magnitude, whereby population level effects are

ignored in its calculation (e.g. Girardi & Salaris 2001; Girardi 2016),

using equation (12). Therefore, slight changes in the underlying

MKs
distribution could cause the predictions from the classifier to

be affected. However, this is the reason why we use an intrinsic

property rather than parallax and apparent magnitude, since absolute

magnitude should be independent of distance. The other features

could also be affected if the distribution of stellar parameters (e.g.

mass, radius, metallicity, and effective temperature) is significantly

different from those of the Kepler training set. This effect is easily

quantifiable by comparing the training set feature distributions to

those from a new data set. Secondly, we have not taken into

account the difference in bandpasses between Kepler and TESS in

which granulation and oscillation signals are expected to have lower

amplitudes in TESS data due to the redder bandpass (Campante et al.

MNRAS 497, 4843–4856 (2020)
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(a) (b)

Figure 5. Panel (a) shows a hexbin plot showing the ψ2 feature (coherency) as a function of the normalized zero-crossings for the full Kepler field, coloured by

number density. Overplotted are the approximate positions of stars showing rotational modulation, solar-like oscillations, and δ-Scuti/γ -Doradus stars (labelled

as A/F-type main-sequence stars) computed using a rolling mean of width 0.05 in normalized zero-crossings. Panel (b) shows the distribution of a random

sample of 2000 stars in each category over the same region of parameter space as panel (a) with the addition of eclipsing binaries (EBs).

2016). Provided that the time series is dominated by granulation and

physical signal then this can be approximately accounted for with a

multiplicative factor in variance (Campante et al. 2016).

The fraction of RGB and CHeB stars in the training set compared to

fraction of RGB and CHeB stars predicted are given in the two panels

of Fig. 6. For the CHeB stars, we perform well and the distributions

of stars in our training set and our predictions are very close. It can

also be seen for the case of the secondary clump stars, the small

hump around νmax ∼ 80 µHz, due to the agreement between the two

distributions. Whereas for the RGB stars there is good agreement for

the majority of νmax except for the region around the RC. There is a

clear paucity of predicted RGB stars in the region 20 < νmax(µHz)

< 50 which means that these RGB stars have been classified as

CHeB stars. In addition, there is also a slight overabundance of RGB

stars at νmax ∼ 50–60 µHz which means that CHeB stars have been

misclassified as RGB stars. This is due to the class imbalance in the

region around the RC, which can be as high as 7:1 in favour of CHeB

stars at νmax ∼ 30 µHz.

There are two other cases that can result in a slightly poorer

performance of the classifier which are not due to the classifier

itself. The first is if the computed absolute magnitude is not correct,

this could be due to source confusion during the cross-match to the

Gaia data resulting in choosing the wrong distance estimate. In the

event that the computed absolute magnitude is not correct, this will

naturally cause the classifier to misclassify the star in question. This

situation could arise with any of the other features, however it is

most likely to occur for the absolute magnitude calculation due to

source confusion. The second case is when the white noise level is

very high, either due to a large amount of shot noise or because the

star is very faint. As such the granulation signal can be very hard

or impossible to detect which will result in the calculated features

being in the wrong part of feature space. This will result in the star

being classified as noise. It can to some degree be accounted for in

the shorter length time series, whereby the signal-to-noise level is

lower. However, more extreme situations cannot be accounted for in

our training set.

Despite training our models on real data from Kepler, the described

accuracy is likely an upper limit when applied to other data sets, e.g.

K2, TESS or, in the future, PLATO. This is due to the different way

in which pipelines detrend the data, which can affect the extraction

of the zero-crossings (and HOCs).

In order for the probabilities returned by the classifier to be used

in subsequent analyses, it is important for the probabilities to be

calibrated. By calibrated we mean that if the probability returned

for a star is 0.7, then we would expect this to be correct 70 per cent

of the time. This means that the probability produced by the model

is representative. It is well known that tree-based methods produced

calibrated probabilities and so we do not include any post-processing

to do so (see Appendix C).

8 C O N C L U SIO N

In this work, we have trained a series of classifiers on differing length

data sets that can robustly and accurately classify the evolutionary

state of red giant stars. The classifiers make use of time-domain

features: the MAD of the time series and its first differences, the

normalized number of zero-crossings, and a coherency measure

ψ2. In addition to the time-domain features, the absolute K-band

magnitude is also used. The trained models for each time-series

length and the code used to extract the features are available at

https://github.com/jsk389/Clumpiness. All classifiers, including that

applied to the shortest data set length simulating the shortest data

sets available from TESS achieve above 91 per cent accuracy when

inferring red giant evolutionary states. As a result, our classifier will

be highly applicable to classifying the large number of stars observed

with TESS and, in the future, PLATO as well.

We have also shown that our probabilities are well calibrated

and so can be readily applied to probabilistic analyses that require

specific populations of stars, e.g. the RC, or that can be used as prior

probabilities, e.g. in future peak-bagging codes (e.g. Corsaro 2019).

The time-series features that we propose are not only useful

for determining evolutionary states, they are also of great use for
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Clumpiness 4853

Figure 6. Comparison of the distribution of RGB stars (left) and CHeB stars (right) in the training set (blue) and the predictions (orange). The difference

between the training set and prediction distributions is shown below each histogram.

identifying different stellar populations. This has been demonstrated

briefly for a random subset of all the stars observed with Kepler and

these can be of great use in subsequent classification tasks applied

to multiple stellar populations. For example, both the normalized

number of zero-crossings and the coherency measure ψ2 are being

used as features in the TESS Data for Asteroseismology classification

work (Tkachenko et al., in preparation).
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Figure A1. The number of zero-crossings in a white noise time series

normalized by the number of data points in the data, plotted as a function of

fill. Each line is coloured according to the higher order difference calculated,

where 0 is the equivalent to the zero-crossings of the original time-series data.

The normalization functions for each higher order difference are given by the

grey dashed lines. The bottom panel shows the residuals of the normalization

function fits to the data in the top panel, smoothed over 20 points for clarity

and coloured by the corresponding higher order difference.

A P P E N D I X A : AC C O U N T I N G FO R F I L L I N T H E

C O M P U TAT I O N O F H I G H E R O R D E R

CROSSI NGS

The presence of gaps in the time series will affect the estimation of the

number of zero-crossings, and subsequent higher order differences,

causing an underestimation of the underlying value of the number of

zero-crossings. A correction therefore needs to be applied to account

for gaps in the time-series data so that we can extract reliable zero-

crossing estimates from data sets with missing data. The purpose

of such a correction should be that when applied, the number of

zero-crossings estimated accounting for the fill accurately reflects

the underlying number of zero-crossings if the data had no gaps.

The correction factor was determined using a number of simulated

white noise time series. Fig. A1 shows the results of the simulations

for a variety of fill values and higher order differences. In order

to produce data with differing numbers of gaps, data points were

randomly selected and set to zero, in accordance with the desired fill

value. As a result only short time-scale gaps were inserted.

The shape of the curves in the top panel of Fig. A1 resembles half

of a sigmoid function, which provides a straightforward analytical

formulation that can be fitted to the data. We define the normalization

function as follows:

S(x) =
1

1 + exp(−kx)
− 0.5, for x > 0, (A1)

where x is the value of the fill and k is a free parameter that is fitted

to the data.

The subtraction of 0.5 ensures S(x = 0) = 0, which is a condition

set by our data since when there are no data points (i.e. all zeros),

there are no zero-crossings. However in its current guise, the above

function is not quite suitable because it varies between 0 and 0.5 for

positive x. In order to extend it to the full range over the number of

normalized zero-crossings, we normalize it by S(x = 1), the value

of the function for full fill, and then multiply it by the number of
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Table B1. The xgboost hyperparameter values and hyperparameter space chosen for tuning.

Length of data set Tuning

Hyperparameter 4 yr 180 d 80 d 27 d Range Step

η 0.1 0.375 0.275 0.025 0.025–0.5 0.025

γ 7.5 7.5 7.5 7.5 – –

max depth 3 6 10 8 1–13 1

min child weight 4 1 2 3 1–6 1

subsample 0.7 0.5 0.85 0.5 0.5–1.0 0.05

colsample 0.7 0.5 0.85 0.85 0.5–1.0 0.05

normalized zero-crossings at full fill for each HOC. Examples of this

function fitted to the data are shown in Fig. A1, which was performed

by minimizing the residual sum of squares.

The fill correction is a multiplicative factor and so to discern the

accuracy of the fitted values, we look at the ratio of the data to the

fill correction as a function of fill, as shown in the bottom panel of

Fig. A1. Note the scale of the ‘residuals’ which in turn shows that

we are precise to ∼5 per cent (for the worst case) at a fill of 0.4.

Due to the additional data pre-processing and the merging of data

with large gaps in between, the fill of the real data rarely falls below

∼0.8.

APP ENDIX B: H YPERPARAMETER TUNING

There are a number of hyperparameters of the model that require

tuning in order to achieve a high degree of accuracy.

(i) the learning rate η ∈ [0, 1] dictates how much the contribution

of the newest tree is scaled relative to the current model, i.e. how

much of the variance of residuals it is fitted to. A lower value removes

less variance from the residuals and indicates a more conservative

model.

(ii) max depth controls the maximum depth of each tree, i.e.

how many times an individual tree undergoes a split.

(iii) min child weight controls the conditions under which a

split occurs. Only if the sum of the weights at a given split exceeds

this value does the tree continue to grow.

(iv) subsample dictates the fraction of training data used to

grow each tree.

(v) colsample that dictates the fraction of features used when

constructing each tree. This means that not all features are necessarily

used when constructing each tree.

(vi) λ is the L2 regularization term on the model weights and is

fixed to the default value of 1.

(vii) α is the L1 regularization term on the model weights and is

fixed to the default value of 0.

The degree of regularization, γ , which penalizes the complexity

of each constructed tree is not included in the hyperparameter tuning.

This is because a value of zero, i.e. no regularization, will always

be chosen as introducing regularization will inherently increase the

minimum loss value that can be obtained. The value of γ was chosen

such that the difference between the accuracy of the training and

validation sets were minimized, i.e. the model generalizes well to the

unseen validation data. The value of γ was fixed across all lengths

of data set to a value of 7.5.

We use the HYPEROPT package (Bergstra et al. 2013) to perform

the search over the hyperparameter space defined in Table B1. The

HYPEROPT package then finds the combination of hyperparameters

that minimizes a chosen objective function using a random search.

This function is chosen to be the multiclass log-loss (as given in

equation 15) and 250 trials are made to find the best combination

of hyperparameters. The search is performed separately for each

time-series length.

APPENDI X C : PRO BA BI LI TY CALI BRATIO N

As stated previously, the classifier returns the probability that a

star belongs to a given class rather than just the class label. This

gives the possibility for the probability produced by the classifier

to be used in subsequent probabilistic analyses, whether that be as

a prior distribution on RC membership or perhaps in future peak-

bagging codes. In order for these probabilities to be used, they need

to be well-calibrated so that they can be used as prior or posterior

probabilities.

The classifier produces a probability that a star belongs to a given

class that we shall call the ‘confidence’, if the classifier assigns a

confidence of 0.5–100 predictions then we would expect 50 of the

predictions to be correct. If this is the case then the probabilities are

said to be ‘calibrated’.

It is important to assess whether the probabilities outputted by

the classifier are well-calibrated. In this work, we use temperature

scaling applied to the multiclass classification problem from Guo

et al. (2017)4 to test the calibration of the probabilities. The way in

which the classifier obtains class probabilities is by predicting the

logits (the logarithm of the odds that a star belongs to a particular

class) and passing them through a softmax function

σSM(zi)
(k) =

exp
(

z
(k)
i

)

∑K

j=1 exp
(

z
(j )
i

) , (C1)

where K is the number of classes in the classification problem, the

index i represents an individual star, and zi is the logits for a given

star. The class prediction probability is then made by

p̂i = max
k

σSM(zi)
(k). (C2)

The aim of temperature scaling is to essentially ‘soften’ the softmax

function changing the output probabilities, but not changing to the

overall accuracy of the model. In other words, we want to obtain new

calibrated probabilities q̂ such that

q̂i = max
k

σSM(zi/T )(k), (C3)

where T is the temperature that is a fitted parameter post-classifier

training (see Guo et al. 2017 for more details).

4https://github.com/gpleiss/temperature scaling
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(a) (b)

Figure C1. A reliability plot for the 27 d classifier shown before the probability calibration (a) and after the calibration (b). The 1:1 diagonal is given by the

grey dashed line.

The calibration can be summarized in a reliability plot, as shown

in Fig. C1, which displays the binned confidence of the predictions

from a classifier as a function of the accuracy of the classifier in

that bin. If the probabilities are perfectly calibrated then the data

will lie along the 1:1 diagonal, and any deviation will show some

degree of miscalibration. Fig. C1(a) shows the reliability plot of

the 27 d classifier before the probability calibration and it can be

seen that the probabilities are well calibrated. Once the probability

calibration has been applied the difference is only very slight. As

a result we choose not to add this extra post-processing step to

the classifier probabilities and confirm that the probabilities can be

reliably interpreted in subsequent analyses.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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