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ABSTRACT

We report on the detection of pulsations of three pulsating subdwarf B stars observed by the
Transiting Exoplanet Survey Satellite (TESS) satellite and our results of mode identification
in these stars based on an asymptotic period relation. SB 459 (TIC 067584818), SB 815
(TIC 169285097), and PG 0342 + 026 (TIC 457168745) have been monitored during single
sectors resulting in 27 d coverage. These data sets allowed for detecting, in each star, a few
tens of frequencies that we interpreted as stellar oscillations. We found no multiplets, though
we partially constrained mode geometry by means of period spacing, which recently became a
key tool in analyses of pulsating subdwarf B stars. Standard routine that we have used allowed
us to select candidates for trapped modes that surely bear signatures of non-uniform chemical
profile inside the stars. We have also done statistical analysis using collected spectroscopic
and asteroseismic data of previously known subdwarf B stars along with our three stars.
Making use of high precision trigonometric parallaxes from the Gaia mission and spectral
energy distributions we converted atmospheric parameters to stellar ones. Radii, masses,
and luminosities are close to their canonical values for extreme horizontal branch stars. In
particular, the stellar masses are close to the canonical one of 0.47 Mg, for all three stars but
uncertainties on the mass are large. The results of the analyses presented here will provide
important constrains for asteroseismic modelling.

Key words: asteroseismology — stars: oscillations (including pulsations) — subdwarfs.

1 INTRODUCTION

Subdwarf B (sdB) stars are extreme horizontal branch stars, consist
of a convective helium burning core, helium shell and a very
thin (in mass) hydrogen envelope. The effective temperatures 7T
are in a range of 20 000—40 000 K, which moved them blueward

* E-mail: sumanta.kumar27 @gmail.com
1 NSF Astronomy and Astrophysics Fellow.

from the normal horizontal branch stars in the Hertzsprung—Russell
diagram (Heber 2016). The sdB stars are found in almost all stellar
populations, field (Altmann, Edelmann & de Boer 2004; Martin
et al. 2017) as well as open (Kaluzny & Ruciiski 1993) and
globular clusters (Moehler 2001; Moni Bidin et al. 2008). The
sdB stars have masses nearly 0.5 Mg and surface gravities, in a
logarithmic scale, log (g/ cms~2) of 5.0—5.8 (Heber 2016), which
means that they are compact in size (0.15-0.35Rg). They are
considered to be one of the most ionizing sources of interstellar gas
at high galactic latitudes (de Boer 1985), and mostly responsible for
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Table 1. Basic information of the targets. First rows for each target refer to the parameters used in our work. Additional references are given for comparison.

TIC Name Sectors Tetr (K) log g/(cm s72) log npe/ny Gmag Distance (pc) Reference for Tefr and log g
067584818 SB 459 3 24900(500) 5.35(10) —2.58(10) 12.2 422(12) This work
25000(1200) 5.30(20) —2.8(30) Heber et al. (1984)
169285097 SB 815 2 27200(550) 5.39(10) —2.94(01) 10.9 246(5) Schneider et al. (2018)
28 800(1500) 5.40(20) —2.46(30) Heber et al. (1984)
28390(300)* 5.39(04)¢ —3.07(24)¢ Németh, Kawka & Vennes
(2012)
27 000(1100) 5.32(0.12) —2.90(10) Geier et al. (2013)
457168745 PG 0342 + 026 5 26 000(1100) 5.59(12) —2.69(10) 10.9 163(3) Geier et al. (2013)
26200(1000) 5.67(15) —2.4(15) Saffer et al. (1994)

“Symmetric errors are given instead of the original asymmetric ones. Systematic errors are not accounted for.

the ultraviolet upturn phenomenon in early-type galaxies (Brown
et al. 1997).

Due to a low mass of the hydrogen envelope (<1072 M), sdB
stars are not able to sustain two shell nuclear burning, skipping the
asymptotic giant branch, and heading directly to the white dwarf
cooling track, right after the helium in the core is exhausted. The
reason for the lack of a more massive hydrogen envelope is still
a puzzle, though binarity is a natural explanation for a mass-loss.
This can explain sdBs in binaries. A merger event can be invoked
as a channel leading to formation of single sdBs (Han et al. 2002).
According to Charpinet et al. (2018) who presented results on stellar
rotation analysis, substellar companions may also be responsible for
mass-loss, while the objects are still observationally single. Fontaine
et al. (2012) concluded that the mass distribution points at single
star evolution, however in those cases a strong wind is necessary to
remove the hydrogen envelope. No evidence for a strong wind has
been reported thus far.

Discovery of pulsating sdB stars (hereafter: sdBV) by Kilkenny
etal. (1997) has opened a way to understand their internal structure
by using asteroseismological techniques (Charpinet et al. 1997).
SdBV stars show pulsations in p modes or g modes, though a mix
of the modes are recently commonly found in the so-called hybrid
sdBV stars. Typical periods of p-mode pulsators are of the order
of minutes, while periods of g-mode pulsators are of the order of
hours (Heber 2016).

In the field of sdBV stars, a significant improvement has been
made during the last several years and a big credit goes to the
Kepler and K2 missions due to their unprecedented data delivery.
Asteroseismic analyses of Kepler-observed sdBV stars have re-
vealed interesting and useful features. Rotationally split multiplets
and asymptotic period sequences have never been easy to detect in
ground-based data; Balloon 090100001 being an exception (Baran
etal. 2009). Multiplets allowed for identification of low degree (£ <
2) modes, although higher degrees (3 < ¢ < 8) in the ‘intermediate
region’ of 400-700 nHz have been also detected (Telting et al. 2014;
Foster et al. 2015; Silvotti et al. 2019). An observed period spacing
between consecutive overtones of g modes of the same modal
degree, ranges from 230 to 270s (Reed et al. 2018a). Asymptotic
sequences often show a ‘hook’ feature (e.g. Baran & Winans 2012)
in échelle diagrams and occasionally include trapped modes (e.g.
@stensen et al. 2014), which is likely the indication of a non-
uniform chemical profile along a stellar radius (Charpinet et al.
2000). Pulsation models also predict low order p-mode overtones to
be spaced in frequency by 800—-1100 pHz (Charpinet et al. 2000).
Observations have yielded a mixture of results, with three sdBV
stars in agreement (Baran et al. 2009; Foster et al. 2015; Reed et al.
2018b) and two other with much smaller spacings (Baran et al.
2012; Reed et al. 2018b).

The successor of Kepler and K2 missions, Transiting Exoplanet
Survey Satellite (TESS; Ricker et al. 2014), an all-sky survey,
satellite has been launched on 2018 April 18. The main goal of the
TESS mission is to detect exoplanets around nearby bright (down
to about 15mag) stars by using the transit method. It provides
data over a time span of 2 yr by using its four CCD cameras with
24 x 96 deg field of view, which is known as an individual sector.
TESS will cover 26 sectors over 24 months. The short cadence (SC)
mode of 2 min, allocated for a selected sample of targets, allows us
to investigate the light variations of the pulsating subdwarf B stars,
covering entire g-mode region and reaching up to the longest period
p modes.

This paper reports results of our work on three sdB stars moni-
tored during the TESS mission and found to be light variable con-
sistent with stellar pulsations. The targets SB 459 (TIC 067584818)
and SB 815 (TIC 169285097) have been first identified by Slette-
bak & Brundage (1971) as early-type stars near the Southern Galac-
tic pole and classified as sdB stars by Graham & Slettebak (1973).
Both stars have been studied by the Montreal-Cambridge-Tololo
survey as MCT 0106 — 3259 and MCT 2341 — 3443 (Lamontagne
et al. 2000). PG 0342 4 026 (TIC 457168745) was discovered by
the Palomar Green survey to be a sdB star (Green, Schmidt &
Liebert 1986). @stensen et al. (2010) were first attempting at finding
pulsations in SB 815. Unluckily, due to a short run, no variability
has been reported. Another attempt was done using the Super WASP
telescope and (Holdsworth et al. 2017) detected pulsations, marking
the star as an sdBV.

We use Fourier technique to detect frequencies and asymptotic
period spacings to identify pulsation modes and follows the first pa-
per in our series (Charpinet et al. 2019). The work is a continuation
of our effort started with the advent of the Kepler and K2 missions.

2 SPECTROSCOPIC ANALYSIS

Atmospheric parameters of SB 815 and PG 0342 + 026 are available
in the recent literature and are presented in Table 1 along with our
determination of these parameters of SB 459. We also determined
the radial velocities of PG 0342 + 026, which is explained in details
below.

In case of SB 459, the only available quantitative spectral analysis
was carried out by Heber et al. (1984). Therefore, it was considered
worthwhile to revisit the star and to take another spectrum with
more advanced instruments than before. The ESO Faint Object
Spectrograph and Camera 2 (EFOSC2) spectrograph at the 3.58-m
New Technology Telescope (NTT) at the La Silla Observatory was
used. The single spectrum was obtained on 2019 June with grism #7,
aslitof 1 arcsec covering the wavelength range from 3270 to 5240 A.
Given that we used 2 x 2 binning the nominal resolution of the
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Figure 1. Spectral line fit of the Dupont spectrum of SB 459.

spectrum should be A% ~ 6.4 A. However, the seeing was excellent
such that the slit was underfilled, which resulted in somewhat better
resolution of 5.4 A as measured directly from the spectrum. The
exposure time was 350s. We reduced the long-slit spectra using
standard IRAF packages (Tody 1986, 1993), by performing bias-
subtraction, flat-field correction, wavelength, and flux calibrations
(Massey, Valdes & Barnes 1992; Massey 1997). The observed
standard star was Feige 110. The final spectrum has a signl-to-noise
ratio of ~ 300 at 4200 A.

SB 459 was also observed with Boller & Chivens Spectrograph
at the 2.5-m Iréné Du Pont Telescope at the Las Campanas
Observatory. The single spectrum was taken on 2019 October 31
using the following instrument setup, the grating of 600 lines mm ™"
corresponding to the central wavelength of 5000 A covering a wider
wavelength range from 3427 to 6573 A. We used a slit width of 1
arcsec which resulted in somewhat better resolution, than EFOSC2,
of AL ~ 3.1 A. For the data reduction, we followed the same steps
as in the case EFOSC2 spectra. The signal-to-noise ratio of the final
spectrum is ~ 250 at 4200 A with 600 s exposure time.

We matched eight Balmer lines and four Hel lines to both
the EFOSC and the Dupont spectrum (Fig. 1) with the metal-
line blanketed LTE grid of Heber, Reid & Werner (2000) using
%2 minimization techniques as described in Napiwotzki, Green &
Saffer (1999). The error budget is dominated by systematic errors,
which we estimate at 2 per cent for the effective temperature and
+0.1 dex for the surface gravity (see Schneider et al. 2018).
The resulting atmospheric parameters are remarkably similar at
Ter = 25100K, log g/(cms™2) = 5.34, log nye/ny = —2.61 for
the EFOSC spectrum and Ty = 24 700K, log g/(cm s72) = 5.36,
log nyge/ny = —2.55 for the Dupont spectrum. We adopted the mean
values as listed in Table 1, which agree with the published values
to within respective error limits.

PG 0342 4- 026 was observed in 2012 November—December with
Harps-N at the Telescopio Nazionale Galileo (TNG, La Palma) in
the context of a program to search for sdB low-mass companions
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Figure 2. Radial velocities of PG 0342 + 026. Although four measurements
are not enough to fit the RV data with the main pulsation frequencies, at
least they give a rough estimate of the RV amplitudes involved.

(see Silvotti, Ostensen & Telting 2019 for more details). Four high-
resolution spectra were collected with a mean signal-to-noise ratio
of 71 at 4700 A.! Using the cross-correlation function on about 150
absorption lines (excluding H and He lines that are too broad), we
computed the radial velocities (RV) of the star and we found a mean
system velocity of +14.07 km s~! with significant variations around
this value (Fig. 2). Thanks to the TESS observations, we can now
confirm that these variations are at least partly caused by g-mode
pulsations, as it has been suspected since 2012. Having available
only four RV data points, and knowing that this star pulsates in at
least 20 frequencies, we are unable to obtain a reliable fit, however,
these data can be used to derive an upper limit to the minimum mass
(M sini) of a hypothetical companion. The question whether this sdB
star is single or not is important for its evolution prior to EHB.

In order to set upper limits to the mass of a companion, we
computed a series of synthetic RV curves for different orbital periods
and companion masses, assuming circular orbits, and compared
these curves with the RV measurements. For each synthetic RV
curve we selected the phase that gives the best fit to the data using a
weighted least-squares algorithm. For each observational point we
computed the difference, in absolute value and in ¢ units (where o
is the observation error), between observed and synthetic RV values.
The colour coding in Fig. 3 corresponds to the mean value of this
difference in o units. We should keep in mind, however, that these
upper limits to the mass of a companion are likely overestimated
given that most if not all the variations that we see in Fig. 2 are
likely caused by pulsations.

3 SPECTRAL ENERGY DISTRIBUTION,
INTERSTELLAR REDDENING, AND STELLAR
PARAMETERS

Photometric measurements allow the angular diameters to be deter-
mined along with the interstellar extinction, once the atmospheric
parameters are known. We constructed spectral energy distributions
from photometric measurements ranging from the ultraviolet (/UE)
to the infrared. Infrared data were taken from 2MASS, VISTA-
VIKING (J, H, K; Skrutskie et al. 2006), and WISE (W1, W2, Cutri &
et al. 2012) catalogues. Magnitudes and colours in the Johnson
(Allard et al. 1994; Mermilliod, Mermilliod & Hauck 1997; Landolt
2007), Stromgren (Wesemael et al. 1992; Paunzen 2015), APASS
(Henden et al. 2015), SkyMapper (Wolf et al. 2018), and Gaia (Gaia
Collaboration 2018) photometric systems were fitted (for details

IThese spectra show a large number of metal absorption lines, many of
which do not yet have a certain identification. The line identification is in
progress and the results will be presented in a subsequent article.
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Figure 3. Upper limits to the mass of a hypothetical companion to
PG 0342 4 026 as a function of orbital period. The regions where the
presence of a companion is more compatible with the RV measurements are
those in red/yellow/green, while the regions in dark blue correspond to a
very low probability to have a companion. See text for more details.

see Heber, Irrgang & Schaffenroth 2018). Three numerical box
filters were defined to derive UV-magnitudes from /UE UV spectra
covering the spectral ranges 1300-1800, 2000-2500, and 2500—
3000 A. Interstellar extinction is accounted for using the extinction
curve of Fitzpatrick (1999).

The angular diameter and the interstellar reddening parameter
E(B — V) were the only free parameter in the matching of the
synthetic the SEDs to the observed ones. In Fig. 4, we plot the
SEDs as flux density times the wavelength to the power of three
(F;,A%) versus the wavelength to reduce the steep slope of the SED
over such a broad wavelength range. We also display the residuals
(O-C) of the magnitudes and the colours. The synthetic SEDs match
the observed ones very well in all parts of the wide spectral range.
Hence, there is no contribution from potential companions at any
wavelength for all three stars. Interstellar reddening is consistent
with zero for SB 459 and SB 815 and small for PG 0342 + 026,
all in accordance with the predictions of the maps of Schlegel,
Finkbeiner & Davis (1998) and Schlafly & Finkbeiner (2011). The
resulting angular diameters and interstellar reddening parameters
are given in Tables 2, 3, and 4.

In its second data release the Gaia mission (Gaia Collaboration
2018) provided trigonometric parallaxes of high precision (to better
than 3 per cent) for all three stars. The ‘renormalized unit weight er-
ror’ (RUWE; see Lindegren 2018) is a good quality indicator for the
astrometric solution, because it is independent of the colour of the
object. This makes it the best choice to judge the quality of the Gaia
parallaxes of blue stars, such as studied here. The RUWE value is be-
low the recommended value of 1.4 for all three stars, indicating that
the astrometric solutions are reliable. The Gaia parallaxes and the
angular diameters allow us to convert the atmospheric parameters
to stellar radii via R, = ®/(2w), masses via M, = gR?/G, and

luminosities via log (ﬁ) = log ((%) ? (57770ng )4> . The results
are summarized in Tables 2, 3, and 4. Uncertainties of the derived
radii and luminosities are small because of the high precision of the
Gaia parallaxes and well-constrained effective temperatures. The
derived masses, however, have larger uncertainties resulting from
the uncertainties of the spectroscopic surface gravities. The resulting
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Figure 4. Matching the spectral energy distributions and colours of SB 459
(upper panel), SB 815 (middle panel), and PG0342 + 026 (lower panel). The
coloured observed magnitudes ({UE box: black, SDSS: blue; SkyMapper:
yellow; Gaia: cyan; VISTA: dark red; 2MASS: red, WISE: magenta) were
derived from filter-averaged fluxes. The dashed horizontal lines indicate the
filter widths. A model SED calculated with the spectroscopic parameters
is overplotted as a solid grey line. Also overlayed are the /UE spectra in
magenta. The panels below (SED) and to the right (colours) of the main
panel show the residuals for the magnitudes and colours.

masses are close to canonical (Dorman, Rood & O’Connell 1993),
but uncertainties are large, mainly due to the surface gravity not yet
being sufficiently constrained.

4 LIGHT VARIATIONS

All three targets have been observed during single TESS sectors,
which are specifically listed in Table 1, and have been observed
in the SC mode, lasting 120s. We performed our analysis by
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Table2. SB459: Angular diameters, interstellar reddening parameter, Gaia

parallax, and stellar parameters.

68 per cent confidence

Object: SB459 interval
Angular diameter log(® (rad)) —10.6134 + 0.0016
Color excess E(B — V) 0.0049 £ 0.0021 mag
Parallax @ (Gaia, RUWE = 1.17) 2.37 + 0.07 mas
Effective temperature Tefr (prescribed) 24900 £+ 500K
Surface gravity log(g (cms~2)) (prescribed) 5.35+0.10
Helium abundance log(n(He)) (fixed) —2.58
Radius R, 0.228 £+ 0.007 Rg
Mass M, 042 £0.11 Mg
Luminosity log (ﬁ) 1.25 £ 0.05

Table 3. Same as Table 2, but for SB 815.

Object: SB815

68% confidence interval

Angular diameter log(® (rad))
Colour excess E(B — V)
Parallax @ (Gaia, RUWE = 1.23)

0.0018
-1 03233(::2%0017
0.00187 5 o1s mag

4.07 & 0.10 mas

Effective temperature Tefr (prescribed) 27200 £+ 550K
Surface gravity log(g (cm s72)) (prescribed) 5.39 £0.10
Helium abundance log(n(He)) (fixed) —2.94
Radius R, 0.221 £ 0.005Rg
Mass M, 044 +0.11 Mg
Luminosity log (ﬁ) 1.38 £0.05

Table 4. Same as Table 2, but for PG0342 + 026.

68 per cent confidence
Object: PG0342 + 026 interval

—10.2975 £ 0.0025
0.128 £ 0.004 mag
6.13 + 0.13 mas
26000 = 1100K

Angular diameter log(® (rad))

Color excess E(B — V)

Parallax @ (Gaia, RUWE = 1.28)
Effective temperature Tefr (prescribed)

Surface gravity log(g (cm s72)) (prescribed) 5.59 £0.12
Helium abundance log(n(He)) (fixed) —2.69
Radius R, 0.182 £ 0.004 R
Mass M, 047 £0.14Mg
Luminosity log (ﬁ) 1.13 £ 0.08

using the corrected time series data extracted through the TESS
data processing pipeline developed by NASA’s Science Processing
Operation Centre. These processed data are publicly available
in the Mikulski Archive for Space Telescopes data base. We
collected these files and have done further analysis. We extracted
PDCSAP_FLUX, which is corrected for on-board systematics and
neighbours’ contribution to the overall flux. We clipped fluxes
at 5o to remove outliers, de-trended long-term variation (longer
than days). Finally, we normalized fluxes by calculating (f/ < f >
—1)%1000, deriving part per thousand (ppt). We show the resultant
light curves of each target in the top panels of Fig. 5.

4.1 Fourier analysis

We used a Fourier technique for identifying the frequency of
pulsations. Since we have only about 27d long SC data for each
target, the frequency resolution is 0.64 uHz as defined by 1.5/T,
where T is the time coverage of the data (Baran 2012). The standard
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pre-whitening procedure has been used by fitting the peaks with
A;sin (2rfit + ¢;) by means of a non-linear least-square method. We
have used our custom pipeline for this purpose. We pre-whitened the
data down to the detection threshold defined as 4.5 times the mean
noise level, i.e. the signal-to-noise ratio, S/N = 4.5, calculated from
the residual amplitude spectra. The threshold has been discussed by
Baran, Koen & Pokrzywka (2015) and Zong et al. (2016), who
reported slightly higher threshold than in case of ground-based
data. The SC mode sampling translates to the Nyquist frequency
of 4166 puHz. In case of SB815 we found some frequencies in
the p-mode range, close to the Nyquist frequency and, following a
discovery of a reflection across Nyquist (Baran et al. 2012), we also
searched the amplitude spectrum above the Nyquist frequency in
order to see if any of subNyquist p modes have superNyquist origin.
An amplitude and a profile of the peaks in the sub and superNyquist
regions help identifying the origin of the signal. Since the Nyquist
frequency is not fixed in time, the reflections will look smeared out
and therefore lower in amplitude, however, this effect works best if
the satellite motion covers substantial part of the orbit, which does
not happen in case of single sector data. Therefore, we assume that
all frequencies in the p-mode region originate in the subNyquist
range are real, but this should be confirmed with shorter cadence
data, presumably during the second phase of TESS mission, when
20 s cadence will be accessible.

In SB459, we detected 22 frequencies above the detection
threshold with 207.314 pHz being the highest amplitude one at
1.72 ppt, and all are in the g-mode region. In SB 815, we detected
37 frequencies in the g-mode region and six frequencies in the p-
mode region, with the highest amplitude (1.642 ppt) frequency at
258.1878 uHz. In PG 0342 + 026, we detected 27 frequencies, with
219.274 nHz having the highest amplitude of 0.758 ppt. We list all
frequencies detected in those three stars in Tables 5, 6, and 7.

SB 815 turned out to be a hybrid pulsator. The highest amplitude
of 1.296 ppt in the p-mode region shows at 2582.8740 uHz. The
signal at high frequencies is parted into two groups. The first
one contains four frequencies, while the second one has two low-
amplitude frequencies. We found the separation between these two
groups to be around 896 nHz. Such spacing has been previously
reported by Baran et al. (2009), who concluded that such groups
may represent modes with two consecutive radial orders.

4.2 Multiplets

Multiplets are a result of stellar rotation that changes frequency
of modes with the same modal degree and m # 0. The frequency
change also depends on a rotation period of a star. For a given modal
degree / there is 2/ 4+ 1 components differing in an azimuthal order
m, therefore by the number of components in an identified multiplet
we can infer the modal degree.

We could not detect multiplets in any of these three targets. The
reason for null detection may be not long enough data coverage,
which causes the frequency resolution not to be high enough to
resolve multiplet components. A common rotation period derived
in sdB stars is around 40d (e.g. Baran et al. 2012; Baran &
Winans 2012; Telting et al. 2012; @stensen et al. 2014; Foster
et al. 2015; Charpinet et al. 2018), which, in case of p modes,
translates to 0.29Hz or half the frequency resolution of our data,
though exceptions are found (Baran et al. 2009; Reed et al. 2014).
Another explanation may be a pole-on orientation of a pulsation
axis, however, we consider this explanation to be very unlikely, since
we do not expect all three randomly chosen targets to be oriented in
exactly the same way. In case the amplitudes of the side components
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Figure 5. The upper panels show the light curves, while the bottom panels show the amplitude spectra. The green horizontal line in the bottom panels denotes

4.5¢ threshold.

Table 5. List of frequencies detected in SB 459.

ID Frequency Period Amplitude S/N [ n
(uHz) (s) (ppt)
il 77.82(5) 12849.8(9.0) 0.30(5) 4.5

I3 100.092(48)  9990.84.7)  0.34(5) 52 1 39
A 122.319(22)  81753(1.5)  0.74(5) 111 172 32/55
f 126.27(5) 7919.5(33)  0.31(5) 46 1 31
fs 140.180(19)  7133.7(10) 086(5) 129 1 28
f 145213(17)  6886.4(8) 097(5) 146 1 27
I 156.802(13)  6377.5(5) 130(5)  19.6 1/2 25/43
f 163.519(48)  6115.5(1.8)  0.34(5) 51 1 24
fo 178.170(10)  5612.6331)  1.66(5) 249 1 22
fio 196.322(12)  5093.67(31)  136(5) 204 1 20
fin 207.314(9) 4823.61(22)  1.72(5) 258 1 19
fia 221.87(5) 4507.2(1.1)  0.30(5) 4.6

fis 233.175(14)  4288.63(26)  1.175) 176 1 17
fia 234.566(42)  4263.2(8) 0.39(5) 5.9

fis 242.460(42)  4124.4(7) 0.39(5) 59 2 28
fie 246.917(46)  4049.9(8) 0.35(5) 53 1 16
fr 251.341(32)  3978.7(5) 0.51(5) 77 2 27
fis 261.184(28)  3828.72(40)  0.60(5) 90 2 26
flo 263.905(20)  3789.24(28)  0.84(5) 126 1 15

f20 286.201(10)
S 309.779(17)
f2 492.395(34)

3494.05(13)  1.58(5) 237 1 14
3228.11(18)  0.93(5) 140 12 13/22
2030.89(14)  0.47(5) 71 2 14

are low, below the detection threshold, these components will not
be detected, either.

4.3 Asymptotic period spacing

Another method that helps identifying modes relies on periods
and not frequencies. In the asymptotic limit, i.e. n>>/, consecutive
overtones of g modes are nearly equally spaced in period (e.g.
Charpinet et al. 2000; Reed et al. 2011). The pulsation period of a
given mode with degree / and radial order n can be expressed as

Py

JIT+T1)

P, = n+e (D)

where Py is the period of the fundamental radial mode and € is an
offset (Unno et al. 1979). Thus, for two consecutive radial overtones
and a given modal degree, a difference (commonly called as period
spacing) of their periods should be constant, dependent of the modal
degree and independent of the radial order.
Py

VIT+T)

Using equation (1) it is possible to assign the radial order = to the
precision of some arbitrarily chosen offset n;,. We provide those
values in Tables 5, 6, and 7. Using equation (2) we can also derive a
ratio between a period spacing of modes of different modal degree,
e.g. the ratio between dipole and quadrupole modes equals 1/+/3.
This is very strong constraint, since having the period spacing for
dipole modes, we can estimate the expected value for higher degree
modes. Previous analyses of photometric space data of sdBVs show
that the average period spacing of dipole modes is nearly 250 s on
average (Reed et al. 2018a). The average spacing for quadrupole
modes is found to be close to the expected value, being a result of
the ratio given above.

Best, if the mode identification is done based on both features,
multiplets, and period spacing, since they complement each other
providing more convincing conclusion on a mode assignment, very
often helping to start finding a specific modal degree sequence. In
our case, we had to rely solely on the period spacing. We started our
modal degree assignment with the highest amplitude modes. This
assumption is justified by the surface cancellation effect, which
causes that modes with higher degrees have smaller observational
amplitudes. In this consideration, it is assumed that all modes have
the same intrinsic amplitudes, which may not necessarily be correct,
however, our thus far experience clearly shows that most of the high-
amplitude frequencies in sdBV stars are dipole modes. Despite of
this assumption, if two peaks satisfy both dipole and quadrupole
sequences, we mentioned both values in tables and figures. In
échelle and reduced period diagrams we have added these points
with different colour coding. The average period spacing in sdBVs
detected thus far is between 200 and 300s. To guess the average
spacing in our targets, we calculated the Kolmogorov—Smirnov (KS)
test and we plotted the results in Fig. 6. The meaning of a Q value and
more details on this test is provided by Kawaler (1988). Basically,

AP =Py — Py = 2

MNRAS 495, 2844-2857 (2020)
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Table 6. List of frequencies detected in SB 815.

Table 7. List of frequencies detected in PG 0342 + 026.

ID Frequency Period Amplitude S/N [ n ID Frequency Period Amplitude  S/N l n
(uHz) (s) (ppH) (uHz) (s) (ppH)
A 100.438(7) 9956.4(7) 0.71821) 273 1 38 fi 96.786(35) 10332.1(3.7) 0.145(21) 5.5
bh 103.574(39)  9655.0(3.6) 0.125(21) 48 1 37 H 108.889(9) 9183.7(7) 0.593(21) 22.6 1/2 40/69
bE 106.159(34)  9419.8(3.0) 0.14121) 54 1/2 36/62 f 114.621(23) 8724.4(1.7) 0.222(21) 85 1 38
fa 112.435(31)  8894.0(2.4) 0.228(22) 8.7 fa 124.720(42) 8018.0(2.7) 0.120(21) 46 1 35
fs 112.789(24)  8866.1(1.9) 0291(22) 11.1 1 34 fs 128.559(32)  7778.5(1.9)  0.161(21) 6.1 1 34
fo 123.734(32)  8081.9(2.1) 0.149(21) 57 1 31 fo 132.313(32) 7557.8(1.8) 0.160(21) 6.1 1 33
fi 128.523(22)  7780.7(1.3) 0.21721) 83 1 30/t ¥il 136.448(13) 7328.8(7) 0.391(21) 149 1 32
R 131.737(20)  7590.9(1.2) 0.242(21) 9.2 1/2 29/50 R 145.763(28) 6860.5(1.3) 0.185(21) 70 1 30
fo 136.885(9) 7305.4(5) 0.534(22) 203 1 28 fo 150.803(39) 6631.2(1.7) 0.131(21) 50 1 29
fio 137.674(27)  7263.5(1.4) 0.186(22) 71 2 48 fio 156.352(34) 6395.8(1.4) 0.152(21) 58 1 28
i 142.334(26)  7025.7(1.3) 0.193(22) 73 1 27 S 175.286(30) 5705.0(10) 0.170(21) 6.5 1/2 25/43
fi2 142.858(26)  6999.9(1.3) 0.189(22) 72 fia 198.546(36) 5036.6(9) 0.141(21) 54 2 38
13 151.999(14)  6579.0(6) 0.345(21) 13.1 1 25/t N3 204.375(30) 4893.0(7) 0.167(21) 63 2 37
fia 154.178(37)  6486.0(1.5) 0.132(21) 5.0 fia 219.274(6) 4560.50(13)  0.819(21)  31.1 1 20
fis 165.197(16)  6053.4(6) 0.306(21) 116 2 40 fis 231.527(17) 4319.16(32)  0.298(21) 11.3 1 19
fie 174.841(36)  5719.5(1.2) 0.133(21) 51 1 22 fie 243.921(17) 4099.69(28)  0.307(21) 11.7 1/2 18/31
fi7 182.576(20)  5477.2(6) 0.238(21) 9.0 1 21 N7 250.256(7) 3995.90(11)  0.758(21) 28.8 1 t
fis 202.345(27)  4942.1(7) 0.17921) 68 1 19 fis 260.620(30)  3837.00(45) 0.167(21) 64 1/2 17/29
fio 213.908(7) 4674.92(16) 0.671(21) 25.6 1/2 18/31 fio 295.891(8) 3379.62(9) 0.623(21) 237 1 15
Fo 226.812(15) 4408.93(29)  0.328(21) 125 1 17 Fo 303.246(28)  3297.65(30) 0.18121) 69 2 25
a1 228.836(39)  4369.9(7) 0.123(21) 47 2 29 i 315.536(20) 3169.21(20)  0.252(21) 96 2 24
o 236.890(10) 4221.36(17)  0.489(21) 186 2 28 o 318.907(13)  3135.71(13)  0.39021) 148 1 14
3 246.268(38)  4060.6(6) 0.12521) 48 2 27 3 359.953(15) 2778.14(12)  0.329(21) 125 1 t
foa 258.1879(29) 3873.149(44) 1.642(21) 625 1 15 foa 406.920(26) 2457.48(16) 0.194(21) 74 1 11
Pos 266.359(24)  3754.33(33)  0.204(21) 7.8 2 25 Ps 510.726(28)  1958.00(11)  0.182(21) 69 1/2 9/15
6 273.537(5) 3655.82(7) 0.878(21) 334 1 t S 529.408(43) 1888.90(15)  0.119(21) 4.5
P 277.625(34)  3601.99(44) 0.143(21) 54 2 24 7 597.478(25) 1673.70(7) 0.204(21) 7.8
S8 279.723(6) 3574.96(8) 0.77721) 29.6 1 14
f29 285.303(34)  3505.05(42) 0.14121) 54
S0 289.809(14)  3450.55(16) 0.353(21) 134 2 23 4.3.2 SB8I5
f?l 302.183(37)  3309.26(40) 0.137(22) 5.2 In our analysis, we detected six frequencies in the p-mode region
fx 302.892(14)  3301.51(16) 0.35322) 134 172 13/22 and we excluded those from our KS test, which eventually points
f33 330.565(6) 3025.12(5) 084321) 323 1 12 at a common spacing of around 264 s (middle panel in Fig. 6). We
fa 361.604(19) 2765.46(14) 0.257(21) 98 1 11 K . K -
s 445775(40)  2243.29(20) 0.121(21) 46 1 9 arrived at two possible solutions that we present in Figs 8 and 9.
f6 482.523(40)  2072.44(17) 0.119(21) 45 2 14
fa7 669.836(19)  1492.902(42) 0.255(21) 9.7 4.3.2.1 Solution I In this solution, we identified 17 dipole modes,
f38 2582.8740(37)  387.1656(6) 1.296(21)  49.3 nine quadrupole modes, while four peaks fit both sequences.
S 2793.905(6) 357.9219(8) 0.786(21)  29.9 Linear fits provide the average period spacings of 265.04(73) s and

fio  2808.165(22)
fa 2841.082(31)
fio  3737.134(28)
fiz  3747.579(40)

356.1045(28)  0.214(21) 8.1
351.9786(39) 0.153(21) 5.8
267.5848(20)  0.169(21) 6.4
266.8390(29) 0.118(21) 45

this test provides the most common values of period spacings that
exist in the data. The result of our mode identification based on the
asymptotic period spacing is also presented in échelle diagrams,
which we discuss in Section 4.4.

4.3.1 SB459

The KS test shows a common spacing of periods around 260 s
shown in the left-hand panel of Fig. 6. We identified 12 dipole
modes, four quadrupole modes, and three peaks satisfying both
sequences. We marked them in the amplitude spectrum in Fig. 7.
Linear fits provide the average period spacings of 259.16(56) s and
149.89(5) s for dipole and quadrupole modes, respectively.

MNRAS 495, 2844-2857 (2020)

153.02(11) s for dipole and quadrupole modes, respectively. We
identified a frequency 273.537 pHz with an amplitude of 33.40,
where o denotes an average noise level, which fits neither dipole
nor quadrupole sequence. Its amplitude is also much higher to
consider it to be any / > 3 mode due to the surface cancellation
effect (Dziembowski 1977). Therefore, we assigned it as a trapped
dipole mode. This mode identification looks fairly good, but two
frequencies 128.523 and 151.999 uHz differ excessively from the
mean period spacing (28.5 per cent and 15.6 per cent, respectively).
To justify these extreme deviations we followed the theoretical
consideration provided by Charpinet et al. (2013) in fig. 4, which
presents that thin hydrogen envelope sdBVs show higher deviations
from the mean period spacing.

4.3.2.2 Solution2 This solution considers those two extremely
deviated frequencies as candidate for trapped modes. These peaks
have moderate amplitudes (8.30 and 13.10, respectively) and they
do not fit the quadrupole sequence any better. Therefore, taking
these two as trapped modes sorts out large deviations in the period
sequence of the dipole modes. In this solution, we are left with 15
dipole modes with average period spacing of 265.15(57) s and three
trapped modes.
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4.3.3 PG0342 + 026

The KS test points at a common spacing around 232 s (right-hand
panel in Fig. 6). There is another minimum of a log Q value at 116 s.
It is close to the expected value of a period spacing of quadrupole
modes (132 s), however, it is half the period spacing of dipole modes,
which sometimes appears in this test. We identified 13 dipole modes,
four quadrupole modes, and five modes satisfying both sequences.
We marked all identified modes in the amplitude spectrum in Fig. 10.
A linear fit provides the average period spacings 232.25(30) and
133.74(10) s for dipole and quadrupole modes, respectively. Two
frequencies seem to be candidates for trapped modes and we refer
to Section 4.4 for more details.

We have collected average period spacings (AP) as a function of
effective temperature for sdBV stars from the literature. All these
collected information for 27 sdBVs is provided in Table 8. We
plotted these two parameters in Fig. 11. We stress that the sample
is not very large yet and any conclusion maybe biased. The first
try of finding correlation between AP and T has been undertaken

by Reed et al. (2011) with null result. We increased the number of
points but our plot shows that still no clear correlation is present.
There are zones of avoidance, though they may just be lacking data
points as a consequence of a small sample. Therefore, based on
our findings, we conclude that the average period spacing does not
correlate with T.ir and so AP does not translate to a specific Tes and
vice versa.

4.4 Echelle diagrams and candidates for trapped modes

The échelle diagrams are very useful tools for testing the identi-
fication of the modes by means of the asymptotic period spacing.
These diagrams represent P mod AP in function of P, where P is
the pulsation period and AP is a period spacing. We present the
diagrams for all three targets in Fig. 9. For SB 815 we include two
solutions. The upper panels show the échelle diagrams for dipole
modes while the bottom panels show the diagrams for quadrupole
modes. Peaks satisfying both the sequences have been added to both

MNRAS 495, 2844-2857 (2020)
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Table 8. Effective temperature and average period spacing data for known
sdBVs. The first reference is for A P and the second is for Teg. References:
1.Reed et al. (2018a), 2.Silvotti et al. (2019), 3.Reed et al. (2011),
4. Holdsworth et al. (2017), 5. Sanjayan et al. (in preparation), 6. Charpinet
etal. (2019), 7. Reed et al. (2020).

Name AP (s) Terr (KK) References
KIC 1718290 276(1) 21.8(1) 1,4
KIC 2437937 234.73(52) 24.7(6) 54
KIC 2438324 235.49(51) 26.2(4) 54
KIC 2569576 244.31(46) 24.5(4) 54
KIC 2697388 240.06(19) 23.9(3) 1,4
KIC 2991403 268.52(74) 27.3(2) 1,4
KIC 3527751 266.4(2) 27.9(1) 1.4
KIC 5807616 242.12(62) 27.3(2) 1,4
KIC 7664467 260.02(77) 26.8(5) 1.4
KIC 7668647 247.8 27.7(3) 1.4
KIC 8302197 258.61(62) 27.2(2) 1.4
KIC9472174 255.63(30) 29.6(1) 1.4
KIC 10001893 268.0(5) 26.7(3) 1,4
KIC 10553698 263.15 27.5(2) 1,4
KIC 10670103 251.6(2) 21.1(3) 1.4
KIC 11179657 231.02(2) 26.0(8) 1.4
KIC 11558725 244.45(32) 27.7(1) 1.4
EPIC 201206621 268(1) 27.954(54) 1.4
EPIC 202065500 234 29.85 1.4
EPIC 203948264 261.34(78) 26.76(61) 1.4
EPIC 211696659 227.05(56) 27.12(64) 1.4
EPIC211779126 253.3(8) 28.542(82) 1.4
EPIC 212707862 252.6(1.1) 28.298(162) 1,4
EPIC 218366972 251 28.2 1,4
EPIC 218717602 260 24.85 1.4
EPIC 220641886 256.5(1) 23.47(65) 2,2
KPD 0629—0016 247.17(48) 27.4(3) 34
TICO013145616 268.85(32) 29.60(38) 7,7
TIC 278659026 245.71(75) 23.72(26) 6,6

dipole and quadrupole échelle diagrams and represented with green
colour points. The right vertical axes show the radial orders with
respect to an offset n; from the real radial k order. The k number can
only be determined from modelling (e.g. Charpinet et al. 2000).

The asymptotic relation, defined by equation 2, is strict only
for homogeneous stars. In that case, standing waves of g-modes
oscillate in a cavity created e.g. by the convective zone and the
surface of a star. Then, the consecutive overtones are spaced equally
in period and in an échelle diagram we can see a vertical ridge for
a given modal degree. However, in a real star, as the density is
not uniform, the ridge almost never becomes purely vertical. Some
jitter appears. Since this feature is a consequence of a non-uniform
structure of a star, deviations from a vertical ridge bear information
about a chemical profile and hence cavities. Baran & Winans (2012)
reported on a deviation from the vertical ridge, being a common
property of many sdB stars (Baran et al. 2019). The so-called a
‘hook’ feature has never been explained thus far but surely must be
accounted for if reliable models are to be calculated.

In a few cases, frequencies did not fit well either sequence. The
reason may be hidden deep in the sdB interior where the H/He
or C/He transition layers between the convective core and the
surface appear. These boundaries may contribute to create additional
cavities causing some modes to be imprisoned in smaller cavities.
Those modes are called trapped modes and they do not follow an
asymptotic sequence. The theoretical explanation was provided by
Charpinet et al. (2000) and Ghasemi et al. (2017).

MNRAS 495, 2844-2857 (2020)

There is a ‘hook’ feature in SB 459 between 3000 and 7000 s,
while in PG 0342 + 026 the feature is not as pronounced. The
largest jitter appears in SB 815 which deviates from the mean period
spacing by 28.5 per cent. The upper part of the ridge is not smooth,
winding from side to side. That is why we decided to present two
solutions for this target. In the absence of multiplets, it is always
difficult to make sure that a mode identification is fully correct. Our
first solution contains the largest jitter but it provides the ‘hook’
feature in between 3000 and 7000s. In our second solution, we
removed two extremely deviated points (6579.0s and 7780.7s)
from the dipole mode sequence, and marked them as trapped mode
candidates. In the latter solution the échelle diagram looks more
smooth and still shows the ‘hook’ feature. With no multiplets
detected our identification will always suffer from doubts in modal
degree assignment, mostly because period spacing sequences of
different modal degree cross each other and some of the modes
are fitting both sequences fairly well. In case of high-amplitude
frequencies we prefer [ = 1 rather than higher degrees. The ridges
of quadrupole modes are fairly short and those modes are mostly
leftovers from / = 1 assignment.

One of the best tools to look for trapped modes is a reduced period
diagram. The diagram presents a reduced period IT = P - \/I(T + 1)
in function of a reduced period spacing ATl = AP - /I(l 4 1). This
multiplication causes sequences of all modal degrees to overlap.
Overall, the shape of the plot would be similar to what we see
in the échelle diagrams, though it will be twisted, so the ridge
is now horizontal. Modes with different modal degrees overlap,
however, what is more important, the candidates for trapped modes
of different degrees also overlap. It can be clearly seen in the papers
by e.g. @stensen et al. (2014), Uzundag et al. (2017), and Baran et al.
(2017). The actual periods of those trapped modes differ between
modal degrees, so it is not easy to spot them in amplitude spectra,
however, the multiplicative factor brings them all in one place in
this diagram.

We show the reduce period diagrams for two targets, SB 815 (two
solutions) and PG 0342 + 026 in Fig. 12. In SB 459, the sequence
of quadrupole modes is too short, not pointing at any trapped mode
candidates, which makes the diagram completely inconclusive, and
that is why we decided not to present it. In the first solution of
SB 815 and in PG 03424026, the candidates for trapped modes
appear to be at the shortest periods. It looks similar to the diagrams
reported by the other authors mentioned above. In SB 815 we find
either one (solution 1) or three (solution 2), while in PG 03424026
we find two candidates for trapped modes. Two longest periods
trapped modes in SB 815 (solution 2) and two trapped modes in
PG 0342 + 026 are separated by almost 2000s. It agrees with
values reported by the other authors and calculated from theoretical
considerations reported by Charpinet et al. (2000). Unluckily, in
PG 0342 + 026 the quadrupole sequence does not extend to overlap
with those candidates and therefore we cannot confirm trapped
mode identification. Likewise in SB 815 (solution 1). In the case of
solution 2, although the dipole and quadrupole sequences overlap,
we detected no quadrupole trapped modes candidates. This makes
those dipole trapped modes candidates less reliable. They can still
serve as an additional constraint in modelling, help deriving the
most reliable solution and understand the chemical profile inside
sdB stars, which is responsible for trapped modes.

5 EVOLUTIONARY STATUS

The stellar atmospheric parameters such as effective temperature
T and surface gravity log g/(cms™2) have great importance to
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Figure 9. Echelle diagrams for dipole (top panels) and quadrupole (bottom panels) modes. In legends, I = 1¢ denotes dipole trapped modes and ‘UM’

denotes undefined modes.

determine physical conditions of stellar atmospheres. We have taken
these two spectroscopic parameters of all sdBVs known to date from
Holdsworth et al. (2017) and for our three TESS targets from Table 1.
We have plotted these three targets along with 118 other previously
known sdBVs in the effective temperature — surface gravity diagram
(Fig. 13). In the plot, we can distinguish three different regions i.e.
low T and log g/(cms™2) containing g-mode pulsators (shown
in cyan squares), high T, and log g/(cms~2) containing p-mode
pulsators (shown in black circles), and the hybrid pulsators region
(shown in magenta triangles) containing pulsators that show both
p and g modes. Three TESS targets have been shown with bigger
symbols along with the error bars. SB459 and PG0342 + 026
are located among g-mode pulsators, which is consistent with the
frequency content of these two stars. The amplitude spectrum of

SB 815 contains both g mode and p mode, which is also confirmed
by its location in the plot.

In Fig. 13, we also plotted theoretical evolutionary tracks to
assess the evolutionary status of our three targets. The tracks have
been calculated using publicly available open source code MESA
(Modules for Experiments in Stellar Astrophysics; Paxton et al.
2011, 2013, 2015, 2018, 2019), version 11701. We started with a
pre-main-sequence model of a solar mass star, assumed a proto-
solar chemical composition of Asplund et al. (2009) (Z = 0.142,
Y = 0.2703), and evolved the model to the tip of the red giant
branch. Then, before the helium flash, we removed most of its mass
leaving only a residual hydrogen envelope on top of the helium
core. The model was then relaxed to an equilibrium state and
evolved until the depletion of helium in the core. All physical and
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Figure 11. Effective temperature

numerical details of the models are discussed in Ostrowski et al. (in
preparation). The models use predictive mixing to ensure proper
growth of the convective core during the course of evolution (Paxton
et al. 2018). The evolutionary tracks presented in Fig. 13 show

MNRAS 495, 2844-2857 (2020)

Teff/ 10 3 [ K]
in function of an average period spacing.
stable core He burning phase of the sdB evolution. Different tracks

correspond to models with different hydrogen envelope masses
(Mepy = 6 x 1074=5 x 1073 My,). It may be noted that the effect
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Figure 13. Evolutionary tracks of sdB stars in the log g — T diagram for sdB stars with initial mass of M; = 1.0 Mg, mass of helium core M core = 0.475 Mg,
and envelope masses of 6 x 107*—5 x 1073 M. Observational data are taken from Holdsworth et al. (2017) along with three sdBVs explained in this paper.

of increasingly more massive hydrogen envelopes is to shift the
evolutionary tracks towards lower effective temperatures.

The sdBs start their evolution toward lower effective temperatures
and lower surface gravities. The direction of the evolution is reversed
when the central helium abundance drops below about 10 per cent.
The presented tracks fit the location of all our three targets very well
and firmly confirm the three stars to be sdBs. All three targets are
located on the He-core burning tracks. SB 459 fits really well to a
track with an envelope mass of M.,, = 2 X 1073 M, and still has

more than half of its initial helium abundance available in the core.
SB 815 is more advanced in its evolution with a central helium
abundance of about 10 percent and it is better fitted by a track
with an envelope mass of M.,y = 1 x 1073 M. The spectroscopic
parameters of the star are determined with better precision than
those of other two targets. PG 0342 4- 026 seems to be the youngest
sdBVs among the three stars, at the beginning of the sdB phase.
The envelope mass of the star may vary between M., = 1-—
3 x 1073 Mg,
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6 SUMMARY

In this paper, we report our asteroseismic analysis of three sdBV
stars observed by the TESS satellite. We have analysed amplitude
spectra to detect pulsation modes and we used the asymptotic period
spacing to describe modes’ geometries. For SB 459 we found 12
dipole modes, four quadrupole modes, and three modes that can be
assigned with either modal degree. For SB 815 we did not find a
unique solution. In solution 1 we identified 17 dipole modes, nine
quadrupole modes, and four modes that can be assigned with either
modal degree. In solution 2, we identified the same number of
modes, however two dipole modes are considered candidates for
trapped modes. In PG 0342 + 026 we identified 13 dipole modes,
four quadrupole modes, and five modes that can be assigned with
either modal degree. We found none multiplets and therefore our
mode identification should be taken with caution.

The average period spacings of dipole modes is around 259, 265,
and 232 s for SB 459, SB 815, and PG 0342 + 026, respectively. In
all three targets we detected only few quadrupole modes and hence
average period spacing values for quadrupole modes calculated
from the linear fits are not too precise. We used a theoretical relation
between period spacings of dipole and quadrupole modes, instead.

We also found a few candidates for trapped modes, one/three in
SB 815 and two in PG 0342 + 026. In the reduced period diagrams
the trapped mode candidates are spaced by around 2000s. This
spacing is predicted by theoretical calculations and makes our
conclusion more reliable, yet not absolutely convincing, since we
detected no quadrupole trapped modes counterparts.

By making use of the high precision Gaia parallaxes and
spectral energy distributions from the ultraviolet to the infrared
spectral range we derived the fundamental stellar parameters mass,
radius, and luminosity from spectroscopically determined effective
temperatures and gravities. The results are consistent with the
predictions of canonical stellar evolutionary models (Dorman et al.
1993), however, with large uncertainties on stellar mass due to large
uncertainties on log g.

The location of our three sdBVs in the effective temperature —
surface gravity diagram confirms that SB 459 and PG 0342+026 are
g-mode dominated sdBVs and SB 815 is g-mode dominated hybrid
pulsator. Theoretical evolutionary tracks provide a coarse-grained
approximation of physical properties of these stars like He-core and
hydrogen envelope masses, sizes of their cores along with their evo-
lutionary sdB stages. These tracks show that all three stars are during
core-helium-burning phase, where SB 815 is much more evolved
than other two and PG 0342 + 026 has just entered the sdB phase.

We also tried to look for any correlation between AP and Tegr
with all previously known g-mode sdB Vs along with our three TESS
targets. We found no correlations though. We suspect to see some
correlations with increasing data points. The asteroseismic analysis
of these targets will help to constrain models for these stars. This
paper is our first attempt to list g-mode rich sdBVs observed in
TESS and to do mode identifications for these targets.
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