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Abstract
The pulsating hydrogen atmosphere white dwarf star G 117-B15A has been observed since 1974. Its main pulsation

period at 215.19738823(63) s, observed in optical light curves, varies by only (5.12 & 0.82) x 10 55~

and shows

no glitches, as pulsars do. The observed rate of period change corresponds to a change of the pulsation period by 1 s in
6.2 million yr. We demonstrate that this exceptional optical clock can continue to put stringent limits on fundamental
physics, such as constraints on interaction from hypothetical dark matter particles, as well as to search for the presence

of external substellar companions.

Unified Astronomy Thesaurus concepts: White dwarf stars (1799); Late stellar evolution (911)

1. Introduction

G 117-B15A, also called RY LMi and WD 09214354, is a
pulsating white dwarf with a hydrogen atmosphere, a DAV or
77 Ceti star (McGraw 1979). White dwarf stars are the most
common end product of stellar evolution. From the observed
initial-mass-function, more than 97% of all stars evolve to
white dwarfs (Fontaine et al. 2001; Koester 2002; Smartt 2009;
Althaus et al. 2010; Woosley & Heger 2015; Lauffer et al.
2018). When the normal white dwarf cooling reduces their
temperatures such that the their outer envelopes develop partial
ionization zones—which depends on the dominant chemical
element in the envelope—convection zones are established that
drive pulsations. These pulsations are seen as luminosity
variations and the period of the dominant pulsation mode is
related to the thermal timescale at the base of the envelope.
These white dwarf stars show multiperiodic nonradial g-mode
pulsations that—being global—can be used to measure their
internal properties and their rate of evolution (Fontaine &
Brassard 2008; Winget & Kepler 2008; Althaus et al. 2010;
Vauclair 2013; Cérsico et al. 2019).

McGraw & Robinson (1976) found G 117-B15A to be
variable, and Kepler et al. (1982) found six simultaneous
excited periods in its light curve. The dominant mode has a
period of 215 s, a fractional optical amplitude around 22 mma
(millimodulation amplitude, or parts per thousand), and is
stable in amplitude and phase. The other, smaller pulsation
modes, vary in amplitude from night to night (Kepler et al.
1995), either caused by internal instabilities or unresolved
components. Because the DAVs are normal stars except for
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their variability (Robinson 1979; Bergeron et al. 1995, 2004;
Castanheira et al. 2013; Romero et al. 2013), ie., an
evolutionary stage in the cooling of all white dwarfs, it is
likely that the DAV structural properties are representative of
all hydrogen atmosphere—DA—white dwarfs. DA white
dwarfs comprise more than 80% of all white dwarfs (e.g.,
Kepler et al. 2019).

In their review of the properties of pulsating white dwarfs,
Coérsico et al. (2019) list the 250 ZZ Cetis known at the time.
Since then, 39 additional ZZ Cetis have been published
(Vincent et al. 2020).

We report our continuing study of the star G 117-B15A, one
of the hottest of the ZZ Ceti stars. The rate of change of a
pulsation period with time for g-mode pulsations in white
dwarf stars is theoretically directly related to its evolutionary
timescale (Winget et al. 1983), allowing us to infer the age of a
cool white dwarf. We have been observing the star since 1974
to measure the rate of period change with time (P) for the
largest amplitude periodicity, at 215 s. Using all the data
obtained from 1974 through 2005, Kepler et al. (2005)
estimated the intrinsic rate of period change

P; = Pserved — Bym = (3.79 £ 0.81) x 1075 557!
The quoted uncertainty was the intrinsic one from the fit only.

Kepler (1984) demonstrated that the observed variations in
the light curve of G 117-B15A are due to nonradial g-mode
pulsations. Kepler et al. (2000) show that the models predict
the effect of radius change due to the still ongoing contraction
are an order of magnitude smaller than the cooling effect on the
rate of period change.

Concerning the expected stability of pulsation modes,
Hermes et al. (2017) used Kepler and K2 data to show that
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modes with periods longer than about 800 s are considerably
less coherent than shorter period modes, with their power
spectra often having a “mottled” appearance. Montgomery
et al. (2020) showed that this could be explained by the longer
period modes having a stronger interaction with the surface
convection zone of the star, since they have turning points
much closer to the surface than low-period modes. We return to
this question with regards to G 117-B15A in Section 5.1.2.

G 117-B15A is proving to be a useful laboratory for particle
physics (Isern et al. 2004). Cérsico et al. (2001) calculated the
limit on the axion mass compatible with the then observed
upper limit to the cooling, showing m, cos § < 4.4 meV and
Kepler (2004) demonstrates axion cooling would be dominant
over neutrino cooling for the lukewarm white dwarf stars for
axion masses of this order. Biesiada & Malec (2002) show that
the 20 upper limit published in Kepler et al. (2000) limits the
string mass scale Mg > 14.3 TeV/ ¢? for six dimensions, from
the observed cooling rate and the emission of Kaluza—Klein
gravitons, but the value is unconstrained for higher dimensions.
Benvenuto et al. (2004) show the observed rates of period
change can also be used to constrain the dynamical rate of
change of the constant of gravity G.

2. Observations

Kepler et al. (2005) reported on the observations from 1974
to 2005. In this paper we report on 178 hr of additional time
series photometry from 2005 to 2020 (Table 1), most taken
with the Argos prime-focus CCD camera (Nather & Mukadam
2004) on the 2.1 m Otto Struve telescope at McDonald
Observatory.

We use the BG40 filter on all observations because it
increases the contrast between the (mostly blue) pulsational
amplitude and the (mostly red) sky background. Also, the
sky background is variable, and introduces strong systematics.
Nonradial g-mode light variations have the same phase
in all colors (Robinson et al. 1982) but the amplitudes
decrease with wavelength. For example, a filter-less observa-
tion with Argos gives an amplitude around 40% smaller for
G 117-B15A.

3. Data Reduction

We reduce and analyze the data in the manner described
by Nather et al. (1990) and Kepler (1993). We bring all
the data to the same fractional amplitude scale, and the times
from terrestrial UTC to the uniform Barycentric Julian
Coordinated Date (TCB) scale, using JPL DE405 ephemeris
(Standish 1998, 2004) to model Earth’s motion. We compute
Fourier transforms for each individual run, and verify that
the main pulsation at 215 s dominates each data set and has an
amplitude stable up to 15%, our uncertainty in amplitude due
to the lack of accurate time and color-dependent extinction
determination.

4. Timescale for Period Change

As the dominant pulsation mode at P = 215 s has been
stable in frequency and amplitude since our first observations
in 1974, we can calculate the time of maximum for each new
run and look for deviations from those assuming a constant
period.

Kepler et al.
Table 1
Journal of Observations Since 2005
Date Exposure Duration Number Telescope
(s) (s)

2005 Dec 5 5 7040 1408 McD 2.1 m
2005 Dec 9 5 12000 2400 McD 2.1 m
2006 Mar 1 5 14020 2804 McD 2.1 m
2006 Mar 4 5 9305 1861 McD 2.1 m
2006 Mar 6 10 13140 1314 McD 2.1 m
2006 Dec 21 10 4280 428 McD 2.1 m
2006 Dec 28 5 15730 3147 McD 2.1 m
2007 Mar 16 5 2865 545 McD 2.1 m
2007 Apr 10 5 67175 1355 McD 2.1 m
2008 Feb 9 5 16040 3208 McD 2.1 m
2008 Mar 11 5 10175 2035 McD 2.1 m
2008 Mar 13 5 9900 1980 McD 2.1 m
2008 Mar 14 5 3600 720 McD 2.1 m
2009 Jan 29 5 15035 3008 McD 2.1 m
2009 Jan 30 5 14400 2881 McD 2.1 m
2009 Feb 3 5 10315 2064 McD 2.1 m
2009 Apr 13 20 7400 370 0.6 m Suhora
2009 Apr 15 22 6974 317 0.6 m Suhora
2009 Apr 24 10 9030 903 McD 2.1 m
2010 Jan 10 5 3840 768 McD 2.1 m
2010 Jan 20 5 7320 1465 McD 2.1 m
2010 Feb 16 5 10805 2161 McD 2.1 m
2010 Feb 19 10 10740 1075 McD 0.9 m
2010 Mar 10 15 7380 493 McD 0.9 m
2010 Mar 11 15 18480 1233 McD 0.9 m
2010 Mar 17 10 18350 1836 McD 0.9 m
2010 Mar 18 10 27030 2704 McD 0.9 m
2010 Mar 19 10 22910 2292 McD 0.9 m
2010 Mar 21 15 20160 1345 McD 0.9 m
2010 Apr 10 10 14640 1464 McD 2.1 m
2010 Apr 16 10 1360 137 McD 2.1 m
2010 Dec 12 10 17530 1753 McD 2.1 m
2011 Jan 6 10 5810 581 McD 2.1 m
2011 Jan 9 10 9770 971 McD 2.1 m
2011 Feb 1 10 9870 987 McD 2.1 m
2013 Apr 13 5 7900 1580 McD 2.1 m
2013 Apr 23 5 10800 2160 McD 2.1 m
2013 Apr 25 5 12670 2534 McD 2.1 m
2015 Jan 17 30 30240 890 McD 2.1 m
2015 Jan 18 30 10620 344 McD 2.1 m
2015 Mar 14 10 11070 1101 McD 2.1 m
2015 Mar 16 20 18700 826 McD 2.1 m
2015 Mar 19 14 14266 1019 McD 2.1 m
2015 Mar 20 25 8100 294 McD 2.1 m
2018 Jan 26 15 15720 1049 McD 2.1 m
2018 Jan 27 5 14285 2856 McD 2.1 m
2018 Jan 28 10 12460 1247 McD 2.1 m
2018 Mar 12 10 5380 539 McD 2.1 m
2018 Mar 13 10 12480 742 McD 2.1 m
2018 Mar 14 10 9710 673 McD 2.1 m
2018 Mar 15a 10 4350 435 McD 2.1 m
2018 Mar 15b 10 1940 195 McD 2.1 m
2019 Jan 5 3 20142 6713 McD 2.1 m
2020 Feb 20 20 8400 380 McD 2.1 m
2020 Feb 23 15 18960 1132 McD 2.1 m

We fit our observed time of maximum light, O, given in
Table 2, to the equation for the difference to the calculated one, C:

(O*C):AEOJrAP-EJr%P.P.EZ’



THE ASTROPHYSICAL JOURNAL, 906:7 (10pp), 2021 January 1 Kepler et al.

Table 2 Table 2
Total Data Set to Date (Continued)
Time of Maximum Epoch of o-¢ o Time of Maximum Epoch of 0o-C o
BJDD Maximum (s) (s) BJDD Maximum ) (s)
2442397.917507 0 0.0 2.1 2447233.343090 1941384 45 1.3
2442477.797089 32071 0.5 1.7 2447233.634506 1941501 4.7 2.3
2442779.887934 153358 39 2.1 2447234319475 1941776 6.8 32
2442783.850624 154949 1.2 2.9 2447235.313250 1942175 52 1.4
2442786.981458 156206 2.2 L5 2447235.607168 1942293 6.4 2.1
2443462.962774 427607 1.6 L4 2447236.610922 1942696 6.2 1.6
2443463.946592 428002 0.5 1.4 2447589.375198 2084328 32 14
2443465.969049 428814 0.5 1.6 2447594.331735 2086318 52 1.6
2443489.909755 438426 0.2 1.5 2447595.323018 2086716 35 2.0
2443492.898616 439626 0.9 L6 2447596.311907 2087113 10.1 2.3
2443521.927837 451281 0.1 1.3 2447597.315602 2087516 438 1.7
2443552752879 463657 0.8 1.4 2447598.319339 2087919 3.1 3.1
2443576.725940 473282 -1.6 33 2447499.072036 2048072 6.5 3.2
2443581.692438 475276 0.3 1.3 2447532.768799 2061601 1.3 1.4
2443582.693698 475678 —-0.2 1.3 2447853.846325 2190511 43 2.1
2443583.697469 476081 1.0 L3 2447856.832697 2191710 52 1.9
2443584.733602 476497 0.8 1.4 2447918.644630 2216527 2.6 3.1
2443604.659292 484497 1.3 L5 2447920.619811 2217320 6.7 33
2443605.752703 484936 0.4 1.4 2447952.622834 2230169 —33 2.9
2443611.693050 487321 0.6 1.3 2447972.620899 2238198 9.6 6.1
2443613.658222 488110 0.7 1.6 2447973 709340 2238635 97 26
2443636.674971 497351 8.8 3.4 2447973.741682 2238648 6.5 1.4
2443839.956765 578967 5.8 3.0 2447978770467 2240667 10.0 2.1
2443841.976708 579778 37 3.5 2447979.781717 2241073 11.8 3.1
2443842.980413 580181 —0.7 22 2447980.319627 2241289 4.6 35
2443843.944332 580568 0.5 2.6 2447977.403038 2240118 75 2.3
2443869.989703 591025 L5 2.4 2447978.327055 2240489 43 33
2443870.946182 591409 55 3.1 2447979.358189 2240903 26 34
2443874.916339 593003 2.4 2.1 2447979 358145 2240903 12 4.9
2443959.695117 627041 0.1 2.0 2447978.601069 2240599 74 25
2443963.662836 628634 1.6 2.1 2447980.621017 2241410 5.8 34
2443990.664641 639475 2.7 L3 2447980.782929 2241475 72 2.3
2444169.945954 711455 0.1 1.6 2447981.325918 2241693 8.4 1.4
2444231.822666 736298 -0.7 2.9 2447981.592393 2241800 5.7 1.4
2444232.818992 736698 3.0 1.6 2447981.779185 2241875 48 1.1
2444293833896 761195 0.3 1.8 2447982.329663 2242096 7.4 1.8
2444637.776174 899285 5.8 1.9 2447982.743093 2242262 5.0 12
2444641.624287 900830 2.8 L1 2447983.734400 2242660 54 12
2444992.789531 1041820 0.1 1.6 2447979.281057 2240872 9.5 2.9
2444994.689956 1042583 1.2 1.2 2447980.224899 2241251 —24 2.9
2444996.744801 1043408 2.0 L3 2447984.735678 2243062 6.5 1.1
2444997.723649 1043801 1.9 1.2 2448245.724666 2347847 -33 5.1
2445021.716661 1053434 L7 1.4 2448267.799932 2356710 52 2.3
2445703.860004 1327309 1.9 L7 2448324.627972 2379526 43 12
2445734.642701 1339668 2.4 1.2 2448325.708938 2379960 4.1 13
2445735.643972 1340070 2.8 1.3 2448328.593208 2381118 6.4 1.6
2446113.763716 1491882 2.9 1.2 2448331.661735 2382350 4.0 12
2446443.775386 1624379 2.8 L1 2448238.571479 2344975 8.3 22
2446468.630178 1634358 2.1 L3 2448622.833258 2499253 33 1.8
2446473.718679 1636401 0.3 1.6 2448680.642683 2522463 6.3 1.2
2446523.620086 1656436 2.2 1.6 2448687.614155 2525262 4.0 12
2446524.613917 1656835 5.5 2.5 2448688.597979 2525657 34 12
2446768.855451 1754896 2.9 1.4 2449062.660365 2675840 42 1.6
2446794.935676 1765367 2.5 2.1 2449063.609354 2676221 6.7 1.9
2446796.928219 1766167 0.3 1.6 2449066.615640 2677428 6.5 1.4
2446797.924535 1766567 31 L3 2449066.371558 2677330 72 2.0
2446798.903378 1766960 2.6 1.8 2449066.326737 2677312 8.2 26
2446823.663537 1776901 3.1 1.9 2449069.342967 2678523 6.4 1.7
2446825.651132 1777699 3.7 L5 2449298.239287 2770423 8.5 4.1
2447231.328096 1940575 3.7 1.9 2449298.304041 2770449 8.2 4.1
2447231.612054 1940689 5.1 3.5 2449294.214264 2768807 55 4.1
2447232.396626 1941004 5.0 1.6 2449294293897 2768839 -05 4.1
2447232.623291 1941095 5.9 2.9 2449295.439583 2769299 —4.0 6.1
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Table 2 Table 2

(Continued) (Continued)
Time of Maximum Epoch of o-C o Time of Maximum Epoch of o0o-¢C o
BIDD Maximum (s) (s) BJDD Maximum (s) (s)
2449295.494387 2769321 -33 7.1 2454175.7329770 4728697 13.56 2.10
2449036.809260 2665461 2.4 2.2 2454505.6674710 4861163 16.64 1.09
2449038.677300 2666211 3.1 2.2 2454536.7864160 4873657 17.32 1.16
2449040.687310 2667018 3.6 4.1 2454538.7914220 4874462 15.95 1.21
2449041.616360 2667391 49 4.1 2454539.5760330 4874777 19.16 1.43
2449799.723888 2971765 5.6 1.3 2454860.8527290 5003767 14.62 1.18
2450427.920960 3223981 8.2 3.8 2454861.8714540 5004176 16.72 1.16
2450429.973242 3224805 2.7 2.4 2454865.7718960 5005742 15.80 1.43
2450430.914779 3225183 6.9 2.5 2454935.282668 5033650 17.80 2.00
2450431.843821 3225556 7.5 1.5 2454937.327536 5034471 17.34 2.67
2450434.912392 3226788 8.8 2.0 2454945.716259 5037839 18.20 1.66
2450436.929828 3227598 5.4 1.7 2455215.8113837 5146280 17.03 1.29
2450483.633189 3246349 9.6 1.8 2455216.7429028 5146654 16.45 1.18
2451249.5989069 3553878 10.1 1.3 2455243.7347524 5157491 18.16 1.26
2451249.7632895 3553944 9.7 1.7 2455266.604463 5166673 18.74 1.76
2451250.6126098 3554285 8.7 2.0 2455272.6766822 5169111 17.25 1.83
2451526.8772586 3665203 104 1.2 2455273.588298 5169477 17.26 1.63
2451528.8523866 3665996 10.0 1.5 2455274.592065 5169880 19.53 1.42
2451528.9196061 3666023 7.4 1.4 2455276.6069443 5170689 15.42 3.27
2451528.9868422 3666050 6.3 1.9 2455542.8289250 5277575 19.59 1.28
2451529.8585943 3666400 6.6 2.0 2455567.8558979 5287623 18.64 1.48
2451530.9097492 3666822 13.4 2.41 2455570.8223324 5288814 18.49 1.33
2451960.8561629 3839442 10.1 1.62 2455593.7542828 5298021 17.52 1.29
2451962.7864775 3840217 11.3 1.48 2456395.6136513 5619961 19.00 1.44
2451967.6806926 3842182 8.1 1.93 2456405.6736629 5624000 21.75 1.16
2451988.7919772 3850658 10.5 2.00 2457039.68401488 5878550 21.05 4.19
2451990.7845255 3851458 8.8 1.59 2457040.73759366 5878973 21.76 1.79
2452037.6472583 3870273 10.1 3.39 2457095.73749568 5901055 24.57 1.27
2452045.6399770 3873482 12.5 1.85 2457097.63542361 5901817 25.14 0.96
2452225.9050927 3945857 7.6 1.34 2457100.62178721 5903016 25.28 0.62
2452225.9598927 3945879 8.0 0.65 2457101.62556613 5903419 27.23 14.81
2452263.8834810 3961105 10.6 0.58 2458189.71735867 6340279 27.19 1.32
2452316.6442205 3980721 13.1 1.0 2458190.59411461 6340631 29.42 1.41
2452317.8995164 3982288 12.2 0.67 2458191.66260081 6341060 26.95 1.22
2452319.7999417 3982691 12.0 0.79 2458192.59418283 6341434 31.81 1.50
2452317.6479750 3982792 10.3 0.95 2458192.68629503 6341471 28.00 2.65
2452321.8348344 3983555 114 1.23 2458146.67287842 6322997 25.35 0.79
2452322.7265266 3984372 9.9 3.03 2458145.70398597 6322608 24.83 0.58
2452312.7412881 3984730 114 3.5 2458144.72013874 6322213 23.40 0.85
2452373.6840808 4089983 9.9 1.1 2458488.81432050 6460364 26.35 0.54
2452373.6839702 4090425 12.6 1.2 2458870.45096380 6613588 27.75 3.14
2452373.7140655 4090791 10.6 0.68 2458902.63843304 6626511 29.26 13.8
2452375.6392709 4122465 12.8 1.0
2452374.7700070 4124076 12.5 1.23
2452581.9494464 4134940 12.0 1.83
2452583.9095168 4137288 11.5 1.74 where AEQ _ (Trgax o TrLax )7 AP — (P — P_qpo )7 and E
2452584.8812628 4144503 13.8 0.92 . . . . .
2452585.9821875 4148953 12.0 116 is the epoch of the time of maximum T, i.e., the integer
2452586.8937641 4146104 123 0.7 number of cycles after our first observation T,gax, which
2452665.7845581 4255806 137 0.72 occurred in 1974 December 16."
2452669.7970851 4256260 10.6 1.52 In Figure 1, we show the O — C timings after subtracting the
2452696.8561592 4257768 12.8 0.96 correction to period and epoch, and our best-fit curve through
2452724.6624548 4267394 10.5 0.81 the data. The size of each point is proportional to its weight,
2453381.7442572 4409917 11.5 1.41 . . . . .
2453439.7653860 4433212 139 10 i.e., inversely proportional to the square of uncertainty in
2453446.6073830 4435959 152 071 phase. The error bars plotted are 1. From our data through
2453473.6191370 4446804 15.1 0.75 2020, we obtain a new value for the epoch of maximum,
2453709.9576790 4541692 15.36 1.58
2453713.7883270 4543230 9.76 1.36 15 Fitting the whole light curve with a term proportional to
2453795.7202970 4576125 13.89 1.14
2453798.7440310 4577339 14.88 1.56 sin 247rt + ¢ | by nonlinear least squares gives unreliable uncertainty
2453800.7291150 4578136 13.82 1.32 (P + %P)
2454090.9940570 4694675 16.41 1.92 estimates and the alias space in P and P is extremely dense due to the 45 yr
2454097.8708770 4697436 13.67 1.26 data set span (O’Donoghue 1994).
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Figure 1. (O — C): observed minus calculated times of maxima for the 215 s
pulsation of G 117-B15A. The size of each point is proportional to its weight,
i.e., inversely proportional to the uncertainty in the time of maxima squared.
We show £ 10 error bars for each point, and the line shows our best-fit parabola
to the data. The fact that the line does not overlap these error bars is a
demonstration that they are underestimated. Note that as the period of pulsation
is 215.1973882 s, the observed total change in phase is only 50 deg.

T2« = 2442397.9175141 TCB + 0.41 s, a new value for the
period, P = 215.19738823 + 0.00000063 s, and most impor-
tantly, an observed rate of period change of:

Pps = (547 +0.82) x 107955 L

Our quoted uncertainty is the most conservative estimate from
the weighted average, which accounts for the reduction on the
number of effective data points. For a comparison with the
uncertainty published in Kepler et al. (2005), the internal
uncertainty is now 0.32 x 10~'°, clearly underestimated from
the changes in the value itself.

We use linear least squares to make our fit, with each point
weighted inversely proportional to the uncertainty in the time
of maxima for each individual run squared. We quadratically
add an additional 1 s of uncertainty to the time of maxima for
each night to account for external uncertainty caused perhaps
by the beating of possible small amplitude pulsations (Kepler
et al. 1995) or the small modulation seen in Figure 1. The
amplitude, 1 s, is chosen as 4(A) from the Fourier transform of
the O — C. Such external uncertainty is consistent with Splaver
et al. (2005) who show that the true uncertainties of the times of
arrival of the millisecond pulsars are generally larger than the
formal uncertainties, and that a quadratic term is added to them
to fit the observations.

The satellite TESS observed G 115-B15A in Sector 21, almost
continuously from 2020 January 21 to 2020 February 18. As the
data is coadded on board to 120 s, and the camera is only 15 cm,
the observed light curve resulted in an uncertainty of 13.8 s on the
time of maximum of the 215 s pulsation. Even though the phase is
in agreement with the observed O — C, it did not produce any
improvement in our P determination. Including the data from
TESS, the values are unchanged, due to its large uncertainty. We
note that TESS data in Sector 21 already includes the correction
of 2 s to Data Product Timestamps in the pipeline,'® but there is
still an extra uncertainty perhaps as large as 4 s in the TESS

16 https: / /archive.stsci.edu/missions /tess /doc/tess_drn /tess_reprocessing-
sector_14_19_drn30_v02.pdf
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timings, compared to ground observations (von Essen et al.
2020).

5. Discussion

We claim that the 215 s periodicity in G 117-B15A is the
most stable optical clock known. According to Nicholson et al.
(2015), their optical atomic clock based on 2000 ultracold
strontium atoms trapped in a laser lattice lose no more than 1 s
in 15 billion years, with an accuracy of P < 2 x 1078 ss ' in
the JILA ¥'Sr clock. Considering its period is 2.5 x 10~ s,
even though it is many orders of magnitude more accurate than
G 117-B15A, it is less stable, as its timescale for period
changes, i.e., the time it takes to lose a whole cycle, P/P is
1250 s, compared to 1.2 Gyr for G 117-B15A. The total 26 s
phase change observed for G 117-B15A after 45 yr of
observations implies one cycle of the phase will be reached
in 372.5 yr. In terms of accuracy, Brewer et al. (2019) reports
the NIST *’Al" quantum-logic clock reached a systematic
uncertainty of P ~ 9.4 x 10~!°. Even the Hulse & Taylor’s
millisecond pulsar (Hulse & Taylor 1975), has a timescale for
period change P/P of only 0.35 Gyr (Damour & Taylor 1991),
but the radio millisecond pulsar PSR J1909-3744 (Liu et al.
2020) has P = 2.60(3) x 1072! ss!, and a timescale of
18 Gyr, after 15 yr of observations. After correcting for the
motion effects (pulsar proper motion, galactic differential
acceleration, orbital motion, and general relativity correction),
jitter, red, and white noise models. The timescale based on the
spin of radio pulsars with millisecond periods can have a
stability comparable to that of atomic timescales, but
millisecond pulsars are also known to undergo sudden small
glitch events (e.g., McKee et al. 2016), magnetospheric
changes (Shannon et al. 2016), and effects relating to sudden
changes in the interstellar medium (Lentati et al. 2016; Brook
et al. 2018; Lam et al. 2018).

G 117-B15A was the first pulsating white dwarf to have its
main pulsation mode index identified. The 215 s mode
has £ = 1, as determined by comparing the ultraviolet pulsa-
tion amplitude, measured with the Hubble Space Telescope, to
the optical amplitude (Robinson et al. 1995). Using time-
resolved spectra obtained at the Keck Telescope, Kotak et al.
(2004) confirm the ¢ measurement for the P = 215 s pulsation
and show that the other large amplitude modes, at 271 s and
304 s, show chromatic amplitude changes that do not fit simple
single mode theoretical models (Robinson et al. 1995).
Robinson et al. (1995) and Koester et al. (1994) derive T
near 12,400 K, while Bergeron et al. (1995, 2004) using a less
efficient model for convection, estimated T.¢ = 11,630 K.
Gianninas et al. (2011) used ML2/« = 0.8 models, which
corrected to Tremblay et al. (2013) tri-dimensional convection
calculations correspond to T = 12,420 K, and logg = 8.12.
The uncertainty in effective temperature determinations from
spectroscopy are of the order of 300 K and 0.05 dex in the
surface gravity (Bergeron et al. 1995).

Benvenuto et al. (2002) show the seismological models with
time-dependent element diffusion are only consistent with the
spectroscopic data if the modes are £ = 1, k = 2, 3, and 4, and
deduces M = 0.525M, log(My/M,) > —3.83 and T.;=
11800 K, similar to those by Koester & Allard (2000). Their
best model predicted a parallax II = 15.89 mas, P = 4.43 x
10715 557, for the P = 2155, P = 322 x 10-5 557", for the
P=271s, and P =576 x 10715 ss™', for the P =304 s
periodicities.
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Romero et al. (2012) used the mode identification and the
observed periods of the three largest known pulsation modes to
solve earlier degeneracy in solutions and derive a hydrogen layer
mass best estimate of 1.25 x 107®M,, assuming k = 2 for the
215 s mode on their evolutionary C/O core white dwarfs, which
resulted in C/O = 0.28/0.70 for its mass. The core composition
is constrained mainly by the presence of the 304 s pulsation. In
their Table 2, Cérsico et al. (2012a) quote the theoretical rates
of period change for the Romero et al. (2012) best-fit model
as P =125 x 10715,4.43 x 107", and 4.31 x 10~"?, for the
k=72, 3, and 4 modes. The k = 2 mode corresponds to the
P = 215 s trapped mode in the hydrogen layer. Similar values
were found by Bischoff-Kim et al. (2008) for their thicker
hydrogen layer solution while their thinner solution had
P ~ 3.0 x 10715, Cérsico et al. (2012a) also show that because
the kK = 2 mode is trapped at the surface hydrogen layer, its rate
of period change is almost insensitive to the core composition.

While it is true that the period change timescale can be
proportional to the cooling timescale, it is also possible that
other phenomena with shorter timescales can affect P. The
cooling timescale is the longest possible one.

As a corollary, if the observed P is low enough to be
consistent with evolution, then other processes, such as perhaps
a magnetic field or diffusion induced changes in the boundary
layers, are not present at a level sufficient to affect P.

5.1. Theoretical Estimates and Corrections

5.1.1. Proper Motion

Stars are moving—they are observed to have a proper
motion across the sky. As shown by Shklovskii (1970), and
known as the “Shklovskii effect,” this means that the observed
period derivatives will be higher than the intrinsic period
derivative by an amount proportional to vz/ cd. Pajdosz (1995)
estimated the influence of the proper motion of the star on the
measured P as:

Pys = Poot(1 + v, /¢) + Pv, /c,

where v, is the radial velocity of the star. Assuming v,/c < 1
he derived

Bym = 2.430 x 1078P(s)(u["/yr])*d (pe),

where Ppm is the effect of the proper motion on the rate of period
change, P is the pulsation period, y is the proper motion, and d is
the distance. The proper motion, 1 = 0.1453 + 0.0001” /yr,
and the parallax, IT = (0.01739 + 0.0008)"’, were estimated by
Gaia DR2 (Gaia Collaboration et al. 2018), for both G 117-
B15A and its proper motion companion G 117-B15B:

A:m=17386 £0.080mas d=57.5+0.2pc
u = (—145.30 4 0.10, —0.006 £ 0.088)mas yr~!
B: m = 17437 £ 0.101 mas

= (—145.99 4 0.12, —0.290 £ 0.112) mas yr—".

Therefore, By, = (0.3532 £ 0.00024) x 10'5 ss7', and the
evolutionary—intrinsic—rate of period change P:

Py = Prerved — Brm = (5.12 4+ 0.82) x 107155571,
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5.1.2. Limits on Mode Coherence

Montgomery et al. (2020) showed that the result of Hermes
et al. (2017) that modes with periods longer than about 800 s
are considerably less coherent than shorter period modes could
be explained by their interaction with the time-dependent
convection zone. Since the modes are assumed to acquire a
small phase shift each time they reflect off the base of the
convection zone, we can estimate the average amount of phase
that would be accumulated by the 215 s mode over the total
time base of observations. While the details are presented in
Appendix A, we find that average accumulated phase would be
only ~4 X 1073 rad, which translates into a shift in the O — C
diagram of only ~0.13 s, i.e., negligible.

5.1.3. Effect of a Changing Magnetic Field

A weak magnetic field can perturb the oscillation frequencies
of a star in much the same way that slow rotation does. If this
magnetic field also slowly changes its magnitude with time,
then it will produce a nonevolutionary P for the modes. Here
we provide an estimate of the size and rate of change of the
magnetic field that would be required to mimic the observed P
for the 215 s mode; details are given in Appendix B.

Employing the same approach as Jones et al. (1989) and
Montgomery (1994), we find that a uniform magnetic field that
decreases from 280 to 0 G over a time period of 46 yr can
produce P ~ 5.1 x 1075 ss~' for a 209 s, k = 2 mode. In
addition, it is the change in B? that matters, so the same effect
would be produced by a field that decreases from 2814 to
2800 G over a period of 46 yr.

5.2. Pulsation Models

With time, as the temperature in the core of a white dwarf
decreases, electron degeneracy increases and the pulsational
spectrum of the star shifts to longer periods, in the absence of
significant residual gravitational contraction. We compare the
measured value of £, with the range of theoretical values derived
from models with C/O cores subject to g-mode pulsations in the
temperature range of G 117-B15A, which allow for mode
trapping. Bischoff-Kim et al. (2008) estimated for their best
model with T = 12656 K, M, = 0.602 M., and a helium layer
mass of 3.55 x 10°M, P = (192 + 0.26) x 1075ss ! if
log(My/M,) = —62and P = (2.98 £ 0, 17) x 107 s s Lif
log(My/M,) = —7.4. The adiabatic pulsation calculations
of Romero et al. (2012) with realistic evolutionary models,
give a mass of 0.593 M., log(My/M,) — 5.9 and P ~ 1.25 x
10~15s s ! for the £ = 1, k = 2 observed oscillation.

The observed P/P = 1.33 x 10° yr is equivalent to 1 s
change in period in 6.2 million years. We have therefore
measured a rate consistent with the evolutionary timescale for
this lukewarm white dwarf.

5.2.1. Core Composition

For a given mass and internal temperature distribution,
theoretical models show that the rate of period change increases
if the mean atomic weight of the core is increased, for models
that have not yet crystallized in their interiors. As the
evolutionary model cools, its core crystallizes due to Coulomb
interactions between the ions (Lamb & van Horn 1975), and
crystallization slows down the cooling by the release of latent
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heat. Montgomery & Winget (1999) describe the effect of
crystallization on the pulsations of white dwarf stars, but
G 117-B15A is not cool or massive enough to have a
crystallized core (Winget et al. 1997), or even for the
convective coupling of the core to the envelope described by
Fontaine et al. (2001) to occur.

The heavier the particles that compose the nucleus of the white
dwarf, the faster it cools. The best estimate of mean atomic weight
A of the core comes from the comparison of the observed P with
values from an evolutionary sequence of white dwarf models.
Brassard et al. (1992) computed the rates of period changes for 800
evolutionary models with various masses, all with carbon cores but
differing He/H surface layer masses, obtaining values similar to
those of Winget et al. (1981), Wood & Winget (1988), and Bradley
& Winget (1991). In those models, the average value of P for all
¢ = 1,2, and 3 modes with periods around 215 s in models with an
effective temperature around 13,000 K, and a mass of 0.5 M., is
P(Ccore) = (4.3 £+ 0.5) x 107 s s~!. Benvenuto et al. (2004)
C/0 models give P(C/Ocore) = (3 — 4) x 10" s s~ L. Using
a Mestel-like cooling law (Mestel 1952; Kawaler et al. 1986), i.e.,
T o A, where A is the mean atomic weight in the core, one could
write, for untrapped modes:

PA) =3B —4) x 1071 % ss L.

All these models were computed assuming a thick
log(My/M,) = 10~* hydrogen layer, which lead to no
significant mode trapping. The observed rate of period change is
therefore consistent with a C or C/O core. The largest uncertainty
comes from the models, essentially the hydrogen layer mass
(Bischoff-Kim et al. 2008).

5.2.2. Reflex Motion

The presence of an orbital companion could contribute to the
period change we have detected. When a star has an orbital
companion, the variation of its line-of-sight position with time
produces a variation in the time of arrival of the pulsation
maxima, by changing the light travel time between the star and
the observer by reflex motion of the white dwarf around the
barycenter of the system. Kepler et al. (1991) estimated a
contribution to P caused by reflex orbital motion of the
observed proper motion companion of G 117-B15A in their
Equation (10) as:

. P M, Mp /M.
Ppiral = 22 My _ 1.97 x 10~11p, My /M ss 1
2 p! 2
¢ ar (ar/au)

where a7 is the total separation, G here is the gravitational
constant, and Mp is the mass of the companion star. In the
above derivation they have also assumed the orbit to be nearly
edge on to give the largest effect possible. G 117-B15A with
Gaia magnitude G = 15.5589 £ 0.0010, absolute magnitude
Mg = 11.760, and Gaia color Ggp — Ggrp = —0.020, Gaia DR2
parallax 7 = (17.39 4+ 0.08) mas, proper motion ppm =
(145.34 £ 0.10, —0.01 £ 0.09) mas yr_l, and its common
proper motion companion G 117-B15B, with G = 14.7270 +
0.0010, Mg = 10.934, BP-RP = 2.885, 13”8 away, w=
17.43 £ 0.10 mas, ppm = (—145.99 £+ 0.12, —0.29 £+ 0.11)
masyr ', are a common proper motion pair, forming a real
binary system. Silvestri et al. (2002) measured the radial velocity
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of G 117-B15B, assuming it formed a wide binary system with
G 117-B15A as only v, = 2.2 + 9.4 km ~'. Kotak et al. (2004)
classifies G 117-B15B as an M3Ve from its spectra, obtained
with the 10 m Keck I telescope, and measured log g >~ 4.5 and
T = 3400 K. Kirkpatrick et al. (2011) classifies G117-B15B
as M3.5V from WISE colors. The mass of an M3.5V should
be around 0.33 M, (Lang 1999). With a separation of 13”8,
ar = 794 au, assuming the observed distance between G 117-
B15A and B is at its largest (sin w~ 1), where w is the
argument of periapsis. This corresponds to a lower limit on
the orbital period of around 22000 yr, and we estimate
P < (1.1 £ 1.1) x 10717 s 571, The large uncertainty takes
into account the possibility the orbit might be strongly elliptical.
Even though G 117-B15A and B form a real binary system, the
contribution of the orbital reflex motion to the observed P is
negligible.

The whole observed phase change could also be caused by a
planet of Jupiter’s mass orbiting the white dwarf edge-on at a
distance of 31 au, which corresponds to an orbital period
around 314 yr, or a more massive planet in a less inclined orbit.
Duncan & Lissauer (1998) show that such a planet would
survive the post-main sequence mass loss. Any closer to the
white dwarf, and such planets would produce a larger P (e.g.,
Krzesinski et al. 2020). Note, however, that reflex motion
produces sinusoidal variations on the O — C, which are
distinguishable from parabolic variations after a significant
portion of the orbit has been covered. This allows us to rule out
the presence of planets as a function of orbital period and M sin
i, where i is the orbital inclination (see Figure 4 in Mullally
et al. 2008). Considering a second-order derivative of the
O — C has not been detected yet, only planets with orbital
periods longer than about 900 yr should be indistinguishable
from a parabola, or if their effect on the (O — C) is smaller than
1s, ie., with M sini similar to the Earth’s mass. The
theoretical upper limit for a stable planetary orbit around
G 117-B15A is around 0.3 ay (Musielak et al. 2005), i.e.,
around 240 au, assuming the observed distance between
G 117-B15A and B, ay, is at its largest (sin w ~ 1), which
would lead to a period of 4800 yr. At that distance, a planet
would have to be more massive than 2.3 M; to produce a phase
change in 45 yr as large as the 26 s observed. Note that for half
of the orbit the correction has the opposite sign. If the P
measured for other ZZ Cetis, like R548 (Mukadam et al. 2013)
and L19-2 (Sullivan & Chote 2015) are also larger than the
white dwarf cooling timescales, it is unlikely they are all caused
by planets traveling away from us.

As discussed by Damour & Taylor (1991), any relative
acceleration of the star with respect to the barycenter of the
solar system will contribute to the observed P. Their Equation
(2.2) for the differential galactic orbits, decomposed in a planar
contribution (2.12), where the second term is the proper motion
correction, and a perpendicular contribution (2.28), applied to
G 117-B15A, show the galactic contribution to be exactly the
one calculated above for proper motion, i.e., the other terms are
negligible—2-3 orders of magnitude smaller.

5.3. Axions

In Section 5.2 we list the predicted value of P forthe k = 2,
¢{ =1 trapped mode for the evolutionary models as
P ~ 125 x 10713, As the value of the observed rate of period
change is larger than the theoretical model, we study the
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Figure 2. The rate of period change for the mode with/ =1 and k =2,
corresponding to a period of ~215 s in terms of the axion mass (black circles).
Dashed lines represent the uncertainties in the value in the observed P and the axion
mass, while the red curves represent the internal uncertainties in P due to modeling.

possibility of the excess of cooling as due to axions—hypothetical
weakly interacting particles proposed as a solution to the strong
charge-parity problem in quantum chromodynamics (Peccei &
Quinn 1977). This possibility was first raised by Isern et al. (1992)
since axions, similar to neutrinos, can escape carrying energy. At
the time, employing semi-analytical models to the observed period
change of G 117-BI5A (P = 12 £ 3.5 x 10~ 1), they estimated
a mass of m, >~ 8.7 meV. Kepler et al. (2000) published a value for
P 23+14 x 107'5), much lower than the previous value, and
Corsico et al. (2001) estimated m, < 4.4 meV using a detailed
asteroseismological model. Later, with improved models and
determination of P (Kepler et al. 2005), Bischoff-Kim et al. (2008)
estimated m, < 13.5 meV. The determination of P by Kepler
(2012) was used by Cérsico et al. (2012a) to estimate m, ~ 17.4
meV. This idea was also applied to other DAVs with P known,
finding m, >~ 17.1 meV for R 548 (Cérsico et al. 2012b) and
m, < 25 meV for L 19-2 (Cérsico et al. 2016).

Now, using the new determination for P of G117-B15A we
are able to set new constraints on the axion mass, assuming the
extra cooling is due to the putative axion.

Using the value for the intrinsic P, and assuming the effects
from possible orbiting planets and magnetic fields are
negligible, we estimate an axion mass using fully evolutionary
models (see Figure 2) calculated with LPCODE (e.g., Althaus
et al. 2010; Romero et al. 2012) including axions during all the
white dwarf cooling. These results are very similar to those of
Figure 5 of Cérsico et al. (2012b). As a result we obtain a value
of the coupling constant between axions and electrons
Zae = (5.66 £ 0.57) x 107'3, or, adopting the DFSZ model
(Zhitnitsky 1980; Dine et al. 1981), an axion mass m,
cos’8 = 20 + 2 meV. De Gerénimo et al. (2017) estimated
the high and low limits for the C(«, ) O reaction rate from the
uncertainties given in Kunz et al. (2002). These limits are
0.55x and 1.1x factors in the reaction rate, which translates
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into a central carbon abundance of X = 0.450 and
Xc = 0.246 respectively, for the best-fit model for G 117-
B15A. For the k = 2, [ = 1 mode, corresponding to the 215 s
mode, the value for P, in the case where no axions are
considered, changes by ~15% and ~9%, respectively. Since
this mode is trapped in the envelope, we do not expect large
differences in the value of the rate of period change when the
central composition changes (Cérsico et al. 2016). Considering
both the observational and model uncertainties, the estimated
axion mass is m, cos?> 3 = 19.973 meV.

6. Conclusions

We have measured the rate of change of the main pulsation
period for the T, =~ 12,400 K pulsating DA white dwarf
G 117-B15A, the first ZZ Ceti to have its evolutionary rate of
change measured, confirming it is the most stable optical clock
known, with a rate of change of 1 s in ~26.2 million years and a
precise laboratory for physics at high energy. We note that
mode trapping can reduce the rate of period change by up to a
factor of 2 (Bradley 1996; Corsico et al. 2012a), but the
changes in the trapping layers are still caused by cooling, and
are included in our theoretical models.

After a large investment of telescope time to achieve such
precision, we have measured the cooling rate of this 2.16 Gyr
old white dwarf (Romero et al. 2012)—or 1.79 Gyr for our
models with 20 meV axions. This estimate includes the time
the star, with M. =~ 1.75 M, (Romero et al. 2012), took to
reach the white dwarf phase. We have also demonstrated it
does not harbor planetary bodies similar to Jupiter in mass up
to a distance around 30 au from the star, modulo sin i, where i
is the inclination to the line of sight. We cannot exclude larger
distances or smaller planets with light travel time effects on the
white dwarf smaller than 1 s.
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Appendix A
Estimate of Phase Drift of 215 s Mode

According to Montgomery et al. (2020), modes experience a
small phase shift at their outer turning point due to the
changing depth of the convection zone. If we assume that the
average phase shift (due to the presence of multiple modes) is
essentially random, then we can treat the accumulated phase
after multiple reflections as a random walk. Denoting the
average phase shift after one reflection as (A¢), then the
average total phase shift after N cycles is given by

<A¢>tot - N1/2 <A¢> (Al)

Values of (A¢) can be obtained from the damping rate v via
the following relation (Equation (15) of Montgomery et al.

2020):
_ 1 | _ sin(Ag) 1
TP e )~ enp

where n is the radial order of the mode and P is its period.
Thus, we find that

(A@)or = (6n Py N)'/2. (A3)

For the relevant mode in G117-B15A, the total number of
cycles is N~ 6 x 10°, n =2, P ~ 2155, and from Figure
9(a) of Montgomery et al. (2020), v < 10_15 ! (and possibly
much smaller than this), which yields a total phase shift of
(AP)or = 4 X 10 rad. Thus, the average shift of the last
point in the O — C diagram should be P(A®)o/27 ~ 0.13 s.
Given this small value, the analysis of G117-B15A should be
unaffected by the time-dependent effects of the surface
convection zone.

(Ag), (A2)

Appendix B
Effect of a Changing Magnetic Field

A pulsating white dwarf with a magnetic field should have
its oscillation frequencies perturbed by the field. If that field
changes with time (as has been directly observed in many
astronomical objects) then the oscillation frequencies will also
change with time.

For the case of oscillation frequencies perturbed by slow
rotation, the use of perturbation theory is valid because the
effects of rotation are small everywhere. This is not true for weak
magnetic fields. Near the surface of a stellar model the gas
pressure (Pg,) approaches zero while the magneUC pressure does
not. Thus, there is always a region in which B / 8T > Py, and,
since the magnetic field geometry can modify the angular
structure of the modes in this region, a self-consistent treatment
can be quite complex (e.g., Dziembowski & Goode 1996; Bigot
et al. 2000; Bigot & Dziembowski 2002).

Fortunately, we are only interested in the special case of the
effect of a weak magnetic field on the frequencies of low-order
g-modes in white dwarfs. These modes have outer turning
points far below the region where B> /8T ~ Pgy, so the
perturbations to their frequencies do not strongly depend on
their angular structure in the surface layers. Thus, a simple
perturbative treatment as used in Jones et al. (1989) should be
adequate for these modes.

Since we are only interested in order of magnitude estimates,
we choose a constant field in the z direction aligned with the
rotation axis. We also only consider the perturbation of m = 0
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modes; the perturbation of other m values will be the same
order of magnitude. Repeating the analysis in Montgomery
(1994) for a “Gl117-B15A-like” model (T = 12,400 K,
M, = 0.6M.), we find that a magnetic field that decreases in
strength from 280 to O G over a time span of 46 yr can produce
P~ 5.1 x 107" ss7! for a mode with k = 2 and P = 209 s.
Furthermore, it is actually the change in B that matters, i.e.,
AB?, so the same effect would be produced by a magnetic field
the goes from 2814 to 2800 G over the same time span.
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