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ABSTRACT

While executing nominal tests on mobile robots is required for
their validation, such tests may overlook faults that arise under
trajectories that accentuate certain aspects of the robot’s behavior.
Uncovering such stressful trajectories is challenging as the input
space for these systems, as they move, is extremely large, and the
relation between a planned trajectory and its potential to induce
stress can be subtle. To address this challenge we propose a frame-
work that 1) integrates kinematic and dynamic physical models
of the robot into the automated trajectory generation in order to
generate valid trajectories, and 2) incorporates a parameterizable
scoring model to efficiently generate physically valid yet stressful
trajectories for a broad range of mobile robots. We evaluate our
approach on four variants of a state-of-the-art quadrotor in a rac-
ing simulator. We find that, for non-trivial length trajectories, the
incorporation of the kinematic and dynamic model is crucial to
generate any valid trajectory, and that the approach with the best
hand-crafted scoring model and with a trained scoring model can
cause on average a 55.9% and 41.3% more stress than a random
selection among valid trajectories. A follow-up study shows that
the approach was able to induce similar stress on a deployed com-
mercial quadrotor, with trajectories that deviated up to 6m from
the intended ones.
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Figure 1: (1) shows a quadrotor flying in a straight corridor.
(2) shows a more difficult trajectory through a winding cor-
ridor. (*a) show the quadrotor from behind, while (*b) show
a bird’s eye view of the quadrotor. The dashed lines convey
location across views, solid arrows show optimal behavior,
while dotted arrows show unforeseen behavior leading to a
collision.

1 INTRODUCTION

Mobile robots are becoming more pervasive, ranging from au-
tonomous cars [70] to micro-inspection drones [43], and this is
raising awareness of the potential impact of faults in such systems,
as evident in recent crashes [5, 26]. End-to-end system testing is
a standard technique to detect such faults. System tests consist of
executing a trajectory that resembles future deployment environ-
ments [9, 56]. For example, with autonomous cars, trajectories can
be devised over existing road maps with typical traffic loads [61],
over synthetic maps that meet road-design and traffic constraints
[30], or over scenarios developed following certain even probability
distribution [17]. A similar procedure is utilized for testing drones
while accounting for the additional third spatial dimension [56].

While exploring typical trajectories is necessary to validate the
behavior of mobile robots, it may overlook faults that arise in the
presence of stressful trajectories, trajectories that accentuate a par-
ticular behavior of the robot. This is analogous to the motivation
for stress testing software with harsh inputs as a complementary
way to judge its robustness [4]. Consider, for example, the physical
maneuvers that are required for a micro-drone to race through a
tight tunnel. Intuitively, a trajectory as the one on the left of Figurel
will not subject the drone to the same level of stress as the one on
the right side, which is full of tight turns that put pressure on the
whole system, from the perception subsystem to the rotors.

The goal of this work is to provide an automated approach for
the systematic generation of stressful trajectories for mobile robots.
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Such an approach must overcome two fundamental challenges:
1) determining whether a trajectory is physically valid as a precon-
dition to be feasible, and 2) efficiently identifying stress-inducing
trajectories. A third and cross-cutting challenge is to remain general
enough to support a broad range of mobile robots, stress measures,
and ease of execution in both simulated and real environments.

To address the first challenge, we build on the insight that mobile
robots’ physical capabilities are usually approximated with kine-
matic and dynamic (KD) models. A KD model is a mathematical
description of how the physical state of the robot is affected by any
given input. For example, a KD model for a quadrotor may com-
pute position, linear and angular velocity, and attitude based on the
torque applied to the rotors. The proposed approach uses readily
available KD models to compute the set of physically achievable
future states of a robot[27]. Any state outside that set is physically
infeasible.

To address the second challenge, we build on reachability algo-
rithms using KD models to efficiently sample the valid physical
space and incorporate a parameterizable scoring model that assigns
a score representing stress to each trajectory as it is generated.
Furthermore, the approach uses a beam search to incrementally
explore the space of trajectories in order to identify and select the
ones with the most potential to add stress to the system.

Finally, the challenge of remaining general is addressed by virtue
of building on models that are available or easily approximated
for most common mobile robot types, a high-degree of trajectory
search abstraction and parameterization, and the use of the Robot
Operating System (ROS) to standardize the message formats[59]
and of open-source simulators to explore the trajectories as part of
the implementation.

The primary contributions of this work are:

1) An automated approach for the efficient generation of physi-
cally valid and stressful trajectories for mobile robots, through the
novel integration of kinematics and dynamics (system’s physical
aspects), the development of a parameterizable scoring model, and
a configurable trajectory search process.

2) A tool pipeline! that implements the approach and is applicable
to a broad range of mobile robots. In order to facilitate the eval-
uation, the implementation includes instances of an open-source
quadrotor with four different software controllers and an existing
commercial quadrotor.

3) An evaluation of the approach that demonstrates its benefits. A
controlled evaluation shows that a KD model is crucial for gener-
ating trajectories of non-trivial length, while the introduction of
handcrafted and learned scoring models increased stress by 56%
and 41% on average over a random baseline. A case study on a com-
mercial quadrotor demonstrated similar levels of induced stress,
with the drone deviating up to 6m from its nominal trajectory.

2 BACKGROUND AND RELATED WORK

We begin with an overview of how mobile robots are currently
being tested in §2.1, followed by an introduction to KD models in
§2.2.

! Artifact available at: https://hildebrandt-carl.github.io/RobotTestGenerationArtifact/
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2.1 Testing of Mobile Robots

The rise of autonomous cars and the impact of their potential fail-
ures have led to a resurgence of techniques for testing mobile robots.
We point the reader to work by Stellet et al. [60] and Huang et al.
[24] for overviews on techniques from the intelligent vehicle com-
munity. We now summarize efforts related to ours, organized by
whether a technique is meant to operate at the system or component
level, then we briefly discuss the closest work for generating stress-
like tests for mobile robots, and finalize with a special mention for
simulation, a key tool in the validation of mobile robots.

At the system level, the state of practice relies extensively on
simulation, execution of predefined scenarios [14], and field deploy-
ment for testing [65]. For instance, in 2018, Waymo announced that
it had completed 10 million miles of driving on public roads and
over 7 billion miles in simulation [71]. State-of-the-art has concen-
trated on enabling the generation of test scenarios that account
for a rich set of factors that appear in realistic contexts [57]. Many
approaches have focused on the generation of images, a challenging
input type that is fundamental to most mobile systems [28], and in
the alteration of those images to expose faults [10, 63]. A natural
progression of these efforts had led to domain-specific languages
that can express images for realistic contexts[17]. Other emerging
approaches target different types of inputs, such as control com-
mands to manage acceleration, velocities, or positions [31]. All
these approaches recognize that generating a full test environment
is more complex and thus attempts to leverage existing informa-
tion to guide test generation. For example, importing existing road
maps instead of synthesizing ones [61], distilling police reports as
models to guide the generation of the environment such that they
resemble contexts associated with car crashes [18, 35], using an
approximation to the system control model to guide the command
generation [31], or incorporating traffic models [54].

Independent of the chosen approach to generate tests for mobile
robots, a recognized challenge is the management of the enormous
input dimensions and state-space[32]. To address these challenges
existing approaches either reduce the input space, reduce the repre-
sented state space, or define a set of constraints to work within. For
example, Loiacono et al. [37] use their domain knowledge to focus
on race-tracks as the input space of autonomous cars. Althoff et al.
[1] reduce the state space by setting the test scenario as constant
and only optimizing the initial conditions of the vehicle under test.
BaerkGu et al. [30] use the power of SMT solvers to generate a
sequence of road segments that meet user design criteria. O’Kelly
et al. [47] focused just on particular highway settings.

At the component testing level, we find many specialized input-
generation techniques. For example, there are techniques targetting
sensor and actuation components [8], control components [3, 40],
image processing components [15, 36, 67], and reactive layers that
include machine learning models. Among the latest, the software
engineering community has generated an increasing body of knowl-
edge on testing DNN’s [11, 62, 77, 78].

The closest efforts to our work in terms of the integration of
the system physical elements, aim to force robots to either operate
along performance boundaries [45], or at maximizing exposure
to unsafe behavior [1, 64]. These efforts are different from ours
in two ways. First, they only aim to generate the initial set of
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robot conditions instead of a whole trajectory. In theory, one could
expose all valid stressful trajectories by just setting the initial robot
conditions. In practice, however, identifying initial conditions that
are representative of how the system operates in the real-world is
challenging as they must avoid both unreachable conditions as well
as conditions that are impossible to reproduce in real deployments.
Second, none of them connects the KD model to generating tests
that are guaranteed to be physically valid for the given robot. The
work by Althoff et al. [1] makes the connection to KD models but
uses them to favor tests with small reachability sets that represent
tight operating spaces, which may not necessarily be stressful.

It is worth noting that simulation plays a crucial role in the vali-
dation of mobile robots driven by factors such as the time required
to build a complete physical system prototype, the interactions with
the physical world that require to mock at least part of that world,
and the cost of field failures. Indeed, most of the approaches listed
rely on various types of simulation support. Gambi et al. [19] used
BeamNg[49] a vehicle simulator to find vehicle bugs using genetic
algorithms. Dosovitskiy et al. [9] use a simulator, Carla, to prototype
three types of autonomous vehicle. Among the many simulators
available [53], in this work, we leverage recent advances in high-
fidelity ones that provide not just accurate modeling of the world
through sophisticated physics engines (which model, for example,
gravity, friction, inertia), but also emulate a robot’s sensors as it
moves through the world (the atmospheric pressure, the distance
to an object as measured by a laser scan, the images captured by a
camera). Simulators like Carla, [9], Airsim, [56], and FlightGoggles
[23] are increasingly providing such capabilities. In one of the stud-
ies in this work, we execute the generated trajectories by extending
the FlightGoggles[23] framework with four additional controllers,
and redesigning FlightGoggles rendering software using the Unity
game engine[13] to allow the development of scenarios that do not
rely on proprietary resources.

2.2 Kinematic and Dynamic Models

Kinematic models describe the motion of an object through mea-
sures such as position, velocity, and acceleration [2, 27, 72, 73].
Dynamic models describe the forces associated with the motion of
an object [20]. Given an object’s current state and a given input,
these models can predict the object’s future state. Such predictions
are used in many fields including robotics[7], astrophysics[74],
mechanical engineering[12], biomechanics[58], and game physics
simulations[41]. Within the field of robotics, most systems are
likely to base their development on a KD model, or can at least be
approximated by an existing model.

In this work, we are specifically interested in using a KD model to
describe how a robot’s state s (e.g., position, velocity, acceleration)
will change due to some input u. For instance a quadrotor KD model
can be described using a 12¢" order state systems = [x y z ¢ 0 vy
Vy Uz Wx Wy a)z]T, which describes the position, attitude, velocity,
and angular velocity respectively [66, 75]. The input to the model
is four motor speeds wi_4. The speeds are used to calculate the
values u; to u4 as shown in equation 1. u; represents the thrust
force upwards F generated by the four rotors. uz and u3 represent
the difference in thrust for both roll My and pitch My respectively.
uy is the difference in torque between the two clockwise turning
rotors and the two counterclockwise turning rotors which result
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in yaw M. d is the drone’s arm length, and kf and k;, are the
proportionality constants for thrust and moments respectively.

uj F kf kf kf kf Wi
uz| _ (Mx| _ 0 dkf 0 —dkf W% (1)
us My —dkf 0 dkf 0 ws
Ug M, km ~km  km  —km WZ

The values of ug, u3, and u4 are used to compute the change in
quadrotors angular velocity w using Equations 2, where the I terms
correspond to the inertial properties unique to each quadrotor.

Iyy—1
. vy zz 1
Wy = Wy Dz Tex (1) 0] [uz
wy | = —”Iyy“ wxwz |+ 0 Ty 0 | {us (2)
2] Lex—1 1 Ug
z T wx oy 0 0 7

The quadrotor’s angular velocity o is then used to compute the
change in the attitude of the quadrotor using Equations 3.

é 1

. sin(p)tan(f) cos(p)tan(0)| |wx
Q =10 cos(¢) —sin(¢) wy (3)
v 0 sin(¢p)sec(0) cos(¢)sec(9)| |wz

Finally, the change in velocity is computed using Equations 4. The
new velocity is used to update the position of the quadrotor.

[ 0 cos(¢p)cos()sin(0) + sin(¢p)sin(y)
y| = | 0 | + = [cos(P)sin(O)sin(y) + cos(})sin(P) | u1  (4)
ol |-9] ™ sin(0)sin(¢)

A KD model like the one introduced can be used to compute a
robot reachable set, that is, the area or volume a robot can reach in
a given amount of time. Efficiently calculating the reachable sets
is its own research area [6, 22, 25, 34, 44, 68, 76]. For our work, a
rough approximation is calculated using a sample of inputs to the
KD model (wj—4 for the drone), and then computing the convex
hull over the set of generated outputs. To the best of our knowledge,
the only work that combines reachable sets with testing, minimizes
the reachable sets in a given test scenario to maximize collision[1].
In contrast, we use reachable sets to create physically feasible tests.

3 PROBLEM STATEMENT

A physical space, W, is defined by a set of waypoints, wy € W, with
a designated origin, o € W. A robot r, is capable of moving between
a subset of waypoint pairs during a given time step, valid(r) C
W X W; a pair (wy, wy’) € valid(r) is said to be infeasible. A robot
traversing to a waypoint, wy;, will arrive in a state, s;, that depends
on both previous waypoint, wy;_1, and previous state, s;_1. For
example, for a ground vehicle, a state may consist of the position
wy, a velocity v, and a heading 6.

A robot traversing through a series of waypoints is following a
trajectory traj. A trajectory of length Nypq; is a sequence of Niqj
states, traj = (s0, 1, - - - » SNtraj)> Where each state is recorded at a
given wy. The i*" wy in a trajectory is written as traj[i].

The set of trajectories of length Ny 4j, Traj, is exponential in
size |Traj| = |W|Ntras. Many of these trajectories are infeasible —
they cannot be realized by the implemented system. The feasible
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(c) Most stressful feasi-
ble trajectory based on
score(-).

Figure 2: From the set of potential trajectories, the physi-

cally feasible, and most stressful ones are selected.

A

(a) Potential trajectories
from A to B.

(b) Feasible trajectories
within dashed oval.

trajectories are those comprised of only valid steps, Trajy = {traj |
Y0 < i< n: (trajli], trajli + 1]) € valid(r)}.

Given a function, score : W X W — R, that defines the stress
placed on r for a pair of waypoints according to a stress scoring
criterion (e.g., maximum deviation from an intended trajectory), the
stress for a trajectory is score(traj) = X1 score(trajli], trajli+1]).
A key objective of this research is to compute the most stress-
inducing feasible trajectories, trajs € Trajg such that Viraj €
Trajy : score(traj) < score(trajs).

This problem is illustrated in Figure 2 where Figure 2(a) depicts
a set of trajectories Traj, the feasible trajectories Trajr C Traj
are shown in Figure 2(b), and given a score(-) function the most
stressful of the feasible trajectories, Trajs C Trajy, is found as
shown in Figure 2(c).

4 APPROACH

The goal of the approach is the systematic and efficient generation
of stressful trajectories for mobile robots. In this section we provide
an overview of the approach describing the search for trajectories,
a detailed description of how our approach identifies both feasible
and stressful trajectories, a running example of the approach, and
a brief description of the implementation.

4.1 Overview

The approach consists of two main algorithms. Algorithm 1 man-
ages the search for trajectories through the use of an exploration
frontier. The frontier consists of all the trajectories which are
currently under consideration. Algorithm 1 expands the frontier
through calls to exploreFrontier which is described in Algorithm 2.
Algorithm 2 controls how the frontier is explored by only checking
trajectories that are both feasible and stressful. In this section we
take a detailed look at the workings of Algorithm 1.

Algorithm 1 manages the search for feasible stressful trajectories
inside W. To keep the approach general, Algorithm 1 takes in ten
parameters: (1) W: a world defining the physical volume in which
trajectories will be executed, (2) Nyy: The number of waypoints
to be explored in W, (3-4) wystart and wyenq: a start and ending
waypoints for the returned trajectories, (5) Niraj: the required length
of a trajectory, (6) Limit: the total computation time allowed, (7)
KD: the KD model of the robot, (8) Res: resolution of samples used
to compute the reachable set, (9) Width: the number of trajectories
explored and expanded during each loop of the algorithm, and
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Algorithm 1: Trajectory Generation Manager

Input :W, Nwy, Wystart, WYend, Niraj, Limit, KD, Res,
Width, ScoringModel
Output:Trajs
1 Trajs =0
2 while time < Limit do
3 Wy = randomWpSelect(W, N, )
1 | Gw = graph(Wystart, Wyend, WY)
5 Sstart = estimateRobotState(Null, Start)
6 trajinit = {Sstart}
7 Frontier = {(trajinjt; 0)}
8 Trajc. =0
9 while Traj. == 0 and [Frontier| > 0 do
Frontier’, Traj. = exploreFrontier(Gy, Wyend, KD,
Frontier, Res, Width, Nyy,j, ScoringModel))
Frontier = Frontier U Frontier’

10

11

12 end

13 Trajs = Trajs U Trajc
14 end

15 return Trajs

(10) ScoringModel: a function used to select the most promising
trajectories to be further explored.

The goal of Algorithm 1 is to find trajectories of length Nir,j,
that start and end at user-defined waypoints wystart and wyeng. It
represents W as a graph Gyy, where the vertices are waypoints. Each
vertex is connected to all other vertices by the shortest straight line
between them, creating a complete graph. An edge represents the
optimal path a robot should follow to traverse between waypoints.
A path is created by combining sequences of vertices and following
the edges between them. Paths through the graph represent all the
possible trajectories in the world.

It starts by initializing the set of stressful trajectories Trajs to an
empty set in line 1. Algorithm 1 repeatedly computes trajectories
until it exceeds a computation time of Limit and then returns the
generated Trajs in line 15. The Trajs are computed in lines 3-13
as follows. First, in lines 2-3, a graph is built through a process
used by probabilistic roadmap planners (PRM)[29]. The graph’s
vertices consist of Nyy randomly sampled waypoints as well as
the user-defined wystart and wye,g waypoints. Lines 5-7, initialize
a search Frontier. The Frontier is a set of trajectories and trajec-
tory score pairs. A trajectory score represents an estimation of
the trajectory induced stress on the robot. The stress is estimated
using a scoringModel described later in §4.2.3. The Frontier keeps
track of the explored trajectories and is incrementally expanded
in exploreFrontier. The frontier is initialized with an trajiyj; con-
taining a single state, sgiart, that is estimated by assuming no prior
information, Null, and the starting waypoint wystart.

The algorithm repeatedly invokes exploreFrontier in line 10 to
incrementally expand the Frontier and search for complete trajecto-
ries; trajectories which start at wygiart, end at wyeng, and are length
Ntraj. Algorithm 2 describes exploreFrontier, which returns the
newly explored frontier Frontier’ and complete trajectories Traj,
from each iteration.
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Algorithm 2: Explore Frontier

1 Function exploreFrontier(Gyy, wyend, KD, Frontier, Res,
Width, Nipaj, ScoringModel)

2 Trajc = 0
3 Frontier’ = )
4 SortedFrontier = sort(Frontier.scores)

5 for i = 0; i < Width; i++ do

// Select From Frontier

6 traj = SortedFrontier[i].traj

7 Frontier = Frontier N not traj

8 if [traj| == Niyaj, and traj[Nipaj].position == wyeng
then

9 ‘ Traj, = Traj, U traj

10 end

1 if [traj| < Niaj then

lasts = traj[last].state

// Calculate Reachable Set

Reach = calculateReachSet(lasts, KD, Res)
for wy in (Gy N Reach)) do

new, = estimateRobotState(lasts, wy)

12

13
14
16 traj, = traj U news
// Expand Frontier

17 Frontier’ = Frontier’ U (traj,, Null)

18 end

19 end
// Assign Scores

20 Frontier’ = assignScores(Frontier’, ScoringModel)

21 end

22 return Frontier’, Traj,

23

4.2 Efficiently Exploring the Frontier

Algorithm 2 describes the four part exploreFrontier function. First,
exploreFrontier selects trajectories from the Frontier based on tra-
jectory scores. Second, exploreFrontier computes the physical space
reachable by the robot given the current robot state. Third, explore-
Frontier expands the frontier by building a new set of trajectories
by estimating the robots future state at each waypoint within the
reachable space, and then using the estimated state to build new
trajectories. Finally, assignScores gives scores to each of the new
trajectories in the frontier.

More precisely, exploreFrontier starts by sorting the current Fron-
tier based on each trajectory score. The top Width trajectories are
selected for further processing. The larger the Width, the more
trajectories are explored per call to exploreFrontier, and the more
computationally expensive the operation is. However, the larger
the Width, the more likely the algorithm will process a trajectory
that will induce stress as approximated by our scoring function.

Selecting from the frontier, in line 6-10, consists of removing
the i'" most promising trajectory and checking if it meets the
requirements to be a complete trajectory. If so it is added to the
Traj. set. In lines 11-19, if the selected trajectory is shorter than
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Niraj> the search continues by expanding the selected trajectory and
adding it to Frontier’.

Before the selected trajectory is expanded and Frontier’ com-
puted, a reachable set Reach needs to be computed. Reach defines
the physical space the robot can achieve in a time step given its
current state. Thus all wy inside both Gy, and Reach are feasible for
the robot. More specifically, the reachable set is computed using the
robots last known state lasts, the robots KD model, and a sample
resolution Res. Computing Reach is described in §4.2.1.

Once all the feasible waypoints for the robot are known, the
algorithm expands the frontier. A trajectory is a sequence of states.
Thus for each of the feasible waypoints, a new robot state is esti-
mated based on the robots last known state. For each of the possible
future states, a new trajectory is created by appending the new
state onto the current trajectory. Each new trajectory is then added
to the frontier and scores assigned to them before being returned.

4.2.1 Reachability Analysis to Explore the Feasible Frontier. The
computed reachable set allows the algorithm to precisely identify
which waypoints in Gy, are achievable given the robots KD model
and lasts. Thus trajectories that the robot could not physically
achieve can be rejected during trajectory generation, as opposed to
during trajectory execution.

In this work, we explore two techniques to compute reachable
sets and later compare them to a baseline technique that sets the
entire space as reachable. The first approach over-estimates the
reachable space, by setting the reachable set to a sphere around the
current position, whose radius is equal to the maximum velocity
the quadrotor can travel in At = 1s.

The second approach leverages the full KD model to compute
the reachable set. Computing such reachable sets is an active area
of research[6, 22, 25, 34, 44, 68, 76]. For simplicity, we implement
a brute force technique to compute it. Given lasts, we generate
a set of input samples and apply the KD model to produce a set
of potential reachable states. The convex hull of this state set is
computed to serve as an approximation of the reachable set. This
approach requires Res* evaluations of the forward KD model equa-
tions, where x is the number of input variables for the KD model
equation, and Res is the number of input samples taken [7]. For
example, in the case of the quadrotor, which we later study, there
are 4 input variables, as shown in Equation 1. If permutations of
5 linearly sampled inputs are taken, the approach would need to
perform 5% = 625 computations resulting in 625 achievable future
states.

4.2.2 Estimating Robot State for Trajectory Building. The robot’s
state at a new waypoint is estimated based on the robot’s state at
a previous waypoint and the current input. Approaches to state
estimation can vary in cost and precision. At two extremes in this
spectrum are estimators that 1) assume the robot is at rest when
reaching a waypoint, and 2) solve the inverse of the KD model
equations. The first is inexpensive, but imprecise and the second is
precise, but expensive.

We implement a hybrid of these that uses only portions of the
KD model equations to estimate state while setting the remaining
state variables to their resting values. The portions of the state to
reset are configurable. For example, for the drone systems we later
study, the approach computes quadrotor velocity at each waypoint
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Algorithm 3: Assign Scores

1 Function assignScores(Frontier, ScoringModel)

2 for traj in Frontier do

3 score = 0

4 for each pairOfStates in traj do

5 ‘ score += scoringModel(pairOfStates)
6 end

7 traj.score = score

8 end

9 return Frontier

(euclidean distance between the waypoints over the timestep), but
sets the attitude and angular velocity to 0 at each waypoint (This
would happen if a quadrotor entered a waypoint level).

4.2.3  Assigning Scores to Select Next Trajectory. The scoringModel
is used as described in Algorithm 3. For each traj in the Frontier we
start with an initial score of 0. The algorithm iterates through each
pair of states in the trajectory and assigns a score to the state pair.
The final trajectory score is then computed by accumulating the
state pair scores for that trajectory.

The scores are assigned by a scoringModel and are calculated
based on an estimate of the stress that the robot will incur. A good
scoringModel will accurately estimate this stress given two robot
states and associated waypoints. The stress is defined through a
scalar stress metric. Depending on the application of the robot,
stress can be measured using different stress metrics. For example,
three possible metrics are maximum deviation, maximum accel-
eration, or total time. The only requirement is that the selected
stress metric must be measurable during robot execution. The main
stress metric we use in our study is maximum deviation, which is
illustrated in Figure 3. The maximum deviation, a standard measure
associated with navigation safety, is a measure of the largest error
between the expected position of a robot and its actual position. In
this work, we explored two classes of scoring models that we later
compare to a baseline scoring model that randomly selects a score.

The first scoring model leverages a user’s domain knowledge to
create rules likely to maximize some goal, for instance in our case,
maximizing deviation. In our evaluation, for example, we identified
the trajectories velocity vin, Vour, and the trajectory angle ©, as
shown in Figure 3, as attributes likely to be correlated to maximum
deviation. For example, a large v;, and © correspond with the
intuition that entering a waypoint with high velocity might result
in a significant deviation if the robot is also required to take a sharp
turn. In general, the effectiveness of such a model will depend
on a domain expert’s ability to identify the attributes as well as
how closely the attributes align with the robot behavior, which
depends on the robot planner, robot controller, and robot sensing
and actuation capabilities.

The second scoring model learns from previous data. It consists
of using a collection of trajectories generated using a random scor-
ing model and subsequently identifying the factors that lead to
particularly stressful trajectories. This knowledge can then be used
to score future trajectories on their ability to cause stress. As an
example, assume that there is a series of generated trajectories. The
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Figure 3: Trajectory attributes and the stress metric max-
imum deviation. The solid line is the expected trajectory
while the dotted line is the true behavior.

robot could then execute the trajectories to render an actual max-
imum deviation. The traversed trajectories could then be broken
down into pairs of waypoints like that of Figure 3. The maximum
deviation associated with each pair of waypoints max_dev and a
set of attributes that may be associated with that deviation (e.g., vin,
Vout, ©) could be used as training data. Then a learning technique
can be used to produce a scoringModel that, given a pair of waypoint
attributes, can estimate the expected maximum deviation.

In our evaluation, we generated a scoringModel using a polyno-
mial regression model where the loss function is the linear least-
squares function, and regularization is given by the £2-norm[21].
We determined the best polynomial degree using 10-fold cross-
validation. If the resulting model provides a good fit (i.e., strong
correlation and low cross-validation loss), then it can be used to
assign predictive scores to future trajectories without executing
them. This approach incurs the cost of trajectory execution to gen-
erate the data to train the model. Thus its applicability depends in
part on the cost of such execution. In many cases, such costs can
be mitigated, for example through simulation, and it is beneficial
in that it does not rely on the user’s expertise.

4.3 Example Trajectory Generation

Figure 4 shows a step-by-step illustration of our approach. In this
example, the Gyy is generated using 6 random waypoints, we set
Width to 2, and Nypj to 4. After PRM construction, we select from
the frontier, which after the initialization in Algorithm 1 lines 3-8, is
a single trajectory that contains wystart. We calculated the Reach for
the last and only waypoint (wystart) in the trajectory as described in
§4.2.1. We then expanded the frontier using each of the waypoints
inside the W and Reach. The waypoints are added to the current
trajectory by estimating three new states based on the current state
and the new waypoint as described in §4.2.2. Scores are assigned to
each of the new trajectories based on a scoring model as described
in §4.2.3.

On the second iteration, due to the Width of 2, the two highest-
scoring trajectories are selected from the frontier (filled circle). For
each of the selected trajectories last waypoints, a Reach is calculated.
The frontier is expanded using the waypoints in each Reach. This
results in 4 new trajectories. Note that a waypoint can be used in
multiple trajectories, as seen by the most central waypoint, which
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Figure 4: Our approach illustrated with waypoints (circles), trajectories (solid lines), and reachable sets (dotted lines). The
example considers a 2D world with 6 random waypoints, a beam width of 2, and a trajectory length of 4. The mobile robot in
this example, starts with 0 velocity and is facing directly upward (small triangle).

at this point is part of three trajectories. Scores are assigned to each
trajectory and trajectories selected from the frontier.

On the third iteration the most central waypoint is again pro-
cessed as it is the last state in the trajectory with a score of 14. Note
however, the resultant Reach is different as the trajectory selected
arrived at the waypoint with a different final state. The second
Reach is computed for the trajectory with a score of 13. There are
no waypoints inside this Reach, and thus the trajectory is removed
from the frontier. Scores are assigned to the new trajectories and
trajectories selected from the frontier. Two trajectories with a score
of 16 and 12 are chosen for processing. The trajectory with score
16 meets the criteria of starting at wystart, ending at wyenq, and
being of length 4. This trajectory is added to the Traj;, and the
algorithm repeated with a new Gyy. Although this is a hypothetical
example, the approach still selects a stressful trajectory. The final
trajectory requests the robot to take an immediate ~70 degree right
turn, followed by a ~45 degree left turn before moving to wyepgq.

4.4 Implementation

The implementation consists of 4 main software modules?, as seen
in Figure 5. The first module, trajectory generation, implements the
approach as described in §4.1, while the next three modules run
the experiments and are vital for collecting the data used later in
the study.

2 Artifact available at: https://hildebrandt-carl.github.io/RobotTestGenerationArtifact/
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Figure 5: An overview of the implementation. Existing soft-
ware is highlighted in a darker shade.

The first module consisted of both the trajectory generation
and result processing toolchain. The trajectory generation uses the
trajectory manager to explore the frontier using the reachable set
and scoring model. The resultant trajectories are then processed
and converted into data files and images that can be accessed by
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both the Anafi and FlightGoggles control software. The majority of
this module is implemented using Python3. The module consists
of 36 python scripts with a total of approximately 7,000 SLOC.
For certain functions, such as computing the convex hull, it was
more convenient to use MATLAB, and so the approach calls these
functions through the MATLAB API for Python[39].

The second module implements the integration with the Anafi
quadrotor in both simulation[51] and the real-world through the
Anafi API[50]. The module consists of software used to convert the
trajectory into waypoints that are readable by the Anafi APIL The
Anafi API sends the waypoints to the Anafi quadrotor and records
the returned GPS data through either a virtual ethernet or Wi-Fi
connection.

The final two modules contain the control and simulator code
to fly the FlightGoggles quadrotor. The FlightGoggles simulator
has two parts. The first part emulates the dynamics and control
of the quadrotor, while the second part simulates the quadrotors
sensor data and collision information. At the time of writing, the
FlightGoggles simulation uses proprietary graphics assets. Thus
we only use the part of FlightGoggles that emulates the quadrotor
dynamics, and we re-engineer the FlightGoggles simulation tool in
Unity based on the available documentation. The control code uses
ROS[59] and is written in C++. The implementation of the 4 custom
quadrotors is integrated into the original code base using 11 Python
classes consisting of approximately 2150 SLOC. The portions of the
FlightGoggles simulator that were redeveloped in Unity are written
in C#. The new simulator integrates with the base ROS code using
the original TCP link in FlightGoggles. The new simulator uses
assets that are freely available from the Unity store.

5 EVALUATION

The goal of the evaluation is to assess the proposed approach and
determine what benefits the introduction of the KD model and scor-
ing models has on automated trajectory generation for robots. More
specifically, we aim to answer the following research questions for
automated trajectory generation:

RQ1) Does the introduction of a KD model improve the ability
to generate feasible and valid trajectories?

RQ2) Does the introduction of a scoring model improve the
ability to generate stressful trajectories?

5.1 Setup

The test world is set to a 30m X 30m X 30m map with 250 randomly
placed waypoints. This selection matches the volume (27000m?)
and size of a typical outdoor aerial testing facility[33, 46, 69].

5.1.1 Robot Configurations. The systems we used are listed in
Table 1. The first is an autonomous racing quadrotor executed in
the publicly available FlightGoggles simulator [23]. The quadrotor
has a weight of 1kg, and a body length of 0.45m [55]. Its maximum
velocity in simulation is 18m/s [38].

The FlightGoggles quadrotor comes with a built-in angular rate
controller to manage roll, pitch, and yaw. To evaluate the wide vari-
ety of trajectory following techniques exhibited by today’s quadro-
tors, we implement four commonly used quadrotor controllers[66]
into the FlightGoggles simulator. Two controllers are of a way-
point control type, using a cascade of three PID controllers; the
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Table 1: Robot configurations studied

Robot Hardware | Robot Software | Execution

Unstable Waypoint | . .
Controller[66] Simulation

Flightgoggles Stable Waypoint . .
Quadrotor[23] Controller[66] Simulation
Fixed Velocity Simulation

Controller

Minimum Snap . .
Controller[42] Simulation
Parrot Anafi Waypoint Simulation
Quadrotor [48] Controller[50] Real World

first controls the angle of the quadrotor, the second controls the
velocity of the quadrotor using the angle controller, the third sets
the velocity of the quadrotor based on the distance to a waypoint.
The first implementation replicated poorly written controllers that
has overshoot and oscillation around waypoints. The second imple-
mentation mimics tuned controllers that are stable and converge to
the waypoint. The next instantiated controller was a fixed velocity
controller. This controller assigns a shared proportion of a fixed
velocity over each the x, y, and z-direction based on the location
of the next waypoint. We set the controller to maintain a velocity
of 2m/s, allowing the quadrotor to maneuver easily. The final con-
troller computed a minimum snap trajectory and follows it using
the waypoint PID controller. It was fundamentally different in that
it builds a new trajectory through the waypoints that minimize
snap, the 4th derivative of position[42], which means that it does
not adhere to the assumption of the expected behavior being the
shortest straight line between consecutive waypoints.

A second quadrotor, the Anafi Parrot, is studied later in §6. Tra-
jectories on the Anafi Parrot were executed both in simulation and
the real-world using its proprietary control software.

5.2 Trajectory Generation with KD Models

To answer RQ1, we need to assess the cost and benefit of incorporat-
ing a KD model into the trajectory generation technique. To the best
of our knowledge, there are currently no automated approaches
or tools available for the automated generation of stressful target
trajectories for mobile robots. The state-of-the-practice consists of
handcrafted stress tests built by experts, which tend to be effective
but limited in the scale of exploration. Thus, to identify the bene-
fits explicitly introduced by the KD models, we adapted how the
reachable set in line 13 of Algorithm 2 is computed using 3 different
techniques. The first approach, No KD, returns all waypoints in the
world, without considering any form of a KD model. The second
approach weakly approximates the reachable set, Approx KD, by
computing a sphere whose radius is the distance the quadrotor
could travel at maximum velocity in At = 1s. The final approach,
Full KD, uses a full KD model as described in §4.2.1. While expen-
sive [22], this guarantees that all explored trajectories are valid by
construction.

Each technique was given 2 hours to generate and execute trajec-
tories. Algorithm 2 was set to have a beamwidth of 5 and trajectory
length between 3 and 50. Varying trajectory length allows us to
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Figure 6: Valid trajectories generated of varying length.

assess the efficiency of techniques as the problem scales in complex-
ity. For example, the number of possible trajectories of length 3 in
a world with 250 possible waypoints is 1.5 x 107 and that increases
to 4.1 x 1017 for trajectories of length 50.

For each technique, trajectories returned in line 22 of Algorithm 2
were checked for validity using the robot full KD model. For each
valid trajectory, we model its execution time in proportion to its
length and decrement the total experiment time. The number of
physically valid trajectories returned by each technique within the
2 hour limit is shown in Figure 6.

Figure 6 shows that for simpler trajectories of length 3 for No
KD and trajectories of length 5 for Approx KD the computation-
ally cheaper approach produces more valid trajectories as opposed
to our Full KD approach. This is because generating short, phys-
ically valid trajectories is easier, as only a few valid waypoints
need to be selected. However, we can see that as the trajectories
become longer and more complex, it becomes beneficial to use the
computationally more expensive Full KD model. Figure 6 shows
that Full KD start to outperform both No KD and Approx KD for
trajectories of length 4 and 6 respectively, in terms of the number
of physically valid trajectories produced. In fact, for trajectories of
length 8 both No KD and Approx KD are unable to produce any
valid trajectories in the given amount of time, while the Full KD
can produce 85 valid trajectories. Even for trajectories of length 50,
Full KD can still find 1 valid trajectory in the given time. This is
because the Full KD approach provides information to Algorithm 2
on which waypoints in the world lead to invalid trajectories. This
information, although expensive to generate, allows the search
technique to reject invalid trajectories during trajectory generation
as opposed to trajectory execution. This is especially important
since the number of possible trajectories grows exponentially with
their length — making pruning invalid paths cost-effective.

We then computed several performance metrics for valid trajecto-
ries of length 10. We ran each of the valid trajectories from the Full
KD approach using the FlightGoggles simulator with the stable
waypoint controller. Figure 7 shows the distribution of 3 perfor-
mance metrics, namely: maximum deviation (m) from the optimal
trajectory, the maximum acceleration (m/s%) of the robot, and total
execution time (s). We chose these because they are diverse in that
deviation captures the potential for the robot to operate unsafely,
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Figure 7: The distribution of performance metrics obtained
by executing the FlightGoggles quadrotor in simulation.

acceleration captures the stress placed on the robot hardware, and
total time reflects the robots ability to operate effectively.

Figure 7 shows that for each of the metrics, the quadrotor exhibits
a broad range of possible values and that each of the distributions
is positively skewed, with long tails to the right (where there is
more stress). The fact that the distribution has long tails to the
right shows that even though most trajectories produce little stress,
there are trajectories which significantly stress the robot and lie
outside the normal operating profile. Figure 7 shows that not only
do the valid trajectories with no scoring model result in a range of
behavior but that we are also able to measure multiple performance
metrics on them.

e \
ROQ1 Findings: Although it is computationally more ex-
pensive to use a KD model, incorporating it into trajectory
generation is critical for efficiently generating valid trajec-
tories, especially as the trajectory length increases. We also
found that, independent of the chosen measure, the stress
induced valid generated trajectories shows high variability.
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Table 2: The different scoring models and their descriptions.

Assigns high scores to trajectories with
high velocities.

Assigns high scores to trajectories with
high velocities and include 90 degree turns.

High Velocity

High Velocity
+ 90 Deg

High Velocity | Assigns high scores to trajectories with

+ 180 Deg high velocities and include 180 degree turns
Learns a scoring model based on the

Learned

execution of prior trajectories

5.3 Incorporating a Scoring Model

To answer RQ2, we need to determine whether computing and
including a scoring model, line 20 of Algorithm 2, leads to the
generation of more stressful trajectories. We explore 4 different
scoring models as described in Table 2. The first 3 scoring models are
designed to represent scoring models designed by experts. Intuition
tells us that for a quadrotor, the higher a robot’s velocity, the more
deviation we can expect given a turn. Using this intuition, three
handcrafted scoring metrics were created. The first assigned higher
scores to High Velocity trajectories without consideration to turns.
The second assigned higher scores to trajectories that had both
high velocity and waypoints that resulted in 90 degree turns (High
Velocity + 90 Deg). The last handcrafted scoring model was similar
to the second, except it placed a high score on 180 degree turns
(High Velocity + 180 Deg).

These three approaches require domain knowledge, which is not
always readily available. We thus tried a final scoring model, which
Learned a scoring model based on the maximum deviation of each
controller on the initial trajectories in RQ1. The learned scoring
model uses 10-fold cross-validation to determine the polynomial
degree used in a ridge regression model implemented using Pythons
Scikit-Learn library[52]. For each of the software controllers tested
in RQ2, we extract attributes from their initial execution. The input
and output velocity, the angle between the waypoints, and the
actual maximum deviation is extracted, as shown in Figure 3. Using
this as training data, we produced four independent scoring models
that, given a pair of waypoints, predict the maximum deviation for
the respective software controller.

For each new scoring model, we generated a new set of tra-
jectories using a total time of 1 hour, a beamwidth of 5, and a
trajectory length 10. That is half of the time given in the RQ1 study
to determine if the scoring model could produce more stressful
resultant trajectories and do so in less time. For comparison, we
also generated a baseline where each of the FlightGoggles software
controllers was executed on the trajectory set generated using a
Full KD model and no scoring model as per RQ1 with trajectories
of length 10 and 2 hours of generation.

The resulting trajectories were run on each of the drone con-
trollers, and the maximum deviation recorded. To determine whether
the introduction of a scoring model was beneficial, we divided each
of the resultant maximum deviations with the mean maximum de-
viation from the baseline trajectory set. Thus any test that induced
more stress and had a maximum deviation greater than the initial

3Due to space constraints and without loss of generality, we just use the maximum
deviation since it relates to safety — the further a quadrotor is away from the expected
trajectory, the more significant the safety risk.
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test set with no scoring model from RQ1, would result in a value
greater than 1. Similarly, a test with a value of less than 1 means
that it induced less stress than the average test in RQ1.

The results are shown in Figure 8. When considering only the
handcrafted scoring models, Figure 8 shows that for each of the
controllers, at least 1 of the 3 handcrafted scoring models results in
a more stressful test set. For both waypoint controllers, including
a scoring model that favors trajectories of high velocity result in
test sets that are 70% and 76% more stressful. For the fixed velocity
controller, a scoring model that favors 180 degree turns resulted in
a test set that is 10% more stressful. The low increase in stress is
attributed to the controller’s slow constant speed, however, we note
that our approach still finds test cases that are ~40% more stressful
than the given random test set. For the minimum snap controller
a scoring model that favored 90-degree turns induces on average
69% more stress. These findings are consistent with the operation
of these controllers. Moreover, taking the mean of the best scor-
ing models shows that, on average, having a handcrafted scoring
model results in a 55.9% increase in maximum deviation on the
stressful trajectories. These findings show that handcrafted scoring
models are beneficial when domain knowledge is available.

Figure 8 also shows that for all controllers, it is possible to learn
scoring models that can generate stressful trajectories for a specific
quadrotor. This is useful, especially when there is no domain knowl-
edge available, for instance, when testing a new robot. Moreover,
the quality of learned models is high, since for each controller we
found the learned model produced a distribution of performance
metrics similar to the best handcrafted scoring model. Taking the
mean of all scoring models showed that on average a learned scor-
ing model increased the maximum deviation by 41.3%.

Recall that the experimental setup for RQ2 used half of the time
compared to RQ1, so the observed improvements in the perfor-
mance metrics were also significantly less costly to produce.

RQ2 Findings: Introducing both handcrafted and learned
scoring model into trajectory generation produces test that
on average are 55.9% and 41.3% more stressful than tra-
jectories without a scoring model respectively. Moreover,
learned scoring models can be generated without any prior
domain knowledge.

6 FOLLOW-UP STUDY

We performed a preliminary study to explore the application of the
proposed approach to a commercial drone operating in an outdoor
flying cage of 30mx30mx30m, and analyzed the differences between
executing the trajectories in simulation versus the real-world. We
selected the popular Parrot’s Anafi quadrotor[48], which has a
weight of 0.5kg, maximum horizontal velocity of 15m/s, and an
arm length of 0.1m. The Anafi has an autonomous flight mode,
which can follow a series of waypoints through change positions
commands using a controller that is not publicly available.

For this study, since we are not certain about the particular con-
troller used by the Anafi, we learned a scoring model from an initial
set of trajectories that we executed sending waypoints to Anafi’s
APL To reduce the cost of collecting the training set of trajectories,
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Figure 8: The ratio of maximum deviation with a scoring model to maximum deviation without one. Here the initial trajectory
set with no scoring model would have a mean value of 1. Any trajectory set that produced more stress than the initial trajectory
set would have values greater than 1. The medians (central line) and mean (triangle and number) are shown.

we executed those initial set of random trajectories in the Parrot-
Sphinx[51] simulator. We bound the initial generation to 2 hours,
a beamwidth of 5, and a trajectory length of 10, and the learning
was meant to generate a model that increases the maximum devi-
ation in a trajectory. We then used the learned scoring model to
generate stress-inducing trajectories using a total time of 1 hour, a
beamwidth of 5, and a trajectory length of 10.

Figure 9 shows the findings in the form of a boxplot. The first
pair of boxes show the results from the execution of trajectories in
simulation, while the second pair of boxes show the results from
executing the drone in the real world. Each pair represents the devi-
ation of the initial trajectory set and the stress-inducing trajectory
set, respectively. Each box is normalized by the mean maximum
deviation of the corresponding initial trajectory set. As mentioned
earlier, the initial trajectory set was generated without a scoring
model, and it shows similar means and variation in simulation and
in the real world.

As shown by the second box, the scoring model learned in sim-
ulation allows our approach to generate trajectories that, when
executed in simulation, cause on average a 26% increase maximum
deviation in a trajectory. More interesting, however, is that when
the same generated trajectories are executed in the real-world, they
also cause a similar degree of additional deviations, albeit with
greater variation (whiskers of the fourth box) introduced by exter-
nal environmental factors such as GPS-localization noise and wind.
This confirms that it is possible to mitigate the cost of learning a
scoring model through simulation and apply trajectories generated
with that model in real-world contexts.

From a testing point of view, one might be interested in trajecto-
ries (test inputs) that violated certain specifications. For example,
might specify that the maximum deviation from the expected trajec-
tory cannot exceed some threshold. Figure 11 shows the percentage

of automatically generated tests that violate a given maximum
distance specification. The results indicate that, regardless of the
specified maximum deviation, using a scoring model produces a
larger percentage of tests that violate the specification. For exam-
ple, given a specified maximum deviation of 4m, Figure 11 shows
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Figure 9: Maximum deviation for simulation and outdoors
trajectories normalized by the mean of the trajectory set
with no scoring model.

that with no scoring model, only 30% of tests generated would vio-
late that constraint. However, our approach using a scoring model
would generate a test set with approximately 70% of tests that vi-
olate the same specification. Additionally, these results show that
using a scoring model not only generates a higher percentage of
tests that violate the constraints, but also generates the test with
the largest maximum deviation. The maximum deviation we ob-
served outdoors with the generated trajectories was 6.2m, with the
average being 4.5m. This highlights how the approach can generate
stressful trajectories that push the drone to deviations that go way
beyond the expected deviation for this kind of drone.

Developers can also use these trajectories to further investigate
the behaviors which led to these violations. For example, using
the Anafi quadrotor, we plotted the test that produced the largest
maximum deviation. Figure 10 shows the generated test trajectory



ISSTA °20, July 18-22, 2020, Virtual Event, USA

Top View

Carl Hildebrandt, Sebastian Elbaum, Nicola Bezzo, and Matthew B. Dwyer

Side View Side View

3D View »

(w)sixy-Z
Y-Axis(m)

5 4

Z-Axis(m)

2

Z-Axis(m)

oy §

3 0 0

10
15
X‘Axis(,hj‘) 25

10 15 20

X-Axis(m)

25 30 35

5 10 15 20

X-Axis(m)

25 30 35 0 5 10 15 20

Y-Axis(m)

25 30 35
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(dotted line) of the drone in both simulation (dashed line) and real-
world (solid line). From the top view, it appears that the Anafi
follows the expected trajectory precisely. However, from a side
view, it seems like the Anafi follows the expected trajectory in all
cases except when large changes in all x,y, and z-directions are
requested, for instance, when flying from waypoint 2 to 3. The 3rd
waypoint is the position (19.0, 27.0, 29.9). In simulation, although it
did not follow the expected short line trajectory, it flew to a height
of 29.9m as expected. In the real world, the Anafi similarly did
not follow the expected trajectory, however it flew to a height of
~31.34m high, 1.34m over the designated flying altitude of 30m,
even though all waypoints are within the flying volume. A pilot
flying this quadrotor who was not aware of the distinct behavior
shown through this trajectory would at best be surprised and, at
worst, experience a collision.

7 CONCLUSION

We have introduced a novel approach for the automatic generation
of feasible and stressful trajectories for mobile robots. The approach
is unique in that it integrates the kinematics and dynamics of the
robot to generate trajectories that are feasible given its physical
limitations, it builds on algorithms from robotics planning and
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graph exploration to more efficiently search the input space, and
it incorporates a highly parameterizable scoring model to guide
trajectory generation towards those that induce high-stress in the
system. The approach was able to generate valid trajectories that
caused a mean increase of maximum deviations of 55.9% and 41.3%
in the two systems we studied. These deviations are significant as
in the commercial quadrotor, the maximum deviation recorded in a
small 30m> area was 6m.

In future work, we will investigate reduction techniques that
let us explore the trajectory space more efficiently by, for exam-
ple, exploiting the physical commutativity of sub-trajectories. An-
other exciting avenue that we intend to explore is combining our
trajectory generation technique with languages used to specify
environments[16]. Using this, we hypothesize that we could gen-
erate not only trajectories but entire environments that stress any
given robot. These environments could be combined with a mix-
mode execution where, for example, the drone flies in the real world,
but the obstacles are present only in simulation.
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