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Such an approach must overcome two fundamental challenges:

1) determining whether a trajectory is physically valid as a precon-

dition to be feasible, and 2) efficiently identifying stress-inducing

trajectories. A third and cross-cutting challenge is to remain general

enough to support a broad range of mobile robots, stress measures,

and ease of execution in both simulated and real environments.

To address the first challenge, we build on the insight that mobile

robots’ physical capabilities are usually approximated with kine-

matic and dynamic (KD) models. A KD model is a mathematical

description of how the physical state of the robot is affected by any

given input. For example, a KD model for a quadrotor may com-

pute position, linear and angular velocity, and attitude based on the

torque applied to the rotors. The proposed approach uses readily

available KD models to compute the set of physically achievable

future states of a robot[27]. Any state outside that set is physically

infeasible.

To address the second challenge, we build on reachability algo-

rithms using KD models to efficiently sample the valid physical

space and incorporate a parameterizable scoring model that assigns

a score representing stress to each trajectory as it is generated.

Furthermore, the approach uses a beam search to incrementally

explore the space of trajectories in order to identify and select the

ones with the most potential to add stress to the system.

Finally, the challenge of remaining general is addressed by virtue

of building on models that are available or easily approximated

for most common mobile robot types, a high-degree of trajectory

search abstraction and parameterization, and the use of the Robot

Operating System (ROS) to standardize the message formats[59]

and of open-source simulators to explore the trajectories as part of

the implementation.

The primary contributions of this work are:

1) An automated approach for the efficient generation of physi-

cally valid and stressful trajectories for mobile robots, through the

novel integration of kinematics and dynamics (system’s physical

aspects), the development of a parameterizable scoring model, and

a configurable trajectory search process.

2) A tool pipeline1 that implements the approach and is applicable

to a broad range of mobile robots. In order to facilitate the eval-

uation, the implementation includes instances of an open-source

quadrotor with four different software controllers and an existing

commercial quadrotor.

3) An evaluation of the approach that demonstrates its benefits. A

controlled evaluation shows that a KD model is crucial for gener-

ating trajectories of non-trivial length, while the introduction of

handcrafted and learned scoring models increased stress by 56%

and 41% on average over a random baseline. A case study on a com-

mercial quadrotor demonstrated similar levels of induced stress,

with the drone deviating up to 6m from its nominal trajectory.

2 BACKGROUND AND RELATED WORK

We begin with an overview of how mobile robots are currently

being tested in ğ2.1, followed by an introduction to KD models in

ğ2.2.

1Artifact available at: https://hildebrandt-carl.github.io/RobotTestGenerationArtifact/

2.1 Testing of Mobile Robots

The rise of autonomous cars and the impact of their potential fail-

ures have led to a resurgence of techniques for testing mobile robots.

We point the reader to work by Stellet et al. [60] and Huang et al.

[24] for overviews on techniques from the intelligent vehicle com-

munity. We now summarize efforts related to ours, organized by

whether a technique is meant to operate at the system or component

level, then we briefly discuss the closest work for generating stress-

like tests for mobile robots, and finalize with a special mention for

simulation, a key tool in the validation of mobile robots.

At the system level, the state of practice relies extensively on

simulation, execution of predefined scenarios [14], and field deploy-

ment for testing [65]. For instance, in 2018, Waymo announced that

it had completed 10 million miles of driving on public roads and

over 7 billion miles in simulation [71]. State-of-the-art has concen-

trated on enabling the generation of test scenarios that account

for a rich set of factors that appear in realistic contexts [57]. Many

approaches have focused on the generation of images, a challenging

input type that is fundamental to most mobile systems [28], and in

the alteration of those images to expose faults [10, 63]. A natural

progression of these efforts had led to domain-specific languages

that can express images for realistic contexts[17]. Other emerging

approaches target different types of inputs, such as control com-

mands to manage acceleration, velocities, or positions [31]. All

these approaches recognize that generating a full test environment

is more complex and thus attempts to leverage existing informa-

tion to guide test generation. For example, importing existing road

maps instead of synthesizing ones [61], distilling police reports as

models to guide the generation of the environment such that they

resemble contexts associated with car crashes [18, 35], using an

approximation to the system control model to guide the command

generation [31], or incorporating traffic models [54].

Independent of the chosen approach to generate tests for mobile

robots, a recognized challenge is the management of the enormous

input dimensions and state-space[32]. To address these challenges

existing approaches either reduce the input space, reduce the repre-

sented state space, or define a set of constraints to work within. For

example, Loiacono et al. [37] use their domain knowledge to focus

on race-tracks as the input space of autonomous cars. Althoff et al.

[1] reduce the state space by setting the test scenario as constant

and only optimizing the initial conditions of the vehicle under test.

BaerkGu et al. [30] use the power of SMT solvers to generate a

sequence of road segments that meet user design criteria. O’Kelly

et al. [47] focused just on particular highway settings.

At the component testing level, we find many specialized input-

generation techniques. For example, there are techniques targetting

sensor and actuation components [8], control components [3, 40],

image processing components [15, 36, 67], and reactive layers that

include machine learning models. Among the latest, the software

engineering community has generated an increasing body of knowl-

edge on testing DNN’s [11, 62, 77, 78].

The closest efforts to our work in terms of the integration of

the system physical elements, aim to force robots to either operate

along performance boundaries [45], or at maximizing exposure

to unsafe behavior [1, 64]. These efforts are different from ours

in two ways. First, they only aim to generate the initial set of
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robot conditions instead of a whole trajectory. In theory, one could

expose all valid stressful trajectories by just setting the initial robot

conditions. In practice, however, identifying initial conditions that

are representative of how the system operates in the real-world is

challenging as they must avoid both unreachable conditions as well

as conditions that are impossible to reproduce in real deployments.

Second, none of them connects the KD model to generating tests

that are guaranteed to be physically valid for the given robot. The

work by Althoff et al. [1] makes the connection to KD models but

uses them to favor tests with small reachability sets that represent

tight operating spaces, which may not necessarily be stressful.

It is worth noting that simulation plays a crucial role in the vali-

dation of mobile robots driven by factors such as the time required

to build a complete physical system prototype, the interactions with

the physical world that require to mock at least part of that world,

and the cost of field failures. Indeed, most of the approaches listed

rely on various types of simulation support. Gambi et al. [19] used

BeamNg[49] a vehicle simulator to find vehicle bugs using genetic

algorithms. Dosovitskiy et al. [9] use a simulator, Carla, to prototype

three types of autonomous vehicle. Among the many simulators

available [53], in this work, we leverage recent advances in high-

fidelity ones that provide not just accurate modeling of the world

through sophisticated physics engines (which model, for example,

gravity, friction, inertia), but also emulate a robot’s sensors as it

moves through the world (the atmospheric pressure, the distance

to an object as measured by a laser scan, the images captured by a

camera). Simulators like Carla, [9], Airsim, [56], and FlightGoggles

[23] are increasingly providing such capabilities. In one of the stud-

ies in this work, we execute the generated trajectories by extending

the FlightGoggles[23] framework with four additional controllers,

and redesigning FlightGoggles rendering software using the Unity

game engine[13] to allow the development of scenarios that do not

rely on proprietary resources.

2.2 Kinematic and Dynamic Models

Kinematic models describe the motion of an object through mea-

sures such as position, velocity, and acceleration [2, 27, 72, 73].

Dynamic models describe the forces associated with the motion of

an object [20]. Given an object’s current state and a given input,

these models can predict the object’s future state. Such predictions

are used in many fields including robotics[7], astrophysics[74],

mechanical engineering[12], biomechanics[58], and game physics

simulations[41]. Within the field of robotics, most systems are

likely to base their development on a KD model, or can at least be

approximated by an existing model.

In this work, we are specifically interested in using a KDmodel to

describe how a robot’s state s (e.g., position, velocity, acceleration)

will change due to some inputu. For instance a quadrotor KDmodel

can be described using a 12th order state system s = [x y z ϕ θ ψ vx
vy vz ωx ωy ωz ]

T , which describes the position, attitude, velocity,

and angular velocity respectively [66, 75]. The input to the model

is four motor speeds w1−4. The speeds are used to calculate the

values u1 to u4 as shown in equation 1. u1 represents the thrust

force upwards F generated by the four rotors. u2 and u3 represent

the difference in thrust for both rollMx and pitchMy respectively.

u4 is the difference in torque between the two clockwise turning

rotors and the two counterclockwise turning rotors which result

in yaw Mz . d is the drone’s arm length, and kf and km are the

proportionality constants for thrust and moments respectively.
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The values of u2, u3, and u4 are used to compute the change in

quadrotors angular velocity ω using Equations 2, where the I terms

correspond to the inertial properties unique to each quadrotor.
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The quadrotor’s angular velocity ω is then used to compute the

change in the attitude of the quadrotor using Equations 3.
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Finally, the change in velocity is computed using Equations 4. The

new velocity is used to update the position of the quadrotor.
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A KD model like the one introduced can be used to compute a

robot reachable set, that is, the area or volume a robot can reach in

a given amount of time. Efficiently calculating the reachable sets

is its own research area [6, 22, 25, 34, 44, 68, 76]. For our work, a

rough approximation is calculated using a sample of inputs to the

KD model (w1−4 for the drone), and then computing the convex

hull over the set of generated outputs. To the best of our knowledge,

the only work that combines reachable sets with testing, minimizes

the reachable sets in a given test scenario to maximize collision[1].

In contrast, we use reachable sets to create physically feasible tests.

3 PROBLEM STATEMENT

A physical space,W , is defined by a set of waypoints,wy ∈W , with

a designated origin, o ∈W . A robot r , is capable of moving between

a subset of waypoint pairs during a given time step, valid(r ) ⊆

W ×W ; a pair (wy,wy′) < valid(r ) is said to be infeasible. A robot

traversing to a waypoint,wyi , will arrive in a state, si , that depends

on both previous waypoint, wyi−1, and previous state, si−1. For

example, for a ground vehicle, a state may consist of the position

wy, a velocity v , and a heading θ .

A robot traversing through a series of waypoints is following a

trajectory traj . A trajectory of length Ntraj is a sequence of Ntraj
states, traj = ⟨s0, s1, . . . , sNtraj ⟩, where each state is recorded at a

givenwy. The ith wy in a trajectory is written as traj[i].

The set of trajectories of length Ntraj , Traj, is exponential in

size |Traj | = |W |Ntraj . Many of these trajectories are infeasible ś

they cannot be realized by the implemented system. The feasible
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Algorithm 2: Explore Frontier

1 Function exploreFrontier(GW , wyend, KD, Frontier, Res,

Width, Ntraj, ScoringModel)

2 Trajc = ∅

3 Frontier′ = ∅

4 SortedFrontier = sort(Frontier.scores)

5 for i = 0; i < Width; i++ do
// Select From Frontier

6 traj = SortedFrontier[i].traj

7 Frontier = Frontier ∩ not traj

8 if |traj| == Ntraj, and traj[Ntraj].position == wyend
then

9 Trajc = Trajc ∪ traj

10 end

11 if |traj| < Ntraj then

12 lasts = traj[last].state

// Calculate Reachable Set

13 Reach = calculateReachSet(lasts , KD, Res)

14 for wy in (GW ∩ Reach)) do

15 news = estimateRobotState(lasts , wy)

16 trajn = traj ∪ news

// Expand Frontier

17 Frontier′ = Frontier′ ∪ (trajn , Null)

18 end

19 end

// Assign Scores

20 Frontier′ = assignScores(Frontier′, ScoringModel)

21 end

22 return Frontier′, Trajc

23

4.2 Efficiently Exploring the Frontier

Algorithm 2 describes the four part exploreFrontier function. First,

exploreFrontier selects trajectories from the Frontier based on tra-

jectory scores. Second, exploreFrontier computes the physical space

reachable by the robot given the current robot state. Third, explore-

Frontier expands the frontier by building a new set of trajectories

by estimating the robots future state at each waypoint within the

reachable space, and then using the estimated state to build new

trajectories. Finally, assignScores gives scores to each of the new

trajectories in the frontier.

More precisely, exploreFrontier starts by sorting the current Fron-

tier based on each trajectory score. The top Width trajectories are

selected for further processing. The larger the Width, the more

trajectories are explored per call to exploreFrontier, and the more

computationally expensive the operation is. However, the larger

theWidth, the more likely the algorithm will process a trajectory

that will induce stress as approximated by our scoring function.

Selecting from the frontier, in line 6-10, consists of removing

the ith most promising trajectory and checking if it meets the

requirements to be a complete trajectory. If so it is added to the

Trajc set. In lines 11-19, if the selected trajectory is shorter than

Ntraj, the search continues by expanding the selected trajectory and

adding it to Frontier′.

Before the selected trajectory is expanded and Frontier′ com-

puted, a reachable set Reach needs to be computed. Reach defines

the physical space the robot can achieve in a time step given its

current state. Thus all wy inside both GW and Reach are feasible for

the robot. More specifically, the reachable set is computed using the

robots last known state lasts , the robots KD model, and a sample

resolution Res. Computing Reach is described in ğ4.2.1.

Once all the feasible waypoints for the robot are known, the

algorithm expands the frontier. A trajectory is a sequence of states.

Thus for each of the feasible waypoints, a new robot state is esti-

mated based on the robots last known state. For each of the possible

future states, a new trajectory is created by appending the new

state onto the current trajectory. Each new trajectory is then added

to the frontier and scores assigned to them before being returned.

4.2.1 Reachability Analysis to Explore the Feasible Frontier. The

computed reachable set allows the algorithm to precisely identify

which waypoints in GW are achievable given the robots KD model

and lasts . Thus trajectories that the robot could not physically

achieve can be rejected during trajectory generation, as opposed to

during trajectory execution.

In this work, we explore two techniques to compute reachable

sets and later compare them to a baseline technique that sets the

entire space as reachable. The first approach over-estimates the

reachable space, by setting the reachable set to a sphere around the

current position, whose radius is equal to the maximum velocity

the quadrotor can travel in ∆t = 1s .

The second approach leverages the full KD model to compute

the reachable set. Computing such reachable sets is an active area

of research[6, 22, 25, 34, 44, 68, 76]. For simplicity, we implement

a brute force technique to compute it. Given lasts , we generate

a set of input samples and apply the KD model to produce a set

of potential reachable states. The convex hull of this state set is

computed to serve as an approximation of the reachable set. This

approach requires Resx evaluations of the forward KD model equa-

tions, where x is the number of input variables for the KD model

equation, and Res is the number of input samples taken [7]. For

example, in the case of the quadrotor, which we later study, there

are 4 input variables, as shown in Equation 1. If permutations of

5 linearly sampled inputs are taken, the approach would need to

perform 54 = 625 computations resulting in 625 achievable future

states.

4.2.2 Estimating Robot State for Trajectory Building. The robot’s

state at a new waypoint is estimated based on the robot’s state at

a previous waypoint and the current input. Approaches to state

estimation can vary in cost and precision. At two extremes in this

spectrum are estimators that 1) assume the robot is at rest when

reaching a waypoint, and 2) solve the inverse of the KD model

equations. The first is inexpensive, but imprecise and the second is

precise, but expensive.

We implement a hybrid of these that uses only portions of the

KD model equations to estimate state while setting the remaining

state variables to their resting values. The portions of the state to

reset are configurable. For example, for the drone systems we later

study, the approach computes quadrotor velocity at each waypoint
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Algorithm 3: Assign Scores

1 Function assignScores(Frontier, ScoringModel)

2 for traj in Frontier do

3 score = 0

4 for each pairOfStates in traj do

5 score += scoringModel(pairOfStates)

6 end

7 traj.score = score

8 end

9 return Frontier

(euclidean distance between the waypoints over the timestep), but

sets the attitude and angular velocity to 0 at each waypoint (This

would happen if a quadrotor entered a waypoint level).

4.2.3 Assigning Scores to Select Next Trajectory. The scoringModel

is used as described in Algorithm 3. For each traj in the Frontier we

start with an initial score of 0. The algorithm iterates through each

pair of states in the trajectory and assigns a score to the state pair.

The final trajectory score is then computed by accumulating the

state pair scores for that trajectory.

The scores are assigned by a scoringModel and are calculated

based on an estimate of the stress that the robot will incur. A good

scoringModel will accurately estimate this stress given two robot

states and associated waypoints. The stress is defined through a

scalar stress metric. Depending on the application of the robot,

stress can be measured using different stress metrics. For example,

three possible metrics are maximum deviation, maximum accel-

eration, or total time. The only requirement is that the selected

stress metric must be measurable during robot execution. The main

stress metric we use in our study is maximum deviation, which is

illustrated in Figure 3. The maximum deviation, a standard measure

associated with navigation safety, is a measure of the largest error

between the expected position of a robot and its actual position. In

this work, we explored two classes of scoring models that we later

compare to a baseline scoring model that randomly selects a score.

The first scoring model leverages a user’s domain knowledge to

create rules likely to maximize some goal, for instance in our case,

maximizing deviation. In our evaluation, for example, we identified

the trajectories velocity vin , vout , and the trajectory angle Θ, as

shown in Figure 3, as attributes likely to be correlated to maximum

deviation. For example, a large vin and Θ correspond with the

intuition that entering a waypoint with high velocity might result

in a significant deviation if the robot is also required to take a sharp

turn. In general, the effectiveness of such a model will depend

on a domain expert’s ability to identify the attributes as well as

how closely the attributes align with the robot behavior, which

depends on the robot planner, robot controller, and robot sensing

and actuation capabilities.

The second scoring model learns from previous data. It consists

of using a collection of trajectories generated using a random scor-

ing model and subsequently identifying the factors that lead to

particularly stressful trajectories. This knowledge can then be used

to score future trajectories on their ability to cause stress. As an

example, assume that there is a series of generated trajectories. The

Figure 3: Trajectory attributes and the stress metric max-

imum deviation. The solid line is the expected trajectory

while the dotted line is the true behavior.

robot could then execute the trajectories to render an actual max-

imum deviation. The traversed trajectories could then be broken

down into pairs of waypoints like that of Figure 3. The maximum

deviation associated with each pair of waypointsmax_dev and a

set of attributes that may be associated with that deviation (e.g.,vin ,

vout , Θ) could be used as training data. Then a learning technique

can be used to produce a scoringModel that, given a pair of waypoint

attributes, can estimate the expected maximum deviation.

In our evaluation, we generated a scoringModel using a polyno-

mial regression model where the loss function is the linear least-

squares function, and regularization is given by the ℓ2-norm[21].

We determined the best polynomial degree using 10-fold cross-

validation. If the resulting model provides a good fit (i.e., strong

correlation and low cross-validation loss), then it can be used to

assign predictive scores to future trajectories without executing

them. This approach incurs the cost of trajectory execution to gen-

erate the data to train the model. Thus its applicability depends in

part on the cost of such execution. In many cases, such costs can

be mitigated, for example through simulation, and it is beneficial

in that it does not rely on the user’s expertise.

4.3 Example Trajectory Generation

Figure 4 shows a step-by-step illustration of our approach. In this

example, the GW is generated using 6 random waypoints, we set

Width to 2, and Ntraj to 4. After PRM construction, we select from

the frontier, which after the initialization in Algorithm 1 lines 3-8, is

a single trajectory that contains wystart. We calculated the Reach for

the last and only waypoint (wystart) in the trajectory as described in

ğ4.2.1. We then expanded the frontier using each of the waypoints

inside the W and Reach. The waypoints are added to the current

trajectory by estimating three new states based on the current state

and the new waypoint as described in ğ4.2.2. Scores are assigned to

each of the new trajectories based on a scoring model as described

in ğ4.2.3.

On the second iteration, due to the Width of 2, the two highest-

scoring trajectories are selected from the frontier (filled circle). For

each of the selected trajectories last waypoints, a Reach is calculated.

The frontier is expanded using the waypoints in each Reach. This

results in 4 new trajectories. Note that a waypoint can be used in

multiple trajectories, as seen by the most central waypoint, which
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both the Anafi and FlightGoggles control software. The majority of

this module is implemented using Python3. The module consists

of 36 python scripts with a total of approximately 7,000 SLOC.

For certain functions, such as computing the convex hull, it was

more convenient to use MATLAB, and so the approach calls these

functions through the MATLAB API for Python[39].

The second module implements the integration with the Anafi

quadrotor in both simulation[51] and the real-world through the

Anafi API[50]. The module consists of software used to convert the

trajectory into waypoints that are readable by the Anafi API. The

Anafi API sends the waypoints to the Anafi quadrotor and records

the returned GPS data through either a virtual ethernet or Wi-Fi

connection.

The final two modules contain the control and simulator code

to fly the FlightGoggles quadrotor. The FlightGoggles simulator

has two parts. The first part emulates the dynamics and control

of the quadrotor, while the second part simulates the quadrotors

sensor data and collision information. At the time of writing, the

FlightGoggles simulation uses proprietary graphics assets. Thus

we only use the part of FlightGoggles that emulates the quadrotor

dynamics, and we re-engineer the FlightGoggles simulation tool in

Unity based on the available documentation. The control code uses

ROS[59] and is written in C++. The implementation of the 4 custom

quadrotors is integrated into the original code base using 11 Python

classes consisting of approximately 2150 SLOC. The portions of the

FlightGoggles simulator that were redeveloped in Unity are written

in C#. The new simulator integrates with the base ROS code using

the original TCP link in FlightGoggles. The new simulator uses

assets that are freely available from the Unity store.

5 EVALUATION

The goal of the evaluation is to assess the proposed approach and

determine what benefits the introduction of the KD model and scor-

ing models has on automated trajectory generation for robots. More

specifically, we aim to answer the following research questions for

automated trajectory generation:

RQ1) Does the introduction of a KD model improve the ability

to generate feasible and valid trajectories?

RQ2) Does the introduction of a scoring model improve the

ability to generate stressful trajectories?

5.1 Setup

The test world is set to a 30m × 30m × 30m map with 250 randomly

placed waypoints. This selection matches the volume (27000m3)

and size of a typical outdoor aerial testing facility[33, 46, 69].

5.1.1 Robot Configurations. The systems we used are listed in

Table 1. The first is an autonomous racing quadrotor executed in

the publicly available FlightGoggles simulator [23]. The quadrotor

has a weight of 1kд, and a body length of 0.45m [55]. Its maximum

velocity in simulation is 18m/s [38].

The FlightGoggles quadrotor comes with a built-in angular rate

controller to manage roll, pitch, and yaw. To evaluate the wide vari-

ety of trajectory following techniques exhibited by today’s quadro-

tors, we implement four commonly used quadrotor controllers[66]

into the FlightGoggles simulator. Two controllers are of a way-

point control type, using a cascade of three PID controllers; the

Table 1: Robot configurations studied

Robot Hardware Robot Software Execution

Flightgoggles

Quadrotor[23]

Unstable Waypoint

Controller[66]
Simulation

Stable Waypoint

Controller[66]
Simulation

Fixed Velocity

Controller
Simulation

Minimum Snap

Controller[42]
Simulation

Parrot Anafi

Quadrotor [48]

Waypoint

Controller[50]

Simulation

Real World

first controls the angle of the quadrotor, the second controls the

velocity of the quadrotor using the angle controller, the third sets

the velocity of the quadrotor based on the distance to a waypoint.

The first implementation replicated poorly written controllers that

has overshoot and oscillation around waypoints. The second imple-

mentation mimics tuned controllers that are stable and converge to

the waypoint. The next instantiated controller was a fixed velocity

controller. This controller assigns a shared proportion of a fixed

velocity over each the x, y, and z-direction based on the location

of the next waypoint. We set the controller to maintain a velocity

of 2m/s , allowing the quadrotor to maneuver easily. The final con-

troller computed a minimum snap trajectory and follows it using

the waypoint PID controller. It was fundamentally different in that

it builds a new trajectory through the waypoints that minimize

snap, the 4th derivative of position[42], which means that it does

not adhere to the assumption of the expected behavior being the

shortest straight line between consecutive waypoints.

A second quadrotor, the Anafi Parrot, is studied later in ğ6. Tra-

jectories on the Anafi Parrot were executed both in simulation and

the real-world using its proprietary control software.

5.2 Trajectory Generation with KD Models

To answer RQ1, we need to assess the cost and benefit of incorporat-

ing a KDmodel into the trajectory generation technique. To the best

of our knowledge, there are currently no automated approaches

or tools available for the automated generation of stressful target

trajectories for mobile robots. The state-of-the-practice consists of

handcrafted stress tests built by experts, which tend to be effective

but limited in the scale of exploration. Thus, to identify the bene-

fits explicitly introduced by the KD models, we adapted how the

reachable set in line 13 of Algorithm 2 is computed using 3 different

techniques. The first approach,NoKD, returns all waypoints in the

world, without considering any form of a KD model. The second

approach weakly approximates the reachable set, Approx KD, by

computing a sphere whose radius is the distance the quadrotor

could travel at maximum velocity in ∆t = 1s . The final approach,

Full KD, uses a full KD model as described in ğ4.2.1. While expen-

sive [22], this guarantees that all explored trajectories are valid by

construction.

Each technique was given 2 hours to generate and execute trajec-

tories. Algorithm 2 was set to have a beamwidth of 5 and trajectory

length between 3 and 50. Varying trajectory length allows us to
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Table 2: The different scoringmodels and their descriptions.

High Velocity
Assigns high scores to trajectories with

high velocities.

High Velocity

+ 90 Deg

Assigns high scores to trajectories with

high velocities and include 90 degree turns.

High Velocity

+ 180 Deg

Assigns high scores to trajectories with

high velocities and include 180 degree turns

Learned
Learns a scoring model based on the

execution of prior trajectories

5.3 Incorporating a Scoring Model

To answer RQ2, we need to determine whether computing and

including a scoring model, line 20 of Algorithm 2, leads to the

generation of more stressful trajectories. We explore 4 different

scoringmodels as described in Table 2. The first 3 scoringmodels are

designed to represent scoring models designed by experts. Intuition

tells us that for a quadrotor, the higher a robot’s velocity, the more

deviation we can expect given a turn. Using this intuition, three

handcrafted scoring metrics were created. The first assigned higher

scores toHighVelocity trajectories without consideration to turns.

The second assigned higher scores to trajectories that had both

high velocity and waypoints that resulted in 90 degree turns (High

Velocity + 90 Deg). The last handcrafted scoring model was similar

to the second, except it placed a high score on 180 degree turns

(High Velocity + 180 Deg).

These three approaches require domain knowledge, which is not

always readily available. We thus tried a final scoring model, which

Learned a scoring model based on the maximum deviation of each

controller on the initial trajectories in RQ1. The learned scoring

model uses 10-fold cross-validation to determine the polynomial

degree used in a ridge regression model implemented using Pythons

Scikit-Learn library[52]. For each of the software controllers tested

in RQ2, we extract attributes from their initial execution. The input

and output velocity, the angle between the waypoints, and the

actual maximum deviation is extracted, as shown in Figure 3. Using

this as training data, we produced four independent scoring models

that, given a pair of waypoints, predict the maximum deviation for

the respective software controller.

For each new scoring model, we generated a new set of tra-

jectories using a total time of 1 hour, a beamwidth of 5, and a

trajectory length 10. That is half of the time given in the RQ1 study

to determine if the scoring model could produce more stressful

resultant trajectories and do so in less time. For comparison, we

also generated a baseline where each of the FlightGoggles software

controllers was executed on the trajectory set generated using a

Full KD model and no scoring model as per RQ1 with trajectories

of length 10 and 2 hours of generation.

The resulting trajectories were run on each of the drone con-

trollers, and themaximumdeviation recorded.3 To determinewhether

the introduction of a scoring model was beneficial, we divided each

of the resultant maximum deviations with the mean maximum de-

viation from the baseline trajectory set. Thus any test that induced

more stress and had a maximum deviation greater than the initial

3Due to space constraints and without loss of generality, we just use the maximum
deviation since it relates to safety ś the further a quadrotor is away from the expected
trajectory, the more significant the safety risk.

test set with no scoring model from RQ1, would result in a value

greater than 1. Similarly, a test with a value of less than 1 means

that it induced less stress than the average test in RQ1.

The results are shown in Figure 8. When considering only the

handcrafted scoring models, Figure 8 shows that for each of the

controllers, at least 1 of the 3 handcrafted scoring models results in

a more stressful test set. For both waypoint controllers, including

a scoring model that favors trajectories of high velocity result in

test sets that are 70% and 76% more stressful. For the fixed velocity

controller, a scoring model that favors 180 degree turns resulted in

a test set that is 10% more stressful. The low increase in stress is

attributed to the controller’s slow constant speed, however, we note

that our approach still finds test cases that are ≈40% more stressful

than the given random test set. For the minimum snap controller

a scoring model that favored 90-degree turns induces on average

69% more stress. These findings are consistent with the operation

of these controllers. Moreover, taking the mean of the best scor-

ing models shows that, on average, having a handcrafted scoring

model results in a 55.9% increase in maximum deviation on the

stressful trajectories. These findings show that handcrafted scoring

models are beneficial when domain knowledge is available.

Figure 8 also shows that for all controllers, it is possible to learn

scoring models that can generate stressful trajectories for a specific

quadrotor. This is useful, especially when there is no domain knowl-

edge available, for instance, when testing a new robot. Moreover,

the quality of learned models is high, since for each controller we

found the learned model produced a distribution of performance

metrics similar to the best handcrafted scoring model. Taking the

mean of all scoring models showed that on average a learned scor-

ing model increased the maximum deviation by 41.3%.

Recall that the experimental setup for RQ2 used half of the time

compared to RQ1, so the observed improvements in the perfor-

mance metrics were also significantly less costly to produce.

RQ2 Findings: Introducing both handcrafted and learned

scoring model into trajectory generation produces test that

on average are 55.9% and 41.3%more stressful than tra-

jectories without a scoring model respectively. Moreover,

learned scoring models can be generated without any prior

domain knowledge.

6 FOLLOW-UP STUDY

We performed a preliminary study to explore the application of the

proposed approach to a commercial drone operating in an outdoor

flying cage of 30m×30m×30m, and analyzed the differences between

executing the trajectories in simulation versus the real-world. We

selected the popular Parrot’s Anafi quadrotor[48], which has a

weight of 0.5kд, maximum horizontal velocity of 15m/s , and an

arm length of 0.1m. The Anafi has an autonomous flight mode,

which can follow a series of waypoints through change positions

commands using a controller that is not publicly available.

For this study, since we are not certain about the particular con-

troller used by the Anafi, we learned a scoring model from an initial

set of trajectories that we executed sending waypoints to Anafi’s

API. To reduce the cost of collecting the training set of trajectories,
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