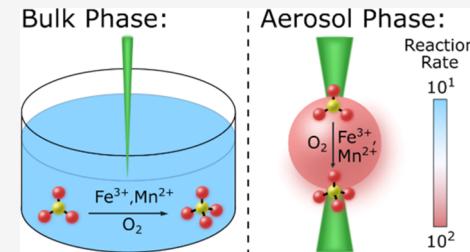


Enhanced Rates of Transition-Metal-Ion-Catalyzed Oxidation of S(IV) in Aqueous Aerosols: Insights into Sulfate Aerosol Formation in the Atmosphere

Kyle J. Angle, Erin E. Neal, and Vicki H. Grassian*

Cite This: <https://doi.org/10.1021/acs.est.1c01932>

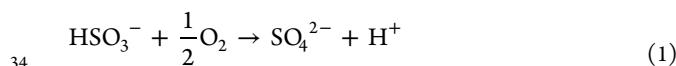
Read Online


ACCESS |

Metrics & More

Article Recommendations

Supporting Information


ABSTRACT: The oxidation of S(IV) is a critical step in the fate of sulfur dioxide emissions that determines the amount of sulfate aerosol in the atmosphere. Herein, we measured accelerated S(IV) oxidation rates in micron-sized aqueous aerosols compared to bulk solutions. We have investigated both buffered and unbuffered systems across a range of pH values in the presence of atmospherically relevant transition-metal ions and salts and consistently found the oxidation rate to be accelerated by ca. 1–2 orders of magnitude in the aerosol. This enhancement is greater than can be explained by the enrichment of species in the aerosol compared to the bulk and indicates that surface effects and potentially aerosol pH gradients play important roles in the S(IV) oxidation process in the aqueous aerosol. In addition, our experiments were performed with dissolved S(IV) ions ($\text{SO}_3^{2-}/\text{HSO}_3^-$), allowing us to demonstrate that acceleration occurs in the condensed phase showing that enhanced sulfate formation is not exclusively due to gas-aerosol partitioning or interfacial SO_2 oxidation. Our findings are an important step forward in understanding larger than expected sulfate concentrations observed in the atmosphere and show that inorganic oxidation processes can be accelerated in micron-sized aqueous droplets compared to the bulk solution.

KEYWORDS: reaction acceleration, sulfur chemistry, aerosol pH, surface access, kinetics, optical tweezers, ionic strength, sulfite

1. INTRODUCTION

The oxidation of S(IV) is a key reaction in atmospheric chemistry. Sulfur dioxide (SO_2) is emitted from individual sources at rates as large as 4000 kilotons per year.¹ The continental background concentration of SO_2 is up to 1 part per billion (ppb) and polluted regions can have levels of several hundred ppb.² In the atmosphere, SO_2 dissolves into aqueous systems including aerosols and cloud droplets to form one of several aqueous S(IV) species, including bisulfite (HSO_3^-), sulfite (SO_3^{2-}), and metabisulfite ($\text{S}_2\text{O}_5^{2-}$), which hereafter will be collectively termed S(IV)_{aq} . These species are oxidized by a variety of pathways into sulfate (SO_4^{2-}). For example, for bisulfite, the oxidation reaction with oxygen can be written as

This reaction can impact the composition and acidity of atmospheric aerosols. Although the oxidation of S(IV) is relatively slow, this is critically important to environmental chemistry, as the pH of aerosols and cloud droplets influences the rate of acid-catalyzed chemical transformations, the impact of aerosols on human health, and even the ability of aerosols to act as cloud condensation nuclei.^{3–5}

The oxidation of S(IV)_{aq} is overall quite complex and notoriously sensitive to reaction conditions. In addition, recent

measurements have shown more formation of sulfate during severe pollution events than can be accounted for by current models.^{6,7} The process is highly pH-dependent, with different rate laws and mechanisms operative for different pH regimes (acidic, neutral, and basic).⁸ The reaction is also inhibited by many different chemical species, including organic compounds, ammonia, and even S(IV) itself.^{9,10} These all vary with ionic strength, μ , and depending on the exact conditions, higher μ can either accelerate or inhibit the reaction kinetics.^{10–12} Furthermore, the reaction can be catalyzed by transition-metal ions (TMIs).^{10,13} TMI-catalyzed oxidation can, under some circumstances, be the dominant pathway of sulfate formation in the atmosphere.¹⁴ Indeed, one study found that the reaction is seven times faster in distilled water versus Milli-Q water due to the presence of TMIs in distilled water, despite the fact that these are present in sub-micromolar concentrations.¹⁵

Since the reaction rate depends on the exact nature of the solution matrix, and more sulfate is being observed in haze

Received: March 26, 2021

Revised: July 4, 2021

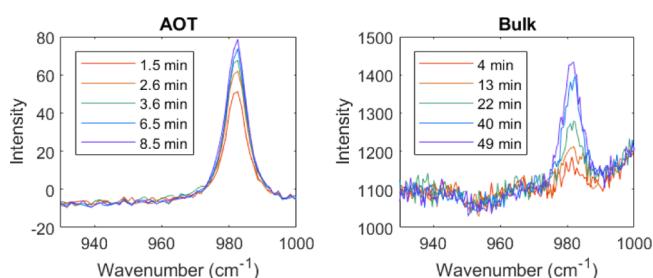
Accepted: July 6, 2021

62 events than can be explained by current kinetics data, the
 63 current study focuses on high ionic strengths ($\mu > 2$ M) found
 64 in aerosols to help fulfil the need for solute-strength-dependent
 65 kinetics in this regime.^{12,16,17} We also worked in the 0.1–1.5 m
 66 S(IV)_{aq} range since the majority of studies on S(IV) oxidation
 67 have utilized concentrations on the order of 0.01 m or less
 68 (note: “m” refers to molality throughout this report).^{10,18,19}
 69 Even higher concentrations are not practical since the
 70 saturation concentration of Na₂SO₃ is 2.1 M.²⁰ We employed
 71 Aerosol Optical Tweezers (AOT) to suspend individual
 72 droplets in surface-free environments and to continuously
 73 monitor their composition, size, and refractive index via Raman
 74 spectroscopy and Whispering Gallery Modes (WGMs).²¹ We
 75 used confocal Raman spectroscopy to monitor the same
 76 systems in the bulk phase. This allowed us to use our single-
 77 aerosol measurements to determine the extent to which
 78 oxidation of S(IV)_{aq} catalyzed by TMIs and common salts is
 79 accelerated in aerosols as well as the pH dependence of this
 80 process.

2. MATERIALS AND METHODS

81 **2.1. Materials.** All solutions were prepared using milliQ
 82 water with a resistivity >18.1 MΩ. Sodium chloride (Fisher Lot
 83 188772 and 186819) and sodium sulfate (Fisher Lot 161950)
 84 were baked at 200 °C for at least 48 h to remove organic
 85 impurities. Buffers were prepared from sodium acetate
 86 (Macron Batch 0000227236), imidazole (Sigma-Aldrich Lot
 87 WXBC9930V), glacial acetic acid (Fisher Lot 200447), and 1
 88 and 6 N HCl (Fisher Lot 195295 and 183144). The pH of
 89 solutions was measured with a pH meter (OAKTON
 90 Instruments) and ranged from pH 5.4 to 9.4 ± 0.3 for
 91 unbuffered experiments and was either 7.0 or 3.8 ± 0.1 for
 92 buffered experiments. For experiments with added Fe and Mn,
 93 FeCl₃·6H₂O (Aldrich Lot MKBC9551V) and MnCl₂·4H₂O
 94 (Fisher Lot 162637) were used, respectively. Various sources
 95 of S(IV), including NaHSO₃[−] (bisulfite), Na₂S₂O₅ (meta-
 96 bisulfite), and Na₂SO₃ (sulfite) were used to verify that
 97 aerosol-phase acceleration was not unique to one lot number,
 98 and these sources are listed in Table S1 in the **Supporting
 99 Information**. Additional reagents included sodium nitrate
 100 (Sigma-Aldrich Lot MKBW8240V) and sodium perchlorate
 101 (Sigma-Aldrich 0401080). Except where otherwise noted, salts
 102 were used to adjust the ionic strength to 2.45 m.

103 **2.2. Methods.** For bulk experiments, a confocal Raman
 104 spectrometer (HORIBA) was used with the LabSpec 8
 105 software suite. Solutions were prepared by first weighing the
 106 S(IV) source and any salts such as NaCl into a scintillation vial
 107 and then adding Milli-Q water and acid or buffer as needed to
 108 obtain the appropriate pH. Solutions were agitated vigorously
 109 to quickly dissolve the solids, and this likely resulted in
 110 solutions with dissolved O₂ at saturation for the given
 111 temperature (23.5 ± 0.5 °C) and ionic strength. 5 mL of the
 112 solution was pipetted into a glass Petri dish, and Kimwipe
 113 (Kimberly-Clark) fibers were gently dusted onto the surface of
 114 the solution to aid in laser focusing. Spectra were obtained
 115 with 10 s acquisition times and five accumulations, typically
 116 every 3 min for an average of 67 min total, using 1800
 117 grooves/mm for optimal resolution. For reaction times
 118 greater than an hour, the laser occasionally was refocused on
 119 the solution surface due to water evaporation. For experiments
 120 with sodium nitrate, the nitrate peak was used as an internal
 121 standard to track the relative intensity of the spectra over time.
 122 By focusing the laser slightly past the surface, the intensity of


123 the signal remains relatively constant for over an hour as the
 124 evaporation causes the laser focus to pass through the optimal
 125 position, and then the signal begins to decrease with further
 126 evaporation (see Figure S1 in the **Supporting Information**).
 127

128 For experiments in the aerosol phase, a pair of commercial
 129 Aerosol Optical Tweezers 100 (Biral Inc.) was used. Solutions
 130 were prepared the same as for the bulk and then aerosolized by
 131 an ultrasonic nebulizer (MicroAIR U22, OMRON), resulting
 132 in aerosols 3 ± 1 μm in radius. The aerosols were trapped by a
 133 laser (532 nm, 50 mW power). Except where stated otherwise,
 134 the relative humidity (RH) was maintained at 90 ± 8% by a
 135 controlled flow of wet and dry nitrogen gas (total flow 30
 136 sccm). The amount of O₂ present in the chamber was less than
 137 ambient conditions due to the N₂ flow, and data used to
 138 estimate the O₂ concentration are given in **Figure S11**. Raman
 139 spectra were acquired every second at 1200 g/millimeter and
 140 averaged in sets of 11 for analysis. Temperature probe readings
 141 were 24.6 ± 0.1 °C, and additional heating of the aerosol by
 142 the laser is expected to be on the order of 100 mK.²² The
 143 Raman spectrometer wavenumbers were calibrated using
 144 standard emission lines from a Hg and Ne/Ar USB light
 145 source (Princeton Instruments). Average experiments included
 146 12 min of S(IV)-containing aerosol data, followed by external
 147 standard(s). Calibration of intensity was performed by
 148 trapping a ca. 1 m sodium sulfate and/or nitrate aerosol for
 149 the acquisition of at least 100 spectra at the end of every
 150 experiment and quantifying the aerosol-phase concentration by
 151 obtaining refractive index. This allowed the determination of
 152 the concentration of sulfate in other samples from that
 153 experiment via comparison of the integrated area of the sulfate
 154 peak (982 cm^{−1}) or nitrate peak (1049 cm^{−1}).
 155

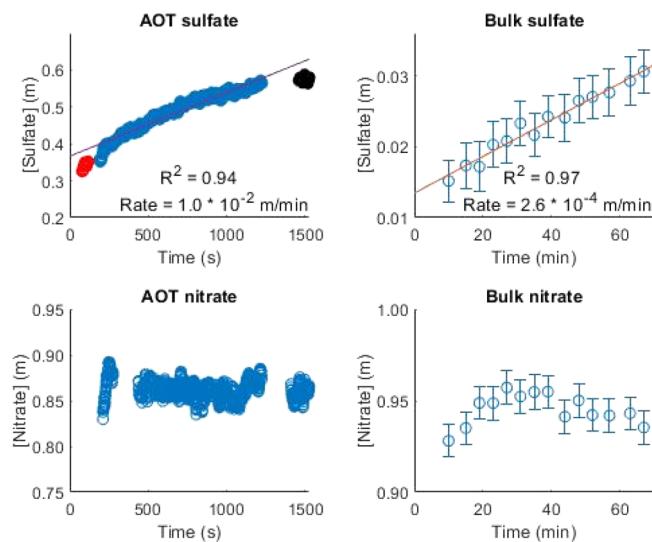
156 Details of other measurements are given in the **Supporting
 157 Information**. Briefly, TMI concentrations were quantified using
 158 a Thermo Fisher iCAP RQ ICP-MS analyzer. Bulk-phase
 159 refractive index measurements were performed using an ABBE-
 160 3L refractometer (Bausch & Lomb). Finally, enrichment
 161 factors (EFs) were measured by AOT, conductivity probe, and
 162 inductively coupled plasma mass spectrometry (ICP-MS)
 163 methods.

3. RESULTS

164 **3.1. Spectral Evidence of Acceleration.** Representative
 165 Raman spectra of the oxidation reaction at acidic pH are given
 166 in **Figure 1**. The sulfate band is located at 982 cm^{−1} and has
 167 the same location within spectral resolution for both phases. In
 168 addition, HSO₃[−] and S₂O₅^{2−} peaks are present at higher
 169

170 **Figure 1.** Representative sulfate ion spectra as a function of time.
 171 Each trace shows Raman spectra following the formation of sulfate in
 172 aerosol and bulk phases at pH 5.6. The solutions contained 1.0 m
 173 S(IV) and 0.2 m NaNO₃. The aerosol was 4.0 μm in radius, and the
 174 bulk solution was 5 mL in a glass Petri dish ($d = 55$ mm) exposed to
 175 ambient O₂.

wavenumbers, 1025 and 1052 cm^{-1} (see Figure S2 in the Supporting Information). At high pH (≥ 7), for bulk spectra, there are broad, overlapping SO_3^{2-} bands at 953 and 967 cm^{-1} (see Figure S2). By contrast, for aerosol-phase spectra at all pH values, the S(IV) bands have low intensity. This is consistent with our previous work with the $\text{SO}_4^{2-}/\text{HSO}_4^-$ system, where the latter had substantially lower intensity relative to sulfate in the aerosol compared to the bulk.²³ The S(IV) bands do appear when sufficient S(IV) is dissolved in the bulk solution and aerosols with high S(IV) concentrations generated from these solutions are trapped (as shown in Figure S2).


Figure 1 also shows that sulfate peaks are present in the AOT spectra as soon as the micron-sized aerosol is trapped in the optical tweezers and grow in intensity faster than that seen in the bulk-phase spectra. The aerosol is prepared by nebulization of a bulk solution and is trapped within 5 min of beginning the experiment. Fewer than 30 s pass between aerosol trapping and spectral acquisition. It is clear that some of this sulfate formation is occurring during the trapping process. The rate of sulfate formation is then determined using only the data after the aerosol is stabilized in the AOT. For example, for the AOT data shown in Figure 1, the first data point used in computing rate is obtained from the first spectrum, not from $[\text{sulfate}] = 0$. Likewise, for calculating bulk-phase rates, the first data point used is obtained from the first spectrum where sulfate peak area can be calculated by Gaussian curve fitting. The advantage of this method is that it makes the results less sensitive to any sulfate already present in the S(IV) source and it excludes interference from an induction period.^{10,24,25}

3.2. Quantifying Apparent Acceleration Factors for Various Conditions. For both bulk and aerosol spectra, sulfate concentrations were calculated using calibration curves (see Figures S3 and S4 in the Supporting Information). We found that sulfate formation is significantly faster in the aerosol phase than in the bulk. To quantify this acceleration, we defined an apparent acceleration factor (AAF) as given in eq 2

$$\text{AAF} = \frac{r_a}{r_b} \quad (2)$$

Here, r_a and r_b are the rates (in m/min) observed in the aerosol and bulk phases, respectively, where sulfate formation was linear with time. The data included in our rates began with the first spectrum containing a stable, quantifiable sulfate peak and ended after sufficient data were obtained (see Supporting Information, Discussion on rate computation for details). Representative linear fits are given in Figure 2.

A summary of AAFs for different experimental conditions is given in Table 1, with full details in Table S1. Here, a “data set” is the result from one bulk-phase experiment compared to the average of multiple aerosol-phase experiments with all parameters held constant. We tested a wide variety of pH conditions to determine the impact of this parameter on the AAF, with particular emphasis on acidic conditions since the majority of atmospheric aerosols are acidic.^{3,26} Even for unbuffered experiments, changes in pH during the reaction are expected to be small (<0.1 pH unit) since the large concentrations of SO_3^{2-} would absorb the majority of protons produced from the oxidation.²⁷ Ionic strength was controlled using either NaCl or NaNO_3 , two relevant salts for atmospheric aerosols.^{3,12,16} AAFs show that the reaction is at least an order of magnitude faster in the aerosol phase. Additionally, we computed an apparent acceleration factor

Figure 2. Sample sulfate formation data for the aerosol and bulk phases. The data are from pH 9.4 samples with 1 m Na_2SO_3 and 0.95 m NaNO_3 as the internal standard. AOT data show consecutive averages of 11 spectra (e.g., circles show spectra 1–11, 2–12, 3–13, etc.). Gaps in AOT data correspond to interference from WGMs; internal standard data with WGMs is given in Figure S1. The aerosol data was collected for longer than a typical experiment to demonstrate the extent of linearity of sulfate formation, and initial data corresponding to aerosol stabilization (red circles) as well as data departing from linearity (black circles) are not included in rate computation. AOT data error bars are not shown for clarity and are ca. ± 0.02 m . Bulk error bars show the error in the sulfate band area from peak fitting.

Table 1. Summary of AAFs for S(IV) Oxidation in the Aerosol vs Bulk Phase under Different pH Conditions^a

pH conditions	number of data sets	$[\text{S(IV)}]$ (m)	Avg AAF	AAF range	AAFE range
acidic unbuffered	18	1.0	19	4–45	7–57
neutral unbuffered	5	1.0	33	10–55	12–96
basic unbuffered	10	1.0	41	15–92	21–153
pH 3.8 acetate buffer	4	0.5–1.4	55	41–78	48–89
pH 7.0 imidazole buffer	10	0.2–0.4	33	14–76	16–163

^aSee Table S1 in the Supporting Information for more detailed conditions used.

corrected for enrichment (AAFE) to account for the increased ionic strength and reagent concentrations in the aerosol (see Supporting Information). In all cases, AAEFs are larger than AAFs by 19–477 percent.

For our systems, since we worked at high concentrations of S(IV) and salts, there was sufficient TMI present to catalyze the oxidation as the salt samples contained non-negligible concentrations of TMI. In order to quantify TMI concentrations, ICP-MS was employed to measure iron, manganese, copper, and cobalt amounts in our samples (Table S1). To further probe the nature of TMI catalysis, we performed experiments with explicitly added Fe^{3+} or Mn^{2+} . In both cases, S(IV) oxidation remained faster in the aerosol phase than the bulk across the pH range we studied (5.4–9.3). It is noteworthy that iron speciation changes considerably over this range, and therefore, our results show that S(IV) oxidation

acceleration occurs with different TMI species present.^{28,29} Table 1 also shows that AAFs generally increase with pH for unbuffered systems.

For buffered experiments, the pH was maintained at either 3.8 or 7.0 with an acetate or imidazole buffer, respectively, and $[S(IV)]_{aq}$ was varied. For the imidazole systems, AAFs went through a maximum at ca. 0.3 m S(IV). At relatively high S(IV) concentrations (0.4 m), additional S(IV) increases the rate to a lesser extent due to self-inhibition (Figure S5d). For the acetate systems, it was necessary to work at higher concentrations so the sulfate Raman band could be used to obtain multiple data points before acetic acid evaporation from the aerosol compromised the buffer pH. At these concentrations, any trend between AAF and $[S(IV)]$ is less obvious. This may also be due to the complexity of the factors involved, namely, acid catalysis and inhibition by acetate.^{9,30} Even so, consistent acceleration in the aerosol versus the bulk is observed over a wide range of conditions.

3.3. Measurement of Aerosol-Phase Concentrations.

Aerosol concentrations were measured by using the refractive index (n) of optically trapped aerosols to calculate their total solute content as has been previously demonstrated.³¹ From the position and spacing of WGMs (Figure 3), n can be

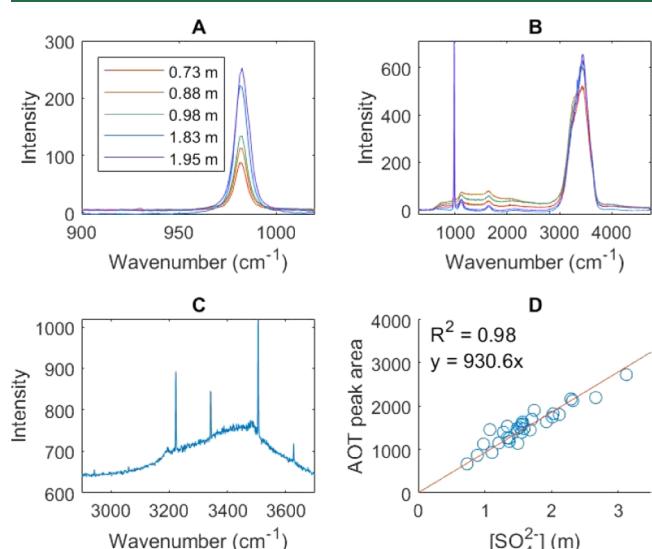


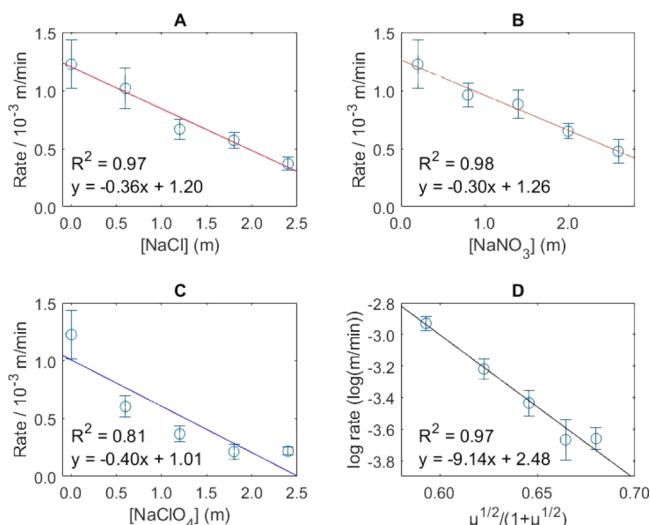
Figure 3. (A) sample Na_2SO_4 AOT spectra taken at 1200 grooves/mm in the sulfate region showing the concentration-dependence of the prominent sulfate peak at 982 cm^{-1} ; (B) same aerosols as "A" taken at 300 grooves/mm to show the entire spectral range (A,B both show averages of 11 spectra, so WGMs are not visible); (C) single spectrum taken at 1200 grooves/millimeter in the water O-H stretching region showing the WGMs, used to calculate aerosol size and refractive index, that appear on the broader water peak; and (D) calibration curve relating Raman peak area to sulfate ion concentration calculated by refractive index. The fit line has a set intercept of (0, 0).

precisely obtained.²¹ This enables the calculation of molar refractivity (R) and hence mole fraction of solute x as shown in eqs 3–5

$$R = R_w + x(R_s - R_w) \quad (3)$$

$$R = \frac{n^2 - 1}{n^2 + 2} * x(M_w + (M_s - M_w)) * \frac{1}{d} \quad (4)$$

$$d = d_0 + \sum_i A_i * x^i \quad (5)$$


Here, R_w , R_s and M_w , and M_s are the refractivities and molar masses of water and the average solute, respectively, d is the density of the solution, d_0 is the density of pure water, and A_i are density polynomial coefficients. Refractivities were determined using a refractometer, and A_i values were taken from the literature.^{32,33} When the solute is a salt, the M_s is the weighted average molar mass of its ions. When eqs 3 and 4 are set equal to solve for x , an algebraic solution does not exist. Thus, calculations were performed by checking every possible x in small increments across a physically realistic range and keeping the solution with the least difference between eqs 3 and 4.

For a given n , there is one possible x , allowing calculation of aerosol-phase concentration for systems containing one binary salt. When multiple salts are present, however, these equations do not have a single solution since the enrichments of the salts may be different and hence the salts may be present in different ratios in the aerosol than as prepared in the bulk. Therefore, independent measurements of the concentrations of all but one salt are necessary to uniquely determine the concentration of all species in the aerosol phase. For our work, we used NaCl , Na_2SO_4 , and NaNO_3 , the latter two of which have distinct Raman bands, allowing concentration to be determined via calibration curves (Figures S3 and S4). From aerosol concentration, an EF can be calculated, which here we simply define as the aerosol-phase concentration of a species divided by the concentration in the bulk from which the aerosol was generated. EFs were also calculated by ICP-MS and conductivity experiments as outlined in the Supporting Information.

3.4. Impact of Ionic Strength. Both NaCl and NaNO_3 were found to be enriched in the aerosol phase, so it is important to account for the impact this has on the oxidation rate. To this end, we performed several series of bulk-phase experiments where salt concentration could be precisely controlled, and the results are given in Figure 4. It is clear that increasing $[\text{NaCl}]$ or $[\text{NaNO}_3]$ would not increase the oxidation rate, and in fact, their enrichment actually slows the oxidation down. The difference in intercepts for the linear fits is not a concern since the NaCl experiments used 0.2 m NaNO_3 as an internal standard, while the NaNO_3 experiments used no NaCl . The experiments with NaCl and NaNO_3 were also performed in the aerosol phase (Figure S6 in the Supporting Information) and indicate the same trend. To determine if this effect was simply due to increased ionic strength, we also tested the impact of sodium perchlorate (NaClO_4) on the rate, as this ion is generally considered inert toward these types of reactions.³⁴ Figure 4C shows that NaClO_4 has the most negative impact on the rate out of the three salts, with a less linear relationship. Taking the same data and plotting the log of the rate versus an ionic strength parameter defined as $\mu^{1/2}/(1 + \mu^{1/2})$, a more linear result is obtained in Figure 4D; this is consistent with previous work on the impact of ionic strength on aqueous TMI-catalyzed S(IV) oxidation.³⁰

4. DISCUSSION

Recent studies have shown the acceleration of reactions in aerosols. This has been the subject of a great deal of interest.^{35,36} For reasons that remain not fully understood,

Figure 4. Impact of various anions on sulfur oxidation rates in bulk aqueous solutions of (A) [NaCl]; (B) [NaNO₃]; and (C,D) [NaClO₄]. All solutions were prepared at pH 5.6. Solutions were composed of 1 m S(IV), the salt indicated by the x-axis, and for all data except (B), 0.2 m NaNO₃ was used as an internal standard. (C,D) reflect the same data plotted differently. Error bars show 95% confidence intervals from linear regression of $[\text{SO}_4^{2-}]$ vs time.

331 the environment of picoliter droplets greatly enhances the
 332 kinetics of many chemical transformations.³⁷ Clarke and
 333 Radojevic showed that S(IV) oxidation could be substantially
 334 faster in sea spray aerosols than in seawater due to catalysis by
 335 ions such as Cl⁻, although whether this was attributable to the
 336 aerosol environment was unclear since the concentrations of
 337 Cl⁻ and H⁺ were orders of magnitude larger in their aerosols
 338 compared to the bulk.³⁸ Liu et al. used an aerosol flow tube
 339 reactor to find that deliquesced, submicron aerosol droplets
 340 enhance the rate of S(IV) oxidation by hydrogen peroxide
 341 (and by TMIs at pH 2.8; although this effect is inhibited by
 342 increasing ionic strength).³⁰ Zhang et al. measured SO₂
 343 oxidation by Mn²⁺ and Fe³⁺ using a smog chamber and
 344 calculated the reaction to be 2 orders of magnitude faster for
 345 oxidation by Mn²⁺, assuming that the rate law is the same in
 346 the bulk and aerosol phases.¹¹ The studies by both Liu et al.
 347 and Zhang et al. were performed under conditions using SO₂
 348 as the S(IV) source, so it is unknown whether the accelerated
 349 reaction is S(IV)_{aq} oxidation, interfacial SO₂ (g) oxidation, or
 350 both. Indeed, experiments with SO₂ (g) are complicated by the
 351 solubility of the gas into aerosols, which depends on pH and μ .
 352 Therefore, here we used aqueous S(IV) sources at higher pH
 353 levels where the formation of SO₂ does not occur and S(IV)_{aq}
 354 oxidation can be isolated. There is also a recent report by
 355 Wang et al. demonstrating aerosol-phase acceleration for the
 356 Mn-catalyzed pathway via chamber studies up to pH 7.³⁹ We
 357 hope to contribute further to the understanding of S(IV)
 358 reaction acceleration by studying the reaction on a single
 359 aerosol particle basis.

360 Although aerosol-phase acceleration is more easily explained
 361 for highly charged droplets created from electrospray
 362 ionization, acceleration has been shown for uncharged aqueous
 363 droplets as well.³⁶ We note that differences in rates between
 364 the bulk phase and the aerosol observed here are not due to
 365 diffusion limitations in the bulk, as demonstrated in the
 366 **Supporting Information**, and therefore, other mechanisms are
 367 needed to explain accelerated sulfate formation. As discussed

in more detail, three relevant factors are considered. The first is 368 the enrichment of species from the bulk to the aerosol phase. 369 This is quantified by EFs (see **Results**). Second, we will 370 consider the implications of the fact that molecules in the 371 aerosol phase have more access to the surface relative to the 372 bulk phase. Third, we will discuss the impact of pH on the 373 oxidation rate. Finally, we briefly describe how the approach 374 used here for these types of reaction acceleration studies is 375 consistent with some recent recommendations.⁴⁰ 376

4.1. Enrichment. The increase in oxidation rate could 377 theoretically be due to increased concentrations in the aerosol 378 phase. First, we consider this possibility for the NaCl and 379 NaNO₃ salts we used. The implication of **Figure 4** is that the 380 inhibiting effect of increasing [NaCl] or [NaNO₃] is mainly 381 inhibiting due to increasing μ but slightly less inhibiting than a 382 totally inert ion due to the weakly catalyzing nature of NaCl 383 and NaNO₃.⁴⁰ This can be seen by comparing the slopes of 384 **Figure 4a–c**. However, the overall effect for both ions is still 385 inhibiting, and therefore, enrichment of these ions into the 386 aerosol phase would not accelerate the reaction. We performed 387 a similar analysis on the enrichment of S(IV) and TMIs and 388 found that, combined, their enrichment would not even double 389 the reaction rate, far below what is found in **Table 1** (see 390 **Supporting Information**, Discussion 2). Therefore, other 391 factors must be the main cause of acceleration. 392

4.2. Surface Access. In droplets, molecules have greater 393 access to the interface than in bulk solutions. This is quantified 394 by two characteristic lengths. The first is the length of the 395 compartment in which the molecules are confined, L_{com} , and 396 the second is the average distance a molecule travels before 397 reacting, L_{rxn} .⁴¹ 398

$$L_{\text{rxn}} = \sqrt{D^*t} \quad (6) \quad 399$$

Here, D is the diffusion coefficient and t is the chemical 400 lifetime (the product of the concentration and the inverse of 401 the rate). Using representative values for our system and the 402 diffusion coefficient of sulfite,⁴² we found L_{rxn} and L_{com} to be 403 600 and 8 μm for aerosols and 6200 and 55,000 μm , 404 respectively, for the bulk. This indicates that molecular species 405 present in the aerosols sample the surface several times before 406 reacting, while in the bulk phase, they do not. For this reaction, 407 surface access could accelerate the oxidation process by 408 increasing interaction with ambient O₂ diffusing at the air/ 409 water interface. Since the reaction steps proceed at different 410 rates depending on the form of S(IV), surface access could also 411 enhance the process by altering S(IV) speciation.⁴³ It has been 412 shown that molecules can have distinct surface and bulk pK_a 413 values, so it is reasonable to infer that various S(IV) equilibria 414 can be different at the interface.^{27,44} Generally, the more highly 415 charged an ion is, the greater the energy cost to move it to the 416 air–water interface.⁴⁵ For our systems, this indicates that 417 SO₃²⁻ is more likely to be at the surface than SO₄²⁻. Given that 418 SO₃²⁻ needs to react with O₂ for the oxidation to proceed (see 419 **Supporting Information**, Mechanisms) while sulfate is an 420 inhibitor of S(IV) oxidation, this relative surface propensity of 421 the radical anion creates more favorable reaction conditions at 422 the surface compared to the bulk.⁹ Additionally, it has been 423 noted that TMIs themselves can be oxidized or undergo 424 complexation during the S(IV) oxidation process, which would 425 slow down sulfate formation.¹⁹ Since Fe³⁺ and Mn²⁺ are more 426 highly charged than the radicals that propagate the reaction, it 427 is possible that TMIs initiate the process from the core of the 428 aerosol and then an accelerated propagation happens with 429

430 radicals and O_2 at the aerosol surface. However, the authors
 431 emphasize that the complexity of urban aerosols, including
 432 very high ionic strengths (>10 M) and the presence of
 433 inhibiting organics (Figure S10) may create conditions
 434 favoring a different mechanism in the real world.

435 Another key aspect of surface access is interaction with
 436 spontaneously generated hydrogen peroxide. Lee et al. showed
 437 that supermicron pure water droplets generated ca. $30\ \mu M$
 438 H_2O_2 without application of an external catalyst or voltage,
 439 which they attribute to OH radical action at the interface.⁴⁶
 440 Since H_2O_2 is a powerful oxidizer of the S(IV) reaction, even
 441 these low concentrations could contribute toward reaction
 442 acceleration, especially over timescales of minutes if H_2O_2 is
 443 continuously generated. Using H_2O_2 production data from Lee
 444 et al.,⁴⁶ literature S(IV) oxidation rate data at our ionic
 445 strength,⁴⁷ and assuming that the rate law from dilute solutions
 446 holds for concentrated S(IV) samples, an oxidation rate of
 447 $0.043\ m/min$ could be obtained (details in the Supporting
 448 Information). Furthermore, the production of H_2O_2 at the
 449 interface could be enhanced by the presence of radical
 450 intermediates involved in S(IV) oxidation, and the hypothesis
 451 that the OH radical plays a role in this H_2O_2 generation is
 452 consistent with our observation that AAFs are higher at higher
 453 pH since it is proposed that OH radicals can be generated from
 454 hydroxide ions.⁴⁶

455 **4.3. Aerosol pH.** We confirmed the pH of the generated
 456 aerosols utilizing substrate deposition onto pH paper as
 457 described in previous studies (see Figure S7 in the Supporting
 458 Information);^{26,48,49} however, the individual environments
 459 within these aerosols may be varied. Indeed, it is possible
 460 that a pH gradient exists inside aerosols, creating droplets with
 461 more basic cores and more acidic surfaces.⁵⁰ Although
 462 gradients as large as 3.6 pH units have been reported, given
 463 how sensitive the reaction is to changes in pH, even a gradient
 464 of less than 1 pH unit could explain aerosol-phase acceleration
 465 for S(IV)_{aq} oxidation.^{10,50} This is partly due to the greatly
 466 enhanced reactivity of $Fe(H_2O)_5(OH)^{2+}$ compared to $Fe(H_2O)_6^{3+}$, key complexes for the iron-catalyzed reaction, with
 467 the former more present at higher pH.⁴⁴ Thus, if a gradient
 468 does exist in aerosols, then aerosols are ideal reactors for S(IV)
 469 oxidation since the process at interfaces is faster at low pH,
 470 while the process in the bulk is potentially faster at high pH
 471 (although conflicting kinetic orders for H^+ at pH above 4 have
 472 been reported).^{9–11,51}

473 The existence of an aerosol pH gradient is still under
 475 debate,^{50,52} but it is worth noting that the investigators who
 476 proposed it were working with alkaline aerosols, and here we
 477 observe larger AAFs for more basic droplets. It is possible that
 478 the gradient is an absolute proton concentration difference
 479 between the droplet core and surface. In that case, since pH is
 480 a logarithmic scale, the pH gradient would be larger at lower
 481 proton concentrations. If protons have an inherent surface
 482 propensity, then at lower concentrations, a greater fraction of
 483 the protons would be able to accumulate at the surface.^{41,53} A
 484 visual representation for our hypotheses for aerosol-phase
 485 acceleration is given in Figure 5.

486 **4.4. Control of Experimental Variables.** There are
 487 several precautions that should be taken in reporting droplet-
 488 phase reaction acceleration. A recent report by Rovelli et al.
 489 provided six recommendations for such studies.⁴⁰ Our work
 490 was consistent with these recommendations as follows. We
 491 controlled solvent evaporation by maintaining the RH in the
 492 AOT. Our droplet sizes and reagent concentrations were

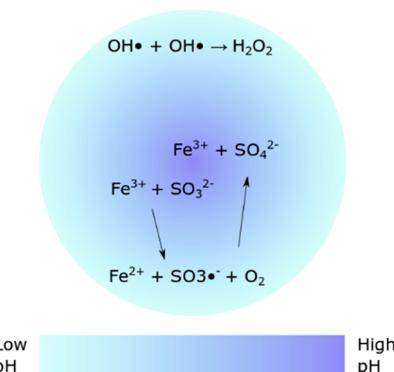


Figure 5. Visual representation of the various factors that contribute to aerosol-phase reaction acceleration. H_2O_2 generation is enhanced at the interface. A pH gradient creates a more acidic surface and more basic core, which favors faster reaction conditions (e.g., the reaction at the bottom of the aerosol is the combination of mechanistic steps given in eqs S7 and S8 and requires a proton to proceed). Highly charged TMIs and inhibiting products are spatially co-located in the aerosol core, while lower charged TMIs, radicals, and O_2 concentrate and react at the interface. Detailed mechanistic steps are omitted from this conceptual image.

493 precisely known by radius and refractive index data derived
 494 from the spectral WGMs. We performed experiments on 495 varying concentrations within the range of instrumental 495 detection. The reaction timescale was controlled because the 496 reaction was slow enough that nebulization time was negligible. 497 Online detection of products was obtained by collecting 498 Raman spectra every second. Finally, by working at high pH 499 and not using ionizing nebulizers, we avoided competing gas- 500 phase SO_2 reactions. Therefore, while our experimental design 501 does require the use of relatively high reagent concentrations, 502 we are able to effectively measure acceleration by obtaining 503 kinetics data for individual droplets in well-controlled environ- 504 ments and circumvent several complications that are more 505 common in electrospray experiments. Haan et al. has shown 506 kinetic enhancement in uncharged drying droplets, and most 507 other studies of reaction acceleration use charged droplets.^{35,54} 508 Our results are thus unique in that they demonstrate aerosol- 509 phase rate enhancement in single uncharged droplets 510 maintained at constant, high RH where the concentration of 511 reagents over time does not contribute to reaction acceleration. 512

493 **4.5. Atmospheric Implications.** S(IV) oxidation has
 513 become a topic of renewed interest due to observations of 514 severe haze events that cannot be explained based on current 515 knowledge from bulk-phase kinetics parameters.^{6,7} Laboratory 516 experiments to explain these field observations are now being 517 reported in the literature. For example, Zhang et al. performed 518 smog chamber studies and found that SO_2 oxidation is 2 orders 519 of magnitude faster in aerosol water than in the bulk,¹¹ which 520 is in agreement with the AAFs we report here. Their studies 521 were performed at lower pH values than we used (0.4–5.0), 522 using much higher TMI concentrations and ppb level SO_2 523 concentrations. Therefore, their data reflect a combination of 524 both the interface-driven oxidation of SO_2 , which is highly 525 efficient at low pH, and the aqueous phase process.⁵¹ Our data 526 thus confirm that droplet-phase acceleration occurs for the 527 aqueous phase process in the absence of SO_2 even at high 528 S(IV) concentrations and at the low TMI concentrations 529 found in the atmosphere. 530

Furthermore, while most previous studies have been performed at low pH, our data for alkaline and neutral droplets show that accelerated S(IV) oxidation is expected for higher pH aerosols found in some portions of the world.^{3,24} By demonstrating that our AAFs exceed what can be obtained from aerosol-phase enrichment alone, we have shown that distinct surface-driven mechanisms may dominate in aerosols, and control of surface area to volume ratios is essential in investigating the kinetics of this process. On a more fundamental level, our results show that inorganic oxidation processes can be accelerated in uncharged aerosols. This complements the many recent findings of organic accelerated reactions measured in electrospray experiments and encourages the use of aerosols in green synthesis and industrial catalysis.

We have shown that TMI-catalyzed S(IV) oxidation is significantly accelerated in the aerosol phase. This is a key step forward in understanding the process of atmospheric S(IV) oxidation, as we have decoupled the interfacial and aqueous reactions and definitively shown the latter to be enhanced in the aerosol phase beyond what can be explained by the salting-in of gases. In addition, we have shown how to quantify chemical reaction acceleration in uncharged droplets of constant size measured on a single aerosol particle basis.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/acs.est.1c01932>.

Additional details of experimental methods; diffusion limitation considerations for the bulk; enrichment of TMIs and S(IV); propagation of error; operative reaction mechanisms; rate calculation; upper limit of hydrogen peroxide contribution; representative behavior of internal standards; higher concentration data showing S(IV) bands in the spectra; nitrate calibration curves; bulk sulfate calibration curve; TMI and S(IV) concentration impacts; aerosol measurements demonstrating the impact of anions; nebulization impact on pH; sample AOT concentration distribution; conductivity calibration curves; representative spectra from ethanol quenching experiments; demonstration of the importance of O₂ in the AOT chamber; and conditions used for each experiment ([PDF](#))

AUTHOR INFORMATION

Corresponding Author

Vicki H. Grassian – Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States; orcid.org/0000-0001-5052-0045; Email: vhgrassian@ucsd.edu

Authors

Kyle J. Angle – Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States

Erin E. Neal – Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States

Complete contact information is available at: <https://pubs.acs.org/10.1021/acs.est.1c01932>

Author Contributions

The manuscript was written through the contributions of all authors.

Funding

This material is based upon work supported by the National Science Foundation under Grant AGS1702488. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank Neal Arakawa (Environmental and Complex Analysis Laboratory, UCSD) for ICP–MS assistance and John Weeks (Wavemetrics) for providing support and files for Igor Pro fitting analysis.

REFERENCES

- (1) Fioletov, V. E.; McLinden, C. A.; Krotkov, N.; Li, C.; Joiner, J.; Theys, N.; Carn, S.; Moran, M. D. A Global Catalogue of Large SO₂ Sources and Emissions Derived from the Ozone Monitoring Instrument. *Atmos. Chem. Phys.* **2016**, *16*, 11497–11519.
- (2) Forbes, P. B. C.; Garland, R. M. Outdoor Air Pollution. *Compr. Anal. Chem.* **2016**, *73*, 73–96.
- (3) Pye, H. O. T.; Nenes, A.; Alexander, B.; Ault, A. P.; Barth, M. C.; Clegg, S. L.; Collett, J. L.; Fahey, K. M.; Hennigan, C. J.; Herrmann, H.; Kanakidou, M.; Kelly, J. T.; Ku, I.-T.; McNeill, V. F.; Riemer, N.; Schaefer, T.; Shi, G.; Tilgner, A.; Walker, J. T.; Wang, T.; Weber, R.; Xing, J.; Zaveri, R. A.; Zuend, A. The Acidity of Atmospheric Particles and Clouds. *Atmos. Chem. Phys.* **2020**, *20*, 4809–4888.
- (4) Freedman, M. A.; Ott, E.-J. E.; Marak, K. E. Role of pH in Aerosol Processes and Measurement Challenges. *J. Phys. Chem. A* **2019**, *123*, 1275–1284.
- (5) Duan, J.; Lyu, R.; Wang, Y.; Xie, X.; Wu, Y.; Tao, J.; Cheng, T.; Liu, Y.; Peng, Y.; Zhang, R.; He, Q.; Ga, W.; Zhang, X.; Zhang, Q. Particle Liquid Water Content and Aerosol Acidity Acting as Indicators of Aerosol Activation Changes in Cloud Condensation Nuclei (CCN) during Pollution Eruption in Guangzhou of South China. *Aerosol Air Qual. Res.* **2019**, *9*, 2662–2670.
- (6) Wang, Y.; Zhang, Q.; Jiang, J.; Zhou, W.; Wang, B.; He, K.; Duan, F.; Zhang, Q.; Philip, S.; Xie, Y. Enhanced Sulfate Formation during China's Severe Winter Haze Episode in January 2013 Missing from Current Models. *J. Geophys. Res.: Atmos.* **2014**, *119*, 425.
- (7) Zheng, B.; Zhang, Q.; Zhang, Y.; He, K. B.; Wang, K.; Zheng, G.; Duan, F. K.; Ma, Y. L.; Kimoto, T. Heterogeneous Chemistry: A Mechanism Missing in Current Models to Explain Secondary Inorganic Aerosol Formation during the January 2013 Haze Episode in North China. *Atmos. Chem. Phys.* **2015**, *15*, 2031–2049.
- (8) Connick, R. E.; Zhang, Y.-X.; Lee, S.; Adamic, R.; Chieng, P. Kinetics and Mechanism of the Oxidation of HSO₃⁻ by O₂. 1. The Uncatalyzed Reaction. *Inorg. Chem.* **1995**, *34*, 4543–4553.
- (9) Martin, L. R.; Hill, M. W.; Tai, A. F.; Good, T. W. The Iron Catalyzed Oxidation of Sulfur(IV) in Aqueous Solution: Differing Effects of Organics at High and Low PH. *J. Geophys. Res.* **1991**, *96*, 3085.
- (10) Brandt, C.; van Eldik, R. Transition Metal-Catalyzed Oxidation of Sulfur(IV) Oxides: Atmospheric-Relevant Processes and Mechanisms. *Chem. Rev.* **1995**, *95*, 119–190.
- (11) Zhang, H.; Xu, Y.; Jia, L. A Chamber Study of Catalytic Oxidation of SO₂ by Mn²⁺/Fe³⁺ in Aerosol Water. *Atmos. Environ.* **2021**, *245*, 118019.
- (12) Tursić, J.; Grgić, I.; Podkrajšek, B. Influence of Ionic Strength on Aqueous Oxidation of SO₂ Catalyzed by Manganese. *Atmos. Environ.* **2003**, *37*, 2589–2595.

652 (13) Connick, R. E.; Zhang, Y.-X. Kinetics and Mechanism of the
653 Oxidation of HSO_3^- by O_2 . 2. the Manganese(II)-Catalyzed Reaction.
654 *Inorg. Chem.* **1996**, *35*, 4613–4621.

655 (14) Tao, W.; Su, H.; Zheng, G.; Wang, J.; Wei, C.; Liu, L.; Ma, N.;
656 Li, M.; Zhang, Q.; Pöschl, U.; Cheng, Y. Aerosol pH and Chemical
657 Regimes of Sulfate Formation in Aerosol Water during Winter Haze
658 in the North China Plain. *Atmos. Chem. Phys.* **2020**, *20*, 11729–
659 11746.

660 (15) Clarke, A. G.; Radojevic, M. Oxidation of SO_2 in Rainwater and
661 Its Role in Acid Rain Chemistry. *Atmos. Environ.* **1987**, *21*, 1115–
662 1123.

663 (16) Bertram, T. H.; Cochran, R. E.; Grassian, V. H.; Stone, E. A.
664 Sea Spray Aerosol Chemical Composition: Elemental and Molecular
665 Mimics for Laboratory Studies of Heterogeneous and Multiphase
666 Reactions. *Chem. Soc. Rev.* **2018**, *47*, 2374–2400.

667 (17) Liu, T.; Chan, A. W. H.; Abbatt, J. P. D. Multiphase Oxidation
668 of Sulfur Dioxide in Aerosol Particles: Implications for Sulfate
669 Formation in Polluted Environments. *Environ. Sci. Technol.* **2021**, *55*,
670 4242.

671 (18) Yermakov, A. N.; Purmal, A. P. Iron-Catalyzed Oxidation of
672 Sulfite: From Established Results to a New Understanding. *Prog.
673 React. Kinet. Mech.* **2003**, *28*, 189–256.

674 (19) Warneck, P. The Oxidation of Sulfur(IV) by Reaction with
675 Iron(III): A Critical Review and Data Analysis. *Phys. Chem. Chem.
676 Phys.* **2018**, *20*, 4020–4037.

677 (20) The Merck Index Online - chemicals, drugs and biologicals.
678 <https://www.rsc.org/merck-index> (accessed Apr 22, 2020).

679 (21) Preston, T. C.; Reid, J. P. Accurate and Efficient Determination
680 of the Radius, Refractive Index, and Dispersion of Weakly Absorbing
681 Spherical Particle Using Whispering Gallery Modes. *J. Opt. Soc. Am. B*
682 **2013**, *30*, 2113.

683 (22) Rafferty, A.; Gorkowski, K.; Zuend, A.; Preston, T. C. Optical
684 Deformation of Single Aerosol Particles. *Proc. Natl. Acad. Sci. U.S.A.*
685 **2019**, *116*, 19880–19886.

686 (23) Coddens, E. M.; Angle, K. J.; Grassian, V. H. Titration of
687 Aerosol pH through Droplet Coalescence. *J. Phys. Chem. Lett.* **2019**,
688 *10*, 4476–4483.

689 (24) Mudgal, P. K.; Sharma, A. K.; Mishra, C. D.; Bansal, S. P.;
690 Gupta, K. S. Kinetics of Ammonia and Ammonium Ion Inhibition of
691 the Atmospheric Oxidation of Aqueous Sulfur Dioxide by Oxygen. *J.
692 Atmos. Chem.* **2008**, *61*, 31–55.

693 (25) Manoj, S. V.; Gupta, K. S.; Mudgal, P. K. Kinetics of Iron(III)-
694 Catalyzed Autoxidation of Sulfur(IV) in Acetate Buffered Medium.
695 *Transition Met. Chem.* **2008**, *33*, 311–316.

696 (26) Angle, K. J.; Crocker, D. R.; Simpson, R. M. C.; Mayer, K. J.;
697 Garofalo, L. A.; Moore, A. N.; Mora Garcia, S. L.; Or, V. W.;
698 Srinivasan, S.; Farhan, M.; Sauer, J. S.; Lee, C.; Pothier, M. A.;
699 Farmer, D. K.; Martz, T. R.; Bertram, T. H.; Cappa, C. D.; Prather, K.
700 A.; Grassian, V. H. Acidity across the Interface from the Ocean
701 Surface to Sea Spray Aerosol. *Proc. Natl. Acad. Sci. U.S.A.* **2021**, *118*,
702 No. e2018397118.

703 (27) Beyad, Y.; Burns, R.; Puxty, G.; Maeder, M. A Speciation Study
704 of Sulfur(IV) in Aqueous Solution. *Dalton Trans.* **2014**, *43*, 2147–
705 2152.

706 (28) Millero, F. J.; Yao, W.; Aicher, J. The Speciation of Fe(II) and
707 Fe(III) in Natural Waters. *Mar. Chem.* **1995**, *50*, 21–39.

708 (29) Hem, J. D. Chemical Equilibria Affecting the Behavior of
709 Manganese in Natural Water. *Bull. Int. Assoc. Sci. Hydrol.* **1963**, *8*, 30–
710 37.

711 (30) Liu, T.; Clegg, S. L.; Abbatt, J. P. D. Fast Oxidation of Sulfur
712 Dioxide by Hydrogen Peroxide in Deliquesced Aerosol Particles. *Proc.
713 Natl. Acad. Sci. U.S.A.* **2020**, *117*, 1354–1359.

714 (31) Boyer, H. C.; Gorkowski, K.; Sullivan, R. C. In Situ pH
715 Measurements of Individual Levitated Microdroplets Using Aerosol
716 Optical Tweezers. *Anal. Chem.* **2020**, *92*, 1089–1096.

717 (32) Tang, I. N.; Tridico, A. C.; Fung, K. H. Thermodynamic and
718 Optical Properties of Sea Salt Aerosols. *J. Geophys. Res.: Atmos.* **1997**,
719 *102*, 23269–23275.

720 (33) Tang, I. N.; Munkelwitz, H. R. Water Activities, Densities, and
721 Refractive Indices of Aqueous Sulfates and Sodium Nitrate Droplets
722 of Atmospheric Importance. *J. Geophys. Res.* **1994**, *99*, 18801–18808.

723 (34) Bao, Z.-C.; Barker, J. R. Temperature and Ionic Strength Effects
724 on Some Reactions Involving Sulfate Radical $[\text{SO}_4^{\cdot-}(\text{Aq})]$. *J. Phys.
725 Chem.* **1996**, *100*, 9780–9787.

726 (35) Wei, Z.; Li, Y.; Cooks, R. G.; Yan, X. Accelerated Reaction
727 Kinetics in Microdroplets: Overview and Recent Developments.
728 *Annu. Rev. Phys. Chem.* **2020**, *71*, 31–51.

729 (36) Lee, J. K.; Samanta, D.; Nam, H. G.; Zare, R. N. Micrometer-
730 Sized Water Droplets Induce Spontaneous Reduction. *J. Am. Chem.
731 Soc.* **2019**, *141*, 10585–10589.

732 (37) Banerjee, S.; Gnanamani, E.; Yan, X.; Zare, R. N. Can All Bulk-
733 Phase Reactions Be Accelerated in Microdroplets? *Analyst* **2017**, *142*,
734 1399–1402.

735 (38) Clarke, A. G.; Radojevic, M. Oxidation Rates of SO_2 in Sea-
736 Water and Sea-Salt Aerosols. *Atmos. Environ.* **1984**, *18*, 2761–2767.

737 (39) Wang, W.; Liu, M.; Wang, T.; Song, Y.; Zhou, L.; Cao, J.; Hu,
738 J.; Tang, G.; Chen, Z.; Li, Z.; Xu, Z.; Peng, C.; Lian, C.; Chen, Y.;
739 Pan, Y.; Zhang, Y.; Sun, Y.; Li, W.; Zhu, T.; Tian, H.; Ge, M. Sulfate
740 Formation Is Dominated by Manganese-Catalyzed Oxidation of SO_2
741 on Aerosol Surfaces during Haze Events. *Nat. Commun.* **2021**, *12*,
742 1993.

743 (40) Rovelli, G.; Jacobs, M. I.; Willis, M. D.; Rapf, R. J.; Prophet, A.
744 M.; Wilson, K. R. A Critical Analysis of Electrospray Techniques for
745 the Determination of Accelerated Rates and Mechanisms of Chemical
746 Reactions in Droplets. *Chem. Sci.* **2020**, *11*, 13026.

747 (41) Wilson, K. R.; Prophet, A. M.; Rovelli, G.; Willis, M. D.; Rapf,
748 R. J.; Jacobs, M. I. A Kinetic Description of How Interfaces Accelerate
749 Reactions in Micro-Compartments. *Chem. Sci.* **2020**, *11*, 8533–8545.

750 (42) Eriksen, T. Self-Diffusion Studies in Aqueous Sulfite Solutions.
751 *Chem. Eng. Sci.* **1967**, *22*, 727–736.

752 (43) Das, T. N. Reactivity and Role of $\text{SO}_5^{\cdot-}$ Radical in Aqueous
753 Medium Chain Oxidation of Sulfite to Sulfate and Atmospheric
754 Sulfuric Acid Generation. *J. Phys. Chem. A* **2001**, *105*, 9142–9155.

755 (44) Luo, M.; Wauer, N. A.; Angle, K. J.; Dommer, A. C.; Song, M.;
756 Nowak, C. M.; Amaro, R. E.; Grassian, V. H. Insights into the
757 Behavior of Nonanoic Acid and Its Conjugate Base at the Air/Water
758 Interface through a Combined Experimental and Theoretical
759 Approach. *Chem. Sci.* **2020**, *11*, 10647–10656.

760 (45) Ruiz-Lopez, M. F.; Francisco, J. S.; Martins-Costa, M. T. C.;
761 Anglada, J. M. Molecular Reactions at Aqueous Interfaces. *Nat. Rev.
762 Chem.* **2020**, *4*, 459–475.

763 (46) Lee, J. K.; Walker, K. L.; Han, H. S.; Kang, J.; Prinz, F. B.;
764 Waymouth, R. M.; Nam, H. G.; Zare, R. N. Spontaneous Generation
765 of Hydrogen Peroxide from Aqueous Microdroplets. *Proc. Natl. Acad.
766 Sci. U.S.A.* **2019**, *116*, 19294–19298.

767 (47) Maaf, F.; Elias, H.; Wannowius, K. J. Kinetics of the Oxidation
768 of Hydrogen Sulfite by Hydrogen Peroxide in Aqueous Solution:
769 Ionic Strength Effects and Temperature Dependence. *Atmos. Environ.*
770 **1999**, *33*, 4413–4419.

771 (48) Craig, R. L.; Peterson, P. K.; Nandy, L.; Lei, Z.; Hossain, M. A.;
772 Camarena, S.; Dodson, R. A.; Cook, R. D.; Dutcher, C. S.; Ault, A. P.
773 Direct Determination of Aerosol pH: Size-Resolved Measurements of
774 Submicrometer and Supermicrometer Aqueous Particles. *Anal. Chem.*
775 **2018**, *90*, 11232–11239.

776 (49) Li, G.; Su, H.; Ma, N.; Zheng, G.; Kuhn, U.; Li, M.; Klimach,
777 T.; Pöschl, U.; Cheng, Y. Multifactor Colorimetric Analysis on pH-
778 Indicator Papers: An Optimized Approach for Direct Determination
779 of Ambient Aerosol pH. *Atmos. Meas. Tech.* **2020**, *13*, 6053–6065.

780 (50) Wei, H.; Vejerano, E. P.; Leng, W.; Huang, Q.; Willner, M. R.;
781 Marr, L. C.; Vikesland, P. J. Aerosol Microdroplets Exhibit a Stable
782 pH Gradient. *Proc. Natl. Acad. Sci. U.S.A.* **2018**, *115*, 7272–7277.

783 (51) Hung, H.-M.; Hsu, M.-N.; Hoffmann, M. R. Quantification of
784 SO_2 Oxidation on Interfacial Surfaces of Acidic Micro-Droplets:
785 Implication for Ambient Sulfate Formation. *Environ. Sci. Technol.*
786 **2018**, *52*, 9079–9086.

787 (52) Colussi, A. J. Can the pH at the Air/Water Interface Be
788 Different from the pH of Bulk Water? *Proc. Natl. Acad. Sci. U.S.A.*
789 **2018**, *115*, No. E7887.

790 (53) Das, S.; Imoto, S.; Sun, S.; Nagata, Y.; Backus, E. H. G.; Bonn,
791 M. Nature of Excess Hydrated Proton at the Water-Air Interface. *J.*
792 *Am. Chem. Soc.* **2020**, *142*, 945–952.

793 (54) Haan, D. O. D.; Corrigan, A. L.; Smith, K. W.; Stroik, D. R.;
794 Turley, J. J.; Lee, F. E.; Tolbert, M. A.; Jimenez, J. L.; Cordova, K. E.;
795 Ferrell, G. R. Secondary Organic Aerosol-Forming Reactions of
796 Glyoxal with Amino Acids. *Environ. Sci. Technol.* **2009**, *43*, 2818–
797 2824.