
This article was published in Advanced Engineering Informatics, 47(January 2021), Xue,

X., and Zhang, J., “Part-of-speech tagging of building codes empowered by deep learning

and transformational rules.” 101235, Copyright Elsevier (2021).

https://doi.org/10.1016/j.aei.2020.101235

1 Automation and Intelligent Construction (AutoIC) Lab, School of Construction Management

Technology, Purdue University, West Lafayette, IN, 47907, PH (765) 430-2009. email:

xue39@purdue.edu.
2 Automation and Intelligent Construction (AutoIC) Lab, School of Construction Management

Technology, Purdue University, West Lafayette, IN, 47907, PH (765) 494-1574; FAX (765) 496-

2246. (corresponding author) email: zhan3062@purdue.edu.

Part-of-Speech Tagging of Building Codes Empowered by Deep Learning and 1

Transformational Rules 2

Xiaorui Xue, S.M.ASCE 1; Jiansong Zhang, Ph.D., A.M.ASCE 2 3

Abstract 4

Automated building code compliance checking systems were under development for 5

many years. However, the excessive amount of human inputs needed to convert building 6

codes from natural language to computer understandable formats severely limited their 7

range of applicable code requirements. To address that, automated code compliance 8

checking systems need to enable an automated regulatory rules conversion. Accurate Part-9

of-Speech (POS) tagging of building code texts is crucial to this conversion. Previous 10

experiments showed that the state-of-the-art generic POS taggers do not perform well on 11

building codes. In view of that, the authors are proposing a new POS tagger tailored to 12

building codes. It utilizes deep learning neural network model and error-driven 13

transformational rules. The neural network model contains a pre-trained model and one 14

or more trainable neural layers. The pre-trained model was fine-tuned on Part-of-Speech 15

Tagged Building Codes (PTBC), a POS tagged building codes dataset. The fine-tuning of 16

pre-trained model allows the proposed POS tagger to reach high precision with a small 17

amount of available training data. Error-driven transformational rules were used to boost 18

performance further by fixing errors made by the neural network model in the tagged 19

building code. Through experimental testing, the authors found a well-performing POS 20

https://www.sciencedirect.com/science/article/abs/pii/S1474034620302044
https://www.sciencedirect.com/science/article/abs/pii/S1474034620302044
https://doi.org/10.1016/j.aei.2020.101235

2

tagger for building codes with one bi-directional LSTM trainable layer, utilized 21

BERT_Cased_Base pre-trained model and was trained 50 epochs. This model reached a 22

91.89% precision without error-driven transformational rules and a 95.11% precision with 23

error-driven transformational rules, which outperformed the 89.82% precision achieved 24

by the state-of-the-art POS taggers. 25

Author keywords: Automated compliance checking; Automated information extraction; 26

Natural language processing; Part-of-speech tagging; Automated construction 27

management systems; Deep learning. 28

1. Introduction 29

Efforts to automate code compliance checking started more than half a century ago when 30

Fenves (1966) developed decision tables to automatically check the design of steel 31

structures [7]. The success of compliance checking decision table inspired more 32

researches in this area. Examples include a computer-aided design (CAD) system for 2D 33

and 3D steel structure called STEEL-3D [8], an expert system for reinforcement concrete 34

design [9], a rule-based application for structure members [10], and a knowledge-based 35

system for multiple building codes [11]. More advanced code compliance checking 36

software was then developed. The Construction and Real Estate Network (CORENET) 37

by Singapore Building Construction Authority was capable of checking 3D industry 38

foundation classes (IFC) data model [12]. The Express Data Manager (EDM) Suite by 39

Jotne EPM Technology allowed code checking on Building Information Modeling (BIM) 40

data [13]. The BCAider by the Commonwealth Scientific and Industrial Research 41

Organisation (CSIRO) in Australia enabled automatic compliance checking against 42

Building Code of Australia (BCA) [14]. The Solibri Model Checker (SMC), a BIM-43

3

powered automated code compliance checking system, by Solibri achieved rule-based 44

code compliance checking by user-customized plugins [15]. Patlakas et al. developed a 45

BIM-based system to check code compliance of timber structure design automatically 46

[16]. Fang et al. developed a deep learning-based method to automatically check if a site 47

worker complies to code of their certification [17]. The combination of BIM and 48

automated code compliance checking systems increases the theoretical benefit of BIM in 49

the construction industry. However, according to a survey by Smits et al. (2017), the 50

actual benefit of implementing BIM in construction projects is still limited [18]. The 51

authors suggest that the narrow range of checkable codes of most recent automated code 52

compliance checking tools may limit the actual benefit of BIM. Even for the narrow range 53

of checkable codes, they are usually oversimplified. The oversimplified codes are not 54

enough to support the increased project complexity and creativity of designers and, 55

therefore, could negatively affect the benefit of adopting BIM for users and owners [19]. 56

The narrow range of checkable codes also limit wide applications of these automated code 57

compliance checking systems. Extending the range of checkable building code 58

requirements emerges as an urgent need in the development of automated code 59

compliance checking systems. Natural Language Processing (NLP) powered by Part-of-60

Speech (POS) tagging has been proposed to automate the building code requirements 61

extraction and, therefore, extend the range of checkable building codes of automated code 62

compliance checking systems and reduce the needed manual efforts in such extraction 63

[20-22]. NLP and deep learning have many applications in the Architecture, Engineering, 64

and Construction industry (AEC). For example, Fang et al. developed a text classification 65

method with deep learning to spot near misses in safety reports [23]. Zhong et al. used a 66

4

deep learning method to classify building quality problems [24]. Trappey et al. used 67

attention mechanism to generate summary of engineering patents [25]. High performance 68

was achieved but POS tagging error was identified as one major source of error of the 69

whole system. Accurately POS-tagged building codes are desired to support such NLP-70

based automated building code compliance checking. Existing generic POS taggers, 71

however, can not provide such high accuracy on processing building codes [26]. 72

The authors are therefore proposing a new POS tagger that is tailored to building codes. 73

The intent of the study is to improve the accuracy of POS tagging on building codes. 74

Accurate POS tagging results are needed to support successful code requirements 75

processing for accurate automated code compliance checking. The proposed POS tagger 76

combines neural network model and error-driven transformational rules. Neural network 77

model and error-driven transformational rules together make the proposed POS tagger 78

outperformed the state of the art. The proposed POS tagger reached a 95.11% accuracy, 79

which is higher than the 89.82% achieved by the state of the art. 80

In practice, this POS tagger plays an important role in those NLP-based automated code 81

compliance checking system frameworks similar to [20] (Figure 1), and in NLP-based 82

automation systems in the AEC domain in general. This research can boost the accuracy 83

of the POS tagging therefore support automated building code compliance checking 84

systems and NLP-based systems in the AEC domain. Accurate POS tagging results of 85

building codes is vital to a high performance of the extraction of engineering knowledge 86

embedded in the building codes. The background automated code compliance checking 87

system framework in Figure 1 contains an automated regulatory information extraction 88

5

component (which uses a POS tagger) that converts building code requirements to logic 89

clauses, an automated building design information extraction component that extracts 90

building design information from Building Information Models (BIMs), and an 91

automated reasoning component that outputs the code compliance report. The automated 92

regulatory information extraction component can use the proposed POS tagger, which is 93

illustrated in Figure 3. This system is fully automated from the end-user’s perspective. 94

The automated building code compliance checking system takes a rule-based approach to 95

extract information from building codes automatically. Although the POS tagger uses 96

neural network model which is probabilistic in training, the developed POS tagger as a 97

result of the training is deterministic. The weights of the neural network are fixed after 98

the training, leading to determinist results when applying the POS tagger. Therefore, with 99

a robust POS tagger and other well-performing components, the NLP-based automated 100

building code compliance checking system has a better chance to detect all 101

noncompliance cases in a building design without intervention from the user. Due to the 102

imperfect (i.e., less than 100%) precision and recall in the state-of-the-art NLP-based 103

building code compliance checking systems, some manual intervention will still be 104

needed to fix errors in the extraction results of embedded engineering knowledge in the 105

building codes. Such manual intervention is expected from the developers, not from end 106

users. In addition, the amount of manual efforts needed to fix automatic extraction errors 107

is minor comparing to those needed in manual extraction. In this paper, the authors 108

propose to boost the performance of NLP-based automated code compliance checking 109

systems by providing more accurate POS tagging results to such systems. 110

6

 111

Figure 1. An NLP-based Automated Building Code Compliance Checking System 112
Framework 113

 114
The remainder of this paper is organized as follows. Section 2 explains technical details 115

of part-of-speech tagging, error-driven transformational rules, recurrent neural network, 116

and computing techniques to avoid overfitting, used in this research. Section 3 describes 117

the proposed POS tagger. Section 4 presents the experiment to test the performance of the 118

proposed POS tagger. Section 5 illustrates the result of the experiment. Finally, Sections 119

6, 7, 8 present the conclusion, limitation and contribution to the body of knowledge of 120

this research, respectively. 121

7

2. Background 122

2.1 Part-of-Speech 123

A word’s POS category provides its syntactic information in a sentence [39]. In English, 124

there are eight main POS categories: (1) noun, (2) verb, (3) adjective, (4) adverb, (5) 125

pronoun, (6) preposition, (7) conjunction, and (8) interjection. POS taggers are systems 126

that automatically assign POS categories to words according to their contextual 127

information in a sentence [41]. POS taggers have a variety of applications in the AEC 128

domain. For example, Le et al. POS tagged construction contracts to identify missed 129

contract conditions from the perspective of contractors [43]. However, the reliance on 130

manual feature extraction and manual rule generation creates challenges in large scale 131

applications. Hassan and Le used POS tagging to spot contractual requirements from 132

construction contract documents [44]. However, the Support Vector Machines (SVM) 133

algorithm used to identify contractual requirements relies on manual feature engineering 134

and may raise the concern of overfitting. Zhou and El-Gohary utilized POS tagging 135

information to match design requirements in energy codes to their corresponding objects 136

in BIMs [45]. The matching process takes a four-step approach: First, POS tagging 137

information and other contextual information of design requirements and BIM objects are 138

collected; Second, the Word2vec algorithm calculates the vectors of BIM objects and 139

design requirements; Third, vector similarity algorithm calculates the vector similarity 140

between BIM objects and design requirements; Fourth, a match is claimed if the vector 141

similarity between a BIM object and a design requirement is higher than a predefined 142

threshold, which was set arbitrarily to obtain the highest precision and recall empirically. 143

In this four-step approach, errors could accumulate in each step, and the concern of 144

8

overfitting also presents. Therefore, the authors suggest an end-to-end method that does 145

not rely on manually generated rules or features. Neural network models could meet the 146

above requirements [46]. 147

In this research, the authors proposed an AEC domain specific POS tagger that combines 148

Recurrent Neural Network (RNN), pre-trained models, and error-driven transformational 149

rules. A simple deep learning model without man-made task specific features can 150

outperform most state-of-the-art non-deep learning models even with cherry-picked 151

features, in a wide range of NLP tasks such as part-of-speech tagging, chunking, named 152

entity recognition, and semantic role labeling [57]. For example, Marques and Lopes 153

(2001) utilized a simple feed-forward model to decrease the amount of data needed to 154

train a POS tagger [58]. Yu et al. (2017) used two Convolutional Neural Network (CNN) 155

models to capture morphological information of character-level n-grams and contextual 156

information of word-level n-grams, which outperformed simple feed-forward model [59]. 157

Recent developments in deep learning indicated that RNN is the “to-go” solution for NLP 158

tasks [60]. Pre-trained models were pre-trained on a large body of text with unsupervised 159

tasks, such as, predicting the next word given all previous words and predict if two 160

sentences are from the same article [61]. The use of generally pre-trained models helped 161

boost the performance of domain specific NLP tasks in biology [62], finance, and law 162

[63]. It also reduced the amount of labeled data needed when applying deep learning in 163

domain specific tasks [64]. 164

9

2.2 Error-driven Transformational Rules 165

Error-driven transformational rules are introduced to boost POS taggers’ accuracy [26, 65]. 166

The rules are designed to transform the machine-generated POS tag of a word to its human-167

labeled gold standard. When the rule generation algorithm spots a difference between 168

machine-generated POS tags and the human-labeled gold standard, it records the difference 169

as an error and uses the context of the error (i.e., words and POS tags of words around the 170

word) to generate a rule to fix the error. The generation of rules is automated. Rules are 171

reusable once generated. Rules may have the risk to introduce new errors. The rule 172

generation algorithm controls this risk by dropping rules that have a high risk of introducing 173

errors. 174

2.3 Recurrent Neural Network 175

Like any machine learning model, neural networks predict categories of given inputs. In 176

the context of POS tagging, neural networks predict POS categories of each word in a 177

given input text, according to the word itself and its context (Figure 2). Neural networks 178

learn a relationship between words and POS tags during their training and use this 179

relationship to predict POS tags of words during their application. Traditional neural 180

networks consider all words in a sentence to be independent from each other and do not 181

consider words surrounding them in this prediction task. In contrast, Recurrent Neural 182

Network (RNN) keeps a vector that represents other words in the sentence (which is called 183

hidden state) and considers them in the prediction task. RNN processes sequential 184

information by taking elements in the sequence one by one while maintaining a 185

representation of all information it has seen so far [60]. RNN is able to process sentences 186

with arbitrary length [66]. The way that RNN processes sequential information gives it 187

10

the ability to capture semantic meaning of a word based on words before/after it in the 188

sentences [56]. For example, it is able to differentiate the meaning of the word “bank” in 189

the phrase “river bank” and “blood bank”. The sequential nature of RNN makes it widely 190

adopted in many subfields of NLP, such as: (1) information extraction [67, 68], (2) 191

machine translation [69, 70], (3) speech recognition [71, 72], (4) POS tagging [73, 74], 192

and (5) sentiment analysis [75, 76]. There is also an RNN encoder-decoder model which 193

has a high accuracy in sequence-to-sequence tasks [77]. In this structure, the encoder is 194

an RNN model that converts a variable-length sequence to a fixed-length vector 195

representation and the decoder is another RNN model that converts the fixed-length 196

representation to a variable-length sequence. Neural network models are deterministic 197

when applied (i.e., in making predictions). One neural network model makes the same 198

prediction result with the same input. 199

11

 200

Figure 2. Example Application of a Neural Network POS Tagger 201

2.3.1. Simple RNN 202

A simple RNN keeps a hidden state that represents all previous words in the sentence. 203

Therefore, the hidden state allows the simple RNN to take into consideration all words 204

before the target word in POS tagging. A simple RNN contains an input layer x, a hidden 205

layer h, and an output layer y [78]. The hidden layer has weight 𝑊ℎ and a bias vector 𝑏ℎ. 206

The input layer has a weight 𝑊𝑖. The output layer has a weight 𝑊𝑜 and a bias vector 𝑏𝑜. 207

In time step t of the training, the input to the RNN is denoted as 𝑥𝑡, the hidden state is 208

denoted as ℎ𝑡, and the output is denoted as 𝑌𝑡. The hidden state at the time step t (𝑖. 𝑒. , ℎ𝑡) 209

12

is the sum of: (a) the input of current step 𝑥𝑡 multiples the weight of the input layer 𝑊𝑖, 210

(b) the hidden state of the last time step ℎ𝑡−1 multiplies its weight 𝑊ℎ, and (c) the bias 211

vector of hidden layers 𝑏ℎ, after some non-linear transformation [Eq. (1)]. 212

ℎ𝑡 = 𝑓(𝑊𝑖𝑥𝑡 + 𝑊ℎℎ𝑡−1 + 𝑏ℎ) (1) 213

The output at the time step t (𝑖. 𝑒. , 𝑌𝑡) is the sum of: the weights of output layer 𝑊𝑜 214

multiples the hidden state at this time step ℎ𝑡, and the bias vector of output layer 𝑏𝑜 [Eq. 215

(2)]. 216

𝑌𝑡 = 𝑔(𝑊𝑜ℎ𝑡 + 𝑏𝑜) (2) 217

In Eqs. (1) and (2), f and g are activation functions that perform non-linear transformations. 218

Some commonly used activation functions include sigmoid, Tanh, and Rectified Linear 219

Unit (ReLU) [79, 80]. 220

Simple RNN suffers from the vanishing gradient problem [81]. The hidden state of a word 221

is influenced more by words near it than words far away. In other words, simple RNN does 222

not have a “long-term memory”. This problem makes simple RNN difficult to train and 223

hard to capture long-term dependencies in a sentence. The long-term dependencies between 224

words are important in POS tagging. Many variations of simple RNN were therefore 225

developed to solve this problem. 226

2.3.2. Long Short-Term Memory 227

Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) alleviates the 228

vanishing gradient problem by having a forget gate layer to decide which words to 229

“remember” and which words to “forget”. It has a cell state to keep long-term dependencies, 230

so it has “long-term memory”. The cell state allows LSTM-RNN to use long-term 231

13

dependencies in POS tagging. LSTM-RNN [82] has an additional forget gate layer f to 232

decide which information to keep or abandon, and a cell state C to capture long-term 233

dependencies. The weight of the forget gate layer is 𝑊𝑓 and its bias vector is 𝑏𝑓. The cell 234

state has a weight 𝑊𝐶 and a bias vector 𝑏𝐶. LSTM-RNN also has an input layer x. The 235

input layer has a weight 𝑊𝑖 and a bias vector 𝑏𝑖. The output layer has a weight 𝑊𝑜 and 236

a bias vector 𝑏𝑜. In time step t of the training, the input to the RNN is denoted as 𝑥𝑡, the 237

hidden state is denoted as ℎ𝑡, the output is denoted as 𝑌𝑡, and the cell state is denoted as 238

𝐶𝑡, the value to update is denoted as 𝑖𝑡. Input to the neural network is first fed into the 239

forget gate layer. The forget gate layer generates a vector 𝑓𝑡 to represent the amount of 240

information to keep, and 𝑓𝑡 is calculated by Eq. (3): 241

𝑓𝑡 = 𝜎(𝑊𝑓 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (3) 242

where 𝜎 is the sigmoid function. 243

Then, the input layer calculates the candidate cell state by Eq. (4) and Eq. (5): 244

𝑖𝑡 = 𝜎(𝑊𝑖 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (4) 245

𝐶𝑡̃ = tanh(𝑊𝐶 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (5) 246

Then, the cell state 𝐶𝑡 is calculated by Eq. (6): 247

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡̃ (6) 248

After that, the output layer 𝑌𝑡 and hidden state ℎ𝑡 are calculated by Eq. (7) and Eq. (8), 249

respectively: 250

𝑌𝑡 = 𝜎(𝑊𝑜 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (7) 251

ℎ𝑡 = 𝑌𝑡 ∗ tanh(𝐶𝑡) (8) 252

There is also a bi-directional variant of LSTM, which can capture information in a sequence 253

from both directions. Simple RNN and LSTM-RNN have one hidden state that represents 254

14

all words before the target word. Bi-directional LSTM-RNN additionally has an extra 255

hidden state that represents all words after the target word. Therefore, simple RNN and 256

LSTM RNN predict the POS tag of the target word solely by words before it, whereas bi-257

directional LSTM RNN predicts POS tag of the target word by the words both before and 258

after it. 259

2.3.3. Gated Recurrent Unit 260

Gated Recurrent Unit (GRU) [83] is another way to address the vanishing gradient problem. 261

It does not have a forget gate to control the flow of information, so it can access the entire 262

hidden state. It has an update gate U and a reset gate R. The weight of the update get is 𝑊𝑈, 263

the weight of the reset gate is 𝑊𝑅, and the weight of the output layer is 𝑊𝑜. At time step 264

t, the cell state of the update gate, reset state, and the hidden state are 𝑈𝑡, 𝑅𝑡, and ℎ𝑡, 265

respectively. GRU is calculated using Eqs. (9), (10), (11), and (12): 266

𝑈𝑡 = 𝜎(𝑊𝑈 ∗ 𝑋𝑡 + 𝑊𝑈,𝑡−1 ∗ ℎ𝑡−1) (9) 267

𝑅𝑡 = 𝜎(𝑊𝑅 ∗ 𝑋𝑡 + 𝑊𝑅,𝑡−1 ∗ ℎ𝑡−1) (10) 268

ℎ𝑡
, = 𝑡𝑎𝑛ℎ(𝑊𝑜 + 𝑅𝑡 ∗ 𝑊𝑈,𝑡−1 ∗ ℎ𝑡−1) (11) 269

ℎ𝑡 = 𝑈𝑡 ∗ ℎ𝑡−1 + (1 − 𝑈𝑡) ∗ ℎ𝑡
, (12) 270

GRU can take long-term dependencies of words into the POS tagging task by accessing 271

hidden states of every words in a sentence. There is also a bi-directional variant of GRU, 272

which can use words both before and after a target word to predict its POS category. 273

15

2.3.4. Attention Mechanism 274

Attention mechanism can capture long-term dependencies with arbitrary lengths by 275

calculating attention scores between all words in two sequences and feed the attention 276

scores to a RNN [84]. Therefore, it does not suffer from the vanishing gradient problem. 277

LSTM RNN and GRU still suffer from the vanishing gradient problem when the 278

dependencies are long enough. The attention mechanism predicts the POS tag of a word 279

with its long-term dependencies. Attention mechanism shares the same encoder-decoder 280

structure with the encoder-decoder RNN. The structure of attention mechanism brings its 281

successful application in many sequence-to-sequence (Seq2Seq) tasks such as: (1) machine 282

translation [85], (2) question-and-answering [86], and (3) text entailment [87]. The 283

attention mechanism allows the decoder to access hidden states of the encoder to track back 284

the input sequence [88]. There are many variants of attention mechanisms. For example, 285

global attention focuses on all words in the input including each target word, while local 286

attention only focuses on words in a certain range [89]. Two-way attention allows bi-287

directional attention between the source and target [87]. This property of two-way attention 288

makes it successful in non-sequence-to-sequence tasks as well, such as sentiment analysis 289

[90]. 290

2.3.5. Transformer 291

Transformer has a similar encoder-decoder structure as the attention mechanism, but it does 292

not have an RNN [91]. Transformer, like attention mechanism, can capture dependencies 293

in any length. With fewer parameters than the attention mechanism, it is more resistant to 294

16

overfitting. Therefore, transformer can make POS taggers more generalizable. The encoder 295

and decoder of the transformer are stacks of multi-head attention layers and feed-forward 296

layers with some add-and-normal layers. The multi-head attention is the concatenation of 297

multiple self-attention matrices. The multi-head attention is used to capture different 298

dependencies in a sentence. The first step to calculate the self-attention Z is to calculate: 299

the Query Q, Key K, and Value V matrices with the embedding matrix X, the weight of 300

Query 𝑊𝑄, the weight of Key 𝑊𝑘, and the weight of Value 𝑊𝑉 [Eqs. (13) to (15)]. 301

𝑄 = 𝑋 ∗ 𝑊𝑄 (13) 302

𝐾 = 𝑋 ∗ 𝑊𝑘 (14) 303

𝑉 = 𝑋 ∗ 𝑊𝑉 (15) 304

Then, the self-attention matrix, or one head of the multi-head attention, is calculated by Eq. 305

(16): 306

𝑍 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄∗𝐾𝑇

√𝑑𝑘
) ∗ 𝑉 (16)307

where 𝑑𝑘 is the dimension of Key. 308

After that, multiple self-attention matrices are concatenated together to form a multi-head 309

attention matrix 𝑍𝑚𝑢𝑙𝑡𝑖 [Eq. (17)]. The multi-head attention is then multiplied to a weight 310

matrix 𝑊𝑜 to get a new attention matrix 𝑍𝑛𝑒𝑤 that captures information from all attention 311

heads [Eq. (18)]. 𝑊𝑜 is trained with the matrix 𝑍𝑚𝑢𝑙𝑡𝑖. 312

𝑍𝑚𝑢𝑙𝑡𝑖 = [𝑍𝑖 , … 𝑍𝑛] (17) 313

𝑍𝑛𝑒𝑤 = 𝑊𝑜 ∗ 𝑍𝑚𝑢𝑙𝑡𝑖 (18) 314

17

2.3.6. BERT 315

Bidirectional Encoder Representations from Transformers (BERT) [61] is a language 316

representation model of the transformer. This model was pre-trained on the BooksCorpus 317

[92] and the English Wikipedia data. Through pre-training, BERT introduces knowledge 318

about general English into the POS tagger. Knowledge about general English is helpful to 319

increase the POS tagger’s performance on building codes, because these building codes are 320

written in English. BERT is trained to predict masked words in a sentence and decide if the 321

second sentence in a pair of sentences is actually the sentence after the selected sentence 322

in the training text or just a randomly selected sentence. The BERT model achieved the 323

state-of-the-art performance in 11 NLP tasks with fine-tuning. Information of the different 324

available versions of BERT is provided in Table 1. “Large” models have more layers, larger 325

hidden states, more heads, and more parameters than “base” models. The fine-tuning of 326

pre-trained models allows the neural network model to reach high accuracy on a small 327

dataset [93]. 328

Table 1. Available Versions of BERT 329

Cased Size

Number

of

Layers

Size of

Hidden

State

Number

of

Heads

Number of

Parameters
Comments

Uncased Large 24 1024 16 340M Mask the same word.

Cased Large 24 1024 16 340M Mask the same word.

Uncased Base 12 768 12 110M

Uncased Large 24 1024 16 340M

Cased Base 12 768 12 110M

Cased Large 24 1024 16 340M

Cased Base 12 768 12 110M Trained on 104 Languages

Uncased Base 12 768 12 110M Trained on 102 Languages

N/A Base 12 768 12 110M Trained on Chinese

18

3. Methodology 330

To develop a POS tagger tailored to building codes, the authors combined multiple state-331

of-the-art techniques such as error-driven transformational rules, recurrent neural networks, 332

dropout layers, and pretrained models. At the core, the proposed POS tagger has two main 333

components, a neural network model and a set of error-driven transformational rules. The 334

neural network model initially predicts the POS tag of a word. The error-driven 335

transformational rules fix errors made by the neural network model. The neural network 336

model has a pre-trained model and multiple trainable layers (i.e., bi-directional LSTM-337

RNN layer, GRU layer, dropout layer, and TimeDistribute layer). The pre-trained model 338

brings the general linguistic knowledge (i.e., English grammar) into the POS tagger. The 339

authors fine-tune the pre-trained model on a dataset of building codes to customize the pre-340

trained model with AEC domain knowledge. The bi-directional LSTM-RNN layer and 341

GRU layer capture task-specific information (i.e., how building codes were drafted, and 342

construction terminologies). The dropout layer alleviates overfitting. The TimeDistribute 343

layer outputs the result. A POS tagger search strategy was proposed in this research to 344

efficiently search for a well-performing POS tagger configuration. 345

3.1. POS Tagger Architecture 346

The architecture of the proposed POS tagger is shown in Figure 3, which illustrates: (1) an 347

overview of the POS tagger components, and (2) how information flows between 348

components. The inputted building codes are firstly tagged by the neural network model 349

and afterwards processed by the error-driven transformational rules to fix errors made by 350

the neural network model. 351

19

The neural network model has two parts, a pre-trained model and additional trainable layers. 352

The pre-trained model uses existing models published by other researchers or 353

commercial/non-profit organizations. These were trained on large bodies of corpus. Many 354

widely used pre-trained models can be inserted here such as Open AI GPT-2 [94], BERT 355

[84], and ELMO [95]. This design allows the comparison between different pre-trained 356

models in this context and the selection of the best-performing model. Weights of the pre-357

trained model were locked, which made them untrainable in the current context. The 358

untrainable nature of the pre-trained models preserves the cross-domain, cross-application 359

and cross-task information they collected in the original training process. On top of the pre-360

trained models, there are trainable layers. Weights of trainable layers will be updated in the 361

training process, allowing trainable layers to capture the domain-specific, application-362

specific, and task-specific information in building code POS tagging. The architecture of 363

this model allows substitution and therefore comparison between different types of neural 364

network layers. The error-driven transformational rules are designed to correct errors of a 365

neural network model. 366

20

 367
Figure 3. The Architecture of the Proposed POS Tagger 368

 369
3.2. POS Tagger Search Strategy 370

Grid search is the most comprehensive way to find the optimal combination of pre-trained 371

models, trainable layers and the number of training epochs by exhaustively searching every 372

possible combination. A global grid search is inefficient, however, because many 373

combinations that are unlikely optimal will be attempted. The authors developed a three-374

step searching strategy (Figure 4) that can reduce the time to find the optimal combination 375

by ruling out combinations that have low probabilities of being optimal. The first step of 376

this search strategy is finding the best performing combination of epochs of training and 377

trainable layers by attempting all possible combinations of them while replacing the pre-378

trained model with a random number embedding layer. Because the pre-trained model has 379

been replaced with a random number embedding layer to save training time, grid search is 380

made possible and efficient. An embedding layer converts text strings to vectors of 381

numbers based on the context of the text string and the nature of the embedding layer (e.g., 382

21

the algorithm used in the layer and the size of the output vector). The pre-trained models 383

will be used to instantiate the embedding layer later in the proposed method. A random 384

number embedding layer is a type of embedding layer that directly maps words to vectors 385

of the random numbers without considering the words’ context. It is much smaller and 386

simpler than the pre-trained models and requires significantly less time to train. In this step, 387

the authors intend to find a well performing combination of epochs of training and trainable 388

layers in a short timeframe, so the random number embedding layer is used to help achieve 389

that. In the second step, the random number embedding layer is substituted with different 390

pre-trained models in the locally best-performing combination of number of epochs and 391

trainable layers that was identified in the first step. This step is aimed to find a well 392

performing pre-trained model. In the last step, the authors increase the number of trainable 393

layers until the accuracy of the POS tagger stops increasing to identify the optimal number 394

of trainable layers. The selection of the hyper-parameters ceases when the authors cannot 395

increase the performance of the model further in a meaningful way or if the performance 396

is satisfactory. 397

22

 398
Figure 4. The Three-step Approach for Efficient Grid Search 399

4. Experiment 400

4.1. Textual Data 401

The proposed POS tagger was trained on the POS tagged building codes (PTBC) dataset 402

[96], a dataset that consists of 1,522 POS tagged sentences in chapters 5 and 10 of the 2015 403

International Building Code (IBC). In total, the PTBC dataset has 39,875 tokens. A token 404

is the smallest unit in POS tagging, such as a word or a punctuation. For example, the word 405

“means” and the period are two tokens in the sentence “The means of egress shall have a 406

ceiling height of not less than 7 feet 6 inches.” which has 18 tokens in total. The split of 407

23

the dataset into training, validation, and testing data is shown in Figure 5: 40% of the 408

dataset as training data, 10% of the dataset as validation data, and 50% of the dataset as 409

testing data. Furthermore, the first 90% of the testing data was further used as the training 410

data of the error-driven transformation rules, which was then tested on the rest of the data. 411

Seven state-of-the-art machine taggers were used to tag the textual data, including: (1) the 412

NLTK tagger [97], (2) the spaCy tagger [98], (3) the Standford coreNLP tagger [99], (4) 413

A Nearly-New Information Extraction System (ANNIE) tagger in the General Architecture 414

for Text Engineering (GATE) tool [37], (5) the Apache OpenNLP tagger [100], (6) the 415

TreeTagger [41], and (7) the RNNTagger [41, 101]. The seven machine taggers were 416

selected because of their high-accuracy, ease of use, and free availability. The most 417

commonly chosen POS tag of words by the machine taggers formed the machine-tagged 418

result. Five human annotators then independently POS tagged the textual data and the most 419

commonly seen tag was chosen for each word. All human annotators are proficient in 420

English and have sufficient background knowledge to understand building codes. POS tags 421

of words by the human annotators formed the gold standard. In both the machine-tagged 422

result and the gold standard, the most commonly chosen POS tag is selected by highest 423

count, meaning that the POS tag that is selected by the most machine taggers or human 424

annotators is selected. For example, if four machine taggers tag the word “doorways” as 425

Plural Noun (NNS), one machine tagger tags the word as 3rd person singular present verb 426

(VBZ). The most commonly chosen POS tag of the word “doorways” is selected to be 427

Plural Noun (NNS), in the machine-tagged result. If there is a tie, the authors break the tie 428

by selecting the tag they deem most appropriate. In the generation of the gold standard, the 429

authors developed a new labeling method in which human annotators address the 430

24

differences between tagging results of different machine taggers. If all machine taggers tag 431

a word identically, human annotators do not need to change the tag by machine taggers. 432

For words that different machine taggers select different POS tags, human annotators are 433

presented with all tags assigned by machine taggers as options to select from. To account 434

for the risk that a word is not correctly tagged by any machine taggers, human annotators 435

are allowed to assign a POS tag outside the provided tags as well. Human annotators also 436

can change the POS tag of words that machine taggers reached a consensus on. Such 437

changes will need to be discussed and get consensus from all human annotators [102]. The 438

human annotators’ tagging results reached an initial inter-annotator agreement of 0.91, 439

which ensured the quality of the gold standard. The dataset contains the POS tags given by 440

all seven machine POS taggers and five human annotators, the most commonly chosen tag 441

by machine POS taggers and human annotators. In this experiment, the proposed POS 442

tagger was trained to tag the textual data as closely as possible to the most commonly 443

chosen tag by human annotators (Figure 6). 444

 445
 446

 447
Figure 5. Split of Training, Validation, and Testing Data 448

25

 449
Figure 6. POS Tagger Goal 450

 451
4.2. Step 1: Select the Number of Epochs of Training and the Trainable Layer 452

There were two types of trainable layers studied in this research: (1) bidirectional LSTM, 453

and (2) bidirectional GRU. The number of epochs of training cannot be predicted before 454

training [103]. The authors decided to train the model 15 epochs and 50 epochs (arbitrarily 455

selected numbers) to analyze the impact of epochs of training on the performance of the 456

model. The trainable layers were layers of bidirectional LSTM or bidirectional GRU. The 457

size of trainable layers was 128. Between trainable layers, there were dropout layers with 458

a dropout rate of 0.4. The authors selected hyper-parameters such as epochs of training, 459

trainable layer size, and dropout rate based on their past experience in deep learning. Neural 460

network models with these hyper-parameters generally perform well on a wide range of 461

tasks. Although it is possible to do a more thorough search on hyper-parameters, it is out 462

of the scope of this paper. The random number embedding layer significantly saved the 463

training time and allowed grid research in this step. The authors attempted four possible 464

combinations (Figure 7): (1) one layer of bidirectional GRU model that was trained 15 465

epochs, (2) one layer of bidirectional GRU model that was trained 50 epochs, (3) one layer 466

of bidirectional LSTM model that was trained 15 epochs, and (4) one layer of bidirectional 467

LSTM model that was trained 50 epochs. 468

26

 469
Figure 7. Models Trained in Step 1 470

 471
4.3. Step 2: Search a Well-performing Pre-trained Model 472

Although there were multiple potentially well-performing pre-trained models available, the 473

authors selected BERT, which had achieved the state-of-the-art performance on multiple 474

NLP tasks with little fine-tuning needs [61]. The authors tested the eight available versions 475

of BERT: (1) BERT-Large, Uncased (Whole Word Masking), (2) BERT-Large, Cased 476

(Whole Word Masking), (3) BERT-Base, Uncased, (4) BERT-Large, Uncased, (5) BERT-477

Base, Cased, (6) BERT-Large, Cased, (7) BERT-Base, Multilingual Cased, and (8) BERT-478

Base, Multilingual Uncased. Therefore, eight models were trained in this step, 479

corresponding to the eight versions of BERT (Figure 8). All of them shared the same 480

trainable layers and were trained the same number of epochs. 481

27

 482
Figure 8. Models Trained in Step 2 483

 484
4.4. Step 3: Search the Optimal Number of Trainable Layers 485

Stacking multiple trainable layers could possibly achieve higher precision by capturing 486

more features in the textual data. However, too many trainable layers may lead to 487

overfitting. To find the optimal number of trainable layers, the authors decided to increase 488

the number of trainable layers and dropout layers until the precision stops increasing. There 489

were two models trained in this step: Model 13, which has two bidirectional LSTM layers 490

and Model 14, which has three bidirectional LSTM layers (Figure 9). 491

28

 492
Figure 9. Two Models Trained in Step 3 493

 494
5. Results and Discussion 495

To find a well-performing combination of epochs of training, pre-trained models, and 496

trainable layers to use in the POS tagger, the authors trained 14 models (Table 2). The best-497

performing POS tagger had a combination of one bi-directional LSTM trainable layer, 498

BERT_Cased_Base pre-trained model, and was trained for 50 epochs. This model (Model 499

9 in Table 2) reached the highest accuracy after applying transformational rules. The 500

optimization of the deep learning component of this POS tagger is out of the scope of this 501

paper, which may be pursued in future research. 502

 503

29

Table 2. Summary of the Performance of Models 504

Model
Before Applying Rules After Applying Rules

Precision Recall F1-score Precision Recall F1-score

1 39.02% 17.91% 19.88% 61.59% 51.94% 43.71%

2 89.67% 87.65% 88.14% 93.68% 93.78% 93.64%

3 36.45% 17.41% 20.37% 61.82% 49.93% 43.62%

4 90.15% 87.76% 88.34% 93.53% 93.44% 93.41%

5 90.57% 88.60% 88.87% 94.98% 94.99% 94.88%

6 91.06% 88.64% 89.01% 94.73% 94.75% 94.63%

7 90.40% 88.37% 88.68% 94.16% 94.32% 94.14%

8 89.29% 87.24% 87.60% 93.50% 93.70% 93.49%

9 91.89% 89.71% 90.06% 95.11% 95.42% 95.20%

10 91.49% 89.32% 89.78% 94.50% 94.70% 94.51%

11 89.70% 87.56% 87.80% 94.23% 94.56% 94.33%

12 87.84% 85.92% 86.12% 93.31% 93.03% 93.04%

13 91.81% 89.81% 90.19% 95.04% 95.32% 95.08%

14 91.43% 89.82% 90.07% 94.64% 94.89% 94.70%

5.1. Step 1 Result: Epochs of Training and Trainable Layers Combination 505

Figure 10 demonstrates the influence of the trainable layer and the epochs of training on 506

the accuracy of POS tagging. For both trainable layers, increasing the number of epochs 507

can increase the precision. However, when the number of epochs was 15, the precision of 508

the bi-directional LSTM model was lower than that of the bi-directional GRU model. When 509

the number of epochs was 50, the precision of the bi-directional LSTM surpassed that of 510

the bi-directional GRU model. This shows that the optimal number of epochs for different 511

pre-trained models could be different. 512

30

 513
Figure 10. Influence of Epochs of Training and Trainable Layers to Precision 514

 515

5.2. Step 2 Result: The Best-performing Pre-trained Model 516

The precision, recall, and F1-score of models with different pre-trained models are shown 517

in Figure 11. All models trained in this step share the same trainable layer and the same 518

number of epochs of training (50). The BERT_Base_Cased model achieved the highest 519

precision, recall and F1-score. The average precision for models with cased models is 91.03% 520

and that for models with uncased models is 89.53% (Figure 11). It shows cased information 521

is useful in the POS tagging of building codes. The average precision for models with large 522

models is 90.60% and that for models with base models (excluding multilingual models) 523

is 91.15%. The two multilingual models were excluded in the comparison because there is 524

no large multilingual model and the current POS tagging task is not multilingual. It may be 525

counterintuitive because larger models generally achieve higher accuracy than smaller 526

31

models. The authors suggest that more training data is needed to release the full potential 527

of large pre-trained models. 528

 529

Figure 11. Precision, Recall and F1-score of Models with Different Pre-trained Models 530
 531

5.3. Step 3 Result: The Optimal Number of Trainable Layers 532

After the best-performing pre-trained model was identified, the authors started to identify 533

the optimal number of trainable layers. Result of this attempt is illustrated in Table 3. The 534

model with one layer of bidirectional LSTM reached the highest precision. Precision of 535

models decreases as the number of layers increases. The authors concluded that more data 536

is needed to leverage the power of additional trainable layers. 537

Table 3. Number of Trainable Layers vs. Precision 538
Layers of Trainable Layers Precision

1 91.49%

2 89.79%

3 87.84%

5.3.1 Effectiveness of Error-driven Transformational Rules. 539

This research also confirmed the effectiveness of error-driven transformational rules 540

(Figure 12). The average precision after applying transformational rules is 94.57%. 541

Although the precision before applying transformational rules varied with pre-trained 542

32

models and trainable layers, the precision after applying the transformational rules all 543

increased. Moreover, POS taggers with higher pre-rule-application precision will also have 544

a higher post-rule-application precision. The transformational rules increase the precision 545

of POS tagger by a margin of 4.02%. The average training accuracy and testing accuracy 546

of all models that use pre-trained models are 95.45% and 94.57%, respectively. The 547

average training accuracy of the models was only 0.88% higher than their average testing 548

accuracy (Figure 13), which alleviated overfitting concerns. The authors also compared the 549

performance of the proposed tagger against the performance of other state-of the-art POS 550

taggers on the PTBC dataset [102] (Figure 14). 551

 552
Figure 12: Precision of Each Model Before and After Applying Transformational Rules 553

 554
Figure 13: Training and Testing Accuracy of Models 555

33

 556
 557

Figure 14. Comparison with State-of-the-art POS Taggers 558

5.3.2. Effectiveness of GRU 559

The bi-directional GRU model without BERT can achieve a precision that is comparable 560

to bi-directional LSTM model that is enhanced by BERT. A significant amount of training 561

time can be saved if there is no pre-trained model to fine-tune. The hardware requirement 562

to fine-tune pre-trained models is also significantly higher than that of the random 563

embedding layer. Directly using the bi-directional GRU model can save training time and 564

cut hardware investment while the compromise on the precision of the POS tagger is within 565

an acceptable range. 566

5.3.3 Tagging Example 567

To validate this POS tagger, the authors compared the POS tagging result of this POS 568

tagger to a baseline tagger which is a state-of-the-art generic POS tagger. As an example, 569

the baseline tagger incorrectly labeled “horizonal” as a noun. This error may lead to 570

incorrect extraction of embedded engineering knowledge in building codes. In contrast, the 571

proposed POS tagger correctly labeled the word as an adjective. The automated code 572

compliance checking system has a better chance to correctly extract the embedded 573

34

engineering knowledge in the building codes by the proposed POS tagger, compared to 574

state-of-the-art generic POS taggers. 575

5.3.4 Impact of Data Split Scenarios 576

To analyze the impact of different training/testing data split scenarios on the precision, 577

recall, and f1-score, the authors reported the precision, recall, and f1-score of the proposed 578

POS tagger on two other training/testing split methods. The second training/testing split 579

method is using: (1) 60% of the entire dataset as the training dataset of the neural network 580

model, (2) 20% of the entire dataset as the validation dataset of the neural network model, 581

(3) 20% of the entire dataset as the testing dataset of the neural network model, (4) 80% of 582

the entire dataset as the training dataset of the error-driven transformational rules, and (5) 583

20% of the entire dataset as the testing dataset of the error-driven transformational rules 584

(Table 3). The third training/testing split method is using: (1) 60% of the entire dataset as 585

the training dataset of the neural network model, (2) 20% of the entire dataset as the 586

validation dataset of the neural network model, (3) 20% of the entre dataset as the testing 587

dataset of the neural network model, (4) 90% of the testing dataset of the neural network 588

model as the training dataset of error-driven transformational rules, and (5) 10% of the 589

testing dataset of the neural network model as the testing dataset of error-driven 590

transformational rules (Table 4). Results in all training/testing split scenarios showed 591

consistency in: (1) the improvements of performance when using error-driven 592

transformational rules, (2) the improvement of performance over the state of the art. 593

 594
Table 4. Results of Second Training/Testing Split Method 595

Model
Before Applying Rules After Applying Rules

Precision Recall F1-score Precision Recall F1-score

1 91.15% 89.39% 89.95% 93.10% 92.80% 92.82%

35

2 92.86% 91.21% 91.72% 94.82% 94.60% 94.64%

3 77.80% 72.13% 71.64% 83.58% 85.35% 83.37%

4 92.98% 91.20% 91.76% 94.62% 94.25% 94.31%

5 91.97% 90.30% 90.76% 96.04% 95.84% 95.56%

6 92.26% 90.28% 90.84% 96.25% 96.22% 95.99%

7 91.93% 90.32% 90.70% 96.00% 95.94% 95.65%

8 90.49% 89.28% 89.49% 95.85% 95.67% 95.37%

9 93.18% 91.82% 92.18% 96.43% 96.35% 96.08%

10 92.58% 91.17% 91.51% 96.31% 96.27% 96.00%

11 91.70% 89.90% 90.40% 95.79% 95.77% 95.44%

12 89.56% 87.93% 88.28% 95.04% 95.02% 94.70%

13 93.02% 91.65% 92.01% 96.40% 96.22% 95.94%

14 92.90% 91.77% 92.00% 96.83% 96.62% 96.28%

 596
 597

Table 5. Results of Third Training/Testing Split Method 598

Model
Before Applying Rules After Applying Rules

Precision Recall F1-score Precision Recall F1-score

1 91.17% 89.86% 90.23% 92.48% 92.32% 92.25%

2 92.83% 90.59% 91.27% 93.60% 93.19% 93.32%

3 77.91% 69.31% 69.47% 80.81% 80.24% 78.11%

4 92.88% 90.65% 91.34% 93.25% 92.97% 93.03%

5 92.07% 90.49% 90.90% 95.11% 94.71% 94.85%

6 92.06% 90.01% 90.61% 94.61% 94.27% 94.32%

7 91.62% 90.17% 90.43% 93.18% 92.62% 92.79%

8 90.79% 89.28% 89.61% 93.87% 93.50% 93.59%

9 93.23% 91.47% 91.96% 96.12% 95.70% 95.84%

10 92.25% 90.82% 91.20% 94.73% 94.49% 94.55%

11 91.90% 90.14% 90.51% 95.26% 94.93% 95.06%

12 90.31% 88.79% 89.29% 93.07% 92.62% 92.70%

13 92.83% 91.12% 91.49% 95.99% 95.48% 95.65%

14 92.73% 91.30% 91.60% 95.51% 95.26% 95.32%

 599

6. Contributions to the Body of Knowledge 600

This research has contributions in both theory and practice. Theoretically, it has two main 601

contributions to the body of knowledge. First, it provides a hybrid deep-learning and rule-602

based method to enhance performance of POS taggers on domain specific texts. The 603

36

combination of deep learning neural network models and error-fixing transformational 604

rules makes the proposed POS tagger outperform the state-of-the-art POS taggers with 605

limited amount of training data. Many current state-of-the-art POS taggers were trained on 606

the Penn Treebank (PTB) corpora which has 2,499 articles (each article contains tens, if 607

not hundreds, of sentences). This POS tagger was trained on a dataset of only 1,522 608

sentences. Second, this research shows the potential of deep learning in automated building 609

code information extraction. The promising results of deep learning on the POS tagging of 610

building codes paved the way to more applications of deep learning in automated building 611

code compliance checking and engineering tasks in the AEC domain in general. In practice, 612

the impact of this work on the AEC domain could be profound. It provides a more accurate 613

POS tagger for building codes comparing to the state of the art, which will help automated 614

code compliance checking systems to check more building code requirements 615

automatically. The extension of checkable building code requirements could bring 616

automated code compliance checking systems one step closer to a wide real-world 617

deployment. 618

7. Limitations and Future Work 619

One main limitation of this work is acknowledged: the POS tagger still is not error-free. In 620

spite of its improvement over the state of the art, this POS tagger may still not be accurate 621

enough to support an error-free extraction of embedded engineering knowledge in building 622

codes. Errors in POS tagging may have negative effect on the performance of NLP-based 623

automated building code compliance checking systems that leverage it. The authors suggest 624

that research to further increase the accuracy of POS taggers is still needed. The authors 625

37

also plan to develop automated code compliance checking systems that have the robustness 626

to tolerate a small amount of POS tagging errors. 627

8. Conclusion 628

The ability to provide accurate POS tagging results of building codes paves the way to 629

automated regulatory information extraction and widens the possible range of applicable 630

code requirements of automated code compliance checking systems. The authors proposed 631

a new POS tagger to support such systems. This is the first POS tagger that is tailored to 632

building codes. The POS tagger gained information on general English by incorporating 633

pre-trained deep learning models and captured AEC domain specific knowledge by fine-634

tuning on a domain-specific corpus. The POS tagger directly maps inputted words to POS 635

tags without feature engineering. This nature of deep learning allows future domain experts 636

to enhance the performance of this tagger by directly leveraging more training data. The 637

experiment showed that the bi-directional GRU model without pre-trained models can 638

reach a high precision that is comparable to the precision of the bi-directional LSTM 639

models with pre-trained models. Using bi-directional GRU model can save time and cost 640

to train a POS tagger, without significantly compromising precision. Although more 641

training data may help unleash the full potential of pre-trained models and further improve 642

performance, the authors were able to achieve a 95.11% precision using one bi-directional 643

LSTM trainable layer and BERT_Cased_Base pre-trained model in combination with 644

error-driven transformational rules, which significantly increased over the state-of-the-art. 645

9. Acknowledgement 646

The authors would like to thank the National Science Foundation (NSF). This material is 647

based on work supported by the NSF under Grant No. 1827733. Any opinions, findings, 648

38

and conclusions or recommendations expressed in this material are those of the author and 649

do not necessarily reflect the views of the NSF. 650

10. Reference 651

[1] Indiana Department of Homeland Security, Codes, Standards and Other 652

Rules, 2020, 2020. 653

[2] Upcodes, International Building Code 2015 (IBC 2015), 2020. 654

[3] C.o. Chicago, Average Time for Permit Issuance, 2020. 655

[4] City of Chicago, Permit Fee Calculator, 2020. 656

[5] S. Moon, G. Lee, S. Chi, H. Oh, Automatic Review of Construction 657

Specifications Using Natural Language Processing, (2019). 658

[6] N.O. Nawari, Generalized Adaptive Framework for Computerizing the 659

Building Design Review Process, Journal of Architectural Engineering, 26 660

(2020) 04019023. 661

[7] S.J. Fenves, Tabular decision logic for structural design, Journal 662

of the Structural Division, 92 (1966) 473-490. 663

[8] C.I. Pesquera, S.L. Hanna, J.F. Abel, Advanced graphical CAD system 664

for 3D steel frames, Computer aided design in civil engineering, ASCE, 665

1984, pp. 83-91. 666

[9] V.E. Saouma, S.M. Doshi, M. Pace, Architecture of an expert-system-667

based code-compliance checker, Engineering Applications of Artificial 668

Intelligence, 2 (1989) 49-56. 669

[10] P.M. Evans, Rule-based applications for checking standards 670

compliance of structural members, Building and Environment, 25 (1990) 671

235-240. 672

[11] P. Fazio, C. Bédard, K. Gowri, Knowledge‐Based System Development 673

Tools for Processing Design Specifications, Computer‐Aided Civil and 674

Infrastructure Engineering, 3 (1988) 333-344. 675

[12] L. Khemlani, CORENET e-PlanCheck: Singapore's automated code 676

checking system, AECbytes, October, (2005). 677

[13] Q. Yang, IFC-compliant design information modelling and sharing, 678

Journal of Information Technology in Construction (ITcon), 8 (2003) 1-679

14. 680

[14] L. Ding, R. Drogemuller, M. Rosenman, D. Marchant, J. Gero, 681

Automating code checking for building designs-DesignCheck, (2006). 682

[15] C. Eastman, J.-m. Lee, Y.-s. Jeong, J.-k. Lee, Automatic rule-based 683

checking of building designs, Automation in construction, 18 (2009) 684

1011-1033. 685

39

[16] P. Patlakas, A. Livingstone, R. Hairstans, G. Neighbour, Automatic 686

code compliance with multi-dimensional data fitting in a BIM context, 687

Advanced Engineering Informatics, 38 (2018) 216-231. 688

[17] Q. Fang, H. Li, X. Luo, L. Ding, T.M. Rose, W. An, Y. Yu, A deep 689

learning-based method for detecting non-certified work on construction 690

sites, Advanced Engineering Informatics, 35 (2018) 56-68. 691

[18] W. Smits, M. van Buiten, T. Hartmann, Yield-to-BIM: impacts of BIM 692

maturity on project performance, Building Research & Information, 45 693

(2017) 336-346. 694

[19] J.K. Whyte, T. Hartmann, How digitizing building information 695

transforms the built environment, Taylor & Francis, 2017. 696

[20] J. Zhang, N.M. El-Gohary, Automated information transformation for 697

automated regulatory compliance checking in construction, Journal of 698

Computing in Civil Engineering, 29 (2015) B4015001. 699

[21] S. Li, H. Cai, V.R. Kamat, Integrating natural language processing 700

and spatial reasoning for utility compliance checking, Journal of 701

Construction Engineering and Management, 142 (2016) 04016074. 702

[22] X. Xu, H. Cai, Semantic approach to compliance checking of 703

underground utilities, Automation in Construction, 109 (2020) 103006. 704

[23] W. Fang, H. Luo, S. Xu, P.E. Love, Z. Lu, C. Ye, Automated text 705

classification of near-misses from safety reports: An improved deep 706

learning approach, Advanced Engineering Informatics, 44 (2020) 101060. 707

[24] B. Zhong, X. Xing, P. Love, X. Wang, H. Luo, Convolutional neural 708

network: Deep learning-based classification of building quality 709

problems, Advanced Engineering Informatics, 40 (2019) 46-57. 710

[25] A.J.C. Trappey, C.V. Trappey, J.-L. Wu, J.W.C. Wang, Intelligent 711

compilation of patent summaries using machine learning and natural 712

language processing techniques, Advanced engineering informatics, 43 713

(2020) 101027. 714

[26] X. Xue, J. Zhang, Evaluation of Eight Part-of-Speech Taggers in 715

Tagging Building Codes: Identifying the Best Performing Tagger and 716

Common Sources of Errors, The ASCE Construction Research Congress, 717

Construction Research Council of the ASCE Construction Institute, 2020. 718

[27] V. Getuli, S.M. Ventura, P. Capone, A.L. Ciribini, BIM-based code 719

checking for construction health and safety, Procedia engineering, 196 720

(2017) 454-461. 721

[28] X. Tan, A. Hammad, P. Fazio, Automated code compliance checking for 722

building envelope design, Journal of Computing in Civil Engineering, 24 723

(2010) 203-211. 724

40

[29] J. Choi, J. Choi, I. Kim, Development of BIM-based evacuation 725

regulation checking system for high-rise and complex buildings, 726

Automation in Construction, 46 (2014) 38-49. 727

[30] T.-H. Nguyen, Integrating building code compliance checking into a 728

3D CAD system, Computing in Civil Engineering (2005)2005, pp. 1-12. 729

[31] N.O. Nawari, Automating codes conformance, Journal of architectural 730

engineering, 18 (2012) 315-323. 731

[32] J. Dimyadi, G. Clifton, M. Spearpoint, R. Amor, Computerizing 732

Regulatory Knowledge for Building Engineering Design, Journal of 733

Computing in Civil Engineering, (2016) C4016001. 734

[33] J. Dimyadi, R. Amor, Automated building code compliance checking–735

where is it at, Proceedings of CIB WBC, 6 (2013). 736

[34] S. Singaravel, J. Suykens, P. Geyer, Deep-learning neural-network 737

architectures and methods: Using component-based models in building-738

design energy prediction, Advanced Engineering Informatics, 38 (2018) 739

81-90. 740

[35] M. Héder, E. Bártházi, T. Vámos, Natural language understanding in 741

governance service automation, IFAC Proceedings Volumes, 44 (2011) 6385-742

6390. 743

[36] X. Xu, H. Cai, Semantic frame-based information extraction from 744

utility regulatory documents to support compliance checking, Advances 745

in Informatics and Computing in Civil and Construction Engineering, 746

Springer2019, pp. 223-230. 747

[37] H. Cunningham, GATE, a general architecture for text engineering, 748

Computers and the Humanities, 36 (2002) 223-254. 749

[38] A.R. Coden, S.V. Pakhomov, R.K. Ando, P.H. Duffy, C.G. Chute, 750

Domain-specific language models and lexicons for tagging, Journal of 751

biomedical informatics, 38 (2005) 422-430. 752

[39] L. Abzianidze, J. Bos, Towards universal semantic tagging, arXiv 753

preprint arXiv:1709.10381, (2017). 754

[40] J. Kupiec, Robust part-of-speech tagging using a hidden Markov 755

model, Computer Speech & Language, 6 (1992) 225-242. 756

[41] H. Schmid, Part-of-speech tagging with neural networks, 757

Proceedings of the 15th conference on Computational linguistics-Volume 758

1, Association for Computational Linguistics, 1994, pp. 172-176. 759

[42] M. Pota, F. Marulli, M. Esposito, G. De Pietro, H. Fujita, 760

Multilingual POS tagging by a composite deep architecture based on 761

character-level features and on-the-fly enriched Word Embeddings, 762

Knowledge-Based Systems, 164 (2019) 309-323. 763

[43] J. Lee, Y. Ham, J.-S. Yi, J. Son, Effective Risk Positioning 764

through Automated Identification of Missing Contract Conditions from the 765

41

Contractor’s Perspective Based on FIDIC Contract Cases, Journal of 766

Management in Engineering, 36 (2020) 05020003. 767

[44] F.u. Hassan, T. Le, Automated Requirements Identification from 768

Construction Contract Documents Using Natural Language Processing, 769

Journal of Legal Affairs and Dispute Resolution in Engineering and 770

Construction, 12 (2020) 04520009. 771

[45] P. Zhou, N. El-Gohary, Automated matching of design information in 772

BIM to regulatory information in energy codes, Construction Research 773

Congress 2018, 2018, pp. 75-85. 774

[46] J. Wang, Y. Chen, S. Hao, X. Peng, L. Hu, Deep learning for sensor-775

based activity recognition: A survey, Pattern Recognition Letters, 119 776

(2019) 3-11. 777

[47] J. Zhang, N. El-Gohary, Semantic NLP-Based Information Extraction 778

from Construction Regulatory Documents for Automated Compliance 779

Checking, Journal of Computing in Civil Engineering, 30 (2013) 780

141013064441000. 781

[48] J.R. Finkel, C.D. Manning, A.Y. Ng, Solving the problem of 782

cascading errors: Approximate Bayesian inference for linguistic 783

annotation pipelines, Proceedings of the 2006 Conference on Empirical 784

Methods in Natural Language Processing, Association for Computational 785

Linguistics, 2006, pp. 618-626. 786

[49] E.D. Brill, A corpus-based approach to language learning, IRCS 787

Technical Reports Series, (1993) 191. 788

[50] A. Ratnaparkhi, A maximum entropy model for part-of-speech tagging, 789

Conference on Empirical Methods in Natural Language Processing, 1996. 790

[51] T. Brants, TnT: a statistical part-of-speech tagger, Proceedings 791

of the sixth conference on Applied natural language processing, 792

Association for Computational Linguistics, 2000, pp. 224-231. 793

[52] K. Toutanova, D. Klein, C.D. Manning, Y. Singer, Feature-rich part-794

of-speech tagging with a cyclic dependency network, Proceedings of the 795

2003 Conference of the North American Chapter of the Association for 796

Computational Linguistics on Human Language Technology-Volume 1, 797

Association for computational Linguistics, 2003, pp. 173-180. 798

[53] J. Giménez, L. Marquez, Fast and accurate part-of-speech tagging: 799

The SVM approach revisited, Recent Advances in Natural Language 800

Processing III, (2004) 153-162. 801

[54] C. Biemann, Unsupervised part-of-speech tagging employing efficient 802

graph clustering, Proceedings of the 21st international conference on 803

computational linguistics and 44th annual meeting of the association for 804

computational linguistics: student research workshop, Association for 805

Computational Linguistics, 2006, pp. 7-12. 806

42

[55] F. Dell’Orletta, Ensemble system for Part-of-Speech tagging, 807

Proceedings of EVALITA, 9 (2009) 1-8. 808

[56] T. Young, D. Hazarika, S. Poria, E. Cambria, Recent trends in deep 809

learning based natural language processing, ieee Computational 810

intelligenCe magazine, 13 (2018) 55-75. 811

[57] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, P. 812

Kuksa, Natural language processing (almost) from scratch, Journal of 813

machine learning research, 12 (2011) 2493-2537. 814

[58] N.C. Marques, G.P. Lopes, Tagging with Small Training Corpora, 815

Springer Berlin Heidelberg, Berlin, Heidelberg, 2001, pp. 63-72. 816

[59] X. Yu, A. Faleńska, N.T. Vu, A general-purpose tagger with 817

convolutional neural networks, arXiv preprint arXiv:1706.01723, (2017). 818

[60] F. Chollet, Deep Learning with Python, (2017). 819

[61] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of 820

deep bidirectional transformers for language understanding, arXiv 821

preprint arXiv:1810.04805, (2018). 822

[62] J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C.H. So, J. Kang, BioBERT: 823

a pre-trained biomedical language representation model for biomedical 824

text mining, Bioinformatics, 36 (2020) 1234-1240. 825

[63] B. He, D. Zhou, J. Xiao, Q. Liu, N.J. Yuan, T. Xu, Integrating 826

graph contextualized knowledge into pre-trained language models, arXiv 827

preprint arXiv:1912.00147, (2019). 828

[64] W. Tai, H. Kung, X.L. Dong, M. Comiter, C.-F. Kuo, exBERT: 829

Extending Pre-trained Models with Domain-specific Vocabulary Under 830

Constrained Training Resources, Proceedings of the 2020 Conference on 831

Empirical Methods in Natural Language Processing: Findings, 2020, pp. 832

1433-1439. 833

[65] C.D. Manning, Part-of-Speech Tagging from 97% to 100%: Is It Time 834

for Some Linguistics?, in: A.F. Gelbukh (Ed.) Computational Linguistics 835

and Intelligent Text Processing, Springer Berlin Heidelberg, Berlin, 836

Heidelberg, 2011, pp. 171-189. 837

[66] D. Tang, B. Qin, T. Liu, Document modeling with gated recurrent 838

neural network for sentiment classification, Proceedings of the 2015 839

conference on empirical methods in natural language processing, 2015, 840

pp. 1422-1432. 841

[67] X. Rao, Z. Ke, Hierarchical rnn for information extraction from 842

lawsuit documents, arXiv preprint arXiv:1804.09321, (2018). 843

[68] N. Bhutani, Y. Suhara, W.-C. Tan, A. Halevy, H. Jagadish, Open 844

Information Extraction from Question-Answer Pairs, arXiv preprint 845

arXiv:1903.00172, (2019). 846

43

[69] A. Vaswani, S. Bengio, E. Brevdo, F. Chollet, A.N. Gomez, S. Gouws, 847

L. Jones, Ł. Kaiser, N. Kalchbrenner, N. Parmar, Tensor2tensor for 848

neural machine translation, arXiv preprint arXiv:1803.07416, (2018). 849

[70] A.V.M. Barone, J. Helcl, R. Sennrich, B. Haddow, A. Birch, Deep 850

architectures for neural machine translation, arXiv preprint 851

arXiv:1707.07631, (2017). 852

[71] W. Chan, N. Jaitly, Q. Le, O. Vinyals, Listen, attend and spell: A 853

neural network for large vocabulary conversational speech recognition, 854

2016 IEEE International Conference on Acoustics, Speech and Signal 855

Processing (ICASSP), IEEE, 2016, pp. 4960-4964. 856

[72] S. Karita, N. Chen, T. Hayashi, T. Hori, H. Inaguma, Z. Jiang, M. 857

Someki, N.E.Y. Soplin, R. Yamamoto, X. Wang, A comparative study on 858

transformer vs rnn in speech applications, arXiv preprint 859

arXiv:1909.06317, (2019). 860

[73] Y. Shao, C. Hardmeier, J. Tiedemann, J. Nivre, Character-based 861

joint segmentation and POS tagging for Chinese using bidirectional RNN-862

CRF, arXiv preprint arXiv:1704.01314, (2017). 863

[74] B. Plank, A. Søgaard, Y. Goldberg, Multilingual part-of-speech 864

tagging with bidirectional long short-term memory models and auxiliary 865

loss, arXiv preprint arXiv:1604.05529, (2016). 866

[75] A. Agarwal, A. Yadav, D.K. Vishwakarma, Multimodal sentiment 867

analysis via RNN variants, 2019 IEEE International Conference on Big 868

Data, Cloud Computing, Data Science & Engineering (BCD), IEEE, 2019, pp. 869

19-23. 870

[76] K. Baktha, B. Tripathy, Investigation of recurrent neural networks 871

in the field of sentiment analysis, 2017 International Conference on 872

Communication and Signal Processing (ICCSP), IEEE, 2017, pp. 2047-2050. 873

[77] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, 874

H. Schwenk, Y. Bengio, Learning phrase representations using RNN 875

encoder-decoder for statistical machine translation, arXiv preprint 876

arXiv:1406.1078, (2014). 877

[78] J.L. Elman, Finding structure in time, Cognitive science, 14 (1990) 878

179-211. 879

[79] X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural 880

networks, Proceedings of the fourteenth international conference on 881

artificial intelligence and statistics, 2011, pp. 315-323. 882

[80] C. Nwankpa, W. Ijomah, A. Gachagan, S. Marshall, Activation 883

functions: Comparison of trends in practice and research for deep 884

learning, arXiv preprint arXiv:1811.03378, (2018). 885

44

[81] S. Hochreiter, The vanishing gradient problem during learning 886

recurrent neural nets and problem solutions, International Journal of 887

Uncertainty, Fuzziness and Knowledge-Based Systems, 6 (1998) 107-116. 888

[82] H. Sak, A.W. Senior, F. Beaufays, Long short-term memory recurrent 889

neural network architectures for large scale acoustic modeling, (2014). 890

[83] J. Chung, C. Gulcehre, K. Cho, Y. Bengio, Empirical evaluation of 891

gated recurrent neural networks on sequence modeling, arXiv preprint 892

arXiv:1412.3555, (2014). 893

[84] D. Hu, An introductory survey on attention mechanisms in NLP 894

problems, Proceedings of SAI Intelligent Systems Conference, Springer, 895

2019, pp. 432-448. 896

[85] O. Firat, K. Cho, Y. Bengio, Multi-way, multilingual neural machine 897

translation with a shared attention mechanism, arXiv preprint 898

arXiv:1601.01073, (2016). 899

[86] J. Lu, J. Yang, D. Batra, D. Parikh, Hierarchical question-image 900

co-attention for visual question answering, Advances In Neural 901

Information Processing Systems, 2016, pp. 289-297. 902

[87] T. Rocktäschel, E. Grefenstette, K.M. Hermann, T. Kočiský, P. 903

Blunsom, Reasoning about entailment with neural attention, arXiv 904

preprint arXiv:1509.06664, (2015). 905

[88] D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by 906

jointly learning to align and translate, arXiv preprint arXiv:1409.0473, 907

(2014). 908

[89] M.-T. Luong, H. Pham, C.D. Manning, Effective approaches to 909

attention-based neural machine translation, arXiv preprint 910

arXiv:1508.04025, (2015). 911

[90] A. Ambartsoumian, F. Popowich, Self-attention: A better building 912

block for sentiment analysis neural network classifiers, arXiv preprint 913

arXiv:1812.07860, (2018). 914

[91] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. 915

Gomez, Ł. Kaiser, I. Polosukhin, Attention is all you need, Advances 916

in neural information processing systems, 2017, pp. 5998-6008. 917

[92] Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. 918

Torralba, S. Fidler, Aligning books and movies: Towards story-like 919

visual explanations by watching movies and reading books, Proceedings 920

of the IEEE international conference on computer vision, 2015, pp. 19-921

27. 922

[93] A. Zhang, Z.C. Lipton, M. Li, A.J. Smola, Dive into deep learning, 923

Unpublished Draft. Retrieved, 19 (2019) 2019. 924

45

[94] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, 925

Language models are unsupervised multitask learners, OpenAI Blog, 1 926

(2019) 9. 927

[95] M.E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, L. 928

Zettlemoyer, Deep contextualized word representations, arXiv preprint 929

arXiv:1802.05365, (2018). 930

[96] X. Xue, J. Zhang, Part-of-Speech Tagged Building Codes (PTBC), 931

2019. 932

[97] E. Loper, S. Bird, NLTK: the natural language toolkit, arXiv 933

preprint cs/0205028, (2002). 934

[98] A. Explosion, spaCy-Industrial-strength Natural Language Processing 935

in Python, URL: https://spacy. io, (2017). 936

[99] C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, D. 937

McClosky, The Stanford CoreNLP natural language processing toolkit, 938

Proceedings of 52nd annual meeting of the association for computational 939

linguistics: system demonstrations, 2014, pp. 55-60. 940

[100] J. Kottmann, B. Margulies, G. Ingersoll, I. Drost, J. Kosin, J. 941

Baldridge, T. Goetz, T. Morton, W. Silva, A. Autayeu, Apache opennlp, 942

Online (May 2011), www. opennlp. apache. org, (2011). 943

[101] H. Schmid, Deep Learning-Based Morphological Taggers and 944

Lemmatizers for Annotating Historical Texts, Proceedings of the 3rd 945

International Conference on Digital Access to Textual Cultural Heritage, 946

ACM, 2019, pp. 133-137. 947

[102] X. Xue, J. Zhang, Evaluation of Seven Part-of-Speech Taggers in 948

Tagging Building Codes: Identifying the Best Performing Tagger and 949

Common Sources of Errors, ASCE Construction Research Congress 2020, 950

2020. 951

[103] F. Chollet, Deep Learning with Python, Manning Publications 952

Co.2017. 953

https://spacy/

