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Abstract

Automated building code compliance checking systems were under development for
many years. However, the excessive amount of human inputs needed to convert building
codes from natural language to computer understandable formats severely limited their
range of applicable code requirements. To address that, automated code compliance
checking systems need to enable an automated regulatory rules conversion. Accurate Part-
of-Speech (POS) tagging of building code texts is crucial to this conversion. Previous
experiments showed that the state-of-the-art generic POS taggers do not perform well on
building codes. In view of that, the authors are proposing a new POS tagger tailored to
building codes. It utilizes deep learning neural network model and error-driven
transformational rules. The neural network model contains a pre-trained model and one
or more trainable neural layers. The pre-trained model was fine-tuned on Part-of-Speech
Tagged Building Codes (PTBC), a POS tagged building codes dataset. The fine-tuning of
pre-trained model allows the proposed POS tagger to reach high precision with a small
amount of available training data. Error-driven transformational rules were used to boost
performance further by fixing errors made by the neural network model in the tagged

building code. Through experimental testing, the authors found a well-performing POS
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tagger for building codes with one bi-directional LSTM trainable layer, utilized
BERT Cased Base pre-trained model and was trained 50 epochs. This model reached a
91.89% precision without error-driven transformational rules and a 95.11% precision with
error-driven transformational rules, which outperformed the 89.82% precision achieved

by the state-of-the-art POS taggers.

Author keywords: Automated compliance checking; Automated information extraction;
Natural language processing; Part-of-speech tagging; Automated construction
management systems; Deep learning.

1. Introduction

Efforts to automate code compliance checking started more than half a century ago when
Fenves (1966) developed decision tables to automatically check the design of steel
structures [7]. The success of compliance checking decision table inspired more
researches in this area. Examples include a computer-aided design (CAD) system for 2D
and 3D steel structure called STEEL-3D [8], an expert system for reinforcement concrete
design [9], a rule-based application for structure members [10], and a knowledge-based
system for multiple building codes [11]. More advanced code compliance checking
software was then developed. The Construction and Real Estate Network (CORENET)
by Singapore Building Construction Authority was capable of checking 3D industry
foundation classes (IFC) data model [12]. The Express Data Manager (EDM) Suite by
Jotne EPM Technology allowed code checking on Building Information Modeling (BIM)
data [13]. The BCAider by the Commonwealth Scientific and Industrial Research
Organisation (CSIRO) in Australia enabled automatic compliance checking against
Building Code of Australia (BCA) [14]. The Solibri Model Checker (SMC), a BIM-
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powered automated code compliance checking system, by Solibri achieved rule-based
code compliance checking by user-customized plugins [15]. Patlakas et al. developed a
BIM-based system to check code compliance of timber structure design automatically
[16]. Fang et al. developed a deep learning-based method to automatically check if a site
worker complies to code of their certification [17]. The combination of BIM and
automated code compliance checking systems increases the theoretical benefit of BIM in
the construction industry. However, according to a survey by Smits et al. (2017), the
actual benefit of implementing BIM in construction projects is still limited [18]. The
authors suggest that the narrow range of checkable codes of most recent automated code
compliance checking tools may limit the actual benefit of BIM. Even for the narrow range
of checkable codes, they are usually oversimplified. The oversimplified codes are not
enough to support the increased project complexity and creativity of designers and,

therefore, could negatively affect the benefit of adopting BIM for users and owners [19].

The narrow range of checkable codes also limit wide applications of these automated code
compliance checking systems. Extending the range of checkable building code
requirements emerges as an urgent need in the development of automated code
compliance checking systems. Natural Language Processing (NLP) powered by Part-of-
Speech (POS) tagging has been proposed to automate the building code requirements
extraction and, therefore, extend the range of checkable building codes of automated code
compliance checking systems and reduce the needed manual efforts in such extraction
[20-22]. NLP and deep learning have many applications in the Architecture, Engineering,
and Construction industry (AEC). For example, Fang et al. developed a text classification
method with deep learning to spot near misses in safety reports [23]. Zhong et al. used a
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deep learning method to classify building quality problems [24]. Trappey et al. used
attention mechanism to generate summary of engineering patents [25]. High performance
was achieved but POS tagging error was identified as one major source of error of the
whole system. Accurately POS-tagged building codes are desired to support such NLP-
based automated building code compliance checking. Existing generic POS taggers,

however, can not provide such high accuracy on processing building codes [26].

The authors are therefore proposing a new POS tagger that is tailored to building codes.
The intent of the study is to improve the accuracy of POS tagging on building codes.
Accurate POS tagging results are needed to support successful code requirements
processing for accurate automated code compliance checking. The proposed POS tagger
combines neural network model and error-driven transformational rules. Neural network
model and error-driven transformational rules together make the proposed POS tagger
outperformed the state of the art. The proposed POS tagger reached a 95.11% accuracy,

which is higher than the 89.82% achieved by the state of the art.

In practice, this POS tagger plays an important role in those NLP-based automated code
compliance checking system frameworks similar to [20] (Figure 1), and in NLP-based
automation systems in the AEC domain in general. This research can boost the accuracy
of the POS tagging therefore support automated building code compliance checking
systems and NLP-based systems in the AEC domain. Accurate POS tagging results of
building codes is vital to a high performance of the extraction of engineering knowledge
embedded in the building codes. The background automated code compliance checking

system framework in Figure 1 contains an automated regulatory information extraction
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component (which uses a POS tagger) that converts building code requirements to logic
clauses, an automated building design information extraction component that extracts
building design information from Building Information Models (BIMs), and an
automated reasoning component that outputs the code compliance report. The automated
regulatory information extraction component can use the proposed POS tagger, which is
illustrated in Figure 3. This system is fully automated from the end-user’s perspective.
The automated building code compliance checking system takes a rule-based approach to
extract information from building codes automatically. Although the POS tagger uses
neural network model which is probabilistic in training, the developed POS tagger as a
result of the training is deterministic. The weights of the neural network are fixed after
the training, leading to determinist results when applying the POS tagger. Therefore, with
a robust POS tagger and other well-performing components, the NLP-based automated
building code compliance checking system has a better chance to detect all
noncompliance cases in a building design without intervention from the user. Due to the
imperfect (i.e., less than 100%) precision and recall in the state-of-the-art NLP-based
building code compliance checking systems, some manual intervention will still be
needed to fix errors in the extraction results of embedded engineering knowledge in the
building codes. Such manual intervention is expected from the developers, not from end
users. In addition, the amount of manual efforts needed to fix automatic extraction errors
is minor comparing to those needed in manual extraction. In this paper, the authors
propose to boost the performance of NLP-based automated code compliance checking

systems by providing more accurate POS tagging results to such systems.
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Figure 1. An NLP-based Automated Building Code Compliance Checking System
Framework

The remainder of this paper is organized as follows. Section 2 explains technical details
of part-of-speech tagging, error-driven transformational rules, recurrent neural network,
and computing techniques to avoid overfitting, used in this research. Section 3 describes
the proposed POS tagger. Section 4 presents the experiment to test the performance of the
proposed POS tagger. Section 5 illustrates the result of the experiment. Finally, Sections
6, 7, 8 present the conclusion, limitation and contribution to the body of knowledge of

this research, respectively.



122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

2. Background
2.1 Part-of-Speech

A word’s POS category provides its syntactic information in a sentence [39]. In English,
there are eight main POS categories: (1) noun, (2) verb, (3) adjective, (4) adverb, (5)
pronoun, (6) preposition, (7) conjunction, and (8) interjection. POS taggers are systems
that automatically assign POS categories to words according to their contextual
information in a sentence [41]. POS taggers have a variety of applications in the AEC
domain. For example, Le et al. POS tagged construction contracts to identify missed
contract conditions from the perspective of contractors [43]. However, the reliance on
manual feature extraction and manual rule generation creates challenges in large scale
applications. Hassan and Le used POS tagging to spot contractual requirements from
construction contract documents [44]. However, the Support Vector Machines (SVM)
algorithm used to identify contractual requirements relies on manual feature engineering
and may raise the concern of overfitting. Zhou and El-Gohary utilized POS tagging
information to match design requirements in energy codes to their corresponding objects
in BIMs [45]. The matching process takes a four-step approach: First, POS tagging
information and other contextual information of design requirements and BIM objects are
collected; Second, the Word2vec algorithm calculates the vectors of BIM objects and
design requirements; Third, vector similarity algorithm calculates the vector similarity
between BIM objects and design requirements; Fourth, a match is claimed if the vector
similarity between a BIM object and a design requirement is higher than a predefined
threshold, which was set arbitrarily to obtain the highest precision and recall empirically.

In this four-step approach, errors could accumulate in each step, and the concern of
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overfitting also presents. Therefore, the authors suggest an end-to-end method that does
not rely on manually generated rules or features. Neural network models could meet the

above requirements [46].

In this research, the authors proposed an AEC domain specific POS tagger that combines
Recurrent Neural Network (RNN), pre-trained models, and error-driven transformational
rules. A simple deep learning model without man-made task specific features can
outperform most state-of-the-art non-deep learning models even with cherry-picked
features, in a wide range of NLP tasks such as part-of-speech tagging, chunking, named
entity recognition, and semantic role labeling [57]. For example, Marques and Lopes
(2001) utilized a simple feed-forward model to decrease the amount of data needed to
train a POS tagger [58]. Yu et al. (2017) used two Convolutional Neural Network (CNN)
models to capture morphological information of character-level n-grams and contextual
information of word-level n-grams, which outperformed simple feed-forward model [59].
Recent developments in deep learning indicated that RNN is the “to-go” solution for NLP
tasks [60]. Pre-trained models were pre-trained on a large body of text with unsupervised
tasks, such as, predicting the next word given all previous words and predict if two
sentences are from the same article [61]. The use of generally pre-trained models helped
boost the performance of domain specific NLP tasks in biology [62], finance, and law
[63]. It also reduced the amount of labeled data needed when applying deep learning in

domain specific tasks [64].
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2.2 Error-driven Transformational Rules

Error-driven transformational rules are introduced to boost POS taggers’ accuracy [26, 65].
The rules are designed to transform the machine-generated POS tag of a word to its human-
labeled gold standard. When the rule generation algorithm spots a difference between
machine-generated POS tags and the human-labeled gold standard, it records the difference
as an error and uses the context of the error (i.e., words and POS tags of words around the
word) to generate a rule to fix the error. The generation of rules is automated. Rules are
reusable once generated. Rules may have the risk to introduce new errors. The rule
generation algorithm controls this risk by dropping rules that have a high risk of introducing

CITOorS.

2.3 Recurrent Neural Network

Like any machine learning model, neural networks predict categories of given inputs. In
the context of POS tagging, neural networks predict POS categories of each word in a
given input text, according to the word itself and its context (Figure 2). Neural networks
learn a relationship between words and POS tags during their training and use this
relationship to predict POS tags of words during their application. Traditional neural
networks consider all words in a sentence to be independent from each other and do not
consider words surrounding them in this prediction task. In contrast, Recurrent Neural
Network (RNN) keeps a vector that represents other words in the sentence (which is called
hidden state) and considers them in the prediction task. RNN processes sequential
information by taking elements in the sequence one by one while maintaining a
representation of all information it has seen so far [60]. RNN is able to process sentences
with arbitrary length [66]. The way that RNN processes sequential information gives it
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the ability to capture semantic meaning of a word based on words before/after it in the
sentences [56]. For example, it is able to differentiate the meaning of the word “bank” in
the phrase “river bank™ and “blood bank”. The sequential nature of RNN makes it widely
adopted in many subfields of NLP, such as: (1) information extraction [67, 68], (2)
machine translation [69, 70], (3) speech recognition [71, 72], (4) POS tagging [73, 74],
and (5) sentiment analysis [75, 76]. There is also an RNN encoder-decoder model which
has a high accuracy in sequence-to-sequence tasks [77]. In this structure, the encoder is
an RNN model that converts a variable-length sequence to a fixed-length vector
representation and the decoder is another RNN model that converts the fixed-length
representation to a variable-length sequence. Neural network models are deterministic
when applied (i.e., in making predictions). One neural network model makes the same

prediction result with the same input.
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Figure 2. Example Application of a Neural Network POS Tagger

2.3.1. Simple RNN

A simple RNN keeps a hidden state that represents all previous words in the sentence.
Therefore, the hidden state allows the simple RNN to take into consideration all words
before the target word in POS tagging. A simple RNN contains an input layer x, a hidden
layer 4, and an output layer y [78]. The hidden layer has weight W}, and a bias vector by,.
The input layer has a weight W;. The output layer has a weight W, and a bias vector b,.
In time step ¢ of the training, the input to the RNN is denoted as x;, the hidden state is

denoted as h;, and the output is denoted as Y;. The hidden state at the time step 7 (i. e., h;)
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is the sum of: (a) the input of current step x;, multiples the weight of the input layer W;,
(b) the hidden state of the last time step h,_; multiplies its weight W}, and (c) the bias
vector of hidden layers by, after some non-linear transformation [Eq. (1)].

hy = f(Wixe + Wrhe_y + by) (D
The output at the time step ¢ (i.e.,Y;) is the sum of: the weights of output layer W,
multiples the hidden state at this time step h;, and the bias vector of output layer b, [Eq.
)]

Y, = g(Wohe + b,) (2)

In Egs. (1) and (2), f'and g are activation functions that perform non-linear transformations.
Some commonly used activation functions include sigmoid, Tanh, and Rectified Linear
Unit (ReLU) [79, 80].
Simple RNN suffers from the vanishing gradient problem [81]. The hidden state of a word
is influenced more by words near it than words far away. In other words, simple RNN does
not have a “long-term memory”. This problem makes simple RNN difficult to train and
hard to capture long-term dependencies in a sentence. The long-term dependencies between
words are important in POS tagging. Many variations of simple RNN were therefore

developed to solve this problem.

2.3.2. Long Short-Term Memory

Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) alleviates the
vanishing gradient problem by having a forget gate layer to decide which words to
“remember” and which words to “forget”. It has a cell state to keep long-term dependencies,

so it has “long-term memory”. The cell state allows LSTM-RNN to use long-term

12
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dependencies in POS tagging. LSTM-RNN [82] has an additional forget gate layer f to
decide which information to keep or abandon, and a cell state C to capture long-term
dependencies. The weight of the forget gate layer is Wy and its bias vector is by. The cell
state has a weight W, and a bias vector b.. LSTM-RNN also has an input layer x. The
input layer has a weight W; and a bias vector b;. The output layer has a weight W, and
a bias vector b,. In time step ¢ of the training, the input to the RNN is denoted as x;, the
hidden state is denoted as h;, the output is denoted as Y;, and the cell state is denoted as
C¢, the value to update is denoted as i;. Input to the neural network is first fed into the
forget gate layer. The forget gate layer generates a vector f; to represent the amount of
information to keep, and f; is calculated by Eq. (3):
fe = U(Wf * [he_1, xe] + bf) 3)
where o is the sigmoid function.
Then, the input layer calculates the candidate cell state by Eq. (4) and Eq. (5):
ir = o(W; * [he_q, xe] + by) (4)
Cr = tanh(W¢ * [he_y, x¢] + b) (5)
Then, the cell state C, is calculated by Eq. (6):
Ce=fexCoy +igxC (6)
After that, the output layer Y; and hidden state h, are calculated by Eq. (7) and Eq. (8),
respectively:
Yy = oW, * [hy_y, %] + by) (7
h; =Y, = tanh(C,) (8)
There is also a bi-directional variant of LSTM, which can capture information in a sequence

from both directions. Simple RNN and LSTM-RNN have one hidden state that represents
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all words before the target word. Bi-directional LSTM-RNN additionally has an extra
hidden state that represents all words after the target word. Therefore, simple RNN and
LSTM RNN predict the POS tag of the target word solely by words before it, whereas bi-
directional LSTM RNN predicts POS tag of the target word by the words both before and

after it.

2.3.3. Gated Recurrent Unit

Gated Recurrent Unit (GRU) [83] is another way to address the vanishing gradient problem.
It does not have a forget gate to control the flow of information, so it can access the entire
hidden state. It has an update gate U and a reset gate R. The weight of the update getis Wy,
the weight of the reset gate is Wy, and the weight of the output layer is W,. At time step
t, the cell state of the update gate, reset state, and the hidden state are U;, R;, and h;,

respectively. GRU is calculated using Egs. (9), (10), (11), and (12):

Ug = U(WU * Xe + Wy -1 * ht—l) C)]
Re=0(Wg*X; +Wgi_q *he_y) (10)
Rk, = tanh(W, + Ry * Wy c—1 * hy_q) (11)
hy=Ug*he_y + (1 —=Up) *h; (12)

GRU can take long-term dependencies of words into the POS tagging task by accessing
hidden states of every words in a sentence. There is also a bi-directional variant of GRU,

which can use words both before and after a target word to predict its POS category.
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2.3.4. Attention Mechanism

Attention mechanism can capture long-term dependencies with arbitrary lengths by
calculating attention scores between all words in two sequences and feed the attention
scores to a RNN [84]. Therefore, it does not suffer from the vanishing gradient problem.
LSTM RNN and GRU still suffer from the vanishing gradient problem when the
dependencies are long enough. The attention mechanism predicts the POS tag of a word
with its long-term dependencies. Attention mechanism shares the same encoder-decoder
structure with the encoder-decoder RNN. The structure of attention mechanism brings its
successful application in many sequence-to-sequence (Seq2Seq) tasks such as: (1) machine
translation [85], (2) question-and-answering [86], and (3) text entailment [87]. The
attention mechanism allows the decoder to access hidden states of the encoder to track back
the input sequence [88]. There are many variants of attention mechanisms. For example,
global attention focuses on all words in the input including each target word, while local
attention only focuses on words in a certain range [89]. Two-way attention allows bi-
directional attention between the source and target [87]. This property of two-way attention
makes it successful in non-sequence-to-sequence tasks as well, such as sentiment analysis

[90].

2.3.5. Transformer

Transformer has a similar encoder-decoder structure as the attention mechanism, but it does
not have an RNN [91]. Transformer, like attention mechanism, can capture dependencies

in any length. With fewer parameters than the attention mechanism, it is more resistant to
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overfitting. Therefore, transformer can make POS taggers more generalizable. The encoder
and decoder of the transformer are stacks of multi-head attention layers and feed-forward
layers with some add-and-normal layers. The multi-head attention is the concatenation of
multiple self-attention matrices. The multi-head attention is used to capture different
dependencies in a sentence. The first step to calculate the self-attention Z is to calculate:
the Query O, Key K, and Value J matrices with the embedding matrix X, the weight of

Query W, the weight of Key W), and the weight of Value Wy [Egs. (13) to (15)].

Q=Xx*W, (13)
K=X*W, (14)
V=X*W, (15)

Then, the self-attention matrix, or one head of the multi-head attention, is calculated by Eq.
(16):

Z = softmax (Q*—\/%T) % (16)

where dj, is the dimension of Key.
After that, multiple self-attention matrices are concatenated together to form a multi-head
attention matrix Z,,,,;+; [Eq. (17)]. The multi-head attention is then multiplied to a weight
matrix W, to getanew attention matrix Z,,,, thatcapturesinformation from all attention
heads [Eq. (18)]. W, is trained with the matrix Z,,,;;.
Zuei = (21 - Zy] (17)

Znew = Wo * Zmuei (18)
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315  2.3.6. BERT

316  Bidirectional Encoder Representations from Transformers (BERT) [61] is a language
317  representation model of the transformer. This model was pre-trained on the BooksCorpus
318  [92] and the English Wikipedia data. Through pre-training, BERT introduces knowledge
319  about general English into the POS tagger. Knowledge about general English is helpful to
320  increase the POS tagger’s performance on building codes, because these building codes are
321  written in English. BERT is trained to predict masked words in a sentence and decide if the
322  second sentence in a pair of sentences is actually the sentence after the selected sentence
323 in the training text or just a randomly selected sentence. The BERT model achieved the
324  state-of-the-art performance in 11 NLP tasks with fine-tuning. Information of the different
325  available versions of BERT is provided in Table 1. “Large” models have more layers, larger
326  hidden states, more heads, and more parameters than “base” models. The fine-tuning of
327  pre-trained models allows the neural network model to reach high accuracy on a small
328  dataset [93].

329 Table 1. Available Versions of BERT

Number Size of Number Number of
Cased Size of Hidden of Comments

Parameters
Layers  State Heads

Uncased Large 24 1024 16 340M Mask the same word.
Cased Large 24 1024 16 340M Mask the same word.
Uncased Base 12 768 12 110M
Uncased Large 24 1024 16 340M
Cased  Base 12 768 12 110M
Cased Large 24 1024 16 340M
Cased  Base 12 768 12 110M Trained on 104 Languages
Uncased Base 12 768 12 110M Trained on 102 Languages
N/A Base 12 768 12 110M Trained on Chinese
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3. Methodology

To develop a POS tagger tailored to building codes, the authors combined multiple state-
of-the-art techniques such as error-driven transformational rules, recurrent neural networks,
dropout layers, and pretrained models. At the core, the proposed POS tagger has two main
components, a neural network model and a set of error-driven transformational rules. The
neural network model initially predicts the POS tag of a word. The error-driven
transformational rules fix errors made by the neural network model. The neural network
model has a pre-trained model and multiple trainable layers (i.e., bi-directional LSTM-
RNN layer, GRU layer, dropout layer, and TimeDistribute layer). The pre-trained model
brings the general linguistic knowledge (i.e., English grammar) into the POS tagger. The
authors fine-tune the pre-trained model on a dataset of building codes to customize the pre-
trained model with AEC domain knowledge. The bi-directional LSTM-RNN layer and
GRU layer capture task-specific information (i.e., how building codes were drafted, and
construction terminologies). The dropout layer alleviates overfitting. The TimeDistribute
layer outputs the result. A POS tagger search strategy was proposed in this research to
efficiently search for a well-performing POS tagger configuration.

3.1. POS Tagger Architecture

The architecture of the proposed POS tagger is shown in Figure 3, which illustrates: (1) an
overview of the POS tagger components, and (2) how information flows between
components. The inputted building codes are firstly tagged by the neural network model
and afterwards processed by the error-driven transformational rules to fix errors made by

the neural network model.
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The neural network model has two parts, a pre-trained model and additional trainable layers.
The pre-trained model uses existing models published by other researchers or
commercial/non-profit organizations. These were trained on large bodies of corpus. Many
widely used pre-trained models can be inserted here such as Open AI GPT-2 [94], BERT
[84], and ELMO [95]. This design allows the comparison between different pre-trained
models in this context and the selection of the best-performing model. Weights of the pre-
trained model were locked, which made them untrainable in the current context. The
untrainable nature of the pre-trained models preserves the cross-domain, cross-application
and cross-task information they collected in the original training process. On top of the pre-
trained models, there are trainable layers. Weights of trainable layers will be updated in the
training process, allowing trainable layers to capture the domain-specific, application-
specific, and task-specific information in building code POS tagging. The architecture of
this model allows substitution and therefore comparison between different types of neural
network layers. The error-driven transformational rules are designed to correct errors of a

neural network model.
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Figure 3. The Architecture of the Proposed POS Tagger

3.2. POS Tagger Search Strategy

Grid search is the most comprehensive way to find the optimal combination of pre-trained
models, trainable layers and the number of training epochs by exhaustively searching every
possible combination. A global grid search is inefficient, however, because many
combinations that are unlikely optimal will be attempted. The authors developed a three-
step searching strategy (Figure 4) that can reduce the time to find the optimal combination
by ruling out combinations that have low probabilities of being optimal. The first step of
this search strategy is finding the best performing combination of epochs of training and
trainable layers by attempting all possible combinations of them while replacing the pre-
trained model with a random number embedding layer. Because the pre-trained model has
been replaced with a random number embedding layer to save training time, grid search is
made possible and efficient. An embedding layer converts text strings to vectors of

numbers based on the context of the text string and the nature of the embedding layer (e.g.,
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the algorithm used in the layer and the size of the output vector). The pre-trained models
will be used to instantiate the embedding layer later in the proposed method. A random
number embedding layer is a type of embedding layer that directly maps words to vectors
of the random numbers without considering the words’ context. It is much smaller and
simpler than the pre-trained models and requires significantly less time to train. In this step,
the authors intend to find a well performing combination of epochs of training and trainable
layers in a short timeframe, so the random number embedding layer is used to help achieve
that. In the second step, the random number embedding layer is substituted with different
pre-trained models in the locally best-performing combination of number of epochs and
trainable layers that was identified in the first step. This step is aimed to find a well
performing pre-trained model. In the last step, the authors increase the number of trainable
layers until the accuracy of the POS tagger stops increasing to identify the optimal number
of trainable layers. The selection of the hyper-parameters ceases when the authors cannot
increase the performance of the model further in a meaningful way or if the performance

is satisfactory.
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399 Figure 4. The Three-step Approach for Efficient Grid Search

400 4. Experiment
401  4.1. Textual Data

402 The proposed POS tagger was trained on the POS tagged building codes (PTBC) dataset
403  [96], a dataset that consists of 1,522 POS tagged sentences in chapters 5 and 10 of the 2015
404  International Building Code (IBC). In total, the PTBC dataset has 39,875 tokens. A token
405  1s the smallest unit in POS tagging, such as a word or a punctuation. For example, the word
406  “means” and the period are two tokens in the sentence “The means of egress shall have a
407  ceiling height of not less than 7 feet 6 inches.” which has 18 tokens in total. The split of
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the dataset into training, validation, and testing data is shown in Figure 5: 40% of the
dataset as training data, 10% of the dataset as validation data, and 50% of the dataset as
testing data. Furthermore, the first 90% of the testing data was further used as the training
data of the error-driven transformation rules, which was then tested on the rest of the data.
Seven state-of-the-art machine taggers were used to tag the textual data, including: (1) the
NLTK tagger [97], (2) the spaCy tagger [98], (3) the Standford coreNLP tagger [99], (4)
A Nearly-New Information Extraction System (ANNIE) tagger in the General Architecture
for Text Engineering (GATE) tool [37], (5) the Apache OpenNLP tagger [100], (6) the
TreeTagger [41], and (7) the RNNTagger [41, 101]. The seven machine taggers were
selected because of their high-accuracy, ease of use, and free availability. The most
commonly chosen POS tag of words by the machine taggers formed the machine-tagged
result. Five human annotators then independently POS tagged the textual data and the most
commonly seen tag was chosen for each word. All human annotators are proficient in
English and have sufficient background knowledge to understand building codes. POS tags
of words by the human annotators formed the gold standard. In both the machine-tagged
result and the gold standard, the most commonly chosen POS tag is selected by highest
count, meaning that the POS tag that is selected by the most machine taggers or human
annotators is selected. For example, if four machine taggers tag the word “doorways” as
Plural Noun (NNS), one machine tagger tags the word as 3rd person singular present verb
(VBZ). The most commonly chosen POS tag of the word “doorways” is selected to be
Plural Noun (NNS), in the machine-tagged result. If there is a tie, the authors break the tie
by selecting the tag they deem most appropriate. In the generation of the gold standard, the

authors developed a new labeling method in which human annotators address the
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differences between tagging results of different machine taggers. If all machine taggers tag
a word identically, human annotators do not need to change the tag by machine taggers.
For words that different machine taggers select different POS tags, human annotators are
presented with all tags assigned by machine taggers as options to select from. To account
for the risk that a word is not correctly tagged by any machine taggers, human annotators
are allowed to assign a POS tag outside the provided tags as well. Human annotators also
can change the POS tag of words that machine taggers reached a consensus on. Such
changes will need to be discussed and get consensus from all human annotators [102]. The
human annotators’ tagging results reached an initial inter-annotator agreement of 0.91,
which ensured the quality of the gold standard. The dataset contains the POS tags given by
all seven machine POS taggers and five human annotators, the most commonly chosen tag
by machine POS taggers and human annotators. In this experiment, the proposed POS
tagger was trained to tag the textual data as closely as possible to the most commonly
chosen tag by human annotators (Figure 6).
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the neural network mode
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Training data
of the error-driven
. transformaional rules
Testing data of

the neural Testing data

network model 0% of the error-driven
Training data of transformaional rules

the neural network model

Figure 5. Split of Training, Validation, and Testing Data
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4.2. Step 1: Select the Number of Epochs of Training and the Trainable Layer

There were two types of trainable layers studied in this research: (1) bidirectional LSTM,
and (2) bidirectional GRU. The number of epochs of training cannot be predicted before
training [ 103]. The authors decided to train the model 15 epochs and 50 epochs (arbitrarily
selected numbers) to analyze the impact of epochs of training on the performance of the
model. The trainable layers were layers of bidirectional LSTM or bidirectional GRU. The
size of trainable layers was 128. Between trainable layers, there were dropout layers with
a dropout rate of 0.4. The authors selected hyper-parameters such as epochs of training,
trainable layer size, and dropout rate based on their past experience in deep learning. Neural
network models with these hyper-parameters generally perform well on a wide range of
tasks. Although it is possible to do a more thorough search on hyper-parameters, it is out
of the scope of this paper. The random number embedding layer significantly saved the
training time and allowed grid research in this step. The authors attempted four possible
combinations (Figure 7): (1) one layer of bidirectional GRU model that was trained 15
epochs, (2) one layer of bidirectional GRU model that was trained 50 epochs, (3) one layer
of bidirectional LSTM model that was trained 15 epochs, and (4) one layer of bidirectional

LSTM model that was trained 50 epochs.
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Figure 7. Models Trained in Step 1

4.3. Step 2: Search a Well-performing Pre-trained Model

Model 4

Although there were multiple potentially well-performing pre-trained models available, the

authors selected BERT, which had achieved the state-of-the-art performance on multiple

NLP tasks with little fine-tuning needs [61]. The authors tested the eight available versions

of BERT: (1) BERT-Large, Uncased (Whole Word Masking), (2) BERT-Large, Cased

(Whole Word Masking), (3) BERT-Base, Uncased, (4) BERT-Large, Uncased, (5) BERT-

Base, Cased, (6) BERT-Large, Cased, (7) BERT-Base, Multilingual Cased, and (8) BERT-

Base, Multilingual Uncased. Therefore, eight models were trained in this step,

corresponding to the eight versions of BERT (Figure 8). All of them shared the same

trainable layers and were trained the same number of epochs.
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Figure 8. Models Trained in Step 2

4.4. Step 3: Search the Optimal Number of Trainable Layers

Model 12

Stacking multiple trainable layers could possibly achieve higher precision by capturing

more features in the textual data. However, too many trainable layers may lead to

overfitting. To find the optimal number of trainable layers, the authors decided to increase

the number of trainable layers and dropout layers until the precision stops increasing. There

were two models trained in this step: Model 13, which has two bidirectional LSTM layers

and Model 14, which has three bidirectional LSTM layers (Figure 9).
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5. Results and Discussion

To find a well-performing combination of epochs of training, pre-trained models, and
trainable layers to use in the POS tagger, the authors trained 14 models (Table 2). The best-
performing POS tagger had a combination of one bi-directional LSTM trainable layer,
BERT Cased Base pre-trained model, and was trained for 50 epochs. This model (Model
9 in Table 2) reached the highest accuracy after applying transformational rules. The
optimization of the deep learning component of this POS tagger is out of the scope of this

paper, which may be pursued in future research.
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Table 2. Summary of the Performance of Models

Model Before Applying Rules After Applying Rules

Precision Recall Fl1-score Precision Recall F1-score
1 39.02% 17.91% 19.88% 61.59% 51.94% 43.71%
2 89.67% 87.65% 88.14% 93.68% 93.78% 93.64%
3 36.45% 17.41% 20.37% 61.82% 49.93% 43.62%
4 90.15% 87.76% 88.34% 93.53% 93.44% 93.41%
5 90.57%  88.60% 88.87% 94.98% 94.99% 94.88%
6 91.06% 88.64% 89.01% 94.73% 94.75% 94.63%
7 90.40% 88.37% 88.68% 94.16% 94.32% 94.14%
8 89.29% 87.24% 87.60% 93.50% 93.70% 93.49%
9 91.89% 89.71% 90.06% 95.11% 95.42% 95.20%
10 91.49% 89.32% 89.78% 94.50% 94.70% 94.51%
11 89.70% 87.56% 87.80% 94.23% 94.56% 94.33%
12 87.84% 85.92% 86.12% 93.31% 93.03% 93.04%
13 91.81% 89.81% 90.19% 95.04% 95.32% 95.08%
14 91.43% 89.82% 90.07% 94.64% 94.89% 94.70%

5.1. Step 1 Result: Epochs of Training and Trainable Layers Combination

Figure 10 demonstrates the influence of the trainable layer and the epochs of training on
the accuracy of POS tagging. For both trainable layers, increasing the number of epochs
can increase the precision. However, when the number of epochs was 15, the precision of
the bi-directional LSTM model was lower than that of the bi-directional GRU model. When
the number of epochs was 50, the precision of the bi-directional LSTM surpassed that of

the bi-directional GRU model. This shows that the optimal number of epochs for different

pre-trained models could be different.
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Figure 10. Influence of Epochs of Training and Trainable Layers to Precision

5.2. Step 2 Result: The Best-performing Pre-trained Model

The precision, recall, and F1-score of models with different pre-trained models are shown
in Figure 11. All models trained in this step share the same trainable layer and the same
number of epochs of training (50). The BERT Base Cased model achieved the highest
precision, recall and F1-score. The average precision for models with cased models is 91.03%
and that for models with uncased models is 89.53% (Figure 11). It shows cased information
1s useful in the POS tagging of building codes. The average precision for models with large
models is 90.60% and that for models with base models (excluding multilingual models)
1s 91.15%. The two multilingual models were excluded in the comparison because there is
no large multilingual model and the current POS tagging task is not multilingual. It may be

counterintuitive because larger models generally achieve higher accuracy than smaller
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models. The authors suggest that more training data is needed to release the full potential

of large pre-trained models.
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Figure 11. Precision, Recall and F1-score of Models with Different Pre-trained Models
5.3. Step 3 Result: The Optimal Number of Trainable Layers
After the best-performing pre-trained model was identified, the authors started to identify
the optimal number of trainable layers. Result of this attempt is illustrated in Table 3. The
model with one layer of bidirectional LSTM reached the highest precision. Precision of
models decreases as the number of layers increases. The authors concluded that more data
is needed to leverage the power of additional trainable layers.

Table 3. Number of Trainable Layers vs. Precision

Layers of Trainable Layers Precision
1 91.49%
2 89.79%
3 87.84%

5.3.1 Effectiveness of Error-driven Transformational Rules.

This research also confirmed the effectiveness of error-driven transformational rules
(Figure 12). The average precision after applying transformational rules is 94.57%.

Although the precision before applying transformational rules varied with pre-trained
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models and trainable layers, the precision after applying the transformational rules all
increased. Moreover, POS taggers with higher pre-rule-application precision will also have
a higher post-rule-application precision. The transformational rules increase the precision
of POS tagger by a margin of 4.02%. The average training accuracy and testing accuracy
of all models that use pre-trained models are 95.45% and 94.57%, respectively. The
average training accuracy of the models was only 0.88% higher than their average testing
accuracy (Figure 13), which alleviated overfitting concerns. The authors also compared the
performance of the proposed tagger against the performance of other state-of the-art POS

taggers on the PTBC dataset [102] (Figure 14).
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5.3.2. Effectiveness of GRU

The bi-directional GRU model without BERT can achieve a precision that is comparable
to bi-directional LSTM model that is enhanced by BERT. A significant amount of training
time can be saved if there is no pre-trained model to fine-tune. The hardware requirement
to fine-tune pre-trained models is also significantly higher than that of the random
embedding layer. Directly using the bi-directional GRU model can save training time and
cut hardware investment while the compromise on the precision of the POS tagger is within

an acceptable range.

5.3.3 Tagging Example

To validate this POS tagger, the authors compared the POS tagging result of this POS
tagger to a baseline tagger which is a state-of-the-art generic POS tagger. As an example,
the baseline tagger incorrectly labeled “horizonal” as a noun. This error may lead to
incorrect extraction of embedded engineering knowledge in building codes. In contrast, the
proposed POS tagger correctly labeled the word as an adjective. The automated code

compliance checking system has a better chance to correctly extract the embedded
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574  engineering knowledge in the building codes by the proposed POS tagger, compared to

575  state-of-the-art generic POS taggers.

576 5.3.4 Impact of Data Split Scenarios

577  To analyze the impact of different training/testing data split scenarios on the precision,
578  recall, and f1-score, the authors reported the precision, recall, and f1-score of the proposed
579  POS tagger on two other training/testing split methods. The second training/testing split
580  method is using: (1) 60% of the entire dataset as the training dataset of the neural network
581  model, (2) 20% of the entire dataset as the validation dataset of the neural network model,
582  (3) 20% of the entire dataset as the testing dataset of the neural network model, (4) 80% of
583  the entire dataset as the training dataset of the error-driven transformational rules, and (5)
584  20% of the entire dataset as the testing dataset of the error-driven transformational rules
585  (Table 3). The third training/testing split method is using: (1) 60% of the entire dataset as
586  the training dataset of the neural network model, (2) 20% of the entire dataset as the
587  wvalidation dataset of the neural network model, (3) 20% of the entre dataset as the testing
588  dataset of the neural network model, (4) 90% of the testing dataset of the neural network
589  model as the training dataset of error-driven transformational rules, and (5) 10% of the
590  testing dataset of the neural network model as the testing dataset of error-driven
591  transformational rules (Table 4). Results in all training/testing split scenarios showed
592 consistency in: (1) the improvements of performance when using error-driven

593  transformational rules, (2) the improvement of performance over the state of the art.

4
285 Table 4. Results of Second Training/Testing Split Method
Model Before Applying Rules After Applying Rules
Precision Recall Fl-score Precision Recall F1-score
1 91.15% 89.39% 89.95% 93.10% 92.80% 92.82%
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2 92.86% 91.21% 91.72% 94.82% 94.60% 94.64%
3 77.80% 72.13% 71.64% 83.58% 85.35% 83.37%
4 92.98% 91.20% 91.76% 94.62% 94.25% 94.31%
5 91.97% 90.30% 90.76% 96.04% 95.84% 95.56%
6 92.26% 90.28% 90.84% 96.25% 96.22% 95.99%
7 91.93% 90.32% 90.70% 96.00% 95.94% 95.65%
8 90.49% 89.28% 89.49% 95.85% 95.67% 95.37%
9 93.18% 91.82% 92.18% 96.43% 96.35% 96.08%
10 92.58% 91.17% 91.51% 96.31% 96.27% 96.00%
11 91.70% 89.90% 90.40% 95.79% 95.77% 95.44%
12 89.56% 87.93% 88.28% 95.04% 95.02% 94.70%
13 93.02% 91.65% 92.01% 96.40% 96.22% 95.94%
14 92.90% 91.77% 92.00% 96.83% 96.62% 96.28%
Table 5. Results of Third Training/Testing Split Method
Before Applying Rules After Applying Rules

Model Precision Recall Fl-score  Precision Recall Fl-score
1 91.17% 89.86% 90.23% 92.48% 92.32% 92.25%
2 92.83% 90.59% 91.27% 93.60% 93.19% 93.32%
3 77.91% 69.31% 69.47% 80.81% 80.24% 78.11%
4 92.88% 90.65% 91.34% 93.25% 92.97% 93.03%
5 92.07% 90.49% 90.90% 95.11% 94.71% 94.85%
6 92.06% 90.01% 90.61% 94.61% 94.27% 94.32%
7 91.62% 90.17% 90.43% 93.18% 92.62% 92.79%
8 90.79% 89.28% 89.61% 93.87% 93.50% 93.59%
9 93.23% 91.47% 91.96% 96.12% 95.70% 95.84%
10 92.25% 90.82% 91.20% 94.73% 94.49% 94.55%
11 91.90% 90.14% 90.51% 95.26% 94.93% 95.06%
12 90.31% 88.79% 89.29% 93.07% 92.62% 92.70%
13 92.83% 91.12% 91.49% 95.99% 95.48% 95.65%
14 92.73% 91.30% 91.60% 95.51% 95.26% 95.32%

6. Contributions to the Body of Knowledge

This research has contributions in both theory and practice. Theoretically, it has two main

contributions to the body of knowledge. First, it provides a hybrid deep-learning and rule-

based method to enhance performance of POS taggers on domain specific texts. The
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combination of deep learning neural network models and error-fixing transformational
rules makes the proposed POS tagger outperform the state-of-the-art POS taggers with
limited amount of training data. Many current state-of-the-art POS taggers were trained on
the Penn Treebank (PTB) corpora which has 2,499 articles (each article contains tens, if
not hundreds, of sentences). This POS tagger was trained on a dataset of only 1,522
sentences. Second, this research shows the potential of deep learning in automated building
code information extraction. The promising results of deep learning on the POS tagging of
building codes paved the way to more applications of deep learning in automated building
code compliance checking and engineering tasks in the AEC domain in general. In practice,
the impact of this work on the AEC domain could be profound. It provides a more accurate
POS tagger for building codes comparing to the state of the art, which will help automated
code compliance checking systems to check more building code requirements
automatically. The extension of checkable building code requirements could bring
automated code compliance checking systems one step closer to a wide real-world
deployment.

7. Limitations and Future Work

One main limitation of this work is acknowledged: the POS tagger still is not error-free. In
spite of its improvement over the state of the art, this POS tagger may still not be accurate
enough to support an error-free extraction of embedded engineering knowledge in building
codes. Errors in POS tagging may have negative effect on the performance of NLP-based
automated building code compliance checking systems that leverage it. The authors suggest

that research to further increase the accuracy of POS taggers is still needed. The authors
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also plan to develop automated code compliance checking systems that have the robustness

to tolerate a small amount of POS tagging errors.

8. Conclusion

The ability to provide accurate POS tagging results of building codes paves the way to
automated regulatory information extraction and widens the possible range of applicable
code requirements of automated code compliance checking systems. The authors proposed
a new POS tagger to support such systems. This is the first POS tagger that is tailored to
building codes. The POS tagger gained information on general English by incorporating
pre-trained deep learning models and captured AEC domain specific knowledge by fine-
tuning on a domain-specific corpus. The POS tagger directly maps inputted words to POS
tags without feature engineering. This nature of deep learning allows future domain experts
to enhance the performance of this tagger by directly leveraging more training data. The
experiment showed that the bi-directional GRU model without pre-trained models can
reach a high precision that is comparable to the precision of the bi-directional LSTM
models with pre-trained models. Using bi-directional GRU model can save time and cost
to train a POS tagger, without significantly compromising precision. Although more
training data may help unleash the full potential of pre-trained models and further improve
performance, the authors were able to achieve a 95.11% precision using one bi-directional
LSTM trainable layer and BERT Cased Base pre-trained model in combination with
error-driven transformational rules, which significantly increased over the state-of-the-art.
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