10

11

12

13

14

15

16

17

18

19

20

This article was published in Advanced Engineering Informatics, 47(January 2021), Xue,
X., and Zhang, J., “Part-of-speech tagging of building codes empowered by deep learning

and transformational rules.” 101235, Copyright Elsevier (2021).
https://doi.org/10.1016/1.2€1.2020.101235

Part-of-Speech Tagging of Building Codes Empowered by Deep Learning and

Transformational Rules

Xiaorui Xue, S.M.ASCE !; Jiansong Zhang, Ph.D., A.M.ASCE ?

Abstract

Automated building code compliance checking systems were under development for
many years. However, the excessive amount of human inputs needed to convert building
codes from natural language to computer understandable formats severely limited their
range of applicable code requirements. To address that, automated code compliance
checking systems need to enable an automated regulatory rules conversion. Accurate Part-
of-Speech (POS) tagging of building code texts is crucial to this conversion. Previous
experiments showed that the state-of-the-art generic POS taggers do not perform well on
building codes. In view of that, the authors are proposing a new POS tagger tailored to
building codes. It utilizes deep learning neural network model and error-driven
transformational rules. The neural network model contains a pre-trained model and one
or more trainable neural layers. The pre-trained model was fine-tuned on Part-of-Speech
Tagged Building Codes (PTBC), a POS tagged building codes dataset. The fine-tuning of
pre-trained model allows the proposed POS tagger to reach high precision with a small
amount of available training data. Error-driven transformational rules were used to boost
performance further by fixing errors made by the neural network model in the tagged

building code. Through experimental testing, the authors found a well-performing POS

! Automation and Intelligent Construction (AutoIC) Lab, School of Construction Management
Technology, Purdue University, West Lafayette, IN, 47907, PH (765) 430-2009. email:
xue39@purdue.edu.

2 Automation and Intelligent Construction (AutoIC) Lab, School of Construction Management
Technology, Purdue University, West Lafayette, IN, 47907, PH (765) 494-1574; FAX (765) 496-
2246. (corresponding author) email: zhan3062@purdue.edu.

https://www.sciencedirect.com/science/article/abs/pii/S1474034620302044
https://www.sciencedirect.com/science/article/abs/pii/S1474034620302044
https://doi.org/10.1016/j.aei.2020.101235

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

tagger for building codes with one bi-directional LSTM trainable layer, utilized
BERT Cased Base pre-trained model and was trained 50 epochs. This model reached a
91.89% precision without error-driven transformational rules and a 95.11% precision with
error-driven transformational rules, which outperformed the 89.82% precision achieved

by the state-of-the-art POS taggers.

Author keywords: Automated compliance checking; Automated information extraction;
Natural language processing; Part-of-speech tagging; Automated construction
management systems; Deep learning.

1. Introduction

Efforts to automate code compliance checking started more than half a century ago when
Fenves (1966) developed decision tables to automatically check the design of steel
structures [7]. The success of compliance checking decision table inspired more
researches in this area. Examples include a computer-aided design (CAD) system for 2D
and 3D steel structure called STEEL-3D [8], an expert system for reinforcement concrete
design [9], a rule-based application for structure members [10], and a knowledge-based
system for multiple building codes [11]. More advanced code compliance checking
software was then developed. The Construction and Real Estate Network (CORENET)
by Singapore Building Construction Authority was capable of checking 3D industry
foundation classes (IFC) data model [12]. The Express Data Manager (EDM) Suite by
Jotne EPM Technology allowed code checking on Building Information Modeling (BIM)
data [13]. The BCAider by the Commonwealth Scientific and Industrial Research
Organisation (CSIRO) in Australia enabled automatic compliance checking against
Building Code of Australia (BCA) [14]. The Solibri Model Checker (SMC), a BIM-

2

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

powered automated code compliance checking system, by Solibri achieved rule-based
code compliance checking by user-customized plugins [15]. Patlakas et al. developed a
BIM-based system to check code compliance of timber structure design automatically
[16]. Fang et al. developed a deep learning-based method to automatically check if a site
worker complies to code of their certification [17]. The combination of BIM and
automated code compliance checking systems increases the theoretical benefit of BIM in
the construction industry. However, according to a survey by Smits et al. (2017), the
actual benefit of implementing BIM in construction projects is still limited [18]. The
authors suggest that the narrow range of checkable codes of most recent automated code
compliance checking tools may limit the actual benefit of BIM. Even for the narrow range
of checkable codes, they are usually oversimplified. The oversimplified codes are not
enough to support the increased project complexity and creativity of designers and,

therefore, could negatively affect the benefit of adopting BIM for users and owners [19].

The narrow range of checkable codes also limit wide applications of these automated code
compliance checking systems. Extending the range of checkable building code
requirements emerges as an urgent need in the development of automated code
compliance checking systems. Natural Language Processing (NLP) powered by Part-of-
Speech (POS) tagging has been proposed to automate the building code requirements
extraction and, therefore, extend the range of checkable building codes of automated code
compliance checking systems and reduce the needed manual efforts in such extraction
[20-22]. NLP and deep learning have many applications in the Architecture, Engineering,
and Construction industry (AEC). For example, Fang et al. developed a text classification
method with deep learning to spot near misses in safety reports [23]. Zhong et al. used a

3

67

68

69

70

71

72

73

74

75

76

(

78

79

80

81

82

83

84

85

86

87

88

deep learning method to classify building quality problems [24]. Trappey et al. used
attention mechanism to generate summary of engineering patents [25]. High performance
was achieved but POS tagging error was identified as one major source of error of the
whole system. Accurately POS-tagged building codes are desired to support such NLP-
based automated building code compliance checking. Existing generic POS taggers,

however, can not provide such high accuracy on processing building codes [26].

The authors are therefore proposing a new POS tagger that is tailored to building codes.
The intent of the study is to improve the accuracy of POS tagging on building codes.
Accurate POS tagging results are needed to support successful code requirements
processing for accurate automated code compliance checking. The proposed POS tagger
combines neural network model and error-driven transformational rules. Neural network
model and error-driven transformational rules together make the proposed POS tagger
outperformed the state of the art. The proposed POS tagger reached a 95.11% accuracy,

which is higher than the 89.82% achieved by the state of the art.

In practice, this POS tagger plays an important role in those NLP-based automated code
compliance checking system frameworks similar to [20] (Figure 1), and in NLP-based
automation systems in the AEC domain in general. This research can boost the accuracy
of the POS tagging therefore support automated building code compliance checking
systems and NLP-based systems in the AEC domain. Accurate POS tagging results of
building codes is vital to a high performance of the extraction of engineering knowledge
embedded in the building codes. The background automated code compliance checking

system framework in Figure 1 contains an automated regulatory information extraction

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

component (which uses a POS tagger) that converts building code requirements to logic
clauses, an automated building design information extraction component that extracts
building design information from Building Information Models (BIMs), and an
automated reasoning component that outputs the code compliance report. The automated
regulatory information extraction component can use the proposed POS tagger, which is
illustrated in Figure 3. This system is fully automated from the end-user’s perspective.
The automated building code compliance checking system takes a rule-based approach to
extract information from building codes automatically. Although the POS tagger uses
neural network model which is probabilistic in training, the developed POS tagger as a
result of the training is deterministic. The weights of the neural network are fixed after
the training, leading to determinist results when applying the POS tagger. Therefore, with
a robust POS tagger and other well-performing components, the NLP-based automated
building code compliance checking system has a better chance to detect all
noncompliance cases in a building design without intervention from the user. Due to the
imperfect (i.e., less than 100%) precision and recall in the state-of-the-art NLP-based
building code compliance checking systems, some manual intervention will still be
needed to fix errors in the extraction results of embedded engineering knowledge in the
building codes. Such manual intervention is expected from the developers, not from end
users. In addition, the amount of manual efforts needed to fix automatic extraction errors
is minor comparing to those needed in manual extraction. In this paper, the authors
propose to boost the performance of NLP-based automated code compliance checking

systems by providing more accurate POS tagging results to such systems.

111

112
113
114
115
116
117
118
119
120

121

Building Code

Y

The POS Tagger
(Can Use the Proposed POS tagger, which
illustrated in Figure 3)

Automated Building Design Information POS Tagged Building
Extraction Component Code
Building Design Automated Regulatory Information
Facts Extraction Component
Logic Clauses

Building Information
el

l

Automated Reasoing

Code Compliance
Report

Figure 1. An NLP-based Automated Building Code Compliance Checking System
Framework

The remainder of this paper is organized as follows. Section 2 explains technical details
of part-of-speech tagging, error-driven transformational rules, recurrent neural network,
and computing techniques to avoid overfitting, used in this research. Section 3 describes
the proposed POS tagger. Section 4 presents the experiment to test the performance of the
proposed POS tagger. Section 5 illustrates the result of the experiment. Finally, Sections
6, 7, 8 present the conclusion, limitation and contribution to the body of knowledge of

this research, respectively.

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

2. Background
2.1 Part-of-Speech

A word’s POS category provides its syntactic information in a sentence [39]. In English,
there are eight main POS categories: (1) noun, (2) verb, (3) adjective, (4) adverb, (5)
pronoun, (6) preposition, (7) conjunction, and (8) interjection. POS taggers are systems
that automatically assign POS categories to words according to their contextual
information in a sentence [41]. POS taggers have a variety of applications in the AEC
domain. For example, Le et al. POS tagged construction contracts to identify missed
contract conditions from the perspective of contractors [43]. However, the reliance on
manual feature extraction and manual rule generation creates challenges in large scale
applications. Hassan and Le used POS tagging to spot contractual requirements from
construction contract documents [44]. However, the Support Vector Machines (SVM)
algorithm used to identify contractual requirements relies on manual feature engineering
and may raise the concern of overfitting. Zhou and El-Gohary utilized POS tagging
information to match design requirements in energy codes to their corresponding objects
in BIMs [45]. The matching process takes a four-step approach: First, POS tagging
information and other contextual information of design requirements and BIM objects are
collected; Second, the Word2vec algorithm calculates the vectors of BIM objects and
design requirements; Third, vector similarity algorithm calculates the vector similarity
between BIM objects and design requirements; Fourth, a match is claimed if the vector
similarity between a BIM object and a design requirement is higher than a predefined
threshold, which was set arbitrarily to obtain the highest precision and recall empirically.

In this four-step approach, errors could accumulate in each step, and the concern of

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

overfitting also presents. Therefore, the authors suggest an end-to-end method that does
not rely on manually generated rules or features. Neural network models could meet the

above requirements [46].

In this research, the authors proposed an AEC domain specific POS tagger that combines
Recurrent Neural Network (RNN), pre-trained models, and error-driven transformational
rules. A simple deep learning model without man-made task specific features can
outperform most state-of-the-art non-deep learning models even with cherry-picked
features, in a wide range of NLP tasks such as part-of-speech tagging, chunking, named
entity recognition, and semantic role labeling [57]. For example, Marques and Lopes
(2001) utilized a simple feed-forward model to decrease the amount of data needed to
train a POS tagger [58]. Yu et al. (2017) used two Convolutional Neural Network (CNN)
models to capture morphological information of character-level n-grams and contextual
information of word-level n-grams, which outperformed simple feed-forward model [59].
Recent developments in deep learning indicated that RNN is the “to-go” solution for NLP
tasks [60]. Pre-trained models were pre-trained on a large body of text with unsupervised
tasks, such as, predicting the next word given all previous words and predict if two
sentences are from the same article [61]. The use of generally pre-trained models helped
boost the performance of domain specific NLP tasks in biology [62], finance, and law
[63]. It also reduced the amount of labeled data needed when applying deep learning in

domain specific tasks [64].

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

2.2 Error-driven Transformational Rules

Error-driven transformational rules are introduced to boost POS taggers’ accuracy [26, 65].
The rules are designed to transform the machine-generated POS tag of a word to its human-
labeled gold standard. When the rule generation algorithm spots a difference between
machine-generated POS tags and the human-labeled gold standard, it records the difference
as an error and uses the context of the error (i.e., words and POS tags of words around the
word) to generate a rule to fix the error. The generation of rules is automated. Rules are
reusable once generated. Rules may have the risk to introduce new errors. The rule
generation algorithm controls this risk by dropping rules that have a high risk of introducing

CITOorS.

2.3 Recurrent Neural Network

Like any machine learning model, neural networks predict categories of given inputs. In
the context of POS tagging, neural networks predict POS categories of each word in a
given input text, according to the word itself and its context (Figure 2). Neural networks
learn a relationship between words and POS tags during their training and use this
relationship to predict POS tags of words during their application. Traditional neural
networks consider all words in a sentence to be independent from each other and do not
consider words surrounding them in this prediction task. In contrast, Recurrent Neural
Network (RNN) keeps a vector that represents other words in the sentence (which is called
hidden state) and considers them in the prediction task. RNN processes sequential
information by taking elements in the sequence one by one while maintaining a
representation of all information it has seen so far [60]. RNN is able to process sentences
with arbitrary length [66]. The way that RNN processes sequential information gives it

9

188

189

190

191

192

193

194

195

196

197

198

199

the ability to capture semantic meaning of a word based on words before/after it in the
sentences [56]. For example, it is able to differentiate the meaning of the word “bank” in
the phrase “river bank™ and “blood bank”. The sequential nature of RNN makes it widely
adopted in many subfields of NLP, such as: (1) information extraction [67, 68], (2)
machine translation [69, 70], (3) speech recognition [71, 72], (4) POS tagging [73, 74],
and (5) sentiment analysis [75, 76]. There is also an RNN encoder-decoder model which
has a high accuracy in sequence-to-sequence tasks [77]. In this structure, the encoder is
an RNN model that converts a variable-length sequence to a fixed-length vector
representation and the decoder is another RNN model that converts the fixed-length
representation to a variable-length sequence. Neural network models are deterministic
when applied (i.e., in making predictions). One neural network model makes the same

prediction result with the same input.

10

200

201

202

203

204

205

206

207

208

209

The
walking
surface

of
treads
and
landings
of
a
stairway
shall
not
be

S | oped —» Nerual Network [~ Adjective

Context

steeper
than
one
unit
vertical
in
48
units
Target horizontal
in
any
direction

Context

Figure 2. Example Application of a Neural Network POS Tagger

2.3.1. Simple RNN

A simple RNN keeps a hidden state that represents all previous words in the sentence.
Therefore, the hidden state allows the simple RNN to take into consideration all words
before the target word in POS tagging. A simple RNN contains an input layer x, a hidden
layer 4, and an output layer y [78]. The hidden layer has weight W}, and a bias vector by,.
The input layer has a weight W;. The output layer has a weight W, and a bias vector b,.
In time step ¢ of the training, the input to the RNN is denoted as x;, the hidden state is

denoted as h;, and the output is denoted as Y;. The hidden state at the time step 7 (i. e., h;)

11

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

is the sum of: (a) the input of current step x;, multiples the weight of the input layer W;,
(b) the hidden state of the last time step h,_; multiplies its weight W}, and (c) the bias
vector of hidden layers by, after some non-linear transformation [Eq. (1)].

hy = f(Wixe + Wrhe_y + by) (D
The output at the time step ¢ (i.e.,Y;) is the sum of: the weights of output layer W,
multiples the hidden state at this time step h;, and the bias vector of output layer b, [Eq.
)]

Y, = g(Wohe + b,) (2)

In Egs. (1) and (2), f'and g are activation functions that perform non-linear transformations.
Some commonly used activation functions include sigmoid, Tanh, and Rectified Linear
Unit (ReLU) [79, 80].
Simple RNN suffers from the vanishing gradient problem [81]. The hidden state of a word
is influenced more by words near it than words far away. In other words, simple RNN does
not have a “long-term memory”. This problem makes simple RNN difficult to train and
hard to capture long-term dependencies in a sentence. The long-term dependencies between
words are important in POS tagging. Many variations of simple RNN were therefore

developed to solve this problem.

2.3.2. Long Short-Term Memory

Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) alleviates the
vanishing gradient problem by having a forget gate layer to decide which words to
“remember” and which words to “forget”. It has a cell state to keep long-term dependencies,

so it has “long-term memory”. The cell state allows LSTM-RNN to use long-term

12

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

dependencies in POS tagging. LSTM-RNN [82] has an additional forget gate layer f to
decide which information to keep or abandon, and a cell state C to capture long-term
dependencies. The weight of the forget gate layer is Wy and its bias vector is by. The cell
state has a weight W, and a bias vector b.. LSTM-RNN also has an input layer x. The
input layer has a weight W; and a bias vector b;. The output layer has a weight W, and
a bias vector b,. In time step ¢ of the training, the input to the RNN is denoted as x;, the
hidden state is denoted as h;, the output is denoted as Y;, and the cell state is denoted as
C¢, the value to update is denoted as i;. Input to the neural network is first fed into the
forget gate layer. The forget gate layer generates a vector f; to represent the amount of
information to keep, and f; is calculated by Eq. (3):
fe = U(Wf * [he_1, xe] + bf) 3)
where o is the sigmoid function.
Then, the input layer calculates the candidate cell state by Eq. (4) and Eq. (5):
ir = o(W; * [he_q, xe] + by) (4)
Cr = tanh(W¢ * [he_y, x¢] + b) (5)
Then, the cell state C, is calculated by Eq. (6):
Ce=fexCoy +igxC (6)
After that, the output layer Y; and hidden state h, are calculated by Eq. (7) and Eq. (8),
respectively:
Yy = oW, * [hy_y, %] + by) (7
h; =Y, = tanh(C,) (8)
There is also a bi-directional variant of LSTM, which can capture information in a sequence

from both directions. Simple RNN and LSTM-RNN have one hidden state that represents

13

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

all words before the target word. Bi-directional LSTM-RNN additionally has an extra
hidden state that represents all words after the target word. Therefore, simple RNN and
LSTM RNN predict the POS tag of the target word solely by words before it, whereas bi-
directional LSTM RNN predicts POS tag of the target word by the words both before and

after it.

2.3.3. Gated Recurrent Unit

Gated Recurrent Unit (GRU) [83] is another way to address the vanishing gradient problem.
It does not have a forget gate to control the flow of information, so it can access the entire
hidden state. It has an update gate U and a reset gate R. The weight of the update getis Wy,
the weight of the reset gate is Wy, and the weight of the output layer is W,. At time step
t, the cell state of the update gate, reset state, and the hidden state are U;, R;, and h;,

respectively. GRU is calculated using Egs. (9), (10), (11), and (12):

Ug = U(WU * Xe + Wy -1 * ht—l) C)]
Re=0(Wg*X; +Wgi_q *he_y) (10)
Rk, = tanh(W, + Ry * Wy c—1 * hy_q) (11)
hy=Ug*he_y + (1 —=Up) *h; (12)

GRU can take long-term dependencies of words into the POS tagging task by accessing
hidden states of every words in a sentence. There is also a bi-directional variant of GRU,

which can use words both before and after a target word to predict its POS category.

14

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

2.3.4. Attention Mechanism

Attention mechanism can capture long-term dependencies with arbitrary lengths by
calculating attention scores between all words in two sequences and feed the attention
scores to a RNN [84]. Therefore, it does not suffer from the vanishing gradient problem.
LSTM RNN and GRU still suffer from the vanishing gradient problem when the
dependencies are long enough. The attention mechanism predicts the POS tag of a word
with its long-term dependencies. Attention mechanism shares the same encoder-decoder
structure with the encoder-decoder RNN. The structure of attention mechanism brings its
successful application in many sequence-to-sequence (Seq2Seq) tasks such as: (1) machine
translation [85], (2) question-and-answering [86], and (3) text entailment [87]. The
attention mechanism allows the decoder to access hidden states of the encoder to track back
the input sequence [88]. There are many variants of attention mechanisms. For example,
global attention focuses on all words in the input including each target word, while local
attention only focuses on words in a certain range [89]. Two-way attention allows bi-
directional attention between the source and target [87]. This property of two-way attention
makes it successful in non-sequence-to-sequence tasks as well, such as sentiment analysis

[90].

2.3.5. Transformer

Transformer has a similar encoder-decoder structure as the attention mechanism, but it does
not have an RNN [91]. Transformer, like attention mechanism, can capture dependencies

in any length. With fewer parameters than the attention mechanism, it is more resistant to

15

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

overfitting. Therefore, transformer can make POS taggers more generalizable. The encoder
and decoder of the transformer are stacks of multi-head attention layers and feed-forward
layers with some add-and-normal layers. The multi-head attention is the concatenation of
multiple self-attention matrices. The multi-head attention is used to capture different
dependencies in a sentence. The first step to calculate the self-attention Z is to calculate:
the Query O, Key K, and Value J matrices with the embedding matrix X, the weight of

Query W, the weight of Key W), and the weight of Value Wy [Egs. (13) to (15)].

Q=Xx*W, (13)
K=X*W, (14)
V=X*W, (15)

Then, the self-attention matrix, or one head of the multi-head attention, is calculated by Eq.
(16):

Z = softmax (Q*—\/%T) % (16)

where dj, is the dimension of Key.
After that, multiple self-attention matrices are concatenated together to form a multi-head
attention matrix Z,,,,;+; [Eq. (17)]. The multi-head attention is then multiplied to a weight
matrix W, to getanew attention matrix Z,,,, thatcapturesinformation from all attention
heads [Eq. (18)]. W, is trained with the matrix Z,,,;;.
Zuei = (21 - Zy] (17)

Znew = Wo * Zmuei (18)

16

315 2.3.6. BERT

316 Bidirectional Encoder Representations from Transformers (BERT) [61] is a language
317 representation model of the transformer. This model was pre-trained on the BooksCorpus
318 [92] and the English Wikipedia data. Through pre-training, BERT introduces knowledge
319 about general English into the POS tagger. Knowledge about general English is helpful to
320 increase the POS tagger’s performance on building codes, because these building codes are
321 written in English. BERT is trained to predict masked words in a sentence and decide if the
322 second sentence in a pair of sentences is actually the sentence after the selected sentence
323 in the training text or just a randomly selected sentence. The BERT model achieved the
324 state-of-the-art performance in 11 NLP tasks with fine-tuning. Information of the different
325 available versions of BERT is provided in Table 1. “Large” models have more layers, larger
326 hidden states, more heads, and more parameters than “base” models. The fine-tuning of
327 pre-trained models allows the neural network model to reach high accuracy on a small
328 dataset [93].

329 Table 1. Available Versions of BERT

Number Size of Number Number of
Cased Size of Hidden of Comments

Parameters
Layers State Heads

Uncased Large 24 1024 16 340M Mask the same word.
Cased Large 24 1024 16 340M Mask the same word.
Uncased Base 12 768 12 110M
Uncased Large 24 1024 16 340M
Cased Base 12 768 12 110M
Cased Large 24 1024 16 340M
Cased Base 12 768 12 110M Trained on 104 Languages
Uncased Base 12 768 12 110M Trained on 102 Languages
N/A Base 12 768 12 110M Trained on Chinese

17

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

3. Methodology

To develop a POS tagger tailored to building codes, the authors combined multiple state-
of-the-art techniques such as error-driven transformational rules, recurrent neural networks,
dropout layers, and pretrained models. At the core, the proposed POS tagger has two main
components, a neural network model and a set of error-driven transformational rules. The
neural network model initially predicts the POS tag of a word. The error-driven
transformational rules fix errors made by the neural network model. The neural network
model has a pre-trained model and multiple trainable layers (i.e., bi-directional LSTM-
RNN layer, GRU layer, dropout layer, and TimeDistribute layer). The pre-trained model
brings the general linguistic knowledge (i.e., English grammar) into the POS tagger. The
authors fine-tune the pre-trained model on a dataset of building codes to customize the pre-
trained model with AEC domain knowledge. The bi-directional LSTM-RNN layer and
GRU layer capture task-specific information (i.e., how building codes were drafted, and
construction terminologies). The dropout layer alleviates overfitting. The TimeDistribute
layer outputs the result. A POS tagger search strategy was proposed in this research to
efficiently search for a well-performing POS tagger configuration.

3.1. POS Tagger Architecture

The architecture of the proposed POS tagger is shown in Figure 3, which illustrates: (1) an
overview of the POS tagger components, and (2) how information flows between
components. The inputted building codes are firstly tagged by the neural network model
and afterwards processed by the error-driven transformational rules to fix errors made by

the neural network model.

18

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

The neural network model has two parts, a pre-trained model and additional trainable layers.
The pre-trained model uses existing models published by other researchers or
commercial/non-profit organizations. These were trained on large bodies of corpus. Many
widely used pre-trained models can be inserted here such as Open AI GPT-2 [94], BERT
[84], and ELMO [95]. This design allows the comparison between different pre-trained
models in this context and the selection of the best-performing model. Weights of the pre-
trained model were locked, which made them untrainable in the current context. The
untrainable nature of the pre-trained models preserves the cross-domain, cross-application
and cross-task information they collected in the original training process. On top of the pre-
trained models, there are trainable layers. Weights of trainable layers will be updated in the
training process, allowing trainable layers to capture the domain-specific, application-
specific, and task-specific information in building code POS tagging. The architecture of
this model allows substitution and therefore comparison between different types of neural
network layers. The error-driven transformational rules are designed to correct errors of a

neural network model.

19

367
368

369
370

371

372

373

374

375

376

377

378

379

380

381

382

/ Untagged Text /

v

Neural Network Model

Pre-trained Model

Trainable Layer

Dropout Layer

TimeDistribute Layer

Intermediate Tagging
Results

Error-driven Transformational Rules
/Final Tagging Hesults/

Figure 3. The Architecture of the Proposed POS Tagger

3.2. POS Tagger Search Strategy

Grid search is the most comprehensive way to find the optimal combination of pre-trained
models, trainable layers and the number of training epochs by exhaustively searching every
possible combination. A global grid search is inefficient, however, because many
combinations that are unlikely optimal will be attempted. The authors developed a three-
step searching strategy (Figure 4) that can reduce the time to find the optimal combination
by ruling out combinations that have low probabilities of being optimal. The first step of
this search strategy is finding the best performing combination of epochs of training and
trainable layers by attempting all possible combinations of them while replacing the pre-
trained model with a random number embedding layer. Because the pre-trained model has
been replaced with a random number embedding layer to save training time, grid search is
made possible and efficient. An embedding layer converts text strings to vectors of

numbers based on the context of the text string and the nature of the embedding layer (e.g.,

20

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

the algorithm used in the layer and the size of the output vector). The pre-trained models
will be used to instantiate the embedding layer later in the proposed method. A random
number embedding layer is a type of embedding layer that directly maps words to vectors
of the random numbers without considering the words’ context. It is much smaller and
simpler than the pre-trained models and requires significantly less time to train. In this step,
the authors intend to find a well performing combination of epochs of training and trainable
layers in a short timeframe, so the random number embedding layer is used to help achieve
that. In the second step, the random number embedding layer is substituted with different
pre-trained models in the locally best-performing combination of number of epochs and
trainable layers that was identified in the first step. This step is aimed to find a well
performing pre-trained model. In the last step, the authors increase the number of trainable
layers until the accuracy of the POS tagger stops increasing to identify the optimal number
of trainable layers. The selection of the hyper-parameters ceases when the authors cannot
increase the performance of the model further in a meaningful way or if the performance

is satisfactory.

21

Start

Y

Step 1:
Select the number of epochs
of training and the trainable
layer.

A 4

Step 2:
Find the best performing
pre-trained model.

Y

Step 3:
Identify the optimal number
of trainable layers.

End

398
399 Figure 4. The Three-step Approach for Efficient Grid Search

400 4. Experiment
401 4.1. Textual Data

402 The proposed POS tagger was trained on the POS tagged building codes (PTBC) dataset
403 [96], a dataset that consists of 1,522 POS tagged sentences in chapters 5 and 10 of the 2015
404 International Building Code (IBC). In total, the PTBC dataset has 39,875 tokens. A token
405 1s the smallest unit in POS tagging, such as a word or a punctuation. For example, the word
406 “means” and the period are two tokens in the sentence “The means of egress shall have a
407 ceiling height of not less than 7 feet 6 inches.” which has 18 tokens in total. The split of

22

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

the dataset into training, validation, and testing data is shown in Figure 5: 40% of the
dataset as training data, 10% of the dataset as validation data, and 50% of the dataset as
testing data. Furthermore, the first 90% of the testing data was further used as the training
data of the error-driven transformation rules, which was then tested on the rest of the data.
Seven state-of-the-art machine taggers were used to tag the textual data, including: (1) the
NLTK tagger [97], (2) the spaCy tagger [98], (3) the Standford coreNLP tagger [99], (4)
A Nearly-New Information Extraction System (ANNIE) tagger in the General Architecture
for Text Engineering (GATE) tool [37], (5) the Apache OpenNLP tagger [100], (6) the
TreeTagger [41], and (7) the RNNTagger [41, 101]. The seven machine taggers were
selected because of their high-accuracy, ease of use, and free availability. The most
commonly chosen POS tag of words by the machine taggers formed the machine-tagged
result. Five human annotators then independently POS tagged the textual data and the most
commonly seen tag was chosen for each word. All human annotators are proficient in
English and have sufficient background knowledge to understand building codes. POS tags
of words by the human annotators formed the gold standard. In both the machine-tagged
result and the gold standard, the most commonly chosen POS tag is selected by highest
count, meaning that the POS tag that is selected by the most machine taggers or human
annotators is selected. For example, if four machine taggers tag the word “doorways” as
Plural Noun (NNS), one machine tagger tags the word as 3rd person singular present verb
(VBZ). The most commonly chosen POS tag of the word “doorways” is selected to be
Plural Noun (NNS), in the machine-tagged result. If there is a tie, the authors break the tie
by selecting the tag they deem most appropriate. In the generation of the gold standard, the

authors developed a new labeling method in which human annotators address the

23

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445
446
447
448

differences between tagging results of different machine taggers. If all machine taggers tag
a word identically, human annotators do not need to change the tag by machine taggers.
For words that different machine taggers select different POS tags, human annotators are
presented with all tags assigned by machine taggers as options to select from. To account
for the risk that a word is not correctly tagged by any machine taggers, human annotators
are allowed to assign a POS tag outside the provided tags as well. Human annotators also
can change the POS tag of words that machine taggers reached a consensus on. Such
changes will need to be discussed and get consensus from all human annotators [102]. The
human annotators’ tagging results reached an initial inter-annotator agreement of 0.91,
which ensured the quality of the gold standard. The dataset contains the POS tags given by
all seven machine POS taggers and five human annotators, the most commonly chosen tag
by machine POS taggers and human annotators. In this experiment, the proposed POS
tagger was trained to tag the textual data as closely as possible to the most commonly
chosen tag by human annotators (Figure 6).

Validation data of
the neural network mode

10%

Training data
of the error-driven
. transformaional rules
Testing data of

the neural Testing data

network model 0% of the error-driven
Training data of transformaional rules

the neural network model

Figure 5. Split of Training, Validation, and Testing Data

24

449
450

451
452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

POS tagger

Tagging

As close as possible

POS tag by machine POS tag by human
tagger annotator

Word >

Figure 6. POS Tagger Goal

4.2. Step 1: Select the Number of Epochs of Training and the Trainable Layer

There were two types of trainable layers studied in this research: (1) bidirectional LSTM,
and (2) bidirectional GRU. The number of epochs of training cannot be predicted before
training [103]. The authors decided to train the model 15 epochs and 50 epochs (arbitrarily
selected numbers) to analyze the impact of epochs of training on the performance of the
model. The trainable layers were layers of bidirectional LSTM or bidirectional GRU. The
size of trainable layers was 128. Between trainable layers, there were dropout layers with
a dropout rate of 0.4. The authors selected hyper-parameters such as epochs of training,
trainable layer size, and dropout rate based on their past experience in deep learning. Neural
network models with these hyper-parameters generally perform well on a wide range of
tasks. Although it is possible to do a more thorough search on hyper-parameters, it is out
of the scope of this paper. The random number embedding layer significantly saved the
training time and allowed grid research in this step. The authors attempted four possible
combinations (Figure 7): (1) one layer of bidirectional GRU model that was trained 15
epochs, (2) one layer of bidirectional GRU model that was trained 50 epochs, (3) one layer
of bidirectional LSTM model that was trained 15 epochs, and (4) one layer of bidirectional

LSTM model that was trained 50 epochs.

25

469
470

471
472

473

474

475

476

477

478

479

480

481

Neural Network Model

Neural Network Model

Neural Network Model

Neural Network Model

| Random Number Emvedding Layer |

| Random Number Embedding Layer |

| Random Number Embedding Layer |

| Random Number Embedding Layer |

Bidirectional GRU
Epoches of Training = 15
Size = 128

Bidirectional GRU
Epoches of Training = 50
Size =128

Bidirectional LSTM
Epoches of Training = 15
Size =128

Bidirectional LSTM
Epoches of Training = 50
Size =128

Dropout Layer
Dropout Rate = 0.4

Dropout Layer
Dropout Rate = 0.4

Dropout Layer
Dropout Rate = 0.4

Dropout Layer
Dropout Rate = 0.4

| TimeDistribute Layer ‘

I TimeDistribute Layer I

I TimeDistribute Layer I

[TimeDistribute Layer |

’ Error-driven Transformational Rules

I Error-driven Transformational Rules

’ Error-driven Transformational Rules

\ Error-driven Transformational Rules

Model 1

Model 2

Model 3

Figure 7. Models Trained in Step 1

4.3. Step 2: Search a Well-performing Pre-trained Model

Model 4

Although there were multiple potentially well-performing pre-trained models available, the

authors selected BERT, which had achieved the state-of-the-art performance on multiple

NLP tasks with little fine-tuning needs [61]. The authors tested the eight available versions

of BERT: (1) BERT-Large, Uncased (Whole Word Masking), (2) BERT-Large, Cased

(Whole Word Masking), (3) BERT-Base, Uncased, (4) BERT-Large, Uncased, (5) BERT-

Base, Cased, (6) BERT-Large, Cased, (7) BERT-Base, Multilingual Cased, and (8) BERT-

Base, Multilingual Uncased. Therefore, eight models were trained in this step,

corresponding to the eight versions of BERT (Figure 8). All of them shared the same

trainable layers and were trained the same number of epochs.

26

482
483

484
485

486

487

488

489

490

491

Neural Network Model

Neural Network Model

Neural Network Model

Neural Network Model

BERT-Large, Uncased (Whole Word
Masking)

BERT-Large, Cased (Whole Word
Masking)

‘ BERT-Base, Uncased ‘

‘ BERT-Large, Uncased ‘

Bidirectional LSTM
Epoches of Training = 50
Size = 128

Bidirectional LSTM
Epoches of Training = 50
Size = 128

Bidirectional LSTM
Epoches of Training = 50
Size =128

Bidirectional LSTM
Epoches of Training = 50
Size =128

Dropout Layer
Dropout Rate = 0.4

Dropout Layer
Dropout Rate = 0.4

Dropout Layer
Dropout Rate = 0.4

Dropout Layer
Dropout Rate = 0.4

[TimeDistribute Layer |

I TimeDistribute Layer ‘

‘ TimeDistribute Layer ‘

| TimeDistribute Layer }

| Error-driven Transformational Rules |

| Error-driven Transformational Rules |

| Error-driven Transformational Rules |

‘ Error-driven Transformational Rules |

Model 5

Model 6

Model 7

Model 8

Neural Network Model

Neural Network Model

Neural Network Model

Neural Network Model

‘ BERT-Base, Cased |

| BERT-Large, Cased ‘

‘ BERT-Base, Multilingual Cased ‘

| BERT-Base, Multiingual Uncased ‘

Bidirectional LSTM
Epoches of Training = 50
Size =128

Bidirectional LSTM
Epoches of Training = 50
Size =128

Bidirectional LSTM
Epoches of Training = 50
Size =128

Bidirectional LSTM
Epoches of Training = 50
Size =128

Dropout Layer
Dropout Rate = 0.4

Dropout Layer
Dropout Rate = 0.4

Dropout Layer
Dropout Rate = 0.4

Dropout Layer
Dropout Rate =0.4

‘ TimeDistribute Layer |

| TimeDistribute Layer ‘

‘ TimeDistribute Layer ‘

| TimeDistribute Layer ‘

| Error-driven Transformational Rules |

| Error-driven Transformational Rules |

| Error-driven Transformational Rules |

‘ Error-driven Transformational Rules |

Model 9

Model 10

Model 11

Figure 8. Models Trained in Step 2

4.4. Step 3: Search the Optimal Number of Trainable Layers

Model 12

Stacking multiple trainable layers could possibly achieve higher precision by capturing

more features in the textual data. However, too many trainable layers may lead to

overfitting. To find the optimal number of trainable layers, the authors decided to increase

the number of trainable layers and dropout layers until the precision stops increasing. There

were two models trained in this step: Model 13, which has two bidirectional LSTM layers

and Model 14, which has three bidirectional LSTM layers (Figure 9).

27

492
493

494
495

496

497

498

499

500

501

502

503

Neural Network Model

BERT-Base, Cased

Bidirectional LSTM
Epoches of Training = 50
Size =128

Dropout Layer
Dropout Rate = 0.4

Bidirectional LSTM
Epoches of Training = 50
Size =128

Dropout Layer
Dropout Rate = 0.4

TimeDistribute Layer

Error-driven Transformational Rules

Model 13

Neural Network Model

BERT-Base, Cased

Bidirectional LSTM
Epoches of Training = 50
Size =128

Dropout Layer
Dropout Rate = 0.4

Bidirectional LSTM
Epoches of Training = 50
Size =128

Dropout Layer
Dropout Rate = 0.4

Bidirectional LSTM
Epoches of Training = 50
Size =128

Dropout Layer
Dropout Rate = 0.4

TimeDistribute Layer

Error-driven Transformational Rules

Model 14

Figure 9. Two Models Trained in Step 3

5. Results and Discussion

To find a well-performing combination of epochs of training, pre-trained models, and
trainable layers to use in the POS tagger, the authors trained 14 models (Table 2). The best-
performing POS tagger had a combination of one bi-directional LSTM trainable layer,
BERT Cased Base pre-trained model, and was trained for 50 epochs. This model (Model
9 in Table 2) reached the highest accuracy after applying transformational rules. The
optimization of the deep learning component of this POS tagger is out of the scope of this

paper, which may be pursued in future research.

28

504

505

506

507

508

509

510

511

512

Table 2. Summary of the Performance of Models

Model Before Applying Rules After Applying Rules

Precision Recall Fl1-score Precision Recall F1-score
1 39.02% 17.91% 19.88% 61.59% 51.94% 43.71%
2 89.67% 87.65% 88.14% 93.68% 93.78% 93.64%
3 36.45% 17.41% 20.37% 61.82% 49.93% 43.62%
4 90.15% 87.76% 88.34% 93.53% 93.44% 93.41%
5 90.57% 88.60% 88.87% 94.98% 94.99% 94.88%
6 91.06% 88.64% 89.01% 94.73% 94.75% 94.63%
7 90.40% 88.37% 88.68% 94.16% 94.32% 94.14%
8 89.29% 87.24% 87.60% 93.50% 93.70% 93.49%
9 91.89% 89.71% 90.06% 95.11% 95.42% 95.20%
10 91.49% 89.32% 89.78% 94.50% 94.70% 94.51%
11 89.70% 87.56% 87.80% 94.23% 94.56% 94.33%
12 87.84% 85.92% 86.12% 93.31% 93.03% 93.04%
13 91.81% 89.81% 90.19% 95.04% 95.32% 95.08%
14 91.43% 89.82% 90.07% 94.64% 94.89% 94.70%

5.1. Step 1 Result: Epochs of Training and Trainable Layers Combination

Figure 10 demonstrates the influence of the trainable layer and the epochs of training on
the accuracy of POS tagging. For both trainable layers, increasing the number of epochs
can increase the precision. However, when the number of epochs was 15, the precision of
the bi-directional LSTM model was lower than that of the bi-directional GRU model. When
the number of epochs was 50, the precision of the bi-directional LSTM surpassed that of

the bi-directional GRU model. This shows that the optimal number of epochs for different

pre-trained models could be different.

29

513
514

515

516

517

518

519

520

521

522

523

524

525

526

15
80.00%

70.00%
BIGRU - 39.02%

g

0

@]

60.00% 5

0

<

o

@

- 50.00% 3

-]

o

Q

&L
BiLSTM - 36.45% 90.15% - 40.00%
- 30.00%

Figure 10. Influence of Epochs of Training and Trainable Layers to Precision

5.2. Step 2 Result: The Best-performing Pre-trained Model

The precision, recall, and F1-score of models with different pre-trained models are shown
in Figure 11. All models trained in this step share the same trainable layer and the same
number of epochs of training (50). The BERT Base Cased model achieved the highest
precision, recall and F1-score. The average precision for models with cased models is 91.03%
and that for models with uncased models is 89.53% (Figure 11). It shows cased information
1s useful in the POS tagging of building codes. The average precision for models with large
models is 90.60% and that for models with base models (excluding multilingual models)
1s 91.15%. The two multilingual models were excluded in the comparison because there is
no large multilingual model and the current POS tagging task is not multilingual. It may be

counterintuitive because larger models generally achieve higher accuracy than smaller

30

527

528

529

530
531
532

533

534

535

536

537

538

539

540

541

542

models. The authors suggest that more training data is needed to release the full potential

of large pre-trained models.

100.0%

Emm Precision
W Recall

N Fi-score
95.0%

o
=
=

3

Precision [Percentage]
&
(=]

80.0%

75.0%

70.0%

Model

Figure 11. Precision, Recall and F1-score of Models with Different Pre-trained Models
5.3. Step 3 Result: The Optimal Number of Trainable Layers
After the best-performing pre-trained model was identified, the authors started to identify
the optimal number of trainable layers. Result of this attempt is illustrated in Table 3. The
model with one layer of bidirectional LSTM reached the highest precision. Precision of
models decreases as the number of layers increases. The authors concluded that more data
is needed to leverage the power of additional trainable layers.

Table 3. Number of Trainable Layers vs. Precision

Layers of Trainable Layers Precision
1 91.49%
2 89.79%
3 87.84%

5.3.1 Effectiveness of Error-driven Transformational Rules.

This research also confirmed the effectiveness of error-driven transformational rules
(Figure 12). The average precision after applying transformational rules is 94.57%.

Although the precision before applying transformational rules varied with pre-trained

31

543

544

545

546

547

548

549

550

551

552
553

554
0959

models and trainable layers, the precision after applying the transformational rules all
increased. Moreover, POS taggers with higher pre-rule-application precision will also have
a higher post-rule-application precision. The transformational rules increase the precision
of POS tagger by a margin of 4.02%. The average training accuracy and testing accuracy
of all models that use pre-trained models are 95.45% and 94.57%, respectively. The
average training accuracy of the models was only 0.88% higher than their average testing
accuracy (Figure 13), which alleviated overfitting concerns. The authors also compared the
performance of the proposed tagger against the performance of other state-of the-art POS

taggers on the PTBC dataset [102] (Figure 14).

120%

Emm Before applying rules
N After applying rules
3 i

g o - g i & g°
100% & T o F & o g o & b 5 S o
p (";‘n\y o pqg o £ o q?,\n e \._3‘5 & 55 o o of o ‘3-& g g,@ﬁ &

@
g
Ed

Precision [Percentage]
=23

»
=1
£

20%

5 [7 8 9 10 1 12 13 14
Model

Figure 12: Precision of Each Model Before and After Applying Transformational Rules

120%

B Training dataset
B Testing datasst

100%

o g0 g o ; ; S S g e ; A £ '
& cgﬁ‘” P & o £ e g b o] & ~ g i go e o N S
€ . A L I i o A) & * % b
&P LA @ g g g Ealr ‘9_@6’ @@' g &g
%
%
5
- I I I I I I I I I I
5 [7 5 9 10 1 12 13 14

Model

o
2
b

Precision [Percentage]
2

ES
a
]

Figure 13: Training and Testing Accuracy of Models

32

556
557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

120%

BN Precision

1007 95.11%

88.97% 08.97% 89.26% B9.82% I

? D
4(4, n /V'V/@ an, o, aey, 5
o, %, agge %05,
Ve »

G
e - il 7;:,-

Precision [Percentage]
g

.
g

a\g G.ao
g2 o
sfl’(p o ecr
%o o,
Ty Ger e,

POS tagger

Figure 14. Comparison with State-of-the-art POS Taggers

5.3.2. Effectiveness of GRU

The bi-directional GRU model without BERT can achieve a precision that is comparable
to bi-directional LSTM model that is enhanced by BERT. A significant amount of training
time can be saved if there is no pre-trained model to fine-tune. The hardware requirement
to fine-tune pre-trained models is also significantly higher than that of the random
embedding layer. Directly using the bi-directional GRU model can save training time and
cut hardware investment while the compromise on the precision of the POS tagger is within

an acceptable range.

5.3.3 Tagging Example

To validate this POS tagger, the authors compared the POS tagging result of this POS
tagger to a baseline tagger which is a state-of-the-art generic POS tagger. As an example,
the baseline tagger incorrectly labeled “horizonal” as a noun. This error may lead to
incorrect extraction of embedded engineering knowledge in building codes. In contrast, the
proposed POS tagger correctly labeled the word as an adjective. The automated code

compliance checking system has a better chance to correctly extract the embedded

33

574 engineering knowledge in the building codes by the proposed POS tagger, compared to

575 state-of-the-art generic POS taggers.

576 5.3.4 Impact of Data Split Scenarios

577 To analyze the impact of different training/testing data split scenarios on the precision,
578 recall, and f1-score, the authors reported the precision, recall, and f1-score of the proposed
579 POS tagger on two other training/testing split methods. The second training/testing split
580 method is using: (1) 60% of the entire dataset as the training dataset of the neural network
581 model, (2) 20% of the entire dataset as the validation dataset of the neural network model,
582 (3) 20% of the entire dataset as the testing dataset of the neural network model, (4) 80% of
583 the entire dataset as the training dataset of the error-driven transformational rules, and (5)
584 20% of the entire dataset as the testing dataset of the error-driven transformational rules
585 (Table 3). The third training/testing split method is using: (1) 60% of the entire dataset as
586 the training dataset of the neural network model, (2) 20% of the entire dataset as the
587 wvalidation dataset of the neural network model, (3) 20% of the entre dataset as the testing
588 dataset of the neural network model, (4) 90% of the testing dataset of the neural network
589 model as the training dataset of error-driven transformational rules, and (5) 10% of the
590 testing dataset of the neural network model as the testing dataset of error-driven
591 transformational rules (Table 4). Results in all training/testing split scenarios showed
592 consistency in: (1) the improvements of performance when using error-driven

593 transformational rules, (2) the improvement of performance over the state of the art.

4
285 Table 4. Results of Second Training/Testing Split Method
Model Before Applying Rules After Applying Rules
Precision Recall Fl-score Precision Recall F1-score
1 91.15% 89.39% 89.95% 93.10% 92.80% 92.82%

34

596
597
598

599

600

601

602

603

2 92.86% 91.21% 91.72% 94.82% 94.60% 94.64%
3 77.80% 72.13% 71.64% 83.58% 85.35% 83.37%
4 92.98% 91.20% 91.76% 94.62% 94.25% 94.31%
5 91.97% 90.30% 90.76% 96.04% 95.84% 95.56%
6 92.26% 90.28% 90.84% 96.25% 96.22% 95.99%
7 91.93% 90.32% 90.70% 96.00% 95.94% 95.65%
8 90.49% 89.28% 89.49% 95.85% 95.67% 95.37%
9 93.18% 91.82% 92.18% 96.43% 96.35% 96.08%
10 92.58% 91.17% 91.51% 96.31% 96.27% 96.00%
11 91.70% 89.90% 90.40% 95.79% 95.77% 95.44%
12 89.56% 87.93% 88.28% 95.04% 95.02% 94.70%
13 93.02% 91.65% 92.01% 96.40% 96.22% 95.94%
14 92.90% 91.77% 92.00% 96.83% 96.62% 96.28%
Table 5. Results of Third Training/Testing Split Method
Before Applying Rules After Applying Rules

Model Precision Recall Fl-score Precision Recall Fl-score
1 91.17% 89.86% 90.23% 92.48% 92.32% 92.25%
2 92.83% 90.59% 91.27% 93.60% 93.19% 93.32%
3 77.91% 69.31% 69.47% 80.81% 80.24% 78.11%
4 92.88% 90.65% 91.34% 93.25% 92.97% 93.03%
5 92.07% 90.49% 90.90% 95.11% 94.71% 94.85%
6 92.06% 90.01% 90.61% 94.61% 94.27% 94.32%
7 91.62% 90.17% 90.43% 93.18% 92.62% 92.79%
8 90.79% 89.28% 89.61% 93.87% 93.50% 93.59%
9 93.23% 91.47% 91.96% 96.12% 95.70% 95.84%
10 92.25% 90.82% 91.20% 94.73% 94.49% 94.55%
11 91.90% 90.14% 90.51% 95.26% 94.93% 95.06%
12 90.31% 88.79% 89.29% 93.07% 92.62% 92.70%
13 92.83% 91.12% 91.49% 95.99% 95.48% 95.65%
14 92.73% 91.30% 91.60% 95.51% 95.26% 95.32%

6. Contributions to the Body of Knowledge

This research has contributions in both theory and practice. Theoretically, it has two main

contributions to the body of knowledge. First, it provides a hybrid deep-learning and rule-

based method to enhance performance of POS taggers on domain specific texts. The

35

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

combination of deep learning neural network models and error-fixing transformational
rules makes the proposed POS tagger outperform the state-of-the-art POS taggers with
limited amount of training data. Many current state-of-the-art POS taggers were trained on
the Penn Treebank (PTB) corpora which has 2,499 articles (each article contains tens, if
not hundreds, of sentences). This POS tagger was trained on a dataset of only 1,522
sentences. Second, this research shows the potential of deep learning in automated building
code information extraction. The promising results of deep learning on the POS tagging of
building codes paved the way to more applications of deep learning in automated building
code compliance checking and engineering tasks in the AEC domain in general. In practice,
the impact of this work on the AEC domain could be profound. It provides a more accurate
POS tagger for building codes comparing to the state of the art, which will help automated
code compliance checking systems to check more building code requirements
automatically. The extension of checkable building code requirements could bring
automated code compliance checking systems one step closer to a wide real-world
deployment.

7. Limitations and Future Work

One main limitation of this work is acknowledged: the POS tagger still is not error-free. In
spite of its improvement over the state of the art, this POS tagger may still not be accurate
enough to support an error-free extraction of embedded engineering knowledge in building
codes. Errors in POS tagging may have negative effect on the performance of NLP-based
automated building code compliance checking systems that leverage it. The authors suggest

that research to further increase the accuracy of POS taggers is still needed. The authors

36

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

also plan to develop automated code compliance checking systems that have the robustness

to tolerate a small amount of POS tagging errors.

8. Conclusion

The ability to provide accurate POS tagging results of building codes paves the way to
automated regulatory information extraction and widens the possible range of applicable
code requirements of automated code compliance checking systems. The authors proposed
a new POS tagger to support such systems. This is the first POS tagger that is tailored to
building codes. The POS tagger gained information on general English by incorporating
pre-trained deep learning models and captured AEC domain specific knowledge by fine-
tuning on a domain-specific corpus. The POS tagger directly maps inputted words to POS
tags without feature engineering. This nature of deep learning allows future domain experts
to enhance the performance of this tagger by directly leveraging more training data. The
experiment showed that the bi-directional GRU model without pre-trained models can
reach a high precision that is comparable to the precision of the bi-directional LSTM
models with pre-trained models. Using bi-directional GRU model can save time and cost
to train a POS tagger, without significantly compromising precision. Although more
training data may help unleash the full potential of pre-trained models and further improve
performance, the authors were able to achieve a 95.11% precision using one bi-directional
LSTM trainable layer and BERT Cased Base pre-trained model in combination with
error-driven transformational rules, which significantly increased over the state-of-the-art.

9. Acknowledgement

The authors would like to thank the National Science Foundation (NSF). This material is

based on work supported by the NSF under Grant No. 1827733. Any opinions, findings,

37

649 and conclusions or recommendations expressed in this material are those of the author and
650 do not necessarily reflect the views of the NSF.

651 10. Reference

652 [1] Indiana Department of Homeland Security, Codes, Standards and Other
653 Rules, 2020, 2020.

654 [2] Upcodes, International Building Code 2015 (IBC 2015), 2020.

655 [3] C.o. Chicago, Average Time for Permit Issuance, 2020.

656 [4] City of Chicago, Permit Fee Calculator, 2020.

657 [5] S. Moon, G. Lee, S. Chi, H. Oh, Automatic Review of Construction
658 Specifications Using Natural Language Processing, (2019).

659 [6] N.0. Nawari, Generalized Adaptive Framework for Computerizing the
660 Building Design Review Process, Journal of Architectural Engineering, 26
661 (2020) 04019023.

662 [7] S.J. Fenves, Tabular decision logic for structural design, Journal
663 of the Structural Division, 92 (1966) 473-490.

664 [8] C.I. Pesquera, S.L. Hanna, J.F. Abel, Advanced graphical CAD system
665 for 3D steel frames, Computer aided design in civil engineering, ASCE,
666 1984, pp. 83-91.

667 [9] V.E. Saouma, S.M. Doshi, M. Pace, Architecture of an expert-system-
668 based code—compliance checker, Engineering Applications of Artificial
669 Intelligence, 2 (1989) 49-56.

670 [10] P.M. Evans, Rule-based applications for checking standards

671 compliance of structural members, Building and Environment, 25 (1990)
672 235-240.

673 [11] P. Fazio, C. Bédard, K. Gowri, Knowledge - Based System Development
674 Tools for Processing Design Specifications, Computer - Aided Civil and
675 Infrastructure Engineering, 3 (1988) 333-344.

676 [12] L. Khemlani, CORENET e-PlanCheck: Singapore’ s automated code

677 checking system, AECbytes, October, (2005).

678 [13] Q. Yang, IFC-compliant design information modelling and sharing,
679 Journal of Information Technology in Construction (ITcon), 8 (2003) 1-
680 14.

681 [14] L. Ding, R. Drogemuller, M. Rosenman, D. Marchant, J. Gero,

682 Automating code checking for building designs—DesignCheck, (2006).

683 [15] C. EFastman, J.-m. Lee, Y.-s. Jeong, J.-k. Lee, Automatic rule-based
684 checking of building designs, Automation in construction, 18 (2009)

685 1011-1033.

38

686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
17
718
719
720
721
122
723
124

[16] P. Patlakas, A. Livingstone, R. Hairstans, G. Neighbour, Automatic
code compliance with multi-dimensional data fitting in a BIM context,
Advanced Engineering Informatics, 38 (2018) 216-231.

[17] Q. Fang, H. Li, X. Luo, L. Ding, T.M. Rose, W. An, Y. Yu, A deep
learning—based method for detecting non—certified work on construction
sites, Advanced Engineering Informatics, 35 (2018) 56-68.

[18] W. Smits, M. van Buiten, T. Hartmann, Yield—to-BIM: impacts of BIM
maturity on project performance, Building Research & Information, 45
(2017) 336-346.

[19] J.K. Whyte, T. Hartmann, How digitizing building information
transforms the built environment, Taylor & Francis, 2017.

[20] J. Zhang, N.M. El-Gohary, Automated information transformation for
automated regulatory compliance checking in construction, Journal of
Computing in Civil Engineering, 29 (2015) B4015001.

[21] S. Li, H. Cai, V.R. Kamat, Integrating natural language processing
and spatial reasoning for utility compliance checking, Journal of
Construction Engineering and Management, 142 (2016) 04016074.

[22] X. Xu, H. Cai, Semantic approach to compliance checking of
underground utilities, Automation in Construction, 109 (2020) 103006.
[23] W. Fang, H. Luo, S. Xu, P.E. Love, Z. Lu, C. Ye, Automated text
classification of near-misses from safety reports: An improved deep
learning approach, Advanced Engineering Informatics, 44 (2020) 101060.
[24] B. Zhong, X. Xing, P. Love, X. Wang, H. Luo, Convolutional neural
network: Deep learning—based classification of building quality
problems, Advanced Engineering Informatics, 40 (2019) 46-57.

[25] A.J.C. Trappey, C.V. Trappey, J.-L. Wu, J.W.C. Wang, Intelligent
compilation of patent summaries using machine learning and natural
language processing techniques, Advanced engineering informatics, 43
(2020) 101027.

[26] X. Xue, J. Zhang, Evaluation of Eight Part-of-Speech Taggers in
Tagging Building Codes: Identifying the Best Performing Tagger and
Common Sources of Errors, The ASCE Construction Research Congress,
Construction Research Council of the ASCE Construction Institute, 2020.
[27] V. Getuli, S.M. Ventura, P. Capone, A.L. Ciribini, BIM-based code
checking for construction health and safety, Procedia engineering, 196
(2017) 454-461.

(28] X. Tan, A. Hammad, P. Fazio, Automated code compliance checking for
building envelope design, Journal of Computing in Civil Engineering, 24
(2010) 203-211.

39

125
726
727
728
729
730
731
132
733
734
735
736
737
738
739
740
741
742
743
744
745
746
47
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765

[29] J. Choi, J. Choi, I. Kim, Development of BIM-based evacuation
regulation checking system for high-rise and complex buildings,
Automation in Construction, 46 (2014) 38-49.

[30] T.-H. Nguyen, Integrating building code compliance checking into a
3D CAD system, Computing in Civil Engineering (2005)2005, pp. 1-12.
[31] N.0. Nawari, Automating codes conformance, Journal of architectural
engineering, 18 (2012) 315-323.

[32] J. Dimyadi, G. Clifton, M. Spearpoint, R. Amor, Computerizing
Regulatory Knowledge for Building Engineering Design, Journal of
Computing in Civil Engineering, (2016) C4016001.

[33] J. Dimyadi, R. Amor, Automated building code compliance checking -
where is it at, Proceedings of CIB WBC, 6 (2013).

[34] S. Singaravel, J. Suykens, P. Geyer, Deep—learning neural-network
architectures and methods: Using component-based models in building—
design energy prediction, Advanced Engineering Informatics, 38 (2018)
81-90.

[35] M. Héder, E. Barthdazi, T. Vdmos, Natural language understanding in
governance service automation, IFAC Proceedings Volumes, 44 (2011) 6385-
6390.

[36] X. Xu, H. Cai, Semantic frame—-based information extraction from
utility regulatory documents to support compliance checking, Advances
in Informatics and Computing in Civil and Construction Engineering,
Springer2019, pp. 223-230.

[37] H. Cunningham, GATE, a general architecture for text engineering,
Computers and the Humanities, 36 (2002) 223-254.

[38] A.R. Coden, S.V. Pakhomov, R.K. Ando, P.H. Duffy, C.G. Chute,
Domain—specific language models and lexicons for tagging, Journal of
biomedical informatics, 38 (2005) 422-430.

[39] L. Abzianidze, J. Bos, Towards universal semantic tagging, arXiv
preprint arXiv:1709. 10381, (2017).

[40] J. Kupiec, Robust part—of—speech tagging using a hidden Markov
model, Computer Speech & Language, 6 (1992) 225-242.

[41] H. Schmid, Part-of-speech tagging with neural networks,
Proceedings of the 15th conference on Computational linguistics—Volume
1, Association for Computational Linguistics, 1994, pp. 172-176.

[42] M. Pota, F. Marulli, M. Esposito, G. De Pietro, H. Fujita,
Multilingual POS tagging by a composite deep architecture based on
character—level features and on—the—fly enriched Word Embeddings,
Knowledge—Based Systems, 164 (2019) 309-323.

[43] J. Lee, Y. Ham, J.-S. Yi, J. Son, Effective Risk Positioning
through Automated Identification of Missing Contract Conditions from the

40

766
767
768
769
770
771
1772
73
774
775
776
(s
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806

Contractor’ s Perspective Based on FIDIC Contract Cases, Journal of
Management in Engineering, 36 (2020) 05020003.

[44] F.u. Hassan, T. Le, Automated Requirements Identification from
Construction Contract Documents Using Natural Language Processing,
Journal of Legal Affairs and Dispute Resolution in Engineering and
Construction, 12 (2020) 04520009.

[45] P. Zhou, N. El-Gohary, Automated matching of design information in
BIM to regulatory information in energy codes, Construction Research
Congress 2018, 2018, pp. 75-85.

[46] J. Wang, Y. Chen, S. Hao, X. Peng, L. Hu, Deep learning for sensor—
based activity recognition: A survey, Pattern Recognition Letters, 119
(2019) 3-11.

[47] J. Zhang, N. El-Gohary, Semantic NLP-Based Information Extraction
from Construction Regulatory Documents for Automated Compliance
Checking, Journal of Computing in Civil Engineering, 30 (2013)
141013064441000.

[48] J.R. Finkel, C.D. Manning, A.Y. Ng, Solving the problem of
cascading errors: Approximate Bayesian inference for linguistic
annotation pipelines, Proceedings of the 2006 Conference on Empirical
Methods in Natural Language Processing, Association for Computational
Linguistics, 2006, pp. 618-626.

[49] E.D. Brill, A corpus—based approach to language learning, IRCS
Technical Reports Series, (1993) 191.

[50] A. Ratnaparkhi, A maximum entropy model for part—of-speech tagging,
Conference on Empirical Methods in Natural Language Processing, 1996.
[51] T. Brants, TnT: a statistical part-of-speech tagger, Proceedings
of the sixth conference on Applied natural language processing,
Association for Computational Linguistics, 2000, pp. 224-231.

[52] K. Toutanova, D. Klein, C.D. Manning, Y. Singer, Feature-rich part-
of—speech tagging with a cyclic dependency network, Proceedings of the
2003 Conference of the North American Chapter of the Association for
Computational Linguistics on Human Language Technology—Volume 1,
Association for computational Linguistics, 2003, pp. 173-180.

[53] J. Giménez, L. Marquez, Fast and accurate part—of-speech tagging:
The SVM approach revisited, Recent Advances in Natural Language
Processing 111, (2004) 153-162.

[54] C. Biemann, Unsupervised part-of-speech tagging employing efficient
graph clustering, Proceedings of the 21st international conference on
computational linguistics and 44th annual meeting of the association for
computational linguistics: student research workshop, Association for
Computational Linguistics, 2006, pp. 7-12.

41

807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846

[55] F. Dell’ Orletta, Ensemble system for Part—of-Speech tagging,
Proceedings of EVALITA, 9 (2009) 1-8.

[56] T. Young, D. Hazarika, S. Poria, E. Cambria, Recent trends in deep
learning based natural language processing, ieee Computational
intelligenCe magazine, 13 (2018) 55-75.

[57] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, P.
Kuksa, Natural language processing (almost) from scratch, Journal of
machine learning research, 12 (2011) 2493-2537.

[58] N.C. Marques, G.P. Lopes, Tagging with Small Training Corpora,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2001, pp. 63-72.

[59] X. Yu, A. Falenska, N.T. Vu, A general-purpose tagger with
convolutional neural networks, arXiv preprint arXiv:1706.01723, (2017).
[60] F. Chollet, Deep Learning with Python, (2017).

[61] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre—training of
deep bidirectional transformers for language understanding, arXiv
preprint arXiv:1810. 04805, (2018).

[62] J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C.H. So, J. Kang, BioBERT:
a pre—trained biomedical language representation model for biomedical
text mining, Bioinformatics, 36 (2020) 1234-1240.

[63] B. He, D. Zhou, J. Xiao, Q. Liu, N.J. Yuan, T. Xu, Integrating
graph contextualized knowledge into pre—-trained language models, arXiv
preprint arXiv:1912. 00147, (2019).

[64] W. Tai, H. Kung, X.L. Dong, M. Comiter, C.-F. Kuo, exBERT:
Extending Pre—trained Models with Domain—specific Vocabulary Under
Constrained Training Resources, Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing: Findings, 2020, pp.
1433-1439.

[65] C.D. Manning, Part-of-Speech Tagging from 97% to 100%: Is It Time
for Some Linguistics?, in: A.F. Gelbukh (Ed.) Computational Linguistics
and Intelligent Text Processing, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2011, pp. 171-189.

[66] D. Tang, B. Qin, T. Liu, Document modeling with gated recurrent
neural network for sentiment classification, Proceedings of the 2015
conference on empirical methods in natural language processing, 2015,
pp. 1422-1432.

[67] X. Rao, Z. Ke, Hierarchical rnn for information extraction from
lawsuit documents, arXiv preprint arXiv:1804. 09321, (2018).

[68] N. Bhutani, Y. Suhara, W.-C. Tan, A. Halevy, H. Jagadish, Open
Information Extraction from Question—Answer Pairs, arXiv preprint
arXiv:1903. 00172, (2019).

42

847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885

[69] A. Vaswani, S. Bengio, E. Brevdo, F. Chollet, A.N. Gomez, S. Gouws,
L. Jones, L. Kaiser, N. Kalchbrenner, N. Parmar, Tensor2tensor for
neural machine translation, arXiv preprint arXiv:1803.07416, (2018).
[70] A.V.M. Barone, J. Helcl, R. Sennrich, B. Haddow, A. Birch, Deep
architectures for neural machine translation, arXiv preprint
arXiv:1707. 07631, (2017).

[71] W. Chan, N. Jaitly, Q. Le, 0. Vinyals, Listen, attend and spell: A
neural network for large vocabulary conversational speech recognition,
2016 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), IEEE, 2016, pp. 4960-4964.

[72] S. Karita, N. Chen, T. Hayashi, T. Hori, H. Inaguma, Z. Jiang, M.
Someki, N.E.Y. Soplin, R. Yamamoto, X. Wang, A comparative study on
transformer vs rnn in speech applications, arXiv preprint

arXiv:1909. 06317, (2019).

[73] Y. Shao, C. Hardmeier, J. Tiedemann, J. Nivre, Character—based
joint segmentation and POS tagging for Chinese using bidirectional RNN-
CRF, arXiv preprint arXiv:1704.01314, (2017).

[74] B. Plank, A. Sogaard, Y. Goldberg, Multilingual part-of-speech
tagging with bidirectional long short—term memory models and auxiliary
loss, arXiv preprint arXiv:1604. 05529, (2016).

[75] A. Agarwal, A. Yadav, D.K. Vishwakarma, Multimodal sentiment
analysis via RNN variants, 2019 IEEE International Conference on Big
Data, Cloud Computing, Data Science & Engineering (BCD), IEEE, 2019, pp.
19-23.

[76] K. Baktha, B. Tripathy, Investigation of recurrent neural networks
in the field of sentiment analysis, 2017 International Conference on
Communication and Signal Processing (ICCSP), IEEE, 2017, pp. 2047-2050.
[77] K. Cho, B. Van Merriénboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, Y. Bengio, Learning phrase representations using RNN
encoder—decoder for statistical machine translation, arXiv preprint
arXiv:1406. 1078, (2014).

[78] J.L. Elman, Finding structure in time, Cognitive science, 14 (1990)
179-211.

[79] X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural
networks, Proceedings of the fourteenth international conference on
artificial intelligence and statistics, 2011, pp. 315-323.

[80] C. Nwankpa, W. Ijomah, A. Gachagan, S. Marshall, Activation
functions: Comparison of trends in practice and research for deep
learning, arXiv preprint arXiv:1811.03378, (2018).

43

886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924

[81] S. Hochreiter, The vanishing gradient problem during learning
recurrent neural nets and problem solutions, International Journal of
Uncertainty, Fuzziness and Knowledge—Based Systems, 6 (1998) 107-116.
[82] H. Sak, A.W. Senior, F. Beaufays, Long short—term memory recurrent
neural network architectures for large scale acoustic modeling, (2014).
[83] J. Chung, C. Gulcehre, K. Cho, Y. Bengio, Empirical evaluation of
gated recurrent neural networks on sequence modeling, arXiv preprint
arXiv:1412. 3555, (2014).

[84] D. Hu, An introductory survey on attention mechanisms in NLP
problems, Proceedings of SAI Intelligent Systems Conference, Springer,
2019, pp. 432-448.

[85] 0. Firat, K. Cho, Y. Bengio, Multi-way, multilingual neural machine
translation with a shared attention mechanism, arXiv preprint
arXiv:1601. 01073, (2016).

[86] J. Lu, J. Yang, D. Batra, D. Parikh, Hierarchical question—image
co—attention for visual question answering, Advances In Neural
Information Processing Systems, 2016, pp. 289-297.

[87] T. Rocktaschel, E. Grefenstette, K.M. Hermann, T. Ko&isky, P.
Blunsom, Reasoning about entailment with neural attention, arXiv
preprint arXiv:1509. 06664, (2015).

[88] D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by
jointly learning to align and translate, arXiv preprint arXiv:1409. 0473,
(2014).

[89] M.-T. Luong, H. Pham, C.D. Manning, Effective approaches to
attention—based neural machine translation, arXiv preprint

arXiv:1508. 04025, (2015).

[90] A. Ambartsoumian, F. Popowich, Self-attention: A better building
block for sentiment analysis neural network classifiers, arXiv preprint
arXiv:1812. 07860, (2018).

[91] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N.
Gomez, L. Kaiser, I. Polosukhin, Attention is all you need, Advances
in neural information processing systems, 2017, pp. 5998-6008.

[92] Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A.
Torralba, S. Fidler, Aligning books and movies: Towards story—like
visual explanations by watching movies and reading books, Proceedings
of the IEEE international conference on computer vision, 2015, pp. 19-
217.

[93] A. Zhang, Z.C. Lipton, M. Li, A.J. Smola, Dive into deep learning,
Unpublished Draft. Retrieved, 19 (2019) 2019.

44

925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953

[94] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever,
Language models are unsupervised multitask learners, OpenAl Blog, 1
(2019) 9.

[95] M.E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, L.
Zettlemoyer, Deep contextualized word representations, arXiv preprint
arXiv:1802. 05365, (2018).

[96] X. Xue, J. Zhang, Part-of-Speech Tagged Building Codes (PTBC),
2019.

[97] E. Loper, S. Bird, NLTK: the natural language toolkit, arXiv
preprint ¢s/0205028, (2002).

[98] A. Explosion, spaCy—Industrial-strength Natural Language Processing
in Python, URL: https://spacy. io, (2017).

[99] C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, D.
McClosky, The Stanford CoreNLP natural language processing toolkit,
Proceedings of 52nd annual meeting of the association for computational

linguistics: system demonstrations, 2014, pp. 55-60.

[100] J. Kottmann, B. Margulies, G. Ingersoll, I. Drost, J. Kosin, J.
Baldridge, T. Goetz, T. Morton, W. Silva, A. Autayeu, Apache opennlp,
Online (May 2011), www. opennlp. apache. org, (2011).

[101] H. Schmid, Deep Learning—Based Morphological Taggers and
Lemmatizers for Annotating Historical Texts, Proceedings of the 3rd
International Conference on Digital Access to Textual Cultural Heritage,
ACM, 2019, pp. 133-137.

[102] X. Xue, J. Zhang, Evaluation of Seven Part—-of-Speech Taggers in
Tagging Building Codes: Identifying the Best Performing Tagger and
Common Sources of Errors, ASCE Construction Research Congress 2020,
2020.

[103] F. Chollet, Deep Learning with Python, Manning Publications

Co. 2017.

45

https://spacy/

