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Abstract 4 

Automated building code compliance checking systems were under development for 5 

many years. However, the excessive amount of human inputs needed to convert building 6 

codes from natural language to computer understandable formats severely limited their 7 

range of applicable code requirements. To address that, automated code compliance 8 

checking systems need to enable an automated regulatory rules conversion. Accurate Part-9 

of-Speech (POS) tagging of building code texts is crucial to this conversion. Previous 10 

experiments showed that the state-of-the-art generic POS taggers do not perform well on 11 

building codes. In view of that, the authors are proposing a new POS tagger tailored to 12 

building codes. It utilizes deep learning neural network model and error-driven 13 

transformational rules. The neural network model contains a pre-trained model and one 14 

or more trainable neural layers. The pre-trained model was fine-tuned on Part-of-Speech 15 

Tagged Building Codes (PTBC), a POS tagged building codes dataset. The fine-tuning of 16 

pre-trained model allows the proposed POS tagger to reach high precision with a small 17 

amount of available training data. Error-driven transformational rules were used to boost 18 

performance further by fixing errors made by the neural network model in the tagged 19 

building code. Through experimental testing, the authors found a well-performing POS 20 
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tagger for building codes with one bi-directional LSTM trainable layer, utilized 21 

BERT_Cased_Base pre-trained model and was trained 50 epochs. This model reached a 22 

91.89% precision without error-driven transformational rules and a 95.11% precision with 23 

error-driven transformational rules, which outperformed the 89.82% precision achieved 24 

by the state-of-the-art POS taggers. 25 

Author keywords: Automated compliance checking; Automated information extraction; 26 

Natural language processing; Part-of-speech tagging; Automated construction 27 

management systems; Deep learning. 28 

1. Introduction 29 

Efforts to automate code compliance checking started more than half a century ago when 30 

Fenves (1966) developed decision tables to automatically check the design of steel 31 

structures [7]. The success of compliance checking decision table inspired more 32 

researches in this area. Examples include a computer-aided design (CAD) system for 2D 33 

and 3D steel structure called STEEL-3D [8], an expert system for reinforcement concrete 34 

design [9], a rule-based application for structure members [10], and a knowledge-based 35 

system for multiple building codes [11]. More advanced code compliance checking 36 

software was then developed. The Construction and Real Estate Network (CORENET) 37 

by Singapore Building Construction Authority was capable of checking 3D industry 38 

foundation classes (IFC) data model [12]. The Express Data Manager (EDM) Suite by 39 

Jotne EPM Technology allowed code checking on Building Information Modeling (BIM) 40 

data [13]. The BCAider by the Commonwealth Scientific and Industrial Research 41 

Organisation (CSIRO) in Australia enabled automatic compliance checking against 42 

Building Code of Australia (BCA) [14]. The Solibri Model Checker (SMC), a BIM-43 
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powered automated code compliance checking system, by Solibri achieved rule-based 44 

code compliance checking by user-customized plugins [15]. Patlakas et al. developed a 45 

BIM-based system to check code compliance of timber structure design automatically 46 

[16]. Fang et al. developed a deep learning-based method to automatically check if a site 47 

worker complies to code of their certification [17]. The combination of BIM and 48 

automated code compliance checking systems increases the theoretical benefit of BIM in 49 

the construction industry. However, according to a survey by Smits et al. (2017), the 50 

actual benefit of implementing BIM in construction projects is still limited [18]. The 51 

authors suggest that the narrow range of checkable codes of most recent automated code 52 

compliance checking tools may limit the actual benefit of BIM. Even for the narrow range 53 

of checkable codes, they are usually oversimplified. The oversimplified codes are not 54 

enough to support the increased project complexity and creativity of designers and, 55 

therefore, could negatively affect the benefit of adopting BIM for users and owners [19].  56 

The narrow range of checkable codes also limit wide applications of these automated code 57 

compliance checking systems. Extending the range of checkable building code 58 

requirements emerges as an urgent need in the development of automated code 59 

compliance checking systems. Natural Language Processing (NLP) powered by Part-of-60 

Speech (POS) tagging has been proposed to automate the building code requirements 61 

extraction and, therefore, extend the range of checkable building codes of automated code 62 

compliance checking systems and reduce the needed manual efforts in such extraction 63 

[20-22]. NLP and deep learning have many applications in the Architecture, Engineering, 64 

and Construction industry (AEC). For example, Fang et al. developed a text classification 65 

method with deep learning to spot near misses in safety reports [23]. Zhong et al. used a 66 
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deep learning method to classify building quality problems [24]. Trappey et al. used 67 

attention mechanism to generate summary of engineering patents [25]. High performance 68 

was achieved but POS tagging error was identified as one major source of error of the 69 

whole system. Accurately POS-tagged building codes are desired to support such NLP-70 

based automated building code compliance checking. Existing generic POS taggers, 71 

however, can not provide such high accuracy on processing building codes [26].  72 

The authors are therefore proposing a new POS tagger that is tailored to building codes. 73 

The intent of the study is to improve the accuracy of POS tagging on building codes. 74 

Accurate POS tagging results are needed to support successful code requirements 75 

processing for accurate automated code compliance checking. The proposed POS tagger 76 

combines neural network model and error-driven transformational rules. Neural network 77 

model and error-driven transformational rules together make the proposed POS tagger 78 

outperformed the state of the art. The proposed POS tagger reached a 95.11% accuracy, 79 

which is higher than the 89.82% achieved by the state of the art.  80 

In practice, this POS tagger plays an important role in those NLP-based automated code 81 

compliance checking system frameworks similar to [20] (Figure 1), and in NLP-based 82 

automation systems in the AEC domain in general. This research can boost the accuracy 83 

of the POS tagging therefore support automated building code compliance checking 84 

systems and NLP-based systems in the AEC domain. Accurate POS tagging results of 85 

building codes is vital to a high performance of the extraction of engineering knowledge 86 

embedded in the building codes. The background automated code compliance checking 87 

system framework in Figure 1 contains an automated regulatory information extraction 88 
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component (which uses a POS tagger) that converts building code requirements to logic 89 

clauses, an automated building design information extraction component that extracts 90 

building design information from Building Information Models (BIMs), and an 91 

automated reasoning component that outputs the code compliance report. The automated 92 

regulatory information extraction component can use the proposed POS tagger, which is 93 

illustrated in Figure 3. This system is fully automated from the end-user’s perspective. 94 

The automated building code compliance checking system takes a rule-based approach to 95 

extract information from building codes automatically. Although the POS tagger uses 96 

neural network model which is probabilistic in training, the developed POS tagger as a 97 

result of the training is deterministic. The weights of the neural network are fixed after 98 

the training, leading to determinist results when applying the POS tagger. Therefore, with 99 

a robust POS tagger and other well-performing components, the NLP-based automated 100 

building code compliance checking system has a better chance to detect all 101 

noncompliance cases in a building design without intervention from the user. Due to the 102 

imperfect (i.e., less than 100%) precision and recall in the state-of-the-art NLP-based 103 

building code compliance checking systems, some manual intervention will still be 104 

needed to fix errors in the extraction results of embedded engineering knowledge in the 105 

building codes. Such manual intervention is expected from the developers, not from end 106 

users. In addition, the amount of manual efforts needed to fix automatic extraction errors 107 

is minor comparing to those needed in manual extraction. In this paper, the authors 108 

propose to boost the performance of NLP-based automated code compliance checking 109 

systems by providing more accurate POS tagging results to such systems.  110 
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 111 

Figure 1. An NLP-based Automated Building Code Compliance Checking System 112 
Framework 113 

 114 
The remainder of this paper is organized as follows. Section 2 explains technical details 115 

of part-of-speech tagging, error-driven transformational rules, recurrent neural network, 116 

and computing techniques to avoid overfitting, used in this research. Section 3 describes 117 

the proposed POS tagger. Section 4 presents the experiment to test the performance of the 118 

proposed POS tagger. Section 5 illustrates the result of the experiment. Finally, Sections 119 

6, 7, 8 present the conclusion, limitation and contribution to the body of knowledge of 120 

this research, respectively.  121 
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2. Background 122 

2.1 Part-of-Speech 123 

A word’s POS category provides its syntactic information in a sentence [39]. In English, 124 

there are eight main POS categories: (1) noun, (2) verb, (3) adjective, (4) adverb, (5) 125 

pronoun, (6) preposition, (7) conjunction, and (8) interjection. POS taggers are systems 126 

that automatically assign POS categories to words according to their contextual 127 

information in a sentence [41]. POS taggers have a variety of applications in the AEC 128 

domain. For example, Le et al. POS tagged construction contracts to identify missed 129 

contract conditions from the perspective of contractors [43]. However, the reliance on 130 

manual feature extraction and manual rule generation creates challenges in large scale 131 

applications. Hassan and Le used POS tagging to spot contractual requirements from 132 

construction contract documents [44]. However, the Support Vector Machines (SVM) 133 

algorithm used to identify contractual requirements relies on manual feature engineering 134 

and may raise the concern of overfitting. Zhou and El-Gohary utilized POS tagging 135 

information to match design requirements in energy codes to their corresponding objects 136 

in BIMs [45]. The matching process takes a four-step approach: First, POS tagging 137 

information and other contextual information of design requirements and BIM objects are 138 

collected; Second, the Word2vec algorithm calculates the vectors of BIM objects and 139 

design requirements; Third, vector similarity algorithm calculates the vector similarity 140 

between BIM objects and design requirements; Fourth, a match is claimed if the vector 141 

similarity between a BIM object and a design requirement is higher than a predefined 142 

threshold, which was set arbitrarily to obtain the highest precision and recall empirically. 143 

In this four-step approach, errors could accumulate in each step, and the concern of 144 
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overfitting also presents. Therefore, the authors suggest an end-to-end method that does 145 

not rely on manually generated rules or features. Neural network models could meet the 146 

above requirements [46].   147 

In this research, the authors proposed an AEC domain specific POS tagger that combines 148 

Recurrent Neural Network (RNN), pre-trained models, and error-driven transformational 149 

rules. A simple deep learning model without man-made task specific features can 150 

outperform most state-of-the-art non-deep learning models even with cherry-picked 151 

features, in a wide range of NLP tasks such as part-of-speech tagging, chunking, named 152 

entity recognition, and semantic role labeling [57]. For example, Marques and Lopes 153 

(2001) utilized a simple feed-forward model to decrease the amount of data needed to 154 

train a POS tagger [58]. Yu et al. (2017) used two Convolutional Neural Network (CNN) 155 

models to capture morphological information of character-level n-grams and contextual 156 

information of word-level n-grams, which outperformed simple feed-forward model [59]. 157 

Recent developments in deep learning indicated that RNN is the “to-go” solution for NLP 158 

tasks [60]. Pre-trained models were pre-trained on a large body of text with unsupervised 159 

tasks, such as, predicting the next word given all previous words and predict if two 160 

sentences are from the same article [61]. The use of generally pre-trained models helped 161 

boost the performance of domain specific NLP tasks in biology [62], finance, and law 162 

[63]. It also reduced the amount of labeled data needed when applying deep learning in 163 

domain specific tasks [64]. 164 
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2.2 Error-driven Transformational Rules 165 

Error-driven transformational rules are introduced to boost POS taggers’ accuracy [26, 65]. 166 

The rules are designed to transform the machine-generated POS tag of a word to its human-167 

labeled gold standard. When the rule generation algorithm spots a difference between 168 

machine-generated POS tags and the human-labeled gold standard, it records the difference 169 

as an error and uses the context of the error (i.e., words and POS tags of words around the 170 

word) to generate a rule to fix the error. The generation of rules is automated. Rules are 171 

reusable once generated. Rules may have the risk to introduce new errors. The rule 172 

generation algorithm controls this risk by dropping rules that have a high risk of introducing 173 

errors.  174 

2.3 Recurrent Neural Network  175 

Like any machine learning model, neural networks predict categories of given inputs. In 176 

the context of POS tagging, neural networks predict POS categories of each word in a 177 

given input text, according to the word itself and its context (Figure 2). Neural networks 178 

learn a relationship between words and POS tags during their training and use this 179 

relationship to predict POS tags of words during their application. Traditional neural 180 

networks consider all words in a sentence to be independent from each other and do not 181 

consider words surrounding them in this prediction task. In contrast, Recurrent Neural 182 

Network (RNN) keeps a vector that represents other words in the sentence (which is called 183 

hidden state) and considers them in the prediction task. RNN processes sequential 184 

information by taking elements in the sequence one by one while maintaining a 185 

representation of all information it has seen so far [60]. RNN is able to process sentences 186 

with arbitrary length [66]. The way that RNN processes sequential information gives it 187 
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the ability to capture semantic meaning of a word based on words before/after it in the 188 

sentences [56]. For example, it is able to differentiate the meaning of the word “bank” in 189 

the phrase “river bank” and “blood bank”. The sequential nature of RNN makes it widely 190 

adopted in many subfields of NLP, such as: (1) information extraction [67, 68], (2) 191 

machine translation [69, 70], (3) speech recognition [71, 72], (4) POS tagging [73, 74], 192 

and (5) sentiment analysis [75, 76]. There is also an RNN encoder-decoder model which 193 

has a high accuracy in sequence-to-sequence tasks [77]. In this structure, the encoder is 194 

an RNN model that converts a variable-length sequence to a fixed-length vector 195 

representation and the decoder is another RNN model that converts the fixed-length 196 

representation to a variable-length sequence. Neural network models are deterministic 197 

when applied (i.e., in making predictions). One neural network model makes the same 198 

prediction result with the same input. 199 
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 200 

Figure 2. Example Application of a Neural Network POS Tagger 201 

2.3.1. Simple RNN 202 

A simple RNN keeps a hidden state that represents all previous words in the sentence. 203 

Therefore, the hidden state allows the simple RNN to take into consideration all words 204 

before the target word in POS tagging. A simple RNN contains an input layer x, a hidden 205 

layer h, and an output layer y [78]. The hidden layer has weight 𝑊ℎ and a bias vector 𝑏ℎ. 206 

The input layer has a weight 𝑊𝑖. The output layer has a weight 𝑊𝑜 and a bias vector 𝑏𝑜. 207 

In time step t of the training, the input to the RNN is denoted as 𝑥𝑡, the hidden state is 208 

denoted as ℎ𝑡, and the output is denoted as 𝑌𝑡. The hidden state at the time step t (𝑖. 𝑒. , ℎ𝑡) 209 
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is the sum of: (a) the input of current step 𝑥𝑡 multiples the weight of the input layer 𝑊𝑖, 210 

(b) the hidden state of the last time step ℎ𝑡−1 multiplies its weight 𝑊ℎ, and (c) the bias 211 

vector of hidden layers 𝑏ℎ, after some non-linear transformation [Eq. (1)]. 212 

ℎ𝑡 = 𝑓(𝑊𝑖𝑥𝑡 +  𝑊ℎℎ𝑡−1 + 𝑏ℎ) (1) 213 

The output at the time step t (𝑖. 𝑒. , 𝑌𝑡 ) is the sum of: the weights of output layer 𝑊𝑜 214 

multiples the hidden state at this time step ℎ𝑡, and the bias vector of output layer 𝑏𝑜 [Eq. 215 

(2)]. 216 

𝑌𝑡 = 𝑔(𝑊𝑜ℎ𝑡 + 𝑏𝑜) (2) 217 

In Eqs. (1) and (2), f and g are activation functions that perform non-linear transformations. 218 

Some commonly used activation functions include sigmoid, Tanh, and Rectified Linear 219 

Unit (ReLU) [79, 80]. 220 

Simple RNN suffers from the vanishing gradient problem [81]. The hidden state of a word 221 

is influenced more by words near it than words far away. In other words, simple RNN does 222 

not have a “long-term memory”. This problem makes simple RNN difficult to train and 223 

hard to capture long-term dependencies in a sentence. The long-term dependencies between 224 

words are important in POS tagging. Many variations of simple RNN were therefore 225 

developed to solve this problem.  226 

2.3.2. Long Short-Term Memory  227 

Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) alleviates the 228 

vanishing gradient problem by having a forget gate layer to decide which words to 229 

“remember” and which words to “forget”. It has a cell state to keep long-term dependencies, 230 

so it has “long-term memory”. The cell state allows LSTM-RNN to use long-term 231 



13 

 

dependencies in POS tagging. LSTM-RNN [82] has an additional forget gate layer f to 232 

decide which information to keep or abandon, and a cell state C to capture long-term 233 

dependencies. The weight of the forget gate layer is 𝑊𝑓 and its bias vector is 𝑏𝑓. The cell 234 

state has a weight 𝑊𝐶 and a bias vector 𝑏𝐶. LSTM-RNN also has an input layer x. The 235 

input layer has a weight 𝑊𝑖 and a bias vector 𝑏𝑖. The output layer has a weight 𝑊𝑜 and 236 

a bias vector 𝑏𝑜. In time step t of the training, the input to the RNN is denoted as 𝑥𝑡, the 237 

hidden state is denoted as ℎ𝑡, the output is denoted as 𝑌𝑡, and the cell state is denoted as 238 

𝐶𝑡, the value to update is denoted as 𝑖𝑡. Input to the neural network is first fed into the 239 

forget gate layer. The forget gate layer generates a vector 𝑓𝑡 to represent the amount of 240 

information to keep, and 𝑓𝑡 is calculated by Eq. (3): 241 

𝑓𝑡 = 𝜎(𝑊𝑓 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (3) 242 

where 𝜎 is the sigmoid function. 243 

Then, the input layer calculates the candidate cell state by Eq. (4) and Eq. (5): 244 

𝑖𝑡 = 𝜎(𝑊𝑖 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (4) 245 

𝐶𝑡̃ = tanh(𝑊𝐶 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (5) 246 

Then, the cell state 𝐶𝑡 is calculated by Eq. (6): 247 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡̃ (6) 248 

After that, the output layer 𝑌𝑡 and hidden state ℎ𝑡 are calculated by Eq. (7) and Eq. (8), 249 

respectively: 250 

𝑌𝑡 =  𝜎(𝑊𝑜 ∗ [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑜) (7) 251 

ℎ𝑡 = 𝑌𝑡 ∗ tanh(𝐶𝑡) (8) 252 

There is also a bi-directional variant of LSTM, which can capture information in a sequence 253 

from both directions. Simple RNN and LSTM-RNN have one hidden state that represents 254 
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all words before the target word. Bi-directional LSTM-RNN additionally has an extra 255 

hidden state that represents all words after the target word. Therefore, simple RNN and 256 

LSTM RNN predict the POS tag of the target word solely by words before it, whereas bi-257 

directional LSTM RNN predicts POS tag of the target word by the words both before and 258 

after it. 259 

2.3.3. Gated Recurrent Unit 260 

Gated Recurrent Unit (GRU) [83] is another way to address the vanishing gradient problem. 261 

It does not have a forget gate to control the flow of information, so it can access the entire 262 

hidden state. It has an update gate U and a reset gate R. The weight of the update get is 𝑊𝑈, 263 

the weight of the reset gate is 𝑊𝑅, and the weight of the output layer is 𝑊𝑜. At time step 264 

t, the cell state of the update gate, reset state, and the hidden state are 𝑈𝑡, 𝑅𝑡, and ℎ𝑡, 265 

respectively. GRU is calculated using Eqs. (9), (10), (11), and (12): 266 

𝑈𝑡 = 𝜎(𝑊𝑈 ∗ 𝑋𝑡 + 𝑊𝑈,𝑡−1 ∗ ℎ𝑡−1) (9) 267 

𝑅𝑡 = 𝜎(𝑊𝑅 ∗ 𝑋𝑡 + 𝑊𝑅,𝑡−1 ∗ ℎ𝑡−1) (10) 268 

ℎ𝑡
, = 𝑡𝑎𝑛ℎ(𝑊𝑜 + 𝑅𝑡 ∗ 𝑊𝑈,𝑡−1 ∗ ℎ𝑡−1) (11) 269 

ℎ𝑡 = 𝑈𝑡 ∗ ℎ𝑡−1 + (1 − 𝑈𝑡) ∗ ℎ𝑡
, (12) 270 

GRU can take long-term dependencies of words into the POS tagging task by accessing 271 

hidden states of every words in a sentence. There is also a bi-directional variant of GRU, 272 

which can use words both before and after a target word to predict its POS category. 273 
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2.3.4. Attention Mechanism 274 

Attention mechanism can capture long-term dependencies with arbitrary lengths by 275 

calculating attention scores between all words in two sequences and feed the attention 276 

scores to a RNN [84]. Therefore, it does not suffer from the vanishing gradient problem. 277 

LSTM RNN and GRU still suffer from the vanishing gradient problem when the 278 

dependencies are long enough. The attention mechanism predicts the POS tag of a word 279 

with its long-term dependencies. Attention mechanism shares the same encoder-decoder 280 

structure with the encoder-decoder RNN. The structure of attention mechanism brings its 281 

successful application in many sequence-to-sequence (Seq2Seq) tasks such as: (1) machine 282 

translation [85], (2) question-and-answering [86], and (3) text entailment [87]. The 283 

attention mechanism allows the decoder to access hidden states of the encoder to track back 284 

the input sequence [88]. There are many variants of attention mechanisms. For example, 285 

global attention focuses on all words in the input including each target word, while local 286 

attention only focuses on words in a certain range [89]. Two-way attention allows bi-287 

directional attention between the source and target [87]. This property of two-way attention 288 

makes it successful in non-sequence-to-sequence tasks as well, such as sentiment analysis 289 

[90]. 290 

2.3.5. Transformer 291 

Transformer has a similar encoder-decoder structure as the attention mechanism, but it does 292 

not have an RNN [91]. Transformer, like attention mechanism, can capture dependencies 293 

in any length. With fewer parameters than the attention mechanism, it is more resistant to 294 
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overfitting. Therefore, transformer can make POS taggers more generalizable. The encoder 295 

and decoder of the transformer are stacks of multi-head attention layers and feed-forward 296 

layers with some add-and-normal layers. The multi-head attention is the concatenation of 297 

multiple self-attention matrices. The multi-head attention is used to capture different 298 

dependencies in a sentence. The first step to calculate the self-attention Z is to calculate: 299 

the Query Q, Key K, and Value V matrices with the embedding matrix X, the weight of 300 

Query 𝑊𝑄, the weight of Key 𝑊𝑘, and the weight of Value 𝑊𝑉 [Eqs. (13) to (15)].  301 

𝑄 = 𝑋 ∗ 𝑊𝑄 (13) 302 

𝐾 = 𝑋 ∗ 𝑊𝑘 (14) 303 

𝑉 = 𝑋 ∗ 𝑊𝑉 (15) 304 

Then, the self-attention matrix, or one head of the multi-head attention, is calculated by Eq. 305 

(16): 306 

𝑍 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄∗𝐾𝑇

√𝑑𝑘
) ∗ 𝑉 (16)307 

where 𝑑𝑘 is the dimension of Key. 308 

After that, multiple self-attention matrices are concatenated together to form a multi-head 309 

attention matrix 𝑍𝑚𝑢𝑙𝑡𝑖 [Eq. (17)]. The multi-head attention is then multiplied to a weight 310 

matrix 𝑊𝑜 to get a new attention matrix 𝑍𝑛𝑒𝑤 that captures information from all attention 311 

heads [Eq. (18)]. 𝑊𝑜 is trained with the matrix 𝑍𝑚𝑢𝑙𝑡𝑖. 312 

𝑍𝑚𝑢𝑙𝑡𝑖 = [𝑍𝑖 , … 𝑍𝑛] (17) 313 

𝑍𝑛𝑒𝑤 = 𝑊𝑜 ∗ 𝑍𝑚𝑢𝑙𝑡𝑖 (18) 314 
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2.3.6. BERT 315 

Bidirectional Encoder Representations from Transformers (BERT) [61] is a language 316 

representation model of the transformer. This model was pre-trained on the BooksCorpus 317 

[92] and the English Wikipedia data. Through pre-training, BERT introduces knowledge 318 

about general English into the POS tagger. Knowledge about general English is helpful to 319 

increase the POS tagger’s performance on building codes, because these building codes are 320 

written in English. BERT is trained to predict masked words in a sentence and decide if the 321 

second sentence in a pair of sentences is actually the sentence after the selected sentence 322 

in the training text or just a randomly selected sentence. The BERT model achieved the 323 

state-of-the-art performance in 11 NLP tasks with fine-tuning. Information of the different 324 

available versions of BERT is provided in Table 1. “Large” models have more layers, larger 325 

hidden states, more heads, and more parameters than “base” models. The fine-tuning of 326 

pre-trained models allows the neural network model to reach high accuracy on a small 327 

dataset [93]. 328 

Table 1. Available Versions of BERT 329 

Cased Size 

Number 

of 

Layers 

Size of 

Hidden 

State 

Number 

of 

Heads 

Number of 

Parameters 
Comments 

Uncased Large 24 1024 16 340M Mask the same word. 

Cased Large 24 1024 16 340M Mask the same word. 

Uncased Base 12 768 12 110M  

Uncased Large 24 1024 16 340M  

Cased Base 12 768 12 110M  

Cased Large 24 1024 16 340M  

Cased Base 12 768 12 110M Trained on 104 Languages 

Uncased Base 12 768 12 110M Trained on 102 Languages 

N/A Base 12 768 12 110M Trained on Chinese 
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3. Methodology 330 

To develop a POS tagger tailored to building codes, the authors combined multiple state-331 

of-the-art techniques such as error-driven transformational rules, recurrent neural networks, 332 

dropout layers, and pretrained models. At the core, the proposed POS tagger has two main 333 

components, a neural network model and a set of error-driven transformational rules. The 334 

neural network model initially predicts the POS tag of a word. The error-driven 335 

transformational rules fix errors made by the neural network model. The neural network 336 

model has a pre-trained model and multiple trainable layers (i.e., bi-directional LSTM-337 

RNN layer, GRU layer, dropout layer, and TimeDistribute layer). The pre-trained model 338 

brings the general linguistic knowledge (i.e., English grammar) into the POS tagger. The 339 

authors fine-tune the pre-trained model on a dataset of building codes to customize the pre-340 

trained model with AEC domain knowledge. The bi-directional LSTM-RNN layer and 341 

GRU layer capture task-specific information (i.e., how building codes were drafted, and 342 

construction terminologies). The dropout layer alleviates overfitting. The TimeDistribute 343 

layer outputs the result. A POS tagger search strategy was proposed in this research to 344 

efficiently search for a well-performing POS tagger configuration.  345 

3.1. POS Tagger Architecture 346 

The architecture of the proposed POS tagger is shown in Figure 3, which illustrates: (1) an 347 

overview of the POS tagger components, and (2) how information flows between 348 

components. The inputted building codes are firstly tagged by the neural network model 349 

and afterwards processed by the error-driven transformational rules to fix errors made by 350 

the neural network model.  351 
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The neural network model has two parts, a pre-trained model and additional trainable layers. 352 

The pre-trained model uses existing models published by other researchers or 353 

commercial/non-profit organizations. These were trained on large bodies of corpus. Many 354 

widely used pre-trained models can be inserted here such as Open AI GPT-2 [94], BERT 355 

[84], and ELMO [95]. This design allows the comparison between different pre-trained 356 

models in this context and the selection of the best-performing model. Weights of the pre-357 

trained model were locked, which made them untrainable in the current context. The 358 

untrainable nature of the pre-trained models preserves the cross-domain, cross-application 359 

and cross-task information they collected in the original training process. On top of the pre-360 

trained models, there are trainable layers. Weights of trainable layers will be updated in the 361 

training process, allowing trainable layers to capture the domain-specific, application-362 

specific, and task-specific information in building code POS tagging. The architecture of 363 

this model allows substitution and therefore comparison between different types of neural 364 

network layers. The error-driven transformational rules are designed to correct errors of a 365 

neural network model. 366 
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 367 
Figure 3. The Architecture of the Proposed POS Tagger 368 

 369 
3.2. POS Tagger Search Strategy 370 

Grid search is the most comprehensive way to find the optimal combination of pre-trained 371 

models, trainable layers and the number of training epochs by exhaustively searching every 372 

possible combination. A global grid search is inefficient, however, because many 373 

combinations that are unlikely optimal will be attempted. The authors developed a three-374 

step searching strategy (Figure 4) that can reduce the time to find the optimal combination 375 

by ruling out combinations that have low probabilities of being optimal. The first step of 376 

this search strategy is finding the best performing combination of epochs of training and 377 

trainable layers by attempting all possible combinations of them while replacing the pre-378 

trained model with a random number embedding layer. Because the pre-trained model has 379 

been replaced with a random number embedding layer to save training time, grid search is 380 

made possible and efficient. An embedding layer converts text strings to vectors of 381 

numbers based on the context of the text string and the nature of the embedding layer (e.g., 382 
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the algorithm used in the layer and the size of the output vector). The pre-trained models 383 

will be used to instantiate the embedding layer later in the proposed method. A random 384 

number embedding layer is a type of embedding layer that directly maps words to vectors 385 

of the random numbers without considering the words’ context. It is much smaller and 386 

simpler than the pre-trained models and requires significantly less time to train. In this step, 387 

the authors intend to find a well performing combination of epochs of training and trainable 388 

layers in a short timeframe, so the random number embedding layer is used to help achieve 389 

that. In the second step, the random number embedding layer is substituted with different 390 

pre-trained models in the locally best-performing combination of number of epochs and 391 

trainable layers that was identified in the first step. This step is aimed to find a well 392 

performing pre-trained model. In the last step, the authors increase the number of trainable 393 

layers until the accuracy of the POS tagger stops increasing to identify the optimal number 394 

of trainable layers. The selection of the hyper-parameters ceases when the authors cannot 395 

increase the performance of the model further in a meaningful way or if the performance 396 

is satisfactory. 397 
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 398 
Figure 4. The Three-step Approach for Efficient Grid Search  399 

4. Experiment 400 

4.1. Textual Data 401 

The proposed POS tagger was trained on the POS tagged building codes (PTBC) dataset 402 

[96], a dataset that consists of 1,522 POS tagged sentences in chapters 5 and 10 of the 2015 403 

International Building Code (IBC). In total, the PTBC dataset has 39,875 tokens. A token 404 

is the smallest unit in POS tagging, such as a word or a punctuation. For example, the word 405 

“means” and the period are two tokens in the sentence “The means of egress shall have a 406 

ceiling height of not less than 7 feet 6 inches.” which has 18 tokens in total. The split of 407 
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the dataset into training, validation, and testing data is shown in Figure 5: 40% of the 408 

dataset as training data, 10% of the dataset as validation data, and 50% of the dataset as 409 

testing data. Furthermore, the first 90% of the testing data was further used as the training 410 

data of the error-driven transformation rules, which was then tested on the rest of the data. 411 

Seven state-of-the-art machine taggers were used to tag the textual data, including: (1) the 412 

NLTK tagger [97], (2) the spaCy tagger [98], (3) the Standford coreNLP tagger [99], (4) 413 

A Nearly-New Information Extraction System (ANNIE) tagger in the General Architecture 414 

for Text Engineering (GATE) tool [37], (5) the Apache OpenNLP tagger [100], (6) the 415 

TreeTagger [41], and (7) the RNNTagger [41, 101]. The seven machine taggers were 416 

selected because of their high-accuracy, ease of use, and free availability. The most 417 

commonly chosen POS tag of words by the machine taggers formed the machine-tagged 418 

result. Five human annotators then independently POS tagged the textual data and the most 419 

commonly seen tag was chosen for each word. All human annotators are proficient in 420 

English and have sufficient background knowledge to understand building codes. POS tags 421 

of words by the human annotators formed the gold standard. In both the machine-tagged 422 

result and the gold standard, the most commonly chosen POS tag is selected by highest 423 

count, meaning that the POS tag that is selected by the most machine taggers or human 424 

annotators is selected. For example, if four machine taggers tag the word “doorways” as 425 

Plural Noun (NNS), one machine tagger tags the word as 3rd person singular present verb 426 

(VBZ). The most commonly chosen POS tag of the word “doorways” is selected to be 427 

Plural Noun (NNS), in the machine-tagged result. If there is a tie, the authors break the tie 428 

by selecting the tag they deem most appropriate. In the generation of the gold standard, the 429 

authors developed a new labeling method in which human annotators address the 430 
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differences between tagging results of different machine taggers. If all machine taggers tag 431 

a word identically, human annotators do not need to change the tag by machine taggers. 432 

For words that different machine taggers select different POS tags, human annotators are 433 

presented with all tags assigned by machine taggers as options to select from. To account 434 

for the risk that a word is not correctly tagged by any machine taggers, human annotators 435 

are allowed to assign a POS tag outside the provided tags as well. Human annotators also 436 

can change the POS tag of words that machine taggers reached a consensus on. Such 437 

changes will need to be discussed and get consensus from all human annotators [102]. The 438 

human annotators’ tagging results reached an initial inter-annotator agreement of 0.91, 439 

which ensured the quality of the gold standard. The dataset contains the POS tags given by 440 

all seven machine POS taggers and five human annotators, the most commonly chosen tag 441 

by machine POS taggers and human annotators. In this experiment, the proposed POS 442 

tagger was trained to tag the textual data as closely as possible to the most commonly 443 

chosen tag by human annotators (Figure 6). 444 

 445 
 446 

 447 
Figure 5. Split of Training, Validation, and Testing Data  448 
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 449 
Figure 6. POS Tagger Goal 450 

 451 
4.2. Step 1: Select the Number of Epochs of Training and the Trainable Layer 452 

There were two types of trainable layers studied in this research: (1) bidirectional LSTM, 453 

and (2) bidirectional GRU. The number of epochs of training cannot be predicted before 454 

training [103]. The authors decided to train the model 15 epochs and 50 epochs (arbitrarily 455 

selected numbers) to analyze the impact of epochs of training on the performance of the 456 

model. The trainable layers were layers of bidirectional LSTM or bidirectional GRU. The 457 

size of trainable layers was 128. Between trainable layers, there were dropout layers with 458 

a dropout rate of 0.4. The authors selected hyper-parameters such as epochs of training, 459 

trainable layer size, and dropout rate based on their past experience in deep learning. Neural 460 

network models with these hyper-parameters generally perform well on a wide range of 461 

tasks. Although it is possible to do a more thorough search on hyper-parameters, it is out 462 

of the scope of this paper. The random number embedding layer significantly saved the 463 

training time and allowed grid research in this step. The authors attempted four possible 464 

combinations (Figure 7): (1) one layer of bidirectional GRU model that was trained 15 465 

epochs, (2) one layer of bidirectional GRU model that was trained 50 epochs, (3) one layer 466 

of bidirectional LSTM model that was trained 15 epochs, and (4) one layer of bidirectional 467 

LSTM model that was trained 50 epochs. 468 



26 

 

 469 
Figure 7. Models Trained in Step 1 470 

 471 
4.3. Step 2: Search a Well-performing Pre-trained Model 472 

Although there were multiple potentially well-performing pre-trained models available, the 473 

authors selected BERT, which had achieved the state-of-the-art performance on multiple 474 

NLP tasks with little fine-tuning needs [61]. The authors tested the eight available versions 475 

of BERT: (1) BERT-Large, Uncased (Whole Word Masking), (2) BERT-Large, Cased 476 

(Whole Word Masking), (3) BERT-Base, Uncased, (4) BERT-Large, Uncased, (5) BERT-477 

Base, Cased, (6) BERT-Large, Cased, (7) BERT-Base, Multilingual Cased, and (8) BERT-478 

Base, Multilingual Uncased. Therefore, eight models were trained in this step, 479 

corresponding to the eight versions of BERT (Figure 8). All of them shared the same 480 

trainable layers and were trained the same number of epochs. 481 
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 482 
Figure 8. Models Trained in Step 2 483 

 484 
4.4. Step 3: Search the Optimal Number of Trainable Layers 485 

Stacking multiple trainable layers could possibly achieve higher precision by capturing 486 

more features in the textual data. However, too many trainable layers may lead to 487 

overfitting. To find the optimal number of trainable layers, the authors decided to increase 488 

the number of trainable layers and dropout layers until the precision stops increasing. There 489 

were two models trained in this step: Model 13, which has two bidirectional LSTM layers 490 

and Model 14, which has three bidirectional LSTM layers (Figure 9). 491 
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 492 
Figure 9. Two Models Trained in Step 3 493 

 494 
5. Results and Discussion 495 

To find a well-performing combination of epochs of training, pre-trained models, and 496 

trainable layers to use in the POS tagger, the authors trained 14 models (Table 2). The best-497 

performing POS tagger had a combination of one bi-directional LSTM trainable layer, 498 

BERT_Cased_Base pre-trained model, and was trained for 50 epochs. This model (Model 499 

9 in Table 2) reached the highest accuracy after applying transformational rules. The 500 

optimization of the deep learning component of this POS tagger is out of the scope of this 501 

paper, which may be pursued in future research.  502 

 503 
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Table 2. Summary of the Performance of Models 504 

Model 
Before Applying Rules After Applying Rules 

Precision Recall F1-score Precision Recall F1-score 

1 39.02% 17.91% 19.88% 61.59% 51.94% 43.71% 

2 89.67% 87.65% 88.14% 93.68% 93.78% 93.64% 

3 36.45% 17.41% 20.37% 61.82% 49.93% 43.62% 

4 90.15% 87.76% 88.34% 93.53% 93.44% 93.41% 

5 90.57% 88.60% 88.87% 94.98% 94.99% 94.88% 

6 91.06% 88.64% 89.01% 94.73% 94.75% 94.63% 

7 90.40% 88.37% 88.68% 94.16% 94.32% 94.14% 

8 89.29% 87.24% 87.60% 93.50% 93.70% 93.49% 

9 91.89% 89.71% 90.06% 95.11% 95.42% 95.20% 

10 91.49% 89.32% 89.78% 94.50% 94.70% 94.51% 

11 89.70% 87.56% 87.80% 94.23% 94.56% 94.33% 

12 87.84% 85.92% 86.12% 93.31% 93.03% 93.04% 

13 91.81% 89.81% 90.19% 95.04% 95.32% 95.08% 

14 91.43% 89.82% 90.07% 94.64% 94.89% 94.70% 

5.1. Step 1 Result: Epochs of Training and Trainable Layers Combination 505 

Figure 10 demonstrates the influence of the trainable layer and the epochs of training on 506 

the accuracy of POS tagging. For both trainable layers, increasing the number of epochs 507 

can increase the precision. However, when the number of epochs was 15, the precision of 508 

the bi-directional LSTM model was lower than that of the bi-directional GRU model. When 509 

the number of epochs was 50, the precision of the bi-directional LSTM surpassed that of 510 

the bi-directional GRU model. This shows that the optimal number of epochs for different 511 

pre-trained models could be different.   512 
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 513 
Figure 10. Influence of Epochs of Training and Trainable Layers to Precision 514 

 515 

5.2. Step 2 Result: The Best-performing Pre-trained Model 516 

The precision, recall, and F1-score of models with different pre-trained models are shown 517 

in Figure 11. All models trained in this step share the same trainable layer and the same 518 

number of epochs of training (50). The BERT_Base_Cased model achieved the highest 519 

precision, recall and F1-score. The average precision for models with cased models is 91.03% 520 

and that for models with uncased models is 89.53% (Figure 11). It shows cased information 521 

is useful in the POS tagging of building codes. The average precision for models with large 522 

models is 90.60% and that for models with base models (excluding multilingual models) 523 

is 91.15%. The two multilingual models were excluded in the comparison because there is 524 

no large multilingual model and the current POS tagging task is not multilingual. It may be 525 

counterintuitive because larger models generally achieve higher accuracy than smaller 526 
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models. The authors suggest that more training data is needed to release the full potential 527 

of large pre-trained models. 528 

 529 

Figure 11. Precision, Recall and F1-score of Models with Different Pre-trained Models 530 
 531 

5.3. Step 3 Result: The Optimal Number of Trainable Layers 532 

After the best-performing pre-trained model was identified, the authors started to identify 533 

the optimal number of trainable layers. Result of this attempt is illustrated in Table 3. The 534 

model with one layer of bidirectional LSTM reached the highest precision. Precision of 535 

models decreases as the number of layers increases. The authors concluded that more data 536 

is needed to leverage the power of additional trainable layers. 537 

Table 3. Number of Trainable Layers vs. Precision 538 
Layers of Trainable Layers Precision 

1 91.49% 

2 89.79% 

3 87.84% 

5.3.1 Effectiveness of Error-driven Transformational Rules. 539 

This research also confirmed the effectiveness of error-driven transformational rules 540 

(Figure 12). The average precision after applying transformational rules is 94.57%. 541 

Although the precision before applying transformational rules varied with pre-trained 542 
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models and trainable layers, the precision after applying the transformational rules all 543 

increased. Moreover, POS taggers with higher pre-rule-application precision will also have 544 

a higher post-rule-application precision. The transformational rules increase the precision 545 

of POS tagger by a margin of 4.02%. The average training accuracy and testing accuracy 546 

of all models that use pre-trained models are 95.45% and 94.57%, respectively. The 547 

average training accuracy of the models was only 0.88% higher than their average testing 548 

accuracy (Figure 13), which alleviated overfitting concerns. The authors also compared the 549 

performance of the proposed tagger against the performance of other state-of the-art POS 550 

taggers on the PTBC dataset [102] (Figure 14). 551 

 552 
Figure 12: Precision of Each Model Before and After Applying Transformational Rules  553 

 554 
Figure 13: Training and Testing Accuracy of Models 555 
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 556 
 557 

Figure 14. Comparison with State-of-the-art POS Taggers 558 

5.3.2. Effectiveness of GRU 559 

The bi-directional GRU model without BERT can achieve a precision that is comparable 560 

to bi-directional LSTM model that is enhanced by BERT. A significant amount of training 561 

time can be saved if there is no pre-trained model to fine-tune. The hardware requirement 562 

to fine-tune pre-trained models is also significantly higher than that of the random 563 

embedding layer. Directly using the bi-directional GRU model can save training time and 564 

cut hardware investment while the compromise on the precision of the POS tagger is within 565 

an acceptable range. 566 

5.3.3 Tagging Example 567 

To validate this POS tagger, the authors compared the POS tagging result of this POS 568 

tagger to a baseline tagger which is a state-of-the-art generic POS tagger. As an example, 569 

the baseline tagger incorrectly labeled “horizonal” as a noun. This error may lead to 570 

incorrect extraction of embedded engineering knowledge in building codes. In contrast, the 571 

proposed POS tagger correctly labeled the word as an adjective. The automated code 572 

compliance checking system has a better chance to correctly extract the embedded 573 
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engineering knowledge in the building codes by the proposed POS tagger, compared to 574 

state-of-the-art generic POS taggers. 575 

5.3.4 Impact of Data Split Scenarios 576 

To analyze the impact of different training/testing data split scenarios on the precision, 577 

recall, and f1-score, the authors reported the precision, recall, and f1-score of the proposed 578 

POS tagger on two other training/testing split methods. The second training/testing split 579 

method is using: (1) 60% of the entire dataset as the training dataset of the neural network 580 

model, (2) 20% of the entire dataset as the validation dataset of the neural network model, 581 

(3) 20% of the entire dataset as the testing dataset of the neural network model, (4) 80% of 582 

the entire dataset as the training dataset of the error-driven transformational rules, and (5) 583 

20% of the entire dataset as the testing dataset of the error-driven transformational rules 584 

(Table 3). The third training/testing split method is using: (1) 60% of the entire dataset as 585 

the training dataset of the neural network model, (2) 20% of the entire dataset as the 586 

validation dataset of the neural network model, (3) 20% of the entre dataset as the testing 587 

dataset of the neural network model, (4) 90% of the testing dataset of the neural network 588 

model as the training dataset of error-driven transformational rules, and (5) 10% of the 589 

testing dataset of the neural network model as the testing dataset of error-driven 590 

transformational rules (Table 4). Results in all training/testing split scenarios showed 591 

consistency in: (1) the improvements of performance when using error-driven 592 

transformational rules, (2) the improvement of performance over the state of the art. 593 

 594 
Table 4. Results of Second Training/Testing Split Method 595 

Model 
Before Applying Rules After Applying Rules 

Precision Recall F1-score Precision Recall F1-score 

1 91.15% 89.39% 89.95% 93.10% 92.80% 92.82% 
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2 92.86% 91.21% 91.72% 94.82% 94.60% 94.64% 

3 77.80% 72.13% 71.64% 83.58% 85.35% 83.37% 

4 92.98% 91.20% 91.76% 94.62% 94.25% 94.31% 

5 91.97% 90.30% 90.76% 96.04% 95.84% 95.56% 

6 92.26% 90.28% 90.84% 96.25% 96.22% 95.99% 

7 91.93% 90.32% 90.70% 96.00% 95.94% 95.65% 

8 90.49% 89.28% 89.49% 95.85% 95.67% 95.37% 

9 93.18% 91.82% 92.18% 96.43% 96.35% 96.08% 

10 92.58% 91.17% 91.51% 96.31% 96.27% 96.00% 

11 91.70% 89.90% 90.40% 95.79% 95.77% 95.44% 

12 89.56% 87.93% 88.28% 95.04% 95.02% 94.70% 

13 93.02% 91.65% 92.01% 96.40% 96.22% 95.94% 

14 92.90% 91.77% 92.00% 96.83% 96.62% 96.28% 

 596 
 597 

Table 5. Results of Third Training/Testing Split Method 598 

Model 
Before Applying Rules After Applying Rules 

Precision Recall F1-score Precision Recall F1-score 

1 91.17% 89.86% 90.23% 92.48% 92.32% 92.25% 

2 92.83% 90.59% 91.27% 93.60% 93.19% 93.32% 

3 77.91% 69.31% 69.47% 80.81% 80.24% 78.11% 

4 92.88% 90.65% 91.34% 93.25% 92.97% 93.03% 

5 92.07% 90.49% 90.90% 95.11% 94.71% 94.85% 

6 92.06% 90.01% 90.61% 94.61% 94.27% 94.32% 

7 91.62% 90.17% 90.43% 93.18% 92.62% 92.79% 

8 90.79% 89.28% 89.61% 93.87% 93.50% 93.59% 

9 93.23% 91.47% 91.96% 96.12% 95.70% 95.84% 

10 92.25% 90.82% 91.20% 94.73% 94.49% 94.55% 

11 91.90% 90.14% 90.51% 95.26% 94.93% 95.06% 

12 90.31% 88.79% 89.29% 93.07% 92.62% 92.70% 

13 92.83% 91.12% 91.49% 95.99% 95.48% 95.65% 

14 92.73% 91.30% 91.60% 95.51% 95.26% 95.32% 

 599 

6. Contributions to the Body of Knowledge 600 

This research has contributions in both theory and practice. Theoretically, it has two main 601 

contributions to the body of knowledge. First, it provides a hybrid deep-learning and rule-602 

based method to enhance performance of POS taggers on domain specific texts. The 603 
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combination of deep learning neural network models and error-fixing transformational 604 

rules makes the proposed POS tagger outperform the state-of-the-art POS taggers with 605 

limited amount of training data. Many current state-of-the-art POS taggers were trained on 606 

the Penn Treebank (PTB) corpora which has 2,499 articles (each article contains tens, if 607 

not hundreds, of sentences). This POS tagger was trained on a dataset of only 1,522 608 

sentences. Second, this research shows the potential of deep learning in automated building 609 

code information extraction. The promising results of deep learning on the POS tagging of 610 

building codes paved the way to more applications of deep learning in automated building 611 

code compliance checking and engineering tasks in the AEC domain in general. In practice, 612 

the impact of this work on the AEC domain could be profound. It provides a more accurate 613 

POS tagger for building codes comparing to the state of the art, which will help automated 614 

code compliance checking systems to check more building code requirements 615 

automatically. The extension of checkable building code requirements could bring 616 

automated code compliance checking systems one step closer to a wide real-world 617 

deployment. 618 

7. Limitations and Future Work 619 

One main limitation of this work is acknowledged: the POS tagger still is not error-free. In 620 

spite of its improvement over the state of the art, this POS tagger may still not be accurate 621 

enough to support an error-free extraction of embedded engineering knowledge in building 622 

codes. Errors in POS tagging may have negative effect on the performance of NLP-based 623 

automated building code compliance checking systems that leverage it. The authors suggest 624 

that research to further increase the accuracy of POS taggers is still needed. The authors 625 
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also plan to develop automated code compliance checking systems that have the robustness 626 

to tolerate a small amount of POS tagging errors. 627 

8. Conclusion 628 

The ability to provide accurate POS tagging results of building codes paves the way to 629 

automated regulatory information extraction and widens the possible range of applicable 630 

code requirements of automated code compliance checking systems. The authors proposed 631 

a new POS tagger to support such systems. This is the first POS tagger that is tailored to 632 

building codes. The POS tagger gained information on general English by incorporating 633 

pre-trained deep learning models and captured AEC domain specific knowledge by fine-634 

tuning on a domain-specific corpus. The POS tagger directly maps inputted words to POS 635 

tags without feature engineering. This nature of deep learning allows future domain experts 636 

to enhance the performance of this tagger by directly leveraging more training data. The 637 

experiment showed that the bi-directional GRU model without pre-trained models can 638 

reach a high precision that is comparable to the precision of the bi-directional LSTM 639 

models with pre-trained models. Using bi-directional GRU model can save time and cost 640 

to train a POS tagger, without significantly compromising precision. Although more 641 

training data may help unleash the full potential of pre-trained models and further improve 642 

performance, the authors were able to achieve a 95.11% precision using one bi-directional 643 

LSTM trainable layer and BERT_Cased_Base pre-trained model in combination with 644 

error-driven transformational rules, which significantly increased over the state-of-the-art. 645 
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