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Abstract: Let Z be a principal circle bundle over a base manifold M equipped with an
integral closed 3-form H called the flux. Let Z be the T-dual circle bundle over M with
flux H. Han and Mathai recently constructed the Z,-graded space of exotic differential
forms AX (Z ). It has an additional Z-grading such that the degree zero component coin-

cides with the space of invariant twisted differential forms Qk (Z H )T and it admits a
differential that extends the twisted differential dj = d + H.The T- duality isomorphism

Qk(Z 0T - QK+ (Z H )T of Bouwknegt, Evslin and Mathai extends to an isomor-
phism Qk(Z H) — AR+T (Z) In this paper, we introduce the exotic chiral de Rham
complex A Hk (Z ) which contains Ak (Z ) as the weight zero subcomplex. We give an

isomorphism Q"> k(Z) — Ach H T (Z) where Q¢h-H:k (Z) denotes the twisted chiral
de Rham complex of Z, which chiralizes the above T-duality map.

1. Introduction

A space of exotic differential forms with an equivariantly flat superconnection [30] was
first defined on loop space in the paper [18], which we now briefly recall here.

Let (H, By, Fup, Log) denote a gerbe with connection on Z (cf. [7]), where (H, By,
Fyp) denotes the Deligne class of the closed integral 3-form H with respect to a Brylinski
open cover (cf. [18]), and Lyg denotes the line bundles on double overlaps that determines
the gerbe G. The holonomy of the gerbe is then a line bundle £ with connection d +1 (By)
having curvature T(H) on loop space LZ, where T denotes the transgression map. We
consider the space of invariant exotic differential forms on loopspace LM, Qk (LZ, E)S]
with exotic differential D = V£ —i K+ H, where V£ is the connection on the holonomy
line bundle £ given locally by d +7(By), ik is contraction by the rotation vector field K,
and H denotes the 3-form on LZ given by the canonical extension of H to loopspace.

Then a computation in [18] shows that D? = Lk, sothat D2 = 0 on QE(LZ, £)Sl.
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LetT — Z 5> Mbea principal circle bundle over a base manifold M with back-
ground T- invariant flux H, which is a closed 3-form on Z. Then there is a T-dual circle

bundle T - Z 5 X with T-dual background T invariant flux A which is a closed
3-form on Z such that ¢;(Z) = 7.[H] and cl(Z) = m.[H], and the constraint that
[H] = [H ] on the correspondence space Z Xy Z ensures that [H ] is uniquely defined.
This is the setting of [4,5]. Let L = Z x1 C and L=7 x# C denote the associated
line bundles over the base space M.

The precise relation between [18,19] is that when Z is the total space of a principal
circle bundle, then there is a natural infinite sequence of embeddings ¢, : Z — LZ
defined by 1,,(x) : S' 5 ¢ = y,(t) = t" - x, forall n € Z. We consider such sequence of
embeddings motivated by the fact that there are Z many connected components in the
loop space LT. We have ¢;(L) = n*(L)®” since they have the same Chern class. The
loop space LZ has the natural circle action by rotating loops, and Z has a circle action
as the total space of circle bundle. To tell the difference of these two circle actions, we
use S! for the circle action by rotating loops, and T for the free circle action on Z as a
principal circle bundle. We have that for n # 0,

QN Lz, 08 — @5z, n*(LE")T

intertwines the equivariantly flat superconnections D and VL tyy + H on both
spaces. Here v is the vector field on Z which infinitesimally generates the action of T.
This point of view does motivate us to develop the exotic theories on Z.

Recall that the local T-duality rules, called the Buscher rules, were written in [1,10,
11]. The relation of T-duality with K-theory in the absence of an H-flux was studied
in [17,20], and in the presence of an H-flux in [4,5] where for the first time there was
topology change between spacetime and its T-dual. See also [6,9,31-33] for alternate
approaches to T-duality. In [19], the T-duality isomorphism given in [4,5] was extended
to a mapping from the full space of complex-valued differential forms defined on a
principal circle bundle. In doing so, the striking result obtained was that the T-dual data
of this space is given by the space of exotic differential forms defined on the T-dual
principal circle bundle. The definition of exotic differential forms was inspired by their
previous work, [18].

In order to define this T-duality mapping, let L, L denote the complex line bundles
associated to the circle bundles Z, Z with the standard representation of the circle on
the complex plane respectively. The exotic differential forms are then given by

A2y =P AL = Ptz @),

nez nez
A2 =PADT =Ptz zrwey)T
nez nez

fork = k mod 2, and where we have taken the direct sum above to be the Fréchet space
completion of the standard direct sum. This definition of the direct sum (as a completion)
will be the implicit definition from here on out when using direct sums in the context of
the exotic structures. Note that in [19], the notatlon Ak (V4 )T and .Ak V4 )T is used instead
of Ak (Z) and Ak (Z ); we have dropped the T and T invariant notation on the direct sums
for simplicity.

Now define the subspace of weight —n differential forms on Z to be,

QL (Z2) :={w e Q"(Z2)| Lieyw = —nw}, (1
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where Lie, denotes the Lie derivative along v. We observe that
Q5(2) = @), AT DT = (@D)".
Then under the above choices of Riemannian metrics and flux forms, the results of [19]
show that there is a sequence of isometries,
0, @k (2) > AT, @)

defined by the exotic Hori formula from Z to Z given in [19] for k = k mod 2, where
the twisted de Rham differential d + H maps to the differential —(ﬁ*VL®n — o+ H),
and we observe that o = T. One similarly has a sequence of isometries,

on: AT - Q1 (2), 3)

defined by the inverse exotic Hori formula form Z to Z given in [19] for k = k mod 2,
where the differential VL tny + H maps to the twisted de Rham differential
= (d + H), and oy = T. Similarly, one can define the sequences of isometries 7,,, 3, on
Z. Although the extension of the Fourier-Mukai transform to all differential forms on Z
is slightly asymmetric, one has the following crucial identities, verified in [19]:

d=35,01: 9k, (2) — 9k, (2), )
—1d =% 00u: AT — AE(2)T. )

This is interpreted as saying that T-duality, when applied twice, returns the object to
minus itself, which arises due to the convention of integration along the fiber. This was
a result previously verified in [4,5] for the special case of when n = 0.

This shows that for each of either Z or Z, there are two theories (at degree 0 the two
theories coincide), and there are also graded isomorphisms between the two theories of
both sides. o N

Moreover, when n # 0 the complex (A’,‘,+1 2)7, VL _ tyo + H) has vanishing

cohomology. Therefore, when n # 0 the complex (Q% (Z),d + H) also has vanishing
cohomology. In [19], an explicit homotopy is constructed to show this. We mention
that, inspired by [19], exotic Courant algebroids were defined in [12] where the T-
duality isomorphism in [8] for invariant Courant algebroids was extended to a T-duality
isomorphism of exotic Courant algebroids.

1.1. Chiralization. The chiral de Rham complex is a sheaf of vertex algebra Qﬁf} on any

smooth manifold M that was introduced by Malikov, Schechtman, and Vaintrob in [34].
It has had a tremendous impact on string theory in the last 20 years; see for example
[3,21,36]. The global section algebra Q"'(M) has an N-grading by conformal weight,
and it chiralizes the de Rham complex (€2 (M), d) in the sense that it admits a differential
D which preserves the weight spaces, and the weight zero subcomplex (" (M)[0], D)
is isomorphic to (2(M), d). R

In this paper, we chiralize the space of exotic differential forms on Z to the vertex
algebra of exotic chiral differential forms

A (Z) = @D A (2).

nez
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This is the global section algebra of a sheaf of Z-graded vertex algebras on Z. We

denote the graded components by ACh A, k(Z) for k € Z,. Unlike the chiral de Rham
complex, A H (Z ) is naturally equipped only with a filtration, not a grading, by weight:

ANE Do € AMA Dy € AMA Dy € ooy AN Z) = (A 2y,
i>0

(0)

We also equip A" H (Z ) with an exotic differential D5 7 which shifts the Z,-grading and

preserves the weight filtration. This structure chlrahzes the exotic differential forms in

the sense that for all n, the weight zero subcomplex (ACh Hk (2) . D7 p)is isomorphic

to (.Ak (2), m*VE®" 5+ H). In fact, D> g is asquare-zero operator on A H (Z); the
proof requires a very delicate calculation and depends crucially on the nonassociativity
of the normally ordered product.

Using the flux H on Z, there is an H-twisted version of the chiral de Rham complex
Q°MH (7) which was introduced in [29]. It turns out to be isomorphic to Q" (Z) via an
untwisting trick; see Theorem 3 of [29], and for convenience, we use Q" (Z) instead
of QN(Z) throughout this paper. As in the case of differential forms, the T-action on
Z induces a Fourier decomposition Qeh-H (Z2) = @nez QCh H(Z), which again denotes
the Fréchet space completion of the standard direct sum. There is also a Z;-grading, and

we denote the graded components by Q,Clh H (Z) for k € Z,. Our main result is that

T-duality gives a degree shifting linear isomorphism
b @k (z) o AR (Z), (7)

foralln € Z.This map preserves the weight filtration and coincides with 7, : ok W(Z) —
ASL(Z)T on the weight zero subspace. These isomorphisms combine to yield a linear
isomorphism i o

TCh . QCh’H’k(Z) N ACh'H'k+l(/Z\). (8)

In fact, " is more than a linear isomorphism. We will also define a vertex algebra
isomorphism ¢! : Q- (Z) — AchH (Z) which preserves the Z,-grading. Regard-
ing Qeh-H (Z) and Ach-H (2) as modules over themselves, " intertwines the module
structures in the sense that

TP () = (D@ W) (zN (W), for all m € Z.

Here v is one of the generators of Q" (Z) regarded as a vertex algebra, and 1 €
Qh-H (7) regarded as a Q" (Z)-module.

By Theorem 2 of [29], the cohomology of Q" (Z) with respect to its twisted
differential Dy vanishes in positive weight, and coincides with the classical twisted
cohomology in weight zero. In weight zero, " intertwines the differentials Dy and
D7 i up to a sign, but unfortunately, this intertwining property no longer holds in
positive weight. It is therefore not obvious that the inclusion of complexes

ko ®n -~ or. =
(A(Z), 7V — g+ H) — (AMN(Z), D7 )

induces an isomorphism in cohomology, although we expect this to be the case. In the
last section, we will prove this in the special case where both circle bundles Z and Z are
trivial, and the fluxes H and H are both zero.
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Note that in the case n = 0, the isomorphism (7) does not recover the chiral T-duality
isomorphism of our previous paper [29], namely,

@M HEZ) Ly — g H) — @DERIZ) R0 e —al). ()

In particular, the n = 0 term on the left side of (7) is isomorphic to the T-invariant space
Qh-Hk(Z)T which is larger than the left side of (9). Moreover, the right side of (7) for
n = 0 is a different structure and is not a subquotient of the chiral de Rham complex
of Z. The T- duality isomorphism (8) in this paper is stronger and more natural than the
one in [29] because on the left side the entire chiral de Rham complex appears rather
than a subquotient. But the price we pay is that the object on the right side is a new
kind of vertex algebra sheaf which incorporates sections of a line bundle L on Z. This
construction is very special since it makes use of the fact that Z and Z are T-dual to each
other. An open question is whether it is possible to construct the exotic chiral de Rham
complex on more general manifolds with line bundles, generalizing the construction
given in this paper.

2. Vertex Algebras

In this section, we define vertex algebras, which have been discussed from various points
of view in the literature (see for example [2,14,15,22]). We will follow the formalism
developed in [27] and partly in [23]. Let V = V{y @ V] be a super vector space over C,
and let z, w be formal variables. Let QO(V') denote the space of linear maps

V= V(@) =) vmz " um) € V., v(n) =0 forn > 0}.

nez

Each a € QO(V) can be represented as a power series

a=a(z) = Za(n)z*"*‘ € End(V)[[z, z~ "1

nez

Each a € QO(V) is assumed to be of the form a = a° + a' where a' : Vi = Viej((2))
fori, j € Z/27, and we write |a'| = i.

For all n € Z, QO(V) has a bilinear operation defined on homogeneous elements
a, b by

a(w) (yb(w) = Res;a(2)b(w) (7= (w|( — w)" — (—DIUPIRes b(w)a(z) ()12 (z — w)".

Here vz~ w f(z, w) € CJ[[z, z~1 w, w™1]] denotes the power series expansion of a
rational function f in the region |z| > |w|. For a, b € QO(V), we have the following

identity of power series, known as the operator product expansion (OPE) formula.

a(z)b(w) = Za(w)(n)b(w) z—w) " a@bw) :. (10)

n>0

Here : a(z)b(w) : = a(z)_b(w) + (—=DPpw)a(z),, where

a(z)_ = Za(n)z_"—l’ az); = Za(n)z—n—l‘

n<0 n>0
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We write

a()bw) ~ Y aw)mbw) (—w)™"",

n>0

where ~ means equal modulo the term : a(z)b(w) :, which is regular at z = w.

Note that : a(w)b(w) : is a well-defined element of QO(V). It is called the normally
ordered product of a and b, and it coincides with a(_1)b. The other negative products
are given by

d
n!a(@)(—n-1nb@) =:"a@)b):, 3= e
Z

For ai(2), ..., ar(z) € QO(V), the iterated normally ordered product is defined to be
ra1(ax(z) - ap(z) t=1a1(2)b(2) 1 b(z) =:1ax(z)---ar(z) :. (11)

We often omit the variables z, w when no confusion can arise.

We denote the constant power series Idy € QO(V) by 1. A subspace A € QO(V)
containing 1 that is closed under all the above products will be called a quantum operator
algebra (QOA). Elements a, b € QO(V) are called local if if (z — w)Na(z), b(w)] =0
for some N > 0. Here [, -] denotes the super bracket. A vertex algebra is a QOA whose
elements are pairwise local. This definition is well known to be equivalent to the notion
of a vertex algebra in [15].

A vertex algebra A is generated by a subset S = {a;| i € I} if every a € A can be
written as a linear combination of nonassociative words in the letters a; for i € I and
the above products for n € Z. We say that S strongly generates A if every a € A can
be written as a linear combination of words in the letters a;, and the above products for
n < 0. Equivalently, A is spanned by

(oMay -0 may iy, .. im € 1, ki, ... ky > 0}, (12)

A very useful description of a vertex algebra A is a strong generating set {a;| i € I}
for A, together with a set of generators {by| k € K} for the ideal Z of relations among
the generators and their derivatives, that is, all expressions of the form (12) that vanish.
Given such a description, to define a homomorphism ¢ from A to another vertex algebra
B, it suffices to define ¢ (a;) for i € I and show the following.

(1) ¢ preserves pairwise OPEs among the generators; i.e., ¢ ((a;)ma;) = ¢ (a;) )P (a;)
foralli, j €e I andn > 0.
2) ¢(bx) =0forallk € K.

This will be our method of constructing vertex algebra homomorphisms in this paper.
A conformal structure on A s an element L(z) = Y, .7 Lnz "2 € A satisfying

L(z)L(w) ~ g(z —w) "+ 2L (w)(z — w) '+ IL(w)(z — w) !,

such that L_; acts by 9 on A and L acts diagonalizably. The constant c¢ is called
the central charge, and the grading by Lg-eigenvalue is called conformal weight. In
all our examples, the conformal weight grading is by the nonnegative integers. In the
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presence of a conformal weight grading, we always write ahomogeneous elementa(z) =
Y onez a(m)z7" ! in the form

Y a M@ g, =am+wia) — ). (13)

neZ

In this notation, for fields a, b € A, we have a,b = a@+wi@)—1)b-

A module M over a vertex algebra A is a vector space M together with a QOA
homomorphism A — QO(M). In particular, for each a € A, we have a field ap((z) =
Y onez AM (n)z7"~! where ayq(z) € End(M). If A and M are graded by conformal
weight, we write ap((2) = Y,z a2 "~ U@, and we require that a , has weight
—n.

3. The Chiral de Rham Complex

The chiral de Rham complex chh is a sheaf of vertex algebras on any nonsingular
algebraic variety Z, which was introduced by Malikov, Schechtman, and Vaintrob [34,
35]. As observed in [34], a similar construction also works in the setting of smooth
manifolds. However, the resulting object is no longer a sheaf, but instead is a weak sheaf
in the terminology of [25]. We briefly recall what this means. Suppose that we have a
family of sheaves of vector spaces {F, | n =0, 1, 2, ...} on a smooth manifold Z. The
direct sum F defined by F(U) = @, Fn(U) for an open set U C Z, is a presheaf
but not a sheaf. For example, in the case Z = R and each F;, a copy of the structure
sheaf C*°, if we cover R by an infinite collection of open intervals, one can use bump
functions to construct a family of sections which are compatible on overlaps but do not
give rise to a global section of F, that is, an element of the direct sum. However, F does
satisfy a slightly weaker version of the reconstruction axiom:

0— FWU) - [[Fwn = [[FwinU.

i,j

is exact for finite open covers {U;} of an open set U. Following [25], a weak sheaf is a
presheaf which satisfies this weaker exactness condition.

If Z is a smooth manifold, and U C Z is any open set, QCh(U ) is an N-graded
vertex algebra by conformal weight, and we denote the conformal weight n subspace
by QN(U)[n]. For each n, the assignment U +—> QM (U)[n] defines a sheaf of vec-
tor spaces on Z, and SZCZh is the weak sheaf of vertex algebras defined by QP(U) =

@nzo QN (U)[n]. Note that chh is not the sheafification of this presheaf, which is too

big to be a sheaf of vertex algebras. Similarly, the exotic chiral de Rham complex .ACZAh’H
that we will construct has only a filtration (6) by conformal weight. Each filtered com-
ponent A H (?)[i] is an ordinary sheaf, and the union of these components is a weak
sheaf. For simplicity, we will drop the word “weak" throughout this paper.

For a coordinate open set U C R" with coordinate functions yl, ..., ", the al-
gebra of sections QN (U) has odd generators b'(z) = Y nez bi,z_”_l and ¢l (z) =
ZneZ cﬁ,z_”, even generators ﬂi(z) = ZnEZ ﬂ,’;z‘"‘l, as well as an even generator
f@) =),z [nz™" for every smooth function f = fyl ... y™ e C®U). The
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field B¢ corresponds to the vector field 667, ¢’ corresponds to the 1-form dy?, and b’ cor-

responds to the contraction operator ¢, ,,,i. These fields satisfy the following nontrivial
OPE relations

, 9
B (2) f (w) ~ a—’i(w)(z —w),
14

b (2)ed (w) ~ 8ij(z — w) !,

(14)

which generalizes the formula 87 (z)y/ (w) ~ §;. jz— w)~ L. These OPE relations define
a Lie conformal algebra [22], and QP (U) is defined as the quotient of the corresponding
universal enveloping vertex algebra by the ideal generated by

n ) ‘
of — Z : a—)];ay’ :, cfg: —fg, 1 —Id. (15)
i=1

A typical element of Q"(U) is a linear combination of fields of form
. fatllbil c gt pirgdigit L adxcjsaelﬁkl L aetﬂktamlyll . amuylu ., (16)

where a;,d;,e; > 0 and m; > 1. In particular, there are no nontrivial normally or-
dered relations among the b', ¢/, B, 3y’ and their derivatives, so the set of all Poincaré-
Birkhoff-Witt monomials in these fields and their derivatives form a basis of Q*(U) as
a module over C*(U).

Now consider a smooth change of coordinates g : U — U’,

V== v Y==Y.

We get the following transformation rules:

. At _ofd .
d=: 8 i = L(g(y))b/ 5
ay’ % a7
si_ . 007 0% 1+ o' .«
=B = Tt — ——"b" .
B B o7 (€462) 077071 (g(V))aer
These new fields satisfy OPE relations
TiNxj —1 G\ F of —1
bl (w) ~ 6 jz—w)™, B f(w)~ 3—]7,.(1 —w) .
Here f = f(y!,....9")is any smooth function. Therefore g : U — U’ induces a ver-

tex algebra isomorphism ¢ : QMUY — QN(U’). Moreover, given diffeomorphisms

of open sets U LN Uy i) Us, we get ¢pog = ¢g o ¢p,. This allows one to define the
sheaf chh on any smooth manifold Z. Consider the following locally defined fields

n

n
J:Z:bici:, Q=Z:,Bici:,
i=1

i=1

n n
G:Z:bié)yi : L:Z:ﬁiayi c— bt (18)
i=1 i=1
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These satisfy the OPE relations of a topological vertex algebra of rank n [26].
L(z)L(w) ~2L(w)(z — w)_2 +0L(w)(z —w)~ L,
L) J(w) ~ —n(z—w) > +J(w)(z —w) >+ BJ(w)(z —w)~!
L()G(w) ~2Gw)(z —w) 7 + 3G (w)(z — w)~!
L) QW) ~ Qw)(z —w) > +3Q0w)(z —w) ™", (19)
J@J W)~ -nz—w) 2, G@Gw)~0, Q)Qw)~0,
J@Gw) ~ -Gw)z—w)™,  J@QwW) ~ Qw)z—w)~!,
0@)Gw) ~nz—w) 2 +Jw)(z—w) >+ Lw)z—w) "

Under g : U — U’, these fields transform as

L=L, G=0¢G,

- i - i 20
= refom(). @l (o))

Therefore L and G are globally defined on any manifold Z. Although J and Q are not
globally defined in general, the operators Jo and Q are well-defined. Note that Q°"(Z)
has a bigrading by degree and weight, where the weight is the eigenvalue of Lg and
degree is the eigenvalue of Jy. Also, Qg is a square-zero operator and we define the
differential D to be Q. It is vertex algebra derivation, that is, a derivation of all vertex
algebra products, and it coincides with the de Rham differential at weight zero. Note that
Gy is acontracting homotopy for D, i.e.,[D, Go] = L. This shows that the cohomology
H*(QP(Z), D) vanishes in positive weight. Each f has weight 0 and degree 0, ¢ has
weight 0 and degree 1, 8’ has weight 1 and degree 0, and b’ has weight 1 and degree
—1. Therefore the weight zero component of Q"(Z) is just 2(Z), and the embedding
Q(Z) — QCh(Z) induces an isomorphism in cohomology.

4. Coordinate-Free Description

For any open set U C Z, we may regard f € C®°(U) and w € QL(U) as sections
of QN(U) of weight zero and degrees 0 and 1, respectively. Given a vector field X
Vect(U), there are sections

(@ =) a7 Lx@ =) (Lx)az "
nez nez

in Q(U) of weight 1 and degrees —1 and 0, respectively, and the local description of
tx and Ly is given in [24]. Let ¥, ..., " be local coordinates and X = Y fi ﬁ

where each f; = fi(y!,..., ") is a smooth function. Then

n

LX:Z:f,-bi 3 LX:D(LX)ZZHBifi- ZZ 3fj dnl . @D
i=1 i=1

i=1 j=1

The next theorem' gives a useful coordinate-independent description of Q°"(U) when
U is a coordinate open set.

! The coordinate-free description of the relations is due to Bailin Song, and we thank him for sharing it
with us.
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Theorem 4.1. For a coordinate open set U C R", Q"(U) is strongly generated by the
following fields:

fecC®WU), weQ'U), Lx,ix, X e Vect(U). (22)
These satisfy the following OPE relations.

tx (2)y (w) ~ 0,
Lx @ty (w) ~ yx,yjw)z —w)™',  Lx(@Lyw) ~ Lix,yj(w)(z —w)~",
Lx(@w(w) ~ Liex(@)(w)(z —w)~",  x@w W) ~ ix(@)(w)(z —w)~",

Lx (@) fw) ~ X(Hw)z—w)™",  x(@)fw)~0,

(23)

The ideal of normally ordered relations among these fields is generated by the following
elements.

1-1d, :fg:—fg, vo:—ve, fgeC®U), v wecQ ),
lgXx— : 8LX Lex—:(dg)x:—:8Lx:, g € C®W), X € Vect(U),

n

d
W19 = Y50 g € CORD, ¢ e CVU).
i=1 Tt

(24)

Proof. For acoordinate open set with coordinates !, ..., ", (22) is a strong generating
set for QM (U) since it contains the above generators f € C®(U), b', ¢!, B’ as a subset.
Similarly, the set of relations (24) are all consequences of the set (15), which is a subset
of (24). O

We call an open set U C Z small if Q°P(U) has the strong generating set (22). We call
an open cover {Uy} of Z a small open cover if each Uy is small. Aside from coordinate
open sets, there is another type of small open set that will be useful. These are of the
form U x T where U is a coordinate open set, and T™ is a torus of rank m. The reason
such a set is small is that if y!, ..., y" are coordinates on T™ defined up to shifts by
2rik for k € Z, the corresponding fields dy’, ¢! = dy’, B, and b', are globally defined.
If # : Z — M is a principal circle bundle, we often choose a trivializing open cover
{V,} for M such that each V,, is a coordinate open set. Then {U, = 7 ~!(V,)} is a small
open cover for Z, and each U, =V, x T.

Even though Q*(U) contains the ring of smooth functions C>°(U) as the weight
zero subspace, it is not a C*°(U)-module because of the nonassociativity of the normally
ordered product. In other words, for f, g € C®(U) and v € QN (U),

1
(n+1)!

D(fQv: — s fgui=) (: @™ Hrgmv) = +@ D) (fv) 1)

n>0

and the right hand side need not vanish. However, Qch (U) is aloop module over C*°(U)
in the sense of [3], and QCZh is a sheaf of loop modules over the structure sheaf C*. For
practical purposes it can be treated like an ordinary sheaf of C°>°-modules since global
sections can be constructed by gluing local sections using a partition of unity. We thank
B. Song for explaining this to us.
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Remark 4.2. Given a sheaf of vertex algebras on a manifold M which is a sheaf of C*°-
loop modules, a local but coordinate-independent description is useful for the following
reason. To specify a homomorphism between two such sheaves Ay — By, itis enough
to give a vertex algebra homomorphism ¢, : A(Uy) — B(Uy) which intertwines the
C*°°-loop module structures, such that ¢, ¢g agree on the overlap U, N Ug. If we have
coordinate-independent generators and relations for A, and By, it suffices to show that
the OPEs among the generators are preserved and the ideal of relations is annihilated;
the agreement on overlaps is then automatic. This applies to morphisms of sheaves of
modules over such vertex algebra sheaves as well.

4.1. H-twisted chiral de Rham complex. Suppose that H is a closed 3-form on Z.
Recall from [29] that for a coordinate open set U, QM (U) has strong generators

Lyx,Tx(2), f, @ satisfying

ix(@)ty(w) ~ 0,
Lx @iy w) ~ (ipx.yi(w) + (xey HYw)) (2 = w) ™,
Lx@Lyw) ~ (Lix.yiw) + (Dixy H)Y(w)) (z — w) ™,
Lx(@aw) ~ Liex(@) )z —w)~!,  Ix(@dw) ~ ix(@)(w)(z —w) ™,
Lx@fw) ~X(H)z—-w)™',  ix@fw) ~0.
(25)
Note that txty H is a one-form v € QI(U ), and the notation tyty H means v, and
similarly for the other uses of the wide tilde notation above. The ideal of relations
among these fields has the same generating set (24) as the untwisted case, where each

field is replaced by the tilde version. The corresponding vertex algebra sheaves are all
isomorphic to the untwisted chiral de Rham sheaf.

Theorem 4.3. ([29], Theorem 3) Let {Uy} be a small open cover of Z. Define a map
QP (Uq) — Q7 Uy) by

x> 1y, Ly Lyx—ixH, [ f, o a. (26)
This is an isomorphism of vertex algebras for each Uy, and it defines a sheaf isomorphism
Qg = Qf

For the rest of this paper, we will work with the twisted version Q" (U), and for
simplicity of notation we shall drop the tilde symbols. Note that the chiral de Rham
differential D acts on the generators of Qh-H () as follows:

D(f)=df, D()=dw, D(x)=Lx—ixH,  D(Ly)=LxH.

Remark 4.4. Note thatin Q™ (U), the generators f, w are homogeneous of weight zero,
and ty is homogeneneous of weight one. However, Ly is not homogeneous with respect
to the conformal weight grading, but must be replaced with the element Ly — tx H,
which is homogeneous of weight 1.
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5. Fourier Decomposition

Suppose now that Z is a principal circle bundle over M, with circle denoted by T, which
wedenoteby : Z — M.Let H be anintegral closed 3-form on Z. By averaging over T,
we may assume without loss of generality that H is T-invariant since this does not change
the cohomology class [ H]. Let v denote the vector field infintesimally generated by T,
and fix a connection form A € QI(Z), normalized so t,A = 1. By abuse of notation,
we often denote ¢, by t4 in order to emphasize the duality between the vector field and
connection form. We will denote the even and odd fields in Q" (Z) corresponding to
v by L4 and ¢4, respectively.

Since H is T-invariant, we may write H = H 34+ A A H? where H3, H? are basic
forms, that is, elements of 7*(2(M)). For each open set U C Z, define

QMUY = {a € @ € QM (WU)YU)| (La)o(@) = na).
Then

oMWy = Peattw,

nez

where the direct sum denotes the Fréchet space completion of the ordinary direct sum.
Choose a trivializing open cover {V,} for M such that each V,, is a coordinate open set.
Then {U, = 7~ Y(V,)} is a small open cover for Z, and each Uy, =V, x T.

Note that Q(C)h’ Uy = Q0 H (U,)T and each weight space QM (U,,) for the action
of T is a module over Q(C)h’H(Ua). Moreover, Qf)h’H(Ua) has strong generating set

{tx, Lx, @, A, T X € Vecthor(Uy), f € TH(C®(Va)), @ € T*(Q' (Vo))

described in [29]. In this notation, Vectpor(Uy) = {X € Vect(Uy)| tx(A) = 0} is the
set of horizontal vector fields, and ' = G()A = G(1)d A, which has degree zero and
weight 1. Note that G has weight 2, so in our earlier notation (13) this is written as
' = G_1A = GodA. Recall that DT4 = A — £4, where £4 has degree 1, weight
1, and satisfies DEA = 0DA = DOJA. Also, recall that sA lies in the subalgebra of
QM H (U, generated by 7*(2(V,)), and in particular commutes with both 14 and L 4.

For convenience we recall the OPEs among the generators of Q(C)h’H ).

Lx(@Dty(w) ~ (L[X’YI +LxlyH3+ : A(Lxlsz) T+ (Lxlyﬁz)LA : )(z — w)_l,
Lx@Ly(w) ~ (Lix,y) + Lxty H® — ixLy H+ : H*(txty H?) : — : A(Lxty H?) :
+:A(xLyH?) : +: (Lxlyﬁz)LA D= (LXLyﬁz)LA B LA(lxlyﬁz) : )(w)(z —w) !,
Lx(@w(w) ~ Liex(@)(w)(z —w)™", Lx@) fw) ~X(fHw)z—w)",

ix(@ow) ~ (xo)w)(z—w) ™", x(@) fw) ~0,

Lx(@Aw) ~ (xHHw)z —w)™",  Lx@uaw) ~ (x HHw)(z —w) ™",
Lx@T*w) ~ —(xENH @)z —w) ™', x@I*(w) ~0,

La@I*w) ~G@—w) 2, @AW ~Ec—w)™",

La@ix(w) ~ —(xHH W)z —w)™ ', La)Lx(w) ~ —(xH)(w)(z —w)~'.
(27)
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Elements of Q,Clh‘H(U ) may be described locally as follows. If 6, is a coordinate on T
which is defined up to shifts by 27 ik fork € 7Z, then the function "% in local coordinates
lies in szh’H(Ua); moreover, elements of szh’H(U ) are all of the form : ¢"%q« : for
some o € QM (Uy). We have the following additional OPE relations.

Lx(@e" (w) ~0,  ix(2)e" (w) ~ 0,
La(2)e"% (w) ~ ne" (w)(z —w)™',  ta(@)e™ (w) ~ 0. (28)

"% (2)e™% (w) ~ 0, forall n, m.

These follow from the OPE relations (27) in Q" (U,,).

6. Exotic Twisted Chiral de Rham Complex

As above, letw : Z — M be a principal T-bundle with flux form H, which we may
assume to be T-invariant, and let A € Q!(Z) be a connection form normalized so that
taA = 1.Recall that 14 means the contraction ¢, along the vector field v infinitesimally
generated by T. Let 7 :Z — Mbe the T- dual principal T-bundle with T invariant flux
form H, and fix a connection form Aegq! (Z) normalized so that (3 A= 1. Again,
by abuse of notation ¢ 7 means the contraction «; along the vector ﬁeld v infinitesimally
generated by T.

Next, fix an open cover {V,} for M which trivializes both circle bundles, such that
each V,, is a coordinate open set on M. Then {U, = 7 1(V,)} and Ua = n_l(Va) are
small open covers for Z and Z, respectively. Since H is T-invariant, it can be written in
the form H = H3+ A A H? where H? € 71*(93(M)) and H2 € n*(QZ(M)) Similarly,
since H is T-invariant it can written as H = H> + A A H? where H3 € THQRI(M))
and H2 € THQA(M)). By Equations (1.10) and (1.11) of [4], we can assume that

H*=H’, H?>=dA=F; H>=dA=Fy,

where F4 and F3 denote the curvature forms associated to A and A.
Next, let L be the line bundle on M associated to the circle bundle Z. We may write
the connection form A € Q'(Z) locally in the form

Aa = Aa,bas + deou

where Ay bas 1 a basic 1-form, and hence can be identified with an element of QL(V,).
By abuse of notation, we denote this element by A, pas as well.

For a local section g of L over V,,, we can regard g as a function g : V, — R, and
we have the covariant derivative

VE(g) = dg + Agpas A 8-

Here d is the de Rham differential on M. Finally, we fix a local nonvanishing section sy
which is constant along V,,. For each n € Z, the nth tensor power L®" has connection
form locally given by nAy = nAg pas + nd6y, and given a local section g of L®" over
M, we have
Len

V™ (g) =dg+nAabas N G- (29)
Also, s" is alocally constant nowhere vanishing section of L®". We use the same notation
s to denote the section T*(s!?) of 7*(L®") over Z, when no confusion can arise.
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We now define the exotic H-twisted chiral de Rham sheaf .ACZAh’H on Z. We first
define it locally by writing strong generators, OPE relations among the generators, and
specifying the ideal of normally ordered relations among the generators. For each V,
we then write down an explicit isomorphism

QM H (U,) — A (@),
This is enough to get the isomorphism of vertex algebra sheaves on M,
7 Q) > F(ADT).

Recall the set of horizontal vector fields Vecthor(l?a) ={Xe Vect(ﬁa)| l X(K) = 0}.
First, for n = 0 we declare that Agh’H(ﬁa) has strong generators

{Lx.tx. A, 17, La. T, f.0| X € Vectnor(Ua). f € THC®(Va)), @ € THQ (Vo).
which satisfy OPE relations

Lx@uy(w) ~ (yx,vy +ixty H+ : Alxiy HY 1)z — w) ™,
Lx(@)Ly(w) ~ (Lix,y1+ Lxty H> — ixLy H>+ - H*(ixiy H?) < + 2 H*(xuy H)
+: (Lxty HHA : —: (xLyH)A : +: Lalxiy HY ) (w)(z —w) 7,
Lx(@o(w) ~ Liex (@)@ —w)"",  Lx@)fw)~ X(fHw)z—w) ",
(@) ~ (xo) W)z —w) ", ix(@) f(w) ~0,
Lx(@)Aw) ~0,  Lx(@iz(w) ~ (xH)w)(z—w) ™",
La@T*w) ~ @-w) 2, @AW ~ - w)

Lx@I*w) ~ —x&H )@ —w)™, @I w) ~0,
La(@)ix(w) ~0,  La(x)Lx(w) ~ 0.
(30)
The ideal of relations among these fields has the same generating set (24).

It is not immediately apparent that this structure defined by writing down generating
fields and specifying OPE relations and normally ordered relations, leads to a vertex
algebra. There is a general method for constructing vertex algebras starting from fields
and OPE relations that is given by De Sole and Kac in [13] in the language of A-brackets,
and it is translated into the language of OPEs in [28]. Briefly, the universal enveloping
vertex algebra associated to an OPE algebra can always be defined, although it may
be trivial. In our case, the universal enveloping vertex algebra associated to the OPE
algebra given by (30) is freely generated by these fields since in the notation of [28], all
Jacobi identities (2.10) hold as consequences of equations (2.6)—(2.9) of [28]. Therefore

Af)h’H(ﬁa) is well-defined as a quotient of this structure by the relations generated by

(24), and in particular is a vertex algebra.
Lemma 6.1. For each index o, define a map (bgh : Qgh’H(Ua) — Agh’H(ﬁa) by

fe=f w— o, LXHLX—:L;(LXHZ) 5 lx > Ly,

-~ 2 A A G
A>3, g = A, Lo— Ly+H~", ' 1r-.
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This map preserves OPE relations as well as the ideal of relations, so it determines a
vertex algebra isomorphism. Moreover, d)gh induces an isomorphism of sheaves of vertex
algebras on M,

g8 (@) 7) — F (AT 5), (32)

Taking global sections, we get a vertex algebra isomorphism
h hH 5
oSt i (z) - A (2). 33)

Proof. The fact that the map ¢ given by (31) preserves OPE relations is straightforward
to verify using the OPE relatlons (27) and (30). It is surjective since it takes generators
to generators. To see that ¢0 is injective, recall that V,,, Uy, and U, are small open

sets. Therefore we may choose local coordinates such that Qf)h A (Uy) and Af)h H( Uy)
both admit bases consisting of Poincaré-Birkhoff-Witt monomials in the coordinate one-
forms, contraction operators, vector fields, and the derivatives of coordinate functions
as in (16), as modules over C*°(Vy). Clearly ¢>8h maps a basis to a basis, so it must be

injective. Finally, the fact that ¢8h induces an morphism of vertex algebra sheaves on M
(which then must be an isomorphism), follows from Remark 4.2. |

Remark 6.2. Recall the vertex algebra

<Qch,ﬁ(ﬁa)iR[t]/<LZ _ ﬁ2)> Q@ H(2), (34)

defined in [29], where H(2) is the rank 2 Heisenberg vertex algebra with generators
L4, T4 satisfying

LA(Z)FA(w) ~(z — w)_z.

The generators of .A(C)h’ " (170,) are the same as the generators of (34) but the OPE algebras
are different. So these structures coincide as vector spaces but not as vertex algebras.
Remark 6.3. AABh’H(ﬁa) has an action of iR[#] given by the modes {(L 4)x| k > 0}, and
the space A(C)h’H (ﬁa)iR[t 1is the subalgebra generated by the above generators except for
r4.

Next, for each n # 0, we define A5 (U,) to be a module over A(C)h’H(ﬁa) with

generator s, which commutes with all generators of Agh’H(ﬁa) except for Ly, and
satisfies

La@)sy(w) ~ —ns}(w)(z —w) . (35)
Additionally, we declare that for all n, m # 0,

Se(2)sy (w) ~ 0
DSt = s (36)
dsy = —n : Sy (0A — dAg,bas) : -

It follows that any element of .Aflh’H (ﬁa) can be expressed in the form : s} : for some
n e Af)h’H(ﬁa). We now define

o QM (U, — A (T 37)
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inductively as follows

¢’(;h (efnea) — SZ

ch —no, ch n ch,H (38)
w (Vi (e77) = (pg (V) ) (s), foralln, k € Z, and v € Q" (Uy).

In particular, the Qgh’ " (Uy)-module structure on Qc_h,;H (Uy) and the Agh’ " (ﬁa)—module

structure on Aﬁh’H (ﬁa), are intertwined by ¢,§h, i.e.,

P @) = B (@ (@), foralln, k € Z, v e Q" (U,) and w € Q7 (U,).
(39)

Note that since we have not assigned Agh’H(ﬁa) a weight grading, we must use the

notation ) rather than ny for n € Agh’H(l?a).
We now define the exotic chiral de Rham complex

AP Ty = @ AP (D). (40)

nez

where as usual this means the Fréchet space completion of the usual direct sum. We give
AMH (T, a filtration

A Ty € A Ty € A Ty -+ ADA (T = UACh‘ﬁ(ﬁ;)[z‘],
i>0
(41)
which we call the weight filtration, defined on generators follows:

wit(f) = wt(w) = wt(A) = wt(s") =0, @)
wt(tx) = wt(Lx) = wt(L ) = wt(17) = wt(T'4) < 1.
In other words, f w, X ! liein Ach. H(Ua)[o] andtx, Ly, Lx, 5 liein Ach: H(Ua) []-
Elements of A H (Ua)[, are said to have weight at mosti. If a € A™ H (U )[i]> We set
da € A H(U )ii+1]- It is apparent from the OPE algebra (30) that if a € A H (T )i
and b € AN (Ty) 51, then agyb € AN (T)i4 ;1) forall i, j > 0. Note that the
weight zero component Aﬁh’H (@)[O] consists of linear combinations of elements of the
form: (w+ Av)s), :, which we can identity with the space of exotic differential forms. In

particular, under coordinate transformations the element s;, € AchH UAa)[o] transforms
as a section of 7*(L®").
We assemble the maps ¢<P for all n € Z to construct the map

ot QM () - AN (), (43)
such that ¢Ch restricts to ¢ on the summand QCh H (Uy). It is straightforward to check

using Lemma 6.1 combined with (28), (36), and (39), that o preserves all OPEs. It is
bijective by the same argument as the proof of Lemma 6.1. By Remark 4.2, we obtain
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Theorem 6.4. The map ¢ is an isomorphism of vertex algebras for each index a.
Moreover, it induces an isomorphism of sheaves of vertex algebras over M,

AT (chh’H) — T (.ACZAh’H). (44)
Taking global sections, we get a vertex algebra isomorphism
oM QM H () > A (Z), (45)

Remark 6.5. The structure of QCZh’H does not depend on our choice of connection form
A or flux form H, since it is isomorphic to the untwisted chiral de Rham complex Q‘:Zh

Therefore the structure of .ACZAh’H also does not depend on these choices or on the choice
of Aor H , although the isomorphism (44) does depend on these choices.

7. Chiral Han-Mathai Map

Recall that QM (U,) has weight grading QM (Uy) = @, Q" (Uy)[n], and
hence has the associated weight filtration -

QM (Uy)io) € QMH Uy € QM (Uy)p) C -+
QM (Uy) = | @™ Wa)p,

n>0

where QMH (Uy)n) = BI_g QM (U)Ii].
We interpret the map ¢! as the analogue of the Cavalcanti-Gualtieri isomorphism
of Courant algebroids [8]. However, it is clear from (31) that ¢ does not preserve the

weight filtration, and do?s not have A degrge shift, so it is not the chiralization of the
Han-Mathai map 7 : Qk(z) —» Ak (2)T. To define the analogue of 7, we need to
regard QCZh’H not as a vertex algebra sheaf, but as a sheaf of modules over itself. For each

U,, QNH ) Ais generated by the vacuum vector 1 as a module over itself. Similarly,
we regard ACZAh’H not as a sheaf of vertex algebras, but as a sheaf of modules over itself.
Both Qeh-H (Uy) and Ach.H (ﬁa) are Zo-graded, where the grading is the Z;-reduction

of the degree grading. We shall call this Z,-grading the degree, and for k € Z;, we use
the notation

QCh,H,/;(Ua) — @QZ}],H,E(UO{)’ ACh,H,/;(l’]\a) — @AZ}],H,]}((?Q)

nez nez

to denote the Z-graded components, and similarly for the corresponding sheaves. Note
that the map P defined in (43) preserves this grading.

Recall that Ach-H (l?a) is only filtered by weight rather than graded, so for €
Ach-H (ﬁa), the vertex algebra operation 1 is well-defined, but 7, is not. However, it

will be convenient to give meaning to 7, in the case when n = gbCh(v) andv € Q°h-H (Uy)
is one of the weight-homogeneous generators

f. o, s ix, Lx—ixH>+:AGWxH?*: A, s, Ls—H? TA

o
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We define

@Mk = fe = faen), @@ = ox = 01y,

@Mk = 5Dk = 6D o—1). @)k = Ok = X))

@MLy —ixH>+: AlxH?) D) = (Lx —.xH)k = (Lx —ixH) gy, (46)
@M% =Dk = WDwy @)k = A = (A g-1),

@MLa— H)) = Lak = L) g,  @"T)= T =TYp.

For each U,, we now define a linear map

_L,Ch : QCh,H,]E(Ua) - ACh,ﬁ,m(ﬁa)’ (47)

inductively as follows:

h) =4, M) = (=DM @) (). (48)

Here v is one of the weight-homogeneous generators of QM (U,,) regarded as a ver-
tex algebra, and p lies in Qeh-H (Uy) regarded as a Qeh-H (Ugy)-module. The fact that
M is well-defined is a consequence of the standard quasi-commutativity and quasi-
associativity formulas in vertex algebra theory. We regard " not as a vertex algebra
homomorphism, but as a homomorphism of vertex algebra modules in the sense that it

intertwines that action of Q¥ (U,) on itself, and A-H (l7a) on itself, via the homo-
morphism ¢!, We obtain a homomorphism of sheaves of modules on M

'CCh : n*(QCh,H,];)Z N ﬁ*(ACh,ﬁ,m)z’ (49)

which we also denote by 7°". In particular, we get a homomorphism of modules of global
sections - PO
7:Ch : QCh,H,k(Z) N ACh,H,k+] (Z). (50)

Theorem 7.1. The map t° shifts the Z,-grading and preserves the weight filtration,
ie.,

TCh(QCh’H’E(Z)[l']) g ACh,H,m(/Z\)[i] .
Moreover, TN
Mathai.

coincides at weight zero with the classical T-duality map of Han and

Proof. By definition, T preserves weight and shifts degree when applied to the vacuum
1, since 1 has weight 0 and degree 0, and (1) = A has weight zero and degree 1.
Inductively, suppose that z has weight d and degree j, and that 7" () has weight at
most d and degree j + 1. Then for any homogeneous generator v € Q™#k(Z) and
r € Z, v, i1 has weight at most d — r and degree j + k. Since ¢ preserves degree, and
P ) = (=DM W)), (tM (1)) has weight at most d — r and degree j +k + 1, it
follows that 7°" preserves the weight filtration and shifts degree.
Note that

M (A) = M (Ag(1)) = — (¢ (A))o(zM (1)) = —(1)o(A) = —1.

Since oM (w) = wforallw € 7*(L'(M)), we conclude that at weight zero, 7" coincides

with Han-Mathai map . O
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It follows from the definition of the maps (43) and (47) that TN (™) = - sZ;\\ :
for all n # 0. Therefore reh maps Qe Hok (Z) to Afzh’H’kH(f). We interpret this as

—n
exchange of momentum and winding number as in the setting of [19].

Next, we shall define the chiral analogue of the map & : AF (2 ) — Qm(f ). First,
let

Jeh Ach,ﬁ(’z*) QM (7)
be the inverse of the vertex algebra isomorphism ¢ given by (43). We define
Sch . Ach,ﬁ,k(’z*) Qb2
inductively as follows:
gD =4, T = DM GPEE (W),

Here v is one of the generators of Ach.H (Z) regarded as a vertex algebra, which is the
image under ¢! of a weight-homogeneous generator of QM (Z); namely, v is either f,

w, s, (in local coordinates), tx, Lx — tx H3, Ly, or T4, Similarly,  lies in ACh’H(f)

regarded as a module over .AChﬁ (2). Reversing the roles of Z and Z , we have the
analogous maps

fL.‘Ch . QCh,ﬁ,k(?) N ACh,H,ﬁ(z) O,Cl’l : ACh,H,]g(Z) — QCh,i‘I\,m(/Z\)
Theorem 7.2. We have the following identities.

_ Id — a\ch o _L,Ch . QCh,H,]E(Z) - Szch,l'l,lz(z)7 (51)
—1d =7 o oM AN K (Z) 5 ANHE(Z),

h

In particular, T" is a linear isomorphism.

Proof. We only prove the first identity, since the proof of the second one is the same.
First, it is clear that it holds on the vacuum vector 1 since

N o TN (1) = FN(A) = GN(Ap1) = —(PM(A)(G (1) = —(ta)o(A) = —1.

Next, it suffices to show that if oMo N () = —pu, then for each weight-homogeneous
generator v of QM H-K(Z), we have

M o TN (e () = — (e ().

To check this, we compute

Mot (i () = (—1)'”'6‘0*1<(¢Ch<v)>krch<m)

. ~ ~ 52
= M) O (G, ) O

= (=) = = (),

since YN (¢ (1)) = v and TN (TN () = —p. o
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8. Differential Structure on ACh’ﬁ ’M(/Z\)
The final step is to equip AchH (Z) with a square-zero twisted differential D7 7 with
the following properties.

(1) Dz g shifts the Z,-graded degree and preserves the weight filtration, that is,
Di’ﬁ(ACh,H,k(/Z\) [m]) g ACh,H,k+l (2) [m] .

(2) On.Ah H AR D7 p restricts to the exotic differential VL _ny X"’ﬁ .In particular,

the weight zero subcomplex (Ah-H (2 )01, Dz g) coincides with the exotic complex
of Han and Mathai.
(3) At weight zero, 7" intertwines the twisted differentials up to a sign, that is,

oDy =-Dy ot (53)
In this notation, Dg is the twisted differential on QCh’H";(Z) given by Dy (v) =

D(v)+: Hv :, where D is the chiral de Rham differential.

By Theorem 2 of [29], the cohomology of (¥ (Z), Dy) vanishes in positive
weight, and coincides with the classical twisted cohomology in weight zero. Unfortu-
nately, the intertwining property (53) no longer holds in positive weight, so it is not

obvious whether the cohomology of (AN (2 ), D7 ) vanishes in positive weight. We
expect that for all m, the inclusions of complexes
AN (Z)01, D3 ) = (AP D)y, Dz ) — A (Z). Dz ) (54)

are all quasi-isomorphisms, that is, they induce isomorphisms in cohomology. In the last
section, we will specialize to the case where both circle bundles Z and Z are trivial, and
the fluxes H and H are both zero, and we will prove that this statement holds in this
case.

We shall define D7 7 in two steps. Recall first that the chiral de Rham differential D

on QM (7) = D,z Qflh’H (Z) is a vertex algebra derivation given on generators by

D(f) =df, D(w)=dw, D(x)=Lx—ixH=Lx—xH>+:A(xH?):,
D(Ly) = LxH+: H*(xH*)+: A(LxH?) :,

D(ig) =L —1uH =1Ly — H?> D(A)=dA=H?,

DI =0A - &%,

D(E"%) =n:e"db, i =n:(Ay — Agpas)e™ : .
(55
Asin[29], £4 has degree 1 and weight 1 and satisfies D§ A = 3d A. We can transport this

structure to AN (Z) = @, 5, ASMH (Z) by defining the differential D on generators
as follows
D3(f) =df, Dz(@) =dw, Dz(x)=Lx—wxH’,
Dz(Lx) = LXH3+ : HZ(LXﬁZ) T+ ﬁz(LxH2) L Dz(p) = ﬁz’
D7(A) = La, Dz(Lp) =0, Dz(I'")=diz—&",

n RN /A . n .
D5 (sy) = =N 11385, -+ Ag basSy © -

(56)
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By construction, we have
¢ o D = D50 g™

In other words, ¢! is an isomorphism of differential vertex algebras. In particular,
there exists a locally defined field Dz (z) whose zero-mode is globally well-defined and
coincides with Dz. Therefore D7 is a square-zero derivation on the algebra. It is clearly
homogeneous of degree 1, that is

D3 (AN K (Z)) € (AT I (Zy),

We caution the reader that neither ¢! nor D7 preserve the weight filtration. Next, we
modify Dz as follows. We define
D3 5 =D3+D"+D'+D*+D*+D*+ D+ D°,

D’ = —(: AH? 3.

D' = HZL;\‘ D)

D? = =Gzl a D)),

D* = Hy,
D* = GegLla Dy,
D’ = (¢ HZLX D1
DS =H_yy=H} )+ AH* ).

(57)

We observe first that D7 g is well-defined globally and homogeneous of degree 1. Note
that Dz + DY + D' + D? + D3 is a vertex algebra derivation, since D, as well as the
zero-mode of any field, has this property. The terms D* and D7, being first modes of

fields, are not derivations. We will need the following computations repeatedly for the
remainder of this section.

D’%(f)y=0, D°w) =0, D" =0,

Dy) =: AxHY:, D%Ly)=:A(LxH?:,

p’A) =0, D°up=-H? D(Lap)=0, DT =o0. (58)
p'(f)=0, D'w =0 DY(sH=0,

Dl(tx) =—: LZ(Ltz) : Dl(LX) =—: LA‘(LxH2) - H2(Lxﬁ2) 5
D'(A)=H?> D'(p =0, DY (La=0 D(TH=0, (59)

D*(f)=0, D*w) =0, D*s")=n:izs":,

D*(1x) =0, D*(Lx)=:LaGxH":,

D*(A)=—Ls, D>17p)=0, D*Ls) =0, D*T"=-0;, (60)
D(f)=0, Dw) =0 D" =0,

D’(ux) =1xH®, D*(Lx)=—LxH’,

D3 A) =0, D=0, D3La=0, DT*=0, (61)
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D*f)=0, D*w) =0, D*Gs") =0,
D) =0, D'Lx)=0,
D*A) =0, D*p =0, D*La=0, D*TYH=u; (62)
D(f)=0, D) =0, D" =0,
D (x) =0, D(Lx)=0,
D3(A) =0, D7) =0, DLa)=0, DT* =0, (63)
D6(f)=:H3f:+:A\I-7\2f:
DS(w)=: H’w : +: AH2w : Dé(s;’) = H3sZ B ;\\ITI\ZSQ :
D6(Lx) =: H3LX T+ (XI/‘IE)LX :
=: H3LX Tt Zl/f\ztx L= 3Z(Lxl/1\2) 5
DS(Ly)=:HLy :+: (AH®)Ly :=: H3Ly : +: AH?Ly : —: 0A(LyH?) -,
D6(X) = H3A:
D6(tg) = H3LA‘ N (XI/‘FZ)LZ = H3tg T+ XI/‘I\ZLX : +81/-72,
DS(Ly)=:H3La:+:AH?L,:, DO(TA) =:HTA:+:AHMTA .. (64)
Lemma 8.1. The operator D7 g on ACh’ﬁ (2) preserves the weight filtration (41). In
particular, D7 g acts on the weight zero subspace Ach-H (2) [0]-

Proof. Note that D7 7 = D'+ D" where D' = D3 + D?and D" = DY+ D' + D3 +
D* + D’ + DS. Since D’ is a vertex algebra derivation, to show that it preserves the
weight filtration it suffices to check this on generators, and this is apparent from (56)
and (60). Even though D" is not a derivation, it is apparent from (42) that D" consists
of terms which either preserve or lower the weight. This completes the proof. O

Lemma 8.2. The weight zero subcomplex (.ACh’ﬁ (2)[01, Dy ﬁ) can be identified with

the Han-Mathai complex. In particular, on A" (Z) (0] we have T o Dy = =Dz o
Teh,

Proof. In local coordinates, the general element of g € Af,h’H (2 ){o] has the form
g=:wos!:+: Awys! :
where wy, w; are basic differential forms. We compute
DZﬁ( Cwpsl + Awys! >
=: (dwo)sy : +(=1)leoly @0 Aq,basSy (65)

+: Hza)lsgf = K(da)l)sg C—(=D)lely ;\\a)lAa,bassg :

—nwis” 4 H3wos" : 4 H* Awys” - +: AH?wos” : .

On the other hand, identifying g with the element wy A s, + ANop A sy of the
Han-Mathai complex, it is apparent from (29) that D7 g corresponds to (ﬁ*VLW -
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b + H )(g). In this notation, the operator ¢,7 is identified with ¢, 7 = nt3. The state-
ment that 7" intertwines the differentials Dy and Dz 5 up to sign is a straightforward
computation.

O

Our main result in this section is the following

Theorem 8.3. D3 j is a square-zero operator on AhH (7).

The proof is quite involved, and it depends crucially on the nonassociativity of the
normally ordered product, and the fact that D7 g fails to be a derivation in the category

of vertex algebra modules due to the terms D* and D°. In order to prove Theorem 8.3,

we observe that Ah# (f) has the following sequence of vertex subalgebras which are
all closed under the action of D3 7:

(Q(M)) C AT (Z) R ¢ g0 (Zy C AghH (7). (66)
In this notation,

(1) (2 (Ail )) denotes the abelian vertex algebra generated by all difAferential forms on M,
() Agh’H(f)iR[’ I denotes the iR[r]-invariant subalgebra of Agh’H(f), which is gener-
ated by Q (M) together with tx, Lx, A, 13, La,

3) .A(C)h’H (?) is generated by the above fields together with r4,

%) .AChﬁ (2) is generated by the above fields together with s/ in local coordinates, for
alln € Z.

We will proceed by proving Theorem 8.3 successively on each of these subalgebras,
and we organize this as a sequence of lemmas.

Lemma 8.4. D3 p is a square-zero operator on the subalgebra (S2(M)).

Proof. First, DO, Dl, D2, D3, D4, and D> vanish on (Q(M)), so D?ﬁ = D5+ DO.
Moreover, D7 is a vertex algebra derivation on (€2(M)) and D7 g is a derivation on
(€2(M)) in the category of modules over (2 (M)). In other words, for alla, b € (Q2(M))
and k € Z, we have

Dz (awb) = (Dz(@) @b + (=) ag Dz (b),

(67)
D3 g(awb) = Dz(@) b + (—Dag Dy 5(b).

Since Dz and DS are commuting differentials which are both square-zero, the claim
follows. O

Lemma 8.5. D3 5 is a square-zero operator on the subalgebra A(C)h’H(f)iR[’ 1.

Proof. This argument is more difficult than the proof of the previous lemma because the
terms D* and D> fail to be vertex algebra derivations. We define

Dper = Dz + D+ D' + D? + D3,
Dxper = D* + D, (68)
Dj = D°.
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In this notation, Dpe; is a vertex algebra derivatiog, DNper 18 not a derivation, and
D3 7 = Dper + Dxper + D Then for all v e A (Z)™RI1,

(D7 )*(») = (Dper)*(v) + (Dnper)*(v) + (D) (v)
+ (Dper DNDer + DNDer Dper) (V)
+ (DperD g + D Dper) (v) (69)
+ (DNDerDﬁ + DﬁDNDer)(V)

= (Dper)?(v) + (Dxper D + D73 Dxper) (V).

Here were are using the fact that Dpe, is a vertex algebra derivation which annihilates the
fields H3+: AH? :,: (;H? :and: (7L 4 :,50 that (Dper DNDer+DNDer Dper)(v) = 0and
(Dper Dy + DHDDer)(v) = 0. Also, it is apparent that (DNDer) (v) =0and (DH) ).

Next, we check that (D5 ﬁ)z annihilates the additional generators A U3, Lx, Ly that

appear in .A(C)h’H (2)iR[t] but not in (2(M)). This follows from the following computa-
tions.

(Dper)*(A) =0,  (DnperDji + D Dnper)(A) = 0,
(Dper)*(t3) =0,  (DnperDj + D Dnper) (17) = 0,
(Dper)?(tx) = : LAGxH?) 1 +: H>(xH?) : +H*(1x H?) -,

(DNperDjj + D7 DNper) (tx) = — = LaGxH?) : —: H*(xH?) : —: H*(xH?) -,

(Dper)*(Lx) =: LA(LxH?) : +: H*(LxH?) : +: H*(LxH?) :,

(DnperDj + D Dnper)(Lx) = — : La(LxH?) : —: HX(LxH?) : —: H*(LxH?) : .
(70)

Next, a general element of Agh’H (2)iR[’ I can be expressed as a finite sum of terms
of the form

v=:@"w) - @ N i, i >0, ne(QM)),

where each p; is one of the generators tx, Ly, 7, X L 4. We say that such a mono-
mial has length r. By the previous lemma, (DZ ﬁ)z(v) = 0 whenever v has length 0.

Inductively, we assume that (D7 ﬁ)z(v) = 0 whenever v is such a monomial of length
at most r — 1. In particular, this means that

(Dper)*(v) + (DNper D7 + D Dxper) (v) = 0. (1)
Now let v =": (8" ju1) - - - (3" )1 : be a monomial of length r as above, and write

v=: @, v =1 @22 - @)
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Then
(D7 5)*(v) =Dz, )¢ @" )y )

= 1 (Dper) (@ )V + 1 (3" j11) (Dper)* (V) :
+ (DNper D + D Dper) (: (3" )V’ )

= 1 (Dper)* (@ )Vt + 1 (3" 1) (Dper)* (V) :
+ (DNper D + D DNper) (: (3" )V’ )
— 1 (3" w1)(DNper D + Dz Dper) (V)
+: (3" 1) (Dnper D + D g Dnper) (V) :

= 1 (Dper)* (@ )’
+ (Dxper D + D Dper) (: (3" )V’ 2)
— 1 (8" u)(Dnper Dy + Dig Dnpen) (V) =

The last equality follows from our inductive assumption (71) in the case v = v".

A separate calculation in each of the cases 1 = tx, Lx, t3, A, Lo shows that in all
cases, (DZ ﬁ)z(v) = 0. To illustrate this, we include the calculation in the case where
it =0and u = tx. We have

(72)

H(Dpe)* @)V o= = (¢ HA(x HY) '
+:CH xHY ) -,
+:CLaGxHY ) o,
(DnperD g + D Dper) (: txv' 2) = (- H2H? 20y (: 1xV' )
+(LsH? D) G exv' )
= —: ¢ H>xHY )
— ¢ H>uxHY ) -
— G LAGxH? ) :
+:ux (¢ H*H? Do) :
+:ux (G LyH? Do) -,
— t tx(DNper Dy + D g Dper) (V) = — ¢ 1x (H*H? ) o)V) :
—ix(LaH? Do) :

(73)

The fact that (D3, 3)2(: txv' 1) = 0 then follows immediately from (72) and (73). The
proof for the other cases is similar and is omitted. O

Lemma 8.6. D 5 is a square-zero operator on A(C)h’H(Z).

Proof. Recall that Agh’H (2 ) has one additional generator I'4 in addition to the genera-
tors of Agh’H(f)iR[’ 1. First, we compute

(Dper)*(T4) = — 9H?,

A 72 (74)
(DNperDg + D DNper) (') = 0H”.
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It is immediate that (D7 g)z(I‘A) = 0. An essential feature of this calculation is the
fact that

1 AH? g i=: A\I/{\ZLX C+dH?

which is due to the nonassociativity of the normally ordered product. Similarly, one
checks easily that for all i > 0,

(Dper)*(3'T4) = ="' H?,  (DnperDj + D Dnper) (0 T4) = 0™ H?.  (75)
Af)h,ﬁ,];

Next, a general element of (2) can be expressed as a finite sum of terms of the

form
p=1 @A) @ Ty iy iy 20, e ADTEZ)RI

We say that such a monomial v has length r. By the previous lemma, (D7 ﬁ)z(v) =0

whenever v has length 0. Inductively, we assume that (D7 ﬁ)2(v) = 0 whenever v is
such a monomial of length at most r — 1.
Now letv =: (3/'T4) ... (8"I‘A)77 : be a monomial of length r as above, and write

v=:@" T Vv =:0@2T") . @ Thn:.
By the same calculation as (72), we have

(D7 ) () =(Dz )*C @' T )' )
= : (Dper)* (" T :

i1 AN,/ (76)

+ (DNper D + D g DNper) (: (371 T7)v" 2)

— (3" T*)(DNper D + D g Dxper) (V)

We compute
S ((Dpen)?@TM)W = —: @ HY
(Dxper D + Dz DNper) : (371 T4 ) =2 0" HA)'
+: (3" T (Dnper D + Dy Dnper) (V) -

(77)
The claim is immediate from (76) and (77). a

We are now ready to prove Theorem 8.3

Proof of Theorem 8.3. We have shown this for the sector .Agh’H(f), so it suffices now

to prove it for .Af,h’H (2) for all n # 0. First, we check this on the element s, expressed
in local coordinates. Since A = Ay pas + d6y, we have

dA = H? = dAg pas. (78)
Using (35), we compute

Dnper(: A\ﬁzst’; N =-—n: ﬁzs;’ :. (79)
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Combining (78) and (79), we obtain

(Dper)*(s) =n : H2" -,

— (80)
(DnperD g + D DNper) (sh) = —n = H?s),
It is immediate that (D7 7)*(s) = 0.
Next, a general element v = Aﬁh’H(f) has the form v = : s}n : for some n €
ACh H(?) Since Dz p(n) = 0, the same argument as previous lemma shows that

DZ gGsen:) =0. ThlS completes the proof of Theorem 8.3.

9. The Case of Trivial Bundles
In this section, we assume that both circle bundles Z and 7 are trivial,
Z=MxT, Z=MxT,

and that both fluxes H, H are zero. Then Z, Z have global coordinates 9, 6 in the circle
directions which are defined up to shifts by 27ik for k € Z. The connection forms A, A
can be identified with do, do, respectively.

Let w_, € Q°Z)_, be an element of even degree. It has the form w_, = (Ao +
Aldé)e_"g, where X, A1 are forms on M. Then since Ag is even and A is odd, by
definition we have

Ta(@—p) = (hodB +21)s",  Gu((hodB + h1)s™) = —(ho + A1dO)e ™"
Suppose dw_,, = 0. We then have
dio =0, dri —nig =0.
Then
(d — 1) T (@—n) = (dA0)(dD)s" + (dA1)s" — nios" = 0,

i.e. 7,(w—,) is exotic equivariant closed (in this case equivariant closed).
If n # 0, one shows that

1
d (—)Lle_”e) = (ho+11d0)e ™™ = w_,,
n

i.e. w_, is (d + H)-exact (in this case d-exact). The odd case is similar and is omitted.
‘We now consider the chiral setting. Since H vanishes, the formula for the differential
Dz i = D7 g simplifies as follows.

Dz5=Dz+D*+D*,  D’=—CizLad0, D*'=CizLladay.

Unlike the general case, note that ACh’ﬁ (f) is in fact graded by conformal weight, not
Just filtered, and D7 j preserves the weight grading.

Recall that QMH (7) = Q-0(Z) admits a contracting homotopy for the differential
D; there is a field G whose mode Gy is globally defined, and [D, Go] = Lo, where
Lo denotes the conformal weight grading operator. This shows that the cohomology
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vanishes in positive weight. Since Z = M x T, we can write G¢ as the sum of two
commuting operators

Go = G3/1+ T lgedl .

Note that even though the coordinate function 6 is only defined up to integer shifts, both
the contraction operator (49 and the derivative 06 are globally defined. Also, 96 can be
identified with the element ' defined earlier._

Under 7", we have t"(Gg) = Gg” + (: A3 :)1; note that the second term lowers
weight by one. We can correct this by adding the operator —(: A30 D+ G A90 o,
which commutes with <"(G). Setting

Go = tM(Gp) — (: A6 ) + (: A6 ),
this is easily seen to be a contracting homotopy for D7 5 in the sense that
[D3 5. Gol = Lo,

where Ly is the conformal weight grading operator. It follows that in case of trivial bun-
dles and fluxes, the positive weight cohomology of the exotic complex (A™%(Z), D35

vanishes. Therefore " induces an isomorphism in cohomology in this case even though
the intertwining property (53) still fails in positive weight.
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