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Abstract: Let Z be a principal circle bundle over a base manifold M equipped with an
integral closed 3-form H called the flux. Let ̂Z be the T-dual circle bundle over M with
flux ̂H . Han and Mathai recently constructed the Z2-graded space of exotic differential
formsAk̄(̂Z). It has an additional Z-grading such that the degree zero component coin-
cides with the space of invariant twisted differential forms �k̄(̂Z , ̂H)

̂T, and it admits a
differential that extends the twisted differential d

̂H = d + ̂H . The T-duality isomorphism

�k̄(Z , H)T → �k+1(̂Z , ̂H)
̂T of Bouwknegt, Evslin and Mathai extends to an isomor-

phism �k̄(Z , H) → Ak+1(̂Z). In this paper, we introduce the exotic chiral de Rham
complexAch, ̂H ,k̄(̂Z) which containsAk̄(̂Z) as the weight zero subcomplex. We give an
isomorphism�ch,H,k̄(Z) → Ach, ̂H ,k+1(̂Z)where�ch,H,k̄(Z) denotes the twisted chiral
de Rham complex of Z , which chiralizes the above T-duality map.

1. Introduction

A space of exotic differential forms with an equivariantly flat superconnection [30] was
first defined on loop space in the paper [18], which we now briefly recall here.

Let (H, Bα, Fαβ, Lαβ) denote a gerbe with connection on Z (cf. [7]), where (H, Bα,

Fαβ) denotes theDeligne class of the closed integral 3-form H with respect to a Brylinski
open cover (cf. [18]), and Lαβ denotes the line bundles ondouble overlaps that determines
the gerbeG. The holonomy of the gerbe is then a line bundleLwith connection d+τ(Bα)

having curvature τ(H) on loop space LZ , where τ denotes the transgression map. We
consider the space of invariant exotic differential forms on loopspace LM ,�k̄(LZ ,L)S

1
,

with exotic differential D = ∇L− iK + H̄ , where∇L is the connection on the holonomy
line bundleL given locally by d +τ(Bα), iK is contraction by the rotation vector field K ,
and H̄ denotes the 3-form on LZ given by the canonical extension of H to loopspace.
Then a computation in [18] shows that D2 = LK , so that D2 = 0 on �k̄(LZ ,L)S

1
.
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Let T → Z
π→ M be a principal circle bundle over a base manifold M with back-

ground T-invariant flux H , which is a closed 3-form on Z . Then there is a T-dual circle

bundle ̂T → ̂Z
π̂→ X with T-dual background ̂T-invariant flux ̂H which is a closed

3-form on ̂Z , such that c1(Z) = π̂∗[ ̂H ] and c1(̂Z) = π∗[H ], and the constraint that
[H ] = [ ̂H ] on the correspondence space Z ×M ̂Z ensures that [ ̂H ] is uniquely defined.
This is the setting of [4,5]. Let L = Z ×T C and ̂L = ̂Z ×

̂T
C denote the associated

line bundles over the base space M .
The precise relation between [18,19] is that when Z is the total space of a principal

circle bundle, then there is a natural infinite sequence of embeddings ιn : Z → LZ
defined by ιn(x) : S1 � t �→ γx (t) = tn · x , for all n ∈ Z. We consider such sequence of
embeddings motivated by the fact that there are Z many connected components in the
loop space LT. We have ι∗n(L) ∼= π∗(̂L)⊗n since they have the same Chern class. The
loop space LZ has the natural circle action by rotating loops, and Z has a circle action
as the total space of circle bundle. To tell the difference of these two circle actions, we
use S1 for the circle action by rotating loops, and T for the free circle action on Z as a
principal circle bundle. We have that for n 
= 0,

ι∗n : �k̄(LZ ,L)S
1 −→ �k̄(Z , π∗(̂L⊗n))T

intertwines the equivariantly flat superconnections D and π∗∇̂L⊗n − ιnv + H on both
spaces. Here v is the vector field on Z which infinitesimally generates the action of T.
This point of view does motivate us to develop the exotic theories on Z .

Recall that the local T-duality rules, called the Buscher rules, were written in [1,10,
11]. The relation of T-duality with K-theory in the absence of an H-flux was studied
in [17,20], and in the presence of an H-flux in [4,5] where for the first time there was
topology change between spacetime and its T-dual. See also [6,9,31–33] for alternate
approaches to T-duality. In [19], the T-duality isomorphism given in [4,5] was extended
to a mapping from the full space of complex-valued differential forms defined on a
principal circle bundle. In doing so, the striking result obtained was that the T-dual data
of this space is given by the space of exotic differential forms defined on the T-dual
principal circle bundle. The definition of exotic differential forms was inspired by their
previous work, [18].

In order to define this T-duality mapping, let L , ̂L denote the complex line bundles
associated to the circle bundles Z , ̂Z with the standard representation of the circle on
the complex plane respectively. The exotic differential forms are then given by

Ak̄(Z) =
⊕

n∈Z
Ak̄

n(Z)T :=
⊕

n∈Z
�k̄(Z , π∗(̂L⊗n))T,

Ak̄(̂Z) =
⊕

n∈Z
Ak̄

n(
̂Z)

̂T :=
⊕

n∈Z
�k̄(̂Z , π̂∗(L⊗n))

̂T

for k̄ = k mod 2, and where we have taken the direct sum above to be the Fréchet space
completion of the standard direct sum. This definition of the direct sum (as a completion)
will be the implicit definition from here on out when using direct sums in the context of
the exotic structures. Note that in [19], the notationAk̄(Z)T andAk̄(̂Z)

̂T is used instead
ofAk̄(Z) andAk̄(̂Z); we have dropped theT and̂T invariant notation on the direct sums
for simplicity.

Now define the subspace of weight −n differential forms on Z to be,

�∗−n(Z) := {ω ∈ �∗(Z)| Lievω = −nω}, (1)
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where Liev denotes the Lie derivative along v. We observe that

�k̄
0(Z) = �k̄(Z)T, Ak+1

0 (̂Z)
̂T = �k+1(̂Z)

̂T.

Then under the above choices of Riemannian metrics and flux forms, the results of [19]
show that there is a sequence of isometries,

τn : �k̄−n(Z) → Ak+1
n (̂Z)

̂T, (2)

defined by the exotic Hori formula from Z to ̂Z given in [19] for k̄ = k mod 2, where
the twisted de Rham differential d + H maps to the differential −(π̂∗∇L⊗n − ιnv̂ + ̂H),
and we observe that τ0 = T . One similarly has a sequence of isometries,

σn : Ak̄
n(Z)T → �k+1−n (̂Z), (3)

defined by the inverse exotic Hori formula form Z to ̂Z given in [19] for k̄ = k mod 2,
where the differential π∗∇̂L⊗n − ιnv + H maps to the twisted de Rham differential
−(d + ̂H), and σ0 = T . Similarly, one can define the sequences of isometries τ̂n, σ̂n on
̂Z . Although the extension of the Fourier-Mukai transform to all differential forms on Z
is slightly asymmetric, one has the following crucial identities, verified in [19]:

−Id = σ̂n ◦ τn : �k̄−n(Z) −→ �k̄−n(Z), (4)

−Id = τ̂n ◦ σn : Ak̄
n(Z)T −→ Ak̄

n(Z)T. (5)

This is interpreted as saying that T-duality, when applied twice, returns the object to
minus itself, which arises due to the convention of integration along the fiber. This was
a result previously verified in [4,5] for the special case of when n = 0.

This shows that for each of either Z or ̂Z , there are two theories (at degree 0 the two
theories coincide), and there are also graded isomorphisms between the two theories of
both sides.

Moreover, when n 
= 0 the complex (Ak̄+1
n (̂Z)

̂T, π̂∗∇L⊗n − ιnv̂ + ̂H) has vanishing

cohomology. Therefore, when n 
= 0 the complex (�k̄−n(Z), d + H) also has vanishing
cohomology. In [19], an explicit homotopy is constructed to show this. We mention
that, inspired by [19], exotic Courant algebroids were defined in [12] where the T-
duality isomorphism in [8] for invariant Courant algebroids was extended to a T-duality
isomorphism of exotic Courant algebroids.

1.1. Chiralization. The chiral de Rham complex is a sheaf of vertex algebra�ch
M on any

smooth manifold M that was introduced by Malikov, Schechtman, and Vaintrob in [34].
It has had a tremendous impact on string theory in the last 20 years; see for example
[3,21,36]. The global section algebra �ch(M) has an N-grading by conformal weight,
and it chiralizes the de Rham complex (�(M), d) in the sense that it admits a differential
D which preserves the weight spaces, and the weight zero subcomplex (�ch(M)[0], D)

is isomorphic to (�(M), d).
In this paper, we chiralize the space of exotic differential forms on ̂Z to the vertex

algebra of exotic chiral differential forms

Ach, ̂H (̂Z) =
⊕

n∈Z
Ach, ̂H

n (̂Z).
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This is the global section algebra of a sheaf of Z2-graded vertex algebras on ̂Z . We

denote the graded components by Ach, ̂H ,k̄
n (̂Z) for k̄ ∈ Z2. Unlike the chiral de Rham

complex,Ach, ̂H (̂Z) is naturally equipped only with a filtration, not a grading, by weight:

Ach, ̂H (̂Z)[0] ⊆ Ach, ̂H (̂Z)[1] ⊆ Ach, ̂H (̂Z)[2] ⊆ · · · , Ach, ̂H (̂Z) =
⋃

i≥0

Ach, ̂H (̂Z)[i].

(6)
Wealso equipAch, ̂H (̂Z)with an exotic differential D

̂Z , ̂H which shifts theZ2-grading and
preserves the weight filtration. This structure chiralizes the exotic differential forms in

the sense that for all n, theweight zero subcomplex (Ach, ̂H ,k̄
n (̂Z)[0], D̂Z , ̂H ) is isomorphic

to (Ak̄
n(

̂Z), π∗∇L⊗n −ιnv̂ + ̂H). In fact, D
̂Z , ̂H is a square-zero operator onAch, ̂H (̂Z); the

proof requires a very delicate calculation and depends crucially on the nonassociativity
of the normally ordered product.

Using the flux H on Z , there is an H -twisted version of the chiral de Rham complex
�ch,H (Z) which was introduced in [29]. It turns out to be isomorphic to �ch(Z) via an
untwisting trick; see Theorem 3 of [29], and for convenience, we use �ch,H (Z) instead
of �ch(Z) throughout this paper. As in the case of differential forms, the T-action on
Z induces a Fourier decomposition �ch,H (Z) = ⊕

n∈Z �
ch,H
n (Z), which again denotes

the Fréchet space completion of the standard direct sum. There is also a Z2-grading, and

we denote the graded components by �
ch,H,k̄
n (Z) for k̄ ∈ Z2. Our main result is that

T-duality gives a degree shifting linear isomorphism

τ chn : �
ch,H,k̄
−n (Z) → Ach, ̂H ,k+1

n (̂Z), (7)

for all n ∈ Z. Thismap preserves theweight filtration and coincideswith τn : �k̄−n(Z) →
Ak+1

n (̂Z)
̂T on the weight zero subspace. These isomorphisms combine to yield a linear

isomorphism

τ ch : �ch,H,k̄(Z) → Ach, ̂H ,k+1(̂Z). (8)

In fact, τ ch is more than a linear isomorphism. We will also define a vertex algebra
isomorphism φch : �ch,H (Z) → Ach, ̂H (̂Z) which preserves the Z2-grading. Regard-
ing �ch,H (Z) and Ach, ̂H (̂Z) as modules over themselves, τ ch intertwines the module
structures in the sense that

τ ch(νm(μ)) = (−1)|ν|(φch(ν))m(τ ch(μ)), for all m ∈ Z.

Here ν is one of the generators of �ch,H (Z) regarded as a vertex algebra, and μ ∈
�ch,H (Z) regarded as a �ch,H (Z)-module.

By Theorem 2 of [29], the cohomology of �ch,H (Z) with respect to its twisted
differential DH vanishes in positive weight, and coincides with the classical twisted
cohomology in weight zero. In weight zero, τ ch intertwines the differentials DH and
D

̂Z , ̂H up to a sign, but unfortunately, this intertwining property no longer holds in
positive weight. It is therefore not obvious that the inclusion of complexes

(Ak̄
n(

̂Z), π∗∇L⊗n − ιnv̂ + ̂H) ↪→ (Ach, ̂H ,k̄
n (̂Z), D

̂Z , ̂H )

induces an isomorphism in cohomology, although we expect this to be the case. In the
last section, we will prove this in the special case where both circle bundles Z and ̂Z are
trivial, and the fluxes H and ̂H are both zero.
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Note that in the case n = 0, the isomorphism (7) does not recover the chiral T-duality
isomorphism of our previous paper [29], namely,

(�ch,H,k̄(Z))iR[t]/〈L A − ιAH〉 → (�ch, ̂H ,k+1(̂Z))iR[t]/〈L
̂A − ι

̂A
̂H〉. (9)

In particular, the n = 0 term on the left side of (7) is isomorphic to the T-invariant space
�ch,H,k̄(Z)T, which is larger than the left side of (9). Moreover, the right side of (7) for
n = 0 is a different structure and is not a subquotient of the chiral de Rham complex
of ̂Z . The T-duality isomorphism (8) in this paper is stronger and more natural than the
one in [29] because on the left side the entire chiral de Rham complex appears rather
than a subquotient. But the price we pay is that the object on the right side is a new
kind of vertex algebra sheaf which incorporates sections of a line bundle L on ̂Z . This
construction is very special since it makes use of the fact that Z and ̂Z are T -dual to each
other. An open question is whether it is possible to construct the exotic chiral de Rham
complex on more general manifolds with line bundles, generalizing the construction
given in this paper.

2. Vertex Algebras

In this section, we define vertex algebras, which have been discussed from various points
of view in the literature (see for example [2,14,15,22]). We will follow the formalism
developed in [27] and partly in [23]. Let V = V0 ⊕ V1 be a super vector space over C,
and let z, w be formal variables. Let QO(V ) denote the space of linear maps

V → V ((z)) = {
∑

n∈Z
v(n)z−n−1|v(n) ∈ V, v(n) = 0 for n >> 0}.

Each a ∈ QO(V ) can be represented as a power series

a = a(z) =
∑

n∈Z
a(n)z−n−1 ∈ End(V )[[z, z−1]].

Each a ∈ QO(V ) is assumed to be of the form a = a0 + a1 where ai : Vj → Vi+ j ((z))
for i, j ∈ Z/2Z, and we write |ai | = i .

For all n ∈ Z, QO(V ) has a bilinear operation defined on homogeneous elements
a, b by

a(w)(n)b(w) = Resza(z)b(w) ι|z|>|w|(z − w)n − (−1)|a||b|Reszb(w)a(z) ι|w|>|z|(z − w)n .

Here ι|z|>|w| f (z, w) ∈ C[[z, z−1, w,w−1]] denotes the power series expansion of a
rational function f in the region |z| > |w|. For a, b ∈ QO(V ), we have the following
identity of power series, known as the operator product expansion (OPE) formula.

a(z)b(w) =
∑

n≥0

a(w)(n)b(w) (z − w)−n−1+ : a(z)b(w) : . (10)

Here : a(z)b(w) : = a(z)−b(w) + (−1)|a||b|b(w)a(z)+, where

a(z)− =
∑

n<0

a(n)z−n−1, a(z)+ =
∑

n≥0

a(n)z−n−1.
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We write

a(z)b(w) ∼
∑

n≥0

a(w)(n)b(w) (z − w)−n−1,

where ∼ means equal modulo the term : a(z)b(w) :, which is regular at z = w.
Note that : a(w)b(w) : is a well-defined element of QO(V ). It is called the normally

ordered product of a and b, and it coincides with a(−1)b. The other negative products
are given by

n! a(z)(−n−1)b(z) = : (∂na(z))b(z) :, ∂ = d

dz
.

For a1(z), . . . , ak(z) ∈ QO(V ), the iterated normally ordered product is defined to be

: a1(z)a2(z) · · · ak(z) : = : a1(z)b(z) :, b(z) = : a2(z) · · · ak(z) : . (11)

We often omit the variables z, w when no confusion can arise.
We denote the constant power series IdV ∈ QO(V ) by 1. A subspace A ⊆ QO(V )

containing 1 that is closed under all the above products will be called a quantum operator
algebra (QOA). Elements a, b ∈ QO(V ) are called local if if (z−w)N [a(z), b(w)] = 0
for some N ≥ 0. Here [·, ·] denotes the super bracket. A vertex algebra is a QOA whose
elements are pairwise local. This definition is well known to be equivalent to the notion
of a vertex algebra in [15].

A vertex algebra A is generated by a subset S = {ai | i ∈ I } if every a ∈ A can be
written as a linear combination of nonassociative words in the letters ai for i ∈ I and
the above products for n ∈ Z. We say that S strongly generates A if every a ∈ A can
be written as a linear combination of words in the letters ai , and the above products for
n < 0. Equivalently, A is spanned by

{: ∂k1ai1 · · · ∂kmaim : | i1, . . . , im ∈ I, k1, . . . , km ≥ 0}. (12)

A very useful description of a vertex algebra A is a strong generating set {ai | i ∈ I }
for A, together with a set of generators {bk | k ∈ K } for the ideal I of relations among
the generators and their derivatives, that is, all expressions of the form (12) that vanish.
Given such a description, to define a homomorphism φ fromA to another vertex algebra
B, it suffices to define φ(ai ) for i ∈ I and show the following.

(1) φ preserves pairwise OPEs among the generators; i.e., φ((ai )(n)a j ) = φ(ai )(n)φ(a j )

for all i, j ∈ I and n ≥ 0.
(2) φ(bk) = 0 for all k ∈ K .

This will be our method of constructing vertex algebra homomorphisms in this paper.
A conformal structure on A is an element L(z) = ∑

n∈Z Lnz−n−2 ∈ A satisfying

L(z)L(w) ∼ c

2
(z − w)−4 + 2L(w)(z − w)−1 + ∂L(w)(z − w)−1,

such that L−1 acts by ∂ on A and L0 acts diagonalizably. The constant c is called
the central charge, and the grading by L0-eigenvalue is called conformal weight. In
all our examples, the conformal weight grading is by the nonnegative integers. In the
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presence of a conformalweight grading,we alwayswrite a homogeneous element a(z) =
∑

n∈Z a(n)z−n−1 in the form

∑

n∈Z
anz

−n−wt(a), an = a(n + wt(a) − 1). (13)

In this notation, for fields a, b ∈ A, we have anb = a(n+wt(a)−1)b.
A module M over a vertex algebra A is a vector space M together with a QOA

homomorphismA → QO(M). In particular, for each a ∈ A, we have a field aM(z) =
∑

n∈Z aM(n)z−n−1 where aM(z) ∈ End(M). If A and M are graded by conformal
weight, we write aM(z) = ∑

n∈Z aM,nz−n−wt(a), and we require that aM,n has weight
−n.

3. The Chiral de Rham Complex

The chiral de Rham complex �ch
Z is a sheaf of vertex algebras on any nonsingular

algebraic variety Z , which was introduced by Malikov, Schechtman, and Vaintrob [34,
35]. As observed in [34], a similar construction also works in the setting of smooth
manifolds. However, the resulting object is no longer a sheaf, but instead is a weak sheaf
in the terminology of [25]. We briefly recall what this means. Suppose that we have a
family of sheaves of vector spaces {Fn| n = 0, 1, 2, . . . } on a smooth manifold Z . The
direct sum F defined by F(U ) = ⊕

n≥0 Fn(U ) for an open set U ⊆ Z , is a presheaf
but not a sheaf. For example, in the case Z = R and each Fn a copy of the structure
sheaf C∞, if we cover R by an infinite collection of open intervals, one can use bump
functions to construct a family of sections which are compatible on overlaps but do not
give rise to a global section of F , that is, an element of the direct sum. However, F does
satisfy a slightly weaker version of the reconstruction axiom:

0 → F(U ) →
∏

i

F(Ui ) ⇒
∏

i, j

F(Ui ∩Uj ),

is exact for finite open covers {Ui } of an open set U . Following [25], a weak sheaf is a
presheaf which satisfies this weaker exactness condition.

If Z is a smooth manifold, and U ⊆ Z is any open set, �ch(U ) is an N-graded
vertex algebra by conformal weight, and we denote the conformal weight n subspace
by �ch(U )[n]. For each n, the assignment U �→ �ch(U )[n] defines a sheaf of vec-
tor spaces on Z , and �ch

Z is the weak sheaf of vertex algebras defined by �ch(U ) =
⊕

n≥0 �ch(U )[n]. Note that �ch
Z is not the sheafification of this presheaf, which is too

big to be a sheaf of vertex algebras. Similarly, the exotic chiral de Rham complexAch, ̂H
̂Z

that we will construct has only a filtration (6) by conformal weight. Each filtered com-
ponent Ach, ̂H (̂Z)[i] is an ordinary sheaf, and the union of these components is a weak
sheaf. For simplicity, we will drop the word “weak" throughout this paper.

For a coordinate open set U ⊆ R
n with coordinate functions γ 1, . . . , γ n , the al-

gebra of sections �ch(U ) has odd generators bi (z) = ∑

n∈Z binz
−n−1 and ci (z) =

∑

n∈Z cinz
−n , even generators β i (z) = ∑

n∈Z β i
nz

−n−1, as well as an even generator
f (z) = ∑

n∈Z fnz−n for every smooth function f = f (γ 1, . . . , γ n) ∈ C∞(U ). The
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field β i corresponds to the vector field ∂
∂γ i , c

i corresponds to the 1-form dγ i , and bi cor-
responds to the contraction operator ι∂/∂γ i . These fields satisfy the following nontrivial
OPE relations

β i (z) f (w) ∼ ∂ f

∂γ i
(w)(z − w)−1,

bi (z)c j (w) ∼ δi, j (z − w)−1,

(14)

which generalizes the formula β i (z)γ j (w) ∼ δi, j (z−w)−1. These OPE relations define
a Lie conformal algebra [22], and�ch(U ) is defined as the quotient of the corresponding
universal enveloping vertex algebra by the ideal generated by

∂ f −
n

∑

i=1

: ∂ f

∂xi
∂γ i :, : f g : − f g, 1 − Id. (15)

A typical element of �ch(U ) is a linear combination of fields of form

: f ∂a1bi1 · · · ∂ar bir ∂d1c j1 · · · ∂ds c js∂e1βk1 · · · ∂etβkt ∂m1γ l1 · · · ∂muγ lu :, (16)

where ai , di , ei ≥ 0 and mi ≥ 1. In particular, there are no nontrivial normally or-
dered relations among the bi , ci , β i , ∂γ i and their derivatives, so the set of all Poincaré-
Birkhoff-Witt monomials in these fields and their derivatives form a basis of �ch(U ) as
a module over C∞(U ).

Now consider a smooth change of coordinates g : U → U ′,

γ̃ i = gi (γ ) = gi (γ 1, . . . , γ n), γ i = f i (γ̃ ) = f i (γ̃ 1, . . . , γ̃ n).

We get the following transformation rules:

c̃i = : ∂gi

∂γ j
c j :, b̃i = : ∂ f j

∂γ̃ i
(g(γ ))b j :,

β̃ i = : β j ∂ f
j

∂γ̃ i
(g(γ )) : + : ∂2 f k

∂γ̃ i∂γ̃ l
(g(γ ))

∂gl

∂γ r
cr bk : .

(17)

These new fields satisfy OPE relations

b̃i (z)c̃ j (w) ∼ δi, j (z − w)−1, β̃ i (z) f̃ (w) ∼ ∂ f̃

∂γ̃ i
(z − w)−1.

Here f̃ = f̃ (γ̃ 1, . . . , γ̃ n) is any smooth function. Therefore g : U → U ′ induces a ver-
tex algebra isomorphism φg : �ch(U ) → �ch(U ′). Moreover, given diffeomorphisms

of open sets U1
g−→ U2

h−→ U3, we get φh◦g = φg ◦ φh . This allows one to define the
sheaf �ch

Z on any smooth manifold Z . Consider the following locally defined fields

J =
n

∑

i=1

: bi ci :, Q =
n

∑

i=1

: β i ci :,

G =
n

∑

i=1

: bi∂γ i :, L =
n

∑

i=1

: β i∂γ i : − : bi∂ci : . (18)
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These satisfy the OPE relations of a topological vertex algebra of rank n [26].

L(z)L(w) ∼ 2L(w)(z − w)−2 + ∂L(w)(z − w)−1,

L(z)J (w) ∼ −n(z − w)−3 + J (w)(z − w)−2 + ∂ J (w)(z − w)−1,

L(z)G(w) ∼ 2G(w)(z − w)−2 + ∂G(w)(z − w)−1,

L(z)Q(w) ∼ Q(w)(z − w)−2 + ∂Q(w)(z − w)−1,

J (z)J (w) ∼ −n(z − w)−2, G(z)G(w) ∼ 0, Q(z)Q(w) ∼ 0,

J (z)G(w) ∼ −G(w)(z − w)−1, J (z)Q(w) ∼ Q(w)(z − w)−1,

Q(z)G(w) ∼ n(z − w)−3 + J (w)(z − w)−2 + L(w)(z − w)−1.

(19)

Under g : U → U ′, these fields transform as

L̃ = L , G̃ = G,

J̃ = J + ∂

(

Tr log

(

∂gi

∂b j

))

, Q̃ = Q + ∂

(

∂

∂ b̃r

(

Tr log

(

∂ f i

∂ b̃ j

))

c̃r
)

,
(20)

Therefore L and G are globally defined on any manifold Z . Although J and Q are not
globally defined in general, the operators J0 and Q0 are well-defined. Note that �ch(Z)

has a bigrading by degree and weight, where the weight is the eigenvalue of L0 and
degree is the eigenvalue of J0. Also, Q0 is a square-zero operator and we define the
differential D to be Q0. It is vertex algebra derivation, that is, a derivation of all vertex
algebra products, and it coincides with the de Rham differential at weight zero. Note that
G0 is a contracting homotopy for D, i.e., [D,G0] = L0. This shows that the cohomology
H∗(�ch(Z), D) vanishes in positive weight. Each f has weight 0 and degree 0, ci has
weight 0 and degree 1, β i has weight 1 and degree 0, and bi has weight 1 and degree
−1. Therefore the weight zero component of �ch(Z) is just �(Z), and the embedding
�(Z) ↪→ �ch(Z) induces an isomorphism in cohomology.

4. Coordinate-Free Description

For any open set U ⊆ Z , we may regard f ∈ C∞(U ) and ω ∈ �1(U ) as sections
of �ch(U ) of weight zero and degrees 0 and 1, respectively. Given a vector field X ∈
Vect(U ), there are sections

ιX (z) =
∑

n∈Z
(ιX )nz

−n−1, LX (z) =
∑

n∈Z
(LX )nz

−n−1

in �ch(U ) of weight 1 and degrees −1 and 0, respectively, and the local description of
ιX and LX is given in [24]. Let γ 1, . . . , γ n be local coordinates and X = ∑n

i=1 fi
∂

∂γ i

where each fi = fi (γ 1, . . . , γ n) is a smooth function. Then

ιX =
n

∑

i=1

: fi b
i :, LX = D(ιX ) =

n
∑

i=1

: β i fi : +
n

∑

i=1

n
∑

j=1

: ∂ f j
∂γ i

ci b j : . (21)

The next theorem1 gives a useful coordinate-independent description of �ch(U ) when
U is a coordinate open set.

1 The coordinate-free description of the relations is due to Bailin Song, and we thank him for sharing it
with us.
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Theorem 4.1. For a coordinate open set U ⊆ R
n, �ch(U ) is strongly generated by the

following fields:

f ∈ C∞(U ), ω ∈ �1(U ), LX , ιX , X ∈ Vect(U ). (22)

These satisfy the following OPE relations.

ιX (z)ιY (w) ∼ 0,

LX (z)ιY (w) ∼ ι[X,Y ](w)(z − w)−1, LX (z)LY (w) ∼ L [X,Y ](w)(z − w)−1,

LX (z)ω(w) ∼ LieX (ω)(w)(z − w)−1, ιX (z)ω(w) ∼ ιX (ω)(w)(z − w)−1,

LX (z) f (w) ∼ X ( f )(w)(z − w)−1, ιX (z) f (w) ∼ 0.

(23)

The ideal of normally ordered relations among these fields is generated by the following
elements.

1 − Id, : f g : − f g, : νω : −νω, f, g ∈ C∞(U ), ν, ω ∈ �1(U ),

ιgX− : gιX :, LgX− : (dg)ιX : − : gLX :, g ∈ C∞(U ), X ∈ Vect(U ),

∂g(φ1, . . . , φn) −
n

∑

i=1

∂g

∂φi
∂φi , g ∈ C∞(Rn), φi ∈ C∞(U ).

(24)

Proof. For a coordinate open set with coordinates γ 1, . . . , γ n , (22) is a strong generating
set for�ch(U ) since it contains the above generators f ∈ C∞(U ), bi , ci , β i as a subset.
Similarly, the set of relations (24) are all consequences of the set (15), which is a subset
of (24). ��

We call an open setU ⊆ Z small if�ch(U ) has the strong generating set (22).We call
an open cover {Uα} of Z a small open cover if each Uα is small. Aside from coordinate
open sets, there is another type of small open set that will be useful. These are of the
formU × T

m whereU is a coordinate open set, and T
m is a torus of rank m. The reason

such a set is small is that if y1, . . . , ym are coordinates on T
m defined up to shifts by

2π ik for k ∈ Z, the corresponding fields ∂yi , ci = dyi , β i , and bi , are globally defined.
If π : Z → M is a principal circle bundle, we often choose a trivializing open cover
{Vα} for M such that each Vα is a coordinate open set. Then {Uα = π−1(Vα)} is a small
open cover for Z , and each Uα

∼= Vα × T.
Even though �ch(U ) contains the ring of smooth functions C∞(U ) as the weight

zero subspace, it is not aC∞(U )-module because of the nonassociativity of the normally
ordered product. In other words, for f, g ∈ C∞(U ) and ν ∈ �ch(U ),

: ( f g)ν : − : f gν : =
∑

n≥0

1

(n + 1)!
( : (∂n+1 f )(g(n)ν) : +(∂n+1g)( f(n)ν) : )

,

and the right hand side need not vanish. However,�ch(U ) is a loop module overC∞(U )

in the sense of [3], and �ch
Z is a sheaf of loop modules over the structure sheaf C∞. For

practical purposes it can be treated like an ordinary sheaf of C∞-modules since global
sections can be constructed by gluing local sections using a partition of unity. We thank
B. Song for explaining this to us.
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Remark 4.2. Given a sheaf of vertex algebras on a manifold M which is a sheaf of C∞-
loop modules, a local but coordinate-independent description is useful for the following
reason. To specify a homomorphism between two such sheavesAM → BM , it is enough
to give a vertex algebra homomorphism φα : A(Uα) → B(Uα) which intertwines the
C∞-loop module structures, such that φα , φβ agree on the overlap Uα ∩Uβ . If we have
coordinate-independent generators and relations forAM andBM , it suffices to show that
the OPEs among the generators are preserved and the ideal of relations is annihilated;
the agreement on overlaps is then automatic. This applies to morphisms of sheaves of
modules over such vertex algebra sheaves as well.

4.1. H-twisted chiral de Rham complex. Suppose that H is a closed 3-form on Z .
Recall from [29] that for a coordinate open set U , �ch,H (U ) has strong generators
L̃ X , ι̃X (z), f̃ , ω̃ satisfying

ι̃X (z)ι̃Y (w) ∼ 0,

L̃ X (z)ι̃Y (w) ∼ (

ι̃[X,Y ](w) + (ι̃X ιY H)(w)
)

(z − w)−1,

L̃ X (z)L̃Y (w) ∼ (

L̃ [X,Y ](w) + (D̃ιX ιY H)(w)
)

(z − w)−1,

L̃ X (z)ω̃(w) ∼ ˜LieX (ω)(w)(z − w)−1, ι̃X (z)ω̃(w) ∼ ι̃X (ω)(w)(z − w)−1,

L̃ X (z) f̃ (w) ∼ X̃ ( f )(w)(z − w)−1, ι̃X (z) f̃ (w) ∼ 0.
(25)

Note that ιX ιY H is a one-form ν ∈ �1(U ), and the notation ι̃X ιY H means ν̃, and
similarly for the other uses of the wide tilde notation above. The ideal of relations
among these fields has the same generating set (24) as the untwisted case, where each
field is replaced by the tilde version. The corresponding vertex algebra sheaves are all
isomorphic to the untwisted chiral de Rham sheaf.

Theorem 4.3. ([29], Theorem 3) Let {Uα} be a small open cover of Z. Define a map
�ch(Uα) → �ch,HUα) by

ιX �→ ι̃X , LX �→ L̃ X − ι̃X H , f �→ f̃ , ω �→ ω̃. (26)

This is an isomorphismof vertex algebras for eachUα , and it defines a sheaf isomorphism
�ch

Z
∼= �

ch,H
Z .

For the rest of this paper, we will work with the twisted version �ch,H (U ), and for
simplicity of notation we shall drop the tilde symbols. Note that the chiral de Rham
differential D acts on the generators of �ch,H (U ) as follows:

D( f ) = d f, D(ω) = dω, D(ιX ) = LX − ιX H, D(LX ) = LX H.

Remark 4.4. Note that in�ch,H (U ), the generators f, ω are homogeneous ofweight zero,
and ιX is homogeneneous of weight one. However, LX is not homogeneous with respect
to the conformal weight grading, but must be replaced with the element LX − ιX H ,
which is homogeneous of weight 1.



1144 A. Linshaw, V. Mathai

5. Fourier Decomposition

Suppose now that Z is a principal circle bundle over M , with circle denoted by T, which
we denote byπ : Z → M . Let H be an integral closed 3-formon Z . By averaging overT,
wemay assumewithout loss of generality that H isT-invariant since this does not change
the cohomology class [H ]. Let ν denote the vector field infintesimally generated by T,
and fix a connection form A ∈ �1(Z), normalized so ιν A = 1. By abuse of notation,
we often denote ιν by ιA in order to emphasize the duality between the vector field and
connection form. We will denote the even and odd fields in �ch,H (Z) corresponding to
ν by LA and ιA, respectively.

Since H is T-invariant, we may write H = H3 + A ∧ H2 where H3, H2 are basic
forms, that is, elements of π∗(�(M)). For each open set U ⊆ Z , define

�ch,H
n (U ) = {α ∈ α ∈ �ch,H (U )(U )| (L A)0(α) = nα}.

Then

�ch,H (U ) ∼=
⊕

n∈Z
�ch,H

n (U ),

where the direct sum denotes the Fréchet space completion of the ordinary direct sum.
Choose a trivializing open cover {Vα} for M such that each Vα is a coordinate open set.
Then {Uα = π−1(Vα)} is a small open cover for Z , and each Uα

∼= Vα × T.
Note that�ch,H

0 (Uα) ∼= �ch,H (Uα)T and eachweight space�
ch,H
n (Uα) for the action

of T is a module over �
ch,H
0 (Uα). Moreover, �ch,H

0 (Uα) has strong generating set

{ιX , LX , f, ω, A, �A| X ∈ Vecthor(Uα), f ∈ π∗(C∞(Vα)), ω ∈ π∗(�1(Vα))},
described in [29]. In this notation, Vecthor(Uα) = {X ∈ Vect(Uα)| ιX (A) = 0} is the
set of horizontal vector fields, and �A = G(0)A = G(1)∂A, which has degree zero and
weight 1. Note that G has weight 2, so in our earlier notation (13) this is written as
�A = G−1A = G0∂A. Recall that D�A = ∂A − ξ A, where ξ A has degree 1, weight
1, and satisfies Dξ A = ∂DA = D∂A. Also, recall that ξ A lies in the subalgebra of
�ch,H (Uα) generated by π∗(�(Vα)), and in particular commutes with both ιA and L A.
For convenience we recall the OPEs among the generators of �

ch,H
0 (U ).

LX (z)ιY (w) ∼ (

ι[X,Y ] + ιX ιY H
3+ : A(ιX ιY H

2) : + : (ιX ιY ̂H2)ιA : )

(z − w)−1,

LX (z)LY (w) ∼ (

L [X,Y ] + LX ιY H
3 − ιX LY H

3+ : ̂H2(ιX ιY H
2) : − : A(LX ιY H

2) :
+ : A(ιX LY H

2) : + : (LX ιY ̂H2)ιA : − : (ιX LY ̂H2)ιA : + : L A(ιX ιY ̂H2) : )

(w)(z − w)−1,

LX (z)ω(w) ∼ LieX (ω)(w)(z − w)−1, LX (z) f (w) ∼ X ( f )(w)(z − w)−1,

ιX (z)ω(w) ∼ (ιXω)(w)(z − w)−1, ιX (z) f (w) ∼ 0,

LX (z)A(w) ∼ (ιX ̂H2)(w)(z − w)−1, LX (z)ιA(w) ∼ (ιX H
2)(w)(z − w)−1,

LX (z)�A(w) ∼ −(ιX ξ A)(w)(z − w)−1, ιX (z)�A(w) ∼ 0,

L A(z)�A(w) ∼ (z − w)−2, ιA(z)A(w) ∼ (z − w)−1,

L A(z)ιX (w) ∼ −(ιX H
2)(w)(z − w)−1, L A(x)LX (w) ∼ −(ιX H

2)(w)(z − w)−1.

(27)
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Elements of �
ch,H
n (U ) may be described locally as follows. If θα is a coordinate on T

which is defined up to shifts by 2π ik for k ∈ Z, then the function enθα in local coordinates
lies in �

ch,H
n (Uα); moreover, elements of �

ch,H
n (U ) are all of the form : enθαα : for

some α ∈ �
ch,H
0 (Uα). We have the following additional OPE relations.

LX (z)enθα (w) ∼ 0, ιX (z)enθα (w) ∼ 0,

LA(z)enθα (w) ∼ nenθα (w)(z − w)−1, ιA(z)enθα (w) ∼ 0.

enθα (z)emθα (w) ∼ 0, for all n,m.

(28)

These follow from the OPE relations (27) in �ch,H (Uα).

6. Exotic Twisted Chiral de Rham Complex

As above, let π : Z → M be a principal T-bundle with flux form H , which we may
assume to be T-invariant, and let A ∈ �1(Z) be a connection form normalized so that
ιA A = 1. Recall that ιA means the contraction ιν along the vector field ν infinitesimally
generated by T. Let π̂ : ̂Z → M be the T-dual principal̂T-bundle witĥT-invariant flux
form ̂H , and fix a connection form ̂A ∈ �1(̂Z) normalized so that ι

̂A
̂A = 1. Again,

by abuse of notation ι
̂A means the contraction ι̂ν along the vector field ν̂ infinitesimally

generated by ̂T.
Next, fix an open cover {Vα} for M which trivializes both circle bundles, such that

each Vα is a coordinate open set on M . Then {Uα = π−1(Vα)} and ̂Uα = π̂−1(Vα) are
small open covers for Z and ̂Z , respectively. Since H is T-invariant, it can be written in
the form H = H3 + A∧H2 where H3 ∈ π∗(�3(M)) and H2 ∈ π∗(�2(M)). Similarly,
since ̂H is ̂T-invariant it can written as ̂H = ̂H3 + ̂A ∧ ̂H2 where ̂H3 ∈ π̂∗(�3(M))

and H̃2 ∈ π̂∗(�2(M)). By Equations (1.10) and (1.11) of [4], we can assume that

H3 = ̂H3, H2 = d̂A = F
̂A, ̂H2 = d A = FA,

where FA and F
̂A denote the curvature forms associated to A and ̂A.

Next, let L be the line bundle on M associated to the circle bundle Z . We may write
the connection form A ∈ �1(Z) locally in the form

Aα = Aα,bas + dθα,

where Aα,bas is a basic 1-form, and hence can be identified with an element of �1(Vα).
By abuse of notation, we denote this element by Aα,bas as well.

For a local section g of L over Vα , we can regard g as a function g : Vα → R, and
we have the covariant derivative

∇L(g) = dg + Aα,bas ∧ g.

Here d is the de Rham differential on M . Finally, we fix a local nonvanishing section sα
which is constant along Vα . For each n ∈ Z, the nth tensor power L⊗n has connection
form locally given by nAα = nAα,bas + ndθα , and given a local section g of L⊗n over
M , we have

∇L⊗n
(g) = dg + nAα,bas ∧ g. (29)

Also, snα is a locally constant nowhere vanishing section of L
⊗n .We use the same notation

snα to denote the section π̂∗(snα) of π̂∗(L⊗n) over ̂Z , when no confusion can arise.
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We now define the exotic ̂H -twisted chiral de Rham sheaf Ach, ̂H
̂Z

on ̂Z . We first
define it locally by writing strong generators, OPE relations among the generators, and
specifying the ideal of normally ordered relations among the generators. For each Vα ,
we then write down an explicit isomorphism

�ch,H
n (Uα) → Ach, ̂H

−n (̂Uα).

This is enough to get the isomorphism of vertex algebra sheaves on M ,

π∗(�ch,H
Z ) → π̂∗(Ach, ̂H

̂Z
).

Recall the set of horizontal vector fields Vecthor(̂Uα) = {X ∈ Vect(̂Uα)| ιX (̂A) = 0}.
First, for n = 0 we declare that Ach, ̂H

0 (̂Uα) has strong generators

{LX , ιX , ̂A, ι
̂A, L A, �A, f, ω| X ∈ Vecthor(̂Uα), f ∈ π̂∗(C∞(Vα)), ω ∈ π̂∗(�1(Vα))},

which satisfy OPE relations

LX (z)ιY (w) ∼ (

ι[X,Y ] + ιX ιY H
3+ : ̂A(ιX ιY ̂H2) : )

(z − w)−1,

LX (z)LY (w) ∼ (

L [X,Y ] + LX ιY H
3 − ιX LY H

3+ : ̂H2(ιX ιY H
2) : + : H2(ιX ιY ̂H2) :

+ : (LX ιY ̂H2)̂A : − : (ιX LY ̂H2)̂A : + : L A(ιX ιY ̂H2) : )

(w)(z − w)−1,

LX (z)ω(w) ∼ LieX (ω)(w)(z − w)−1, LX (z) f (w) ∼ X ( f )(w)(z − w)−1,

ιX (z)ω(w) ∼ (ιXω)(w)(z − w)−1, ιX (z) f (w) ∼ 0,

LX (z)̂A(w) ∼ 0, LX (z)ι
̂A(w) ∼ (ιX ̂H2)(w)(z − w)−1,

L A(z)�A(w) ∼ (z − w)−2, ι
̂A(z)̂A(w) ∼ (z − w)−1,

LX (z)�A(w) ∼ −(ιX ξ A)(w)(z − w)−1, ιX (z)�A(w) ∼ 0,

LA(z)ιX (w) ∼ 0, L A(x)LX (w) ∼ 0.
(30)

The ideal of relations among these fields has the same generating set (24).
It is not immediately apparent that this structure defined by writing down generating

fields and specifying OPE relations and normally ordered relations, leads to a vertex
algebra. There is a general method for constructing vertex algebras starting from fields
and OPE relations that is given by De Sole and Kac in [13] in the language of λ-brackets,
and it is translated into the language of OPEs in [28]. Briefly, the universal enveloping
vertex algebra associated to an OPE algebra can always be defined, although it may
be trivial. In our case, the universal enveloping vertex algebra associated to the OPE
algebra given by (30) is freely generated by these fields since in the notation of [28], all
Jacobi identities (2.10) hold as consequences of equations (2.6)–(2.9) of [28]. Therefore

Ach, ̂H
0 (̂Uα) is well-defined as a quotient of this structure by the relations generated by

(24), and in particular is a vertex algebra.

Lemma 6.1. For each index α, define a map φch
0 : �

ch,H
0 (Uα) → Ach, ̂H

0 (̂Uα) by

f �→ f, ω �→ ω, LX �→ LX− : ι
̂A(ιX H

2) :, ιX �→ ιX ,

A �→ ι
̂A, ιA �→ ̂A, L A �→ L A + H2, �A �→ �A.

(31)
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This map preserves OPE relations as well as the ideal of relations, so it determines a
vertex algebra isomorphism.Moreover, φch

0 induces an isomorphism of sheaves of vertex
algebras on M,

φch
0 : π∗

(

(�
ch,H
0 )Z

) → π̂∗
(

(Ach, ̂H
0 )

̂Z

)

, (32)

Taking global sections, we get a vertex algebra isomorphism

φch
0 : �

ch,H
0 (Z) → Ach, ̂H

0 (̂Z). (33)

Proof. The fact that themapφch
0 given by (31) preservesOPE relations is straightforward

to verify using the OPE relations (27) and (30). It is surjective since it takes generators
to generators. To see that φch

0 is injective, recall that Vα , Uα , and ̂Uα are small open

sets. Therefore we may choose local coordinates such that �
ch,H
0 (Uα) and Ach, ̂H

0 (̂Uα)

both admit bases consisting of Poincaré-Birkhoff-Witt monomials in the coordinate one-
forms, contraction operators, vector fields, and the derivatives of coordinate functions
as in (16), as modules over C∞(Vα). Clearly φch

0 maps a basis to a basis, so it must be
injective. Finally, the fact that φch

0 induces an morphism of vertex algebra sheaves on M
(which then must be an isomorphism), follows from Remark 4.2. ��
Remark 6.2. Recall the vertex algebra

(

�ch, ̂H (̂Uα)iR[t]/〈L
̂A − ̂H2〉

)

⊗ H(2), (34)

defined in [29], where H(2) is the rank 2 Heisenberg vertex algebra with generators
L A, �A satisfying

L A(z)�A(w) ∼ (z − w)−2.

The generators ofAch, ̂H
0 (̂Uα) are the same as the generators of (34) but the OPE algebras

are different. So these structures coincide as vector spaces but not as vertex algebras.

Remark 6.3. Ach, ̂H
0 (̂Uα) has an action of iR[t] given by the modes {(LA)k | k ≥ 0}, and

the spaceAch, ̂H
0 (̂Uα)iR[t] is the subalgebra generated by the above generators except for

�A.

Next, for each n 
= 0, we define Ach, ̂H
n (̂Uα) to be a module over Ach, ̂H

0 (̂Uα) with

generator snα , which commutes with all generators of Ach, ̂H
0 (̂Uα) except for L A, and

satisfies
LA(z)snα(w) ∼ −nsnα(w)(z − w)−1. (35)

Additionally, we declare that for all n,m 
= 0,

snα(z)smα (w) ∼ 0,

: snαsmα : = sn+mα ,

∂snα = −n : snα(∂A − ∂Aα,bas) : .

(36)

It follows that any element of Ach, ̂H
n (̂Uα) can be expressed in the form : snαη : for some

η ∈ Ach, ̂H
0 (̂Uα). We now define

φch
n : �

ch,H
−n (Uα) → Ach, ̂H

n (̂Uα) (37)
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inductively as follows

φch
n (e−nθα ) = snα,

φch
n (ν(k)(e

−nθα )) = (φch
0 (ν))(k)(s

n
α), for all n, k ∈ Z, and ν ∈ �

ch,H
0 (Uα).

(38)

In particular, the�
ch,H
0 (Uα)-module structure on�

ch,H
−n (Uα) and theAch, ̂H

0 (̂Uα)-module

structure on Ach, ̂H
n (̂Uα), are intertwined by φch

n , i.e.,

φch
n (ν(k)ω) = (φch

0 (ν))(k)(φ
ch
n (ω)), for all n, k ∈ Z, ν ∈ �

ch,H
0 (Uα) and ω ∈ �

ch,H
−n (Uα).

(39)

Note that since we have not assigned Ach, ̂H
0 (̂Uα) a weight grading, we must use the

notation η(k) rather than ηk for η ∈ Ach, ̂H
0 (̂Uα).

We now define the exotic chiral de Rham complex

Ach, ̂H (̂Uα) =
⊕

n∈Z
Ach, ̂H

n (̂Uα), (40)

where as usual this means the Fréchet space completion of the usual direct sum.We give
Ach, ̂H (̂Uα) a filtration

Ach, ̂H (̂Uα)[0] ⊆ Ach, ̂H (̂Uα)[1] ⊆ Ach, ̂H (̂Uα)[2] · · · , Ach, ̂H (̂Uα) =
⋃

i≥0

Ach, ̂H (̂Uα)[i],

(41)
which we call the weight filtration, defined on generators follows:

wt( f ) = wt(ω) = wt(̂A) = wt(snα) = 0,

wt(ιX ) = wt(LX ) = wt(L A) = wt(ι
̂A) = wt(�A) ≤ 1.

(42)

In other words, f, ω, ̂A, snα lie inAch, ̂H (̂Uα)[0] and ιX , LX , LX , ι
̂A lie inAch, ̂H (̂Uα)[1].

Elements ofAch, ̂H (̂Uα)[i] are said to have weight at most i . If a ∈ Ach, ̂H (̂Uα)[i], we set
∂a ∈ Ach, ̂H (̂Uα)[i+1]. It is apparent from the OPE algebra (30) that if a ∈ Ach, ̂H (̂Uα)[i]
and b ∈ Ach, ̂H (̂Uα)[ j], then a(k)b ∈ Ach, ̂H (̂Uα)[i+ j−k−1] for all i, j ≥ 0. Note that the

weight zero componentAch, ̂H
n (̂Uα)[0] consists of linear combinations of elements of the

form : (ω+ ̂Aν)snα :, which we can identity with the space of exotic differential forms. In

particular, under coordinate transformations the element snα ∈ Ach, ̂H (̂Uα)[0] transforms
as a section of π̂∗(L⊗n).

We assemble the maps φch
n for all n ∈ Z to construct the map

φch : �ch,H (Uα) → Ach, ̂H (̂Uα), (43)

such that φch restricts to φch
n on the summand �

ch,H
−n (Uα). It is straightforward to check

using Lemma 6.1 combined with (28), (36), and (39), that φch preserves all OPEs. It is
bijective by the same argument as the proof of Lemma 6.1. By Remark 4.2, we obtain
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Theorem 6.4. The map φch is an isomorphism of vertex algebras for each index α.
Moreover, it induces an isomorphism of sheaves of vertex algebras over M,

φch : π∗
(

�
ch,H
Z

) → π̂∗
(Ach, ̂H

̂Z

)

. (44)

Taking global sections, we get a vertex algebra isomorphism

φch : �ch,H (Z) → Ach, ̂H (̂Z). (45)

Remark 6.5. The structure of �
ch,H
Z does not depend on our choice of connection form

A or flux form H , since it is isomorphic to the untwisted chiral de Rham complex �ch
Z .

Therefore the structure ofAch, ̂H
̂Z

also does not depend on these choices or on the choice

of ̂A or ̂H , although the isomorphism (44) does depend on these choices.

7. Chiral Han–Mathai Map

Recall that �ch,H (Uα) has weight grading �ch,H (Uα) = ⊕

n≥0 �ch,H (Uα)[n], and
hence has the associated weight filtration

�ch,H (Uα)[0] ⊆ �ch,H (Uα)[1] ⊆ �ch,H (Uα)[2] ⊆ · · ·
�ch,H (Uα) =

⋃

n≥0

�ch,H (Uα)[n],

where �ch,H (Uα)[n] = ⊕n
i=0 �ch,H (Uα)[i].

We interpret the map φch as the analogue of the Cavalcanti–Gualtieri isomorphism
of Courant algebroids [8]. However, it is clear from (31) that φch does not preserve the
weight filtration, and does not have a degree shift, so it is not the chiralization of the
Han-Mathai map τ : �k̄(Z) → Ak+1(̂Z)

̂T. To define the analogue of τ , we need to
regard�

ch,H
Z not as a vertex algebra sheaf, but as a sheaf ofmodules over itself. For each

Uα , �ch,H (Uα) is generated by the vacuum vector 1 as a module over itself. Similarly,

we regard Ach, ̂H
̂Z

not as a sheaf of vertex algebras, but as a sheaf of modules over itself.

Both �ch,H (Uα) and Ach, ̂H (̂Uα) are Z2-graded, where the grading is the Z2-reduction
of the degree grading. We shall call this Z2-grading the degree, and for k̄ ∈ Z2, we use
the notation

�ch,H,k̄(Uα) =
⊕

n∈Z
�ch,H,k̄

n (Uα), Ach, ̂H ,k̄(̂Uα) =
⊕

n∈Z
Ach, ̂H ,k̄

n (̂Uα)

to denote the Z2-graded components, and similarly for the corresponding sheaves. Note
that the map φch defined in (43) preserves this grading.

Recall that Ach, ̂H (̂Uα) is only filtered by weight rather than graded, so for η ∈
Ach, ̂H (̂Uα), the vertex algebra operation η(k) is well-defined, but ηk is not. However, it
will be convenient to givemeaning toηk in the casewhenη = φch(ν) and ν ∈ �ch,H (Uα)

is one of the weight-homogeneous generators

f, ω, snα, ιX , LX − ιX H
3+ : A(ιX H

2) :, A, ιA, L A − H2, �A.
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We define

(φch( f ))k = fk = f(k−1), (φch(ω))k = ωk = ω(k−1),

(φch(e−nθα ))k = (snα)k = (snα)(k−1), (φch(ιX ))k = (ιX )k = (ιX )(k),

(φch(LX − ιX H
3+ : A(ιX H

2) :))k = (LX − ιX H
3)k = (LX − ιX H

3)(k),

(φch(A))k = (ι
̂A)k = (ι

̂A)(k), (φch(ιA))k = (̂A)k = (̂A)(k−1),

(φch(L A − H2))k = (L A)k = (L A)(k), (φch(�A))k = (�A)k = (�A)(k).

(46)

For each Uα , we now define a linear map

τ ch : �ch,H,k̄(Uα) → Ach, ̂H ,k+1(̂Uα), (47)

inductively as follows:

τ ch(1) = ̂A, τ ch(νk(μ)) = (−1)|ν|(φch(ν))k(τ
ch(μ)). (48)

Here ν is one of the weight-homogeneous generators of �ch,H (Uα) regarded as a ver-
tex algebra, and μ lies in �ch,H (Uα) regarded as a �ch,H (Uα)-module. The fact that
τ ch is well-defined is a consequence of the standard quasi-commutativity and quasi-
associativity formulas in vertex algebra theory. We regard τ ch not as a vertex algebra
homomorphism, but as a homomorphism of vertex algebra modules in the sense that it
intertwines that action of �ch,H (Uα) on itself, and Ach, ̂H (̂Uα) on itself, via the homo-
morphism φch. We obtain a homomorphism of sheaves of modules on M

τ ch : π∗
(

�ch,H,k̄)

Z → π̂∗
(Ach, ̂H ,k+1)

̂Z , (49)

whichwe also denote by τ ch. In particular, we get a homomorphism ofmodules of global
sections

τ ch : �ch,H,k̄(Z) → Ach, ̂H ,k+1(̂Z). (50)

Theorem 7.1. The map τ ch shifts the Z2-grading and preserves the weight filtration,
i.e.,

τ ch(�ch,H,k̄(Z)[i]) ⊆ Ach, ̂H ,k+1(̂Z)[i].

Moreover, τ ch coincides at weight zero with the classical T-duality map of Han and
Mathai.

Proof. By definition, τ ch preserves weight and shifts degree when applied to the vacuum
1, since 1 has weight 0 and degree 0̄, and τ ch(1) = ̂A has weight zero and degree 1̄.
Inductively, suppose that μ has weight d and degree j̄ , and that τ ch(μ) has weight at
most d and degree j + 1. Then for any homogeneous generator ν ∈ �ch,H,k̄(Z) and
r ∈ Z, νrμ has weight at most d − r and degree j + k. Since φch preserves degree, and
τ ch(νrμ) = (−1)|ν|(φch(ν))r (τ

ch(μ)) has weight at most d − r and degree j + k + 1, it
follows that τ ch preserves the weight filtration and shifts degree.

Note that

τ ch(A) = τ ch(A0(1)) = −(φch(A))0(τ
ch(1)) = −(ι

̂A)0(̂A) = −1.

Sinceφch(ω) = ω for allω ∈ π∗(�1(M)), we conclude that atweight zero, τ ch coincides
with Han-Mathai map τ . ��
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It follows from the definition of the maps (43) and (47) that τ ch(e−nθα ) = : snα ̂A :,
for all n 
= 0. Therefore τ ch maps �

ch,H,k̄
−n (Z) to Ach, ̂H ,k+1

n (̂Z). We interpret this as
exchange of momentum and winding number as in the setting of [19].

Next, we shall define the chiral analogue of the map σ̂ : Ak̄(̂Z) → �k+1(̂Z). First,
let

̂ψch : Ach, ̂H (̂Z) → �ch,H (Z)

be the inverse of the vertex algebra isomorphism φch given by (43). We define

σ̂ ch : Ach, ̂H ,k̄(̂Z) → �ch,k+1(̂Z)

inductively as follows:

σ̂ ch(1) = A, σ̂ ch(νk(μ)) = (−1)|ν|(̂ψch(ν))k (̂σ
ch(μ)).

Here ν is one of the generators of Ach, ̂H (̂Z) regarded as a vertex algebra, which is the
image under φch of a weight-homogeneous generator of�ch,H (Z); namely, ν is either f ,
ω, snα (in local coordinates), ιX , LX − ιX H3, L A, or �A. Similarly, μ lies in Ach, ̂H (̂Z)

regarded as a module over Ach, ̂H (̂Z). Reversing the roles of Z and ̂Z , we have the
analogous maps

τ̂ ch : �ch, ̂H ,k̄(̂Z) → Ach,H,k+1(Z), σ ch : Ach,H,k̄(Z) → �ch, ̂H ,k+1(̂Z).

Theorem 7.2. We have the following identities.

− Id = σ̂ ch ◦ τ ch : �ch,H,k̄(Z) → �ch,H,k̄(Z),

− Id = τ̂ ch ◦ σ ch : Ach,H,k̄(Z) → Ach,H,k̄(Z).
(51)

In particular, τ ch is a linear isomorphism.

Proof. We only prove the first identity, since the proof of the second one is the same.
First, it is clear that it holds on the vacuum vector 1 since

σ̂ ch ◦ τ ch(1) = σ̂ ch(̂A) = σ̂ ch(̂A01) = −(̂ψch(̂A)0(̂σ (1)) = −(ιA)0(A) = −1.

Next, it suffices to show that if σ̂ ch ◦ τ ch(μ) = −μ, then for each weight-homogeneous
generator ν of �ch,H,k̄(Z), we have

σ̂ ch ◦ τ ch(νk(μ)) = −(νk(μ)).

To check this, we compute

σ̂ ch ◦ τ ch(νk(μ)) = (−1)|ν|σ̂ ch
(

(φch(ν))kτ
ch(μ)

)

= (−1)|ν|(−1)|φch(ν)| (

̂ψch(φch(ν))
)

k

(

σ̂ ch(τ ch(μ))
)

= νk(−μ) = −νk(μ),

(52)

since ̂ψch(φch(ν)) = ν and σ̂ ch(τ ch(μ)) = −μ. ��
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8. Differential Structure on Ach,̂H,Nk(̂Z)

The final step is to equip Ach, ̂H (̂Z) with a square-zero twisted differential D
̂Z , ̂H with

the following properties.

(1) D
̂Z , ̂H shifts the Z2-graded degree and preserves the weight filtration, that is,

D
̂Z , ̂H (Ach, ̂H ,k̄(̂Z)[m]) ⊆ Ach, ̂H ,k+1(̂Z)[m].

(2) OnAch, ̂H (̂Z)[0], D̂Z , ̂H restricts to the exotic differential∇L⊗n−nι
̂A+ ̂H . In particular,

the weight zero subcomplex (Ach, ̂H (̂Z)[0], D̂Z , ̂H ) coincides with the exotic complex
of Han and Mathai.

(3) At weight zero, τ ch intertwines the twisted differentials up to a sign, that is,

τ ch ◦ DH = −D
̂Z , ̂H ◦ τ ch. (53)

In this notation, DH is the twisted differential on �ch,H,k̄(Z) given by DH (ν) =
D(ν)+ : Hν :, where D is the chiral de Rham differential.

By Theorem 2 of [29], the cohomology of (�ch,H (Z), DH ) vanishes in positive
weight, and coincides with the classical twisted cohomology in weight zero. Unfortu-
nately, the intertwining property (53) no longer holds in positive weight, so it is not
obvious whether the cohomology of (Ach, ̂H (̂Z), D

̂Z , ̂H ) vanishes in positive weight. We
expect that for all m, the inclusions of complexes

(Ach, ̂H (̂Z)[0], D̂Z , ̂H ) ↪→ (Ach, ̂H (̂Z)[m], D̂Z , ̂H ) ↪→ (Ach, ̂H (̂Z), D
̂Z , ̂H ) (54)

are all quasi-isomorphisms, that is, they induce isomorphisms in cohomology. In the last
section, we will specialize to the case where both circle bundles Z and ̂Z are trivial, and
the fluxes H and ̂H are both zero, and we will prove that this statement holds in this
case.

We shall define D
̂Z , ̂H in two steps. Recall first that the chiral de Rham differential D

on �ch,H (Z) = ⊕

n∈Z �
ch,H
n (Z) is a vertex algebra derivation given on generators by

D( f ) = d f, D(ω) = dω, D(ιX ) = LX − ιX H = LX − ιX H
3+ : A(ιX H

2) :,
D(LX ) = LX H

3+ : H2(ιX ̂H2)+ : A(LX H
2) :,

D(ιA) = L A − ιAH = L A − H2, D(A) = d A = ̂H2,

D(�A) = ∂A − ξ A,

D(enθα ) = n : enθαdθα : = n : (Aα − Aα,bas)e
nθα : .

(55)
As in [29], ξ A has degree 1 andweight 1 and satisfies Dξ A = ∂d A. We can transport this

structure toAch, ̂H (̂Z) = ⊕

n∈ZAch, ̂H
n (̂Z) by defining the differential D

̂Z on generators
as follows

D
̂Z ( f ) = d f, D

̂Z (ω) = dω, D
̂Z (ιX ) = LX − ιX H

3,

D
̂Z (LX ) = LX H

3+ : H2(ιX ̂H2) : + : ̂H2(ιX H
2) :, D

̂Z (ι
̂A) = ̂H2,

D
̂Z (̂A) = L A, D

̂Z (L A) = 0, D
̂Z (�A) = ∂ι

̂A − ξ A,

D
̂Z (snα) = −n : ι

̂As
n
α : +n : Aα,bass

n
α : .

(56)



T-Duality and the Exotic Chiral de Rham Complex 1153

By construction, we have

φch ◦ D = D
̂Z ◦ φch.

In other words, φch is an isomorphism of differential vertex algebras. In particular,
there exists a locally defined field D

̂Z (z) whose zero-mode is globally well-defined and
coincides with D

̂Z . Therefore D̂Z is a square-zero derivation on the algebra. It is clearly
homogeneous of degree 1̄, that is

D
̂Z ((Ach, ̂H ,k̄(̂Z)) ⊆ (Ach, ̂H ,k+1(̂Z)).

We caution the reader that neither φch nor D
̂Z preserve the weight filtration. Next, we

modify D
̂Z as follows. We define

D
̂Z , ̂H = D

̂Z + D0 + D1 + D2 + D3 + D4 + D5 + D6,

D0 = −(: ̂A ̂H2 :)(0),
D1 = (: H2ι

̂A :)(0),
D2 = −(: ι

̂AL A :)(0),
D3 = H3

(0),

D4 = (: ι
̂AL A :)(1),

D5 = (: H2ι
̂A :)(1),

D6 = ̂H(−1) = H3
(−1) + (: ̂A ̂H2 :)(−1).

(57)

We observe first that D
̂Z , ̂H is well-defined globally and homogeneous of degree 1̄. Note

that D
̂Z + D0 + D1 + D2 + D3 is a vertex algebra derivation, since D

̂Z , as well as the
zero-mode of any field, has this property. The terms D4 and D5, being first modes of
fields, are not derivations. We will need the following computations repeatedly for the
remainder of this section.

D0( f ) = 0, D0(ω) = 0, D0(snα) = 0,

D0(ιX ) = : ̂A(ιX ̂H2) :, D0(LX ) = : ̂A(LX ̂H2) :,
D0(̂A) = 0, D0(ι

̂A) = − ̂H2, D0(L A) = 0, D0(�A) = 0. (58)

D1( f ) = 0, D1(ω) = 0, D1(snα) = 0,

D1(ιX ) = − : ι
̂A(ιX H

2) :, D1(LX ) = − : ι
̂A(LX H

2) : − : H2(ιX ̂H2) :,
D1(̂A) = H2 D1(ι

̂A) = 0, D1(L A) = 0, D1(�A) = 0, (59)

D2( f ) = 0, D2(ω) = 0, D2(snα) = n : ι
̂As

n
α :,

D2(ιX ) = 0, D2(LX ) = : L A(ιX ̂H2) :,
D2(̂A) = −L A, D2(ι

̂A) = 0, D2(L A) = 0, D2(�A) = −∂ι
̂A, (60)

D3( f ) = 0, D3(ω) = 0, D3(snα) = 0,

D3(ιX ) = ιX H
3, D3(LX ) = −LX H

3,

D3(̂A) = 0, D3(ι
̂A) = 0, D3(L A) = 0, D3(�A) = 0, (61)
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D4( f ) = 0, D4(ω) = 0, D4(snα) = 0,

D4(ιX ) = 0, D4(LX ) = 0,

D4(̂A) = 0, D4(ι
̂A) = 0, D4(L A) = 0, D4(�A) = ι

̂A (62)

D5( f ) = 0, D5(ω) = 0, D5(snα) = 0,

D5(ιX ) = 0, D5(LX ) = 0,

D5(̂A) = 0, D5(ι
̂A) = 0, D5(L A) = 0, D5(�A) = 0, (63)

D6( f ) = : H3 f : + : ̂ÂH2 f :
D6(ω) = : H3ω : + : ̂ÂH2ω : D6(snα) = : H3snα : + : ̂ÂH2snα :,
D6(ιX ) = : H3ιX : + : (̂ÂH2)ιX :

= : H3ιX : + : ̂ÂH2ιX : − : ∂ ̂A(ιX
̂H2) :,

D6(LX ) = : H3LX : + : (̂ÂH2)LX : = : H3LX : + : ̂ÂH2LX : − : ∂ ̂A(LX
̂H2) :,

D6(̂A) = : H3
̂A :

D6(ι
̂A) = H3ι

̂A : + : (̂ÂH2)ι
̂A := : H3ι

̂A : + : ̂ÂH2ι
̂A : +∂ ̂H2,

D6(L A) = : H3L A : + : ̂ÂH2L A :, D6(�A) = : H3�A : + : ̂ÂH2�A : . (64)

Lemma 8.1. The operator D
̂Z , ̂H on Ach, ̂H (̂Z) preserves the weight filtration (41). In

particular, D
̂Z , ̂H acts on the weight zero subspace Ach, ̂H (̂Z)[0].

Proof. Note that D
̂Z , ̂H = D′ + D′′ where D′ = D

̂Z + D2 and D′′ = D0 + D1 + D3 +
D4 + D5 + D6. Since D′ is a vertex algebra derivation, to show that it preserves the
weight filtration it suffices to check this on generators, and this is apparent from (56)
and (60). Even though D′′ is not a derivation, it is apparent from (42) that D′′ consists
of terms which either preserve or lower the weight. This completes the proof. ��
Lemma 8.2. The weight zero subcomplex

(Ach, ̂H (̂Z)[0], D̂Z , ̂H

)

can be identified with

the Han-Mathai complex. In particular, onAch, ̂H (̂Z)[0] we have τ ch ◦ DH = −D
̂Z , ̂H ◦

τ ch.

Proof. In local coordinates, the general element of g ∈ Ach, ̂H
n (̂Z)[0] has the form

g = : ω0s
n
α : + : ̂Aω1s

n
α :

where ω0, ω1 are basic differential forms. We compute

D
̂Z , ̂H

(

: ω0s
n
α : + : ̂Aω1s

n
α :

)

= : (dω0)s
n
α : +(−1)|ω0|n : ω0Aα,bass

n
α :

+ : H2ω1s
n
α : − : ̂A(dω1)s

n
α : −(−1)|ω1|n : ̂Aω1Aα,bass

n
α :

− : nω1s
n
α : + : H3ω0s

n
α : + : H3

̂Aω1s
n
α : + : ̂A ̂H2ω0s

n
α : .

(65)

On the other hand, identifying g with the element ω0 ∧ snα + ̂A ∧ ω1 ∧ snα of the
Han-Mathai complex, it is apparent from (29) that D

̂Z , ̂H corresponds to (π̂∗∇L⊗n −
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ιnν̂ + ̂H)(g). In this notation, the operator ιnν̂ is identified with ιn̂A = nι
̂A. The state-

ment that τ ch intertwines the differentials DH and D
̂Z , ̂H up to sign is a straightforward

computation.
��

Our main result in this section is the following

Theorem 8.3. D
̂Z , ̂H is a square-zero operator on Ach, ̂H (̂Z).

The proof is quite involved, and it depends crucially on the nonassociativity of the
normally ordered product, and the fact that D

̂Z , ̂H fails to be a derivation in the category
of vertex algebra modules due to the terms D4 and D5. In order to prove Theorem 8.3,
we observe that Ach, ̂H (̂Z) has the following sequence of vertex subalgebras which are
all closed under the action of D

̂Z , ̂H :

〈�(M)〉 ⊆ Ach, ̂H
0 (̂Z)iR[t] ⊆ Ach, ̂H

0 (̂Z) ⊆ Ach, ̂H (̂Z). (66)

In this notation,

(1) 〈�(M)〉 denotes the abelian vertex algebra generated by all differential forms on M ,

(2) Ach, ̂H
0 (̂Z)iR[t] denotes the iR[t]-invariant subalgebra of Ach, ̂H

0 (̂Z), which is gener-
ated by �(M) together with ιX , LX , ̂A, ι

̂A, L A,

(3) Ach, ̂H
0 (̂Z) is generated by the above fields together with �A,

(4) Ach, ̂H (̂Z) is generated by the above fields together with snα in local coordinates, for
all n ∈ Z.

We will proceed by proving Theorem 8.3 successively on each of these subalgebras,
and we organize this as a sequence of lemmas.

Lemma 8.4. D
̂Z , ̂H is a square-zero operator on the subalgebra 〈�(M)〉.

Proof. First, D0, D1, D2, D3, D4, and D5 vanish on 〈�(M)〉, so D
̂Z , ̂H = D

̂Z + D6.
Moreover, D

̂Z is a vertex algebra derivation on 〈�(M)〉 and D
̂Z , ̂H is a derivation on

〈�(M)〉 in the category of modules over 〈�(M)〉. In other words, for all a, b ∈ 〈�(M)〉
and k ∈ Z, we have

D
̂Z (a(k)b) = (D

̂Z (a))(k)b + (−1)|a|a(k)D̂Z (b),

D
̂Z , ̂H (a(k)b) = D

̂Z (a)(k)b + (−1)|a|a(k)D̂Z , ̂H (b).
(67)

Since D
̂Z and D6 are commuting differentials which are both square-zero, the claim

follows. ��
Lemma 8.5. D

̂Z , ̂H is a square-zero operator on the subalgebra Ach, ̂H
0 (̂Z)iR[t].

Proof. This argument is more difficult than the proof of the previous lemma because the
terms D4 and D5 fail to be vertex algebra derivations. We define

DDer = D
̂Z + D0 + D1 + D2 + D3,

DNDer = D4 + D5,

D
̂H = D6.

(68)
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In this notation, DDer is a vertex algebra derivation, DNDer is not a derivation, and

D
̂Z , ̂H = DDer + DNDer + D

̂H . Then for all ν ∈ Ach, ̂H
0 (̂Z)iR[t],

(D
̂Z , ̂H )2(ν) = (DDer)

2(ν) + (DNDer)
2(ν) + (D

̂H )2(ν)

+ (DDerDNDer + DNDerDDer)(ν)

+ (DDerD̂H + D
̂H DDer)(ν)

+ (DNDerD̂H + D
̂H DNDer)(ν)

= (DDer)
2(ν) + (DNDerD̂H + D

̂H DNDer)(ν).

(69)

Here were are using the fact that DDer is a vertex algebra derivation which annihilates the
fields H3+ : ̂A ̂H2 :, : ι

̂AH
2 : and : ι

̂AL A :, so that (DDerDNDer+DNDerDDer)(ν) = 0 and
(DDerD̂H + D

̂H DDer)(ν) = 0. Also, it is apparent that (DNDer)
2(ν) = 0 and (D

̂H )2(ν).

Next, we check that (D
̂Z , ̂H )2 annihilates the additional generators ̂A, ι

̂A, ιX , LX that

appear in Ach, ̂H
0 (̂Z)iR[t] but not in 〈�(M)〉. This follows from the following computa-

tions.

(DDer)
2(̂A) = 0, (DNDerD̂H + D

̂H DNDer)(̂A) = 0,

(DDer)
2(ι

̂A) = 0, (DNDerD̂H + D
̂H DNDer)(ι̂A) = 0,

(DDer)
2(ιX ) = : L A(ιX ̂H2) : + : H2(ιX ̂H2) : +̂H2(ιX H

2) :,
(DNDerD̂H + D

̂H DNDer)(ιX ) = − : L A(ιX ̂H2) : − : H2(ιX ̂H2) : − : ̂H2(ιX H
2) :,

(DDer)
2(LX ) = : L A(LX ̂H2) : + : H2(LX ̂H2) : + : ̂H2(LX H

2) :,
(DNDerD̂H + D

̂H DNDer)(LX ) = − : L A(LX ̂H2) : − : H2(LX ̂H2) : − : ̂H2(LX H
2) : .
(70)

Next, a general element of Ach, ̂H
0 (̂Z)iR[t] can be expressed as a finite sum of terms

of the form

ν = : (∂ i1μ1) · · · (∂ ir μr )η :, i1, . . . , ir ≥ 0, η ∈ 〈�(M)〉,

where each μi is one of the generators ιX , LX , ι
̂A, ̂A, L A. We say that such a mono-

mial has length r . By the previous lemma, (D
̂Z , ̂H )2(ν) = 0 whenever ν has length 0.

Inductively, we assume that (D
̂Z , ̂H )2(ν) = 0 whenever ν is such a monomial of length

at most r − 1. In particular, this means that

(DDer)
2(ν) + (DNDerD̂H + D

̂H DNDer)(ν) = 0. (71)

Now let ν = : (∂ i1μ1) · · · (∂ ir μ)η : be a monomial of length r as above, and write

ν = : (∂ i1μ1)ν
′ :, ν′ = : (∂ i2μ2) · · · (∂ ir μr )η : .
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Then
(D

̂Z , ̂H )2(ν) =(D
̂Z , ̂H )2(: (∂ i1μ1)ν

′ :)
= : (DDer)

2(∂ i1μ1)ν
′ : + : (∂ i1μ1)(DDer)

2(ν′) :
+ (DNDerD̂H + D

̂H DNDer)(: (∂ i1μ1)ν
′ :)

= : (DDer)
2(∂ i1μ1)ν

′ : + : (∂ i1μ1)(DDer)
2(ν′) :

+ (DNDerD̂H + D
̂H DNDer)(: (∂ i1μ1)ν

′ :)
− : (∂ i1μ1)(DNDerD̂H + D

̂H DNDer)(ν
′) :

+ : (∂ i1μ1)(DNDerD̂H + D
̂H DNDer)(ν

′) :
= : (DDer)

2(∂ i1μ1)ν
′ :

+ (DNDerD̂H + D
̂H DNDer)(: (∂ i1μ1)ν

′ :)
− : (∂ i1μ1)(DNDerD̂H + D

̂H DNDer)(ν
′) : .

(72)

The last equality follows from our inductive assumption (71) in the case ν = ν′.
A separate calculation in each of the cases μ1 = ιX , LX , ι

̂A, ̂A, L A shows that in all
cases, (D

̂Z , ̂H )2(ν) = 0. To illustrate this, we include the calculation in the case where
i1 = 0 and μ = ιX . We have

: ((DDer)
2(ιX ))ν′ : = : (: H2(ιX ̂H2) :)ν′ :

+ : (: ̂H2(ιX H
2) :)ν′ :,

+ : (: L A(ιX ̂H2) :)ν′ :,
(DNDerD̂H + D

̂H DNDer)(: ιXν′ :) = (: H2
̂H2 :)(0)(: ιXν′ :)

+ (: L A ̂H2 :)(0)(: ιXν′ :)
= − : (: H2(ιX ̂H2) :)ν′ :

− : (: ̂H2(ιX H
2) :)ν′ :

− : (: L A(ιX ̂H2) :)ν′ :
+ : ιX ((: H2

̂H2 :)(0)ν′) :
+ : ιX ((: L A ̂H2 :)(0)ν′) :,

− : ιX (DNDerD̂H + D
̂H DNDer)(ν

′) : = − : ιX ((H2
̂H2 :)(0)ν′) :

− : ιX ((L A ̂H2 :)(0)ν′) :

(73)

The fact that (D
̂Z , ̂H )2(: ιXν′ :) = 0 then follows immediately from (72) and (73). The

proof for the other cases is similar and is omitted. ��
Lemma 8.6. D

̂Z , ̂H is a square-zero operator on Ach, ̂H
0 (̂Z).

Proof. Recall thatAch, ̂H
0 (̂Z) has one additional generator �A in addition to the genera-

tors of Ach, ̂H
0 (̂Z)iR[t]. First, we compute

(DDer)
2(�A) = − ∂ ̂H2,

(DNDerD̂H + D
̂H DNDer)(�

A) = ∂ ̂H2.
(74)
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It is immediate that (D
̂Z , ̂H )2(�A) = 0. An essential feature of this calculation is the

fact that

: (: ̂A ̂H2 :)ι
̂A : = : ̂A ̂H2ι

̂A : +∂ ̂H2

which is due to the nonassociativity of the normally ordered product. Similarly, one
checks easily that for all i ≥ 0,

(DDer)
2(∂ i�A) = −∂ i+1 ̂H2, (DNDerD̂H + D

̂H DNDer)(∂
i�A) = ∂ i+1 ̂H2. (75)

Next, a general element of Ach, ̂H ,k̄
0 (̂Z) can be expressed as a finite sum of terms of the

form

ν = : (∂ i1�A) · · · (∂ ir �A)η :, i1, . . . , ir ≥ 0, η ∈ Ach, ̂H ,k̄
0 (̂Z)iR[t].

We say that such a monomial ν has length r . By the previous lemma, (D
̂Z , ̂H )2(ν) = 0

whenever ν has length 0. Inductively, we assume that (D
̂Z , ̂H )2(ν) = 0 whenever ν is

such a monomial of length at most r − 1.
Now let ν = : (∂ i1�A) · · · (∂ ir �A)η : be a monomial of length r as above, and write

ν = : (∂ i1�A)ν′ : ν′ = : (∂ i2�A) · · · (∂ ir �A)η : .

By the same calculation as (72), we have

(D
̂Z , ̂H )2(ν) =(D

̂Z , ̂H )2(: (∂ i1�A)ν′ :)
= : (DDer)

2(∂ i1�A)ν′ :
+ (DNDerD̂H + D

̂H DNDer)(: (∂ i1�A)ν′ :)
− : (∂ i1�A)(DNDerD̂H + D

̂H DNDer)(ν
′) :

(76)

We compute

: ((DDer)
2(∂ i1�A))ν′ : = − : (∂ i1+1 ̂H2)ν′ :,

(DNDerD̂H + D
̂H DNDer)(: (∂ i1�A)ν′ :) = : (∂ i1+1 ̂H2)ν′ :

+ : (∂ i1�A)(DNDerD̂H + D
̂H DNDer)(ν

′) : .
(77)

The claim is immediate from (76) and (77). ��
We are now ready to prove Theorem 8.3

Proof of Theorem 8.3. We have shown this for the sector Ach, ̂H
0 (̂Z), so it suffices now

to prove it for Ach, ̂H
n (̂Z) for all n 
= 0. First, we check this on the element snα expressed

in local coordinates. Since A = Aα,bas + dθα , we have

d A = ̂H2 = d Aα,bas. (78)

Using (35), we compute

DNDer(: ̂A ̂H2snα :) = −n : ̂H2snα : . (79)
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Combining (78) and (79), we obtain

(DDer)
2(snα) = n : ̂H2snα :,

(DNDerD̂H + D
̂H DNDer)(s

n
α) = −n : ̂H2snα : .

(80)

It is immediate that (D
̂Z , ̂H )2(snα) = 0.

Next, a general element ν = Ach, ̂H
n (̂Z) has the form ν = : snαη : for some η ∈

Ach, ̂H
0 (̂Z). Since D

̂Z , ̂H (η) = 0, the same argument as previous lemma shows that
D

̂Z , ̂H (: snαη :) = 0. This completes the proof of Theorem 8.3.

9. The Case of Trivial Bundles

In this section, we assume that both circle bundles Z and ̂Z are trivial,

Z = M × T, ̂Z = M × ̂T,

and that both fluxes H, ̂H are zero. Then Z , ̂Z have global coordinates θ ,̂θ in the circle
directions which are defined up to shifts by 2π ik for k ∈ Z. The connection forms A, ̂A
can be identified with dθ , d̂θ , respectively.

Let ω−n ∈ �0̄(Z)−n be an element of even degree. It has the form ω−n = (λ0 +
λ1dθ)e−nθ , where λ0, λ1 are forms on M . Then since λ0 is even and λ1 is odd, by
definition we have

τn(ω−n) = (λ0d̂θ + λ1)s
n, σ̂n((λ0d̂θ + λ1)s

n) = −(λ0 + λ1dθ)e−nθ .

Suppose dω−n = 0. We then have

dλ0 = 0, dλ1 − nλ0 = 0.

Then

(d − ιnv̂)τn(ω−n) = (dλ0)(d̂θ)sn + (dλ1)s
n − nλ0s

n = 0,

i.e. τn(ω−n) is exotic equivariant closed (in this case equivariant closed).
If n 
= 0, one shows that

d

(

1

n
λ1e

−nθ

)

= (λ0 + λ1dθ)e−nθ = ω−n,

i.e. ω−n is (d + H)-exact (in this case d-exact). The odd case is similar and is omitted.
We now consider the chiral setting. Since ̂H vanishes, the formula for the differential

D
̂Z , ̂H = D

̂Z ,̂0 simplifies as follows.

D
̂Z ,̂0 = D

̂Z + D2 + D4, D2 = −(: ι
̂AL A :)(0), D4 = (: ι

̂AL A :)(1).

Unlike the general case, note that Ach, ̂H (̂Z) is in fact graded by conformal weight, not
just filtered, and D

̂Z ,̂0 preserves the weight grading.
Recall that �ch,H (Z) = �ch,0(Z) admits a contracting homotopy for the differential

D; there is a field G whose mode G0 is globally defined, and [D,G0] = L0, where
L0 denotes the conformal weight grading operator. This shows that the cohomology
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vanishes in positive weight. Since Z = M × T, we can write G0 as the sum of two
commuting operators

G0 = GM
0 + : ιdθ ∂θ : .

Note that even though the coordinate function θ is only defined up to integer shifts, both
the contraction operator ιdθ and the derivative ∂θ are globally defined. Also, ∂θ can be
identified with the element �A defined earlier.

Under τ ch, we have τ ch(G0) = GM
0 + (: ̂A∂θ :)1; note that the second term lowers

weight by one. We can correct this by adding the operator −(: ̂A∂θ :)1 + (: ̂A∂θ :)0,
which commutes with τ ch(G0). Setting

̂G0 = τ ch(G0) − (: ̂A∂θ :)1 + (: ̂A∂θ :)0,
this is easily seen to be a contracting homotopy for D

̂Z ,̂0 in the sense that

[D
̂Z ,̂0,

̂G0] = L0,

where L0 is the conformal weight grading operator. It follows that in case of trivial bun-
dles and fluxes, the positive weight cohomology of the exotic complex (Ach,̂0(̂Z), D

̂Z ,̂0)

vanishes. Therefore τ ch induces an isomorphism in cohomology in this case even though
the intertwining property (53) still fails in positive weight.
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