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ABSTRACT: Chemometrics play a critical role in biosensors-
based detection, analysis, and diagnosis. Nowadays, as a branch of
artificial intelligence (AI), machine learning (ML) have achieved
impressive advances. However, novel advanced ML methods,
especially deep learning, which is famous for image analysis, facial
recognition, and speech recognition, has remained relatively elusive
to the biosensor community. Herein, how ML can be beneficial to
biosensors is systematically discussed. The advantages and
drawbacks of most popular ML algorithms are summarized on
the basis of sensing data analysis. Specially, deep learning methods
such as convolutional neural network (CNN) and recurrent neural network (RNN) are emphasized. Diverse ML-assisted
electrochemical biosensors, wearable electronics, SERS and other spectra-based biosensors, fluorescence biosensors and colorimetric
biosensors are comprehensively discussed. Furthermore, biosensor networks and multibiosensor data fusion are introduced. This
review will nicely bridge ML with biosensors, and greatly expand chemometrics for detection, analysis, and diagnosis.

KEYWORDS: intelligent biosensor, wearable electronics, SERS, artificial intelligence (AI), machine learning (ML), deep learning,

chemometrics, sensing data, CNN, multidimensional features

iosensors are a type of detection or diagnostic device.' ™
Compared with conventional or larger analytical instru-
ments, biosensors have the advantages of speed, low cost,
nondestructive property, and on-site detection. They have
been extensively used in fundamental bioresearch,"’ food
safety,s’9 environmental monitoring,lo_12 disease diagno-
sis,>™'7 and drug screening.lg_20 In the past decades, with
the extensive progression of nanotechnology, signal amplifica-
tion strategies, and transducers, biosensors have been
substantially advanced. However, all biosensors inevitably
have some irregular signal noise. Some biosensors heavily
rely on antibodies or aptamers as bioreceptors,”>* which
restricts the biosensors to short shelf-life and poor stability.
The accuracy and reliability of most current biosensors limit
their commercialization. Hence, researchers are looking for
breakthroughs in other aspects to improve the performance of
biosensors. Herein, the analysis of sensing data based on
machine learning (ML) is in focus. ML can provide novel
strategies for overcoming the challenges faced by biosensors,
and it also can be the way through that common biosensors
become intelligent biosensors, which can automatically predict
species or concentration of analyte based on a decision system.
Chemometrics belong to the chemical discipline which
employs statistical or mathematical methods, () to interrogate
maximum chemical information by analyzing chemical data,
and (b) to select or design optimal experiments and
measurement procedures.”’ Chemometric methods have
achieved extensive acceptance in analytical chemistry.”*** It
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can be one of the strategies or tools to overcome the challenges
of biosensors. Applications of chemometrics in quantitative
and qualitative processing of complex signals generated from
electrochemical,** ™’ optical,30_32 colorimetric,”>** and other
biosensors*>*® were extensively reported. Numerous chemo-
metric methods have been reported; the most well-known are
principal component analysis or regression (PCA or PCR),
linear discriminant analysis (LDA), multiple linear regression
(MLR), partial least-squares discriminant analysis or regression
(PLSDA or PLSR), hierarchical clustering analysis (HCA), and
their combination. These chemometric methods have been
comprehensively reviewed in previous works.””~** Nowadays,
many advanced ML algorithms for processing data are
emerging, such as k-nearest neighbor (kNN), support vector
machine (SVM), Naive Bayes (NB), decision tree (DT),
gradient-boosted trees (GBT), random forest (RF), Feedfor-
ward artificial neural network (Feedforward ANN), recurrent
neural network (RNN), and convolutional neural network
(CNN). Some of them are well involved in biosensors, while
others have remained untouched by the biosensor community.
The merits of advanced ML methods over conventional
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Figure 1. Relationship between AI, ML, and DL, and various ML algorithms involved in this review. CNN: Convolutional neural network. DT:
decision tree. Feedforward ANN: Feedforward artificial neural network. GBT: gradient-boosted trees. HCA: hierarchical clustering analysis. KNN:
k-nearest neighbor. LDA: linear discriminant analysis. MLR: multiple linear regression. NB: Naive Bayes. PCA or PCR: principal component
analysis or regression. PLSDA or PLSR: partial least-squares discriminant analysis or regression. RF: random forest. RNN: recurrent neural

network. SVM: support vector machine.

direct and fast readout

mine interrelations between
signals or bio-events

aid to design
better biosensors

detect
anomalies

weakly relay
sort the on receptors
signals reduce the
noise
biosensors Al/ML

Figure 2. Benefits of ML brought to biosensors.

analyze
automatically

improved reliability

intelligent

U improved accuracy
biosensors

(objective recognition)

improved specificity
(pattern recognition)

ultrasensitivity
(single molecule detection)

approaches are their capacity to interrogate appropriate
nonlinear dependencies for complex biological samples,
offering the inimitable possibility of solving pressing challenges
in the area of biosensors. The relationship between AI, ML,
and DL, and various ML algorithms is presented in Figure 1.
More detailed introduction of ML algorithms is presented in
section 3.

The purpose of this review is to present timely discussion
and perspectives of advanced ML and their applications in
biosensors. Various ML algorithms will be systematically
introduced and their applications in diverse biosensors will be
emphasized. With the assistance of ML, chemometrics will be
expanded and biosensors can become intelligent biosensors.
One step further, the intelligent biosensors will be -easily
integrated into the Internet of Things (IoT).

B HOW ML CAN BENEFIT BIOSENSORS

First, ML can effectively process big sensing data for complex
matrices or samples. The other benefit of ML in biosensors
includes the possibility of obtaining reasonable analytical
results from noisy and low-resolution sensing data that may be
heavily overlapped with each other. Moreover, proper
deployment of ML methods can discover hidden relations
between sample parameters and sensing signals through data
visualization, and mine interrelations between signals and
bioevents. Especially, ML can be used to analyze the raw
sensing data from a biosensor in several ways: (1)
Categorization: the sensing signals can be sorted into various
categories by the algorithms based on the target analyte. (2)
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Anomaly detection: biosensors are inevitably affected by
sample matrix and operating conditions. When biosensors
are used on-site, they can significantly interfere with
contamination. ML can check the signal and answer the
question “does the signal look right?” It can also “correct”
sensor performance variations due to biofouling and
interferences in real samples. (3) Noise reduction: noise is
always included in the sensing signals. The signal from
biosensors changes over seconds or minutes, while signal
interference such as electrical noise can occur on the
subsecond timeline. Therefore, it is possible to train ML
models to distinguish the signal from the noise. (4) Object
identification and pattern recognition. By discovering latent
objects and patterns using ML algorithms, sensing data can be
interpreted easily and effectively.*”*' Figure 2 shows the
benefits of ML to biosensors.

ML can assist biosensor readout directly, automatically,
accurately, and rapidly, which is very important for on-site
detection or diagnosis. A CNN algorithm-assisted optical
imaging method was developed to predict the diagnostic
results by Orringer group.”” The results can be read out in an
automated fashion within 150 s. However, interpretation of the
images by pathology workforce needs ~30 min.

In addition, ML has been used to design more desirable
biosensors. Metamaterials with negative permeability and
permittivity have been employed to amplify the detection
signal of surface plasmon resonance (SPR)-based biosensors.*
The preparation of metamaterials with various reflectance
characteristics is critical to ensure the resonance to be useful

https://dx.doi.org/10.1021/acssensors.0c01424
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Figure 3. (A) General process of ML-based data analysis. (B) Loss curve in the training stage. Overfitting will occur when the loss of the test set
increases. Reproduced with permission from ref 47. Copyright 2019 Elsevier B.V. (C) Representation of a confusion matrix, the first level metrics
that can be extracted from it, and the more efficient second level metrics formulas. Reproduced with permission from ref 44. Copyright 2020
Elsevier B.V. (D) A ROC curve. Reproduced with permission from ref 50. Copyright 2019 Springer Nature Limited.

for SPR biosensors. Autoencoder (AE) and multilayer
perceptron (MLP) are applied to predict the reflectance
characteristics of the metamaterial SPR biosensors. Sub-
sequently, with the dimensional reduction using t-Stochastic
Neighbor Embedding (t-SNE) and AE, k-means clustering of
the metamaterials was conducted. The clustering of the
metamaterials can greatly accelerate researchers to design
optimized sensing devices without extensive experimentation.

B VARIOUS ML ALGORITHMS AND THEIR MERITS
FOR BIOSENSORS

This section aims to introduce the general types and
implemental procedures of advanced ML algorithms. Ab-
stractly, ML is defined as a system or computer program
capable of acquiring knowledge by extracting features from raw
data. This newly gained knowledge can be used to make
decisions to tackle real-world problems.** Specifically, when
ML is employed in the biosensor field, it is considered as a tool
or method for data processing and analysis, such as extracting
features or predicting the species and concentration of the
analytes. ML can be categorized into supervised learning and
unsupervised learning.*>*® Supervised learning refers to the
ML algorithms which can be trained with a group of input data
with their target outputs. In the training phase, the algorithms
make certain predictions on the input data set and use the
given true value to improve the predictive value until the
algorithms reach an acceptable accuracy. They are always used
to perform classification and regression and has achieved great
progress, especially for spectrometric biosensors.”**” For
unsupervised learning, the labeled training data set with their
given outputs is not available. The goal is to determine the
distribution of data set in the input space (called density
estimation) or to find a set of similar examples in the input
data set (known as clustering). k-Means clustering is one of the
mostly known unsupervised learning algorithm.">*’

General Process of ML Data Analysis. Both sequential
data sets (e.g., acquired by electrical and spectral biosensors)
and image data sets (e.g, acquired by colorimetric and
fluorometric biosensors) exist in the biosensor field. Designing
an appropriate ML model based on the data set and analysis
purpose (qualitative identification, quantitative detection) is
the top priority. The workflow presented in Figure 3A needs to
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be implemented after the ML architecture is designed for a
specific biosensor.

Commonly, the preprocessing of raw sensing data is needed.
The general preprocessing methods contain derivatives, de-
noising, Fourier transform, and so forth. The system-specific
preprocessing methods contains data compression, elimination
of baseline drifts, normalization, transformations, and so forth.
The application of the preprocessing method always has great
influences on the total performance of ML models. For Raman
spectroscopy, each spectrum needs Savitsky-Golay-smoothed,
background-subtracted, and min—max scaled to [0, 1].°" For
the encephalogram (EEG) signal, each signal always should be
preprocessed with zero mean, standard deviation of 1, and Z-
score normalization before inputting into the ML models for
training and testing.”> The normalization makes it possible to
not only compare the errors of the models but also decrease
the effects of outlier samples on the training process.”” The
autoencoder is a unique neural network which can be applied
to de-noise or reduce dimensionality.”*>* However, it must be
pointed out that the preprocessing of raw data has no
guarantee of yielding better results, since it may also remove
some informative features from the raw data accidentally.

The preprocessed or raw data set should be split into three
subsets, including training set (about 60%), validation set
(about 20%), and test set (about 20%). The training data set is
used to extract meaningful information and find optimal
hyperparameters of the algorithms. The validation data set is
applied when tuning hyperparameters. The test data set is
employed to report the performance of algorithms. They are
usually acquired from the same large data set so that they are
from the same distribution.

Model weights initialization plays an important role in ML
training phase. Random initialization is mostly applied,
although gradient exploding, vanishing, or slow convergence
might happen. Some initialization methods like He™® and
Xavier initialization®” were developed to address the problem.
When the accuracy of the testing data set is evidently less than
that of the training data set, overfitting might occur. The
regularization intensity should be enhanced to decrease the risk
of overfitting. The loss curve is a critical indicator for reporting
the training status. It can also reflect the impact of different

https://dx.doi.org/10.1021/acssensors.0c01424
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hyperparameters.”* A classic loss curve shows the scenarios of
overfitting and underfitting (Figure 3B).

Hyperparameter tuning is a critical task of the sensing data
analysis in the validation phase. Parameters for algorithms
include the number of hidden neurons, learning rate, batch
size, and so forth. To discover the optimal value for each
parameter, approaches including grid search, random search, or
Bayesian optimization can be applied. The cross-validation
method can be applied to hyperparameter tunning and
evaluate the prediction performance of algorithms after
parameter tuning. For instance, S5-fold cross-validation is
employed to a SVM algorithm.*®

In practice, the results of a classifier can be displayed in a
confusion matrix, a table representation of the actual labels to
the assigned labels. This allows the extraction of the probability
of true-negative (TN), true-positive (TP), false-negative (FN),
and false-positive (FP). In brief, TN/TP refers to the case
when the model correctly predicts the negative/positive class,
while FN/FP indicates the outcome where the model
incorrectly predicts the negative/positive class. In addition,
various evaluation parameters can be calculate based on the
probability (Figure 3C), including sensitivity (recall), specific-
ity, accuracy, precision, F1 score, and receiver operating
characteristic (ROC) curve (Figure 3D). The ROC curve
shows the general overview of the model and gives an area
under the curve (AUC) which represents the trade-off between
sensitivity and specificity. A larger value of AUC indicates a
better classifier. The ROC curve is excellent at conveying
information about binary classifiers but fails to do so in
multiclass models. Confusion matrices are more suitable in this
case, since they help visualize how good a model is for each
class. In the field of biosensing, three other metrics including
the correlation coefficient (R*), the relative error of prediction
(REP), and the root-mean-square difference (RMSD) can be
used to evaluate the performance of the model. They can be
calculated as*”

0.5
1 « )
- z (&= <) }
h i=1

RMSD =
(1)
RZ — Z:;l (Et - Ez)z
Y (G—-7g) (2)
n 0.5
REP(%) = [@][l > G- ci)z}
CA] Rt 3)

where n denotes the total number of samples, c; represents the
real value of the analyte i, ¢; is the predicted value (derived
from the sensor output) of the analyte i, and ; denotes the
mean of the real value.

Besides the general process of ML, transfer learning, as an
important strategy for developing ML models must be
mentioned. Transfer learning refers to the situation where a
model is developed using a data set and repurposed on another
related data set.”” Two approaches are mostly employed in the
transfer learning: the searching and using of a developed model
in algorithms library and developing a pretrained model using
readily available samples.’’ Insufficient data always leads to
poor accuracy and reliability of deep learning methods.
However, clinical samples are limited in some cases.
Developing transfer learning-based deep learning models
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would be of great potential. A deep learning model was
developed based on a SERS data set of exosomes from lung-
related cells, and then the model was transferred to predict the
lung cancer stage using the SERS data set collected in patient
plasma samples.”” The data set similarity is quantitatively
evaluated by the Mahalanobis distance between cancer cell
exosomes and plasma exosomes clusters. For 43 cancer
patients who are in stages I and II, 90.7% patients can be
accurately predicted using the transferred model. Notably, the
similarity of cancer cell exosomes and plasma exosomes has a
positive correlation to the stage of cancer. The results
demonstrated that the transferred model can predict lung
cancer using SERS of plasma exosomes. The AUC for stage I
patients was 0.910, and the AUC for the whole cohort was
0.912. Following sections are some ML models related to
biosensors that are widely used or with great research
potentials. Their merits are listed in Table 1.

Support Vector Machine (SVM). This is designed to search
for a hyperplane, which can maximize the margin between the
training patterns and the decision boundary. It has been
extensively used in cancer diagnosis®® and waterborne
pathogens detection.’* Kernel-based SVM applies kernel
functions to transform the data into a higher dimensional
feature space if a data set cannot be separable linearly. The
performance of the SVM is affected by two hyperparameters
which are kernel parameters and kernel types.®> The choice of
kernel type is decided by the input data.

k-Nearest Neighbor (kNN). This is a type of algorithm
mostly applied for classification.’® A variety of approaches
related to kNN have been proposed.”” The choice of neighbor
number () is based on the data set. Usually, smaller values of
k make boundaries more distinct between classes but increase
the influence of the noise on the classification. Recently, the
algorithm has been optimized and widely used for breast
cancer diagnosis®*®” and anomaly detection.”’

Naive Bayes (NB). This is a probabilistic classifier which is
on the basis of Bayes theorem with strong (naive)
independence assumptions.71 It is the simplest Bayesian
networks. Maximum likelihood is usually applied to estimate
parameters in the practical applications of NB models. Higher
accuracy can be achieved by coupling NB with Kernel density
estimation.

Decision Tree (DT), Random Forest (RF), and Gradient-
Boosted Trees (GBT). In the algorithm structure of the DT,
each node stands for a feature in an instance to be “tested”,
each branch stands for a value that the node can assume, and
each leaf stands for a probability density class distribution or
value distribution. The prediction using DT is fast. However,
developing a DT model requires a considerable amount of
time. It is hard to operate on high-dimensional data. A single
DT often encounters the problem of overfitting as the tree
grows deeper. In this case, it will get an ideal training result but
will potentially induce an unacceptable test error.””

Ensemble methods have shown excellent performance in
various ML applications. The widely used ensemble methods
include RF, boosting, and bagging.73 RF (also called Bagged
DTs) operates by developing a number of DTs for
classification and regression.”””> It can address the overfitting
issue and deal with noisy data well. It should be noted that,
with the number increases of trees, the RF would be slow for
real-time classification or prediction. Hence, weak and
uncorrelated DTs are aggregated as RE.”
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Boosting is a powerful learning strategy for improving the
prediction accuracy by combining the output of many weak
learners with weighting and applying the learners repeatedly in
a series.”’ GBT is another ensemble ML algorithm that
includes AdaBoost, XGBoost, CatBoost, and Ligh‘cGBM.77—79
It has the advantage of high accuracgf, small model size, and a
fast training and prediction process.”’ In GBT, trees are trained
sequentially to compensate for the residual of the preceding
tree. The maximum depth of each tree, the minimum number
of leaves in one tree, and the minimum number of data points
per leaf can be employed to avoid overfitting and maximize
accuracy.

Feedforward Artificial Neural Networks (ANN). Usually,
three layers (input, hidden, and output layers) are included in
an ANN structure. It consists of connected neurons (nodes)
which is designed to imitate the human brain. The nodes
process the input signals and transmit them to the next
connected nodes. The output of the nodes is subject to the
weighted sum given by the nodes of former layer. Deep
learning, a branch of ML characterized using deep ANN, has
been greatly developed. Open-source deep learning frame-
works developed by institutions ranging from universities
(Theano) to Google (TensorFlow), Microsoft (CNTK), and
Pytorch now provide scientists and engineers with access to
deep learning tools. The size of the hidden layer is one of key
parameters which affect the performance of the ANN
significantly.*”

Convolutional Neural Network (CNN). CNN belongs to a
type of deep learning which is good at image analysis such as
X-ray images,” magnetic resonance images,** and computed
tomography (CT) images.”> The CNN model usually
including three layers: (1) Convolutional layer: Filters
(kernels) that slip across preprocessed signals are included in
this layer. Stride controls how the filter shifts around the input
image. The feature map can be achieved after the convolution
step. (2) Pooling layer: It also can be called the down-sampling
layer. The output of convolutional layer needs to reduce its
dimension by pooling operation which can prevent overfitting
and decrease the computational intensity. (3) A fully
connected layer: Activation functions (such as Sigmoid,
Tanh, Relu, LeakyRelu,*® and Softmax®”) are usually used to
introduce nonlinearity into the output. Although the CNN is
originally developed for 2D image recognition, the 1D CNN™*
achieved great advances, which have been shown to perform
well on data having spatial relations in a single dimension, such
as stock price,*” electroencephalograms (EEGs),” audio
signals,”’ and spectra.”” Lussier et al.”” developed a 1D
CNN model which include two layers of each convolutional,
pooling, and densely connected neurons structure to analyze
molecular spectra for multiplexing SERS sensing. Softmax
function was selected to transfer the final output and converted
the them into probabilistic values. The highest probability was
assigned to a positive value of 1, while all others were assigned
to a negative value of 0. 1000 SERS spectra were acquired and
randomly split into training set (60%), validation set (20%),
and test set (20%). The SERS spectra were preprocessed and
labeled. Bias and weights were initialized with random values.
Ten times were repeated for the training and testing operations
to check the reliability and reproducibility of the model.

Adoption of the Inception module” in CNN, also named
the DeepSpectra model, was developed to quantitatively
analyze the one-dimensional spectra.”* In the Inception
module, simultaneous convolutional operations with different
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filter sizes are allowed, which makes the depth and width of
DeepSpectra retain large values and the complexity of
computational unchanged. Both high- and low-level features
of raw spectra can be extracted in the deeper network. The
dimension reduction using PCA can be omitted. With the
expansion the network can improve its adaptability to different
feature maps. Compared with a conventional CNN model
includes three convolutional layers and two pooling layers, the
DeepSpectra achieved good performance with both a small
data set (data from 80 samples, 700 features/data) and a large
data set (data from 3793 samples, 2151 features/data).
However, the DeepSpectra model showed a comparable
performance with the PLS model for the small data set (data
from 80 samples, 700 features/data). It revealed that the
CNN-based spectral analysis needs a larger sample size to get
excellent repeatability and accuracy.

Recurrent Neural Networks (RNN). Among the different
deep learning methods, RNN have drawn researchers’
attention in sequential data related studies.”” RNN is well-
suited for time-series or sequential data because the network
structure is specifically designed to represent historical
information in each recurrent round.”*”” Due to the attribute
of propagating past information along time through recurrent
connections, RNN is widely applied for sequence mapping
problems such as sequence generation, = speech recogni-
tion,”!°° handwriting recognition,101 and reinforcement
learning.'>'” Biomedical researchers have applied RNN in
detecting the interactions between genes and proteins.'**~'*°
Recent studies have achieved promising brain tumor
segmentation performance by training RNN.'”” Long Short-
Term Memory (LSTM) networks are a special type of RNN
with a capability for long-term dependencies.'”® Bidirectional
RNN with LSTM was developed to detect DNA modifica-
tions.'”” RNN based algorithms also have improved nanopore
sequencing read accuracy.'''"

B DIFFERENT BIOSENSORS WITH ML

Electrochemical (EC) Biosensors. These are one type of
widely used biosensor. Combining EC biosensors and
traditional chemometrics was reviewed by Ni and Kokot in
2008.'** However, the use of novel ML methods in current EC
biosensors is still in the inceptive stage. Although the relatively
elaborated theoretical backgrounds of electrochemistry grant
description of large variety of signals, EC biosensors are not
very reproducible or stable in real sample detection. Real
samples may have many interferants, in a wide window of ionic
strength, temperature, pH, and so forth. Another reason is that
the electrode or modified electrode used in EC biosensors
fouls with time. Hence, one-dimensional data analysis is not
enough to acquire sensitive signals highly correlated with the
analyte type and quantity. This highlights an emerging
opportunity for coupling ML with EC biosensors to study
how ML can be used to improve the accuracy and reliability of
sensor in real sample measurements.

SVM regression model was used by Massah and co-workers
to improve the performance of cyclic voltammetry-based
portable EC biosensor.''> For predicting the concentration of
nitrate, different kernel types including linear, polynomial, and
Gaussian with various parameters were applied. The
correlation coefficient (R?) and mean squared error (MSE)
ware used to estimate their performance. The results showed
that the polynomial kernel with the kernel parameter at y =
0.20 was best, with the MSE of 0.0016 and R* of 0.93. By
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Figure 4. Multidimensional features extracted from the current—time waveform. Reproduced with permission from refs 136 and 137. Copyright
2017 Springer Nature Limited and 2018 The American Chemical Society. Pulse height I, and width t; (A), the bluntness of resistive pulse apex
Pipex (B), the onset angle 6 (C), the area A (D), the ratio r,, of area before current peak to that of behind the current peak (E), the inertia I, (F)
and I, (G). The precision analysis of the various features for identifying the AfliC and wild-type E. coli based on multiphysics simulation of the
waveform during the bacteria passing through the nanopore biosensor (I).

applying the SVM regression model, the service life of the EC
biosensor was improved, which can work 10 days after
immobilization of the enzyme. 400 samples (nitrate) and even
more can be detected without the replacement of the enzyme.
Gonzales-Navarro and co-workers''” compared four types of
ML regression models to enhance the stability and accuracy of
an amperometric glucose-oxidase biosensor (GOB) in the
uncertain circumstance. The radial basis function-based SVM
(SVM-R), linear kernel-based SVM (SVMR-L), the Leven-
berg—Marquardt backpropagation method-based ANN and
PLS were used. The SVM-R model was demonstrated as an
excellent ML model for improving performance of the
amperometric biosensor.

Electrochemical impedance spectroscopy (EIS) are
popular among EC biosensors.'*”'** The equivalent circuit
models are always applied to extract key parameters of EIS data
with y* testing. The extracted parameters, such as electron
transfer impedance (R,,) and capacitance, are employed to
indicate the binding events on the working electrodes.
However, selecting or designing an equivalent circuit model
for fitting the EIS data from complex electrode geometries or
complicated solutions is challenging.'”* Especially, for the
small molecule—protein interaction-based EIS biosensors, the
equivalent circuit model analysis was not well documented. In
this case, Rong et al. developed a SVM model to analyze the
EIS data without equivalent circuit fitting."'* SVM models with
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four different kernels (polynomial, sigmoidal, linear, and radial
basis function) were compared to find the optimized ML
model. 80% of 54 EIS data were randomly selected as training
data set and the other 20% data were attributed to the testing
data set. The SVM with radial base function kernel was
demonstrated to have the optimal performance for classifying
the training data set with the accuracy of 98%. The nonlinear
kernel coefficient (y) and penalty parameter (C) were tuned to
improve the performance of radial base function-based SVM
with the optimum value of 0.01 and 10, respectively. Ali et
al.''® applied back-propagation ANN, maximum likelihood,
and LDA to classify Escherichia coli (E. coli) strains JM109,
DHS-a, and Salmonella typhimurium by their impedance
features. The impedance signals were measured by interdigital
silver electrodes and silver nanowires uniformly decorated on
the electrodes on a polyamide-based polyethylene tereph-
thalate substrate. 40 samples of each bacteria were measured;
each measurement contained 251 data points that were
represented by a vector. All three of these ML algorithms
achieved a 100% accuracy to classify these bacteria.

As of now, a deep-learning aided EC biosensor has not yet
been reported. One possible reason may be the limited number
of available data sets. Generally, EC biosensors rely on a
bioreceptor (antibody or aptamer) for capturing analyte and
rely on nanomaterials for signal amplification. The need to
measure a large amount of data for detection is small
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Developing arrayed or multiplexing EC biosensors to test a
large number of real samples (e.g, clinical specimens) will
bring opportunities for the application of deep learning in EC
biosensors.

Combining the single-molecule (SM) electrical biosensors
and ML can improve the accuracy and precision of SM
identification. The combination can also quantitatively evaluate
the molecular recognition ability and optimize the design
parameters of the electrical biosensor device.'** Methods for
SM electrical detection can be divided into two categories,
roughly: nanogap and nanopore.”’™'** A maximum current
(IP) and a current duration (t;) from the tunneling current—
time waveform or the ion current—time waveform are used as
signals to identify the analyte. They are widely applied to
DNA, RNA, carbohydrate, and peptide sequencing'**~"** and
virus detection.'””'* However, analytes with little difference
of molecular volumes and frontier orbital energy have similar I,
and t4 signals. The overlapping of current signals cannot meet
the detection and identification of multiple analytes. This
challenge is overcome by analyzing the current—time wave-
form using ML methods, such as SVM, RF, and CNN.'"7
SVM-based analysis of tunneling current—time waveform was
used to identify single amino acids by nanogap biosensor.
Different from just applying I, as a signal feature, two features
obtained by fast Fourier transform (FFT) of each of the
obtained waveforms were used to train the SVM algorithm and
develop a two-dimensional map plot that can clearly
discriminate the chiral enantiomers D-asparagine and L-
asparagine, glycine (Gly), and N-methylglycine (mGly), and
the isobaric isomers leucine and isoleucine. Their prediction
accuracies improved from 53% to 87%, 55% to 95%, and 51%
to 80% with the assistance of the SVM, respectively."*> Since
many bacteria have a similar morphology and size for the solid-
state pore biosensors, the overlapping of ionic current spikes
induces a poor single-bacterial cell detection. Kawai and co-
workers'*® demonstrated that the Rotation Forest model can
discriminate the electrical signatures from similar microbial
shapes. Besides the width f; and height I, of the current
waveform (Figure 4A), other easily overlooked features can be
extracted for identifying the species of bacteria (E. coli and
Bacillus subtilis). They are the bluntness of resistive pulse apex
Papex (Figure 4B), the onset angle 6 (Figure 4C), the area A
(Figure 4D), the ratio r,, of area before current peak to that of
behind the current peak (Figure 4E), the inertia I, (Figure 4F)
and I, (Figure 4G) calculated associated with abscissa and
ordinate. 60 features were extracted by coupling the time
vector and the current vector. The total extracted features of
161 waveforms of B. subtilis and E. coli (in total 322 spikes)
were employed as training data to predict the other 18 resistive
waveforms as the test. The results showed that the
discrimination accuracy of single bacteria was more than
90%. The same group developed a peptide-functionalized
solid-state pore biosensor to discriminate the flagellin-deletion
mutant (AfliC) and wild-type of the E. coli using the similar
data analysis method."”” Several features, such as the onset
angle 6, pulse peak position r, pulse bluntness f, inertia Jo, and
pulse area ratio Sr, are extracted and contribute to the
precision (P,.) of bacteria discrimination personally (Figure
4H). Multiphysics simulation was used to interpret the features
chemically and physically (Figure 41).

Wearable Electronics. Wearable electronics have a wide
range of applications in basic biomedical research and clinical
medicine, including human—machine interfaces,**'* artificial
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skins,"**'* disease diagnosis, 42-144 and health monitoring. 43

Recently, wearable electronics, such as electronic tattoos (E-
tattoos)'** and epidermal electronics systems (EES),"*” and
flexible electrochemical bioelectronics'*® have been widely
reported to monitor various physiological signals in real time.
Three different ML algorithms, including kNN, DT, and SVM,
were applied to mine interrelations between the fatigue levels
and physiological signals, and then predict fatigue states of
workers based on physiological signals acquired by a
multimodal EES.'"> Two modules are included in the EES.
One module contains a strain sensor and three flexible
electrodes. It can be attached to the chest and used to monitor
the respiration and rate electrocardiogram (ECG). Another
module contains two flexible electrodes which can be pasted
on the palms and applied to detect the galvanic skin response
(GSR). Hence, related physiological signals can be monitored
by the developed EES, and features can be extracted from the
electrophysiological signals. Then, the features are fed into the
proposed ML models to find an optimized algorithm and
predict the fatigue levels. The results demonstrated that the
DT models showed the highest predictive accuracy with the
value of 89%. The signal of single-molecule (SM) electrical
biosensors and wearable electronics is almost time-series
sequential data. RNN will be a good choice for processing
these data, since the network structure is specifically designed
to represent historical information in each recurrent round.

The absence of the necessary volume of data to train ML
algorithms represents one of the major challenges of coupling
ML with wearable electronics for health monitoring, disease
diagnosis, and replicating human sensory functions. This
challenge should be considered in the initial sensor design
phase to build reliable sensor arrays, thereby collecting a large
volume of data set. Recently, Sundaram et al. integrated a
wearable tactile (touch-based) glove sensor array with CNN to
identify individual objects and estimate their weights of
unknown objects.'*” More specifically, an array of piezor-
esistive sensors (548 sensors) were fabricated and assembled
on a knitted glove, and a ResNet-18-based architecture was
established to identify objects and/or estimate their weights
using large databases of detailed pressure information collected
from the tactile sensors. The developed tactile sensor array and
the integration with deep-learning models highlight the
emerging applications of intelligent sensors for understanding
the role of tough and replicating human sensory functions in
active prosthetics and robotics. In addition to these emerging
applications, integrating wearable electronics with ML for
continuous monitoring of temperature, blood oxygenation, and
respiratory biomarkers (cough frequency and intensity and
respiratory rate) of COVID-19 patients highlights another
important application of intelligent sensors for addressing the
current public health challenge. For example, researchers from
Prof. John A. Rogers’s lab at Northwestern University
developed a wearable sensor with a high-bandwidth accel-
erometer and a temperature sensor to catch early signs and
symptoms associated with COVID-19 patients, including
temperature, coughing intensity and patterns, and heart
rate.””’ These biophysical measurements provide important
insights into the physiological status of COVID-19 patients in
a continuous and real-time manner. Importantly, coupling this
physiological data with state-of-the-art ML techniques will
create a valuable platform to detect COVID-19 infections, to
predict disease severity and fatal outcome of COVID-19, and
to provide guides for reopening the economy.
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Society.

SERS and Other Spectra-Based Biosensors. Surface
enhanced Raman spectroscopy (SERS) can acquire intrinsic
fingerprint information on an analyte in a complex matrix.
SERS sensing is one of most promising analytical tools for the
rapid, label-free, on-site, and nondestructive detection.'>"'3?
However, many analytes and the substance in the matrix have
similar or overlapping spectra. It is tedious or impossible to
manually distinguish them. Hopefully, the application of ML
can significantly improve the effectivity of SERS. The
uniformity of the enhancement factor of the SERS substrate
is essential for ML methods, as large variance in the data set
increases the variance in predictions, which limits the methods
to semiquantitative or quantitative analysis.92 Among various
ML methods, CNN always shows a better prediction accuracy
with medium or large data sets.">’ Hence, CNN are now the
most popular for spectral analysis.'>*'** A practical guide for
CNN applied in the spectral analysis was reported by Ying’s
group.”’

A CNN-assisted SERS biosensor was developed to detect
the oligonucleotide (OND) damage on a gold gratings
substrate.'”” A portable spectrometer was applied to collect
the SERS spectra of OND by different operators without the
optimization of test conditions (such as optimal location on
substrate, laser intensity, acquisition time, and manual baseline
correction). In their CNN structure, a new way of feature
extraction, named binary stochastic filtering (BSF), was
introduced. BSF would evaluate the significance of every
inputted feature to identify important areas in the original
spectrum. The proposed SERS-CNN method can identify very
small DNA damage that hardly can be detected by other
technologies. Their results showed that the accuracy of OND
damage classification was up to 98% with the confidence level
of more than 95%. The same group then developed an
improved SERS-CNN method to identify the normal and
cancer cells by detecting cell cultivation media.'”' Gold
multibranched nanoparticles (AuMs) functionalized with
different chemical groups were used to capture the biomarkers
and enhance Raman signals. The gold grating surface was also
used to form a plasmonic coupling effected to obtain higher
resolution SERS spectra. However, the challenge is that the
signal of interference increased with the target analyte, which
subsequently decreased the detection reliability. A combina-
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tion of the SERS and CNN approach was applied to overcome
this challenge. With a similar but modified CNN algorithm, the
results showed that the prediction accuracy was 100% for data
validation.

Combining SERS biosensors and ML methods for single
molecular and single-cell analysis is highly desirable. Thrift and
Ragan®' presented an CNN-based SERS for quantification of
subnanomolar Rhodamine 800 concentrations (Figure S).
Obtain the spectrum in the SM concentration range, and
transfer each SERS spectrum into a pixel, and bundle them
into pixel maps with the size of 8 X 8 for training the proposed
CNN model. It is very interesting that the non-analyte and
signal noise can be easily discerned by the CNN model, which
has distinctly enhanced the detection accuracy. The CNN
model also can convert a spectral signal into a concentration
value based on the deviations of the Langmuir isotherm.
Raman spectroscopy can also identify microorganisms at the
single-cell or single-particle level. Combining a large Raman
data set of microbes with ML can produce more accurate
identification results. Laser tweezer Raman spectroscopy along
with a CNN model was reported for identifying species or
subtypes of microorganisms at a single-cell level."*® A new
occlusion-based method for feature extraction was proposed to
process the Raman spectroscopy. Different species or subtypes
of microorganisms were distinguished based on the weights of
features. The overall accuracy of identification was 95.64 +
5.46%.

A fluorescent array-based differential sensing platform, also
described as a chemical nose, was developed to identify eight
different proteins at 100 nM concentration without a
bioreceptor. Compared with 83% efficiency using the LDA,
kNN, GBT, SVM, and LR with optimization parameters
achieved a 100% pattern recognition alccuracy.81

Fluorometric and Colorimetric Biosensors. This
section focuses on the fluorometric and colorimetric
biosensors using images as detection signals. The automated
identification of colors and their intensity from these
biosensing images is of significant interest. Digital polymerase
chain reaction (dPCR) is included as a type of fluorometric
biosensor. Lateral flow assay (LFA), paper-based vertical flow
assay (VFA), and other colorimetric strips are included as
colorimetric biosensors.

https://dx.doi.org/10.1021/acssensors.0c01424
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Figure 6. (A) Analysis of uneven light images by Mask R-CNN model and threshold segmentation. Reproduced with permission from ref 158.
Copyright 2019 The Royal Society of Chemistry. (a) Image with uneven light from the real experiment. (b) Results of threshold segmentation. (c)
Results of the Mask R-CNN model. (B) Developed CNN model for mixed AA analysis. Reproduced with permission from ref 172. Copyright 2020

The Royal Society of Chemistry.

Fluorescence imaging-based dPCR is a promising technol-
ogy for gene diagnostics.””” Accurate and quick recognition of
the positive reaction chamber in the fluorescence image is
critical to applying the dPCR to the actual application.
Traditional methods such as threshold segmentation, numer-
ical clustering, and grid location have been used in the images
analysis."*®* The most used image processing method is
threshold segmentation.159 However, it is needed to tune the
parameters of the threshold segmentation in each analysis. It is
also limited to analysis of images with uneven brightness
induced by poor camera imaging or nonuniform illumination.
The light intensity is always unevenly distributed in the real
testing surroundings. This situation can cause a low accuracy of
the positive reaction chamber recognition. Recently, Mask R-
CNN'® was deployed to analyze the images precisely and
automatically.">® A real image showed that there was a dark
area on the left side (Figure 6A-a) where the microreaction
chambers including the positive one have weaker brightness
compared with other areas. Figure 6A-b and Figure 6A-c
showed the results based on threshold segmentation and the
proposed Mask R-CNN model, respectively. The threshold
segmentation method read out 56 bright spots from 82 positive
reaction chambers with 2 misclassified spots. The true positive
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rate was 68.29%. What is exciting is that the Mask R-CNN
method read out 80 bright spots without a zero false-positive
rate. Its true positive rate was 97.56%. Besides the dPCR, the
developed CNN model has promising application in digital
enzyme linked immunosorbent assay techniques (digital
ELISA),'®" fluorescent microarrays,'®>'** and location surface
plasmon resonance imaging'®* technologies for molecular
diagnosis and biological detection.

Combining colorimetric biosensor and smartphone reader is
more attractive for point-of-care testing (POCT). Smartphone
applications (Apps) and cloud-based ML models pave the way
for quantitative colorimetric detection with higher accuracy
and repeatability.'°>'°® Recently, a smartphone based
colorimetric biosensor was developed to monitor water
contamination by bacteria.'” CNN was used to classify the
presence or absence of bacteria based on color intensity of the
biosensor images. The reported method achieved an improved
accuracy of 99.99% for predicting the presence of E. coli. Three
different ML methods (ANN, SVM, and LDA) were explored
using a smartphone-based colorimetric biosensor to detect
concentrations of saliva alcohol. Four-color spaces (HSV,
RGB, Lab, and YUV) of images were evaluated by the ML
methods. A major color change appeared in the blue channel,
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while the optimal differentiability and sensitivity occurred in
the green channel of the RGB color space. The ANN model
showed optimal performance with LAB color space as features.
In all, the overall classification rate for standard concentrations
was 100% and for enhanced concentrations was 80%.'® A
vertical flow assay (VFA)-based colorimetric sensor powered
by deep learning was reported for C-Reactive Protein (CRP)
detection.'®” The deep learning method was used to optimize
the configuration of immunoreaction spots and predict the
concentration of CRP. It showed a variation coefficient of
11.2% and a correlation coefficient (R?) of 0.95 for blind VFAs
test in the CRP range of 0—10 mg/L. Luo et al."” adapted a
CNN model into a colorimetric sensor to detect total organic
carbon (TOC) in the environmental water. 697 valid various
images (64 px X64 px, RGB mode) corresponding to 697
environmental water samples was obtained and randomly
segmented into a training data set of 80% and a test data set of
20%. The R? was 0.90314 between the predicted values and the
true values of the training data set. The CNN-aided
colorimetric sensor can read the result fast and avoid the
usage of large instruments. The POCT tool for detection of
waterborne parasite Giardia lamblia cysts were reported.'”'
The ML algorithm bagging (bootstrap aggregating) was used
to analyze the fluorescence image. The results demonstrated
that the Giardia lamblia cysts can be captured on the filter
membrane by size and counted automatically with an overall
sensitivity of 84% using the proposed ML model. The
specificity was tested as 76%, 94%, 94%, and 90% for 500,
100, 50, and 10 cysts per 10 mL samples, respectively.

Besides the fluorometric and colorimetric image-based
detection methods, a color spectral image-based method for
mixed amino acid (AAs) analysis was reported.'”* Six common
CNNg, including Residual Network (RestNet), Vanilla CNN,
LeNet, GoogLeNet Inception vl, VGGNet, and SqueezeNet
were explored. Among these six CNNs algorithms, the
developed Inception vl model showed higher accuracy and a
better astringency. The R* for five AAs was 0.999 with the
RMSE of 10.22% (Figure 6B).

Other Biosensors and Devices. The quartz crystal
microbalance (QCM)-based biosensor is one type of attractive
sensing device which is gravimetrically sensitive and can detect
analyte at sub-nanogram resolution.'”> The SVM classifica-
tion/regression algorithm was applied to discriminate/quantify
trypsin and plasmin based on frequency shift data generated by
QCM.""* Because the effect of trypsin and plasmin on the k-
casein was similar, the ML was needed to distinguish similar
data. The results proved that the frequency shifts can be
classified with more than 95% accuracy within 15—20 min,
which is less than that using statistical methods. An artificial
bee colony (ABC) algorithm trained ANN model was
employed in QCM sensors to classify five different alcohols.'”
As a type of hybrid algorithms, the ABC algorithm always
outputs encouraging results compared with the backpropaga-
tion (BP) algorithm. E-16 MSE level was obtained in both
training and test data sets. A magnetic nanoparticle (MNP)-
labeled immunochromatography test strip (ICTSs) was
developed for human chorionic gonadotropin (HCG) and
multiplex cardiac markers.''® The custom waveform recon-
struction method and SVM models were used to analyze the
poor signals, which greatly improved the sensitivity and
accuracy. The flowchart for the data processing procedure is
presented in Figure 7. Several kernel functions were compared,
and the linear kernel showed a higher accuracy of 100% for all
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Figure 7. Flowchart for data processing procedure. Reproduced with
permission from ref 116. Copyright 2019 Springer.

tested concentrations of samples (0.025, 0.5, 1, 2.5, S, and 10
mIU mL™"). However, the accuracy of the visual readings can
achieve 100% only in concentrations over 2.5 mIU mL™".
Hence, applying the SVM classifier can improve the sensitivity
of portable ICTSs test.

Biosensors in Microfluidic Bioassay. Blood cell countin,
provides important indicators for fast diagnosis of disease.'”
Several ML-based microfluidic cytometers were re-
ported."””~'”” Extreme learning machine based super-reso-
lution (ELMSR) and CNN based super-resolution (CNNSR)
were compared for a lensless blood cell counting device
integrating microfluidic channel and a complementary metal
oxide semiconductor (CMOS) image sensor.'”” The cell
resolution was improved four times, and CNNSR showed 9.5%
improved quality over the ELMSR on resolution enhancement.
Oliver and co-workers'®® developed a blood brain barrier
(BBB) organ-on-a-chip to investigate the brain metastatic
spread of breast cancer. Cellular dynamic phenotypes and
features were detected by confocal tomography. The images
were analyzed by eight ML algorithms, which contain neural
network, NB, RF, AdaBoost latched to RF and DT, «NN,
logistic regression, and stochastic gradient descent (SGD) to
predict the brain metastatic potential probability. The area
under the weighted average of precision and recall (F1),
accuracy (CA), and curve (AUC) were used to score these ML
algorithms. The neural network (AUC = 0.951), AdaBoost
(RF) (AUC = 0.950), and RF (AUC = 0.946) were ranked the
top three based on their AUC. Both the positive predictive
value and negative predictive value were 0.87, which can be
considered excellent predictive models of clinical behavior
(Figure 8).

The performance of various biosensors based on ML
algorithms is listed in Table 2.

B BIOSENSOR NETWORKS AND MULTI-BIOSENSOR
DATA FUSION
Multi-biosensor synchronous measurement is important for

practical applications. Fusion of sensing data from multiple
biosensors directly impacts application performance. This
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Figure 8. ML-assisted ex vivo blood brain barrier organ-on-a-chip model to investigate the brain metastatic spread of cancer. Adapted with

permission from ref 180. Copyright 2019 The Royal Society of Chemistry.

concept has been applied in biomedical area, like monitoring of
cardiac based on fusion of arterial blood pressure, photo-
plethysmography (PPG), and ECG."*° Generally, the fusion of
sensing data can be sorted into three types: decision-level
fusion, feature-level fusion, and data-level fusion.'*”'*® The
homogeneous sensing data (from biosensors with the same
sensing mechanism) can be directly fused for detecting the
same analytes. For the heterogeneous sensing data (from
biosensors with the different sensing mechanism), decision-
level fusion or feature-level fusion should always be
considered.'®

The synchronous measurement of SPR and SERS would be
very interesting, since they share similar principles of signal
enhancement: local SPR of metal nanoparticles (especially Au,
Ag, and Cu). Combining EIS and SERS is also attractive to get
heterogeneous sensing data. The EIS is a simple, effective, and
label-free method to quantitatively detect biological events.
The SERS can qualitatively collect unique molecular spectros-
copy of biological species.

The multisensor data fusion depends on various ML
methods. Feed forward ANN, NB, and DT were used to
recognize activities for Parkinson patients. Reputation-based
voting and majority voting were applied (Figure 9) for sensing
data fusion.'”® Combining covariance matrix adaptation
evolutionary strategy (CMAES) with decision-level and
teature-level fusion was applied to process sensing data from
two electronic noses. PCA was applied to extract features, and
probabilistic neural networks (PNN) were used as the
classifier. The results showed that the sensor fusion has an
error rate of 11%; the two individual sensors have an error rate
of 13% for prediction.'”’

Bl CONCLUSION AND OUTLOOK

From linear calibrations and nonlinear fittings to advanced ML
methods for classification, regression, and clustering of
complex biological samples, chemometrics provides robust
mathematical tools for interpretation of sensing data. Both
qualitative discrimination of complex overlapping signals and
quantitative prediction of trace analytes can be improved using
ML methods. Especially, the deep learning methods, including
CNN and RNN, are more and more popular in sensing data
analysis. Traditional data regression analysis uses a mathemat-
ical equation to calculate the dependent variables of the
sample. The input features are usually less than two. On the
contrary, the advanced ML models can process a database
containing hundreds of input features. A sufficient data set is
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essential to deep learning methods. Design and application of
multiplex or high-throughput biosensors, such as microarray
and multichannel fluidic chips, can help researchers to break
through the data bottleneck for connecting the ML and
biosensors. Databanks provided by federal agencies such as the
National Institutes of Heath and the Centers for Disease
Control and Prevention represent another important data
resource to train ML algorithms.

Compared with traditional laboratory assays, POCT usually
has less reliability and accuracy. Applying ML methods into
POCT represents an opportunity to study how ML can be
used to improve sensor reliability and accuracy in real sample
measurements. Smartphone APPs that are integrated with ML
algorithms can be a greatly interesting tool for direct readout of
POCT biosensors. It would extensively push the POCT
biosensor to home-testing or self-testing.

Analysis of single molecular/single particle/singe cell
detection data is challenging, mainly limited to the poor
signal-to-noise ratio, signal overlap, and dispersive signals. For
single molecular sequencing biosensors, a large data set had to
be analyzed. Traditional hypothesis-driven data exploration
and selection may not be reasonable because unexpected
signals could be missed. Developing ML methods to reduce
the noise and extract multidimensional signal features can
improve the resolution of pattern recognition and sensitivity of
objective recognition.

Combining wearable biosensors and ML for healthy
monitoring is another opportunity. Wearable biosensors have
gained remarkable interest owing to their huge potential in
noninvasive monitoring of human physiology by multifarious
biological fluids (e.g., sweat, tears, and saliva). A desired vision
of wearable biosensors is to heterogeneously integrate a series
of sensor networks on flexible patches that can continuously
monitor the biomarkers. ML can be used to parse the time
series of multiplexed sensing data to identify the state of health.
In these applications, ML has to be explainable (rather than a
black-box). The machine decision must be understandable by
medical professionals and decision makers. In the meantime,
human knowledge and reasoning rules need to be adopted into
a deep learning system in a transparent manner to enforce and
regulate its learning and decision process. In addition, the
incorporation of human knowledge and reasoning rules into
ML can significantly reduce the sample size needed to train the
ML algorithm. Therefore, coupling explainable ML with
wearable electronics for health monitoring and associated
medical interventions is urgently needed.
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Figure 9. Diagram of multi-biosensor data fusion. Reproduced with
permission from 190. Copyright 2012 In Tech.
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B VOCABULARY

Biosensors: biosensors are a type of detection or diagnostic
devices consisting of a sensing surface with bioreceptors, a
transducer, and associated electronics which contains the signal
processor, a signal amplifier, and a user-friendly readout
interface.; Chemometrics: belong to the chemical discipline
which employs statistical or mathematical methods, (a) to
interrogate maximum chemical information by analyzing
chemical data, and (b) to select or design optimal experiments
and measurement procedures.; Machine learning: is referring
that give computers the ability to learn without being explicitly
programmed (Arthur Samuel in 1959), or a computer program
is said to learn from an experience E with respect to some task
T and some performance measure P, if its performance on T,
as measured by P, improves with experience E (Tom Mitchell
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in 1997). Machine learning algorithms develop a mathematical
model based on sample data, known as “training data”, in order
to make predictions or decisions without being explicitly
programmed to do so.; Deep learning: is advanced machine
learning that applies a hierarchical recombination of features to
extract pertinent information and then learn the patterns
represented in the data.; Supervised learning: refers to the ML
algorithms which can be trained with a group of input data
with their target outputs. In the training phase, the algorithms
make certain predictions on the input data set and use the
given true value to improve the predictive value until the
algorithms reach an acceptable accuracy.; Unsupervised
learning: there is no labeled training data set with their given
outputs for the unsupervised learning. The goal is to determine
the distribution of data set in the input space (called density
estimation), or to find a set of similar examples in the input
data set (known as clustering).
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