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Abstract

We study reinforcement learning in non-episodic factored Markov decision pro-
cesses (FMDPs). We propose two near-optimal and oracle-efficient algorithms for
FMDPs. Assuming oracle access to an FMDP planner, they enjoy a Bayesian and
a frequentist regret bound respectively, both of which reduce to the near-optimal
bound Õ(DS

√
AT ) for standard non-factored MDPs. We propose a tighter con-

nectivity measure, factored span, for FMDPs and prove a lower bound that depends
on the factored span rather than the diameter D. In order to decrease the gap
between lower and upper bounds, we propose an adaptation of the REGAL.C
algorithm whose regret bound depends on the factored span. Our oracle-efficient
algorithms outperform previously proposed near-optimal algorithms on computer
network administration simulations.

1 Introduction

Designing computationally and statistically efficient algorithms is a core problem in Reinforcement
Learning (RL). There is a rich line of works that achieve a strong sample efficiency guarantee with
regret analysis in tabular MDPs, where state and action spaces are finite and small (Jaksch et al.,
2010; Osband et al., 2013; Dann and Brunskill, 2015; Kearns and Singh, 2002). A current challenge
in RL is dealing with large state and action spaces where even polynomial dependence of regret on
state and action spaces size is unacceptable. One idea to meet this challenge is to consider MDPs with
compact representations. For example, factored MDPs (FMDPs) (Boutilier et al., 2000) represent
transition functions of MDPs using a compact Dynamic Bayesian network (DBN) (Ghahramani,
1997). FMDPs have a variety of applications in important real-world problems, e.g. multi-agent RL,
and they also serve as important case studies in theoretical RL research (Guestrin et al., 2002a,c;
Tavakol and Brefeld, 2014; Sun et al., 2019).

There is no FMDP planner that is both computationally efficient and accurate (Goldsmith et al.,
1997; Littman, 1997). Guestrin et al. (2003) proposed approximate algorithms with prespecified
basis functions and bounded approximation errors. For the even harder online learning setting, we
study oracle-efficient algorithms, which learn an unknown FMDP efficiently when given access
to a planning oracle. In this paper, our goal is to design efficient online algorithms that only
make a polynomial number of calls to the oracle planning oracle. Side-stepping the computational
intractability of the offline problem by assuming oracle access to a solver has yielded insights
into simpler decision making problems. For example, oracle-based efficient algorithms have been
proposed for the contextual bandit problem (Syrgkanis et al., 2016; Luo et al., 2018).

Online learning in episodic FMDP has been studied by Osband and Van Roy (2014). They proposed
two algorithms, PSRL (Posterior Sampling RL) and UCRL-factored with near-optimal Bayesian and
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Algorithms Works Regret bounds Oracle
F-RMAX Strehl et al. (2007) (mixing rate) T 3/4 Planning on FMDP
UCRL-Factored Osband and Van Roy (2014) DT 1/2 Planning on Bounded FMDP
PSRL This work DT 1/2 (Bayesian) Planning on FMDP
DORL This work DT 1/2 Planning on FMDP
FSRL This work QT 1/2 Optimizing average reward

with bounded factored span

Table 1: Improvements of our methods over previous results on non-episodic FMDP in terms of
regret bounds. There are three types of oracle: 1) Planning on a known FMDP; 2) Planning on a
known bounded FMDP; 3) Optimizing average rewards over a confidence set with bounded factored
span. As far as we known, the first oracle has multiple efficient approximate solutions, while the last
two do not. Of all the algorithms, FSRL gives the tightest bound.

frequentist regret bounds, respectively. Their UCRL-factored algorithm relies on solving a Bounded
FMDP (Givan et al., 2000), which is an even stronger assumption than the access to a planning oracle.
Recently, Tian et al. (2020) improved the bound using a Bernstein-style confidence set.

This work studies FMDPs in the more challenging non-episodic setting. Previous studies in non-
episodic FMDPs either have some high order terms in their analysis (Strehl, 2007) or depend on
some strong connectivity assumptions, e.g. mixing time (Kearns and Koller, 1999). There is no
near-optimal regret analysis in this setting yet.

Regret analysis in the non-episodic setting relies on the connectivity assumptions. Previous available
connectivity assumptions include mixing time (Lewis and Puterman, 2001), diameter (Jaksch et al.,
2010) and span of bias vector (Bartlett and Tewari, 2009). Mixing time is the strongest assumption
and span of bias vector gives the tightest regret bound among the three. However, we show that even
upper bound using span can be loose if the factor structure is not taken into account.

This paper makes three main contributions:

1. We provide two oracle-efficient algorithms, DORL (Discrete Optimism RL) and PSRL
(Posterior Sampling RL), with near-optimal frequentist regret bound and Bayesian regret
bound respectively. Both upper bounds depend on the diameter of the unknown FMDP. The
algorithms call the FMDP planner only a polynomial number of times. The upper bound of
DORL, when specialized to the standard non-factored MDP setting, matches that of UCRL2
(Jaksch et al., 2010). The same applies to the upper bound of PSRL in the non-factored
setting (Ouyang et al., 2017).

2. We propose a tighter connectivity measure especially designed for FMDPs, called factored
span and prove a regret lower bound that depends on the factored span of the unknown
FMDP rather than its diameter.

3. Our last algorithm FSRL is not oracle efficient but its regret scales with factored span, and
using it, we are able to reduce the gap between upper and lower bounds on regret in terms
of both the dependence on diameter and on m, the number of factors.

2 Preliminaries

We first introduce necessary definitions and notation for non-episodic MDPs and FMDPs.

2.1 Non-episodic MDP

We consider a setting where a learning agent interacts without resets or episodes with a Markov
decision process (MDP), represented by M = {S,A, P,R}, with finite state space S, finite action
space A, the transition probability P ∈ PS×A,S and reward distribution R : PS×A,[0,1]. Here ∆(X )
denotes a distribution over the space X . Let G(X ) be the space of all possible distributions over X
and PX1,X2

is the class of all the mappings from space X1 to G(X2). Let S := |S| and A := |A|.
An MDP M and a learning algorithm L operating on M with an arbitrary initial state s1 ∈ S
constitute a stochastic process described by the state st visited at time step t, the action at chosen by
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L at step t, the reward rt ∼ R(st, at) and the next state st+1 ∼ P (st, at) obtained for t = 1, . . . , T .
Let Ht = {s1, a1, r1, . . . , st−1, at−1, rt−1} be the trajectory up to time t.

Below we will define our regret measure in terms of undiscounted sum of rewards. To derive non-
trivial upper bounds, we need some connectivity constraint. There are several subclasses of MDPs
corresponding to different types of connectivity constraints (e.g., see the discussion in Bartlett and
Tewari (2009)). We first focus on the class of communicating MDPs, i.e., the diameter of the MDP,
which is defined below, is upper bounded by some D <∞.
Definition 1 (Diameter). Consider the stochastic process defined by a stationary policy π : S → A
operating on an MDP M with initial state s. Let T (s′ |M,π, s) be the random variable for the first
time step in which state s′ is reached in this process. Then the diameter of M is defined as

D(M) := max
s6=s′∈S

min
π:S→A

E [T (s′|M,π, s)] .

A stationary policy π on an MDP M is a mapping S 7→ A. An average reward (also called gain) of a
policy π on M with an initial distribution s1 is defined as

λ(M,π, s1) = lim sup
T→∞

1

T
E[

T∑
t=1

r(st, π(st))],

where the expectation is over trajectories HT . We restrict the choice of policies within the set
Π of all policies whose average reward is independent of the starting state s1. It can be shown
that for a communicating MDP the optimal policies with the highest average reward are in the set
and neither the optimal policy nor the optimal reward depends on the initial state. Let π(M) =
arg maxπ∈Π λ(M,π, s1) denote the optimal policy for MDP M and λ∗(M) denote the optimal
average reward or optimal gain. For any optimal policy π(M), following the definition in Puterman
(2014), we define

h(M, s) = E[
∞∑
t=1

(rt − λ∗(M)) | s1 = s], for s = 1, . . . S,

where the expectation is taken over the trajectory generated by policy π(M). And the bias
vector of MDP M is h(M) := (h(M, 1), . . . , h(M,S))T . Let the span of a vector h be
sp(h) := maxs1,s2 h(s1)− h(s2). Note that if there are multiple optimal policies, we consider the
policy with the largest span for its bias vector.

We define the regret of a reinforcement learning algorithm L operating on MDP M up to time T as

RT :=

T∑
t=1

(λ∗(M)− rt) ,

and Bayesian regret w.r.t. a prior distribution φ on a set of MDPs as EM∼φRT .

Optimality equation for average reward criterion. We let R(M,π) denote the S-dimensional
vector with each element representing Er∼R(s,π(s))[r] and P (M,π) denote the S×S matrix with each
row as P (s, π(s)). For any communicating MDP M , the bias vector h(M) satisfies the following
equation (Puterman, 2014):

1λ∗(M) + h(M) = R(M,π∗) + P (M,π∗)h(M). (1)

2.2 Factored MDP

Factored MDP is modeled with a DBN (Dynamic Bayesian Network) (Dean and Kanazawa, 1989),
where transition dynamics and rewards are factored and each factor only depends on a finite scope of
state and action spaces. We use the definition in Osband and Van Roy (2014). We call X = S ×A
factored set if it can be factored by X = X1 × . . . × Xn. Note this formulation generalizes those
in Strehl (2007); Kearns and Koller (1999) to allow the factorization of the action space as well. A
visual illustration is shown in Figure 2.2.
Definition 2 (Scope operation for factored sets). For any subset of indices Z ⊆ {1, 2, .., n}, let
us define the scope set X [Z] :=

⊗
i∈Z Xi. Further, for any x ∈ X define the scope variable

x[Z] ∈ X [Z] to be the value of the variables xi ∈ Xi with indices i ∈ Z. For singleton sets {i}, we
write x[i] for x[{i}] in the natural way.
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t

DBN

st,1

st,2

st,3

st,4

t+ 1

st+1,1

st+1,2

st+1,3

st+1,4

ZP1 = {1}

ZP2 = {1, 2, 3}

ZP3 = {1, 3}

ZP4 = {1, 4}

X [ZP1 ] = {0, 1} × A

X [ZP2 ] = {0, 1}3 ×A

X [ZP3 ] = {0, 1}2 ×A

X [ZP4 ] = {0, 1}2 ×A

Figure 1: An example FMDP with 4 factors. Each node represents a dimension on a four dimensional
vector. Each dimension is from {0, 1}. Arrows represents the dependence between two state vectors
at step t and t+ 1. In this example, all four dimensions depend on dimension 1 and themselves.

Definition 3 (Factored reward distribution). A reward distribution R is factored over X with scopes

ZR1 , . . . , Z
R
l if and only if, for all x ∈ X , there exist distributions

{
Ri ∈ PX [ZP

i ],[0,1]

}l
i=1

such that

any r ∼ R(x) can be decomposed as
∑l
i=1 ri, with each ri ∼ Ri(x[ZRi ]) individually observable.

Throughout the paper, we also let R(x) denote reward function of the distribution R(x), which is the
expectation Er∼R(x)[r].

Definition 4 (Factored transition probability). A transition function P is factored over S × A =
X1 × . . .× Xn and S = S1 × . . .Sm with scopes ZP1 , . . . , Z

P
m if and only if, for all x ∈ X , s ∈ S

there exists some
{
Pi ∈ PX [Zi],Si

}m
i=1

such that,

P (s|x) =

m∏
i=1

Pi (s[i] | x [Zi]) .

For simplicity, let P (x) also denote the vector for the probability of each next state from current pair
x. We define Pi(x) in the same way.

Assumptions on FMDP. To ensure a finite number of parameters, we assume that |X [ZRi ]| ≤ L
for i ∈ [n], |X [ZPi ]| ≤ L for i ∈ [m] and |Si| ≤ W for all i ∈ [m] for some finite L and W .
Furthermore, we assume that r ∼ R is in [0, 1] with probability 1.

Empirical estimates. We first define number of visits for each factored set. Let N t
Ri

(x) :=∑t−1
τ=1 1{xτ [ZRi ] = x} be the number of visits to x ∈ X [ZRi ] until t, N t

Pi
(x) be the number of

visits to x ∈ X [ZPi ] until t and N t
Pi

(s, x) be the number of visits to x ∈ X [ZPi ], s ∈ Si until
t. The empirical estimate for Ri(x) is R̂ti(x) =

∑t−1
τ rτ1{xτ [ZRi ] = x}/max{1, N t

Ri
(x)} for

i ∈ [l]. Estimate for transition probability is P̂ ti (s | x) =
Nt

Pi
(s,x)

max{1,Nt
Pi

(x)} for i ∈ [m]. Algorithms for

non-episodic MDP typically proceed in internal episodes, where no reset takes place at the end of an
episode. We let Nk

Ri
, R̂ki and P̂ ki be N tk

Ri
, R̂tki and P̂ tki with tk being the first step of episode k.

3 Oracle-efficient Algorithms

We use PSRL (Posterior Sampling RL) and a modified version of UCRL-factored, called DORL
(Discrete Optimism RL). The main idea of DORL is the simple fact that keeping a discrete set of
MDPs reflecting the extreme points in the confidence set is sufficient for optimism. By keeping a
discrete set, one can avoid the hard computational oracle of planning on a bounded FMDP.

Both PSRL and DORL use a fixed policy within an episode. For PSRL, we apply optimal policy for
an MDP sampled from the posterior distribution of the true MDP. For DORL, instead of optimizing
over a bounded MDP, we construct a new extended MDP, which is also factored with the number of
parameters polynomial in that of the true MDP. Then the optimal policy of the extended FMDP is
mapped to the policy space of the true FMDP. Instead of using dynamic episodes, we show that a
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simple fixed episode scheme can also give us near-optimal regret bounds. The fixed episode scheme
is proposed to ease the technical difficulty on the PSRL. Ouyang et al. (2017) combines doubling
trick (Jaksch et al., 2010) and constraining that Tk+1 ≤ Tk + 1, which gives the same regret bound.
However, this scheme changes episodes slower, which could be more efficient in practice. Algorithm
details are shown in Algorithm 1.

3.1 Extended FMDP

Previous two constructions. Previous near-optimal algorithms on regular MDP depend on con-
structing an extended MDP with a high probability of being optimistic. Jaksch et al. (2010) constructs
the extended MDP with a continuous action space to allow choosing any transition probability in
a confidence set. This construction generates a bounded-parameter MDP. Agrawal and Jia (2017)
instead sample MDPs only from the extreme points of a similar confidence set and combine them by
adding an extra dimension on action space to decide which MDP to use.

Solving the bounded-parameter MDP with the first construction, which requires storing and ordering
the S-dimensional bias vector, is not feasible for FMDPs. There is no direct adaptation that mitigates
this computation issue. We show that the second construction using only a discrete set of MDPs can
be solved with a much lower complexity in the FMDP setting.

We formally describe the construction. For simplicity, we ignore the notations for k in this section.
First define the error bounds as an input. For every x ∈ X [ZPi ], s ∈ S, we have an error bound
EPi

(s | x) for transition probability P̂i(s | x). For every x ∈ X [ZRi ], we have an error boundERi
(x)

for R̂i(x). At the start of episode k the construction takes the inputs of M̂k and the error bounds, and
outputs the extended MDP Mk.

Extreme transition dynamic. We first define the extreme transition probability mentioned above
in factored setting. Let Pi(x)s+ be the transition probability that encourages visiting s ∈ Si, denoted
by

Pi(x)s+ = Pi(x)− EPi
(· | x) + 1s

∑
j

EPi
(j | x),

where 1j is the vector with all zeros except for a one on the j-th element. By this definition, Pi(x)s+

is a new transition probability that puts all the uncertainty onto the direction s. An example is shown
in Figure 2. Our construction assigns an action for each extreme transition dynamic.(

0.5
0.3
0.2

)
︸ ︷︷ ︸

Estimated dynamic

−

(
0.1
0.05
0.05

)
︸ ︷︷ ︸

Uncertainty

+

(
0

0.2
0

)
︸ ︷︷ ︸

Encourage visiting s2

=

(
0.4
0.45
0.15

)
︸ ︷︷ ︸

Extreme dynamic

Figure 2: An extreme transition dynamic that encourages visiting the second state out of three states.

Construction of extended FMDP. Our new factored MDP is denoted by Mk = {S, Ã, P̃ , R̃},
where Ã = A× S and the new scopes {Z̃Ri }li=1 and {Z̃Pi }mi=1 are the same as those for the original
MDP.

Let X̃ = X × S. The new transition probability is factored over X̃ =
⊗

i∈[m](X [ZPi ] × Si) and
S =

⊗
i∈[m] Si with the factored transition probability to be

P̃i(x, s[i]) := P̂i(x)s[i]+, for any x ∈ X [ZPi ], s ∈ S.

The new reward function is factored over X̃ =
⊗

i∈[l](X [ZPi ]× Si), with reward functions to be

R̃i(x, s[i]) = R̂i(x) + ERi(x),

for any x ∈ X [ZRi ], s ∈ S .

Claim 1. The factored set X̃ = S × Ã of the extended MDP Mk satisfies each |X̃ [ZPi ]| ≤ LW for
any i ∈ [m] and each |X̃ [ZRi ]| ≤ LW for any i ∈ [l].
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By Claim 1, any planner that efficiently solves the original MDP, can also solve the extended MDP.
We find the best policy π̃k for Mk using the planner. To run a policy πk on original action space,
we choose πk such that (s, πk(s)) = f(s, π̃k(s)) for every s ∈ S , where f : X̃ 7→ X maps any new
state-action pair to the pair it is extended from, i.e. f((x, s)) = x for any (x, s) ∈ X̃ .

Algorithm 1 PSRL and DORL
Input: S,A, accuracy ρ for DORL and prior distribution for PSRL, T , encoding G and L, upper
bound on the size of each factor set.
k ← 1; t← 1; tk ← 1;Tk ← 1;H = {}.
repeat

For DORL:
Construct the extended MDP Mk using error bounds:

EkPi
(s | x) = min{

√
18P̂i(s|x) log(ci,k)

max{Nk
Pi

(x), 1}
+

18 log(ci,k)

max{Nk
Pi

(x), 1}
, P̂ ki (s|x)}, (2)

for ci,k = 6mSi|X [ZPi ]|tk/ρ and

EkRi
=

√
12 log(6l|X [ZRi ]|tk/ρ)

max{NRi(x), 1}
. (3)

Compute π̃k = π(Mk) and find corresponding πk in original action space.
For PSRL:

Sample Mk from φ(M |H).
Compute πk = π(Mk).

for t = tk to tk + Tk − 1 do
Apply action at = πk(st)
Observe new state st+1.
Observe new rewards rt+1 = (rt+1,1, . . . rt+1,l).
H = H ∪ {(st, at, rt+1, st+1)}.

end for
k ← k + 1.
Tk ← dk/Le; tk ← t+ 1.

until tk > T

4 Upper bounds for PSRL and DORL

We achieve the near-optimal Bayesian regret bound by PSRL and frequentist regret bound by DORL,
respectively. Let Õ denote the order ignoring the logarithmic term and the universal constant.
Theorem 1 (Regret of PSRL). Let M be the factored MDP with graph structure G =(
{Si}mi=1 ; {Xi}ni=1 ;

{
ZRi
}l
i=1

;
{
ZPi
}m
i=1

)
, all |X [ZRi ]| and |X [ZPj ]| ≤ L, |Si| ≤W and diameter

upper bounded by D. Then if φ is the true prior distribution supported on the set of MDPs with
diameter ≤ D, then we bound Bayesian regret of PSRL:

E[RT ] = Õ(D(l +m
√
W )
√
TL).

Theorem 2 (Regret of DORL). Let M be the factored MDP with graph structure G =(
{Si}mi=1 ; {Xi}ni=1 ;

{
ZRi
}l
i=1

;
{
ZPi
}m
i=1

)
, all |X [ZRi ]| and |X [ZPj ]| ≤ L, |Si| ≤W and diameter

upper bounded by D. Then, with high probability, regret of DORL is upper bounded by:

RT = Õ(D(l +m
√
W )
√
TL).

The two bounds match the frequentist regret bound in Jaksch et al. (2010) and Bayesian regret bound
in Ouyang et al. (2017) for non-factored communicating MDP. We also give a condition of designing
the speed of changing policies.
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Remark. Replacing the episode length in Algorithm 1 with any {Tk}Kk=1 that satisfiesK = O(
√
LT )

and Tk = O(
√
T/L) for all k ∈ [K], the frequentist bound in Theorem 2 still holds. Furthermore, if

{Tk}Kk=1 is fixed the Bayesian bound in Theorem 2 also holds.

5 Lower Bound and Factored Span

Any regret bound depends on a difficulty measure determining the connectivity of the MDP. The
upper bounds of DORL and PSRL use diameter. A tighter alternative is the span of bias vector
(Bartlett and Tewari, 2009), defined as sp(h∗), where h∗ is the bias vector of the optimal policy.
However, none of those connectivity measures address the complexity of the graph structure. Indeed,
some graph structure allows a tighter regret bound. In this section, we first show a lower bound with
a Cartesian product structure. We further propose a new connectivity measure that can scale with the
complexity of the graph structure.

Large diameter case. We consider a simple FMDP with infinite diameter but bounded span. The
FMDP is a Cartesian product of two identical MDPs, M1 and M2 with S = {0, 1, 2, 3}, A = {1, 2}.
The transition probability is chosen such that from any state and action pair, the next state will either
move forward or move backward with probability one (state 0 is connected with state 3 as a circle).

We can achieve a low regret easily by learning each MDP independently. However, since the sum of
the two states always keeps the same parity, vector state (0, 1) can never be reached from (0, 0). Thus,
the FMDP has an infinite diameter. The span of bias vector, on the other hand, is upper bounded by
D(M1) +D(M2), which is tight in this case.

Lower bound with only dependency on span. Let us formally state the lower bound. Our lower
bound casts some restrictions on the scope of transition probability, i.e. the scope contains itself,
which we believe is a natural assumption. We provide Theorem 3 here.

Theorem 3 (Lower bound). For any algorithm, any graph structure satisfying G =(
{Si}ni=1 ; {Si ×Ai}ni=1 ;

{
ZRi
}n
i=1

;
{
ZPi
}n
i=1

)
with |Si| ≤ W , |X [ZRi ]| ≤ L, |X [ZPi ]| ≤ L

and i ∈ ZPi for i ∈ [n], there exists an FMDP with an optimal bias vector h, such that for any initial
state s ∈ S , the expected regret of the algorithm after T steps is Ω(

√
sp(h)LT ).

The proof is given in Appendix B. Note that this bound of Ω(
√
sp(h)LT ) seems weaker than the

lower bound
√
DSAT when reduced to non-factored MDP case. However, the two bounds are

exactly the same as in the construction from Jaksch et al. (2010), the diameter scales with span of
bias vector by a constant factor. As we can see, the upper bound in Theorem 1 is larger than the lower
bound by a factor of D√

sp(h)
, m, l and

√
W . We now discuss how to reduce the first three excesses.

5.1 Tighter connectivity measure

The mismatch in the dependence on m is due to not taking the factor structure into account properly
in the definition of the span. A tighter bound should be able to detect special structure, e.g. product
of independent MDPs. For that purpose, recall that regret analysis involves in bounding a deviation
term with the form∑

s∈S

(
P̃ k(s)− P k(s)

)
hk(s) ≤ span(hk) max

s
|P̃k(s)− Pk(s)|1,

where P̃ k and P̃ k are the transition probability of Mk and M using the policy π̃k and πk. Here hk
is the optimal bias vector of Mk. This inequality could be extremely loose as hk has exponentially
many dimensions. We use the following example to illustrate how to get a tighter inequality by
looking at each factor on the bias vector.

Reducing span by looking at each factor. Let us write a bias vector of an FMDP with two factors as
a matrix in the following table, where columns and rows represent the first and second dimension of the
state vector respectively. The state set is given by {(x, y) : x ∈ {x1, x2, x3, x4}, y ∈ {y1, y2, y3}}.
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factor 2 & factor 1 x1 x2 x3 x4 span of rows
y1 1 3 3 4 3
y2 4 3 6 7 4
y3 7 8 9 10 3
span of columns 6 5 6 6 9

While the total span of the vector is 9, the span for each column and each row is at most 6 and 4. We
also notice that in the lower bound construction with two independent MDPs, the value that restricts
the connectivity is the span of each column and each row. Even for the non-independent case, using
the span of the whole vector will still lead a quite loose bound.

This example encourages us to construct a tighter connectivity measure Factored Span in Definition
5: for each factor, we write the bias vector into a matrix with the current factor as columns and the
rest of factors as rows. Factored span is the maximum span of all the columns.
Definition 5 (Factored span). For an FMDP M with an bias vector h of its optimal policy and a
factorization of state space S =

⊗m
i=1 Si, we define factored span sp1, . . . , spm as:

spi := max
s−i

sp(h(·, s−i)) and let Q(h) :=
m∑
i=1

spi,

where s−i := (s1, . . . , si−1, si+1, . . . , sm) and sp(h(·, s−i)) := (h(s, s−i))s∈S1 .
Proposition 1. For any bias vector h, sp(h) ≤ Q(h) ≤ m sp(h). The first equality holds when the
FMDP has the construction of Cartesian product of m independent MDPs. The lower bound can
also be written as Ω(

√
Q(h)LT ).

5.2 Tighter upper bound

We now provide another algorithm called FSRL (Factored-span RL) with a tighter regret bound of
Õ(Q(h)

√
WLT ) as shown in Theorem 4. The bound reduces the gap on m, l and replaces D with

the sum of factored span Q. Proposition 1 guarantees that Q(h) ≤ msp(h) ≤ mD such that the
upper bound is at least as good as the upper bound in Theorem 1.

FSRL (full description in Appendix D, Algorithm 2), mimics REGAL.C by solving the following
optimization,

M = arg max
M∈Mk

λ∗(M) subject to Q(h(M)) ≤ Q for some prespecified Q > 0,

whereMk is the confidence set defined in (2) and (3). FSRL relies on the computational oracle
of optimizing average rewards over the confidence set with the sum of factored span bounded by a
prespecified value. Therefore, FSRL cannot be run by just calling an FMDP planning oracle.
Theorem 4 (Regret of FSRL (Factored-span RL)). Let M be the factored MDP with graph structure
G =

(
{Si}mi=1 ; {Xi}ni=1 ;

{
ZRi
}l
i=1

;
{
ZPi
}m
i=1

)
, all |X [ZRi ]| and |X [ZPj ]| ≤ L, |Si| ≤ W , bias

vector of optimal policy h and its sum of factored spans Q(h). Then, with high probability, regret of
FSRL is upper bounded by: RT = Õ(Q(h)

√
WLT ).

Main idea is on bounding the deviation of transition probabilities between the true MDP and Mk in
episode k with factored span. The details are shown in Appendix C.

6 Simulation

There are two previously available sample efficient and implementable algorithms for FMDPs:
factored E3 and factored Rmax (f-Rmax). F-Rmax was shown to have better empirical performance
(Guestrin et al., 2002b). Thus, we compare PSRL, DORL and f-Rmax. For PSRL, at the start of
each episode, we simply sample each factored transition probability and reward functions from a
Dirichlet distribution and a Gaussian distribution, i.e. P ki (x) ∼ Dirichlet(N t

Pi
(·, x)/c) and Rki (x) ∼

N(R̂ki (x), c/N t
Pi

(x)), where c is searched over (0.05, 0.1, 0.3, 0.75, 1, 5, 20). The total number of
samplings for PSRL in each round is upper bounded by the number of parameters of the FMDP. For
DORL, we replace the coefficients 18 and 12 in (2) and (3) with a hyper-parameter c searched over
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Figure 3: Regrets of PSRL, f-Rmax and DORL on circle and three-leg MDP with a size 4, 7. For
PSRL, c = 0.75. For f-Rmax, m = 300, 500, 500, 500 and for DORL, c = 0.03 in Circle 4, Circle 7,
Three-leg 4, Three-leg 7, respectively.

the set {0.05, 0.1, 0.3, 0.75, 1, 5, 20}. The choice of hyper-parameters is based on the fact that our
regret analysis bounds the worst-case scenario, which lead to over-exploration, while in practice the
level of exploration should be lower. For f-Rmax, m, the number of visits needed to be known are
chosen from 100, 300, 500, 700 and the best choice is selected for each experiment.

For the approximate planner used by our algorithm, we implement approximate linear programming
(Guestrin et al., 2003) with the basis hi(s) = si for i ∈ [m]. For regret evaluation, we use an accurate
planner to find the true optimal average reward.

We compare three algorithms on computer network administrator domain with a circle and a three-leg
structure (Guestrin et al., 2001; Schuurmans and Patrascu, 2002). To avoid the extreme case in our
lower bound, both the MDPs are set to have limited diameters. The details on the environment are in
Appendix E.

Figure 3 shows the regret of the two algorithms on circle and three-leg structure with a size 4, 7,
respectively. Each experiment is run 20 times, with which median, 75% and 25% quantiles are
computed. Our DORL and PSRL have very similar performance in all the environment except
for Three-leg with a size 4. Optimal hyper-parameter for PSRL and DORL is stable in the way
that c around 0.75 and 0.03 are the optimal parameter for PSRL and DORL respectively for all the
experiments. Note that we use the exact, not approximate, optimal reward in regret evaluation. So we
see that DORL and PSRL was always able to find a near-optimal optimal policy despite the use of an
approximate planner.

7 Discussion

FSRL relies on a harder computational oracle that is not efficiently solvable yet. Fruit et al. (2018)
achieved a regret bound depending on span using an implementable Bias-Span-Constrained value
iteration on non-factored MDP. It remains unknown whether FSRL could be approximately solved
using an efficient implementation.

In non-factored MDP, Zhang and Ji (2019) achieved the lower bound of
√
DSAT . On the lower

bound of FMDP, it remains an open problem to close the remaining gap involving
√
W and

√
Q.

Recently, Sadegh Talebi et al. (2020) improved the exploration using a Berstein-style confidence
set and was able to reduce the extra term on

√
W . However, their algorithm depends on the harder

planning oracle on bounded FMDP. UCRL3 (Bourel et al., 2020) improves the dependence on actions
and states by restricting the set of successor states of the state-action pair on non-factored MDP. We
believe this construction is quite independent from the FMDP construction and the similar adaptation
can easily be applied. Our algorithms require the full knowledge of the graph structure of the FMDP,
which can be impractical. The structural learning scenario has been studied by Strehl et al. (2007);
Chakraborty and Stone (2011); Hallak et al. (2015). Their algorithms either rely on an admissible
structure learner or do not have a regret or sample complexity guarantee. Recently, Rosenberg and
Mansour (2020) proposed an oracle-efficient structure learner with regret guarantee.

9



8 Broader Impacts

As a theoretical paper, we can not foresee any direct societal consequences in the near future. Factored
MDP, the main problem we study in this paper, may be used in multi-agent Reinforcement Learning
scenario.

Acknowledgements. We acknowledge the support of NSF via grant IIS-2007055.
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A Proof of Theorem 1 and 2

A standard regret analysis consists of proving the optimism, bounding the deviations and bounding
the probability of failing the confidence set. Our analysis follows the standard procedure while
adapting them to a FMDP setting.

Some notations. For simplicity, we let π∗ denote the optimal policy of the true MDP, π(M). Let
tk be the starting time of episode k and K be the total number of episodes. Since R̃k(x, s) for any
(x, s) ∈ X̃ does not depend on s, we also let R̃k(x) denote R̃k(x, s) for any s. Let λ∗ and λk denote
the optimal average reward for M and Mk.

Confidence set. Before proving the theorems, we first introduce the confidence set for both transi-
tion probability and reward functions. LetMk be the confidence set of FMDPs at the start of episode
k with the same factorization, such that for and each i ∈ [l],

|Ri(x)− R̂ki (x)| ≤ EkRi
(x), ∀x ∈ X [ZRi ],

where EkRi
(x) :=

√
12 log(6l|X [ZR

i ]|tk/ρ)

max{Nk
Ri

(x),1} as defined in (3);

and for each j ∈ [m]

|Pj(s|x)− P̂ kj (s|x)| ≤ EkPj
(s|x), ∀x ∈ X [ZPj ], s ∈ Sj ,

where W k
Pj

(s|x) is defined in (2). It can be shown that

|Pj(x)− P̂ kj (x)|1 ≤ 2

√
18|Si| log(6Sim|X [ZPi ]|tk/ρ)

max{Nk
Pi

(x), 1}
,

where ĒkPi
(x) := 2

√
18|Si| log(6Sim|X [ZP

i ]|tk/ρ)

max{Nk
Pi

(x),1} .

In the following analysis, we all assume that the true MDP M for both PSRL and DORL are inMk

and Mk by PSRL are inMk for all k ∈ [K]. In the end, we will bound the regret caused by the
failure of confidence set.

Regret decomposition. We follow the standard regret analysis framework by Jaksch et al. (2010).
We first decompose the total regret into three parts in each episode:

RT =
T∑
t=1

(λ∗ − rt)

=
K∑
k=1

tk+1−1∑
t=tk

(λ∗ − λk) (4)

+
K∑
k=1

tk+1−1∑
t=tk

(λk −R(st, at)) (5)

+
K∑
k=1

tk+1−1∑
t=tk

(R(st, at)− rt). (6)

Using Hoeffding’s inequality, the regret caused by (6) can be upper bounded by
√

5
2T log

(
8
ρ

)
, with

probability at least ρ
12 .

A.1 Bounding term (4)

We bound the regret caused by (4).
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PSRL. For PSRL, since we use fixed episodes, we follow the techniques from Osband et al. (2013)
and show that the expectation of (4) equals to zero.

Lemma 1 (Lemma 1 in Osband et al. (2013)). If φ is the distribution of M , then, for any σ(Htk)−
measurable function g,

E [g (M) |Htk ] = E [g (Mk) |Htk ] .

We let g = λ(M,π(M)). As g is a σ(Htk)−measurable function. Since tk, K are fixed value for
each k, we have (4) = E[

∑K
k=1

∑tk+1−1
t=tk

(λ∗ − λk)] = 0.

DORL. For DORL, we need to prove optimism, i.e, λ(Mk, π̃k) ≥ λ∗ with high probability. We
follow the proof in Agrawal and Jia (2017). In the case of FMDP, we show that for any policy π
for the true FMDP, there exists a policy π̃ for Mk such that (P (Mk, π̃)− P (M,π))h ≥ 0 for any
h ∈ RS . This is proved in Lemma 2.

Lemma 2. For any policy π for M and any vector h ∈ RS , let π̃ be the policy for Mk satisfying
π̃(s) = (π(s), s∗), where s∗ = arg maxs h(s). Then, given M ∈Mk, (P (Mk, π̃)− P (M,π))h ≥
0.

Proof. We fix some s ∈ S and let x = (s, π(s)) ∈ X . Recall that for any si ∈ Si, ∆k
i (si|x) =

min{

√
18P̂ ki (si|x) log (ci,k)

max
{
Nk
Pi

(x), 1
} +

18 log (ci,k)

max
{
Nk
Pi

(x), 1
} , P̂ ki (si|x)

}
.

and define P−i (·|x) = P̂ ki (·|x) − ∆k
i (·|x). Slightly abusing the notations, let P̃ = P (Mk, π̃)s,·,

P = P (M,π)s,·. Define two S-dimensional vectors P̂ and P− with P̂ (s̄) =
∏
i P̂i(s̄[Z

P
i ]|x) and

P−(s̄) = ΠiP
−
i (s̄[ZPi ]|x) for s̄ ∈ S .

As M ∈Mk, P− ≤ P . Define α := P̂ − P ≤ P̂ − P− =: ∆. Without loss of generality, we let
maxs h(s) = D.

∑
i

P̃ (i)h(i) =
∑
i

P (i)−h(i) +D

1−
∑
j

P (j)−


=
∑
i

P (i)−h(i) +D
∑
j

∆(j)

=
∑
i

(
P̂ (i)−∆(i)

)
h(i) +D∆(i)

=
∑
i

P̂ (i)h(i) + (D − h(i)) ∆(i)

≥
∑
i

P̂ (i)h(i) + (D − h(i))α(i)

=
∑
i

(
P̂ (i)−α(i)

)
h(i) +Dα(i)

=
∑
i

P (i)h(i) +D
∑
i

α(i) =
∑
i

P (i)h(i)

Corollary 1. Let π̃∗ be the policy that satisfies π̃∗(s) = (π∗(s), s∗), where s∗ = arg maxs h(M)s
and π∗ is the true optimal policy for M . Then λ(Mk, π̃

∗, s1) ≥ λ∗ for any starting state s1.
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Proof. Let d(s1) := d(Mk, π̃
∗, s1) ∈ R1×S be the row vector of stationary distribution starting from

some s1 ∈ S . By optimal equation,

λ(Mk, π̃
∗, s1)− λ∗

= d(s1)R(Mk, π̃
∗)− λ∗(d(s1)1)

= d(s1)(R(Mk, π̃
∗)− λ∗1)

= d(s1)(R(Mk, π̃
∗)−R(M,π∗))

+ d(s1)(I − P (M,π∗))h(M)

≥ d(s1)(R(Mk, π̃
∗)−R(M,π∗))

+ d(s1)(P (Mk, π̃
∗)− P (M,π∗))h(M)

≥ 0,

where the last inequality is by Lemma 2 and Corollary 1 follows.

Thereon, λ(Mk, π̃k) ≥ λ(Mk, π̃
∗, s1) ≥ λ∗. The total regret of (4) ≤ 0.

A.2 Regret caused by deviation (5)

We further bound regret caused by (5), which can be decomposed into the deviation between our
brief Mk and the true MDP. We first show that the diameter of Mk can be upper bounded by D.

Bounded diameter. We need diameter of extended MDP to be upper bounded to give a sublinear
regret. For PSRL, since prior distribution has no mass on MDP with diameter greater than D, the
diameter of MDP from posterior is upper bounded by D almost surely. For DORL, we have the
following Lemma 3.

Lemma 3. When M is in the confidence setMk, the diameter of the extended MDP D(Mk) ≤ D.

Proof. Fix a s1 6= s2, there exist a policy π for M such that the expected time to reach s2 from s1

is at most D, without loss of generality we assume s2 is the last state. Let E be the (S − 1) × 1
vector with each element to be the expected time to reach s2 except for itself. We find π̃ for Mk

such that the expected time to reach s2 from s1 can be bounded by D. We choose the π̃ that satisfies
π̃(s) = (π(s), s2).

Let Q be the transition matrix under π̃ for Mk. Let Q− be the matrix removing s2-th row and column
and P− defined in the same way for M . We immediately have P−1E ≥ Q−1E, given M ∈ Mk.
Let Ẽ be the expected time to reach s2 from every other states except for itself under π̃ for Mk.

We have Ẽ = 1 +Q−Ẽ. The equation for E gives us E = 1 + P−E ≥ 1 +Q−E. Therefore,

Ẽ = (1−Q−)−11 ≤ E,

and Ẽs1 ≤ Es1 ≤ D. Thus, D(Mk) ≤ D.

Deviation bound. Now we formally bound (5). In this section, the regrets for PSRL and DORL
can be bounded in the same way. Let νk(s, a) be the number of visits on s, a in episode k and νk
be the row vector of νk(·, πk(·)). Let ∆k =

∑
s,a νk(s, a)(λ(Mk, π̃k) − R(s, a)). Using optimal

equation,

∆k =
∑
s,a

νk(s, a)
[
λ(Mk, π̃k)− R̃k(s, a)

]
+
∑
s,a

νk(s, a)
[
R̃k(s, a)−R(s, a)

]
= νk(P̃ k − I)hk + νk(R̃

k −Rk)

= νk(P k − I)hk︸ ︷︷ ︸
1©

+νk(P̃ k − P k)hk︸ ︷︷ ︸
2©

+νk(R̃
k −Rk)︸ ︷︷ ︸
3©

,
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where P̃ k := P (Mk, π̃k), P k := P (M,πk),hk := h∗(Mk), and R̃
k

:= R(Mk, π̃k),Rk :=
R(M,πk).

Using Azuma-Hoeffding inequality and the same analysis in Jaksch et al. (2010), we bound 1© with
probability at least 1− ρ

12 ,

∑
k

1© =
∑
k

νk
(
P k − I

)
hk ≤ D

√
5

2
T log

(
8

ρ

)
+KD. (7)

To bound 2© and 3©, we analyze the deviation in transition and reward function between M and Mk.
For DORL, the deviation in transition probability is upper bounded by

max
s′
|P̃ ki (x, s′)− P̂ ki (x)|1

≤ min{2
∑
s∈Si

EkPi
(s | x), 1}

≤ min{2ĒkPi
(x), 1} ≤ 2ĒkPi

(x),

The deviation in reward function |R̃ki − R̂ki |(x) ≤ EkRi
(x).

For PSRL, since Mk ∈Mk, |P̃ ki − P̂ ki |(x) ≤ ĒkPi
(x) and |R̃ki − R̂ki |(x) ≤ EkRi

(x).

Decomposing the bound for each scope provided by M ∈Mk and Mk for PSRL ∈Mk, it holds for
both PSRL and DORL that:∑

k

2© ≤ 3
∑
k

D

m∑
i=1

∑
x∈X [ZP

i ]

νk(x)ĒkPi
(x), (8)

∑
k

3© ≤ 2
∑
k

l∑
i=1

∑
x∈X [ZR

i ]

νk(x)EkRi
(x); (9)

where with some abuse of notations, define νk(x) =
∑
x′∈X :x′[Zi]=x

νk(x′) for x ∈ X [Zi]. The
second inequality is from the fact that |P̃ k(·|x)− P k(·|x)|1 ≤

∑m
1 |P̃ ki (·|x[ZRi ])− P ki (·|x[ZRi ])|1

(Osband and Van Roy, 2014).

A.3 Bound (7), (8) and (9) by balancing episode length and episode number

We give a general criterion for bounding (7), (8) and (9), which we believe, is a new technique. We
first introduce Lemma 4 which implies that bounding (7), (8) and (9) is to balance total number of
episodes and the length of the longest episode. The proof, relies on defining the last episode k0, such
that Nk0(x) ≤ νk0(x).

Lemma 4. For any fixed episodes {Tk}Kk=1, if there exists an upper bound T̄ , such that Tk ≤ T̄ for
all k ∈ [K], we have the bound∑

x∈X [Z]

∑
k

νk(x)/
√

max{1, Nk(x)} ≤ LT̄ +
√
LT ,

where Z is any scope with |X [Z]| ≤ L, and νk(x) and Nk(x) are the number of visits to x in and
before episode k. Furthermore, total regret of (7), (8) and (9) can be bounded by Õ

(
(
√
WDm +

l)(LT̄ +
√
LT ) +KD

)
Proof. We bound the random variable

∑K
k=1

νk(x)√
max{Nk(x),1}

for every x ∈ X [Z], where νk(x) =∑tk+1−1
t=tk

1(xt = x) and Nk(x) =
∑k−1
i=1 νk(x).

Let k0(x) be the largest k such that Nk(x) ≤ νk(x). Thus ∀k ≥ k0(x), Nk(x) > νk(x), which gives
Nt(x) := Nk(x) +

∑t
τ=tk

1(xτ = x) < 2Nk(x) for tk ≤ t < tk+1.
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Conditioning on k0(x), we have
K∑
k=1

νk(x)√
max{Nk(x), 1}

≤ Nk0(x)(x) + νk0(x)(x) +
∑

k>k0(x)

νk(x)√
max{Nk(x), 1}

≤ 2νk0(x)(x) +
∑

k>k0(x)

νk(x)√
max{Nk(x), 1}

≤ 2T̄ +
∑

k>k0(x)

νk(x)√
max{Nk(x), 1}

,

where the first inequality uses max{Nk(x), 1} ≥ 1 for k = 1, . . . k0(x), the second inequality is by
the fact that Nk0(x)(x) ≤ νk0(x)(x) and the third one is by νk0(x) ≤ Tk0(x) ≤ TK .

And letting k1(x) = k0(x) + 1 and N(x) := NK(x) + νK(x), we have∑
k>k0(x)

νk(x)√
max{Nk(x), 1}

≤
T∑

t=tk1(x)

2
1(xt = x)√

max{Nt(x), 1}

≤
T∑

t=tk1(x)

2
1(xt = x)√

max{Nt(x)−Nk1(x), 1}

≤ 2

∫ N(x)−Nk1(x)

1

1√
x
dx

≤ (2 +
√

2)
√
N(x).

Given any k0(x), we can bound the term with a fixed value 2T̄ +(2+
√

2)
√
N(x). Thus, the random

variable
∑K
k=1

νk(x)√
max{Nk(x),1}

is upper bounded by 2T̄ + (2 +
√

2)
√
N(x) almost surely. Finally,∑

x

∑K
k=1

νk(x)√
max{Nk(x),1}

≤ LT̄ + (2 +
√

2)
√
LT . The regret by (8) is∑

k

3D
∑
i∈[m]

∑
x∈X [ZP

i ]

νk(x)W̄ k
Pi

(x)

= Õ(
√
WDm(LT̄ +

√
LT ) +KD).

The regret by (9) is∑
k

2
∑
i∈[l]

∑
x∈X [ZR

i ]

νk(x)W̄ k
Ri

(x) = Õ(l(LT̄ +
√
LT ) +KD).

The last statement is completed by directly summing (7), (8) and (9).

Instead of using the doubling trick that was used in Jaksch et al. (2010). We use an arithmetic
progression: Tk = dk/Le for k ≥ 1. As in our algorithm, T ≥

∑K−1
k=1 Tk ≥

∑K−1
k=1 k/L = (K−1)K

2L ,
we have K ≤

√
3LT and Tk ≤ TK ≤ K/L ≤

√
3T/L for all k ∈ [K]. Thus, by Lemma 4, putting

(6), (7), (9), (8) together, the total regret for M ∈Mk is upper bounded by

Õ
(
(
√
WDm+ l)

√
LT
)
, (10)

with a probability at least 1− ρ
6 .
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A.4 Failure of the confidence set

For the failure of confidence set, we prove the following Lemma.

Lemma 5. For all k ∈ [K], with probability greater than 1− 3ρ
8 , M ∈Mk holds.

Proof. We first deal with the probabilities, with which in each round a reward function of the
true MDP M is not in the confidence set. Using Hoeffding’s inequality, we have for any t, i and
x ∈ X [ZRi ],

P

{
|R̂ti(x)−Ri(x)| ≥

√
12 log(6l|X [ZRi ]|t/ρ)

max{1, N t
Ri

(x)}

}

≤ ρ

3l|X [ZRi ]|t6
, with a summation ≤ 3

12
ρ.

Thus, with probability at least 1 − 3ρ
12 , the true reward function is in the confidence set for every

t ≤ T .

For the transition probability, we use a different concentration inequality.

Lemma 6 (Multiplicative Chernoff Bound (Kleinberg et al., 2008) Lemma 4.9). Consider n, i.i.d
random variables X1, . . . , Xn on [0, 1]. Let µ be their mean and let X be their average. Then with
probability 1− ρ,

|X − µ| ≤
√

3 log(2/ρ)X

n
+

3 log(2/ρ)

n
.

Using Lemma 6, for each x, i, k, it holds that with probability 1− ρ/(6m
∣∣X [ZPi ]∣∣ t6k),

|P̂i(·|x)− Pi(·|x)|1 ≤

√
18Si log(ci,k)

max{Nk
Pi

(x), 1}
+

18 log(ci,k)

max{Nk
Pi

(x), 1}
.

Then with a probability 1− 3ρ
24 , it holds for all x, i, k. Therefore, with a probability 1− 3ρ

8 , the true
MDP is in the confidence set for each k.

Combined with (10), with probability at least 1− 2ρ
3 the regret bound in Theorem 2 holds.

For PSRL, Mk and M has the same posterior distribution. The expectation of the regret caused by
M /∈Mk and Mk /∈Mk are the same. Choosing sufficiently small ρ ≤

√
1/T , Theorem 1 follows.

B Proof of the lower bound

Our lower bound construction is a Cartesian product of n independent MDPs. We start by discussing
the bias vector of such FMDP in Lemma 7.

Lemma 7. Let M+ be the Cartesian product of n independent MDPs {Mi}ni=1, each with a span of
bias vector sp(hi). The optimal policy for M+ has a span sp(h+) =

∑
i sp(hi).

Proof. Let λ∗i for i ∈ [n] be the optimal gain of each MDP. Optimal gain of M+ is direct λ∗ =∑
i∈[n] λ

∗
i . As noted in Puterman (2014) (8.2.3), by the definition of bias vector we have

hi(s) = E[
∞∑
t=1

(rit − λ∗i ) | si1 = s], ∀s ∈ Si,

where rit is the reward of the i-th MDP at time t and sit := st[i].
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The lemma is directly by

h+(s) = E[
∞∑
t=1

(rt − λ∗) | s1 = s]

= E[
∞∑
t=1

(
∑
i∈[n]

(rit − λ∗i )) | s1 = s]

=
∑
i∈[n]

E[
∞∑
t=1

(rit − λ∗i ) | si1 = s[i]]

=
∑
i∈[n]

hi(s[i]).

We immediately have sp(h+) =
∑
i sp(hi).

Recall Theorem 3 states for any algorithm, any graph structure satisfying G =(
{Si}ni=1 ; {Si ×Ai}ni=1 ;

{
ZRi
}n
i=1

;
{
ZPi
}n
i=1

)
with |Si| ≤ W , |X [ZRi ]| ≤ L, |X [ZPi ]| ≤ L

and i ∈ ZPi for i ∈ [n], there exists an FMDP with an optimal bias vector h+, such that for any
initial state s ∈ S , the expected regret of the algorithm after T step is

Ω(

√
sp(h+)LT ). (11)

Proof. Let l = | ∪ni ZRi |. As i ∈ ZPi , a special case is the FMDP with graph structure

G =
(
{Si}ni=1 ; {Si ×Ai}ni=1 ; {{i}}li=1 and {∅}ni=l+1 ; {{i}}ni=1

)
, which can be decomposed into

n independent MDPs as in the previous example. Among the n MDPs, the last n− l MDPs are trivial.
By simply setting the rest l MDPs to be the construction used by Jaksch et al. (2010), which we refer
to as "JAO MDP", the regret for each MDP with the span sp(h), is Ω(

√
sp(h)WT ) for i ∈ [l]. The

total regret is Ω(l
√
sp(h)WT ).

Using Lemma 7, sp(h+) = l sp(h) and the total expected regret is Ω(
√
l sp(h+)WT ). Normalizing

the reward function to be in [0, 1], the expected regret of the FMDP is Ω(
√
sp(h+)WT ), which

completes the proof.

C Proof of Theorem 4

The only difference between the proof of Theorem 4 and 2 lies in the bound of term 2©.
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Proof. Starting from 2©, for each s ∈ S, we bound (P̃ k(· | s) − P k(· | s))hk. For simplicity, we
remove the subscriptions of s and use P̃ k and P k to denote the vector for s-th row of the two matrix.∑

s∈S
(P̃ k(s)− P k(s))hk(s)

=
∑
s1∈S1

∑
s−1∈S−1

(P1(s1)P−1(s−1)− P̃1(s1)P̃−1(s−1))hk(s1, s−1)

=
∑
s1

(P1(s1)− P̃1(s1))
∑
s−1

P̃−1(s−1)hk(s1, s−1)

+

∑
s−1

[
(P−1(s−1)− P̃−1(s−1))

∑
s

P1(s1)hk(s1, s−1)

]
=
∑
s1

(P1(s1)− P̃1(s1))h1k(s1) +
∑
s−1

(P−1(s−1)− P̃−1(s−1))h−1k(s−1),

where h1k(s1) :=
∑
s−1

P̃−1(s−1)hk(s1, s−1) and h−1k(s−1) :=
∑
s1
P1(s1)hk(s1, s−1). As

span(h1k) ≤ sp1(Mk),∑
s∈S

(P̃ k(s)−P k(s))hk(s) ≤ |P1− P̃1|1sp1(Mk) +
∑
s−1

(P−1(s−1)− P̃−1(s−1))h−1k(s−1). (12)

By applying (12) recurrently, we have∑
s∈S

(P̃ k(s)− P k(s))hk(s) ≤
m∑
i=1

|Pi − P̃i|1spi(Mk).

Note that spi(Mk) is generally smaller than span(hk). In our lower bound case each spi =
1
mspan(hk), which improves our upper bound by a scale of 1/m.

The reduction of l can be achieved by bounding each factored reward to be in [1, 1/l]. The following
proof remains the same.

D FSRL algorithm

Here we provide a complete description of the FSRL algorithm that was omitted in the main paper
due to space considerations.

Algorithm 2 FSRL
Input: S,A, T , encoding G and upper bound on sum of factored span Q.
k ← 1; t← 1; tk ← 1;Tk = 1;H ← {}
repeat

Choose Mk ∈Mk by solving the following optimization over M ∈Mk,

maxλ∗(M) subject to Q(h) ≤ Q for h being the bias vector of M.

Compute π̃k = π(Mk).
for t = tk to tk + Tk − 1 do

Apply action at = πk(st)
Observe new state st+1

Observe new rewards rt+1 = (rt+1,1, . . . rt+1,l)
H = H ∪ {(st, at, rt+1, st+1)}
t← t+ 1

end for
k ← k + 1.
Tk ← dk/Le; tk ← t+ 1.

until tk > T
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Figure 4: Circle and three-leg structure with a size 4. State space is a 4-dimensional vector with
each dimension as {0, 1} representing whether the computer is working or not. Arrows represent the
scopes of dimension. Each node has an arrow to itself, which we ignored in the figure.

E Experiment Setups

Circle and Three-leg structures. Our computer network administrator domain with a circle and a
three-leg structure Guestrin et al. (2001); Schuurmans and Patrascu (2002) are shown in Figure 4.
Each computer gives a 1 reward when it is work and a 0 reward otherwise. The factored transition
matrix for network with size m is

P (s[i] = 0 | s[i] = 1, s) = min{1, α1|ε1i |+
∑
j∈ZP

i

α2|η1
ij |1(s[j] = 0)}, ∀i ∈ [m],

P (s[i] = 0 | s[i] = 0, s) = min{max{|ε0i |, 0.5}+
∑
j∈ZP

i

α2|η0
ij |1(s[j] = 0)}, ∀i ∈ [m],

where α1, α2 = 0.1 are constant and ε1i , ε
0
i , η

1
ij , η

0
ij are all white noise. To avoid the extreme cases in

our lower bound, both the MDPs are set to have limited diameters.

20


	Introduction
	Preliminaries
	Non-episodic MDP
	Factored MDP

	Oracle-efficient Algorithms
	Extended FMDP

	Upper bounds for PSRL and DORL
	Lower Bound and Factored Span
	Tighter connectivity measure
	Tighter upper bound

	Simulation
	Discussion
	Broader Impacts
	Proof of Theorem 1 and 2
	Bounding term (4)
	Regret caused by deviation (5)
	Bound (7), (8) and (9) by balancing episode length and episode number
	Failure of the confidence set

	Proof of the lower bound
	Proof of Theorem 4
	FSRL algorithm
	Experiment Setups

