

1 Greenhouse-Gas Induced Warming Amplification over the Arabian Peninsula with
2 Implications for Ethiopian Rainfall
3

4 Kerry H. Cook, Edward K. Vizy, Yang Liu, Weiran Liu
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34 Reference: Cook KH, Vizy EK, Liu Y, Liu W, 2021: Greenhouse-gas induced warming
35 amplification over the Arabian Peninsula with implications for Ethiopian rainfall. *Climate*
36 *Dynamics*, <https://10.1007/s00382-021-05858-x>.
37

38 *ABSTRACT*

39 Observed surface warming trends over the Arabian Peninsula are a factor of 1.4 – 2.1
40 greater than the tropical mean and a factor of 2.3 – 3.1 greater than the global mean. The primary
41 reason for the amplified warming is the absence of latent cooling over the dry surface, not trends
42 in net longwave heating or solar fluxes.

43 Well-validated regional model simulations with 30-km resolution are used to evaluate the
44 implications of the amplified warming for the regional climate through the 21st century. Projected
45 warming rates are similar to the observed ongoing warming, and low-level specific humidity
46 increases by 50% by the end of the century. Precipitation increases occur only in summer in the
47 southwest corner of the peninsula in association with enhanced orographic precipitation.
48 Concurrent evaporation increases ameliorate and can even reverse increases in surface water
49 availability associated with higher rainfall. A strengthening of the low-level negative meridional
50 geopotential height gradient between the Arabian Peninsula and the Horn of Africa strengthens the
51 zonal branch of the Somali jet, increasing westerly moisture transport into the Ethiopian Highlands
52 and enhancing summer rainfall in northern Ethiopia by 20% at mid-century and by 35% by the
53 end of the century. Confidence in the results is supported by the similarity of the projections with
54 observed modes of variability and current trends.

55

56 *1. Introduction*

57 The Sahara Desert is warming at 3-4 times the rate of the globe – an amplified warming
58 that is comparable to the high-latitude amplification associated with the ice albedo/temperature
59 feedback (Cook and Vizy 2015, Vizy and Cook 2016). The purpose of this paper is to evaluate a
60 similarly strong observed warming trend over the Arabian Peninsula and explore the implications
61 for regional climate through the 21st century.

62 Background on the climate of the Arabian Peninsula and prior studies of observed and
63 projected changes in the region is provided in the following section. Section 3 includes a
64 description of the datasets used, analysis methods, and regional model simulations. Results are
65 presented in section 4, and section 5 contains a summary and conclusions.

66
67 *2. Background*

68 The Arabian Peninsula is the largest peninsula in the world, covering approximately 3.2
69 million square kilometers and home to seven countries – Oman, United Arab Emirates, Qatar,
70 Yemen, Bahrain, Kuwait, and Saudi Arabia. The climate is classified as arid desert and arid steppe,
71 and elevation generally rises from the Persian Gulf coast in the east to the Red Sea coast in the
72 west. The Arabian Peninsula is a major global-scale source of dust aerosols (Goudie 2014),
73 especially during June through September (Kumar et al 2018, 2019).

74 The Arabian Peninsula is one of the warmest inhabited regions on the planet. Average
75 boreal summer (June-July-August) temperatures exceed 32°C over much of the peninsula, and
76 39°C in the southeast. In June 2019, for example, Kuwait reported temperatures of 63°C in direct
77 sunlight and 52°C in the shade. Interannual variations in surface temperature have been associated
78 with various mode of natural variability, including ENSO and the North Atlantic Oscillation

79 (Chakraborty et al. 2006; Donat et al. 2014; Attada et al. 2016, 2018) and variations of the Indian
80 monsoon (Attada et al. 2019).

81 Rainfall is sparse, with annual mean values below 0.5 mm/day nearly everywhere except
82 in a small region with 2 mm/day in southwestern Saudi Arabia and western Yemen. While boreal
83 summer is the dry season, about 40% of the precipitation is delivered in extreme events compared
84 with 80% during the wetter winter season (Almazroui 2020).

85 This paper is motivated by the possibility that warming of the Arabian Peninsula induced
86 by atmospheric greenhouse gas increases will be greater than the global mean. Recent observations
87 and analysis indicate that the Sahara Desert is warming at 3-4 times the rate of the globe – an
88 amplified warming that is comparable to the high-latitude amplification associated with the ice
89 albedo/temperature feedback (Cook and Vizy 2015, Vizy and Cook 2017). The primary cause of
90 the Saharan amplified warming is simply that the dryness of the surface prohibits the latent heat
91 flux which is, in the rest of the tropics and subtropics, the primary mode of surface cooling.
92 Changes in clouds do not play a discernible role. The warming amplification is somewhat stronger
93 during the warm season due to an enhanced water vapor/temperature feedback. The amplified
94 Saharan warming is associated with increased rainfall to the south and the recovery of Sahel
95 rainfall in the 21st c., and both regional climate model (RCM) and CMIP5 coupled GCM
96 simulations replicate the process in 21st c. projections (Vizy et al. 2013).

97 Several papers evaluate temperature trends over Saudi Arabia. Almazroui et al. (2012) find
98 that surface temperatures averaged over Saudi Arabia increased at a rate of 0.72 K/decade in the
99 dry season and 0.51 K/decade in the wet season over the 1979-2009 period. Reported trends in the
100 diurnal temperature range are inconsistent in the literature. Almazroui et al. (2013) find that they

101 are increasing, while AlSarmi and Washington (2011) report a significant decrease in association
102 with strong warming at night.

103 Many studies that evaluate changes in extremes adopt standard measures developed by the
104 Expert Team on Climate Change Detection and Indices (ETCCDI) and recommended by the World
105 Meteorological Organization (WMO 2009). These measures have been applied to observed and
106 modeled changes over the Arabian Peninsula, often averaged over a study region that includes
107 northern Africa. In general, statistically-significant and spatially coherent changes in temperature
108 but not precipitation are found (Zhang 2005). Donat et al. (2014) find that the warmest temperature
109 of the year increased by 0.3 – 0.9 K/decade at various stations across the Arabian Peninsula over
110 the 1981-2000 period. Nazril Islam et al. (2015) evaluated trends in Saudi Arabian temperature
111 extremes for 1981-2010 at 27 stations and found that many stations exhibited statistically-
112 significant positive trends in daily maximum temperature in boreal spring, summer, and fall.

113 Climate model projections indicate that these temperature trends will continue to increase,
114 with stronger increases in summer. Lelieveld et al. (2016) examined output from 26 CMIP5 model
115 projects under both the RCP4.5 and RCP8.5 emissions scenarios over a large region of the Middle
116 East and Northern Africa that includes the Arabian Peninsula. The simulated multi-model mean
117 trends were found to be consistent with observed trends, with temperature maxima projected to
118 increase from 316 K (43°C) to 319 K (46°C) by mid-century and to 323 K (50°C) by the century's
119 end. This warming moves the large-scale regional average temperature from a “very strong heat
120 stress” category into “extreme heat stress” (Abdel-Ghany et al. 2013), especially when exacerbated
121 by expected increases in atmospheric moisture levels (Zhu et al 2019).

122 Donat et al. (2014) note that the regional mean rainfall over a large area of northern Africa
123 and the Arabian Peninsula was anomalously high in the 1960s, so any evaluation of trends

124 beginning then indicate significant drying. Trends calculated from the 1970s over the Arabian
125 Peninsula show decreases in precipitation totals and the number of rainy days, but they are not
126 statistically significant. Similarly, AlSarmi and Washington (2014) analyzed rainfall trends at 21
127 stations on the Arabian Peninsula and did not find a statistically-significant precipitation trend for
128 1980-2008. The only significant changes in rainfall measured was a decrease in the number of
129 rainy days (rainfall > 10mm).

130 Ravi Kumar et al. (2019) reported a statistically significant increase in atmospheric dust
131 loading over the Arabian Peninsula over the 2002-2012 decade. Rather than being associated with
132 precipitation trends, which were not found, the aerosol trend was primarily associated with
133 enhanced dust transport from the Sahara Desert, in particular through an intensification of a
134 westerly jet that flows through the Tokar Gap in eastern Sudan.

135 These previous papers have thoroughly reported on trends in extremes using the full suite
136 of ETCCDI indices in observations and the CMIP5 models. Here we do not focus on extreme
137 events, but on changes in the regional climate as atmospheric greenhouse gas levels increase.

138

139 3. Methodology

140 *a. Datasets*

141

142 Multiple datasets are analyzed for the 1979-2018 period to improve confidence through
143 comparison. For surface temperature, the following datasets are included:

144

- 145 • Climatic Research Unit CRUTEM4 dataset version 3.23 (CRU; Jones et al. 2012): A
146 gridded dataset with 0.5° resolution that uses more than 4000 land-based weather stations
to provide monthly land surface air temperature and precipitation estimates.

- Global Historical Climate Network CPC GHCN/CAMS merged land-ocean analysis (GHCN; Fan and van den Dool 2008): Monthly GHCN surface temperatures (version 3.2.2) are blended with Extended Reconstruction SSTs (ERSST version 3b) over the ocean to create this dataset. Station data are interpolated onto a 2.5° grid.
- Berkeley Earth Surface Temperatures (Rohde et al. 2013): This dataset merges approximately 37,000 land temperature records with HadSST3 ocean temperatures on a 1° grid.
- GISS Surface Temperature Analysis version 4 (GISS; Lenssen et al. 2019): Temperature observations from approximately 6300 land stations are combined with ocean temperatures from ERSSTv5 to produce monthly-mean values on a 2° grid globally.

Circulation and surface heat budget variables are examined in four atmospheric reanalyses, including the 1.5° -resolution ERA-Interim Reanalysis (ERA1; Dee et al. 2011), the 1.25° -resolution Japan Meteorological Agency's Japanese 55-Year Reanalysis (JRA-55; Kobayashi et al. 2015), the $0.5^{\circ} \times 0.625^{\circ}$ NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA2; Gelaro et al., 2017), and the 0.25° ECMWF Re-Analysis 5 (ERA5; Copernicus Climate Change Service 2017).

Precipitation is evaluated in comparison with the 0.05° -resolution CHIRPS2 (Funk et al. 2014), the 0.25° TRMM 3B42 V7 (Huffman et al. 2007), and the 0.25° PERSIANN-CDR (Oshian et al. 2000) datasets.

b. Regional Model Simulations

The methodology used to generate climate change projections with a regional climate model was developed over many years, beginning with paleoclimate simulations, including over

171 Africa (Vizy and Cook 2005, 2007; Cook and Vizy 2006; Patricola and Cook 2007), that provide
172 an opportunity to validate the simulated climate change against geological proxy data. The intent
173 is to use regional climate modeling not as a downscaling tool, but as independently as possible
174 from GCMs to avoid propagating GCM-error into the domain of the regional model and to provide
175 a relatively independent simulation of climate change that can be compared with GCM simulations
176 to evaluate confidence. The choice of a large domain maximizes this independence from GCMs,
177 and the dependence on the lateral boundary conditions is minimal, especially in tropical
178 applications.

179 The simulations analyzed here use a nested domain (Fig. 1) in the National Center for
180 Atmospheric Research (NCAR) Weather Research and Forecasting model (WRF; Skamarock et
181 al. 2005), fully described in Vizy et al. (2013). The outer domain, with 90-km resolution, covers
182 all of Africa and the Arabian Peninsula, and also the Mediterranean, the Indian Ocean, and India
183 (60°W-100°E; 50°S-60°N). The inner domain covers the Arabian Peninsula and all of Africa
184 (30°W-60°E; 40°S-40°N) with 30-km resolution, chosen to provide a more accurate representation
185 of topography, coastlines, and smaller-scale circulation features. The model time step is 3 min for
186 the 90-km domain and 1 min for the 30-km domain.

187 In addition to providing higher resolution, regional modeling provides the ability to choose
188 physical parameterizations that work well in the region of interest. Based on trial simulations, the
189 following parameterizations are chosen for these integrations: Yonsei University planetary
190 boundary layer (Hong et al. 2006); Monin–Obukhov surface layer; new Kain–Fritsch cumulus
191 convection (Kain 2004); Purdue–Lin microphysics (Chen and Sun 2002); Rapid Radiative
192 Transfer Model (RRTM) longwave radiation (Mlawer et al. 1997); Dudhia shortwave radiation
193 (Dudhia 1989); unified Noah land surface model (Chen and Dudhia 2001).

194 The control simulation (CTL) runs from 1989 to 2008 after 292 simulated days for spin up,
195 with the atmospheric CO₂ concentration set to 367 ppmv which is the 1989–2008 average observed
196 at the Mauna Loa Observatory. SSTs and lateral boundary conditions for the 90-km domain are
197 updated every 6 hours from NCEP2 (Kanamitsu et al. 2002). The inner domain is driven by the
198 outer domain's solution of the model's governing equations using one-way nesting. The 20 years
199 of the simulation are regarded as a 20-member ensemble of year-long integrations representing the
200 climatology of 1989-2008.

201 Two additional 20-year simulations represent the climates of the mid- and late-21st c.
202 (2041-2060 and 2081-2100, respectively), with atmospheric CO₂ levels set according to the
203 IPCC's RCP8.5 emissions scenario at 564 ppmv and 850 ppmv, respectively. These are referred
204 to as the M21 and L21 simulations. The 30-km simulation developed instabilities about halfway
205 through the L21 integration because convective events became so strong that the equilibrium
206 altitude for the rising parcels exceeded the 20-hPa top of the atmosphere set in the model. For this
207 reason, the 30-km ensemble size for the late 21st c. has 9 members instead of 20. Comparisons
208 with the 20-member ensemble at 90-km resolution provide assurance that the 9-member, high-
209 resolution ensemble is an accurate representation of the simulated late 21st c. climate.

210 Lateral and initial boundary conditions and SSTs for the M21 simulation are modifications
211 of the 6-hourly reanalysis values used in the CTL simulation. Anomalies derived from simulations
212 with five CMIP5 coupled GCMs are used to adjust boundary conditions and SSTs. The RCP8.5-
213 forced GCM simulations averaged over the 2041–2060 and 1986–2005 periods are assumed to
214 represent the middle of the month, and linearly interpolated to generate anomalies every 6 h. These
215 6-hourly anomalies are averaged for the five GCMs, interpolated to the 90-km model grid, and
216 added to the 6-hourly boundary conditions of the CTL simulation. The 1986–2005 period is used

217 because it is the last 20 years available for the historical CMIP5 simulations. This use of
218 multimodel mean anomalies minimizes the dependence of the projections on individual GCMs.
219 The CMIP5 GCM outputs were examined individually to ensure that there are no obviously
220 spurious values. The GCMs used are the NCAR Community Climate System Model version 4
221 (CCSM4), the Centre National de Recherches Meteorologiques Coupled Global Climate Model
222 version 5 (CNRM-CM5), the Geophysical Fluid Dynamics Laboratory Climate Model version 3
223 (GFDL CM3), the Model for Interdisciplinary Research on Climate version 5 (MIROC5), and the
224 Meteorological Research Institute Coupled GCM version 3 (MRI-CGCM3). A similar method is
225 used for the L21 simulation, but for the 2080-2100 period. Output from the M21 and L21
226 simulations are treated as ensembles representing the mid- and late-21st c. climate.

227 Confidence in the model projections is assessed by several methods. The climate of the
228 CTL simulation is compared with the observed climate as represented in multiple datasets as
229 discussed above – a well-functioning present day climate adds to confidence in projections,
230 although it does not guarantee accuracy. In addition, observed trends in surface temperature
231 provide an opportunity for evaluating simulated trends. Differences between the M21 and CTL,
232 and between the L21 and CTL, simulations are converted to trends assuming linearity to compare
233 with observed warming rates. Further, the ensemble simulation design provides an opportunity to
234 calculate the statistical significance of simulated changes. Understanding the physical processes
235 of observed and simulated changes, and analogies to observed modes of variability, are also used
236 to evaluate confidence.

237
238 *c. Surface heat balance*

239 The surface heat balance is used to understand observed surface temperature trends.
240 Reliability in heat budget terms in reanalyses is not high because these terms are not assimilated
241 and direct observations are sparse, so they are compared among the four reanalyses.

242 The heating rate of the surface is given by

243
$$C \frac{dT_S}{dt} = S_{ABS} + F_{BACK} - F_{UP} - H_S - H_L - D, \quad (1)$$

244 where T_S is surface temperature and C is the heat capacity of the surface. The surface is warmed
245 by the absorption of solar radiation (S_{ABS}) and longwave back radiation from atmospheric
246 greenhouse gases (F_{BACK}), and cooled by the emission of longwave (thermal) radiation from the
247 surface, F_{UP} :

248
$$F_{UP} = \varepsilon \sigma T_S^4, \quad (2)$$

249 where ε is the longwave emissivity of the surface and σ is the Stefan-Boltzmann constant. Latent
250 and sensible heat fluxes from the surface to the atmosphere, H_L and H_S , respectively, also cool
251 the surface. D accounts for the redistribution of heat within the surface material. This term is
252 expected to be small over land because diffusion is the only mechanism for moving heat within
253 the surface. Over the oceans, D includes the roles of horizontal currents and
254 upwelling/downwelling in moving heat into or out of a surface volume.

255 Heat balance terms are calculated for annual and seasonal means. On these time scales,
256 $C \frac{dT_S}{dt}$ is negligible, as shown by the following estimate. C is given by

257
$$C = c \rho Z \quad (3)$$

258 where c is the specific heat capacity of the surface material, ρ is the density of the surface
259 material, and Z is the depth to which the surface heating penetrates. Over land,

260
$$C \approx (840 \text{ J/kg} - K)(2.7 \times 10^3 \text{ kg/m}^3)(0.02m) \approx 10^4 \text{ J/m}^2 - K \quad (4)$$

261 and over an ocean surface

262
$$C \approx (4218 \text{ J/kg} - K)(10^3 \text{ kg/m}^3)(100m) \approx 10^8 \text{ J/m}^2 - K \quad (5)$$

263 where an ocean mixed layer depth of $Z \sim 103$ m is assumed. Using an estimate rate of warming of
264 1 K over 40 years,

265
$$C \frac{dT_S}{dt} \sim O(10^4 \text{ J/m}^2 - K) O(10^{-10} \text{ K/s}) \approx 10^{-6} \text{ W/m}^2 \quad (6)$$

266 for land and

267
$$C \frac{dT_S}{dt} \sim O(10^8 \text{ J/m}^2 - K) O(10^{-10} \text{ K/s}) \approx 10^{-2} \text{ W/m}^2 \quad (7)$$

268 for the ocean. Since the terms in the heat balance on the RHS of Eq. (1) are on the order of tens
269 of W/m^2 (e.g., Cook et al. 2017), the time-dependent term on the LHS is negligible. Thus, the
270 annual mean heat balance can be viewed as a series of equilibrium states and D can be calculated
271 as a residual.

272

273 *IV. Results*

274 *a. Observed surface temperature trends*

275 Table 1 displays linear trends in annual-mean surface temperatures from four observational
276 datasets and three reanalyses (section 3). Four averaging regions are used. The Arabian Peninsula
277 region contains all land points from 15°N to 25°N and 40°E to 55°E. The tropics is defined as all
278 points (both land and ocean) between 30°S and 30°N, while the tropical land average contains only
279 land points between 30°S and 30°N. Global means are shown when available. Statistically
280 significant values at the 90%, 95%, and 98% confidence levels are indicated.

281 All surface temperature trends in all datasets and all regions are positive, and nearly all are
282 statistically significant at the 90% level or higher. Over the Arabian Peninsula, trends range from
283 0.28 K/decade in CRU to 0.58 K/decade in GHCN, and the reanalysis values fall within the range
284 of the observations. The average rate of warming over the Arabian Peninsula is 0.39 K/decade.

285 Trends over the tropical mean, tropical land, and global mean are smaller than trends over
286 the Arabian Peninsula. An amplification factor, defined as the Arabian Peninsula warming rate
287 divided by the tropical or global warming rate, indicates that warming rates over the Arabian
288 Peninsula are a factor of 1.4 – 2.1 greater than warming rates over the tropical land average, and a
289 factor of 2.3 – 3.1 greater than global mean warming rates. These annual-mean amplification
290 factors are similar to those of the Sahara Desert (Cook and Vizy 2015).

291 Warming trends are reported for each of the traditional seasons in Table 2. All trends are
292 positive and most are statistically significant. The GHCN dataset consistently produces the largest
293 values with lower statistical significance, similar to the annual mean values in Table 1. Over the
294 Arabian Peninsula, warming trends are somewhat larger (18%) in the boreal spring and summer
295 average (MAM and JJA) compared with the fall and winter mean (DJF and SON).

296 The components of the annual mean surface heat balance (section 3) are examined to
297 understand the amplified warming of the Arabian Peninsula. Comparisons are made to the tropical
298 mean rather than the global mean because the ice albedo-temperature feedback amplifies the high-
299 latitude signal and this feedback does not operate over the Arabian Peninsula. Table 3 shows linear
300 trends (W/m^2 per 40 years) in surface heat budget terms in the three reanalyses; standard deviations
301 are shown in parentheses. Note that statistical significance is a useful guide, but a highly significant
302 trend is not necessarily “correct” because of the concern that the surface heat budget terms and
303 their variability are not accurate in reanalyses.

304 All three reanalyses produce negative, or cooling, trends in the solar radiation absorbed
305 over both the tropical and Arabian Peninsula averaging regions, but statistical significance above
306 the 90% level does not emerge. In each reanalysis the solar radiation cooling trend is a few $\text{W}/(\text{m}^2\text{-}$
307 40 yr) smaller over the Arabian Peninsula than in the tropical mean, so this difference could be
308 associated with the amplified heating over the Arabian Peninsula. The association may be
309 causative or responsive.

310 In both ERAI and JRA55, increases in the longwave back radiation are highly significant
311 in both the tropical and Arabian Peninsula averages; MERRA2 produces similarly large but less
312 significant trends. Increasing levels of atmospheric greenhouse gases have increased the longwave
313 back radiation by roughly $1 \text{ W}/\text{m}^2$ in the last 40 years, with uniform distribution over the globe
314 since CO_2 is well-mixed in the atmosphere. The estimates of trends in the longwave back radiation
315 shown in Table 3 are greater than $1 \text{ W}/\text{m}^2\text{-}40 \text{ yr}$ so they cannot be explained by increases in
316 atmospheric greenhouse gases alone. Also, they are larger over the Arabian Peninsula than in the
317 tropical mean, and this would not be expected as a direct response to anthropogenic CO_2 since it
318 is well mixed in the atmosphere. Rather, as discussed below, these upward trends in the longwave
319 back radiation are related to trends in the surface emission of longwave radiation.

320 Upward longwave fluxes also exhibit positive trends, with larger values over the Arabian
321 Peninsula, reflecting the differences in the surface temperature trends in the tropical and Arabian
322 Peninsula means. Strong coupling between the longwave back radiation and the upward longwave
323 radiative flux from the surface explains the upward trends in the back radiation, including its
324 amplification over the Arabian Peninsula. Trends in the net upward longwave flux ($F_{UP} - F_{BACK}$)
325 and in the net radiative heating of the surface ($S_{ABS} + F_{BACK} - F_{UP}$) are small and generally
326 insignificant (Table 3). The longwave component of the heat budget cannot explain the trend.

327 Trends in the tropical-mean sensible heat flux are small ($<0.5 \text{ W/m}^2$) and statistically
328 insignificant in the reanalyses, and somewhat larger ($1-2 \text{ W/m}^2$ -40 yr) over the Arabian Peninsula.
329 The sensible heat flux is responsive to surface temperatures, so these differences are consistent
330 with the amplified warming of the Arabian Peninsula but not explanatory.

331 Large trends occur in the tropical-mean latent heat flux and the redistribution term. In the
332 tropical mean, which includes extensive ocean areas, surface warming trends (Tables 1 and 2) are
333 accompanied by large positive latent heat flux trends ($5-9 \text{ W/m}^2$ -40 yr), i.e., increases in
334 evaporative cooling. This cooling mechanism is partially balanced by a warming mechanism; the
335 negative values of the redistribution term indicate that ocean currents are contributing to a warming
336 of the tropical ocean surface that counteracts, and even overwhelms, the evaporative cooling trend.
337 A more detailed discussion of these compensating mechanisms over the tropical oceans is outside
338 the scope of this paper. See, for example, Drenkard and Karnauskas (2014), Yang et al. (2014),
339 and Cook and Vizy (2019a).

340 The large positive trends in the latent heat flux in the tropical mean are not seen over the
341 Arabian Peninsula. Here, trends are small and negative. Similarly, the large negative trends in the
342 redistribution term that occur in the tropical mean do not occur over the Arabian Peninsula, as
343 expected for any land point.

344 We conclude that the reason for the amplified warming over the Arabian Peninsula
345 compared with the tropical mean is simply that an evaporative response to greenhouse gas forcing
346 is not possible over the dry surface. This is the same result as over the Sahara Desert (Cook and
347 Vizy 2015; Vizy and Cook 2017). Similar to that analysis, the roles of clouds and changes in
348 atmospheric water vapor are not the primary cause of the amplified surface temperature response

349 to greenhouse gas forcing, and the tight coupling between the upward and downward longwave
350 fluxes obscures the direct effects of the added back radiation from increasing greenhouse gases.

351

352 *b. Model evaluation*

353 Before examining projected trends, we evaluate the realism of the CTL ensemble
354 simulation. Surface temperature seasonal averages over the Arabian Peninsula from the CTL
355 ensemble mean are displayed in Figures 2a-d, with comparable values from the ERAI reanalysis
356 in Figures 2e-h. Surface temperature climatologies are similar to ERAI in the other reanalyses.
357 The simulation captures the distributions, magnitudes, and seasonality of surface temperature over
358 the Arabian Peninsula with good accuracy, exceeding the realism of the CMIP5 multi-model mean
359 as presented by Almazroui et al. (2020). A surface temperature gradient is oriented from the
360 northwest to the southeast in DJF, MAM, and SON. The boreal fall surface temperature
361 distribution (Figs. 2d and h) is very similar to the spring distribution (Figs. 2b and f). Surface
362 temperatures are more uniform in boreal summer (Figs. 2c and g), with temperatures a few degrees
363 higher in the eastern part of the peninsula.

364 The low-level circulation, represented by 925-hPa geopotential heights (shaded) and winds
365 (vectors), and specific humidity (contours) in the CTL simulation for the traditional seasons is
366 shown in Figures 3a-d. The same fields from the ERAI reanalysis are shown in Figures 3e-h. In
367 DJF, geopotential height gradients are small across the peninsula, with easterly flow across the
368 southern half. Patterns are similar in MAM and SON. In boreal summer, however, low
369 geopotential heights cover the Arabian Peninsula and the flow is northerly. The low pressures are
370 a westward extension of the Indian monsoon trough.

371 Figure 4a shows line plots of the daily 850-hPa geopotential height (red lines) and surface
372 temperature (green lines) along with 500-hPa geopotential height (blue lines) averaged over the
373 Arabian Peninsula (15°N – 30°N ; 35°E to 55°E) in the CTL ensemble mean; Fig. 4b shows the
374 same fields from the ERAI climatology. The 850-hPa level is chosen for the area average because
375 it largely clears the regional topography. The increase in 500-hPa geopotential heights from
376 January through May reflects the seasonal formation of the Arabian high, which is strongest in
377 both the model simulation and reanalysis at this level. The Arabian high forms over the southern
378 portion of the peninsula in May, and remains in place through September. As seen in the June,
379 July, August, and September (JJAS) mean shown in Figures 5a and b, the presence of the Arabian
380 high maintains anticyclonic circulation over the Arabian Peninsula during these warm months. The
381 thermal low/Arabian high structure is strengthened during years in which the Indian summer
382 monsoon is strong (Attada et al. 2019). Consistent with Fig. 4, geopotential height anomalies
383 associated with the simulated Arabian high are stronger in the model than in the ERAI reanalysis.
384 (This is also the case when the simulation is compared with the other reanalyses.) During the rest
385 of the year, the upper-level flow over the Arabian Peninsula is westerly in association with zonally-
386 uniform, negative geopotential height gradients (e.g., Figs. 5c and d).

387 The simulated precipitation climatology from the CTL ensemble mean is compared with
388 the CHIRPS climatology averaged over the same years (1989-2008). In Figure 6, a larger domain
389 is adopted to show rainfall in the regions surrounding the Arabian Peninsula. While the model
390 tends to over-produce rainfall over the Horn of African compared with CHIRPS, it produces
391 rainfall rates over the Arabian Peninsula that are lower than in the observations. The differences,
392 however, are relatively small, and the geographic distribution is realistic in the simulation.

393

394 *c. Projected trends*

395 Table 4 shows seasonal and annual surface temperature differences averaged over the
396 Arabian Peninsula region simulated in the M21 and L21 ensemble simulations; differences are
397 relative to the CTL simulation. Warming rates in units of K/decade are calculated to facilitate the
398 comparison with observed rates in Tables 1 and 2.

399 In both the annual and seasonal means, all surface temperature differences in both the M21
400 and L21 simulations exceed the 98th percentile in statistical significance. Even monthly mean
401 values (not shown) are significant at the 98th percentile with the exception of February and
402 November. During these months the standard deviation of temperatures is greater and the
403 temperature differences are significant at the 95th percentile.

404 Rates of surface temperature change are calculated by dividing the differences between the
405 M21 and L20 temperatures by 5.2 decades, representing the 52-year time difference between the
406 midpoints of each 20-member ensemble (1998 and 2050). For the L21 simulation, the time
407 difference is 102 years. In both the M21 and L21 simulations, the warming rate is somewhat greater
408 in the boreal summer and fall than in the winter and spring. There is no suggestion that the warming
409 rate accelerates or decelerates in the second half of the century.

410 The annual mean rates of surface temperature change for the Arabian Peninsula in the
411 model (about 0.5 K/decade; Table 4) are a little larger than the observed average (about 0.4
412 K/decade; Table 1), but the modeled rates fall with the range of the observations by being less than
413 the GHCN value. The same is true for the DJF, JJA, and SON seasonal means. The simulated
414 MAM warming (0.46 K/decade; Table 4) is close to the observed mean (0.44 K/decade; Table 2).

415 The regionality of the projected surface warming across the Arabian Peninsula as a function
416 of season for the M21 simulation is presented in Figures 7a-d, and for the L21 simulation in Figs.
417 7d-h. In DJF and MAM, the strongest warming is in the southern half of the peninsula where the

418 warmest current temperatures occur (compare with Fig. 2). Temperature differences are up to 3 K
419 in the mid-21st c. simulation, and 5 K in the late-21st c. simulation. Temperature differences are
420 much larger in JJA – exceeding 3 K in the M21 simulation and about double in the L21 simulation
421 - but still largest in the southern half of the Arabian Peninsula. Large temperature differences are
422 more widespread in boreal fall and exceed 3 K (6 K) over a large fraction of the peninsula in the
423 M21 (L21) simulation. There is not a strong diurnal cycle in the simulated temperature differences.

424 Changes in the low-level circulation accompany the simulated warming. Figures 8a-d show
425 seasonal differences in 850-hPa geopotential heights and winds for the M21 simulation; numbers
426 in the upper right corner of each panel indicate differences in geopotential heights (gpm) and
427 percent differences in specific humidity over the Arabian Peninsula averaging region (15-25N; 40-
428 55E). Figures 8e-h are the L21 – CTL differences. In each case, geopotential height anomalies are
429 positive everywhere because the global atmosphere expands vertically as it warms.

430 In DJF and MAM, easterly flow anomalies develop over the northern Arabian Peninsula
431 by the mid-21st c. (Fig. 8a and b) in association with positive geopotential height anomalies to the
432 northwest. Comparison with the full fields in Fig. 3 indicates that this response amounts to a
433 reduction in the weak westerly flow that crosses the northern Arabian Peninsula in boreal winter.
434 In the L21 simulation, anomalous northeasterly flow associated with a deepening of the anomalous
435 high over the southeast Mediterranean replaces the weak anticyclonic circulation of the late 20th c.
436 in DJF (Fig. 8e) but this pattern does not persist into the spring (Fig. 8f). Overall, the weak positive
437 geopotential height gradient that characterizes the boreal fall and spring in the 20th c. climate (Fig.
438 3), with small increases in geopotential height from the northwest to the southeast across the
439 Arabian Peninsula, becomes even weaker in the future simulations.

440 The JJA climatology of the 20th c. (Figs. 3c and g) features a low-level geopotential height
441 gradient that is opposite to that of the winter and spring, with decreasing geopotential height from
442 the northwest to the southeast across the Arabian Peninsula. As seen in Figs. 8c and g, this gradient
443 is also weakened in the future simulations. The resulting flow anomalies are predominantly
444 southerly, weakening the northerly flow of the late 20th c. climatology (Fig. 3).

445 In contrast to the other seasons, there is some intensification of the late 20th c.
446 climatological low-level flow in boreal fall with strengthened northeasterlies (Figs. 3d and h; Figs
447 8d and h). The anomalies are associated with lowered geopotential heights over the southern
448 peninsula as the winter anomalies (Figs. 8a and e) reestablish.

449 Low-level specific humidity increases in each season for both the M21 and L21 simulations
450 over the dry Arabian Peninsula. The increases are fairly uniform, and indicated as an average in
451 each panel of Fig. 8. The primary source of this excess moisture is not enhanced evaporation from
452 the dry Arabian Peninsula since there are no widespread increases in water availability at the
453 surface (shown below). Nonetheless, the changes in specific humidity roughly follow the Clausius-
454 Clapeyron relation that predicts a 6-7% increase in evaporation and atmospheric vapor pressure
455 with each 1 K warming, assuming constant relative humidity. The seasonal-mean specific
456 humidity increases shown in Fig. 8 range between 5.8 %/K and 8.7 %/K, with larger values
457 occurring primarily in summer and fall.

458 Figures 9a and b show 500-hPa geopotential heights from CTL and L21 in July, when the
459 Arabian high is fully formed (Fig. 4). Differences between the CTL and M21 simulations are
460 smaller but similar in structure, so we show only the L21 differences for brevity. Note that the
461 structure of the Arabian high is similar in the future simulation, but the geopotential heights in L21
462 are 100 hPa greater in association with an overall expansion of the warmed atmosphere. (At this

463 level, geopotential heights in the M21 simulation are about 50 hPa greater than in the CTL
464 simulation.) Because of these large-scale changes, it is difficult to quantify changes in the Arabian
465 high using geopotential height. Therefore, we also examine the relative vorticity (Figs. 9c and d).
466 Note that, unlike the geopotential height Figs. 9a and d, the contour levels are the same in Figs.
467 9c and d. Quantified by the relative vorticity, the Arabian high is not changed in the future
468 simulations. The result is the same at adjacent vertical levels and during the other months during
469 which the Arabian high forms (May through September).

470 In general, the extremely low precipitation rates that characterize the Arabian Peninsula
471 remain low in the future simulations. A noteworthy exception occurs during the warm season in
472 the southwest corner of the Arabian Peninsula, where annually-averaged rainfall rates exceed 1
473 mm/day in the current (Fig. 6). In May, precipitation in this region increases by less than 0.5
474 mm/day by the end of the century (0.2 mm/day at mid-century). Rainfall increases become more
475 widespread by July and reach 0.8 mm/day in the L21 simulation (Fig. 10a). In August, as shown
476 in Fig. 10b for the L21-CTL difference, these differences amount to more than a doubling of
477 rainfall. September anomalies are small (Fig. 10c), and negligible for other months.

478 Evaporation increases driven by warming surface temperatures accompany the
479 southwestern precipitation increases, as shown in Figs. 10d-f for July through September. In July
480 and August, the positive evaporation anomalies are smaller than the precipitation anomalies. In
481 these months, water availability (measure by “precipitation minus evaporation”) at the surface is
482 increased in the southwest region, especially in August (Figs. 10g and h). In September,
483 precipitation increases are exceeded by evaporation increases. The net result is surface drying,
484 despite the precipitation increase (Fig. 10i).

485 To understand these simulated precipitation increases more fully, Figure 11a shows a close-
486 up of the circulation centered on the southwestern peninsula from the CTL simulation at 800 hPa
487 for August. Zonal geopotential height gradients are located to the west of the Arabian Peninsula,
488 while geopotential height gradients over the Arabian Peninsula and to the south are primarily
489 meridional. A well-formed geostrophic flow follows this pattern, with northerly flow over the Red
490 Sea and westerly flow – part of the Somali jet (Findlater 1969) – to the south of the Arabian
491 Peninsula over the Gulf of Aden. This large scale pattern is similar at 925 hPa (Fig. 11b), but at
492 this level the flow over the Red Sea is northwesterly south of 19°N.

493 The monsoon trough extends westward over the Arabian Peninsula between 14°N and
494 18°N. Rainfall in the southwest is supported when moisture transport from the northeast at 800
495 hPa associated with the trough impinges on the topography. At this level (Fig. 11a), moisture
496 transport to the west of the topography largely parallels the coastal mountains. At 925 hPa (Fig.
497 11b), moisture transport to the west of the coastal topography has more interaction with the
498 topography; associated orographic rainfall occurs south of 17°N. The influence of the Tokar Gap
499 (18°N and 38°E) is apparent at both the 925 hPa and 800 hPa levels.

500 Differences in the 800-hPa and 925-hPa geopotential heights and moisture transport
501 vectors between the CTL and L21 simulations are shown in Figs. 11c and d, respectively. At 800
502 hPa, the strengthening and northwestward extension of the monsoon trough over the Arabian
503 Peninsula enhances northeasterly moisture transport onto the coastal topography north of 16°N.
504 Over the Red Sea, the anomalous geopotential height gradient is meridional so the anomalous flow
505 attains a westerly component that also supports the orographic precipitation anomaly. At 925 hPa,
506 the meridional geopotential height gradient over the Red Sea is weakened in the L21 simulation.
507 The anomalous moisture transport is westerly, which further enhances the orographic rainfall in

508 the southwestern Arabian Peninsula (Fig. 10b). Again, anomalies for the M21-CTL difference are
509 similar to the L21-CTL differences, but about half the magnitude.

510 Figure 11 shows that the amplified warming of the Arabian Peninsula strengthens the
511 negative meridional geopotential height gradient between the Arabian Peninsula and the Horn of
512 Africa, and that these enhanced gradients are associated with a strengthening of the zonal branch
513 of the Somali Jet. The anomaly fields are very similar to those shown by Attada et al. (2019) for
514 differences between strong and weak Indian summer monsoon composites (e.g., Fig. 5b in Attada
515 et al. 2019); a strong Indian monsoon is also associated with a strong Somali jet. Figure 12 provides
516 a larger-scale perspective in showing 850 hPa geopotential heights (shaded), moisture transport
517 vectors, and precipitation (contours) from the 90-km resolution outer domain (Fig. 1). The direct
518 connection between the zonal moisture transport by the Somali jet over the Gulf of Aden and the
519 westerly transport of moisture onto the west coast of India is evident in the full fields (Fig. 12a),
520 and their enhancement in the L21 simulation is evident in the difference field (Fig. 12b).

521 Figure 11 also indicates that elevated greenhouse gases increase southwesterly moisture
522 transport over Sudan and northwestern Ethiopia. This not only increases transport through the
523 Tokar Gap, as noted above, but also increases interactions with the topography of the Ethiopian
524 highlands, especially in the 825 – 700 hPa layer (Fig. 11c). Summer is the rainy season for northern
525 Ethiopia - a single wet season with strong orographic rainfall. The simulation captures this
526 seasonality but, as shown in Fig. 13 in a comparison with the TRMM climatology for 1998-2019
527 (PERSIAN and CHIRPS are similar), simulated rainfall rates are too large (see also Fig. 6).
528 Summer rainfall rates over northern Ethiopia (36°E-42°E; 8°N-15°N) increase by about 20% at
529 mid-century, and by about 35% by the end of the century in the simulations. In addition, the end
530 of the rainy season is delayed by approximately 2 weeks by the end of the century (Fig. 13).

531 Not all of the differences shown in Fig. 12 are attributable to the amplified warming of the
532 Arabian Peninsula. However, we can associate the enhanced rainfall of northern Ethiopia in the
533 L21 simulation (Fig. 12b) with the strengthening of the zonal branch of the Somali jet and, thereby,
534 Arabian Peninsula warming by analogy with an observed mode of natural variability in the current
535 climate. This mode is characterized by a positive correlation between monsoon rainfall in India
536 and summer rainfall in Ethiopia through the strength of the zonal branch of the Somali Jet
537 (Camberlin 1995 and 1997, Vizy and Cook 2003). Note that the precipitation response over
538 Ethiopia in summer is not a direct response to the increases in greenhouse gases and SST
539 differences applied in the L21 (and M21) simulations, but a secondary response to amplified
540 warming of the Arabian Peninsula.

541 As an additional method for evaluating confidence in the projections of increased Ethiopian
542 rainfall in summer, we examine observed trends in the low-level circulation and compare them
543 with the simulated differences for the mid- and late 21st c. [Because they are notoriously noisy,
544 examining precipitation fields directly to evaluate their change requires extensive analysis that is
545 beyond the scope of this paper, although we note that there are indications that summer rainfall in
546 northern Ethiopia is experiencing a positive trend (e.g., Fig. 4b in Cook and Vizy 2019b).] Here
547 we evaluate circulation trends by plotting decadal differences in the 850-hPa geopotential heights
548 and winds (Fig. 14). Since caution is indicated when using reanalyses for analyzing trends, we
549 present results from 4 reanalyses. In three of the four reanalyses, namely, ERAI (Fig. 14a), ERA5
550 (Fig. 14b), and MERRA2 (Fig. 14c), the thermal low over the southern Arabian Peninsula is
551 stronger in the more recent climatology, accompanied by increases in the meridional geopotential
552 height gradient over the northern Arabian Sea and a stronger zonal branch of the Somali jet. In
553 addition, all three reanalyses indicate an increase in the westerly flow impinging on the Ethiopian

554 highlands, similar to the model projections. A strengthening of the thermal low over the Arabian
555 Peninsula and enhanced westerly flow west of the Ethiopian Highlands north of 10°N also occurs
556 in the JRA-55 reanalysis, but a strengthening of the zonal branch of the Somali jet over the northern
557 Arabian Sea is not clearly indicated, and the anomalous flow in some regions seems inconsistent
558 with the anomalous geopotential height field. This could occur because the sea surface temperature
559 prescription in the JRA-55 reanalysis uses only ground-based measurements with no satellite-
560 derived values included – a potential concern in this region with sparse in situ observations.

561

562 V. Summary and Conclusions

563 Motivated by the observed amplification of the greenhouse gas-induced warming of the
564 Sahara Desert, trends in observed surface temperatures and reanalyzed surface heat balance
565 components are examined over the Arabian Peninsula. High resolution (30 km) model simulations
566 are used to evaluate the implications for the regional climate through the 21st century.

567 Surface temperature trends in multiple observational and reanalysis datasets averaged over
568 the Arabian Peninsula are compared with global and tropical mean trends. Surface warming trends
569 over the Arabian Peninsula are a factor of 1.4 – 2.1 greater than over all tropical land points, and
570 a factor of 2.3 – 3.1 greater than global mean warming rates. Warming rates over the Arabian
571 Peninsula are 18% greater in the boreal spring and summer average compared with the fall and
572 winter. An examination of reanalyzed surface heat balance trends shows that the primary reason
573 for the amplified warming signal over the Arabian Peninsula is the absence of a latent cooling
574 anomaly over the dry surface. Trends in the net longwave heat flux at the surface are insignificant
575 because the upward and downward fluxes are tightly coupled, and there are no explanatory trends
576 in the solar radiative or sensible heating terms.

577 Regional model simulations representing the 1989-2008 climatology with twenty ensemble
578 members at 30-km resolution are evaluated through comparison with reanalyses. The model
579 climatology over the Arabian Peninsula is quite accurate, and captures the seasonal evolution of
580 temperature, precipitation, and circulation over the Arabian Peninsula well.

581 Two additional ensemble simulations represent the mid- and late-21st c. under atmospheric
582 CO₂ increases set according to the IPCC's RCP8.5 emissions scenario. As a means of evaluating
583 the realism of these projections, Arabian Peninsula surface temperature anomalies in the future
584 simulations are translated into rates of change per decade for comparison with the observed
585 warming. For the annual mean, simulated rates of surface temperature change over the Arabian
586 Peninsula are about 0.5 K/decade throughout the 21st c., just a little larger than the observed
587 average of about 0.4 K/decade but within the range of observed values. Simulated temperature
588 differences exhibit higher seasonality than the observations, with warming rates about 0.1
589 K/decade larger in the warmer seasons of summer and fall than in winter and spring.

590 In boreal winter, spring, and fall, the low-level circulation weakens with increasing
591 greenhouse gas levels since the geopotential height anomalies act to weaken gradients. In the fall,
592 however, the climatological northeasterly flow is strengthened in association with lower
593 geopotential height anomalies over the southern peninsula.

594 Percentage changes in low-level specific humidity through the 21st c. are large and positive.
595 For example, summer 925-hPa specific humidity increases by 24% at mid-century, and by 49% at
596 the end of the century in the simulations, roughly consistent with the Clausius-Clapeyron scaling.
597 These increases have profound implications for thermal stresses on humans, livestock, and wild
598 animals as well as agricultural and natural vegetation (Abdel-Ghany et al. 2013) and, combined

599 with temperature increases, will bring the region past a threshold level of habitability before the
600 end of the century (Pal and Eltahir 2016).

601 While the low precipitation rates of the Arabian Peninsula generally persist in the future
602 simulations, rainfall increases in the southwest during the warm season. A small, localized
603 precipitation enhancement in May expands until August, with increases of nearly 1 mm/day at the
604 end of the century in the simulations - a doubling of the present-day rainfall. These precipitation
605 increases are accompanied by increases in evaporation associated with surface warming, so
606 changes in surface water availability are more limited. In July and August, the positive evaporation
607 anomalies are smaller than the precipitation anomalies so water availability at the surface is
608 increased in the southwest region. In September, precipitation increases are exceeded by
609 evaporation increases and the net result is surface drying.

610 Confidence in the projections is evaluated by examining the associated physical processes
611 and comparing them with observed trends and known modes of variability. Precipitation increases
612 in the southwest are related to changes in the low-level flow and associated moisture transport. In
613 the simulations of the mid- and late-21st c., amplified warming of the Arabian Peninsula in the
614 warm season - which occurs at a rate that is similar to the observed warming – causes an extension
615 of the thermal low across the Arabian Peninsula between 14°N and 18°N. The associated
616 strengthening of the northeasterly flow in the 750-850 hPa layer transports more moisture to
617 interact with the coastal topography north of 16°N, in partial support of the precipitation
618 enhancement. West of the topography, at lower levels over the Red Sea, the northerly flow of the
619 present day is perturbed by a westerly anomaly. The resulting westerly moisture transport anomaly
620 further enhances the orographic rainfall in the southwestern Arabian Peninsula during summer.

621 While the precipitation response on the Arabian Peninsula to increasing atmospheric
622 greenhouse gases is relatively modest, the analysis shows that summer rainfall over northern
623 Ethiopia is strongly influenced. The amplified warming of the Arabian Peninsula strengthens the
624 negative meridional geopotential height gradient between the Arabian Peninsula and the Horn of
625 Africa, resulting in a strengthening of the zonal branch of the Somali Jet. Consistent with a known
626 mode of variability that connects monsoon rainfall in India with summer rainfall in northern
627 Ethiopia through the strength of the zonal branch of the Somali Jet, westerly moisture transport
628 into the Ethiopian Highlands is associated with a 20% increase in rainfall at mid-century and a
629 35% increase by the end of the century in the simulations. These anomalies are not a direct
630 response to the anomalous CO₂ radiative forcing and SST differences applied in the simulations;
631 they are secondary response to the amplified warming of the Arabian Peninsula. Very similar
632 trends in the low-level circulation occur in atmospheric reanalyses since 1979.

633 While temperatures are increasing at virtually every location on the earth, health concerns
634 related to these increases may be especially imperative in the warmest inhabited regions. Many of
635 these warm regions are located in or near the subtropical deserts where anthropogenically-induced
636 temperature trends are, in general, amplified and there is concern that temperatures may reach the
637 limits of human habitability by the end of the twenty-first century. Changes in precipitation are
638 also crucial since much of Ethiopian agriculture is rainfed. In addition, water resources across the
639 Arabian Peninsula depend on a network of dams and irrigation that draws on fossil water stored in
640 aquifers during the wetter climates of the Pleistocene glacial periods that is not being replenished
641 in the current climate. Ongoing greenhouse gas-induced warming increases evaporation rates and
642 can accelerate the use of this resource.

643 Next steps in advancing our capability to produce reliable projections over the Arabian Peninsula
644 is running convective permitting simulations with, for example, 3 km resolution to better capture small-
645 scale processes and storm development.

646

647 **Acknowledgements:** Support from NSF Award #1701520 is gratefully acknowledged. The Texas
648 Advanced Computing Center (TACC) at The University of Texas at Austin provided the HPC and
649 database resources that were critical to the research results reported in this paper.

650

651 References

652

653 Abdel-Ghany AM, Al-Helal IM, Shady MR (2013) Human thermal comfort and heat stress in an
654 outdoor urban arid environment: a case study. *Advances in Meteorology*: 2013 Art. No.
655 693541. <https://doi.org/10.1155/2013/693541>

656 Almazroui M, Islam MN, Jones PD, Athar H, Rahman MA (2012). Recent climate change in the
657 Arabian Peninsula: seasonal rainfall and temperature climatology of Saudi Arabia for
658 1979–2009. *Atmospheric Research*, 111, 29–45.

659 Almazroui M, Islam MN, Dambul R, Jones PD (2013) Trends of temperature extremes in Saudi
660 Arabia. *Int. J. Climatol.* 34: 808–826, <https://doi.org/10.1002/joc.3722>

661 Almazroui M, Saeed S (2020) Contribution of extreme daily precipitation to total rainfall over the
662 Arabian Peninsula. *Atmos. Research*. <https://doi.org/10.1016/j.atmosres.2019.104672>

663 AlSarmi S, Washington R (2011) Recent observed climate change over the Arabian Peninsula. *J.*
664 *Geophys. Res.* 116: D11109. <https://doi.org/10.1029/2010JD015459>

665 AlSarmi S, Washington R (2014) Changes in climate extremes in the Arabian Peninsula: analysis
666 of daily data. *Int. J. Climatol.* 34: 1329–1345, <https://doi.org/10.1002/joc.3772>.

667 Attada R, Dasari HP, Chowdary JS, Yadav RK, Knio O, Hoteit I (2016) Surface air temperature
668 variability over the Arabian Peninsula and its links to circulation patterns. *Int. J.*
669 *Climatology*, 39: 445–464. <https://doi.org/10.1002/joc.5821>

670 Attada R, Kumar RK, Yadav RK, Dasari H P, Knio O, Hoteit I. (2018) Prominent modes of
671 summer surface air temperature variability and associated circulation anomalies over the
672 Arabian Peninsula. *Atmos. Sci. Lett.*, 19: e860, <https://doi.org/10.1002/asl.860>.

673 Attada R, Dasari HP, Parekh A, Chowdary JS, Langodan S, Knio O, Hoteit I (2019) The role of
674 the Indian summer monsoon variability on Arabian Peninsula summer climate. Climate
675 Dynamics 52: 3389-3404. <https://doi.org/10.1007/s00382-018-4333-x>

676 Chakraborty A, Behera SK, Mujumdar M., Ohba R., Yamagata T. (2006). Diagnosis of
677 tropospheric moisture over Saudi Arabia and influences of IOD and ENSO. Mon. Weather.
678 Rev. 134: 598–617, <https://doi.org/10.1175/MWR3085.1>.

679 Donat MG, Peterson TC, Brunet M, King AD and co-authors (2014) Changes in extreme
680 temperature and precipitation in the Arab region: Long-term trends and variability related
681 to ENSO and NOA. Int. J. Climatology 34: 581-592. <https://doi.org/10.1002/joc.3707>

682 Drenkard, E.J., and K.B. Karnauskas, 2014: Strengthening of the Pacific equatorial undercurrent
683 in the SODA reanalysis: Mechanisms, ocean dynamics, and implications; J/ Climate, 27,
684 2405-2416.

691 Camberlin P (1995) June-September rainfall in northeastern Africa and atmospheric signals over
692 the tropics: A zonal perspective. Int. J. Climatology: 15, 773-783.

693 Camberlin P (1997) Rainfall anomalies in the source region of the Nile and their connection with
694 the Indian summer monsoon. J. Climatology: 10, 1380-1392.

695 Chen F, Dudhia J (2001) Coupling an advanced land surface–hydrology model with the Penn
696 State–NCAR MM5 modeling system. Part I: Model description and implementation. Mon.
697 Wea. Rev., 129: 569–585.

698 Chen, S-H, Sun Y-W (2002) A one-dimensional time dependent cloud model. J. Meteor. Soc.
699 Japan, 80: 99–118.

700 Copernicus Climate Change Service (2017) ERA5: Fifth generation of ECMWF atmospheric
701 reanalyses of the global climate . Copernicus Climate Change Service Climate Data Store
702 (CDS). <https://cds.climate.copernicus.eu/cdsapp#!/home>

703 Cook KH, Vizy EK (2006) South American climate during the Last Glacial Maximum: Delayed
704 onset of the South American monsoon. *J Geophys Res Atmos* 111 (D2): 2110.
705 <https://doi.org/10.1029/2005JD005980>

706 Cook KH, Vizy EK, Sun X (2017) Multidecadal-scale adjustment of the ocean mixed layer heat
707 budget in the tropics: Examining ocean reanalyses. *Climate Dynamics*: 50, 1513-1532.
708 doi.org/10.1007/s00382-017-3703-0

709 Cook KH, Vizy EK (2015) Detection and analysis of an amplified warming of the Sahara Desert.
710 *J Clim* 28: 6560-6580. <https://doi.org/10.1175/JCLI-D-14-00230.1>

711 Cook, KH, Vizy EK (2019a) Examining multidecadal trends in the surface heat balance over the
712 tropical and subtropical oceans in atmospheric reanalyses. *Int. J. Climatol*: 40, 2253-2269.
713 <https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.6330>

714 Cook, KH, Vizy EK (2019b) Contemporary climate change of the African monsoon systems.
715 *Current Climate Change Reports*, 5, 145-159.<https://doi.org/10.1007/s40641-019-00130-1>

716 Dee, DP, Uppala SM, Simmon AJ, and co-authors(2011) The ERA-Interim reanalysis:
717 Configuration and performance of the data assimilation system. *Q. J. Roy. Meteorol. Soc.*,
718 137, 553-597.

719 Drenkard EJ, Karnauskas KB (2014) Strengthening of the Pacific equatorial undercurrent in the
720 SODA reanalysis: Mechanisms, ocean dynamics, and implications. *J. Climate*: 27, 2405-
721 2416.

722 Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment
723 using a mesoscale two-dimensional model. *J Atmospheric Sci*: 46, 3077–3107.

724 Fan Y, Van den Dool H (2008) A global monthly land surface air temperature analysis for 1948–
725 present. *J. Geophysical Research – Atmospheres*: 113(D1). <https://doi.org/10.1029/2007JD008470>

726

727 Findlater J (1969) A major low-level air current near the Indian Ocean during the northern summer.
728 *Q. J. R. Meteorol. Soc*: 95, 362– 380.

729 Funk C, Peterson P, Landsfeld M, Pedreros D, Verdin J, Shukla S, Husak G, Rowland J, Harrison
730 L, Hoell A, Michaelsen J (2015) The climate hazards infrared precipitation with stations –
731 a new environmental record for monitoring extremes. *Scientific Data*: 2, 150066.
732 <https://doi.org/10.1038/sdata.2015.66>

733 Gelaro R, McCarty W, Suarez M, Todling R, Molinaro A, and co-authors (2017) The Modern-Era
734 Retrospective Analysis for Research and Applications, version 2 (MERRA-2). *J. Climate*:
735 30, 5419–5454. <https://doi.org/10.1175/JCLI-D-16-0758.1>

736 Goudie AS (2014) Desert dust and human health disorders. *Environment International* 63: 101–
737 113. <https://doi.org/10.1016/j.envint.2013.10.011>

738 Hong S-Y, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment
739 of entrainment processes. *Mon. Wea. Rev*: 134, 2318–2341.

740 Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff
741 DB (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global,
742 multiyear, combined-sensor precipitation estimates at fine scales. *J Hydrometeorol*: 8, 38–
743 55. <https://doi.org/10.1175/JHM560.1>

744 Jones P., Lister DH, Osborn TJ, Harpham C, Salmon M, Morice CP (2012) Hemispheric and large-
745 scale land surface air temperature variations: An extensive revision and an update to 2010,
746 *J. Geophys. Res.*: 117, D05127, <https://doi:10.1029/2011JD017139>

747 Kain, JS (2004) The Kain–Fritsch convective parameterization: An update. *J. Appl. Meteor.*: 43,
748 170–181.

749 Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP–
750 DOE AMIP-II Reanalysis (R2). *Bull. Amer. Meteor. Soc.*: 83, 1631–1643.

751 Kobayashi S, Ota Y, Harada Y, Ebita A, Moriya M, Onoda H, Onogi K, Kamahori H, Kobayashi
752 C, Endo H, Miyaoka K, Takahashi K (2015) The JRA-55 Reanalysis: General
753 specifications and basic characteristics. *J. Meteorol. Soc. Jap.* 93: 5–48.
754 doi:10.2151/jmsj.2015-001.

755 Kumar KR, Attada R, Dasari HP, Vellore RK, Langodan S, Abualnaja YO, Hoteit I (2018) Aerosol
756 optical depth variability over the Arabian Peninsula as inferred from satellite
757 measurements. *Atmospheric Environment* 187: 346–357.

758 <https://doi.org/10.1016/j.atmosenv.2018.06.011>

759 Kumar KR, Attada R, Dasari HP, Vellore RK, Abualnaja YO, Ashok K, Hoteit I (2019) On the
760 Recent Amplification of Dust Over the Arabian Peninsula During 2002–2012. *J. Geophys.*
761 *Res. Atmos.*, 124, 23, 13220–13229.

762 Lenssen N, Schmidt G, Hansen J, Menne M, Persin A, Ruedy R, Zyss D (2019) Improvements in
763 the GISTEMP uncertainty model. *J. Geophys. Res. Atmosphere*: 124, 6307–6326.
764 doi:10.1029/2018JD029522

765 Lelieveld J, Proestos Y, Hadjinicolaou P, Tanarhte M, Tyrlis E, Zittis G (2016). Strongly
766 increasing heat extremes in the Middle East and North Africa (MENA) in the 21st
767 century. *Climatic Change*: 137, 245-260.

768 Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough South America (1997) Radiative transfer
769 for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave.
770 *J. Geophys. Res.*, 102: 16 663–16 682.

771 Nazrul Islam N, Almazroui M, Dambul R, Jones PD, Alamoudi AO (2015) Long-term change in
772 seasonal temperature extremes over Saudi Arabia during 1981-2010. *International J.*
773 *Climatology*: 35, 1579-1592.

774 Pal JS, Eltahir EA (2016) Future temperature in southwest Asia projected to exceed a threshold
775 for human adaptability. *Nature Climate Change*: 6(2), 197.

776 Patricola CM, Cook KH (2007) Dynamics of the West African Monsoon under mid-Holocene
777 precessional forcing: Regional climate model simulations. *J Climate* 20: 694-716.
778 <https://doi.org/10.1175/JCLI4013.1>

779 Ravi Kumar K, Attada R, Dasari HP, Vellore RK, Abualnaja YO, Ashok K, Hoteit I (2019) On
780 the recent amplification of dust over the Arabian peninsula during 2002–2012. *J.*
781 *Geophysical Research – Atmospheres*: 124, 13,220–13,229.
782 <https://doi.org/10.1029/2019JD03069>

783 Rohde R, Muller RA, Jacobsen R, Muller E, Perlmutter S, Rosewrfeld A, Wurtele J, Groom D,
784 Wickham C. (2013) A new estimate of the average earth surface land temperature spanning
785 1753 to 2011. *Geoinfor Geostat: An Overview* 1:1. <http://dx.doi.org/10.4172/2327-4581.1000101>

787 Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M Barker, W. Wang, and J. G. Powers,
788 2005: A description of the Advanced Research WRF version 2. NCAR/TN-4081STR, 88 pp.
789 [Available from NCAR Information Services, P.O. Box 3000, Boulder, CO 80307.]

790 Sorooshian S, Hsu KL, Gao X, Gupta HV, Imam B, Braithwaite D (2000) Evaluation of
791 PERSIANN system satellite-based estimates of tropical rainfall. Bull Amer Meteorol Soc:
792 81, 2035-2046. [https://doi.org/10.1175/1520-0477\(2000\)081<2035:EOPSSE>2.3.CO;2](https://doi.org/10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2)

793 Vizy EK, Cook KH (2003) Connections between the summer East African and Indian rainfall
794 regimes. J. Geophys. Res: 108, D16, 4510. <https://doi.org/10.1029/2003JD003452>

795 Vizy EK, Cook KH (2005) Evaluation of Last Glacial Maximum sea surface temperature
796 reconstructions through their influence on South American climate. J. Geophys. Res: 110,
797 D11105. <https://doi.org/10.1029/2004JD005415>

798 Vizy EK, Cook KH (2007) Relationship between Amazon and High Andes Rainfall. J. Geophys.
799 Res. – Atmosphere: 112, D7107. <https://doi.org/10.1029/2006JD0079980>

800 Vizy EK, Cook KH (2017) Seasonality of the observed amplified Sahara warming trend and
801 implications for Sahel rainfall. J Climate 30: 3073-3094. <https://doi.org/10.1175/JCLI-D-16-0687.1>

803 Vizy EK, Cook KH, Crétat J, Neupane N (2013) Projections of a wetter Sahel in the 21st century
804 from global and regional models. J Climate 26: 4664-4687. <https://doi.org/10.1175/JCLI-D-12-00533.1>

806 Yang, CX, Giese BS, Wu LX (2014) Ocean dynamics and tropical Pacific climate change in ocean
807 reanalyses and coupled climate models. J. Geophys. Res. – Oceans: 119, 7066-7077.

808 World Meteorological Organization (2009) Guidelines on Analysis of extremes in a changing
809 climate in support of informed decisions for adaptation. Climate Data and Monitoring
810 WCDMP-No. 72, WMO, Geneva.

811 Zhang X, Aguilar E, Sensoy S, Melkonyan H, Tagiyeva U, and co-authors (2005) Trends in Middle
812 East climate extreme indices from 1950 to 2003. *J. Geophys. Res. Atmos.* 110: D22104,
813 <https://doi: 10.1029/2005JD006181>

814 Zhu J, Wang S, Huang G (2019) Assessing Climate Change Impacts on Human-Perceived
815 Temperature Extremes and Underlying Uncertainties. *Journal of Geophysical Research:*
816 *Atmospheres*: 124, 3800-3821.

817

818

819

820

821 Table 1. Linear trends (K/decade) in annual-mean surface temperatures for 1979–2018.

822 Statistically significant values at the 90%, 95%, and 98% confidence interval are italicized,

823 boldfaced, and italicized and boldfaced, respectively, after taking autocorrelation into account

824 using the method of Zwiers and von Storch (1995).

825

	Linear trends (K/decade)				amplification factor with respect to	
	Arabian Penin.	Tropics	Tropical Land	Global	Tropical Land	Global
CRU	0.28	---	0.21	---	1.4	---
GHCN	0.58	---	0.30	---	1.9	---
Berkeley	<i>0.41</i>	---	0.22	---	1.9	---
GISS	<i>0.41</i>	0.14	0.23	0.17	1.9	2.4
ERA5	0.32	0.10	0.16	<i>0.14</i>	2.0	2.3
JRA-55	<i>0.44</i>	0.08	0.21	<i>0.14</i>	2.1	3.1
MERRA2	0.29	<i>0.16</i>	0.21	<i>0.13</i>	1.4	2.3
Average	0.39	0.12	0.22	0.15	1.8	2.5

826

827

828

829

830 Table 2. Linear trends (K/decade) in surface temperature for 1979–2018 for December-January-
 831 February (DJF), March-April-May (MAM), June-July-August (JJA) and September-October-
 832 November (SON) averages. Statistically significant values at the 90%, 95%, and 98% confidence
 833 levels are italicized, boldfaced, and both italicized and boldfaced, respectively, after taking
 834 autocorrelation into account using the method of Zwiers and von Storch (1995).

835

Dataset	DJF				MAM			
	Arabian Penin.	Tropics	Tropical Land	Global	Arabian Penin.	Tropics	Tropical Land	Global
CRU	0.29		0.22		0.30		0.19	
GHCN	0.47		0.30		0.65		0.29	
Berkeley	0.33		0.23		0.45		0.20	
GISS	0.37	0.14	0.24	0.15	0.48	0.14	0.23	0.17
ERA5	0.34	0.09	0.14	0.11	0.33	0.10	0.14	0.14
JRA-55	0.37	0.08	0.20	0.13	0.53	0.08	0.20	0.14
MERRA2	0.25	0.16	0.21	0.12	0.35	0.15	0.18	0.12
Average	0.35	0.12	0.22	0.13	0.44	0.12	0.20	0.14

836

Dataset	JJA				SON			
	Arabian Penin.	Tropics	Tropical Land	Global	Arabian Penin.	Tropics	Tropical Land	Global
CRU	0.24		0.20		0.34		0.23	
GHCN	0.68		0.30		0.60		0.34	
Berkeley	0.50		0.22		0.43		0.25	
GISS	0.47	0.15	0.23	0.16	0.36	0.15	0.25	0.20
ERA5	0.35	0.12	0.17	0.14	0.33	0.11	0.21	0.17
JRA-55	0.50	0.09	0.22	0.13	0.43	0.09	0.25	0.17
MERRA2	0.30	0.18	0.22	0.12	0.30	0.18	0.25	0.16
Average	0.43	0.13	0.22	0.14	0.40	0.13	0.25	0.18

837

838

839

840

841

842 Table 3. Trends (W/m²-40 yr) and standard deviations (in parentheses) of the annual-mean surface
 843 heat balance components averaged over the tropics (30°S–30°N) and the Arabian Peninsula
 844 (15°N–25°N, 40°E–55°E) in the ERAI, JRA55, and MERRA2 reanalyses. Statistically significant
 845 values are calculated accounting for autocorrelation using the method of Zwiers and von Storch
 846 (1995). Levels at the 90%, 95%, and 98% confidence interval are italicized, boldfaced, and both
 847 italicized and boldfaced, respectively.

848

	Tropical ERAI	Tropical JRA55	Tropical MERRA2	Arabian ERAI	Arabian JRA55	Arabian MERRA2
Solar absorbed (S _{ABS})	-1.70 (1.27)	-2.83 (1.16)	-5.81 (1.92)	-0.83 (1.56)	-0.89 (1.22)	-1.42 (2.06)
Longwave back (F _{BACK})	2.75 (1.45)	3.51 (1.46)	5.25 (1.89)	8.51 (3.76)	9.90 (3.92)	6.11 (3.37)
Upward longwave (F _{UP})	2.54 (1.08)	2.80 (1.12)	3.80 (1.42)	8.06 (3.42)	10.86 (4.30)	6.94 (3.04)
Net upward longwave (F _{UP} -F _{BACK})	-0.21 (0.57)	-0.71 (0.52)	-1.46 (0.56)	-0.45 (2.49)	0.96 (2.97)	0.83 (2.36)
Net radiative Heating (S _{ABS} +F _{BACK} - F _{UP})	-1.49 (0.88)	-2.11 (0.78)	-4.35 (1.58)	-0.38 (1.05)	-1.85 (1.95)	-2.25 (1.22)
Sensible heat flux (H _S)	0.33 (0.27)	-0.50 (0.27)	0.42 (0.39)	1.63 (1.05)	1.76 (1.03)	0.98 (1.31)
Latent heat flux (H _L)	9.10 (2.91)	5.87 (2.20)	6.52 (2.71)	-0.35 (1.70)	-3.50 (2.65)	-3.08 (1.69)
Redistribution of heat (D)	-10.92 (3.63)	-7.48 (2.63)	-11.29 (4.07)	-1.66 (0.59)	-0.11 (0.27)	-0.15 (0.18)

849

850

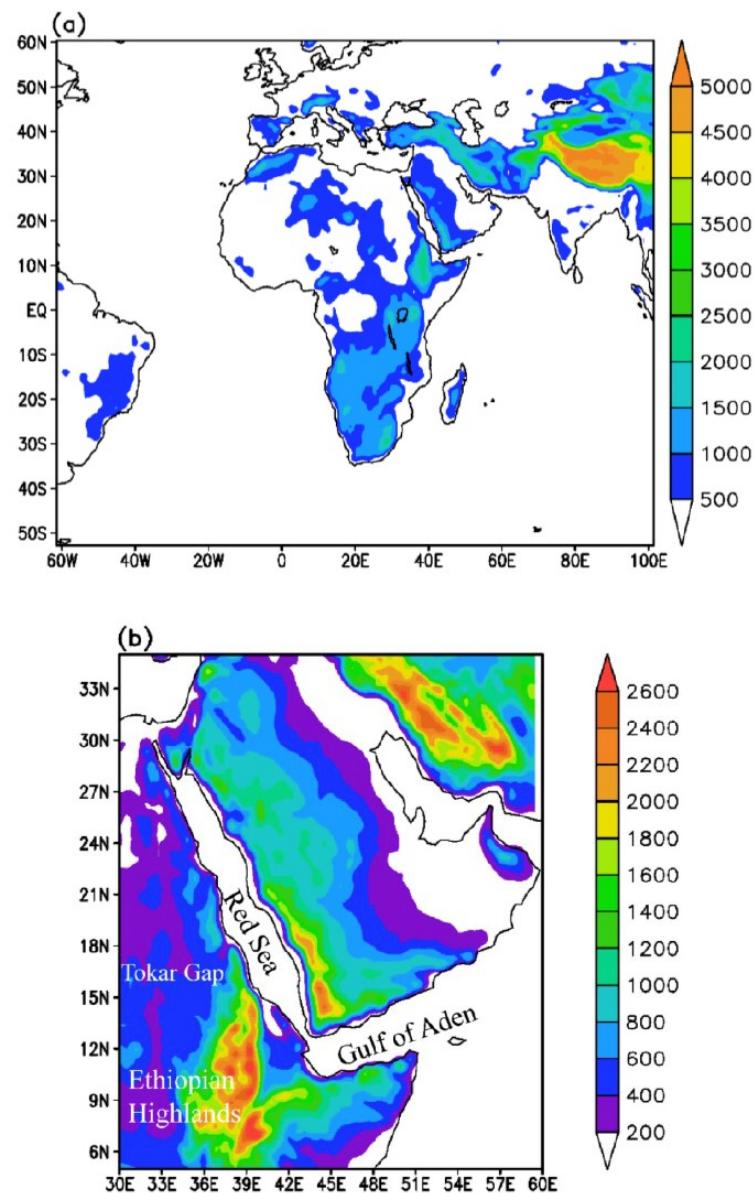
851

852

853

854

855 Table 4. Surface temperature differences (K) and trends [K/decade] over the Arabian Peninsula
856 averaging region (15°N–25°N, 40°E–55°E) for the M21 and L21 simulations. All differences are
857 statistically significant at the 98% confidence interval (italicized and boldfaced).

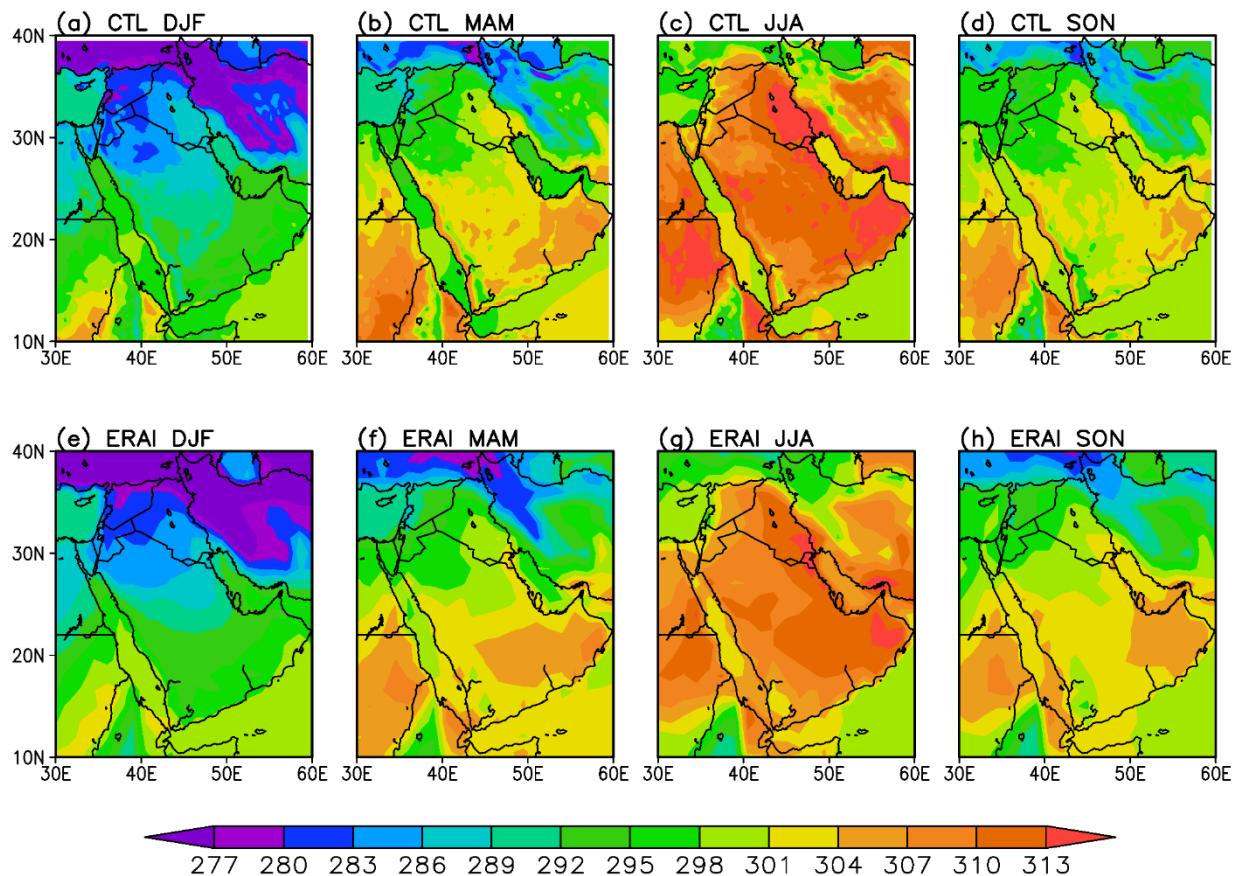

858

Month	Difference M21-CTL (K)	Warming Rate M21-CTL (K/decade)	Difference L21-CTL (K)	Warming Rate L21-CTL (K/decade)
DJF	2.5	0.48	4.3	0.42
MAM	2.4	0.46	4.6	0.45
JJA	2.8	0.54	5.6	0.55
SON	3.0	0.58	5.7	0.56
Annual	2.7	0.52	5.1	0.50

859

860

861

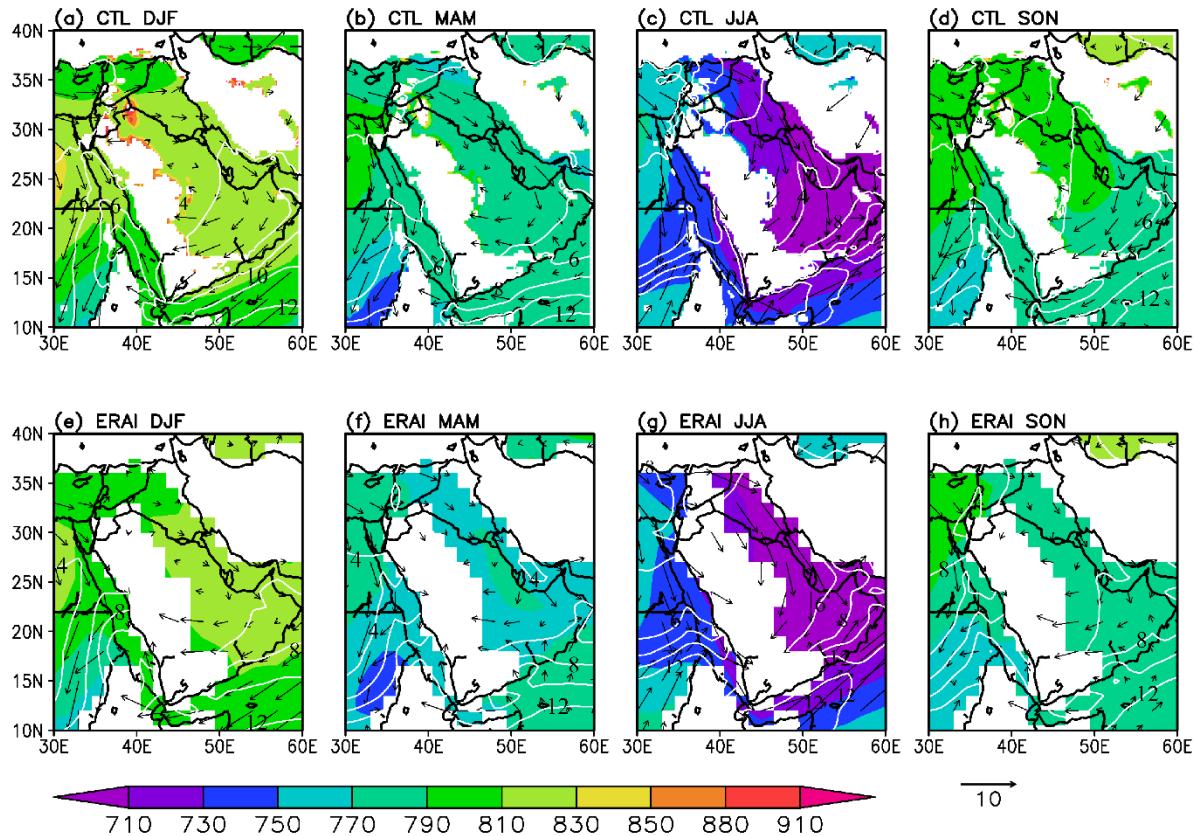

862

863 Figure 1. (a) Outer domain of the climate model simulation with topography as resolved at 90 km
864 grid spacing. (b) Inner domain of the simulation with topography as resolved at 30 km grid spacing.

865

866

867


868

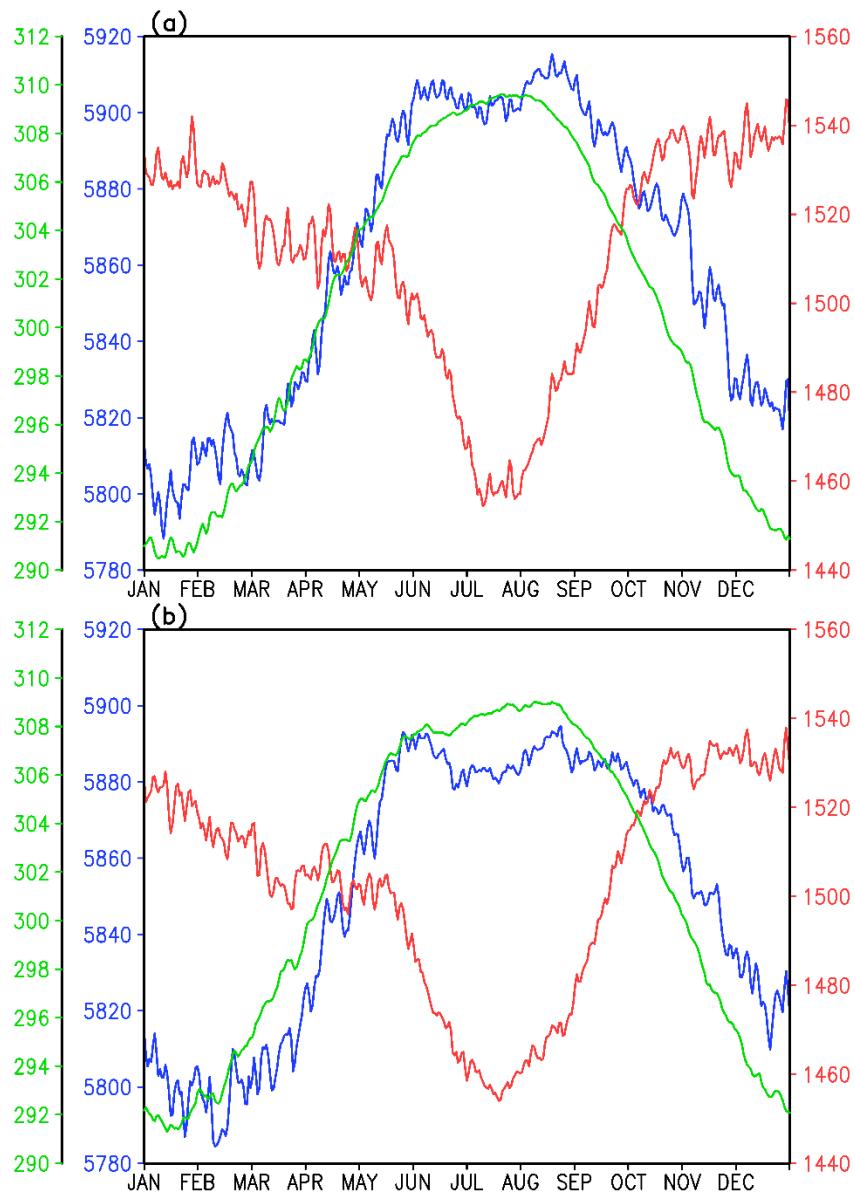
869 Figure 2. Surface temperature (K) for the ensemble-mean CTL simulation for (a) DJF, (b) MAM,
 870 (c) JJA, and (d) SON. Additionally, surface temperature (K) for the 1989-2008 mean from the
 871 ERAI reanalysis for (e) DJF, (f) MAM, (g) JJA, and (h) SON. Values from the JRA-55 reanalysis
 872 (not shown) are similar to the ERAI values.

873

874

875

876

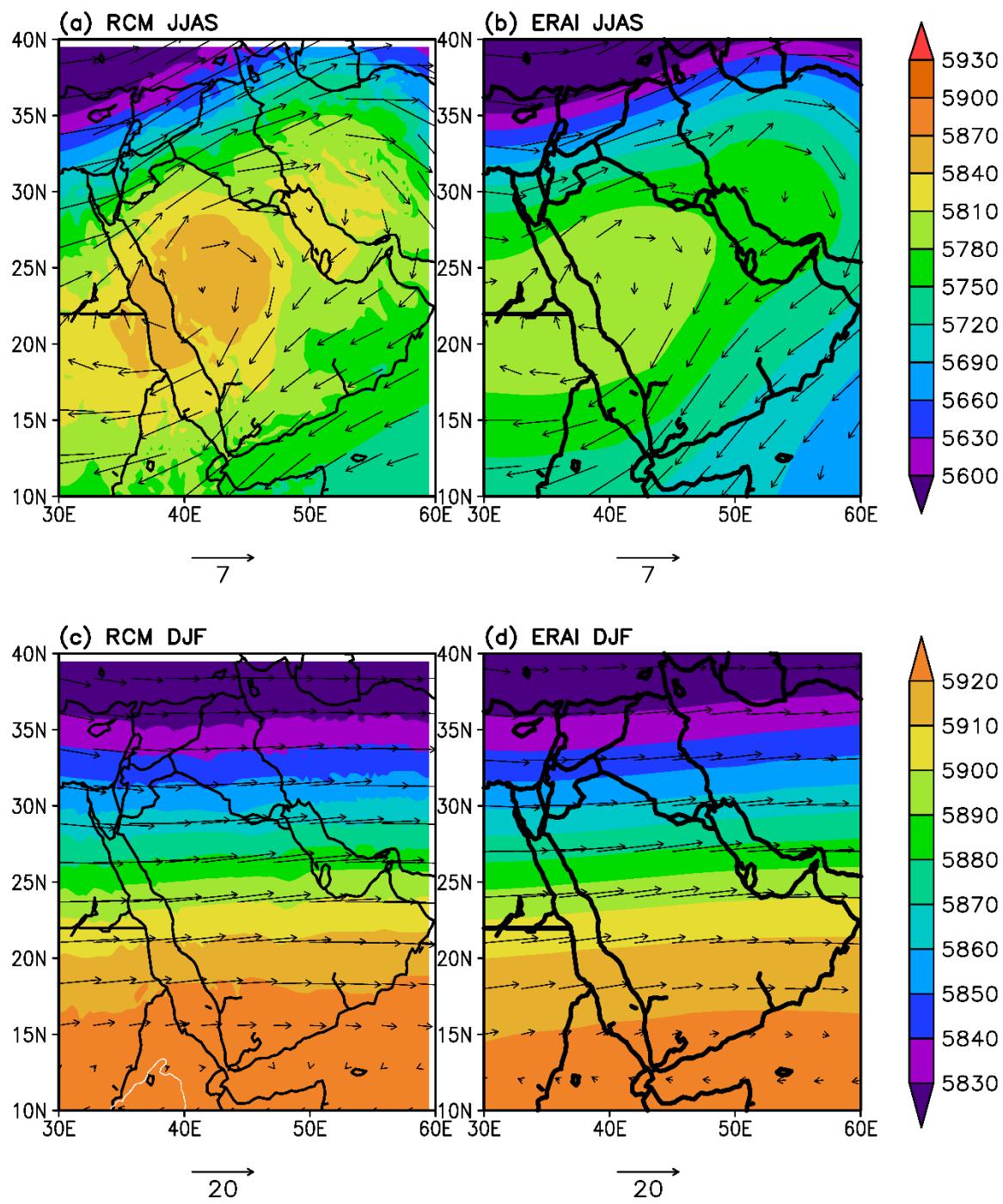

877 Figure 3. 925-hPa geopotential heights (shaded; contour interval 20 gpm), specific humidity
 878 (contours; contour interval 10^{-3} kg-H₂O/kg-air), and winds (vectors, scale at bottom right in ms⁻¹)
 879 from the CTL simulation ensemble mean for (a) DJF, (b),MAM, (c) JJA, and (d) SON. 925-hPa
 880 geopotential heights (shaded; contour interval 20 gpm), specific humidity (contours; contour
 881 interval 10^{-3} kg-H₂O/kg-air), and winds (vectors, scale at bottom right in ms⁻¹) from the ERAI
 882 climatology for (e) DJF, (f),MAM, (g) JJA, and (h) SON. For the simulation, every 10th vector is
 883 plotted and for the ERAI reanalysis every other vector is plotted. White regions indicate where
 884 topography extends above the 925-hPa level.

885

886

887

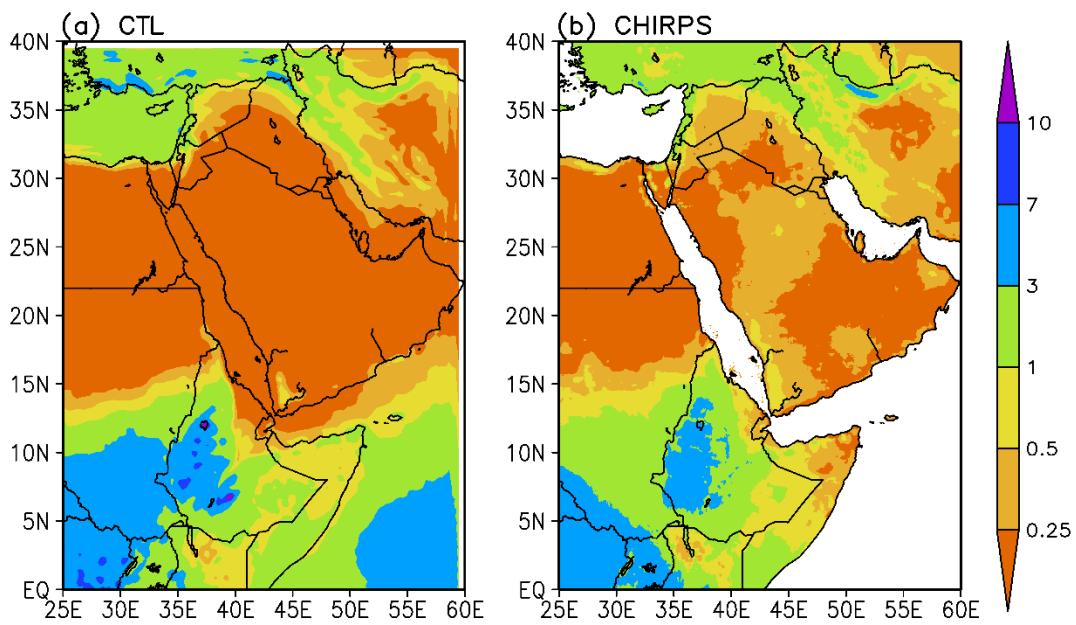
888



889

890 Figure 4. Seasonal variations of daily 500-hPa geopotential heights (blue lines; inner left axis
 891 labels), 850-hPa geopotential heights (red lines; right axis label), and surface temperatures (green
 892 lines; outer left axis labels) averaged over the Arabian Peninsula (15°N – 30°N ; 35°E to 55°E) from
 893 the (a) CTL simulation and (b) ERAI reanalysis averaged from 1981-2000. Shading indicates June,
 894 July, and August.

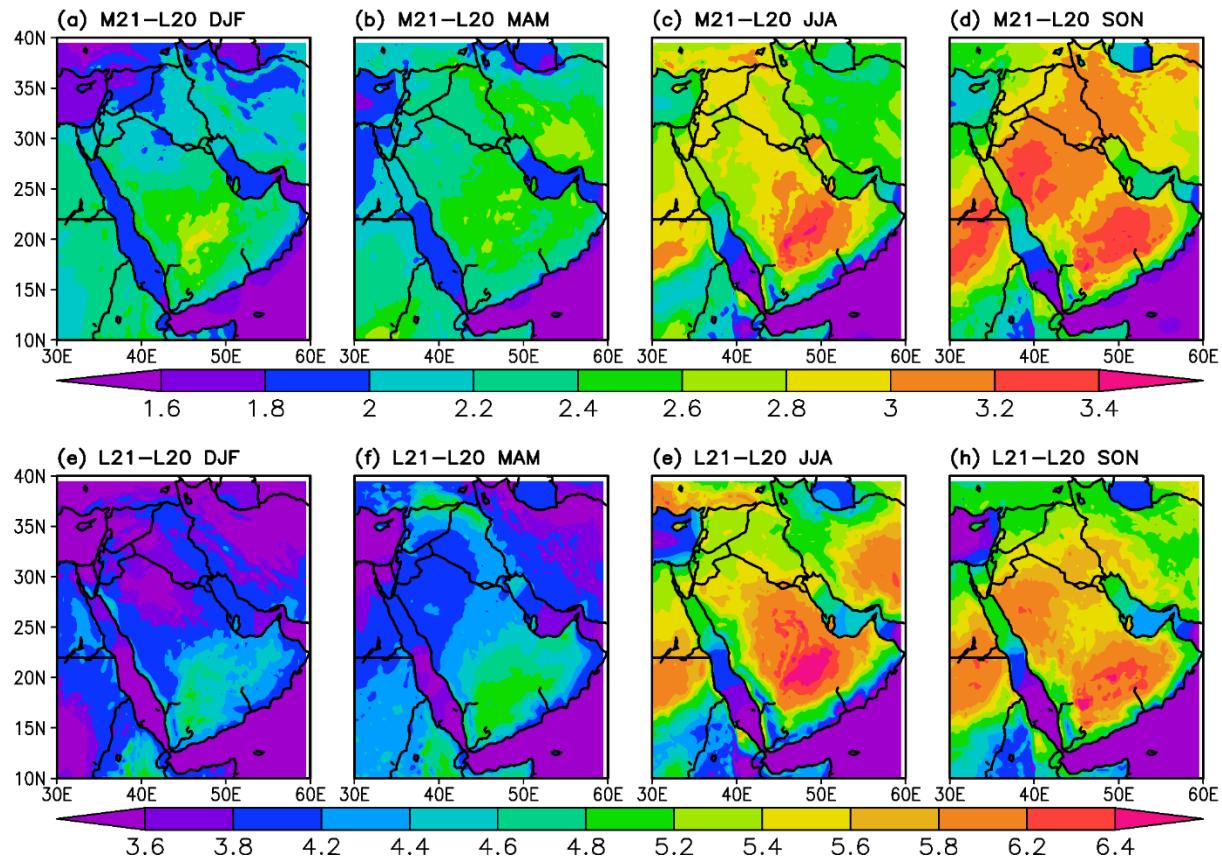
895


896

897

898 Figure 5 Geopotential heights (gpm; shaded) and winds (m/s; vectors) at 500 hPa for the (a) CTL
 899 simulation in JJAS, (b) ERAI reanalysis in JJAS, (c) CTL simulation in DJF, and (d) ERAI
 900 reanalysis in DJF. Vector scales in m/s are below each panel.

901

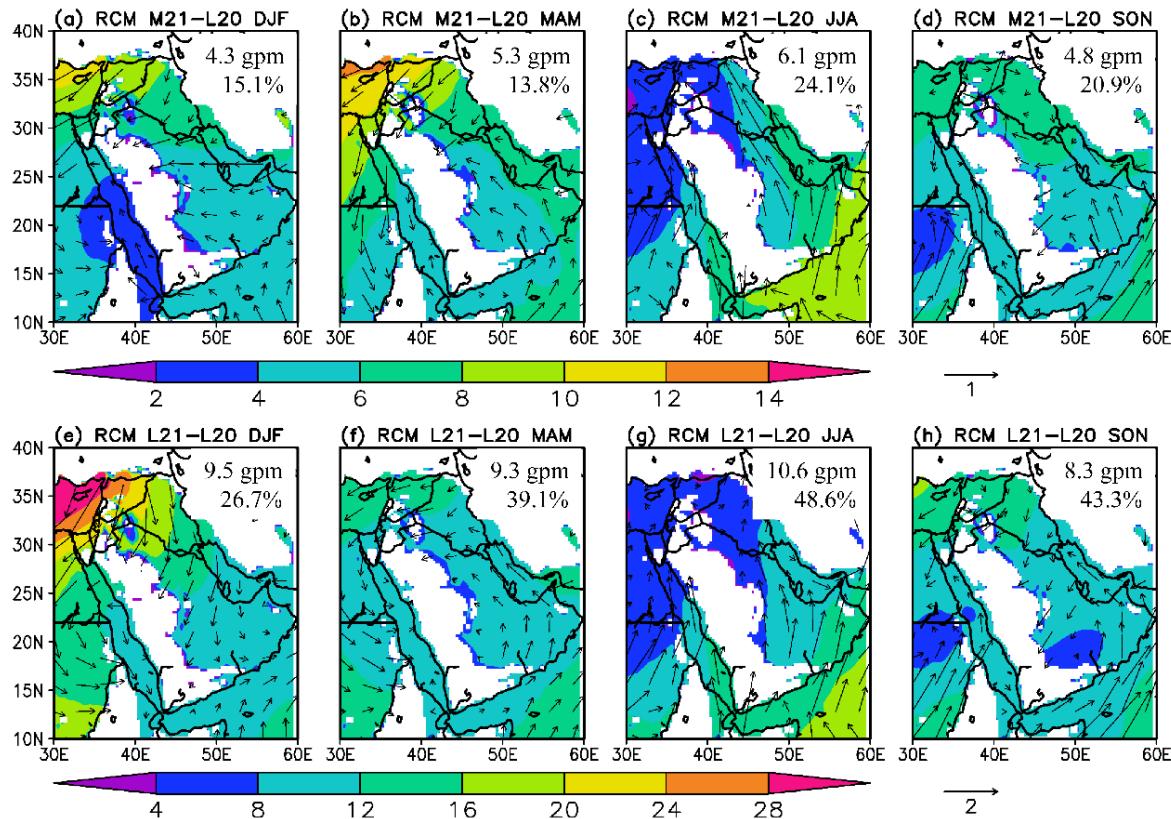

902

903 Figure 6. Annual mean precipitation (mm/day) over the Arabian Peninsula and vicinity for the
904 (a) CTL simulation and the (b) CHIRPS2 precipitation dataset averaged from 1989-2008.

905

906

907

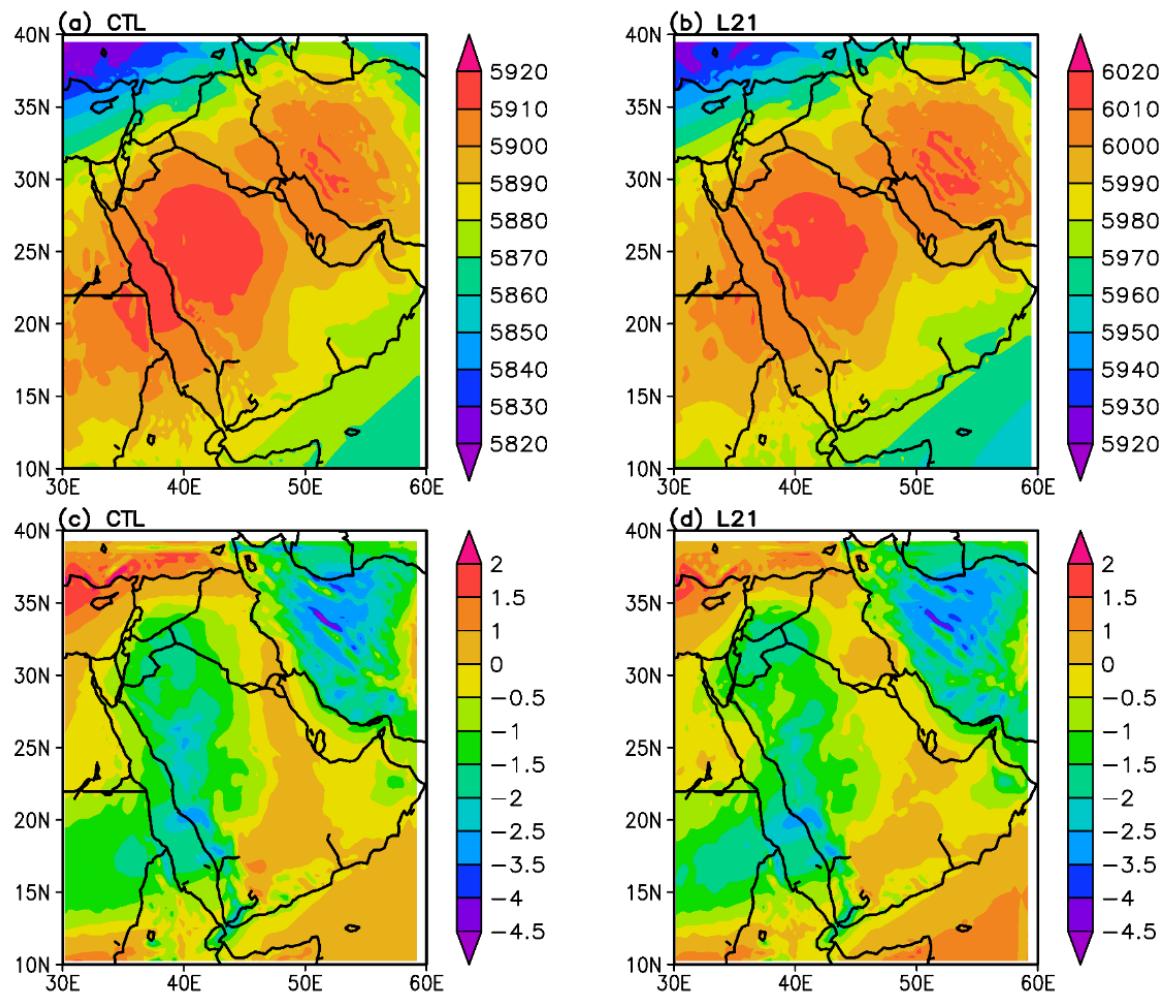

908

909 Figure 7. Simulated differences in surface temperature (K) between the MID21 and CTL
 910 simulations for (a) DJF, (b) MAM, (c) JJA, and (d) SON. Simulated differences in surface
 911 temperature (K) between the LATE21 and CTL simulations for (e) DJF, (f) MAM, (g) JJA, and
 912 (h) SON. Shading interval is 0.2 K.

913

914

915


916

917 Figure 8. Simulated mid-21st c. differences in 850-hPa geopotential heights (shaded; contour
 918 interval 2 gpm) and winds (vectors, scale at bottom right in ms^{-1}) for (a) DJF, (b),MAM, (c) JJA,
 919 and (d) SON. Simulated late-21st c. differences in 850-hPa geopotential heights (shaded; contour
 920 interval 4 gpm) and winds (vectors, scale at bottom right in ms^{-1}) from the ERAI climatology for
 921 (e) DJF, (f),MAM, (g) JJA, and (h) SON. Every 10th vector is plotted. Numbers in the upper right
 922 corner of each panel indicate differences in geopotential heights (gpm) and specific humidity (%)
 923 change) over the Arabian Peninsula averaging region (15-25N; 40-55E).

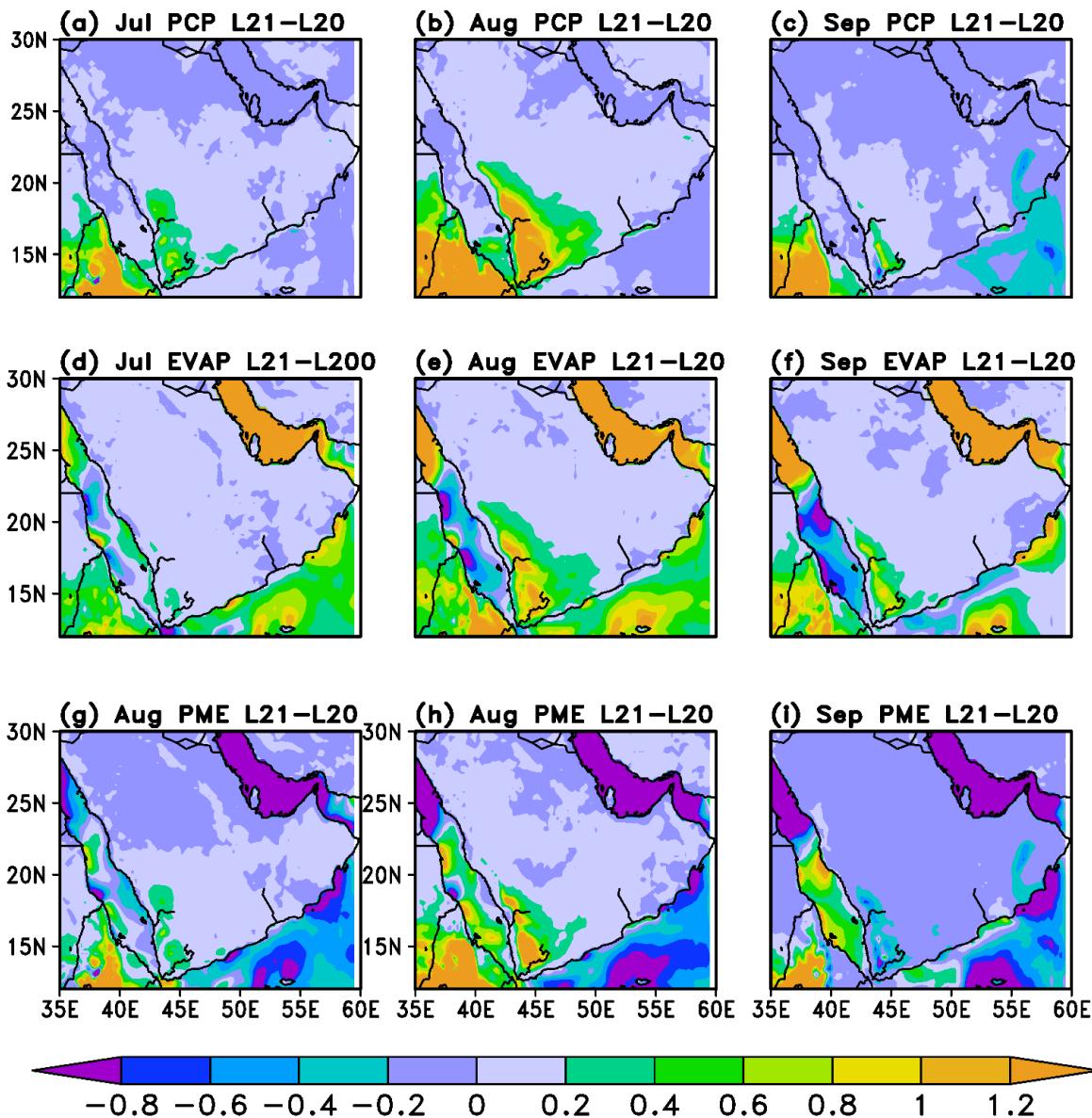
924

925

926

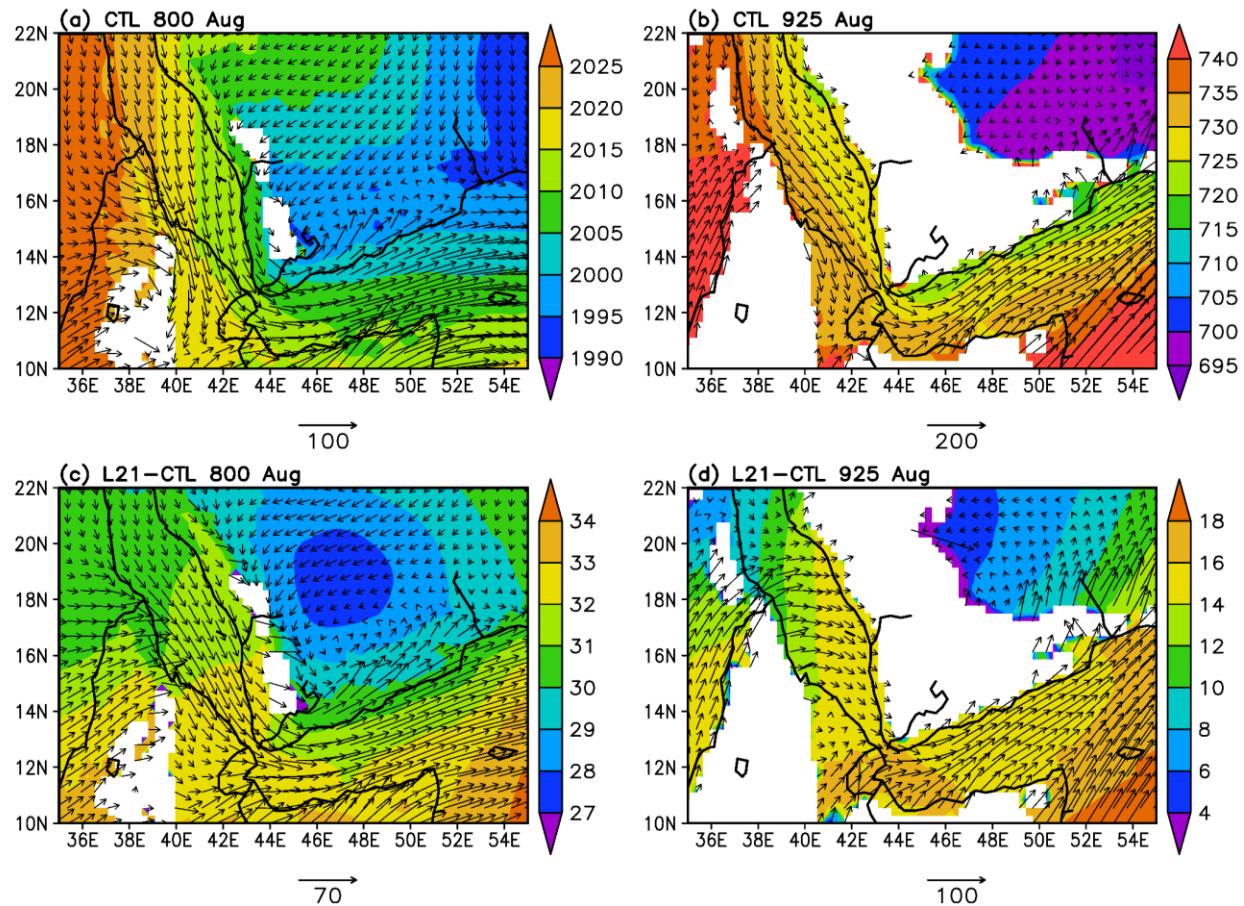
927

928 Figure 9. July 500-hPa geopotential heights (m) for the (a) CTL and (b) L21 ensemble means.


929 Note differences in the shading levels indicated by the color bars. July 500-hPa relative vorticity

930 (10^{-5} s^{-1}) for the (c) CTL and (d) L21 ensemble means, with the same shading levels.

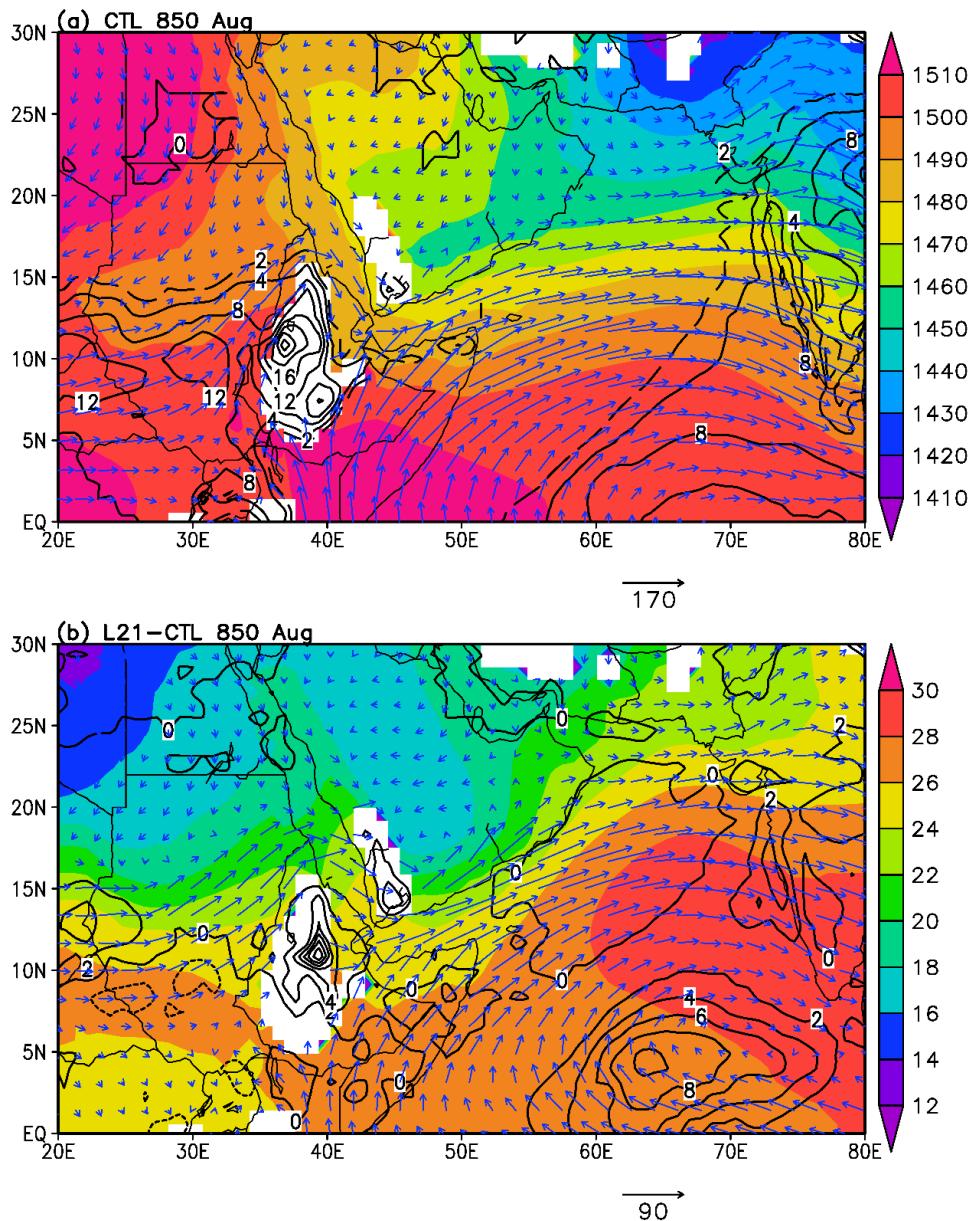
931


932

933

936 Figure 10. Differences in monthly mean precipitation (mm/day) between the L21 and CTL
 937 simulations for (a) July, (b), August, and (c) September. Differences in monthly mean evaporation
 938 (mm/day) between the L21 and CTL simulations for (d) July, (e), August, and (f) September.
 939 Differences in monthly mean “precipitation minus evaporation” (mm/day) between the L21 and
 940 CTL simulations for (g) July, (h), August, and (i) September.

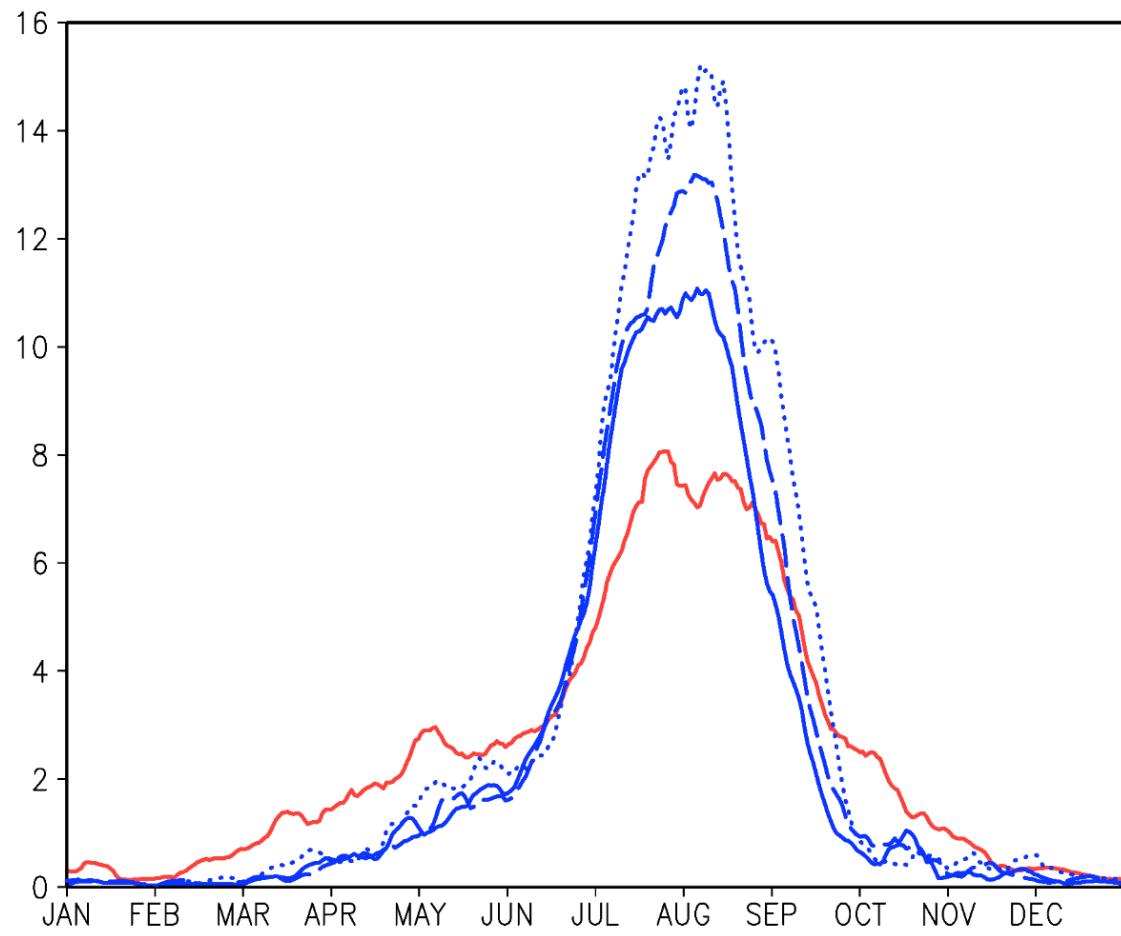
941



942

943 Figure 11. Geopotential heights (gpm; shading) and moisture transport vectors [$10^3 \text{kg-H}_2\text{O/kg-air}](\text{m/s})]$ in August from the CTL simulation at (a) 800 hPa and (b) 925 hPa. Differences in
 944 geopotential heights (gpm; shading) and moisture transport vectors [$10^3 \text{kg-H}_2\text{O/kg-air}](\text{m/s})]$ in
 945 August between the L21 and CTL simulations at (a) 800 hPa and (b) 925 hPa. White areas indicate
 946 regions where the topography extends above the pressure level.
 947

948
 949


950

951

Figure 12. (a) August geopotential height (gpm; shaded) and moisture transport (units; vectors) at 850 hPa with precipitation (mm/day; contours) from the 90-km resolution (outer domain) CTL simulation ensemble mean. Precipitation contour interval is 4 mm/day, with the 2 mm/day contour dashed. (b) Differences in the August 850-hPa geopotential height (gpm; shaded), 850-hPa moisture transport (units; vectors), and precipitation (mm/day; contours) between the 90-km resolution L21 and CTL simulations. Precipitation contour interval is 2 mm/day.

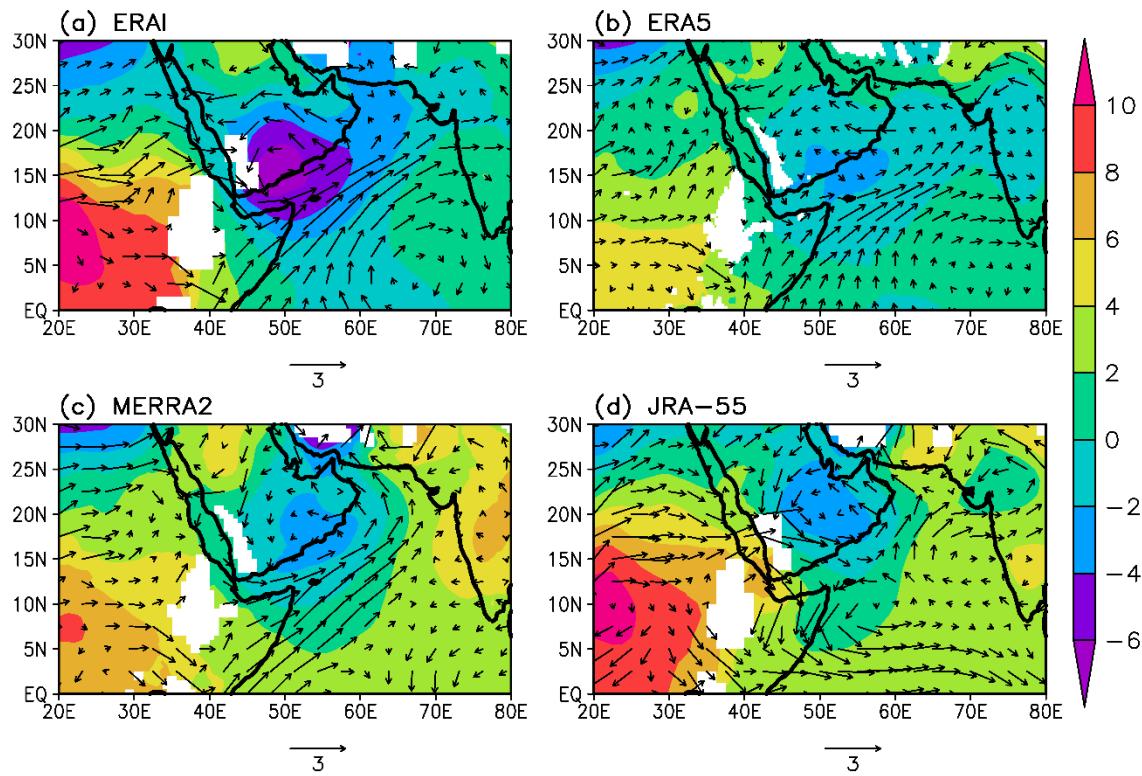
958

959

960 Figure 13. Climatological annual rainfall averaged over northern Ethiopia (36E-42E; 8N-15N)
961 from the CHIRPS observations (red line) and the model simulations (blue) for the CTL (solid line),
962 M21 (dashed line), and L21 (dotted line) ensemble-mean simulations.

963

964


965

966

967

968

969

970

971 Figure 14. Decadal differences in June-July-August-September mean 850-hPa geopotential
 972 heights (shaded; gpm) and winds (vectors; scale in m/s) from the (a) ERAI, (b) ERA5, (c)
 973 MERRA2, and (d) JRA-55 reanalyses. The dashed blue contour in (a) marks regions where the
 974 topography rises above the 850-hPa pressure level. Differences between the 2010-2019 and the
 975 1979-1988 averages are shown except for MERRA2, which is the difference between the 2010-
 976 2018 and 1980-1989 averages.