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Abstract10

In ecological meta-analyses, non-independence among observed effect sizes from the same11

source paper is common. If not accounted for, non-independence can seriously undermine12

inferences. We compared the performance of four meta-analysis methods that attempt to13

address such non-independence and the standard random-effect model that ignores non-14

independence. We simulated data with various types of within-paper non-independence, and15

assessed the standard deviation of the estimated mean effect size and type I error rate of16

each method. Although all four methods performed substantially better than the standard17

random-effects model that assumes independence, there were differences in performance18

among the methods. A two-step method that first summarizes the multiple observed effect19

sizes per paper using a weighted mean and then analyzes the reduced data in a standard20

random-effects model, and a robust variance estimation method performed consistently well.21

A hierarchical model with both random paper and study effects gave precise estimates but22

had a higher type I error rates, possibly reflecting limitations of currently available meta-23

analysis software. Overall, we advocate the use of the two-step method with a weighted paper24

mean and the robust variance estimation method as reliable ways to handle within-paper25

non-independence in ecological meta-analyses.26

Keywords27

meta-analysis, non-independence, pseudoreplication, random effect, hierarchical model, ro-28

bust variance estimation.29
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Introduction30

Meta-analysis is a quantitative synthesis method that combines individual studies to quan-31

tify the overall effect and the heterogeneity in effects among studies. Since its introduction32

to ecology (Jarvinen 1991, Arnqvist and Wooster 1995), meta-analysis has played an in-33

creasingly influential role in the field, such as testing ecological theories, identifying research34

directions, and informing conservation and management strategies (Stewart 2009, Cadotte35

et al. 2012, Gurevitch et al. 2018). Given its wide application and large impact, rigor-36

ous methodology is crucial (Osenberg et al. 1999, Lortie et al. 2015). Although statistical37

methods and specialized software for meta-analysis have advanced greatly over the past few38

decades, many statistical issues still remain (Gurevitch and Hedges 1999, Nakagawa and39

Santos 2012, Koricheva and Gurevitch 2014).40

A prevalent statistical issue in meta-analysis is non-independence among observed effect41

sizes (Gurevitch and Hedges 1999, Nakagawa et al. 2017, Noble et al. 2017). A common type42

of non-independence structure arises when observed effect sizes come in identifiable groups,43

where they are non-independent within groups but independent across groups. This type44

of non-independence has been called pseudoreplication and can seriously undermine statis-45

tical inferences (Hurlbert 1984). Many mechanisms, such as shared experimental subjects,46

common experimental time/sites, or similar methodology, could lead to this type of non-47

independence and result in varying strength of correlation among observed effect sizes in the48

group (Noble et al. 2017). One of the most common way such a group arises is when single49

source papers consist of multiple studies, i.e., yield multiple observed effect sizes. Studies50

from the same source paper and the resulting observed effect sizes arising from them can be51

thought of as comprising a group. Here, we define a study as the experimental/observational52
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procedures and the resulting set of data that lead to a single observed effect size. In this53

paper, we address non-independence within source papers, although our results likely apply54

to other types of group or hierarchical structures that may also generate non-independence,55

e.g., studies from the same lab group or geographic locations.56

Within-paper non-independence is ubiquitous in ecological meta-analysis (Noble et al.57

2017). For example, a source paper used in a meta-analysis may include multiple responses58

measured in the same experiment, such as biomass, growth rate, and fecundity. Observed59

effect sizes from this paper will be non-independent because they were observed in the same60

experiment or may have been based on the same subjects. Observed effect sizes from the same61

paper could also be non-independent even if they arose from separate experiments because62

experiments likely share common methods, contexts, or other characteristics that influences63

the effect size, e.g., studies from the same paper might all be done at the same geographic64

location or in the same time period. Because results of ecological research often depend65

strongly on the ecological and methodological context, we can expect non-independence66

among observed effect sizes from the same paper to be common. While non-independence67

does not lead to bias in parameter estimation in general, ignoring non-independence usually68

leads to incorrect estimates of uncertainty, which in turn can invalidate hypothesis tests69

(Kwok et al. 2007). The extent of the inferential problems resulting from ignoring non-70

independence of observed effect sizes within papers will depend on the nature of the non-71

independence and how studies are distributed among paper.72

While it is ideal to explicitly incorporate the non-independence structure in the meta-73

analysis model, information necessary to model the exact non-independence structure is74

often unavailable from source papers. Thus, analysts typically use omnibus strategies for75

addressing within-paper non-independence. The first strategy is a two-step method. Ana-76
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lysts first derive a single summary effect size for each paper based on the multiple observed77

effect sizes in that paper and then analyze the summary effect sizes using standard meta-78

analysis methods that assume independence (Rosenthal and Rubin 1986, Maŕın-Mart́ınez79

and Sánchez-Meca 1999). The summary effect size might be obtained by randomly choosing80

one of the observed effect sizes from each paper, or it could be derived as the mean of the81

observed effect sizes in a paper. The second strategy is to include a random paper effect in82

addition to the random study effect in the meta-analysis model, assuming such a hierarchical83

model can approximately model the actual pattern of non-independence. More recently, a84

third strategy, known as the robust variance estimation, was developed (Hedges et al. 2010,85

Tipton 2015). This method extends the work on robust variance estimators (Huber 1967,86

White et al. 1980) to meta-analysis and does not require knowledge of the non-independence87

structure among observed effect sizes within groups.88

These methods make different assumptions about how observed effect sizes from the same89

source paper are correlated. For example, including a random paper and study effect (both90

commonly assumed to be independent and identically distributed random variables following91

normal distributions) is equivalent to assuming that the observed effect sizes within the same92

paper are positively correlated, with an equal correlation coefficient for each pair. However,93

one might expect the correlation to vary among pairs of studies. This could arise, for example,94

if some studies within a source paper were conducted closer in space and/or time and thus95

have more similar ecological settings (Noble et al. 2017). While methods exist to explicitly96

model spatial and temporal correlations, these methods require knowledge of the timing and97

spatial locations, which is often not reported. In these situations, a method that allows98

variable and unknown correlation among pairs of observed effect sizes, such as the robust99

variance estimation method, may perform better. To determine the best methods among100
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those that are available, it is critical to evaluate these methods under different scenarios of101

within-paper non-independence.102

Despite the ubiquity of non-independence within papers, the performance of various103

methods attempting to address this issue has not been comprehensively evaluated in the104

context of ecological meta-analysis. In this study, we performed simulation experiments to105

examine the effectiveness of different methods used to address non-independence with the106

intent of providing practical guidance on choosing appropriate methods for ecological meta-107

analysis. Specifically, we simulated datasets that had a hierarchical structure, with multiple108

studies within each source paper used in the meta-analysis. The simulated data ranged109

from no correlation to strong but unequal correlation among observed effect sizes within the110

same source paper, and allowed for plausible variation in the number of observed effect sizes111

per source paper. We applied five analytic methods to each simulated data set and assessed112

their performance: four methods that have been proposed to handle non-independence within113

papers as well as the all-too-common method of simply ignoring the issue.114

Methods115

We simulated meta-analyses consisting of data from 20 papers, each containing a number116

of studies (Fig 1). For each study, we simulated replicated control and treatment groups,117

with data from each source paper simulated to obtain various patterns of non-independence118

among observed effect sizes within the paper. For each study, we calculated a log response119

ratio and its estimated variance. The log response ratio is the most commonly used effect120

size metric in ecology (Nakagawa and Santos 2012), but our qualitative results should apply121

to other metrics as well. We estimated the overall mean effect size using alternative meta-122

analysis methods that differ in how they account for non-independence and compared the123
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their performance. We conducted two sets of simulation experiments (Fig. A1). In the first124

experiment, observed effect sizes from the same source paper were correlated with the same125

correlation coefficients for all pairs. In the second experiment, we varied the correlation126

between pairs of observed effect sizes.127

Simulation of data for an individual study128

We simulated a response variable y in the control and treatment group for each study as

ycijk = µεcijk (1)

ytijk = αijµεtijk, (2)

where ycijk and ytik are the response variables for the kth replicates in the control and129

treatment group of study j in paper i, εcijk and εtijk are random errors following log-normal130

distributions, and αij is the multiplicative treatment effect, which can be decomposed as131

αij = αeij. (3)

Here, eij represents the study-specific random deviation from the mean treatment effect and132

is assumed to follow a log-normal distribution. Once data for each study were simulated,133

we calculated a log response ratio for each study (θij) as log(ytij/ycij), and its variance as134

var(ytij)/ntijytij
2 + var(ycij)/ncijycij

2, where ncij and ntij are the number of replicates in the135

control and treatment groups for study j within source paper i (Hedges et al. 1999).136

Patterns of non-independence in the simulations137

Based on this simulation approach, the log response ratio for each study, θij, follows a normal138

distribution asymptotically with mean log(α) + log(eij) (Hedges et al. 1999). Thus, we can139

express θij simulated by equations 1–3 as140

θij = log(α) + log(eij) + εij. (4)
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Equation 4 matches a random-effects meta-analysis model. Here, log(α) is the mean effect141

size, log(eij) is the random study effect, and εij is the within-study error. Both log(eij) and142

εij are normally distributed.143

Non-independence among θij within papers may occur through correlations among log(eij)144

and/or εij. Typically, correlation among εij arise from using shared control or measuring the145

same group of subjects in studies with multiple endpoints. The resulting correlation struc-146

ture in εij can be explicitly calculated and incorporated in the meta-analysis model (Gleser147

and Olkin 2009, Lajeunesse 2011). Therefore, we assumed independence among εij and only148

considered non-independence arising from correlation among the random study effects, i.e.149

cov(θij, θik) = cov(log(eij), log(eik)) for study j and k in paper i.150

We conducted simulation experiments with two patterns of non-independence. In the first151

experiment, the random study effects from the same source paper were equally correlated152

(i.e.,cov(θij, θik) = ρτ 2, where ρ is the correlation coefficient between each pair of observed153

effect sizes and τ 2 is the variance of log(eij)). We included a special case of zero correlation154

(independence) in the first experiment. In the second experiment, the random study effects155

within a source paper were correlated but the correlation was not equal (cov(sij, sik) =156

ρijkτ
2
i ). Here, the correlation coefficient, ρijk, was allowed to vary among pairs of observed157

effect sizes. We subscripted the among-study variance τ 2 because we sometimes allow this158

quantity to vary among papers in the second experiment. In both experiments, we only159

considered non-negative correlations, given that similar contexts and shared data for studies160

from the same source paper would be expected to lead to similar, rather than dissimilar,161

observed effect sizes within a paper.162

Patterns of non-independence in θij were simulated by drawing log(eij) for each source163

paper from multivariate normal distributions with appropriate covariance matrices. The co-164
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variance matrix was generated as KRK, where K is matrix with τ as the diagonal elements165

and R is the correlation matrix. In the first experiment, R was a matrix with 1 at the166

diagonal positions and the same correlation coefficient ρ at all other positions. In the second167

experiment, R was a symmetric matrix with 1 at the diagonal positions and different corre-168

lation coefficients at all others to reflect the fact that studies were unequally correlated. We169

used the C-vine method proposed in Lewandowski et al. (2009) to generate such correlation170

matrices.171

Details of experimental design172

In the simulation experiments, we did not systematically vary the parameters that were not173

expected to influence how well methods address non-independence. Specifically, we set µ at174

10 and α at 1. We simulated log(εtijk) from a normal distribution with mean 0 and standard175

deviation randomly chosen between 0.1–0.3 for each study. The number of replicates for each176

study, equal for both the control and treatment groups, was chosen with equal probability177

from integers between 3–20. Finally, we set the number of papers at 20, a relatively low178

number in ecological meta-analysis. Methods that perform well in this situation are expected179

to perform at least as well if the meta-analysis contains more papers.180

We systematically varied the parameters that we expected to influence the efficacy of181

methods used to address non-independence, including the number of studies per paper, the182

magnitude of correlation among observed effect sizes from the same source paper, and the183

among-study variability. Below, we provide the levels of these parameters and the rationales184

for these choices.185

Number of studies per paper: We examined the frequency distribution of the num-186

ber of studies per paper (ni) in 15 published ecological meta-analyses chosen haphazardly187

(Appendix S1: Section S1). A shifted negative binomial distribution adequately described188
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the frequency distribution of ni (Appendix S1: Fig. S1): i.e., ni − 1 followed a negative189

binomial distribution. We also found that the mean and standard deviation of ni − 1 were190

correlated on the logarithmic scale (Appendix S1: Fig. S2). Therefore, we chose three levels191

for the mean of ni − 1 spanning the observed range (0.5, 4.5 and 14.5) and calculated the192

corresponding standard deviation (1.1, 7.0, and 18.7) based on the linear regression. We193

then drew ni − 1 for each paper from a negative binomial distribution with the mean and194

standard deviation specified above.195

Correlation coefficient: In the first experiment, in which the correlation coefficient (ρ)196

was the same for all pairs of study within a paper, we set ρ at 0, 0.1, 0.5, and 0.9, ranging from197

independence to quite strong correlation. In the second experiment where ρ varied among198

pairs of studies within the same paper, we set the range of ρ for each paper. Because the199

C-Vine method (Lewandowski et al. 2009) generates a correlation matrix from user-specified200

partial correlation coefficients, we randomly chose partial correlation coefficients from two201

uniform ranges: 0.1–0.4 and 0.6–0.9. The resulting ranges for pairwise correlations generally202

matched these specified ranges for the partial correlations.203

Among-study variance: In the first experiment where correlation between pairs of ob-204

served effect sizes is equal, we set levels of the standard deviation for among-study variability,205

τ , at 0.1, 0.5, and 1. The chosen levels represent plausible ranges in ecological meta-analyses.206

For example, a τ of 1 led to the treatment effect for a particular study, αij, ranging between207

14% to 710% of the mean treatment effect for 95% of the studies. A τ of 0.1 led to a range of208

82% to 122%. In addition, our choice of among-study variance and among-replicate variance209

within a study are also consistent with the typical proportion of within- and among-study210

heterogeneity in ecological meta-analyses (Senior et al. 2016).211

In the second experiment where correlation between pairs of observed effect sizes is un-212
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equal, we used the same three levels of τ and added a new scenario in which τ varied among213

papers. This scenario is plausible in ecological meta-analyses. For example, some papers214

included in the meta-analysis may contain studies from more diverse environments than oth-215

ers (Hillebrand and Gurevitch 2014). For this scenario, we chose τ for each paper from a216

uniform distribution between 0.1 and 1.217

Methods of meta-analysis for non-independent data218

We evaluated five methods commonly used in ecological meta-analysis. The five methods219

are: 1) the standard random-effects meta-analysis model that ignores non-independence; 2)220

a two-step method in which we analyze the weighted mean effect size for each paper in a221

random-effect meta-analysis model. This is equivalent to performing a fixed-effect meta-222

analysis for each paper and using the resulting means and their standard errors from the223

fixed effect model in the second step; 3) a two-step method in which we analyze one randomly224

chosen observed effect size from each paper in a random-effects meta-analysis model; 4) a225

hierarchical model that included a random paper effect and a random study effect; and 5) a226

robust variance estimation method for meta-analysis (Hedges et al. 2010).227

All random-effects meta-analysis models were implemented using the function “rma” in228

R (version 3.6.2) package “metafor” (version 2.1) (Viechtbauer 2010) with the variance of229

the random effects estimated by restricted maximum likelihood (Veroniki et al. 2016). We230

constructed confidence intervals based on the adjustment proposed by Hartung and Knapp231

(2001) and Sidik and Jonkman (2002). We implemented the method with a random paper232

effect using function “rma.mv” in “metafor”, and constructed confidence intervals based on233

the t-distribution of the Wald statistic. Finally, we implemented the robust variance estima-234

tion method using function “robu” in R package “robumeta” with the default weights and235

adjustment for small sample size (Fisher et al. 2017). Code for the simulation experiments236
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are provided in Data S1.237

Metrics for model performance238

We evaluated the performance of methods by the precision of the estimated mean effect239

size and the type I error rate. We calculated the standard deviation of the estimated mean240

effect size over the 5000 iterations of simulations as the measure of precision. We calculated241

type I error rate as the percentage of times in the simulations when the 95% confidence242

interval for the mean effect size did not cover the true value. The confidence interval for the243

estimated error rate was calculated based on the binomial distributions for the number of244

falsely significant results in the simulations. None of the methods produced appreciable bias245

in the estimated mean effect sizes and we therefore do not present results about bias.246

Results247

Precision of estimated mean effect size248

For clarity of presentation, the figures contain a representative subset of results. Full results249

can be found in Appendix S1: Fig. S3 and S4. The standard random-effects meta-analysis250

model that assumes independence among observed effect sizes had a low standard deviation251

when the observed effect sizes were actually independent(Fig. 2), but resulted in a higher252

standard deviation when observed effect sizes were non-independent (Fig. 2). The loss253

of precision was more pronounced when the correlation was strong (Fig. 2). Among the254

four methods that account for non-independence, the two-step method using one randomly255

chosen study from each paper had a consistently high standard deviation. This problem of256

low precision, however, was less severe when correlations among observed effect sizes were257

strong(Fig. 2). The methods that included a random paper effect performed consistently258

well in terms of precision under all scenarios considered in the simulations. Finally, the259
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two-step method using a weighted paper mean and the robust variance estimation method260

gave low standard deviations except when observed effect sizes from the same source paper261

were independent.262

Type I error rates263

The standard random-effects model that ignored non-independence substantially inflated264

the type I error rates (Fig. 3), sometimes to over 70%, unless observed effect sizes were265

independent or only mildly non-independent (i.e., low correlation and very few observed effect266

sizes per paper) (Fig. 3). Under all scenarios of non-independence, all four methods that267

accounted for non-independence offered substantial improvement in error rates. Surprisingly,268

including a random paper effect led to error rates consistently above the correct level of 5%269

(between 5% and 8%) in the presence of non-independence (Fig. 3). The two-step method270

that used one study from each paper gave correct error rates consistently. The two-step271

method using a weighted paper mean and the robust variance estimation method both gave272

correct error rates when observed effect sizes were non-independent. However, these two273

methods sometimes generated error rates significantly lower than the correct level of 5%274

when observed effect sizes were independent (Fig. 3).275

Discussion276

Non-independence among observed effect sizes from the same source paper is common in277

ecological meta-analyses and can arise through a variety of mechanisms, such as shared278

experimental subjects, common experimental sites, or similar methodology (Noble et al.279

2017). The variety of mechanisms leading to within-paper non-independence gives rise to280

different patterns and strength of correlations among observed effect sizes from the same281

source paper. Our simulations, using ecologically realistic parameter values, represent a282
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broad range of scenarios. We found that treating non-independent data as if they were283

independent caused error rates that were substantially higher than the correct level (5% for284

a 95% confidence interval) unless the observed effect sizes were only mildly non-independent285

(i.e., low mean ni and ρ) (Fig. 3). Even for the lowest non-zero level of non-independence,286

the error rate was still non-negligibly above the correct level of 5%. All four methods287

that accounted for non-independence offered considerable improvements with regard to error288

rates. In addition, ignoring non-independence led to imprecise estimates of the mean effect289

size when the correlation among studies was strong. Because meta-analyses in ecology are290

still often done using methods that ignore non-independence (Gurevitch and Hedges 1999,291

Nakagawa and Santos 2012, Noble et al. 2017), our study demonstrates an urgent need for292

meta-analysts to adopt methods that account for this.293

The two step method with one randomly chosen study from each paper consistently pro-294

duced less precise estimates compared to other methods that accounted for non-independence295

(Fig. 2), presumably because valuable information was discarded using this method. The296

decrease in precision was sometimes substantial. For example, when observed effect sizes297

from the same source paper were equally correlated with ρ = 0.1, τ = 1, and E(ni) = 15.5,298

the standard deviation of the estimated mean effect size based on this method was 0.225299

compared to 0.104 based on the method with a random paper effect. The response ratio300

would be between 0.64–1.55 95% of the time using this method compared to 0.82–1.23 using301

the method with a random paper effect. Although error rates based on this method were302

consistently correct (Fig. 3), other methods offered comparable performance in error rate303

but substantially better performance in precision. As a result, we do not recommend this304

method as a general way to handle non-independence within papers.305

Including a random paper effect consistently inflated the type I error rates. Surprisingly,306
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this method inflated error rates even when it was the correct model (i.e., when observed307

effect sizes from the same source paper had equal correlation). We speculate that the consis-308

tently higher than correct error rates arose from the limitation of the methods for statistical309

inference in hierarchical models currently implemented in “metafor”. Confidence intervals310

for parameter estimates were constructed based on a t-distribution for the Wald statistic,311

which is known to cause high error rates, primarily because uncertainty in the standard312

error estimates is not fully accounted for (Pinheiro and Bates 2000). Although we do not313

recommend this specific method due to the higher error rates, the issue causing this problem314

could likely be resolved. In the general mixed-effect model literature, this issue is addressed315

by adjusting the degrees of freedom for a t- or F-test (Kenward and Roger 1997). Implemen-316

tation of these inferential methods in hierarchical meta-analysis models could be valuable,317

considering the high precision (Fig. 2) and the unique advantage of partitioning sources of318

variation using hierarchical models. To date, no meta-analysis software has these methods319

implemented. Improvements to metafor could be extremely useful since it has become the320

most versatile and widely used software for meta-analysis using the frequentist approach.321

Both the two-step method with a weighted mean for each paper and the robust variance322

estimation method controlled error rates well and had similar standard deviations over the323

range of conditions we explored. There was, however, some cost in terms of low statistical324

power, as evidenced by error rates significantly lower than 5%, when these methods were325

applied to data that were actually independent; but that cost disappeared in the presence326

of non-independence. There are potential shortcomings with these two methods (Appendix327

S1: Section S2). For example, the robust variance estimation method requires user-specified328

weights (Hedges et al. 2010). Because weights proportional to the inverse covariance matrix329

give the most efficient estimates but the user does not know the covariance matrix, this330
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method may be far from optimal and result in less efficient estimates. Additionally, the331

robust variance estimation method is asymptotic and thus requires sufficient number of332

papers to be effective. The two-step method using the mean for each paper also has potential333

limitations. For example, the variance of the true mean for each paper will generally vary334

among papers, with means from papers with many studies having lower variance. This335

heterogeneity is not accounted for. These issues, however, do not appear to substantially336

influence the performance of these two methods. Taken together, we suggest either using the337

robust variance estimation method or the two-step method starting with a weighted mean for338

each paper to handle non-independence within papers, at least when conditions (i.e., number339

of papers, number of studies per paper, levels of variation, and degrees of non-independence)340

are expected to be similar to the conditions we explored in the simulations.341
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Figure 1 Diagram of the experimental design. In experiment 1, observed effect sizes from424

the same source paper were correlated with the same correlation coefficient for all pairs.425

In experiment 2, the magnitude of correlation varied for pairs of observed effect sizes. We426

systematically varied mean number of studies per paper (ni), correlation among observed427

effect sizes within the same paper (ρ), and among-study variability (τ). For each combination428

of the experimental factor levels, steps 1–3 were repeated 5000 times. The estimated mean429

effect sizes for each of the five methods over the 5000 iterations were used to quantify the430

standard deviation of the estimates and the type I error rate in step 4.431

Figure 2: Standard deviations of the estimated mean effect size based on the five meta-432

analysis methods. The mean and standard deviation of the distribution for the number of433

studies per paper, the among-study standard deviation (τ), and the correlation coefficient434

among observed effect sizes from the same paper (ρ) are noted on each panel. Methods435

1–5 are 1) random-effect meta-analysis model, 2) two-step method using a weighted mean436

from each paper, 3) two-step method with one randomly chosen observed effect sizes from437

each paper, 4) meta-analysis with random paper and study effects, and 5) robust variance438

estimation method.439

Figure 3: Type I error rates based on the five meta-analysis methods. Error bars are 95%440

confidence intervals. Error rates exceeding 10% are indicated with the actual error rates.441

The mean and standard deviation of the distribution for the number of studies per paper, the442

among-study standard deviation (τ), and the correlation coefficient among observed effect443

sizes within the same paper (ρ) are noted on each panel. Methods 1–5 are 1) random-effect444

meta-analysis model, 2) two-step method using a weighted mean from each paper, 3) two-step445

method with one randomly chosen observed effect sizes from each paper, 4) meta-analysis446

with random paper and study effects, and 5) robust variance estimation method.447
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Figure 2
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Figure 3
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