

¹ **Title:** An Assessment of Statistical Methods for Non-independent Data in
² Ecological Meta-analyses

³ **Running title:** Non-independence in meta-analysis

⁴ **Authors:** Chao Song^{1,*}, Scott D. Peacor¹, Craig W. Osenberg², James R. Bence¹

⁵ **Affiliations:**

⁶ ¹Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan
⁷ 48824, USA

⁸ ²Odum School of Ecology, University of Georgia, Athens, Georgia 30602, USA.

⁹ *Correspondence: chaosong@msu.edu

10 **Abstract**

11 In ecological meta-analyses, non-independence among observed effect sizes from the same
12 source paper is common. If not accounted for, non-independence can seriously undermine
13 inferences. We compared the performance of four meta-analysis methods that attempt to
14 address such non-independence and the standard random-effect model that ignores non-
15 independence. We simulated data with various types of within-paper non-independence, and
16 assessed the standard deviation of the estimated mean effect size and type I error rate of
17 each method. Although all four methods performed substantially better than the standard
18 random-effects model that assumes independence, there were differences in performance
19 among the methods. A two-step method that first summarizes the multiple observed effect
20 sizes per paper using a weighted mean and then analyzes the reduced data in a standard
21 random-effects model, and a robust variance estimation method performed consistently well.
22 A hierarchical model with both random paper and study effects gave precise estimates but
23 had a higher type I error rates, possibly reflecting limitations of currently available meta-
24 analysis software. Overall, we advocate the use of the two-step method with a weighted paper
25 mean and the robust variance estimation method as reliable ways to handle within-paper
26 non-independence in ecological meta-analyses.

27 **Keywords**

28 meta-analysis, non-independence, pseudoreplication, random effect, hierarchical model, ro-
29 bust variance estimation.

30 **Introduction**

31 Meta-analysis is a quantitative synthesis method that combines individual studies to quan-
32 tify the overall effect and the heterogeneity in effects among studies. Since its introduction
33 to ecology (Jarvinen 1991, Arnqvist and Wooster 1995), meta-analysis has played an in-
34 creasingly influential role in the field, such as testing ecological theories, identifying research
35 directions, and informing conservation and management strategies (Stewart 2009, Cadotte
36 et al. 2012, Gurevitch et al. 2018). Given its wide application and large impact, rigor-
37 ous methodology is crucial (Osenberg et al. 1999, Lortie et al. 2015). Although statistical
38 methods and specialized software for meta-analysis have advanced greatly over the past few
39 decades, many statistical issues still remain (Gurevitch and Hedges 1999, Nakagawa and
40 Santos 2012, Koricheva and Gurevitch 2014).

41 A prevalent statistical issue in meta-analysis is non-independence among observed effect
42 sizes (Gurevitch and Hedges 1999, Nakagawa et al. 2017, Noble et al. 2017). A common type
43 of non-independence structure arises when observed effect sizes come in identifiable groups,
44 where they are non-independent within groups but independent across groups. This type
45 of non-independence has been called pseudoreplication and can seriously undermine statis-
46 tical inferences (Hurlbert 1984). Many mechanisms, such as shared experimental subjects,
47 common experimental time/sites, or similar methodology, could lead to this type of non-
48 independence and result in varying strength of correlation among observed effect sizes in the
49 group (Noble et al. 2017). One of the most common way such a group arises is when single
50 source papers consist of multiple studies, i.e., yield multiple observed effect sizes. Studies
51 from the same source paper and the resulting observed effect sizes arising from them can be
52 thought of as comprising a group. Here, we define a study as the experimental/observational

53 procedures and the resulting set of data that lead to a single observed effect size. In this
54 paper, we address non-independence within source papers, although our results likely apply
55 to other types of group or hierarchical structures that may also generate non-independence,
56 e.g., studies from the same lab group or geographic locations.

57 Within-paper non-independence is ubiquitous in ecological meta-analysis (Noble et al.
58 2017). For example, a source paper used in a meta-analysis may include multiple responses
59 measured in the same experiment, such as biomass, growth rate, and fecundity. Observed
60 effect sizes from this paper will be non-independent because they were observed in the same
61 experiment or may have been based on the same subjects. Observed effect sizes from the same
62 paper could also be non-independent even if they arose from separate experiments because
63 experiments likely share common methods, contexts, or other characteristics that influences
64 the effect size, e.g., studies from the same paper might all be done at the same geographic
65 location or in the same time period. Because results of ecological research often depend
66 strongly on the ecological and methodological context, we can expect non-independence
67 among observed effect sizes from the same paper to be common. While non-independence
68 does not lead to bias in parameter estimation in general, ignoring non-independence usually
69 leads to incorrect estimates of uncertainty, which in turn can invalidate hypothesis tests
70 (Kwok et al. 2007). The extent of the inferential problems resulting from ignoring non-
71 independence of observed effect sizes within papers will depend on the nature of the non-
72 independence and how studies are distributed among paper.

73 While it is ideal to explicitly incorporate the non-independence structure in the meta-
74 analysis model, information necessary to model the exact non-independence structure is
75 often unavailable from source papers. Thus, analysts typically use omnibus strategies for
76 addressing within-paper non-independence. The first strategy is a two-step method. Ana-

77 lists first derive a single summary effect size for each paper based on the multiple observed
78 effect sizes in that paper and then analyze the summary effect sizes using standard meta-
79 analysis methods that assume independence (Rosenthal and Rubin 1986, Marín-Martínez
80 and Sánchez-Meca 1999). The summary effect size might be obtained by randomly choosing
81 one of the observed effect sizes from each paper, or it could be derived as the mean of the
82 observed effect sizes in a paper. The second strategy is to include a random paper effect in
83 addition to the random study effect in the meta-analysis model, assuming such a hierarchical
84 model can approximately model the actual pattern of non-independence. More recently, a
85 third strategy, known as the robust variance estimation, was developed (Hedges et al. 2010,
86 Tipton 2015). This method extends the work on robust variance estimators (Huber 1967,
87 White et al. 1980) to meta-analysis and does not require knowledge of the non-independence
88 structure among observed effect sizes within groups.

89 These methods make different assumptions about how observed effect sizes from the same
90 source paper are correlated. For example, including a random paper and study effect (both
91 commonly assumed to be independent and identically distributed random variables following
92 normal distributions) is equivalent to assuming that the observed effect sizes within the same
93 paper are positively correlated, with an equal correlation coefficient for each pair. However,
94 one might expect the correlation to vary among pairs of studies. This could arise, for example,
95 if some studies within a source paper were conducted closer in space and/or time and thus
96 have more similar ecological settings (Noble et al. 2017). While methods exist to explicitly
97 model spatial and temporal correlations, these methods require knowledge of the timing and
98 spatial locations, which is often not reported. In these situations, a method that allows
99 variable and unknown correlation among pairs of observed effect sizes, such as the robust
100 variance estimation method, may perform better. To determine the best methods among

101 those that are available, it is critical to evaluate these methods under different scenarios of
102 within-paper non-independence.

103 Despite the ubiquity of non-independence within papers, the performance of various
104 methods attempting to address this issue has not been comprehensively evaluated in the
105 context of ecological meta-analysis. In this study, we performed simulation experiments to
106 examine the effectiveness of different methods used to address non-independence with the
107 intent of providing practical guidance on choosing appropriate methods for ecological meta-
108 analysis. Specifically, we simulated datasets that had a hierarchical structure, with multiple
109 studies within each source paper used in the meta-analysis. The simulated data ranged
110 from no correlation to strong but unequal correlation among observed effect sizes within the
111 same source paper, and allowed for plausible variation in the number of observed effect sizes
112 per source paper. We applied five analytic methods to each simulated data set and assessed
113 their performance: four methods that have been proposed to handle non-independence within
114 papers as well as the all-too-common method of simply ignoring the issue.

115 Methods

116 We simulated meta-analyses consisting of data from 20 papers, each containing a number
117 of studies (Fig 1). For each study, we simulated replicated control and treatment groups,
118 with data from each source paper simulated to obtain various patterns of non-independence
119 among observed effect sizes within the paper. For each study, we calculated a log response
120 ratio and its estimated variance. The log response ratio is the most commonly used effect
121 size metric in ecology (Nakagawa and Santos 2012), but our qualitative results should apply
122 to other metrics as well. We estimated the overall mean effect size using alternative meta-
123 analysis methods that differ in how they account for non-independence and compared the

124 their performance. We conducted two sets of simulation experiments (Fig. A1). In the first
 125 experiment, observed effect sizes from the same source paper were correlated with the same
 126 correlation coefficients for all pairs. In the second experiment, we varied the correlation
 127 between pairs of observed effect sizes.

128 *Simulation of data for an individual study*

We simulated a response variable y in the control and treatment group for each study as

$$y_{cijk} = \mu \varepsilon_{cijk} \quad (1)$$

$$y_{tijk} = \alpha_{ij} \mu \varepsilon_{tijk}, \quad (2)$$

129 where y_{cijk} and y_{tijk} are the response variables for the k th replicates in the control and
 130 treatment group of study j in paper i , ε_{cijk} and ε_{tijk} are random errors following log-normal
 131 distributions, and α_{ij} is the multiplicative treatment effect, which can be decomposed as

$$\alpha_{ij} = \alpha e_{ij}. \quad (3)$$

132 Here, e_{ij} represents the study-specific random deviation from the mean treatment effect and
 133 is assumed to follow a log-normal distribution. Once data for each study were simulated,
 134 we calculated a log response ratio for each study (θ_{ij}) as $\log(\bar{y}_{tij}/\bar{y}_{cij})$, and its variance as
 135 $\text{var}(y_{tij})/n_{tij}\bar{y}_{tij}^2 + \text{var}(y_{cij})/n_{cij}\bar{y}_{cij}^2$, where n_{cij} and n_{tij} are the number of replicates in the
 136 control and treatment groups for study j within source paper i (Hedges et al. 1999).

137 *Patterns of non-independence in the simulations*

138 Based on this simulation approach, the log response ratio for each study, θ_{ij} , follows a normal
 139 distribution asymptotically with mean $\log(\alpha) + \log(e_{ij})$ (Hedges et al. 1999). Thus, we can
 140 express θ_{ij} simulated by equations 1–3 as

$$\theta_{ij} = \log(\alpha) + \log(e_{ij}) + \epsilon_{ij}. \quad (4)$$

141 Equation 4 matches a random-effects meta-analysis model. Here, $\log(\alpha)$ is the mean effect
142 size, $\log(e_{ij})$ is the random study effect, and ϵ_{ij} is the within-study error. Both $\log(e_{ij})$ and
143 ϵ_{ij} are normally distributed.

144 Non-independence among θ_{ij} within papers may occur through correlations among $\log(e_{ij})$
145 and/or ϵ_{ij} . Typically, correlation among ϵ_{ij} arise from using shared control or measuring the
146 same group of subjects in studies with multiple endpoints. The resulting correlation struc-
147 ture in ϵ_{ij} can be explicitly calculated and incorporated in the meta-analysis model (Gleser
148 and Olkin 2009, Lajeunesse 2011). Therefore, we assumed independence among ϵ_{ij} and only
149 considered non-independence arising from correlation among the random study effects, i.e.
150 $\text{cov}(\theta_{ij}, \theta_{ik}) = \text{cov}(\log(e_{ij}), \log(e_{ik}))$ for study j and k in paper i .

151 We conducted simulation experiments with two patterns of non-independence. In the first
152 experiment, the random study effects from the same source paper were equally correlated
153 (i.e., $\text{cov}(\theta_{ij}, \theta_{ik}) = \rho\tau^2$, where ρ is the correlation coefficient between each pair of observed
154 effect sizes and τ^2 is the variance of $\log(e_{ij})$). We included a special case of zero correlation
155 (independence) in the first experiment. In the second experiment, the random study effects
156 within a source paper were correlated but the correlation was not equal ($\text{cov}(s_{ij}, s_{ik}) =$
157 $\rho_{ijk}\tau_i^2$). Here, the correlation coefficient, ρ_{ijk} , was allowed to vary among pairs of observed
158 effect sizes. We subscripted the among-study variance τ^2 because we sometimes allow this
159 quantity to vary among papers in the second experiment. In both experiments, we only
160 considered non-negative correlations, given that similar contexts and shared data for studies
161 from the same source paper would be expected to lead to similar, rather than dissimilar,
162 observed effect sizes within a paper.

163 Patterns of non-independence in θ_{ij} were simulated by drawing $\log(e_{ij})$ for each source
164 paper from multivariate normal distributions with appropriate covariance matrices. The co-

165 variance matrix was generated as $\mathbf{K}\mathbf{R}\mathbf{K}$, where \mathbf{K} is matrix with τ as the diagonal elements
166 and \mathbf{R} is the correlation matrix. In the first experiment, \mathbf{R} was a matrix with 1 at the
167 diagonal positions and the same correlation coefficient ρ at all other positions. In the second
168 experiment, \mathbf{R} was a symmetric matrix with 1 at the diagonal positions and different corre-
169 lation coefficients at all others to reflect the fact that studies were unequally correlated. We
170 used the C-vine method proposed in Lewandowski et al. (2009) to generate such correlation
171 matrices.

172 *Details of experimental design*

173 In the simulation experiments, we did not systematically vary the parameters that were not
174 expected to influence how well methods address non-independence. Specifically, we set μ at
175 10 and α at 1. We simulated $\log(\varepsilon_{tijk})$ from a normal distribution with mean 0 and standard
176 deviation randomly chosen between 0.1–0.3 for each study. The number of replicates for each
177 study, equal for both the control and treatment groups, was chosen with equal probability
178 from integers between 3–20. Finally, we set the number of papers at 20, a relatively low
179 number in ecological meta-analysis. Methods that perform well in this situation are expected
180 to perform at least as well if the meta-analysis contains more papers.

181 We systematically varied the parameters that we expected to influence the efficacy of
182 methods used to address non-independence, including the number of studies per paper, the
183 magnitude of correlation among observed effect sizes from the same source paper, and the
184 among-study variability. Below, we provide the levels of these parameters and the rationales
185 for these choices.

186 **Number of studies per paper:** We examined the frequency distribution of the num-
187 ber of studies per paper (n_i) in 15 published ecological meta-analyses chosen haphazardly
188 (Appendix S1: Section S1). A shifted negative binomial distribution adequately described

189 the frequency distribution of n_i (Appendix S1: Fig. S1): i.e., $n_i - 1$ followed a negative
190 binomial distribution. We also found that the mean and standard deviation of $n_i - 1$ were
191 correlated on the logarithmic scale (Appendix S1: Fig. S2). Therefore, we chose three levels
192 for the mean of $n_i - 1$ spanning the observed range (0.5, 4.5 and 14.5) and calculated the
193 corresponding standard deviation (1.1, 7.0, and 18.7) based on the linear regression. We
194 then drew $n_i - 1$ for each paper from a negative binomial distribution with the mean and
195 standard deviation specified above.

196 **Correlation coefficient:** In the first experiment, in which the correlation coefficient (ρ)
197 was the same for all pairs of study within a paper, we set ρ at 0, 0.1, 0.5, and 0.9, ranging from
198 independence to quite strong correlation. In the second experiment where ρ varied among
199 pairs of studies within the same paper, we set the range of ρ for each paper. Because the
200 C-Vine method (Lewandowski et al. 2009) generates a correlation matrix from user-specified
201 partial correlation coefficients, we randomly chose partial correlation coefficients from two
202 uniform ranges: 0.1–0.4 and 0.6–0.9. The resulting ranges for pairwise correlations generally
203 matched these specified ranges for the partial correlations.

204 **Among-study variance:** In the first experiment where correlation between pairs of ob-
205 served effect sizes is equal, we set levels of the standard deviation for among-study variability,
206 τ , at 0.1, 0.5, and 1. The chosen levels represent plausible ranges in ecological meta-analyses.
207 For example, a τ of 1 led to the treatment effect for a particular study, α_{ij} , ranging between
208 14% to 710% of the mean treatment effect for 95% of the studies. A τ of 0.1 led to a range of
209 82% to 122%. In addition, our choice of among-study variance and among-replicate variance
210 within a study are also consistent with the typical proportion of within- and among-study
211 heterogeneity in ecological meta-analyses (Senior et al. 2016).

212 In the second experiment where correlation between pairs of observed effect sizes is un-

213 equal, we used the same three levels of τ and added a new scenario in which τ varied among
214 papers. This scenario is plausible in ecological meta-analyses. For example, some papers
215 included in the meta-analysis may contain studies from more diverse environments than oth-
216 ers (Hillebrand and Gurevitch 2014). For this scenario, we chose τ for each paper from a
217 uniform distribution between 0.1 and 1.

218 *Methods of meta-analysis for non-independent data*

219 We evaluated five methods commonly used in ecological meta-analysis. The five methods
220 are: 1) the standard random-effects meta-analysis model that ignores non-independence; 2)
221 a two-step method in which we analyze the weighted mean effect size for each paper in a
222 random-effect meta-analysis model. This is equivalent to performing a fixed-effect meta-
223 analysis for each paper and using the resulting means and their standard errors from the
224 fixed effect model in the second step; 3) a two-step method in which we analyze one randomly
225 chosen observed effect size from each paper in a random-effects meta-analysis model; 4) a
226 hierarchical model that included a random paper effect and a random study effect; and 5) a
227 robust variance estimation method for meta-analysis (Hedges et al. 2010).

228 All random-effects meta-analysis models were implemented using the function “rma” in
229 R (version 3.6.2) package “metafor” (version 2.1) (Viechtbauer 2010) with the variance of
230 the random effects estimated by restricted maximum likelihood (Veroniki et al. 2016). We
231 constructed confidence intervals based on the adjustment proposed by Hartung and Knapp
232 (2001) and Sidik and Jonkman (2002). We implemented the method with a random paper
233 effect using function “rma.mv” in “metafor”, and constructed confidence intervals based on
234 the t-distribution of the Wald statistic. Finally, we implemented the robust variance estima-
235 tion method using function “robu” in R package “robumeta” with the default weights and
236 adjustment for small sample size (Fisher et al. 2017). Code for the simulation experiments

237 are provided in Data S1.

238 *Metrics for model performance*

239 We evaluated the performance of methods by the precision of the estimated mean effect
240 size and the type I error rate. We calculated the standard deviation of the estimated mean
241 effect size over the 5000 iterations of simulations as the measure of precision. We calculated
242 type I error rate as the percentage of times in the simulations when the 95% confidence
243 interval for the mean effect size did not cover the true value. The confidence interval for the
244 estimated error rate was calculated based on the binomial distributions for the number of
245 falsely significant results in the simulations. None of the methods produced appreciable bias
246 in the estimated mean effect sizes and we therefore do not present results about bias.

247 **Results**

248 *Precision of estimated mean effect size*

249 For clarity of presentation, the figures contain a representative subset of results. Full results
250 can be found in Appendix S1: Fig. S3 and S4. The standard random-effects meta-analysis
251 model that assumes independence among observed effect sizes had a low standard deviation
252 when the observed effect sizes were actually independent (Fig. 2), but resulted in a higher
253 standard deviation when observed effect sizes were non-independent (Fig. 2). The loss
254 of precision was more pronounced when the correlation was strong (Fig. 2). Among the
255 four methods that account for non-independence, the two-step method using one randomly
256 chosen study from each paper had a consistently high standard deviation. This problem of
257 low precision, however, was less severe when correlations among observed effect sizes were
258 strong (Fig. 2). The methods that included a random paper effect performed consistently
259 well in terms of precision under all scenarios considered in the simulations. Finally, the

260 two-step method using a weighted paper mean and the robust variance estimation method
261 gave low standard deviations except when observed effect sizes from the same source paper
262 were independent.

263 *Type I error rates*

264 The standard random-effects model that ignored non-independence substantially inflated
265 the type I error rates (Fig. 3), sometimes to over 70%, unless observed effect sizes were
266 independent or only mildly non-independent (i.e., low correlation and very few observed effect
267 sizes per paper) (Fig. 3). Under all scenarios of non-independence, all four methods that
268 accounted for non-independence offered substantial improvement in error rates. Surprisingly,
269 including a random paper effect led to error rates consistently above the correct level of 5%
270 (between 5% and 8%) in the presence of non-independence (Fig. 3). The two-step method
271 that used one study from each paper gave correct error rates consistently. The two-step
272 method using a weighted paper mean and the robust variance estimation method both gave
273 correct error rates when observed effect sizes were non-independent. However, these two
274 methods sometimes generated error rates significantly lower than the correct level of 5%
275 when observed effect sizes were independent (Fig. 3).

276 Discussion

277 Non-independence among observed effect sizes from the same source paper is common in
278 ecological meta-analyses and can arise through a variety of mechanisms, such as shared
279 experimental subjects, common experimental sites, or similar methodology (Noble et al.
280 2017). The variety of mechanisms leading to within-paper non-independence gives rise to
281 different patterns and strength of correlations among observed effect sizes from the same
282 source paper. Our simulations, using ecologically realistic parameter values, represent a

283 broad range of scenarios. We found that treating non-independent data as if they were
284 independent caused error rates that were substantially higher than the correct level (5% for
285 a 95% confidence interval) unless the observed effect sizes were only mildly non-independent
286 (i.e., low mean n_i and ρ) (Fig. 3). Even for the lowest non-zero level of non-independence,
287 the error rate was still non-negligibly above the correct level of 5%. All four methods
288 that accounted for non-independence offered considerable improvements with regard to error
289 rates. In addition, ignoring non-independence led to imprecise estimates of the mean effect
290 size when the correlation among studies was strong. Because meta-analyses in ecology are
291 still often done using methods that ignore non-independence (Gurevitch and Hedges 1999,
292 Nakagawa and Santos 2012, Noble et al. 2017), our study demonstrates an urgent need for
293 meta-analysts to adopt methods that account for this.

294 The two step method with one randomly chosen study from each paper consistently pro-
295 duced less precise estimates compared to other methods that accounted for non-independence
296 (Fig. 2), presumably because valuable information was discarded using this method. The
297 decrease in precision was sometimes substantial. For example, when observed effect sizes
298 from the same source paper were equally correlated with $\rho = 0.1$, $\tau = 1$, and $E(n_i) = 15.5$,
299 the standard deviation of the estimated mean effect size based on this method was 0.225
300 compared to 0.104 based on the method with a random paper effect. The response ratio
301 would be between 0.64–1.55 95% of the time using this method compared to 0.82–1.23 using
302 the method with a random paper effect. Although error rates based on this method were
303 consistently correct (Fig. 3), other methods offered comparable performance in error rate
304 but substantially better performance in precision. As a result, we do not recommend this
305 method as a general way to handle non-independence within papers.

306 Including a random paper effect consistently inflated the type I error rates. Surprisingly,

307 this method inflated error rates even when it was the correct model (i.e., when observed
308 effect sizes from the same source paper had equal correlation). We speculate that the consis-
309 tently higher than correct error rates arose from the limitation of the methods for statistical
310 inference in hierarchical models currently implemented in “metafor”. Confidence intervals
311 for parameter estimates were constructed based on a t-distribution for the Wald statistic,
312 which is known to cause high error rates, primarily because uncertainty in the standard
313 error estimates is not fully accounted for (Pinheiro and Bates 2000). Although we do not
314 recommend this specific method due to the higher error rates, the issue causing this problem
315 could likely be resolved. In the general mixed-effect model literature, this issue is addressed
316 by adjusting the degrees of freedom for a t- or F-test (Kenward and Roger 1997). Implemen-
317 tation of these inferential methods in hierarchical meta-analysis models could be valuable,
318 considering the high precision (Fig. 2) and the unique advantage of partitioning sources of
319 variation using hierarchical models. To date, no meta-analysis software has these methods
320 implemented. Improvements to metafor could be extremely useful since it has become the
321 most versatile and widely used software for meta-analysis using the frequentist approach.

322 Both the two-step method with a weighted mean for each paper and the robust variance
323 estimation method controlled error rates well and had similar standard deviations over the
324 range of conditions we explored. There was, however, some cost in terms of low statistical
325 power, as evidenced by error rates significantly lower than 5%, when these methods were
326 applied to data that were actually independent; but that cost disappeared in the presence
327 of non-independence. There are potential shortcomings with these two methods (Appendix
328 S1: Section S2). For example, the robust variance estimation method requires user-specified
329 weights (Hedges et al. 2010). Because weights proportional to the inverse covariance matrix
330 give the most efficient estimates but the user does not know the covariance matrix, this

331 method may be far from optimal and result in less efficient estimates. Additionally, the
332 robust variance estimation method is asymptotic and thus requires sufficient number of
333 papers to be effective. The two-step method using the mean for each paper also has potential
334 limitations. For example, the variance of the true mean for each paper will generally vary
335 among papers, with means from papers with many studies having lower variance. This
336 heterogeneity is not accounted for. These issues, however, do not appear to substantially
337 influence the performance of these two methods. Taken together, we suggest either using the
338 robust variance estimation method or the two-step method starting with a weighted mean for
339 each paper to handle non-independence within papers, at least when conditions (i.e., number
340 of papers, number of studies per paper, levels of variation, and degrees of non-independence)
341 are expected to be similar to the conditions we explored in the simulations.

342 **Acknowledgements**

343 This work was supported by the U.S. National Science Foundation (DEB-1655394 and DEB-
344 1655426). JRB and SDP received support from AgBioResearch of Michigan State University.
345 The Institute for Cyber-Enabled Research at Michigan State University provided compu-
346 tational resources. This is publication 2020-XX of the Quantitative Fisheries Center at
347 Michigan State University.

348 **References**

349 Arnqvist, G. and D. Wooster. 1995. Meta-analysis: synthesizing research findings in ecology
350 and evolution. *Trends in Ecology & Evolution*, **10**:236–240.

351 Cadotte, M. W., L. R. Mehrkens, and D. N. Menge. 2012. Gauging the impact of meta-
352 analysis on ecology. *Evolutionary Ecology*, **26**:1153–1167.

353 Fisher, Z., E. Tipton, and Z. Hou. 2017. robumeta: Robust variance meta-regression. R

354 package version 2.1.

355 Gleser, L. J. and I. Olkin. 2009. Stochastically dependent effect sizes. In H. Coopers,
356 L. V. Hedges, and J. C. Valentine, editors, *The handbook of research synthesis and meta-*
357 *analysis*, pages 357–376. Russell Sage Foundation, New York, NY, 2nd edition.

358 Gurevitch, J. and L. V. Hedges. 1999. Statistical issues in ecological meta-analyses. *Ecology*,
359 **80**:1142–1149.

360 Gurevitch, J., J. Koricheva, S. Nakagawa, and G. Stewart. 2018. Meta-analysis and the
361 science of research synthesis. *Nature*, **555**:175–182.

362 Hartung, J. and G. Knapp. 2001. On tests of the overall treatment effect in meta-analysis
363 with normally distributed responses. *Statistics in Medicine*, **20**:1771–1782.

364 Hedges, L. V., J. Gurevitch, and P. S. Curtis. 1999. The meta-analysis of response ratios in
365 experimental ecology. *Ecology*, **80**:1150–1156.

366 Hedges, L. V., E. Tipton, and M. C. Johnson. 2010. Robust variance estimation in meta-
367 regression with dependent effect size estimates. *Research Synthesis Methods*, **1**:39–65.

368 Hillebrand, H. and J. Gurevitch. 2014. Meta-analysis results are unlikely to be biased by
369 differences in variance and replication between ecological lab and field studies. *Oikos*,
370 **123**:794–799.

371 Huber, P. J. 1967. The behavior of maximum likelihood estimates under nonstandard con-
372 ditions. In L. M. Le Cam and J. Neyman, editors, *Proceedings of the Fifth Berkeley*
373 *Symposium on Mathematical Statistics and Probability*, volume 1, pages 221–233.

374 Hurlbert, S. H. 1984. Pseudoreplication and the design of ecological field experiments.
375 *Ecological Monographs*, **54**:187–211.

376 Jarvinen, A. 1991. A meta-analytic study of the effects of female age on laying-date and
377 clutch-size in the Great Tit *Parus major* and the Pied Flycatcher *Ficedula hypoleuca*. *Ibis*,

378 133:62–67.

379 Kenward, M. G. and J. H. Roger. 1997. Small sample inference for fixed effects from restricted
380 maximum likelihood. *Biometrics*, **53**:983–997.

381 Koricheva, J. and J. Gurevitch. 2014. Uses and misuses of meta-analysis in plant ecology.
382 *Journal of Ecology*, **102**:828–844.

383 Kwok, O.-m., S. G. West, and S. B. Green. 2007. The impact of misspecifying the within-
384 subject covariance structure in multiwave longitudinal multilevel models: A Monte Carlo
385 study. *Multivariate Behavioral Research*, **42**:557–592.

386 Lajeunesse, M. J. 2011. On the meta-analysis of response ratios for studies with correlated
387 and multi-group designs. *Ecology*, **92**:2049–2055.

388 Lewandowski, D., D. Kurowicka, and H. Joe. 2009. Generating random correlation matrices
389 based on vines and extended onion method. *Journal of Multivariate Analysis*, **100**:1989–
390 2001.

391 Lortie, G., Christopher J. ad Stewart, H. Rothstein, and J. Lau. 2015. How to critically read
392 ecological meta-analysis. *Research Synthesis Methods*, **6**:124–133.

393 Marín-Martínez, F. and J. Sánchez-Meca. 1999. Averaging dependent effect sizes in meta-
394 analysis: A cautionary note about procedures. *The Spanish Journal of Psychology*, **2**:32–
395 38.

396 Nakagawa, S., D. Nobel, A. Senior, and M. Lagisz. 2017. Meta-evaluation of meta-analysis:
397 ten appraisal questions for biologists. *BMC Biology*, **15**:18.

398 Nakagawa, S. and E. S. Santos. 2012. Methodological issues and advances in biological
399 meta-analysis. *Evolutionary Ecology*, **26**:1253–1274.

400 Noble, D. W., M. Lagisz, R. E. O’dea, and S. Nakagawa. 2017. Nonindependence and sensi-
401 tivity analyses in ecological and evolutionary meta-analyses. *Molecular ecology*, **26**:2410–

402 2425.

403 Osenberg, C. W., O. Sarnelle, S. D. Cooper, and R. D. Holt. 1999. Resolving ecological
404 questions through meta-analysis: goals, metrics, and models. *Ecology*, **80**:1105–1117.

405 Pinheiro, J. and D. Bates. 2000. Mixed-effects models in S and S-PLUS. Springer, New
406 York, NY.

407 Rosenthal, R. and D. B. Rubin. 1986. Meta-analytic procedures for combining studies with
408 multiple effect sizes. *Psychological Bulletin*, **99**:400–406.

409 Senior, A. M., C. E. Grueber, T. Kamiya, M. Lagisz, K. O'dwyer, E. S. Santos, and S. Nak-
410 agawa. 2016. Heterogeneity in ecological and evolutionary meta-analyses: its magnitude
411 and implications. *Ecology*, **97**:3293–3299.

412 Sidik, K. and J. N. Jonkman. 2002. A simple confidence interval for meta-analysis. *Statistics*
413 in Medicine

414 **21**:3153–3159.

415 Stewart, G. 2009. Meta-analysis in applied ecology. *Biology Letters*, **6**:78–81.

416 Tipton, E. 2015. Small sample adjustments for robust variance estimation with meta-
417 regression. *Psychological Methods*, **20**:375.

418 Veroniki, A. A., D. Jackson, W. Viechtbauer, R. Bender, J. Bowden, G. Knapp, O. Kuss,
419 J. P. Higgins, D. Langan, and G. Salanti. 2016. Methods to estimate the between-study
420 variance and its uncertainty in meta-analysis. *Research Synthesis Methods*, **7**:55–79.

421 Viechtbauer, W. 2010. Conducting meta-analysis in R with the metafor package. *Journal of
422 Statistical Software*, **36**:1–48.

423 White, H. et al. 1980. A heteroskedasticity-consistent covariance matrix estimator and a
direct test for heteroskedasticity. *Econometrica*, **48**:817–838.

424 **Figure 1** Diagram of the experimental design. In experiment 1, observed effect sizes from
425 the same source paper were correlated with the same correlation coefficient for all pairs.
426 In experiment 2, the magnitude of correlation varied for pairs of observed effect sizes. We
427 systematically varied mean number of studies per paper (n_i), correlation among observed
428 effect sizes within the same paper (ρ), and among-study variability (τ). For each combination
429 of the experimental factor levels, steps 1–3 were repeated 5000 times. The estimated mean
430 effect sizes for each of the five methods over the 5000 iterations were used to quantify the
431 standard deviation of the estimates and the type I error rate in step 4.

432 **Figure 2:** Standard deviations of the estimated mean effect size based on the five meta-
433 analysis methods. The mean and standard deviation of the distribution for the number of
434 studies per paper, the among-study standard deviation (τ), and the correlation coefficient
435 among observed effect sizes from the same paper (ρ) are noted on each panel. Methods
436 1–5 are 1) random-effect meta-analysis model, 2) two-step method using a weighted mean
437 from each paper, 3) two-step method with one randomly chosen observed effect sizes from
438 each paper, 4) meta-analysis with random paper and study effects, and 5) robust variance
439 estimation method.

440 **Figure 3:** Type I error rates based on the five meta-analysis methods. Error bars are 95%
441 confidence intervals. Error rates exceeding 10% are indicated with the actual error rates.
442 The mean and standard deviation of the distribution for the number of studies per paper, the
443 among-study standard deviation (τ), and the correlation coefficient among observed effect
444 sizes within the same paper (ρ) are noted on each panel. Methods 1–5 are 1) random-effect
445 meta-analysis model, 2) two-step method using a weighted mean from each paper, 3) two-step
446 method with one randomly chosen observed effect sizes from each paper, 4) meta-analysis
447 with random paper and study effects, and 5) robust variance estimation method.

Figure 1

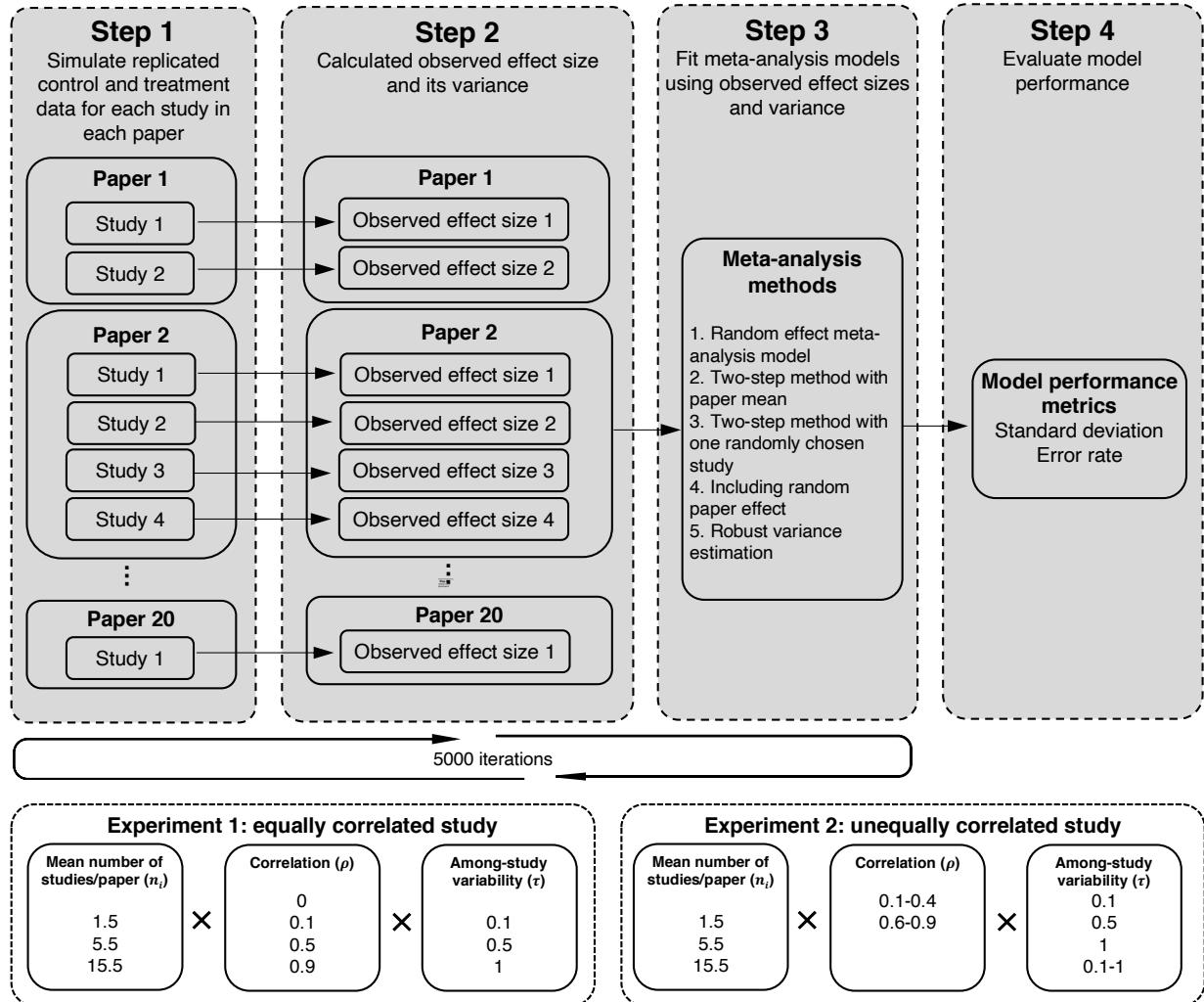


Figure 2

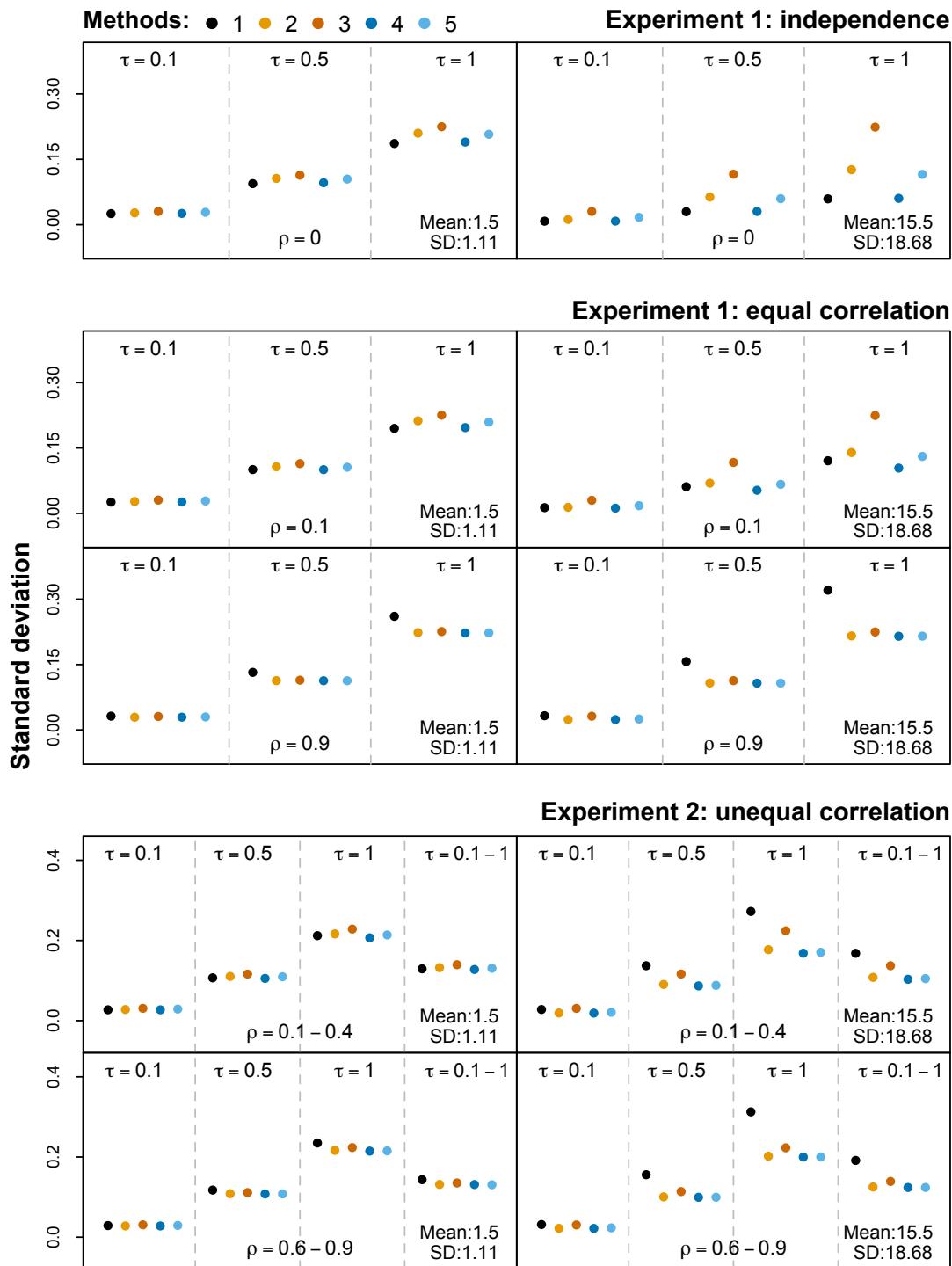


Figure 3

