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Abstract

In ecological meta-analyses, non-independence among observed effect sizes from the same
source paper is common. If not accounted for, non-independence can seriously undermine
inferences. We compared the performance of four meta-analysis methods that attempt to
address such non-independence and the standard random-effect model that ignores non-
independence. We simulated data with various types of within-paper non-independence, and
assessed the standard deviation of the estimated mean effect size and type I error rate of
each method. Although all four methods performed substantially better than the standard
random-effects model that assumes independence, there were differences in performance
among the methods. A two-step method that first summarizes the multiple observed effect
sizes per paper using a weighted mean and then analyzes the reduced data in a standard
random-effects model, and a robust variance estimation method performed consistently well.
A hierarchical model with both random paper and study effects gave precise estimates but
had a higher type I error rates, possibly reflecting limitations of currently available meta-
analysis software. Overall, we advocate the use of the two-step method with a weighted paper
mean and the robust variance estimation method as reliable ways to handle within-paper

non-independence in ecological meta-analyses.

Keywords
meta-analysis, non-independence, pseudoreplication, random effect, hierarchical model, ro-

bust variance estimation.
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Introduction

Meta-analysis is a quantitative synthesis method that combines individual studies to quan-
tify the overall effect and the heterogeneity in effects among studies. Since its introduction
to ecology (Jarvinen 1991, Arnqvist and Wooster 1995), meta-analysis has played an in-
creasingly influential role in the field, such as testing ecological theories, identifying research
directions, and informing conservation and management strategies (Stewart 2009, Cadotte
et al. 2012, Gurevitch et al. 2018). Given its wide application and large impact, rigor-
ous methodology is crucial (Osenberg et al. 1999, Lortie et al. 2015). Although statistical
methods and specialized software for meta-analysis have advanced greatly over the past few
decades, many statistical issues still remain (Gurevitch and Hedges 1999, Nakagawa and
Santos 2012, Koricheva and Gurevitch 2014).

A prevalent statistical issue in meta-analysis is non-independence among observed effect
sizes (Gurevitch and Hedges 1999, Nakagawa et al. 2017, Noble et al. 2017). A common type
of non-independence structure arises when observed effect sizes come in identifiable groups,
where they are non-independent within groups but independent across groups. This type
of non-independence has been called pseudoreplication and can seriously undermine statis-
tical inferences (Hurlbert 1984). Many mechanisms, such as shared experimental subjects,
common experimental time/sites, or similar methodology, could lead to this type of non-
independence and result in varying strength of correlation among observed effect sizes in the
group (Noble et al. 2017). One of the most common way such a group arises is when single
source papers consist of multiple studies, i.e., yield multiple observed effect sizes. Studies
from the same source paper and the resulting observed effect sizes arising from them can be

thought of as comprising a group. Here, we define a study as the experimental /observational
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procedures and the resulting set of data that lead to a single observed effect size. In this
paper, we address non-independence within source papers, although our results likely apply
to other types of group or hierarchical structures that may also generate non-independence,
e.g., studies from the same lab group or geographic locations.

Within-paper non-independence is ubiquitous in ecological meta-analysis (Noble et al.
2017). For example, a source paper used in a meta-analysis may include multiple responses
measured in the same experiment, such as biomass, growth rate, and fecundity. Observed
effect sizes from this paper will be non-independent because they were observed in the same
experiment or may have been based on the same subjects. Observed effect sizes from the same
paper could also be non-independent even if they arose from separate experiments because
experiments likely share common methods, contexts, or other characteristics that influences
the effect size, e.g., studies from the same paper might all be done at the same geographic
location or in the same time period. Because results of ecological research often depend
strongly on the ecological and methodological context, we can expect non-independence
among observed effect sizes from the same paper to be common. While non-independence
does not lead to bias in parameter estimation in general, ignoring non-independence usually
leads to incorrect estimates of uncertainty, which in turn can invalidate hypothesis tests
(Kwok et al. 2007). The extent of the inferential problems resulting from ignoring non-
independence of observed effect sizes within papers will depend on the nature of the non-
independence and how studies are distributed among paper.

While it is ideal to explicitly incorporate the non-independence structure in the meta-
analysis model, information necessary to model the exact non-independence structure is
often unavailable from source papers. Thus, analysts typically use omnibus strategies for

addressing within-paper non-independence. The first strategy is a two-step method. Ana-
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lysts first derive a single summary effect size for each paper based on the multiple observed
effect sizes in that paper and then analyze the summary effect sizes using standard meta-
analysis methods that assume independence (Rosenthal and Rubin 1986, Marin-Martinez
and Sanchez-Meca 1999). The summary effect size might be obtained by randomly choosing
one of the observed effect sizes from each paper, or it could be derived as the mean of the
observed effect sizes in a paper. The second strategy is to include a random paper effect in
addition to the random study effect in the meta-analysis model, assuming such a hierarchical
model can approximately model the actual pattern of non-independence. More recently, a
third strategy, known as the robust variance estimation, was developed (Hedges et al. 2010,
Tipton 2015). This method extends the work on robust variance estimators (Huber 1967,
White et al. 1980) to meta-analysis and does not require knowledge of the non-independence
structure among observed effect sizes within groups.

These methods make different assumptions about how observed effect sizes from the same
source paper are correlated. For example, including a random paper and study effect (both
commonly assumed to be independent and identically distributed random variables following
normal distributions) is equivalent to assuming that the observed effect sizes within the same
paper are positively correlated, with an equal correlation coefficient for each pair. However,
one might expect the correlation to vary among pairs of studies. This could arise, for example,
if some studies within a source paper were conducted closer in space and/or time and thus
have more similar ecological settings (Noble et al. 2017). While methods exist to explicitly
model spatial and temporal correlations, these methods require knowledge of the timing and
spatial locations, which is often not reported. In these situations, a method that allows
variable and unknown correlation among pairs of observed effect sizes, such as the robust

variance estimation method, may perform better. To determine the best methods among
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those that are available, it is critical to evaluate these methods under different scenarios of
within-paper non-independence.

Despite the ubiquity of non-independence within papers, the performance of various
methods attempting to address this issue has not been comprehensively evaluated in the
context of ecological meta-analysis. In this study, we performed simulation experiments to
examine the effectiveness of different methods used to address non-independence with the
intent of providing practical guidance on choosing appropriate methods for ecological meta-
analysis. Specifically, we simulated datasets that had a hierarchical structure, with multiple
studies within each source paper used in the meta-analysis. The simulated data ranged
from no correlation to strong but unequal correlation among observed effect sizes within the
same source paper, and allowed for plausible variation in the number of observed effect sizes
per source paper. We applied five analytic methods to each simulated data set and assessed
their performance: four methods that have been proposed to handle non-independence within

papers as well as the all-too-common method of simply ignoring the issue.

Methods

We simulated meta-analyses consisting of data from 20 papers, each containing a number
of studies (Fig 1). For each study, we simulated replicated control and treatment groups,
with data from each source paper simulated to obtain various patterns of non-independence
among observed effect sizes within the paper. For each study, we calculated a log response
ratio and its estimated variance. The log response ratio is the most commonly used effect
size metric in ecology (Nakagawa and Santos 2012), but our qualitative results should apply
to other metrics as well. We estimated the overall mean effect size using alternative meta-

analysis methods that differ in how they account for non-independence and compared the
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their performance. We conducted two sets of simulation experiments (Fig. Al). In the first
experiment, observed effect sizes from the same source paper were correlated with the same
correlation coefficients for all pairs. In the second experiment, we varied the correlation

between pairs of observed effect sizes.

Stmulation of data for an individual study

We simulated a response variable y in the control and treatment group for each study as

Yeijk = HEcijk (1)

Ytijk = Olj UELijk, (2)

where ., and y., are the response variables for the kth replicates in the control and
treatment group of study j in paper ¢, €.;x and &4, are random errors following log-normal

distributions, and «; is the multiplicative treatment effect, which can be decomposed as
Oéij = Oé€ij. (3)

Here, e;; represents the study-specific random deviation from the mean treatment effect and
is assumed to follow a log-normal distribution. Once data for each study were simulated,
we calculated a log response ratio for each study (6;;) as log(¥s;/Vei;), and its variance as
var (Ve ) /i Uiz + var(Yei;) /NeijUeij -, where ne; and ng; are the number of replicates in the
control and treatment groups for study j within source paper i (Hedges et al. 1999).
Patterns of non-independence in the simulations

Based on this simulation approach, the log response ratio for each study, 6;;, follows a normal
distribution asymptotically with mean log(a) + log(e;;) (Hedges et al. 1999). Thus, we can

express ¢;; simulated by equations 1-3 as

97;]' = log(a) + 10g(€ij) + €ij- (4)

7
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Equation 4 matches a random-effects meta-analysis model. Here, log(a) is the mean effect
size, log(e;;) is the random study effect, and ¢;; is the within-study error. Both log(e;;) and
€;; are normally distributed.

Non-independence among 6;; within papers may occur through correlations among log(e;;)
and/or €;;. Typically, correlation among ¢;; arise from using shared control or measuring the
same group of subjects in studies with multiple endpoints. The resulting correlation struc-
ture in ¢;; can be explicitly calculated and incorporated in the meta-analysis model (Gleser
and Olkin 2009, Lajeunesse 2011). Therefore, we assumed independence among ¢;; and only
considered non-independence arising from correlation among the random study effects, i.e.
cov(0;;,0:) = cov(log(e;;),log(e;)) for study j and k in paper i.

We conducted simulation experiments with two patterns of non-independence. In the first
experiment, the random study effects from the same source paper were equally correlated
(i.e.,cov(8,;,0:x) = pr?, where p is the correlation coefficient between each pair of observed
effect sizes and 72 is the variance of log(e;;)). We included a special case of zero correlation
(independence) in the first experiment. In the second experiment, the random study effects
within a source paper were correlated but the correlation was not equal (cov(s;;, six) =
piikT?). Here, the correlation coefficient, p;;x, was allowed to vary among pairs of observed
effect sizes. We subscripted the among-study variance 72 because we sometimes allow this
quantity to vary among papers in the second experiment. In both experiments, we only
considered non-negative correlations, given that similar contexts and shared data for studies
from the same source paper would be expected to lead to similar, rather than dissimilar,
observed effect sizes within a paper.

Patterns of non-independence in 6;; were simulated by drawing log(e;;) for each source

paper from multivariate normal distributions with appropriate covariance matrices. The co-
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variance matrix was generated as KRK, where K is matrix with 7 as the diagonal elements
and R is the correlation matrix. In the first experiment, R was a matrix with 1 at the
diagonal positions and the same correlation coefficient p at all other positions. In the second
experiment, R was a symmetric matrix with 1 at the diagonal positions and different corre-
lation coefficients at all others to reflect the fact that studies were unequally correlated. We
used the C-vine method proposed in Lewandowski et al. (2009) to generate such correlation

madtrices.

Details of experimental design

In the simulation experiments, we did not systematically vary the parameters that were not
expected to influence how well methods address non-independence. Specifically, we set u at
10 and « at 1. We simulated log(eg;;x) from a normal distribution with mean 0 and standard
deviation randomly chosen between 0.1-0.3 for each study. The number of replicates for each
study, equal for both the control and treatment groups, was chosen with equal probability
from integers between 3-20. Finally, we set the number of papers at 20, a relatively low
number in ecological meta-analysis. Methods that perform well in this situation are expected
to perform at least as well if the meta-analysis contains more papers.

We systematically varied the parameters that we expected to influence the efficacy of
methods used to address non-independence, including the number of studies per paper, the
magnitude of correlation among observed effect sizes from the same source paper, and the
among-study variability. Below, we provide the levels of these parameters and the rationales
for these choices.

Number of studies per paper: We examined the frequency distribution of the num-
ber of studies per paper (n;) in 15 published ecological meta-analyses chosen haphazardly

(Appendix S1: Section S1). A shifted negative binomial distribution adequately described
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the frequency distribution of n; (Appendix S1: Fig. S1): i.e., n; — 1 followed a negative
binomial distribution. We also found that the mean and standard deviation of n; — 1 were
correlated on the logarithmic scale (Appendix S1: Fig. S2). Therefore, we chose three levels
for the mean of n; — 1 spanning the observed range (0.5, 4.5 and 14.5) and calculated the
corresponding standard deviation (1.1, 7.0, and 18.7) based on the linear regression. We
then drew n; — 1 for each paper from a negative binomial distribution with the mean and
standard deviation specified above.

Correlation coefficient: In the first experiment, in which the correlation coefficient (p)
was the same for all pairs of study within a paper, we set p at 0, 0.1, 0.5, and 0.9, ranging from
independence to quite strong correlation. In the second experiment where p varied among
pairs of studies within the same paper, we set the range of p for each paper. Because the
C-Vine method (Lewandowski et al. 2009) generates a correlation matrix from user-specified
partial correlation coefficients, we randomly chose partial correlation coefficients from two
uniform ranges: 0.1-0.4 and 0.6-0.9. The resulting ranges for pairwise correlations generally
matched these specified ranges for the partial correlations.

Among-study variance: In the first experiment where correlation between pairs of ob-
served effect sizes is equal, we set levels of the standard deviation for among-study variability,
7, at 0.1, 0.5, and 1. The chosen levels represent plausible ranges in ecological meta-analyses.
For example, a 7 of 1 led to the treatment effect for a particular study, «;;, ranging between
14% to 710% of the mean treatment effect for 95% of the studies. A 7 of 0.1 led to a range of
82% to 122%. In addition, our choice of among-study variance and among-replicate variance
within a study are also consistent with the typical proportion of within- and among-study
heterogeneity in ecological meta-analyses (Senior et al. 2016).

In the second experiment where correlation between pairs of observed effect sizes is un-

10
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equal, we used the same three levels of 7 and added a new scenario in which 7 varied among
papers. This scenario is plausible in ecological meta-analyses. For example, some papers
included in the meta-analysis may contain studies from more diverse environments than oth-
ers (Hillebrand and Gurevitch 2014). For this scenario, we chose 7 for each paper from a

uniform distribution between 0.1 and 1.

Methods of meta-analysis for non-independent data
We evaluated five methods commonly used in ecological meta-analysis. The five methods
are: 1) the standard random-effects meta-analysis model that ignores non-independence; 2)
a two-step method in which we analyze the weighted mean effect size for each paper in a
random-effect meta-analysis model. This is equivalent to performing a fixed-effect meta-
analysis for each paper and using the resulting means and their standard errors from the
fixed effect model in the second step; 3) a two-step method in which we analyze one randomly
chosen observed effect size from each paper in a random-effects meta-analysis model; 4) a
hierarchical model that included a random paper effect and a random study effect; and 5) a
robust variance estimation method for meta-analysis (Hedges et al. 2010).

All random-effects meta-analysis models were implemented using the function “rma” in
R (version 3.6.2) package “metafor” (version 2.1) (Viechtbauer 2010) with the variance of
the random effects estimated by restricted maximum likelihood (Veroniki et al. 2016). We
constructed confidence intervals based on the adjustment proposed by Hartung and Knapp
(2001) and Sidik and Jonkman (2002). We implemented the method with a random paper
effect using function “rma.mv” in “metafor”, and constructed confidence intervals based on
the t-distribution of the Wald statistic. Finally, we implemented the robust variance estima-
tion method using function “robu” in R package “robumeta” with the default weights and

adjustment for small sample size (Fisher et al. 2017). Code for the simulation experiments

11
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are provided in Data S1.

Metrics for model performance

We evaluated the performance of methods by the precision of the estimated mean effect
size and the type I error rate. We calculated the standard deviation of the estimated mean
effect size over the 5000 iterations of simulations as the measure of precision. We calculated
type I error rate as the percentage of times in the simulations when the 95% confidence
interval for the mean effect size did not cover the true value. The confidence interval for the
estimated error rate was calculated based on the binomial distributions for the number of
falsely significant results in the simulations. None of the methods produced appreciable bias

in the estimated mean effect sizes and we therefore do not present results about bias.

Results

Precision of estimated mean effect size

For clarity of presentation, the figures contain a representative subset of results. Full results
can be found in Appendix S1: Fig. S3 and S4. The standard random-effects meta-analysis
model that assumes independence among observed effect sizes had a low standard deviation
when the observed effect sizes were actually independent(Fig. 2), but resulted in a higher
standard deviation when observed effect sizes were non-independent (Fig. 2). The loss
of precision was more pronounced when the correlation was strong (Fig. 2). Among the
four methods that account for non-independence, the two-step method using one randomly
chosen study from each paper had a consistently high standard deviation. This problem of
low precision, however, was less severe when correlations among observed effect sizes were
strong(Fig. 2). The methods that included a random paper effect performed consistently

well in terms of precision under all scenarios considered in the simulations. Finally, the

12
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two-step method using a weighted paper mean and the robust variance estimation method
gave low standard deviations except when observed effect sizes from the same source paper

were independent.

Type I error rates

The standard random-effects model that ignored non-independence substantially inflated
the type I error rates (Fig. 3), sometimes to over 70%, unless observed effect sizes were
independent or only mildly non-independent (i.e., low correlation and very few observed effect
sizes per paper) (Fig. 3). Under all scenarios of non-independence, all four methods that
accounted for non-independence offered substantial improvement in error rates. Surprisingly,
including a random paper effect led to error rates consistently above the correct level of 5%
(between 5% and 8%) in the presence of non-independence (Fig. 3). The two-step method
that used one study from each paper gave correct error rates consistently. The two-step
method using a weighted paper mean and the robust variance estimation method both gave
correct error rates when observed effect sizes were non-independent. However, these two
methods sometimes generated error rates significantly lower than the correct level of 5%

when observed effect sizes were independent (Fig. 3).

Discussion

Non-independence among observed effect sizes from the same source paper is common in
ecological meta-analyses and can arise through a variety of mechanisms, such as shared
experimental subjects, common experimental sites, or similar methodology (Noble et al.
2017). The variety of mechanisms leading to within-paper non-independence gives rise to
different patterns and strength of correlations among observed effect sizes from the same

source paper. Our simulations, using ecologically realistic parameter values, represent a
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broad range of scenarios. We found that treating non-independent data as if they were
independent caused error rates that were substantially higher than the correct level (5% for
a 95% confidence interval) unless the observed effect sizes were only mildly non-independent
(i.e., low mean n; and p) (Fig. 3). Even for the lowest non-zero level of non-independence,
the error rate was still non-negligibly above the correct level of 5%. All four methods
that accounted for non-independence offered considerable improvements with regard to error
rates. In addition, ignoring non-independence led to imprecise estimates of the mean effect
size when the correlation among studies was strong. Because meta-analyses in ecology are
still often done using methods that ignore non-independence (Gurevitch and Hedges 1999,
Nakagawa and Santos 2012, Noble et al. 2017), our study demonstrates an urgent need for
meta-analysts to adopt methods that account for this.

The two step method with one randomly chosen study from each paper consistently pro-
duced less precise estimates compared to other methods that accounted for non-independence
(Fig. 2), presumably because valuable information was discarded using this method. The
decrease in precision was sometimes substantial. For example, when observed effect sizes
from the same source paper were equally correlated with p = 0.1, 7 = 1, and E(n;) = 15.5,
the standard deviation of the estimated mean effect size based on this method was 0.225
compared to 0.104 based on the method with a random paper effect. The response ratio
would be between 0.64-1.55 95% of the time using this method compared to 0.82-1.23 using
the method with a random paper effect. Although error rates based on this method were
consistently correct (Fig. 3), other methods offered comparable performance in error rate
but substantially better performance in precision. As a result, we do not recommend this
method as a general way to handle non-independence within papers.

Including a random paper effect consistently inflated the type I error rates. Surprisingly,
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this method inflated error rates even when it was the correct model (i.e., when observed
effect sizes from the same source paper had equal correlation). We speculate that the consis-
tently higher than correct error rates arose from the limitation of the methods for statistical
inference in hierarchical models currently implemented in “metafor”. Confidence intervals
for parameter estimates were constructed based on a t-distribution for the Wald statistic,
which is known to cause high error rates, primarily because uncertainty in the standard
error estimates is not fully accounted for (Pinheiro and Bates 2000). Although we do not
recommend this specific method due to the higher error rates, the issue causing this problem
could likely be resolved. In the general mixed-effect model literature, this issue is addressed
by adjusting the degrees of freedom for a t- or F-test (Kenward and Roger 1997). Implemen-
tation of these inferential methods in hierarchical meta-analysis models could be valuable,
considering the high precision (Fig. 2) and the unique advantage of partitioning sources of
variation using hierarchical models. To date, no meta-analysis software has these methods
implemented. Improvements to metafor could be extremely useful since it has become the
most versatile and widely used software for meta-analysis using the frequentist approach.
Both the two-step method with a weighted mean for each paper and the robust variance
estimation method controlled error rates well and had similar standard deviations over the
range of conditions we explored. There was, however, some cost in terms of low statistical
power, as evidenced by error rates significantly lower than 5%, when these methods were
applied to data that were actually independent; but that cost disappeared in the presence
of non-independence. There are potential shortcomings with these two methods (Appendix
S1: Section S2). For example, the robust variance estimation method requires user-specified
weights (Hedges et al. 2010). Because weights proportional to the inverse covariance matrix

give the most efficient estimates but the user does not know the covariance matrix, this
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method may be far from optimal and result in less efficient estimates. Additionally, the
robust variance estimation method is asymptotic and thus requires sufficient number of
papers to be effective. The two-step method using the mean for each paper also has potential
limitations. For example, the variance of the true mean for each paper will generally vary
among papers, with means from papers with many studies having lower variance. This
heterogeneity is not accounted for. These issues, however, do not appear to substantially
influence the performance of these two methods. Taken together, we suggest either using the
robust variance estimation method or the two-step method starting with a weighted mean for
each paper to handle non-independence within papers, at least when conditions (i.e., number
of papers, number of studies per paper, levels of variation, and degrees of non-independence)

are expected to be similar to the conditions we explored in the simulations.
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Figure 1 Diagram of the experimental design. In experiment 1, observed effect sizes from
the same source paper were correlated with the same correlation coefficient for all pairs.
In experiment 2, the magnitude of correlation varied for pairs of observed effect sizes. We
systematically varied mean number of studies per paper (n;), correlation among observed
effect sizes within the same paper (p), and among-study variability (7). For each combination
of the experimental factor levels, steps 1-3 were repeated 5000 times. The estimated mean
effect sizes for each of the five methods over the 5000 iterations were used to quantify the

standard deviation of the estimates and the type I error rate in step 4.

Figure 2: Standard deviations of the estimated mean effect size based on the five meta-
analysis methods. The mean and standard deviation of the distribution for the number of
studies per paper, the among-study standard deviation (7), and the correlation coefficient
among observed effect sizes from the same paper (p) are noted on each panel. Methods
1-5 are 1) random-effect meta-analysis model, 2) two-step method using a weighted mean
from each paper, 3) two-step method with one randomly chosen observed effect sizes from
each paper, 4) meta-analysis with random paper and study effects, and 5) robust variance

estimation method.

Figure 3: Type I error rates based on the five meta-analysis methods. Error bars are 95%
confidence intervals. Error rates exceeding 10% are indicated with the actual error rates.
The mean and standard deviation of the distribution for the number of studies per paper, the
among-study standard deviation (7), and the correlation coefficient among observed effect
sizes within the same paper (p) are noted on each panel. Methods 1-5 are 1) random-effect
meta-analysis model, 2) two-step method using a weighted mean from each paper, 3) two-step
method with one randomly chosen observed effect sizes from each paper, 4) meta-analysis

with random paper and study effects, and 5) robust variance estimation method.
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