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ABSTRACT: The Arctic has experienced a warming rate higher than the global mean in the past decades, but previous

studies show that there are large uncertainties associated with future Arctic temperature projections. In this study, near-

surface mean temperatures in the Arctic are analyzed from 22 models participating in phase 6 of the Coupled Model

Intercomparison Project (CMIP6). Compared with the ERA5 reanalysis, most CMIP6 models underestimate the observed

mean temperature in the Arctic during 1979–2014. The largest cold biases are found over the Greenland Sea the Barents

Sea, and the Kara Sea. Under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios, the multimodel ensemble mean of 22 CMIP6

models exhibits significant Arctic warming in the future and the warming rate is more than twice that of the global/Northern

Hemisphere mean. Model spread is the largest contributor to the overall uncertainty in projections, which accounts for

55.4% of the total uncertainty at the start of projections in 2015 and remains at 32.9% at the end of projections in 2095.

Internal variability uncertainty accounts for 39.3% of the total uncertainty at the start of projections but decreases to 6.5%

at the end of the twenty-first century, while scenario uncertainty rapidly increases from 5.3% to 60.7% over the period from

2015 to 2095. It is found that the largest model uncertainties are consistent cold bias in the oceanic regions in the models,

which is connected with excessive sea ice area caused by the weak Atlantic poleward heat transport. These results suggest

that large intermodel spread and uncertainties exist in the CMIP6 models’ simulation and projection of the Arctic near-

surface temperature and that there are different responses over the ocean and land in the Arctic to greenhouse gas forcing.

Future research needs to pay more attention to the different characteristics and mechanisms of Arctic Ocean and land

warming to reduce the spread.
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1. Introduction

Enhanced warming in the Arctic (north of 668N) is seen in

recent observations and model simulations, a phenomenon

called Arctic amplification (AA) (Cohen et al. 2014; Screen

and Simmonds 2010). AA acts as a robust response to global

climate change and could have profound impacts on the cli-

mate system, resulting in Arctic sea ice shrinkage (Box et al.

2019; Richter-Menge et al. 2020; Stroeve and Notz 2018), di-

minished mass balance of the Greenland ice sheet (Mouginot

et al. 2019; Pattyn et al. 2018), and release of the potent

greenhouse gas methane from the thawing Arctic permafrost

(Portnov et al. 2016). Additionally, there are indications that

AA can intensify extreme climate events in the northern

midlatitudes, but this view remains controversial (Blackport

and Screen 2020; Cohen et al. 2014, 2020; Deng et al. 2020).

Thus, it is essential to understand climate processes in the

Arctic to improve our understanding of future climate change.

A major challenge, however, is the limited observations and

in situ measurements in the polar region (Cowtan and Way

2014). Therefore, some studies are based on interpolation and

other statistical methods to fill data gaps in the Arctic (Dodd

et al. 2015; Huang et al. 2017; Rohde et al. 2013).

As numerical models have improved, climate models have

become one of the primary tools for understanding patterns

and mechanisms of climate change and for projecting future

climate. However, climate feedbacks caused by the complex

interactions between the ocean, sea ice, and atmosphere

make simulating and projecting Arctic warming particularly

challenging, and large uncertainties remain (Knutti 2008;

Overland et al. 2011; Serreze and Francis 2006). Models

cannot well represent local feedbacks that have great influ-

ences on Arctic warming such as sea ice-albedo feedback,

Planck feedback, lapse-rate feedback, and cloud and water

vapor feedback (Bonan et al. 2018; Goosse et al. 2018; Hu

et al. 2020; Pithan and Mauritsen 2014; Stuecker et al. 2018).

For example, models lack consistency in simulating the

magnitude and spatial pattern of sea ice loss, new open water,

and troposphere–stratosphere coupling (Screen et al. 2018),

which will contribute to the intermodel spread in ocean–

atmosphere heat exchange (Boeke and Taylor 2018) and at-

mosphere response to Arctic sea ice loss (Screen et al. 2018).

Additionally, many models simulate too little liquid water in
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low-level Arctic clouds, which leads to errors in surface

downwelling radiation and surface temperature response

(Barton et al. 2014; Karlsson and Svensson 2013). Nonlocal

processes cannot be ignored either (Bonan et al. 2018), as

differences in the northward ocean heat flux among models

lead to intermodel spread of sea ice concentration, which

affects the surface temperature through the energy balance

budget (Hodson et al. 2013; Mahlstein and Knutti 2011).

Understanding the different responses of global climate

models (GCMs) in reproducing Arctic temperature and the

reasons for the simulation biases constitutes the basis for

projecting future Arctic warming.

The simulations and projections of climate change in the

Arctic have been assessed using GCMs from phases 3 and 5

of the Coupled Model Intercomparison Project (CMIP3 and

CMIP5) under different scenarios of greenhouse gas emis-

sions (Chapman and Walsh 2007; Hao et al. 2018; Liu et al.

2008; Tao et al. 1996). For example, many previous studies

have focused on the performance of GCMs in reproducing

the Arctic sea ice extent and thickness and surface radiation

budget, which are essential to understand the ‘‘newArctic’’ in

the future climate (Barton et al. 2014; Davy and Outten 2020;

Landrum and Holland 2020; Senftleben et al. 2020; Wu et al.

2019). In terms of surface mean temperature, the Fourth and

Fifth Assessment Reports of the Intergovernmental Panel on

Climate Change (IPCCAR4 andAR5) used theCMIP3/CMIP5

GCMs to evaluate the intermodel differences of global mean

temperature (IPCC 2007, 2013). Some studies suggest that a

large variation of intermodel differences exists in modeling the

magnitude of Arctic warming, and most GCMs have large cold

biases, while the temperature trend is overestimated (Chapman

andWalsh 2007; Davy and Outten 2020; Hao et al. 2018; Huang

et al. 2019; Koenigk et al. 2013;Wang et al. 2020;Wei et al. 2018;

Xie et al. 2016; X. Zhou et al. 2019).

Compared with CMIP5 models, the new-generation CMIP6

models have higher resolutions and are run using a combination

of a representative concentration pathway (RCP) and a Shared

Socioeconomic Pathway (SSP) scenario (Eyring et al. 2016;

Taylor et al. 2012). Although a previous study has evaluated

Arctic near-surface temperatures in the CMIP6 models (Davy

and Outten 2020; You et al. 2021), there have only been limited

studies on quantifying the uncertainty in the CMIP6 Arctic-only

projections. Quantitative research on uncertainty can help to

understand the deficiencies in the models’ abilities to accurately

simulate Arctic temperatures. Thus, this study aims to 1) eval-

uate the performance of the CMIP6 models in simulating Arctic

near-surface temperatures during the contemporary period

(1979–2014); 2) assess future climate change in the Arctic based

on the CMIP6 model simulations in the near-term (2021–40),

midterm (2041–60), and long-term (2081–2100); and 3) quanti-

tatively analyze the uncertainties in the model projections.

2. Data and methods

a. Data

The monthly near-surface mean temperature outputs from

the historical experiment and ScenarioModel Intercomparison

Project (ScenarioMIP) of the 22 CMIP6 models were collected

(Table 1). The monthly sea ice area concentration and north-

ward ocean heat transport output from the historical experi-

ment were used in this study (Table 1). The model outputs are

TABLE 1. Information about the CMIP6 models in this study, including model name, originating group/country, horizontal resolution for

the atmospheric component, and data availability for this study (indicated with a check mark ✓).

Model Country

Horizontal

resolution

Surface

temperature

Sea ice area

percentage

Northward ocean

heat transport

1 ACCESS-CM2 Australia 192 3 144 ✓ ✓ —

2 AWI-CM-1-1-MR Germany 384 3 192 ✓ — —

3 BCC-CSM2-MR China 320 3 160 ✓ ✓ —

4 CAMS-CSM1-0 China 320 3 160 ✓ ✓ —

5 CanESM5 Canada 128 3 64 ✓ ✓ ✓

6 CESM2 United States 288 3 192 ✓ ✓ —

7 CESM2-WACCM United States 288 3 192 ✓ ✓ —

8 EC-Earth3 European 512 3 256 ✓ ✓ ✓

9 EC-Earth3-Veg European 512 3 256 ✓ ✓ ✓

10 FGOALS-f3-L China 288 3 180 ✓ ✓ ✓

11 FGOALS-g3 China 188 3 80 ✓ ✓ ✓

12 FIO-ESM2-0 China 288 3 192 ✓ ✓ —

13 GFDL-ESM4 United States 288 3 180 ✓ ✓ —

14 INM-CM4-8 Russia 180 3 120 ✓ ✓ —

15 INM-CM5-0 Russia 180 3 120 ✓ ✓ —

16 IPSL-CM6A-LR France 144 3 143 ✓ ✓ ✓

17 MIROC6 Japan 256 3 128 ✓ ✓ ✓

18 MPI-ESM1-2-HR Germany 384 3 192 ✓ ✓ ✓

19 MPI-ESM1-2-LR Germany 192 3 96 ✓ ✓ ✓

20 MRI-ESM2-0 Japan 320 3 160 ✓ ✓ ✓

21 NESM3 China 192 3 96 ✓ ✓ —

22 NorESM2-LM Norway 144 3 96 ✓ ✓ ✓
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available from https://esgf-node.llnl.gov/search/cmip6/. Because

many models lack a sufficiently large ensemble at this time, only

the first ensemblemember of eachmodel (r1i1p1f1) is selected to

make the comparisons fair. The future scenarios are based on

three Shared Socioeconomic Pathways (SSPs): SSP1-2.6, SSP2-

4.5, and SSP5-8.5. These three scenarios add the SSP1, SSP2, and

SSP5 socioeconomic pathways to the RCP2.6, RCP4.5, and

RCP8.5 radiative forcing scenarios, respectively (Gidden et al.

2019; O’Neill et al. 2016).

Most areas of the Arctic are covered by the Arctic Ocean,

and the observational conditions are relatively harsh (Fig. 1).

Because there are almost no meteorological stations above

758N in the Arctic, the monthly mean 2-m temperature data

from the ERA5 reanalysis (Hersbach et al. 2020) are used as

the benchmark field to evaluate the CMIP6 models.

Although ERA5 is constrained by observations, the re-

analysis could still suffer from biases from the underlying

model (Graham et al. 2019; Lindsay et al. 2014; Wang et al.

2019). Therefore, we also evaluated the 2-m temperatures in

ERA5 against observations from meteorological stations and

the Berkeley Earth Surface Temperature (BEST) dataset in

the Arctic during the period 1979–2014. The surface air tem-

perature station observations were taken from the National

Aeronautics and Space Administration’s (NASA) Goddard

Institute for Space Studies surface temperature analysis v4

(GISTEMP) (Lenssen et al. 2019; Rohde and Hausfather 2020),

which is available from https://data.giss.nasa.gov/gistemp/station_

data_v4_globe/. Considering the completeness of the time se-

ries and the location of the stations, 32 stations within the

Arctic Circle were selected and compared with the data in the

closest grid points in ERA5. The information of the 32 stations

is shown in Table 2. The BEST dataset is available from

http://berkeleyearth.org/data/ (Rohde et al. 2013; Rohde and

Hausfather 2020).

b. Model performance evaluation analysis

The CMIP6 model simulations were evaluated against the

ERA5 benchmark by first regridding the model and reanalysis

fields onto a common 1.58 3 1.58 grid using bilinear interpo-

lation and calculating the annual mean temperatures based on

the monthly data. To evaluate the spatial characteristics, we

temporally averaged the near-surface temperature field during

1979–2014 to minimize the influence of internal variability.

Then, we calculated the correlation coefficient (R), centered

root-mean-square error (RMSE), and ratio of standard devi-

ations (RSTD) between the simulation and benchmark, and

visualized these metrics using Taylor diagrams (Taylor 2001).

The best model simulation results for spatial characteristics are

when the R and RSTD are close to 1 and RMSE is close to 0.

Note that the centered RMSEs do not account for overall

biases in the models. Model biases are instead reflected in the

temporal evaluation metrics. For evaluating the temporal

FIG. 1. Map of Arctic land surface elevation and location of meteorological stations used in this

study. The numbers 1–32 refer to the stations listed in Table 2.
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temperature characteristics in the Arctic, we averaged the

near-surface mean temperatures northward of 668N and then

compared the means, trends, and interannual variations of the

annual mean temperature time series between the models and

benchmark. The performance of the mean temperatures and

the temperature trends is based on the absolute difference of

the models and benchmark, and the smallest absolute bias

represents the best performance. An interannual variability

skill (IVS) was calculated tomeasure the accuracy of themodel

to simulate the interannual variations of the Arctic near-

surface temperature (Chen et al. 2011):

IVS5

�
s
to

s
tm

2
s
tm

s
to

�2

,

where sto and stm denote the interannual standard deviations

of the benchmark and simulation, respectively. An IVS value

closer to 0 indicates higher skill while a large IVS value indi-

cates poor skill.

We also summarized the models’ overall performances

using a spatial skill score and a temporal rank score. The spatial

skill score was calculated using the Taylor skill score (TS)

(Taylor 2001):

TS5
4(11R)2�

s
sm

s
so

1
s
so

s
sm

�2

(11R
0
)
2

,

where ssm and sso are the standard deviations of the simulated

and benchmark spatial fields, R is the spatial correlation co-

efficient for the evaluated model, and R0 is the maximum

spatial correlation coefficient over all models. Theoretically, a

TS value of 1.0 indicates that the simulation exactly corre-

sponds to the benchmark, while a smaller TS value indicates a

poorer fit.

The temporal rank score (TR) was calculated based on the

differences in Arctic near-surface mean temperatures, tem-

perature trends, and interannual variations between the

models and benchmark. The model with the smallest absolute

difference of the mean temperature and temperature trend

from the benchmark and the IVS closest to 0 performs best.

The average of the model rankings of these three indicators is

used as a TR of the model, with smaller values indicating

higher skill.

Finally, we ranked the models according to their TS and TR

values. To transform the model rankings ranki (ranging from 1

TABLE 2. Observational station information: name, coordinate, elevation, temperature trend (1979–2014), mean temperature (1979–

2014). All trends are significant at the 0.05 significance level.

Station Longitude Latitude Elevation (m) Temperature trend (8C decade21) Mean temperature (8C)

1 Ostrov Vrangelja 178.48338W 70.98318N 2.0 0.85 210.1

2 Barrow Post Rogers Ap 156.78148W 71.28338N 9.4 0.37 210.2

3 Inuvik A 133.48338W 68.30008N 68.0 0.77 27.9

4 Kugluktuk A 115.15008W 67.81678N 23.0 0.61 210.2

5 Cambridge Bay A 105.13338W 69.10008N 31.0 0.63 213.8

6 Eureka 85.93338W 79.98338N 10.0 0.81 218.8

7 Resolute Cs 94.98338W 74.71678N 30.0 0.78 215.6

8 Pond Inlet 77.96678W 72.68338N 62.0 0.69 214.1

9 Hall Beach A 81.25008W 68.78338N 9.0 0.80 213.3

10 Thule Op Site 68.83338W 76.51678N 77.1 0.72 210.8

11 Jan Mayen 7.33008W 70.93008N 10.0 0.75 20.2

12 Ny Alesund 11.93318E 78.92308N 8.0 0.91 25.1

13 Barencburg 14.30008E 78.10008N 49.0 1.03 24.7

14 Bjoernoeya 19.01678E 74.51678N 16.0 0.81 21.1

15 Vardo 31.10008E 70.36708N 15.0 0.61 2.1

16 Maliye Karmakuly 52.73008E 72.37948N 18.0 0.79 24.4

17 Amderma 61.70008E 69.75008N 53.0 0.69 26.1

18 Ostrov Vize 76.98008E 79.50008N 10.0 1.53 213.0

19 Dikson 80.40008E 73.50008N 42.0 0.78 210.8

20 Gmo Imekfedorova 104.30008E 77.72008N 12.0 1.10 214.2

21 Hatanga 102.46678E 71.98318N 31.0 0.68 212.3

22 Saskylah 114.08008E 71.97008N 16.0 0.83 213.8

23 Dzalinda 1 113.97008E 70.12978N 61.0 0.86 213.0

24 Kjusjur 127.40008E 70.68008N 30.0 0.59 213.1

25 Tiksi 128.91978E 71.58008N 6.0 0.64 212.7

26 Ostrov Kotelnyj 137.87008E 76.00008N 12.0 0.97 214.1

27 Chokurdah 147.88318E 70.61678N 44.0 0.72 213.1

28 Cherskij 161.28308E 68.75008N 28.0 0.77 210.4

29 Danmarkshavn 18.67008W 76.77008N 12.0 0.50 211.4

30 Slettnes Fyr 28.21788E 71.08398N 8.0 0.39 2.2

31 Svalbard Airport 15.46678E 78.25008N 28.0 1.19 24.9

32 Tromsolangnes 18.91318E 69.67678N 8.0 0.53 2.8
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to m, where m is the number of models and rank 1 is the best

performingmodel) to a number between 0 and 1, we calculated

an MR value (Jiang et al. 2015) for each model:

M
R
5 12

rank
i

m
.

AnMR value closer to 1 indicates a better fit of themodel to the

benchmark.

c. Uncertainty analysis

Uncertainty in climate projections arises from three distinct

sources (Hawkins and Sutton 2009, 2011; Lehner et al. 2020).

The first uncertainty is due to the internal variability of the

climate system, which represents the uncertainty in the state of

the climate system in the absence of any anthropogenic radi-

ative forcing of the planet. The second is the model uncertainty

due to model structural differences, which causes different

models to produce different projections for the same radiative

forcing and internal variability. The third is scenario uncer-

tainty due to uncertainties in the future radiative forcing and

socioeconomic pathway (Hawkins and Sutton 2009, 2011; Lehner

et al. 2020). Below we follow the methods proposed by Hawkins

and Sutton (2009, 2011) to separate and quantify these uncer-

tainty sources.

Each individual prediction is estimated using ordinary least

squares with a fourth-order polynomial during the period

1854–2095 (9-yr running window over 1850–2099). The pre-

dictions X for each model m, scenario s, and year t can be

written as

X
m,s,t

5 x
m,s,t

1 i
m,s

1 «
m,s,t

,

where xm,s,t is the smooth fit, im,s is the reference temperature

(mean of years 1986–2005) that was estimated from the smooth

fit, and «m,s,t is the residual.

The internal variability component V is computed from the

multimodel mean of the variances of the residuals:

V5�1

n
var

s,t
(«

m,s,t
),

where n is the number of models (n5 22) and vars,t denotes the

variance across all scenarios and across time.

The model uncertainty for each scenario is estimated from

the variance in the different model prediction estimate. The

multiscenario mean of the variance of the model prediction fits

is taken as an estimate of the model uncertainty M(t):

M(t)5
1

N
s

�
s

var
m
(x

m,s,t
),

where Ns is the number of scenarios (Ns 5 3).

The scenario uncertainty S(t) is calculated from the variance

of the multimodel mean over the three scenarios (SSP1-2.6,

SSP2-4.5, and SSP5-8.5):

S(t)5 var
s

�
�
m

1

n
x
m,s,t

�
.

It is assumed that the three uncertainty sources are all inde-

pendent. Thus, the total variance T(t) is

T(t)5V1 S(t)1M(t) ,

and the mean change of all the predictions G(t) above the

reference temperature is

G(t)5
1

N
s

�
m,s

1

n
x
m,s,t

.

The total fractional uncertainty F(t) (90% confidence level) is

calculated as follows:

F(t)5
1:65

ffiffiffiffiffiffiffiffiffi
T(t)

p
G(t)

,

where 1.65 is the Z score for the 90% confidence interval. The

corresponding fractional uncertainty for internal variability

FV(t), model uncertainty FM(t), and scenario uncertainty

FS(t) (90% confidence level) are calculated as 1:65
ffiffiffiffi
V
p

/G(t),

1:65
ffiffiffiffiffiffiffiffiffiffi
M(t)

p
/G(t), and 1:65

ffiffiffiffiffiffiffiffi
S(t)

p
/G(t), respectively. The frac-

tion of total variance is the proportion of each component to

the total fractional uncertainty F(t), which defines the relative

importance of the three uncertainty sources. This method has

been widely used in the uncertainty analysis of regional climate

projections (Hawkins and Sutton 2009, 2011; Hodson et al.

2013; Wu et al. 2020). Lehner et al. (2020) reported that single

model initial-condition large ensembles (SMILEs) allow a

more robust separation between sources of uncertainty, espe-

cially in the estimation of internal variability. We also inves-

tigated the role of internal variability from six CMIP6 models

(CanESM5, EC-Earth3, GISS-E2-1-G, IPSL-CM6A-LR,MIROC6,

and ACCESS-ESM1-5) that already provided more than 10

ensembles at this time.

The signal-to-noise ratio (s), which can also be used to as-

sess the reliability of future projections, is usually defined as

s5
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n
�
n

i51

(x
i
2 x)

2

s ,

where n is the number of models (n5 22), x is the mean change

of a projection, and xi is the change of an individual model’s

projection. The numerator is taken as the signal and the de-

nominator as the noise, with the latter calculated as the stan-

dard deviation between the models. When s . 1 this indicates

that the signal is greater than the noise, that is, the projected

change is distinguishable from internal variability and model

error. A larger s value typically indicates a higher reliability in

the forced response (Zhou and Yu 2006).

3. Results

a. Evaluation of CMIP6 models’ performance

To measure the accuracy of the ERA5 reanalysis, we com-

pared it with the ground-based station observations shown in

Fig. 1 and Table 2. Figure 2 shows the time series of the annual

near-surfacemean temperature of theArctic from 1979 to 2014

and the differences in near-surface mean temperatures and

temperature trends between ERA5 and observations during
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FIG. 2. Comparison of (left) the ERA5 reanalysis with 32 observational stations and (right) the Berkeley Earth

Surface Temperatures dataset (BEST) during 1979–2014. (a) Time series of annual mean near-surface temperature

of 32 observational stations and the corresponding closest grid point in ERA5. (b) Time series of annualmean near-

surface temperature of BEST and ERA5 (relative to the period during 1951–80). Here we used the ERA-BE (back

extension) to compute the 1951–80 baseline. (c) Differences in the near-surface mean temperature (8C) of the
Arctic from 1979 to 2014 between the ERA5 reanalysis and observational stations (ERA5 minus observations).

(d) As in (c), but for differences between ERA5 and BEST (ERA5 minus BEST). (e),(f) As in (c) and (d), but for

differences in near-surface temperature trend (8C decade21).
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1979–2014. The overall bias in the ERA5 reanalysis compared

with the observed near-surfacemean temperature of theArctic

during the period is 0.388C, and the bias is larger in theWestern

Hemisphere than in the Eastern Hemisphere. The mean dif-

ference between the trends estimated from ERA5 and the

observations is 0.118C decade21, and the largest bias was found

in northern Norway. The average correlation coefficient be-

tween the ERA5 reanalysis and observed time series reaches

0.94. Considering that the stations are only distributed over

Arctic land, the BEST dataset was used to verify the perfor-

mance of ERA5 over the Arctic Ocean (Fig. 2). The results

show that ERA5 has a slight cold bias comparedwith the BEST

dataset, and a slight warm bias over some parts of the ocean.

The spatial distributions of the temperature trends in the

two datasets are generally similar except for a small area north

of Greenland, where the BEST and ERA5 datasets show op-

posite trends. The comparison with the two observational da-

tasets shows that ERA5 generally captures well the temporal

and spatial characteristics of the near-surface mean tempera-

ture in the Arctic, which makes it suitable to use as a reference

in the model evaluations.

Three assessment indices (R, RMSE, andRSTD)were used to

evaluate the ability of each CMIP6model to simulate the spatial

pattern of near-surface temperature in the Arctic (Fig. 3). The

spatial R is above 0.9 for all models except one. These high

correlations indicate thatmost CMIP6models perform relatively

well in capturing the overall climatological pattern of the Arctic

near-surface mean temperature. The RSTD values are close to

1.0 and the RMSE values are less than 0.5 for the spatial vari-

ability for all models except one. In general, the CMIP6 models

perform well in simulating the spatial variability of near-surface

mean temperature in theArctic, which is also reflected in a small

model spread in these metrics for the spatial variability.

The ability of CMIP6 models to simulate the temporal near-

surface temperature variations in the Arctic was evaluated

by comparing the mean temperature, temperature trend, and

temperature interannual standard deviation between the

models and the benchmark. According to the differences in

climatological near-surface mean temperature during 1979–

2014 between the CMIP6 models and ERA5 reanalysis dataset

(Fig. 4a), most CMIP6 models underestimate the near-surface

mean temperature in the Arctic, and the cold bias of the

multimodel ensemble mean (MMEM) of the 22 CMIP6

models is 0.778C. Spatially, the cold biases in the near-surface

temperature simulations are mainly found over the oceans,

and some warm biases appear over land (Fig. 5). The cold

biases of the CMIP6 models are largest over the Greenland

Sea, the Norwegian Sea, the Barents Sea, and the Kara Sea.

On a seasonal basis, the spatial patterns of bias are most ob-

vious in winter, and the largest cold (warm) bias occurs near

the Greenland Sea (northern Russia), exceeding 58C (48C)
(not shown). Although the MMEM of the annual temperature

trend is almost identical to the trend in ERA5, large differences

in temperature trends between the models exist, suggesting

large uncertainty in modeling amplified Arctic warming even

during the contemporary period. For example, the warming

trends are significantly overestimated in EC-Earth3 and

NESM3 while significantly underestimated in CAMS-CSM1-0

and FGOALS-g3 (Fig. 4b). In terms of seasons, the intermodel

spread is largest in winter and smallest in summer, and the

MMEM overestimates the temperature trend in winter and

autumn but underestimates the trend in spring (Table 3).

According to the results of interannual variability skill, BCC-

CSM2-MR and CanESM5 perform best in simulating inter-

annual variations of near-surface temperature in the Arctic,

while FGOALS-g3 and EC-Earth3 (whose temperature trends

are severely overestimated) perform the worst (Fig. 4c).

Based on the spatial TS (Fig. 6a), the top five models are

MPI-ESM1-2-LR, EC-Earth3-Veg, FIO-ESM-2-0, MPI-ESM1-

2-HR, and CESM2-WACCM. In terms of temporal TR

FIG. 3. (a) Taylor diagram of the correlation coefficients (R;

azimuthal angle), ratios of standard deviations (RSTD; radial dis-

tance from the origin) and normalized centered root-mean-square

errors [RMSE; radial distance from reference (REF) on the x axis]

between the reference (REF) and simulated near-surface mean

temperature in the Arctic during 1979–2014, with ERA5 as the

reference. The root-mean-square differences were normalized by

dividing by the standard deviations of the reference. Models

(represented by points) closer to REF show better agreement with

the reference (i.e., R and RSTD close to 1 and RMSE close to 0).

The multimodel ensemble mean (MMEM) refers to the average of

the 22 CMIP6 models used in this study. (b) Portrait diagram

showing the rankings (1–23 with 1 being the top performing) of the

models according to R, RMSE, and RSTD.
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(Fig. 6b), the top five models are CESM2, AWI-CM-1-1MR,

NorESM2-LM, FIO-ESM2-0, and MPI-ESM1-2-LR. The rela-

tionship between temporal and spatial ranks for each model is

shown in Fig. 6c, suggesting the overall best performing models

are CESM2, AWI-CM-1-1MR, FIO-ESM-2-0, EC-Earth3-Veg,

MPI-ESM1-2-LR, and CESM2-WACCM. There is a relation-

ship between how well the models capture the spatial char-

acteristics and temporal characteristics (R 5 0.49), but there

are also somemodels that have a high temporal and low spatial

MR value and vice versa. The models perform better over

Arctic land than the ocean (not shown). TheMMEM performs

better than any single model except for one in terms of spa-

tial characteristics and the MMEM also performs well in

terms of temporal characteristics relative to the other models.

Thus, theMMEM stands out as a good representation ofArctic

near-surface temperature characteristics based on the overall

model rankings (Fig. 6c). In the following analysis, we use the

MMEM results to assess the projection of Arctic near-surface

temperatures in the near-term, midterm, and long-term future.

b. Projected future temperature from the CMIP6 models

As shown in Fig. 7, the future Arctic near-surface temper-

ature is projected to increase under all the three scenarios

although it begins to slightly decrease by the end of the twenty-

first century under SSP1-2.6 scenario. The Arctic’s warming

rate from 1986 to 2100 is much higher than that of the Northern

Hemisphere and the global mean under the three different

scenarios (You et al. 2021).

Figure 8 shows the spatial patterns of annual mean near-

surface temperature change in the Arctic according to the

MMEM for the three periods relative to 1986–2005 under the

three scenarios. Projections for the regionally averaged mean

near-surface temperature increases in the Arctic under SSP1-

2.6, SSP2-4.5, and SSP5-8.5 scenarios are 12.58, 12.68, and
12.88C respectively in the near term (2021–40), 13.38, 14.08,
and 15.18C in the midterm (2014–60), and 13.58, 15.88, and
110.48C in the long-term (2081–2100) relative to the reference

period based on the CMIP6 MMEM. The spatial pattern is

similar across all scenarios, which suggests that Arctic warming

has a similar mechanism under different forcings. The stron-

gest warming is found in the Chukchi and Beaufort Seas on the

Pacific side and the Barents and Kara Seas on theAtlantic side,

which is also reflected in the results of Boeke and Taylor (2018)

using CMIP5 models. The warming is the smallest in the

Greenland and Norwegian Seas. In terms of temperature

trends (Fig. 9), the warming rates of Arctic near-surface tem-

perature in the near term (2021–40) are 0.468C decade21 under

SSP1-2.6, 0.688C decade21 under SSP2-4.5, and 0.838C decade21

under SSP5-8.5. Under the SSP1-2.6 scenario, the warming

rate gradually decreases with time and becomes negative at

the end of the twenty-first century. For the high-emissions

SSP5-8.5 scenario, the warming rate continues to increase with

time. In the long-term future (2081–2100), the warming rates

of Arctic near-surface temperature are 20.118, 0.378, and

1.368C decade21 under SSP1-2.6, SSP2-4.5, and SSP5–8.5, re-

spectively. As shown in Table 4, the warming trend over the

central Arctic Ocean (0.958, 1.138, and 1.488C decade21 under

SSP1-2.6, SSP2-4.5, and SSP5-8.5, respectively) is higher

than that over the surrounding land area (0.668, 0.948, and
1.228C decade21 under SSP1-2.6, SSP2-4.5, and SSP5-8.5,

respectively). In the northern Atlantic, the models show a

cooling trend in the near-term future for all scenarios, reflecting

a phenomenon known as the North Atlantic warming hole

(Drijfhout et al. 2012).

c. Uncertainties in simulated Arctic temperatures in the
CMIP6 models

Internal variability, model uncertainty, and scenario uncer-

tainty are considered sources of uncertainty in climate pro-

jections (Hawkins and Sutton 2009, 2011). Figure 10 shows

the fractional uncertainty and the fraction of total variance

in decadal near-surface mean temperature in the Arctic.

Throughout the century, model uncertainty and scenario

FIG. 4. (a) Near-surface mean temperature (8C), (b) near-surface
mean temperature trend (8C decade21), and (c) interannual vari-

ability skill score (IVS) of near-surface mean temperature in the

Arctic during 1979–2014 from ERA5, each CMIP6 model and the

multimodel ensemble mean (MMEM) of the 22 CMIP6 models.

The numbers 1–22 refer to the model names in Table 3. Number 23

is the MMEM, and number 24 is the ERA5 reanalysis dataset. The

error bars show one standard deviation of the multimodel ensem-

ble. All trends in (b) are statistically significant at the 0.05 signifi-

cance level. A IVS closer to 0 in (c) indicates better model

performance in terms of interannual variations.
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uncertainty are the major sources of uncertainties for CMIP6

model projections. Model uncertainty is the dominant con-

tributor before the midterm (2014–60) while scenario uncer-

tainty becomes more important at the end of the twenty-first

century. The smallest total fractional uncertainty occurs

around 2040 associated with the changing dominance of the

contributions from model to scenario uncertainty, which is

consistent with previous global and regional studies (Hawkins

FIG. 5. The difference of climatological near-surface mean temperature during 1979–2014 between the CMIP6 models and the ERA5

reanalysis dataset for (a)–(v) individual CMIP6 models and (w) the multimodel ensemble means (MMEM) of the 22 CMIP6 models.
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and Sutton 2009, 2011; Hodson et al. 2013; Wu et al. 2020).

Compared with other regions and global mean results, the

proportion of model uncertainty to total uncertainty is greater

in the Arctic and continues to play an important role at the end

of the twenty-first century in spite of the growing scenario

uncertainty (Hawkins and Sutton 2009).

The contribution to total uncertainty of both internal vari-

ability and model uncertainty decrease while that of scenario

uncertainty increases over time. This can be explained by the

increasing importance of the anthropogenic forcing and defi-

nition of the fractional uncertainty. The time series of the nu-

merator and denominator in the fractional uncertainty formula

for each source of uncertainty is shown in Fig. 11. It is clear

that all numerators and denominators increase with time, ex-

cept the numerator of the fractional uncertainty for internal

FIG. 7. Time series of Arctic, Northern Hemisphere, and global

near-surface mean temperature during 1986–2100 relative to the

period 1986–2005 from the multimodel ensemble mean (MMEM)

of the 22 CMIP6 models under the three Shared Socioeconomic

Pathways (SSPs), (a) SSP1-2.6, (b) SSP2-4.5, and (c) SSP5-8.5.
FIG. 6. (a) Taylor skill scores (TS) and (b) temporal rank scores

(TR) of near-surface mean temperature in the Arctic. A TS closer

to 1 indicates better model performance in terms of spatial vari-

ability and a TR closer to 0 indicates better model performance in

terms of temporal variations. MMEM is the multimodel ensemble

mean. (c) Scatter diagram showing the correlation between temporal

and spatial model rank (MR) values, with higherMR values indicating

higher skill. Each dot represents a model with the same corresponding

number displayed to the right of the diagram. The correlation coeffi-

cient between temporal and spatialMR values is 0.49.
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FIG. 8. Spatial patterns of near-surface mean temperature change in the Arctic in the (a)–(c) near-term (2021–40), (d)–(f) midterm

(2041–60), and (g)–(i) long-term (2081–2100) relative to the reference period (1986–2005). The projections were obtained from the

multimodel ensemble mean of the 22 CMIP6 models under the (left) SSP1-2.6, (center) SSP2-4.5, and (right) SSP5-8.5 scenarios.
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variability, which is nearly constant by definition. In the case of

fractional uncertainty in internal variability and model uncer-

tainty, the denominator becomes increasingly larger than the

numerator over time, resulting in decreasing fractional un-

certainties with time. For the fractional scenario uncertainty,

the distance between the larger denominator and smaller

numerator initially grows with time; however, after around

2055 the numerator increases faster than the denominator,

thus leading to an increase in the growth rate of the fractional

scenario uncertainty with time after 2055. The total fractional

uncertainty shows a similar behavior as the fractional sce-

nario uncertainty except that the scenario uncertainty accel-

erates relative to total uncertainty at the end of the century.

Unlike traditional methods, the fractional uncertainty for

FIG. 9. Spatial patterns of near-surfacemean temperature trend in theArctic in the (a)–(c) near-term (2021–40), (d)–(f) midterm (2041–

60), and (g)–(i) long-term (2081–2100). The projections were obtained from the multimodel ensemble mean of the 22 CMIP6 models

under the (left) SSP1-2.6, (center) SSP2-4.5, and (right) SSP5-8.5 scenarios.
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internal variability is not constant in time when we use

SMILEs for estimation. Figure 10b shows the difference be-

tween the conclusions of the two methods. The proportion of

internal variability estimated from the models to the total

uncertainty (33.24% in 2015) is smaller than the results of the

traditional method (39.31% in 2015), and the influence of the

internal variability has basically disappeared at the end of

the twenty-first century. Since SMILEs are still not wide-

spread in CMIP6 and the ensemble numbers for most models

used are too small at this time, more research is needed to

make a reliable model uncertainty estimate in the future.

We further examined the spatial distributions of sources of

uncertainty in the different periods, which are shown in

Fig. 12. Model uncertainty is the dominant source of uncer-

tainty in the Arctic in the near-term and midterm periods and

is of comparable importance to scenario uncertainty even at

the end of the century in some regions. In general, the un-

certainty on the Atlantic side is greater than that on the

Pacific side. The Greenland Sea, Norwegian Sea, Kara Sea,

and Barents Sea have the largest total fractional uncertainty,

and the model uncertainty in these areas dominate the total

uncertainty throughout the century. Figure 13 shows the

spatial patterns of signal-to-noise ratios for each scenario

and period. The smallest signal-to-noise ratio is found in the

Greenland Sea, the Norwegian Sea, and the Barents Sea where

the values are less than 1.0, indicating that the reliability of the

model projection results are very low and large inconsistencies

exist between the models, which is consistent with the largest

fractional uncertainty in these regions. Elsewhere in the Arctic,

the signal-to-noise ratios are consistently larger than 1.0, es-

pecially over the Arctic land areas where the signal-to-noise

ratio is greater than 3.0, indicating that the models have high

confidence in projecting the Arctic land temperature.

4. Discussion

a. Probable causes for the cold biases in the CMIP6 models

The ability of different GCMs to simulate the near-surface

mean temperature in the Arctic region varies greatly due to

different model structures and diverse parameterization

schemes (Knutti 2008). The MMEM of the 22 CMIP6 models

can mask the deficiency of any single model simulation.

Simulated near-surface mean temperature from the MMEM

during 1979–2014 is 0.778C colder than the observationally

FIG. 10. (a) Fractional uncertainty (the 90% confidence level

divided by themean prediction) and (b) fraction of total variance in

decadal near-surface mean predictions in the Arctic. The dotted

lines are the result of estimation using single model initial-

condition large ensembles (SMILEs) from six models.

TABLE 4. Projected warming over the Arctic Ocean and Arctic land from the multimodel ensemble mean (MMEM) of 22 CMIP6

models in the near-term (2021–40), midterm (2041–60), and long-term (2081–2100) periods and the temperature change relative to 1986–

2005 from the MMEM of 22 CMIP6 models under SSP1-2.6, SSP2-4.5, and SSP5-8.5, respectively. Statistically significant trends (95%

level) are shown in boldface.

SSP1-2.6 SSP2-4.5 SSP5-8.5

Ocean Land Ocean Land Ocean Land

Change (8C)
Near-term 2.53 2.02 2.61 2.05 2.89 2.31

Mid-term 3.36 2.59 4.03 3.15 5.11 4.03

Long-term 3.62 2.68 5.86 4.55 10.22 8.33

Trend (8C decade21)

Near-term 0.50 0.40 0.78 0.56 0.96 0.66

Mid-term 0.18 0.16 0.62 0.52 1.13 0.94

Long-term 20.10 20.12 0.44 0.28 1.48 1.22
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constrained ERA5 reanalysis with a cold bias maximum of 38–
48C in the Norwegian Sea, the Barents Sea, and the Kara Sea.

Such cold bias was also found in Davy and Outten (2020), who

showed that both the CMIP6 andCMIP5models aremore than

1K colder than ERA5 in the annual mean. In terms of regions,

cold biases mainly occur over the Arctic Ocean. These findings

indicate that the CMIP6 models still struggle with correctly

reproducing ocean–atmosphere processes in regions with fre-

quent heat flux exchange, which has previously been reported

for CMIP3 and CMIP5 models (Chapman and Walsh 2007;

Hao et al. 2018; Liu et al. 2008). One possible reason for the

cold bias over the Arctic Ocean is a poor simulation of sea ice.

Correlation analysis of the Arctic Ocean temperature bias in

the CMIP6 models and the simulated sea ice area in these

models shows that there is a significant negative correlation

between the temperature simulation bias and sea ice area.

Compared with the result from the National Snow and Ice

Data Center (NSIDC) and the Hadley Centre (HadISST1 ice),

most models overestimate the area of sea ice (Fig. 14).

Previous studies have also found an overestimation of Arctic

sea ice extent and thickness in both CMIP5 and CMIP6

models, especially during the annual maximum in March

(Davy andOutten 2020; Shu et al. 2020;Wu et al. 2019). Sea ice

can affect near-surface temperature through two local feed-

backs. One is the high albedo effect, and it affects the atmo-

spheric temperature through the albedo feedback mechanism

during the warm seasons. The other is the insulating properties

of ice ice, which can isolate the heat exchange between the

ocean and the atmosphere, which is more dominant during the

cold season (Boeke and Taylor 2018). Therefore, a relatively

extensive sea ice cover in themodels can causemore shortwave

radiation to be reflected back into space during the warm

season and a thicker sea ice cover reduces the heat released by

the Arctic Ocean into the atmosphere during the cold season,

leading to an underestimation of Arctic near-surface temper-

ature. In addition, poleward moisture transport is a significant

contributor toArctic sea ice and temperature variability during

the cold season, especially in the Barents, Kara, andGreenland

Seas (Woods and Caballero 2016). This suggests that the ac-

curate simulation of poleward moisture transport cannot be

ignored when we consider the reasons for the temperature

simulation bias particularly in the cold season.

FIG. 11. Time series of the numerator (solid lines) and denominator (dashed lines) of the fractional uncertainty

for (a) model uncertainty, (b) scenario uncertainty, (c) internal variability, and (d) the total uncertainty. Here,M(t)

is themultiscenariomeanmodel uncertainty, S(t) is themultimodel mean scenario uncertainty,V is themultimodel

mean of the variances of the residuals, and G(t) is the mean change of all the predictions.
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A previous study using the CMIP3 and CMIP5 models

concluded that the models exhibit large uncertainty in the

simulation of the Atlantic meridional overturning circulation

(AMOC) (Reintges et al. 2017), which may lead to large in-

termodel differences in the simulation of ocean heat transport

in the Northern Atlantic region. One possible reason for the

overestimation of sea ice is that the northward ocean heat

transport is underestimated. As shown in Fig. 14, models with a

weak Atlantic poleward heat transport have more extensive

sea ice and greater ocean temperature cold biases. A near-

constant influx of relatively warmAtlantic surface water keeps

the Norwegian Sea and nearby areas generally ice-free in the

present. But the sea ice simulated by the CMIP6 models is

generally too high in these areas, leading to the largest tem-

perature biases compared to other model biases (Notz et al.

2020; Levang and Schmitt 2020; Mahajan et al. 2011; Shu

et al. 2020).

b. Improvements and changes in the CMIP6 models

An encouraging increase in credibility and improvement in

the simulation of mean states, interannual variability, and

past climate evolution is evident in the progression from the

CMIP3/5 to CMIP6 models (Eyring et al. 2016). Improved

model performances are due to higher spatial resolution, and

advances in simulating certain physical processes (T. Zhou

et al. 2019). Table 5 summarizes the comparison between

the Arctic surface temperature simulated by models such

as those in CMIP3/CMIP5 in the past and the results of

observations or reanalysis. Previous models have generally

underestimated the near-surface mean temperature of the

FIG. 12. Spatial patterns of (first column) the total fractional uncertainty, and fractional uncertainty for (second column) internal

variability, (third column) model uncertainty, and (fourth column) scenario uncertainty in the Arctic in the (a)–(d) near-term (2021–40),

(e)–(h) midterm (2041–60), and (i)–(l) long-term (2081–2100) from the multimodel ensemble mean (MMEM) under the SSP1-2.6, SSP2-

4.5, and SSP5-8.5 scenarios.
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Arctic, and the annual mean temperature in recent decades

has been underestimated by 18–28C with the larger errors

in winter and spring. Comparing the results from previous

studies with those of this study, the CMIP6 models have

improved the Arctic near-surface temperature biases, which

may be related to the better representation of the sea ice

extent/thickness and advance/retreat in the CMIP6 models

(Davy and Outten 2020).

The CMIP6 models project much stronger warming than

CMIP5 at both the global and regional scales (Almazroui et al.

2020; Bracegirdle et al. 2020; Tokarska et al. 2020; Wyser et al.

2020). This may be due to higher equilibrium climate sensitivity

FIG. 13. Spatial patterns of the signal-to-noise ratio in the Arctic in the (a)–(c) near-term (2021–40), (d)–(f) midterm (2041–60), and

(g)–(i) long-term (2081–2100) from the multimodel ensemble mean (MMEM) under the (left) SSP1-2.6, (center) SSP2-4.5, and (right)

SSP5-8.5 scenarios.
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values in multiple GCMs submitted to CMIP6 (Zelinka et al.

2020). In fact, approximately one-third of the submitted CMIP6

models have estimated equilibrium climate sensitivity ranges

that exceed the 1.58–4.58C range (17%–83% range) reported by

IPCCAR5 (Tokarska et al. 2020). Therefore, it is very important

to investigate whether the future warming trends projected by

these models are realistic.

5. Conclusions

In this study, the simulated Arctic near-surface temperatures

from the 22 CMIP6 models are evaluated against the observa-

tionally constrained ERA5 reanalysis dataset. Additionally, we

assessed the near-surface mean temperatures and temperature

trends in the Arctic in the near-term, midterm, and long-term

future under three SSPs. The uncertainty in the temperature

projections was quantified and broken down into three compo-

nents: uncertainty due to internal variability of the climate sys-

tem, model uncertainty, and scenario uncertainty due to large

spreads in future emissions and socioeconomic pathways.

During 1979–2014, the 22 CMIP6 models that we examined

underestimate the temperature in the Arctic with cold biases

relative to the ERA5 reanalysis dataset, which are especially

evident over the Greenland Sea, the Barents Sea, and the Kara

Sea. The cold bias is mainly focused over the Arctic Ocean,

which is most obvious during the cold season, and the land area

shows a general warm bias. Themodels generally do a good job

in representing the spatial variability of climatological mean

near-surface temperature in the Arctic, while there are some

differences between models in the simulation of temporal

variations. In general, models that accurately simulate spatial

variability also perform well in simulating temporal variability.

The CMIP6 models project that the Arctic warming will

continue in the future under the SSP1-2.6, SSP2-4.5, and SSP5-

8.5 scenarios and that the warming rate in the Arctic will be

expected to be more than double the Northern Hemisphere

and global means. Given that the CMIP6 models simulate a

much stronger Arctic warming than the CMIP5 models, future

studies should assess how realistic these warming trends are,

for example through the use of emergent constraints (Hall

et al. 2019).

Our results show that there are large uncertainties in the

projections of Arctic near-surface mean temperature changes

from the 22 CMIP6 models under the three SSPs. In general,

model uncertainty and scenario uncertainty are the major

sources of uncertainty, accounting for 52.3% and 31.7% of the

total uncertainty respectively in 2050, and 32.9% and 60.7% of

FIG. 14. (a) Correlation between the annual mean ocean surface

temperature bias (CMIP6 minus ERA5) in the Arctic for 1979–

2014 and the simulated annual mean sea ice area for the same

period for all CMIP6 models and the multimodel ensemble mean

(MMEM) of all models. The gray dotted line represents the ob-

served value from the National Snow and Ice Data Center,

downloaded from https://nsidc.org/data/G02202/versions/3. The

blue dotted line represents the observed value from the Hadley

Center, downloaded from https://www.metoffice.gov.uk/hadobs/

hadisst/data/download.html. (b),(c) Correlation between the an-

 
nual mean sea ice area/annual mean ocean surface temperature

bias (CMIP6 minus ERA5) in the Arctic for 1979–2014 and the

simulated mean Atlantic poleward heat transport for the same

period for all CMIP6 models and the MMEM. Sea ice area was

computed from SIC (defined as the area with SIC . 15% in the

north of 668N). The poleward heat transport is defined as the

poleward flux at 708N. In all panels, R denotes the correlation co-

efficient, and an asterisk (*) indicates that the correlation is sig-

nificant at the 0.05 significance level.
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the total uncertainty respectively by the end of the twenty-first

century. Model uncertainty is always the dominant uncertainty

component in oceanic regions that are affected by heat trans-

port from the AMOC. More detailed investigations of model

uncertainty and warming mechanisms in the Arctic region are

needed to better understand the sources of model uncertainty

and to reduce the overall uncertainty in the projections, which

is also the direction of future research.
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