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Probabilistic Structure Learning for EEG/MEG
Source Imaging With Hierarchical Graph Priors

Feng Liu , Li Wang , Yifei Lou , Member, IEEE, Ren-Cang Li , and Patrick L. Purdon , Member, IEEE

Abstract— Brain source imaging is an important method
for noninvasively characterizing brain activity using
Electroencephalogram (EEG) or Magnetoencephalography
(MEG) recordings. Traditional EEG/MEG Source Imaging
(ESI) methods usually assume the source activities at dif-
ferent time points are unrelated, and do not utilize the
temporal structure in the source activation, making the ESI
analysis sensitive to noise. Some methods may encourage
very similar activationpatterns across the entire time course
and may be incapable of accounting the variation along the
time course. To effectively deal with noise while maintaining
flexibility and continuity among brain activation patterns,
we propose a novel probabilistic ESI model based on a
hierarchical graph prior. Under our method, a spanning tree
constraint ensures that activity patterns have spatiotempo-
ral continuity. An efficient algorithm based on an alternating
convex search is presented to solve the resulting problem of
the proposedmodel with guaranteedconvergence.Compre-
hensive numerical studies using synthetic data on a realistic
brain model are conducted under different levels of signal-
to-noise ratio (SNR) from both sensor and source spaces.
We also examine the EEG/MEG datasets in two real applica-
tions, in which our ESI reconstructions are neurologically
plausible. All the results demonstrate significant improve-
ments of the proposed method over benchmark methods in
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terms of source localization performance, especially at high
noise levels.

Index Terms— EEG/MEG source imaging, source localiza-
tion, inverse problem, graph structure learning.

I. INTRODUCTION

ACTIVITY in the human brain is composed of complex
firing patterns and interactions among neurons and neu-

ronal circuits. This brain activity generates electromagnetic,
hemodynamic, and metabolic signals that can be measured
non-invasively [1]. Electromagnetic fields generated by post-
synaptic neuronal activity can be measured using the Elec-
troencephalogram (EEG) and Magnetoencephalogram (MEG)
[2]. In contrast to brain imaging modalities such as functional
magnetic resonance imaging (fMRI), positron emission tomog-
raphy (PET), and single-photon emission computed tomogra-
phy (SPECT), EEG and MEG are unique in their ability to
measure rapid, millisecond-level brain dynamics [1], [3]–[5].
However, in EEG/MEG, an ill-conditioned inverse problem
must be solved in order to localize the cerebral sources
underlying the observed electromagnetic fields, referred to
as the EEG/MEG source localization or EEG/MEG source
imaging (ESI) problem [6]. ESI techniques have been used in
many applications such as the study of language, cognition,
sensory function, pre-surgical planning, localization of focal
drug-resistant epilepsy for drug-resistance patients [7]–[10],
and brain-computer interfaces [11]. ESI has also been used as
a tool to characterize brain networks in neuroscience studies
and to discover pathological network biomarkers for clinical
applications [12]–[17].

The number of EEG/MEG sensors is far fewer than the
number of candidate brain sources. Hence the ESI problem is
highly ill-posed. Neurophysiologically plausible assumptions
or priors can be incorporated into ESI algorithms as regular-
izations [6], [18]. In some event-related experimental designs,
it has been argued that only a small fraction of the brain
may be consistently activated [19], implying that ESI solutions
for such experiments could be sparse. Accordingly, sparsity
constraints could significantly improve the spatial resolution
of ESI solutions [3], [20], [21]. In addition, brain activity
has temporal structure that can be exploited to improve ESI
performance [22].

One other area for potential improvement relates to how
uncertainty or noise is represented in statistical models for
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ESI. Uncertainty or noise can be introduced at the sensor
level and also at the space of the source generators. Recon-
structed source solutions often include spurious sources that
explain the measured noise. In principle, better models of this
uncertainty could improve ESI solutions by making distinct the
contributions of measurement noise, fluctuations in underlying
currents, or variation among latent spatial patterns of activity
to the overall observed uncertainty. For instance, Liu et al.
developed a model in which source activations under the
same brain state or stimulus condition were constrained to
be similar [23]. However, this assumption could be made less
conservative to allow fluctuations in the source signals.

Here we describe a novel ESI method that employs a
sophisticated hierarchical prior to describe underlying source
activity patterns. This hierarchical prior uses soft-clustering
centers, termed “landmarks,” to characterize underlying spatial
activation patterns. These landmarks have dependencies on one
another in terms of a graph structure. The combination of the
landmarks and the graph structure forms a manifold that can
regularize ESI solutions very effectively even in the presence
of significant noise at both the sensor and source levels. Both
the landmarks and the graph structure are learned from the
observed data.

The main contributions of this paper are:
(i) We formulate a novel probabilistic model for ESI with

a hierarchical graph prior, which naturally integrates the land-
mark learning and the graph structure learning into the inverse
problem of ESI (Section III);

(ii) An efficient optimization method is proposed to solve
the resulting problem of the proposed model. Its convergence
is provably guaranteed (Section IV);

(iii) We perform extensive experiments to examine the
performance of the proposed method and to compare it with
benchmark methods; Numerical experiments show that our
proposed method performs particularly well when the mea-
surement noise is high (Section V).

II. RELATED WORK

There are two main categories of source imaging algorithms:
dipole fitting algorithms and distributed source imaging algo-
rithms [1], [24]. Dipole fitting algorithms are the earliest
approaches in ESI which empirically solve the MEG/EEG
forward and inverse problems by characterizing one or several
equivalent current dipoles (ECD) responsible for the electri-
cal potential detected by the scalp sensors. The algorithms
typically allow free orientation or varied dipole locations
across moments. However, localizing multiple dipoles can be
challenging as no prior information is known with regards to
the number of dipoles [25].

Recently, numerous algorithms in the category of distributed
inverse solvers have been developed. Under this paradigm,
a class of beamforming and scanning methods was pro-
posed. Specifically, the linearly constrained minimum variance
(LCMV) beamformer is a type of adaptive spatial filter that
localizes sources of interest by minimizing the contributions
of other uncorrelated sources [26]. Among the scanning strate-
gies, Mosher et al. proposed a special case of MUltiple SIgnal
Classification (MUSIC) algorithm, where multiple dipoles can

be found by scanning potential locations using one dipole
model [27]. Mäkelä et al. introduced truncated recursively-
applied-and-projected MUSIC (TRAP-MUSIC), which builds
on the RAP-MUSIC algorithm [28] by applying a sequential
dimension reduction to the signal-subspace projection.

Except for the beamforming and scanning methods, under
the same category of distributed inverse solvers, many
algorithms employ neurophysiologically plausible priors or
regularization. As the ESI is an ill-posed problem, certain
priori information or regularization about the desired source
characteristics or physiological assumptions needs to be
incorporated, such as the �2 norm or the �p norm regularizers
with p ≤ 1. One seminal approach based on the �2 norm
is the minimum norm estimate (MNE) [29]. Dynamic
statistical parametric mapping (dSPM) [30] and standardized
low-resolution brain electromagnetic tomography (sLORETA)
[31] are two variants of MNE. The �2-norm based methods
tend to produce spatially-diffuse solutions. To overcome
this drawback, Uutela et al. [32] introduced the minimum
current estimate (MCE) using the �1 norm for sparse source
reconstruction. Gorodnitsky et al. proposed FOCUSS which
is based on recursive, weighted norm minimization and can
provide high resolution solutions [33]. To solve the ESI prob-
lem with the sparsity inducing �p norm with p ≤ 1, numerous
algorithms were also proposed. Specifically, Rao and Kreutz-
Delgado proposed an affine scaling method [34]. Bore et al.
proposed to use the �p-norm regularization (p < 1) on the
source signal and the �1 norm on the data fitting error term
[35]. An extension of greedy subspace-pursuit algorithms [3]
was further developed to jointly identify distributed cortical
and subcortical sources [36]. Many approaches treat the source
activity as being independent in time. However, neural activity
can be highly structured in time and can exhibit different
degrees of temporal smoothness depending on the context.

In order to account for this temporal smoothness, a number
of methods were developed. The mixed norm estimate (MxNE)
[37] uses an �p,2-norm regularization (p ≤ 1) to impose �2
on the temporal direction and �p (p ≤ 1) in the source space
for temporal smoothness and spatial sparsity. An iteratively
reweighted optimization method (irMxNE) is used to obtain
more precise and stable MxNE solutions [38]. Huang et al.
proposed a vector-based spatial–temporal analysis using an
�1-minimum-norm (VESTAL) to address the “spiky-looking”
discontinuity in source space [39]. The spatiotemporal uni-
fying tomography (STOUT) algorithm [19] combines Time-
Frequency (TF)-MxNE [40] in the time-frequency domain and
sparse spatial basis field expansions to obtain temporally and
spatially smooth solutions.

Other recent approaches are built on more sophisticated
probabilistic models of source activity. Cai et al. proposed
a hierarchical multiscale Bayesian algorithm called tree-
Champagne which enables robust reconstruction of sources
with different spatial extents using a probabilistic generative
model [41]. The same group later proposed a robust empirical
Bayesian algorithm for better reconstruction of distributed
brain source activity using kernel smoothing and hyperpara-
meter tiling [42]. Pirondini et al. [22] modeled source activity
as a spatiotemporal dynamic system and used the Kalman
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Fig. 1. Illustration of our hierarchical graphical model in the ESI problem. The left part of this figure shows how the variables are dependent of each
other in a hierarchical way. The right part of the figure gives an exemplary illustration of what the left components represent in ESI. G (marked with
black lines) is a spanning tree that is considered as a graph prior to connect landmark centers C (marked with black rectangles). S is dependent on
the landmark centers C to explain the EEG data X. On the top of right hand side, each dot around the landmark centers characterizes a particular
source activation pattern (si). Different colors for the dots in the upper right figure represent distinct brain states or conditions.

filter/smoother and the Expectation-Maximization algorithm to
obtain source and parameter estimates. Bekhti et al. proposed
a majorization-minimization approach to solve the EEG/MEG
inverse problem, and Markov Chain Monte-Carlo (MCMC)
techniques to obtain a multimodal posterior density for the
source activity [43].

As discussed in Section I, novel methods that can account
for different levels of uncertainty at the sensor and source may
provide a means for further improvement in ESI performance.
In this paper, we propose a new hierarchical probabilistic
model that learns a manifold pattern for the source signal to
robustly reconstruct source activity in the presence of noise at
both the sensor and source.

III. PROBABILISTIC MODEL WITH

HIERARCHICAL PRIOR

Our method relies on three key ingredients: sparsity of
the source signals, source signal denoising, and manifold
relationships among landmarks for the source signals. Here we
present the probabilistic formulations of these three ingredients
and combine them to form a novel hierarchical probabilistic
model. The architecture of this graphical model is illustrated
in Fig. 1, followed by separate elaborations on each of the
components.

A. The Inverse Problem of ESI
The EEG/MEG data measures the electromagnetic field at a

set of Nc sensors (or channels) for Nt time points. We denote
the EEG/MEG measurements as X = [x1, . . . , xNt ] ∈ R

Nc×Nt .
The linear mapping from the brain sources to the sensors on
the scalp is often referred as the lead field gain matrix, denoted
by L ∈ R

Nc×Ns , obtained from the quasi-static approximation
of Maxwell’s equations [44] where Ns is the number of

distributed sources used to represent the discretized 3D head
model. Specifically, each column of L represents the electrical
propagation weight vector from a particular source location
to the EEG/MEG electrodes. Given X and L, the objective
is to find a source activation (source signal), denoted as
S = [s1, . . . , sNt ] ∈ R

Ns ×Nt , where each column corresponds
to electrical potentials in Ns source locations for one of the Nt

time points. The measured EEG/MEG data X can be described
as a linear function of sources S with an additive noise,

xi = Lsi + εi , ∀i = 1, · · · , Nt . (1)

Here si corresponds to the activation of the source space.
The activation pattern is comprised of the true activation
which may relate to functional neural activities given external
stimuli or tasks, or neurophysiological disorders such as inter-
ictal activations in epilepsy patient, and spurious sources,
which refer to random or spontaneous activity. With proper
whitening [45], the noise term εi can be assumed to follow the
Gaussian distribution with zero mean and an identity matrix
I as covariance, i.e., εi ∼ N (0, I ). Therefore, the probability
of xi , given si , is expressed as

p(xi |si ) ∝ N (Lsi , I ), ∀i = 1, · · · , Nt . (2)

To find source estimates with spatially sparse but smooth
active regions, we use a spatial smoothness basis matrix
which specifies a dictionary of spatial basis vectors [42], [46].
By introducing the spatial basis functions, problem (1) can be
formulated as

xi = Lsi + εi = L��−1si + εi , (3)
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where � = [
ψ1, ψ2, . . . , ψNs

]
is the basis matrix, and the

j -th element ψi j of ψi is defined as:

ψi j =

⎧⎪⎨
⎪⎩

1 i = j,

exp(−‖di j /�‖2) j ∈ �i ,

0 otherwise,

(4)

di j is the distance between sources i and j , � is a spatial
smoothness scalar controlling the smoothness level, and �i is
a set of nearest neighboring sources of i based on geodesic
distances. Equation (3) can be written as xi = L̃ s̃i + εi with
L̃ = L� and s̃i = �−1si . In what follows, we will describe
how to recover s̃i . For convenience, we will rename L̃ and s̃i

back to L and si , respectively. The final reconstructed signal
should be left-multiplied by � to recover the source signal S.

B. A Sparse Generative Prior Over Latent Landmarks
Generally in ESI, the number of sources is much larger than

the number of electrodes, i.e., Ns � Nc , which implies that
(1) is an under-determined system and results in an ill-posed
problem for ESI. In order to properly recover si from xi , prior
knowledge is often incorporated as a regularization. A popular
choice is the �1 penalty [47] for a sparse solution, which
follows specifically the Laplacian distribution. Each entry of
si is i.i.d. drawn from a Laplacian distribution with mean zero
and a positive parameter γ1, i.e.,

p(si |γ1) = (
γ1

2
)Ns exp(−γ1‖si‖1), ∀i = 1, · · · , Nt . (5)

In this paper, we represent the source signals using a
probability distribution conditioned on latent landmarks. The
latent landmarks help to denoise the source signal estimates.
The denoised signals are then constrained by a graph structure,
which will be detailed in Section III-C.

Intuitively, the source signal denosing becomes simple if
we know the true distribution of the clean source signals.
In addition to the sparse prior in (5), we assume that the
true distribution of clean source signals depends on a set of
latent variables C = [c1, · · · , cK ] ∈ R

Ns ×K , which we call
landmarks for ease of reference. The distribution of the source
signal si conditional on these landmarks is denoted by p(si |C),

p(si |C) = 1

Kσ Ns

K∑
k=1

(2π)−
Ns
2 exp(− 1

2σ 2 ‖ck − si‖2). (6)

Given K landmarks in C and the sparsity prior parameter γ1,
we represent p(si |C, γ1) as a mixture of Gaussian distributions
with the sparsity prior. We can combine the priors expressed
in (5) and (6) to arrive at a sparse generative prior over latent
landmarks:

p(si |C, γ1) ∝
[ 1

Kσ Ns

K∑
k=1

(2π)−
Ns
2 exp(− 1

2σ 2 ‖ck − si‖2)
]

×
[
(
γ1

2
)Ns exp(−γ1‖si‖1)

]
, (7)

where the first part is the generative prior for si conditioned
on the landmarks C characterized by the mixture of Gaussian
distributions, the second part is the sparsity prior on si to
address the ill-posedness.

Under this model, the denoised source signal S is sparse
and centered around the landmarks C . In this paper C is also
an unknown variable that needs to be estimated. The denoising
property of this prior will be further discussed in Section III-D.

C. Graph Structure Sparse Priors for Landmarks
The sources si are sparse given their Laplacian prior, yet

they also depend on the landmarks. As such, it would be
reasonable and consistent if the landmarks ck themselves also
followed a sparsity prior, for instance, given by a Laplacian
distribution similar to si but with a possibly different parameter
γ2, i.e.,

p(ck |γ2) = (
γ2

2
)Ns exp(−γ2‖ck‖1), ∀k = 1, · · · , K . (8)

Recall that the landmarks are introduced to model the
true distribution of the source signals. Instead of assuming
independence among these landmarks, we attempt to model
the pairwise relationships between landmarks in terms of a
constrained graph.

We assume the landmarks have an underlying graph struc-
ture, denoted by G ∈ R

K×K , where each vertex of G
corresponds to one landmark. We obtain the joint distribution

p(C|G) ∝ exp

(
−β

2

K∑
k=1

K∑
k′=1

gk,k′ ‖ck − ck′ ‖2

)
, (9)

where β is a positive parameter. We can then combine the
priors expressed in (8) and (9) to arrive at a sparse graph
structure prior for landmarks:

p(C|G, γ2) ∝ exp

(
−β

2

K∑
k=1

K∑
k′=1

gk,k′ ‖ck − ck′ ‖2

)

× (γ2

2
)K Ns exp(−γ2

K∑
k=1

‖ck‖1), (10)

where the first part is the graph structure prior over the
landmarks, and the second part is the sparsity prior. This form
of distribution (10) enforces smoothness among landmarks
[48] in the sense that a larger gk,k′ results in a smaller distance
of ‖ck−ck′ ‖2. G is required to be non-negative and symmetric,
i.e., gk,k′ ≥ 0 and gk,k′ = gk′,k,∀k, k ′, respectively.

In general, G is unknown, so it is challenging to model
the density function over all graphs that have C as their
vertices. To make the structure learning pragmatic, constraints
on the set of graphs are required. To overcome this challenge,
we directly model log p(G) instead of modeling p(G) for
learning a specific type of graphs from data such as spanning
trees [49]. Informally, given a connected undirected graph
(V, E) with edges (Vk, Vk′ ) ∈ E,∀k, k ′, let T be a set of all
spanning trees with vertices V and E be the edges forming a
tree. In order to represent and learn a tree structure, {gk,k′ } are
formulated as binary variables where gk,k′ = 1 if (Vk, Vk′) ∈ E
and 0 otherwise, i.e., G = [gk,k′ ] ∈ {0, 1}K×K . To this
end, we express the parametric formulation of log p(G) as
an indicator function of the set of trees given by

log p(G) ∝
{

0, G ∈ T ,
−∞, otherwise,

(11)
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where T satisfies four conditions to be a set of spanning
trees: (I) binary: {G ∈ {0, 1}K×K }; (II) symmetric {G = GT };
(III) acyclic { 1

2

∑
k,k′ gk,k′ = |V| − 1}; and (IV) connected:

{ 1
2

∑
Vk∈S,Vk′∈S gk,k′ ≤ |S| − 1,∀S ⊆ V} [49]. The third

constraint states that a spanning tree only has |V|−1 edges and
the fourth constraint imposes the connectivity properties of a
tree. Equation (11) states that any graph as a tree is uniformly
sampled from p(G), and the probability of G ∈ T is zero.

D. The Proposed Probabilistic Hierarchical Model
Given the likelihood function (2) and priors (7), (10),

and (11), we are ready to formulate the joint conditional
distribution p(S,C,G|X, γ1, γ2). By applying the Bayesian
network from the perspective of directed graphical model,
the joint likelihood function p(S,C,G|X, γ1, γ2) is written
as

p(S,C,G|X, γ1, γ2)

∝ p(X |S)p(S|C, γ1)p(C|G, γ2)p(G)

∝
Nt∏

i=1

[
p(xi |si )p(si |C, γ1)

]
p(C|G, γ2)p(G). (12)

To obtain estimates S, C and G from data, we propose
to employ the maximum a posterior estimation by mini-
mizing the negative logarithm of the conditional probability
p(S,C,G|X, γ1, γ2), given by,

min
S,C,G∈T

‖X − LS‖2
F + γ1

Nt∑
i=1

‖si‖1 + γ2

K∑
k=1

‖ck‖1

− 2λσ 2
Nt∑

i=1

log
K∑

k=1

exp(−‖si − ck‖2

2σ 2 )

+ β

2

K∑
k=1

K∑
k′=1

‖ck − ck′ ‖2gk,k′ − log p(G). (13)

To better understand the proposed model (13), we elaborate
its two important properties as follows:

1) Graph Structure Learning via a Minimum-Cost Spanning
Tree: Problem (13) with respect to G, namely the graph
structure learning, is equivalent to the minimum-cost spanning
tree (MST) [49]. By substituting (11) into (13), we have the
following optimization problem with respect to G:

min
G∈T

β

2

K∑
k=1

K∑
k′=1

‖ck − ck′ ‖2gk,k′ , (14)

which is the problem of the minimum-cost spanning tree
with the cost for the edge (Vk, Vk′) defined as β

2 ‖ck − ck′ ‖2.
It is clear that (i) the landmarks are not independent; (ii)
minimizing the objective function of (14) with respect to G
given C can help improve the smoothness over the landmarks
connected by the tree G. Specifically, if gk,k′ is one, we expect
‖ck −ck′ ‖2 to be small, so that ck should be close to ck′ . Hence,
the connected vertices on the tree will enforce similarity
between any two connected landmarks.

2) Source Signal Denoising via Landmarks: Based on the
density function (6), we can obtain the probability of any
point that is not in the set of landmarks. In particular, we can
introduce an assignment matrix R ∈ R

Nt ×K such that each
entry ri,k represents the probability of assigning si to ck . With
the help of Proposition 1 below, we can equivalently rewrite
the maximization problem of the logarithm of the density
function (6) over {si }Nt

i=1 as a joint minimization problem with
respect to R and {si }Nt

i=1.
Proposition 1: Let α be a positive number and the feasible

set R = {ri,k |ri,k ≥ 0,
K∑

k=1
ri,k = 1 ∀i}. We have

g̃(S,C) = min
R∈R

g(S,C, R), (15)

where

g̃(S,C) = −α
Nt∑

i=1

log
K∑

k=1

exp(−‖si − ck‖2

α
), (16)

g(S,C, R) =
Nt∑

i=1

K∑
k=1

[ri,k‖si − ck‖2 + αri,k log ri,k ]. (17)

The proof of Proposition 1 is given in A-A of the supplemental
material. Proposition 2 spells out the optimal R in (15).

Proposition 2: Given C and S, minimizing g(S,C, R) with
respect to R ∈ R has the closed form solution

ri,k =
exp

(
−‖si−ck‖2

α

)
K∑

k′=1
exp

(
−‖si−ck′ ‖2

α

) , ∀i, k. (18)

Proof: This is obtained directly according to the KKT
conditions in the proof of Proposition 1. �

It is worth noting that introducing the function g(S,C, R)
can be helpful to uncover the underlying properties of our
proposed method, as claimed by Proposition 3.

Proposition 3: Given R ∈ R and C, min
S

g(S,C, R) has

the closed form solution

si =
∑K

k=1 ri,k ck∑K
k=1 ri,k

, ∀i. (19)

Proof: The function g(S,C, R) with respect to S is convex
and quadratic. The optimal solution is obtained by setting the
first derivative to zero. �

Next, we explain how the proposed model can help denoise
the source signal.

Source signal denoising is achieved by the proposed method
based on the intuition that points in the high density regions
are less noisy than those in low density regions. If the source
signals are optimized to be points in the high density regions
of the true density of source signals, we could argue that they
are less noisy.

It is worth noting that both the source signals and the true
density of source signals are unknown. Hence, we model them
as in Section III-B, where the true density is parameterized
by landmarks depending on the unknown graph structure as
presented in Section III-C. For ease of discussion, let us
assume the true density of source signals is available. This is
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reasonable since our model optimizes all unknown variables
jointly. Below, we will explain how the true distribution
on landmarks helps to denoise source signals by optimizing
source signals to be points in high density regions.

In Section III-B, we model the density of source signals
S in terms of the conditional distribution on landmarks C .
To explain how S becomes the points residing in high density
regions formed by C , we first show the equivalence of two
minimization problems for objective functions (16) and (17)
with respect to S in Proposition 1, and then prove the crucially
important property in Proposition 3. Specifically, (16) is the
negative logarithmic function of density (6), so it is a mixture
of Gaussians, but can also be interpreted as the nonpara-
metrically estimated density via kernel density estimation for
any source signal built on a set of landmarks. According to
Proposition 1 and Proposition 3, minimizing (16) with respect
to each si is equivalent to finding its corresponding maximum
point of the density function by applying the update rule (19),
that is, {si } are finally convergent to points in the high density
regions. Intuitively, since the convergent source signals are in
the high density regions, they become less noisy.

The denoising process is further explained by the convergent
process of the optimal source signals by combining (18) in
Proposition 2 and (19) in Proposition 3: i) Suppose that s j is
one noisy source signal. Proposition 2 tells us the weighting
ri,k will be very small if si is far away from ck since the
distance between the source signal and the landmark ck is
large. ii) According to Proposition 3, the source signal si will
continuously move to the landmarks that are closer to the
source signal and finally converge to a high density region
near the closest landmarks with large weights.

The representation of the noisy source signal to a robust
point inside the high density region of landmarks is pre-
ferred for denoising source signals since landmarks are the
representative points of the true distribution of clean source
signals. Thus, the source signals are viewed in reference to a
robust point centered around landmarks representing the true
distribution of clean source signals.

We further show that K -means [50] is a special case of
minimizing g(S,C, R) with respect to R ∈ R as illustrated in
Proposition 4. The proof of Proposition 4 is given in A-B of
the supplemental material.

Proposition 4: Minimizing g(S,C, R) with respect to R ∈
R is equivalent to K-means as α → 0.

The parameter α provides the flexibility for our method to
take the density of points into account. As a result, our soft-
assignment weighting strategy (18) becomes more robust than
the hard-assignment in K -means.

IV. THE PROPOSED OPTIMIZATION APPROACH

According to Proposition 1 and with α = 2σ 2, the estimates
S, C and G of (13) can be equivalently obtained by introducing
R ∈ R and solving the following problem

min
S,C,G∈T ,R∈R

h(S,C,G, R), (20)

where h(·) is defined as

h(S,C,G, R) := ‖X − LS‖2
F + β

2

K∑
k,k′=1

gk,k′ ‖ck − ck′ ‖2

+ λ
Nt∑

i=1

K∑
k=1

[ri,k‖si − ck‖2 + αri,k log ri,k ]

+ γ1

Nt∑
i=1

‖si‖1 + γ2

K∑
i=1

‖ck‖1. (21)

Next, we will describe an efficient algorithm to solve (20),
followed by the analysis of its theoretical convergence and
computational complexity.

A. Optimization Method
We consider an alternating convex search (ACS) method

[51] to solve the proposed model (20). The ACS algorithm
iterates as follows,⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S(n+1) = arg min
S

h(S,C(n),G(n), R(n)),

C(n+1) = arg min
C

h(S(n+1),C,G(n), R(n)),

G(n+1) = arg min
G∈T

h(S(n+1),C(n+1),G, R(n)),

R(n+1) = arg min
R∈R

h(S(n+1),C(n+1),G(n+1), R),

(22)

where n is the iteration index. We omit the iteration index
when the context is clear. Below we will describe how to
solve each subproblem in details.

We rewrite the S-subproblem in (22) as

arg min
S

Nt∑
i=1

(
‖xi −Lsi‖2

2+λsT
i si −2λ(

K∑
k=1

ri,k cT
k )si +γ1‖si‖1

)

= arg min
S

Nt∑
i=1

(
sT

i U T Usi − 2bT
i si + γ1‖si‖1

)

= arg min
S

Nt∑
i=1

‖Usi − U−T bi‖2
2 + γ1‖si‖1, (23)

where U is the Cholesky factor of LT L + λINs = U T U , INs

is the Ns × Ns identity matrix and

bi = (
xT

i L + λ

K∑
k=1

ri,k cT
k

)T = LT xi + λ

K∑
k=1

ri,kck .

It is straightforward to see that U is invertible. Let Y =
U−T [b1, . . . ,bNt ] = U−T

(
LT X + λC RT

)
, we see that

the S-subproblem is equivalent to solving Nt independently
strictly convex subproblems:

st := arg min
s

‖Us − U−T bt‖2
2 + γ1‖s‖1. (24)

The C-subproblem in (22) can be expressed as

arg min
C

β

2

K∑
k,k′=1

‖ck − ck′ ‖2gk,k′

+ λ
Nt∑

i=1

K∑
k=1

ri,k‖si − ck‖2 + γ2

K∑
k=1

‖ck‖1. (25)
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Algorithm 1 The Proposed ACS Algorithm

1: Input: Data X ∈ R
Nc×Nt , lead field gain matrix L ∈

R
Nc×Ns , parameters β, λ, α, γ1, γ2, K .

Initialize S, C , G, R.
2: repeat
3: update S by solving (24);
4: update C by solving (27);
5: update G by solving (14) using Kruskal’s algorithm;
6: update R using (18);
7: until convergent.
8: Output: S, C , G, R.

Denote by P = diag(G1)− G, the graph Laplacian matrix of
G, and � = diag(1T R), where 1 is a vector of all ones. Let

‖C‖1,1 =
K∑

k=1
‖ck‖1. We obtain an equivalent form of (25) as,

min
C

trace
(

C (βP + λ�)CT − 2λS RCT
)

+ γ2‖C‖1,1. (26)

This is an (unconstrained) strictly convex problem, which
admits a unique solution. To solve (26), we use the Cholesky
decomposition of the matrix βP + λ� := V V T , where V ∈
R

K×K . Since the Laplacian matrix P is positive semidefinite
and the diagonal matrix � is positive definite according to
ri,k > 0 in Proposition 2, the matrix βP + λ� is positive
definite, which guarantees that V is invertible. As a result,
we have the solution C given by:

C := arg min
C

‖V T CT − λV −1 RT ST ‖2
F + γ2‖C‖1,1. (27)

Both (24) and (27) are �1 regularized strictly convex quadratic
programming problems and hence there exists a unique solu-
tion for each subproblem. Furthermore, it can be efficiently
solved by many well developed methods such as Homotopy
[52], ADMM LASSO [53], and FISTA [54]. In this paper,
we adopt the Homotopy for solving both (24) and (27).

The G-subproblem in (22) boils down to an MST problem
as shown in problem (14). It can be solved efficiently by the
Kruskal algorithm [55]. Finally, there is a closed-form solution
given by (18) for the R-subproblem.

The proposed ACS algorithm for solving problem (20) is
outlined in Algorithm 1.

B. Initialization
Due to the nonconvexity of problem (20), we consider to

have proper initializations of optimizing variables: S is solved
by Homotopy [52] for the inverse problem, C is obtained
by applying the K -means method [50] on the initialized S,
G is computed by the Kruskal algorithm and R is updated
using (18).

C. Theoretical Convergence Analysis
The convergence of Algorithm 1 is established in Theo-

rem 1. Its proof is given in A-C of the supplemental material.
Theorem 1: Suppose {S(n),C(n),G(n), R(n)} is the optimal

solution of problem (20) in the n-th iteration with each

subproblem solved exactly. Let h(n) = h(S(n),C(n),G(n), R(n))
be the corresponding objective function value. We have

(a) the function h(S,C,G, R) is coercive;
(b) h(n+1) ≤ h(n), i.e., objective function value is monoton-

ically decreasing;
(c) the sequence {h(n)} converges as n → ∞;
(d) the sequence {S(n),C(n),G(n), R(n)} has a convergent

subsequence.

It is worth noting that our convergent point is not guaranteed
to be a global optimal solution due to the nonconvexity of
the objective function. However, we observe that the solution
obtained from Algorithm 1 can achieve good performance.
Our explanation is that the nonconvexity is incurred from
the multiplicity of C and G, and the source space can have
different graph structures, however due to the existence of
graph structure and landmarks, the reconstructed source signal
is still robust to noise.

D. Computational Complexity Analysis
The computational complexity of Algorithm 1 can be sum-

marized by adding the complexities of multiple key modules.
First, some calculations can be precomputed, such as the
Cholesky factor of LT L + λINs = U T U and the inverse
of the upper triangular matrix U . The complexity is O(N3

s ).
To solve (24), we employ the Homotopy method [52]. The
computation cost of each homotopy step takes about N2

s +
Nsτ1 + 3τ 2

1 + O(Ns ) flops by assuming τ1 elements in the
support (τ1 ≤ Ns ). As problem (23) is decomposable in terms
of Nt columns of S, we need to solve Nt subproblem (24)
independently. As a result, it takes O(Nt (N2

s + Nsτ1 + 3τ 2
1 ))

for each Homotopy step of problem (23). Second, for a
given spanning tree G, the Laplacian matrix P maintains the
sparsity with only 2(K − 1) nonzero values. The Cholesky
decomposition of βP +λ� = V V T only takes O(K ). Again,
we employ the Homotopy method to solve problem (27) with
variable CT , which is decomposable in terms of Ns columns of
CT , and we can solve each column in parallel. So the total cost
is O(Ns (K 2+K τ2+3τ 2

2 )) by assuming τ2 elements in the sup-
port (τ2 ≤ K ). Third, the complexity of Kruskal’s algorithm on
the fully connected graph with weights on the landmarks C can
be calculated as follows. It requires O(K 2 Ns ) for computing
the fully connected graph and O(K 2 log(K )) for finding the
spanning tree. Finally, computing R takes O(Ns Nt K ). As we
will show in Section V-B, Algorithm 1 converges very fast
with usually fewer than 10 iterations.

V. NUMERICAL EXPERIMENTS

We evaluate our proposed algorithm using one synthetic
dataset and two real EEG/MEG datasets to illustrate its effec-
tiveness. The simulation study employs a realistic MRI-based
head model. Although it is known that noise is introduced
at both the sensor and brain source levels, it is unclear
the extent to which noise in the sensor and source spaces
impacts ESI solutions. Therefore we consider various lev-
els of signal-to-noise ratio (SNR) in both the sensor and
source spaces to validate the proposed algorithm in compar-
ison with well-established algorithms in the ESI literature
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[29], [31], [32], [37]. The SNR is defined by SNR =
10 log10(Ps/Pn), where Ps is the power of signal and Pn is
the power of noise signal at either the sensor or source level.

A. Benchmark Algorithms and Error Metrics
We compare our method with four benchmark algo-

rithms, namely MNE [29], MCE [32], sLORETA [31], and
MxNE [37]. For MCE, we employ the Homotopy algorithm
due to its superior performance observed in our previous
work on ESI [23]. In addition, we find that incorporating
spatial smoothness with the �1 approach in MCE improves
the reconstruction results, so we adopt this improved version
of MCE in our experiments. As for MxNE [37], we use
the �1 norm on the source space and the �2 norm across
time, a version of MxNE, leading to the �2,1 regularization
with an assumption on fixed source orientations and spatial
smoothness.

We quantitatively evaluate the performance of each compet-
ing algorithm based on the following metrics:

• Localization error (LE) measures the geodesic distance
between two source locations on the cortex meshes using
the Dijkstra shortest path algorithm. Since the two hemi-
spheres of a brain are disconnected, we calculate LE
separately for each hemisphere.

• Area under curve (AUC) [56] is particularly useful to
characterize the overlap of an extended source activation
pattern [57]–[59].

• Data fitting (DF) metric is defined as r2 = 1− Eres
Etot

, where

Etot =
∑
i=1

‖xi − x̄‖2
2 and Eres =

∑
i=1

‖xi − x̂‖2
2,

xi is the i -th column in the EEG data X , x̄ is the mean of
X along the time axis, and x̂i is the fitted value defined
as x̂i = L ŝi for any reconstructed source signal at time i .

• Reconstructed error (RE) in source location is defined as

RE = ‖Ŝ−S‖2
F

‖S‖2
F

.

Better accuracy for localization are expected if LE are close
to 0 and AUC is close to 1. Although the regularization
will compromise DF and RE, we still use those two as the
performance reference for all the algorithms.

B. Simulation Study
As in many brain imaging problems, the underlying ground

truth is generally unknown. As a result, we rely on numerical
simulations on synthetic data to measure the performance of
various algorithms.

1) Simulated Data Using a Real Head Model: We consider
a realistic head model with simulated brain source signals.
The head model was reconstructed from T1-MRI images of a
26-year old male subject scanned at Massachusetts General
Hospital. We use a 128-channel BioSemi EEG cap layout
and co-register it with the subject’s head surfaces (Electrodes
layout and coregistration can be found in Fig. G.1 of sup-
plemental material). Brain structure segmentation and corti-
cal surface reconstruction were conducted using FreeSurfer.
Coregistration of the head surface and EEG electrodes were

conducted using Brainstorm [60] and then verified using the
GUI of coregistration function in MNE-Python [61]. The
conductivity of brain, skull, and scalp were set to the default
from MNE-Python, which are 0.3 S/m, 0.006 S/m and 0.3 S/m,
respectively. The source space contains 1026 sources in each
hemisphere, with 2052 sources in total.

In the simulation, we randomly select two activation loca-
tions over the entire source space. We then generate two active
source signals via a 5th-order autoregressive (AR) model at
these locations (see Fig. B.1 of supplemental material). In the
simulated experiments, we consider three states with differ-
ent activation locations, the sampling frequency as 100 Hz,
and the time window as 2 s. A detailed description of the
simulated signals can be found in [62]. Each of the three
states corresponds to a multi-channel time series of 200 data
points. As a result, we obtain a time series with length
of 600 in total. We consider additive white noise at various
SNR levels in both channel and source spaces, denoted as
SNRC and SNRS , respectively. We set 4 noise levels for EEG
channels: SNRC = 30 dB, 20 dB, 10 dB, 0 dB, and 3 noise
levels in source space SNRS = ∞ (noiseless), 30 dB, and
10 dB. Examples of how these noise sources impact the true
noise-free signal are shown in Fig. B.2 of the supplemental
material. As you can see from Fig. B.2, when SNRC = 10 dB,
the EEG signal is significantly distorted. To further examine
the performance of all the algorithms under extremely high
level of channel noise, we include additional test for the
experiments with SNRC = −5. We also validate our algorithm
with 3 active sources, and we observe the superiority of our
proposed method over the benchmark algorithms, similar to
the situations with 2 active sources. More details can be found
in C-B of the supplemental material.

2) Parameter Sensitivity Analysis: We investigate the impacts
of the four parameters on both AUC and LE in Algorithm 1.
Since the sparsity levels of signals and landmarks are expected
to follow the same patterns, it is natural to assume their
regularization parameters are similar. Hence, we set γ1 = γ2 =
γ . In order to investigate the sensitivity of our method with
respect to these parameters, we evaluate Algorithm 1 by vary-
ing parameters in the following ranges: λ ∈ {1, 5, 10, 15, 20},
K ∈ {30, 60, 90, 120}, γ ∈ {1e-4, 1e-3, 0.01, 0.1, 1}, β ∈
{1, 3, 10, 20}, in the setting of SNRC = 20 dB and SNRS =
10 dB and α = 0.01. We used AUC and LE to evaluate the
sensitivity for the varying parameters.

As usual, performance improves if AUC increases and LE
decreases. We demonstrate the parameter sensitivity in Fig. 2
by showing the best AUC and LE over two of the four
parameters as the other two vary. As can be seen, AUC is
not sensitive to K , γ and β. We observe that λ ∈ [0.5, 5] can
generally lead to quite satisfactory results for both AUC and
LE, even though our method is sensitive to the parameter λ
varying in a wide range.

Based on the above sensitivity analysis, we employ the
following settings for the synthetic data experiment with
λ = 3, β = 3, α = 0.01, while tuning K ∈ {60, 120}
and γ ∈ {0.001, 0.01}, for Algorithm 1. We also tune
the regularization parameters for the compared algorithms,
including MNE, MCE, sLORETA and �2,1, over a wide range
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Fig. 2. AUC and LE by the proposed algorithm with respect to any two
of the parameters at the noise level SNRC = 20 dB and SNRS = 10 dB.

{0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500, 1000} in order to
ensure that they can achieve the best possible performance.
After solving the ESI problem using different algorithms,
we use AUC to choose the best solution by each algorithm
for synthetic data.

3) Convergence Analysis and Computational Analysis: We
conduct experiments using the settings SNRC = 20 dB,
SNRC = 10 dB and SNRC = 0 dB, while SNRS = 30 dB.
We observe that the objective function values can usually
converge within 5-10 steps as shown in Fig. 3. In Fig. E.1 of
supplemental material, it is shown that the empirical com-
putational complexity measured in seconds for each iteration
using the same settings as in Fig. 3 for SNRS = 30 dB and
SNRC = 10 dB. It takes less than 3 minutes per iteration on
a Linux machine (Intel Xeon W-2133 CPU @3.60GHz with
12 cores). In Section IV-D, we show that the computational
complexity for each iteration is almost constant, which is also
verified in Fig. E.1. It is worth noting that steps 3, 4, and 6 of
Algorithm 1 can be efficiently executed in parallel as shown
in section IV-A.

4) Performance Evaluation: To compare against benchmark
methods, we conduct both numerical and real human subject
experiments to demonstrate the advantage of the proposed
method. We first report the numerical comparisons in terms
of the four metrics in Table I with respect to different
sensor noise levels. Each reported value is the mean from
10 repeated experiments. The results show that the proposed
approach outperforms the benchmark algorithms in most cases,

Fig. 3. Convergence analysis of the proposed algorithm under dif-
ferent SNR settings with λ = 3, β = 3,K = 120, γ = 0.01 and
SNRS = 30 dB.

particularly excelling in terms of LE and AUC. Specifically,
for higher SNRC = 30 dB (less noise in the channel space),
all the algorithms perform very well in terms of LE. But
for both SNRC = 10 dB and SNRC = 0 dB, the proposed
approach stands out in terms of LE and AUC. The performance
result when SNRC = −5 dB is given in Table C.1 of
the supplemental material. When SNRC = −5 dB, all the
algorithms performed poorly, with very large LE and small
value of AUC.

Based on the above results, we have the following obser-
vations: i) when there is little noise, our algorithm performs
slightly better; ii) when the noise intensity becomes slightly
larger, the performances of all algorithms except ours degrade;
iii) when the channel noise level is −5 dB, all algorithms
perform very poorly.

We illustrate the results of source reconstruction under
different noise levels and locations in Fig. 4. We normalize the
final reconstructed source and scale the signal between 0 and 1.
The threshold value is set to 1/3. The top row of Fig. 4 is for
SNRC = 20 dB, SNRS = 30 dB with the true activation in
the rostral middle frontal area. In this case of high SNR, all
methods achieve satisfactory results, except for the spatially-
diffuse solutions by MNE and sLORETA. We then increase
the noise to SNRC = 10 dB, SNRS = 30 dB and generate
the ground truth source activation as illustrated in the second
row of Fig. 4, which shows that the activation patterns by the
proposed algorithm are the closest to the ground-truth. MCE
and �2,1 can correctly identify some locations but also produce
many spurious activations on the cortex surface. On the
other hand, MNE and sLORETA again render highly diffuse
solutions, but the locations with the largest magnitude on both
hemispheres align well with the true activation locations. The
third row in Fig. 4 shows a case when SNRC = 10 dB, SNRS =
10 dB with two sources that are located close to each other, and
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TABLE I
PERFORMANCE (AVERAGE ± STANDARD DEVIATION) OF ALL ALGORITHMS USING THE FOUR METRICS OVER 10 RANDOMLY REPEATED

EXPERIMENTS BASED ON SYNTHETIC DATA FOR SNRC = {30, 20, 10, 0} DB AND SNRS = {∞, 30, 10} DB. AS THE SOLUTION FROM SLORETA
MAINLY EXPLAINS THE SIGNAL VARIANCE, THE DF FIELD IS NOT APPLICABLE TO SLORETA AND IS LEFT BLANK

Fig. 4. Source reconstruction comparison for all algorithms under
different noise levels.

the fourth row shows the reconstructed results of all algorithms
when SNRC = 0 dB and SNRS = 10 dB, where the proposed
algorithm provides a better reconstruction than any other
algorithms. We also illustrated the reconstructed time series
in Fig. F.2 of the supplemental material and the corresponding
activation pattern in Fig. F.1 of the supplemental material.

In order to better illustrate the performances of the different
algorithms, we decompose the true signal using PCA into its
top 3 principal components and visualized the reconstructed

signals by all methods on this basis. The tree structure learned
by the proposed method is drawn based on the projected points
from landmarks C as the vertices. The results obtained by the
compared methods are illustrated in Fig. 5, from which we
observe how well the solutions by different algorithms are
aligned with the ground truth signals. It is clear that when the
noise level is low (SNRC = 30 dB), both solutions by MCE
and our proposed algorithm align well with the ground truth
signals, which explains why they have good LE and AUC
performance. When the noise is large (SNRC = 10 dB), our
algorithm aligns well with the ground truth signals but the
ones by MCE and sLORETA fail to align well, which explains
the deteriorating performances by MCE and sLORETA when
the noise is large. We can also see the landmarks C are a
faithful representation of the ground truth signals, and the tree
structure can correctly capture the manifold structure of data
over various noise levels.

In summary, numerical results on the synthetic EEG data
show that the proposed approach is comparable to the bench-
mark algorithms at lower noise levels, but at high noise levels,
our algorithm significantly improves the benchmark algo-
rithms. The observation confirms that source signal denoising
and graph structure can identify activation patterns even at a
high noise level in both sensor and source spaces.

C. Real Data Experiment I
We analyze a real dataset that is publicly accessible through

the MNE-Python package [61]. The EEG/MEG data was col-
lected when the subject was given auditory and visual stimuli.
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Fig. 5. Source solutions from three algorithms projected on the top-
3 principal components of the ground truth signal S matrix with SNRC ∈
{10, 30} dB, and SNRS = 30 dB. This figure shows how close all solutions
are to the ground truth S at different levels of noise.

In the experiment, the subject was presented with checker-
board patterns to the left or right eye, interspersed by high
frequency noise to the left or right ear. The recording device
was a whole-head Elekta Neuromag Vector View 306 MEG
system with 102 triple-sensor elements (two orthogonal planar
gradiometers and one magnetometer per location). The EEG
data from a 60-channel cap were also recorded simultaneously.
Standard pre-processing steps including bandpass filtering, bad
epoch rejection, and bad channel selection were conducted
before applying ESI algorithms [40]. The lead field matrix
was constructed using MNE-Python. There are 7498 sources
distributed over the cortical surfaces.

The epochs under study are from left auditory stimuli (LAS)
and left visual stimuli (LVS). There are 66 epochs for LAS
and 73 for LVS. The time range used for all the epochs of
LVS and LAS is from 0.03 s to 0.16 s after the stimuli events.
The average time course aligned with stimuli events for EEG,
Gradiometers and Gagnetometers are illustrated in Fig. G.3 for
LAS and Fig. G.6 for LVS in supplemental material. By check-
ing the time series plots in Fig. G.3, the event related field
(ERF) activation pattern for LAS is very clear from time
0.08 s to 0.12 s and the related topomaps are illustrated on the
rightmost plot in Fig. 6. Following the same parameter setting

as the simulation study, we perform the source localization
on an averaged epoch in a moving window with 15 epochs
(overlap=5) for LAS and LVS and the final activation patterns
on the cortex for LAS and LVS are illustrated in Fig. 6 for
t = 0.1 s, and the reconstruction results for t = 0.08 s and
t = 0.12 s are illustrated in Fig. G.5 the in the supplemental
material.

The other competing methods show highly diffuse or spu-
rious activations in their reconstructions, similar to the results
from the synthetic data.

To visualize and validate the existence of a spanning tree in
this real data, we project the source solutions of all averaged
epochs from different moving windows for LAS and LVS onto
a three-dimensional space in Fig. 7 using the discriminative
dimensionality reduction tree algorithm [63]. The tree structure
is shown in the source space where the blue dots and red dots
are the sources under LAS and LVS, respectively, and the
intersection of blue and red points is the preceding part of ERF
when the evoked response is not very strong, so both condi-
tions have much similar background activities. The activations
under different stimuli conditions progress on the branches of
the spanning tree. Fig. 7 also shows the landmarks activation
patterns reside in a manifold structure.

Compared to the benchmark algorithms, our approach pro-
vides a sparse source reconstruction with apparently fewer
spuriously activated sources with activation patterns that are
more consistent across time.

D. Real Data Experiment II
For this real data experiment, we use a publicly-accessible

epilepsy dataset available from the Brainstorm tutorial web-
page [60]. The data were collected at the Epilepsy Center,
University Hospital Freiburg, Germany. The patient suffered
from focal epilepsy since the age of 8 years. The patient’s
3T MRI and PET scans were both normal. The scalp EEG
showed sharp waves and epileptiform spikes in the left fronto-
central area (FC1, Cz channels have the maximum amplitude).
The patient had an invasive EEG recording followed by a
left frontal resection surgery. The patient’s health condition
was followed-up for 5 years after surgery and the patient
was found to be seizure free. The patient provided written
informed consent for this study, obtained by Dr. Andreas
Schulze-Bonhage and Dr. Marcel Heers at the Epilepsy Center
Freiburg. We obtained permission from the Epilepsy Center
Feiburg to use this dataset in this work.

The EEG data were recorded using a Neurofile NT digital
video-EEG system at 256 Hz and was filtered with a high-
pass filter followed by a low-pass filter with cutoff frequen-
cies of 0.16 Hz and 344 Hz, respectively. After discarding
bad channels, there were 29 channels used for testing ESI
algorithms. The spike locations were manually marked by
the epileptologists at the Epilepsy Center in Freiburg. There
were 58 time points identified as the epileptiform spikes.
We selected [-100 ms, 100 ms] around the time stamp of each
spike as one epoch. Eventually we had 58 epochs each with
a length of 51 time points. We concatenated all the epochs to
obtain a multivariate time series with 2958 data points.
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Fig. 6. Source activation patterns from MEG data at t = 0.1 s.

Fig. 7. Reconstructed sources and the spanning tree over landmarks
projected onto a three-dimensional space for LVS (in blue) and LAS (in
red), and the corresponding cortex activation for different time points for
LVS (left) and LAS (right). The tree is extracted out for better viewing.

Fig. 8. Reconstructed sources and the spanning tree over landmarks
projected onto a three-dimensional space. The tree is extracted out on
the right side of the figure for better viewing.

We set the parameters for our algorithm as λ = 3, β =
3, K = 500, γ1 = γ2 = 0.01. Similar to Section V-C,
we project the solution onto a three-dimensional space in
Fig. 8. The marked spike data points and 2 data points before
and after that are illustrated in red. The other data points
are illustrated in blue. As we see in Fig. 8, most sources

Fig. 9. Averaged inter-ictal spike source localization results. From left
to right, the cortex activations are from MNE, MCE, sLORETA, �2,1 and
the proposed method.

reconstructed from the spikes and adjacent time points are
aligned in one branch of the tree. We see that the spikes
vary in amplitude, but form similar patterns connected by the
spanning tree. The spanning tree structure shows the signal
variations around the inter-ictal spikes. The averaged results
are shown in Fig. 9 for the proposed algorithm and MNE,
MCE, sLORETA, and the �2,1 method. The scale of the
colorbar in the figure matches the range of the max and min
values for all solutions. Our results show consistency with
the clinical results reported in [64] and other recent source
localization results [65] for this same dataset.

VI. CONCLUSION

We have presented a novel probabilistic ESI model employ-
ing a hierarchical graph prior that identifies consistent pat-
terns across time spanned from a sparse set of representative
landmark activation patterns. An efficient algorithm based
on an alternating convex search is proposed with provable
convergence. We conduct extensive numerical experiments,
including on both synthetic and real datasets. Our numer-
ical experiments demonstrate that the proposed algorithm
can robustly localize the activated sources with satisfactory
precision despite high levels of noise at both the channel
and source levels. On the other hand, we see that well-
established benchmark algorithms are highly sensitive to noise
at both levels, and particularly at the sensor level. For the
synthetic data experiments, our algorithm outperforms all
benchmark algorithms and yields significant improvements
especially when the noise levels in channel space and source
space are high. In the examples of real data that we stud-
ied, our algorithm renders more consistent reconstructions,
while allowing variations across time. Compared with the
benchmark algorithms, the source signals reconstructed by
our proposed method are less contaminated by spurious
sources originating from spontaneous brain fluctuations or
measurement noise.
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