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Abstract
Pronounced changes in the Arctic environment add a new potential driver of anomalous weather
patterns in midlatitudes that affect billions of people. Recent studies of these Arctic/midlatitude
weather linkages, however, state inconsistent conclusions. A source of uncertainty arises from the
chaotic nature of the atmosphere. Thermodynamic forcing by a rapidly warming Arctic
contributes to weather events through changing surface heat fluxes and large-scale temperature
and pressure gradients. But internal shifts in atmospheric dynamics—the variability of the
location, strength, and character of the jet stream, blocking, and stratospheric polar vortex
(SPV)—obscure the direct causes and effects. It is important to understand these associated
processes to differentiate Arctic-forced variability from natural variability. For example in early
winter, reduced Barents/Kara Seas sea-ice coverage may reinforce existing atmospheric
teleconnections between the North Atlantic/Arctic and central Asia, and affect downstream
weather in East Asia. Reduced sea ice in the Chukchi Sea can amplify atmospheric ridging of high
pressure near Alaska, influencing downstream weather across North America. In late winter
southward displacement of the SPV, coupled to the troposphere, leads to weather extremes in
Eurasia and North America. Combined tropical and sea ice conditions can modulate the variability
of the SPV. Observational evidence for Arctic/midlatitude weather linkages continues to
accumulate, along with understanding of connections with pre-existing climate states. Relative to
natural atmospheric variability, sea-ice loss alone has played a secondary role in Arctic/midlatitude
weather linkages; the full influence of Arctic amplification remains uncertain.

1. Introduction

If and how recent Arctic changes influence broader
hemispheric weather continues to be an active and
controversial research topic [1–6]; e.g. Cohen et al
[5] noted 146 papers on the subject. It remains
a significant research challenge and a potential
opportunity to improve extended-range forecasts,

as noted by the recent Year of Polar Prediction
project [7]. Understanding the potential influence
of disproportionate Arctic warming on frequency
and persistence of extreme winter weather events
in midlatitudes is societally relevant, as continued
Arctic amplification (AA) of temperature increase
is an inevitable aspect of anthropogenically forced
global change (e.g. [8, 9]). Severe and aberrant winter
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weather has major impacts on infrastructure, trans-
portation, agriculture, productivity, recreation, pub-
lic health, and ecosystems. The influence of Arctic
change on global weather patterns is already motiv-
ating efforts to mitigate climate change [10].

Reviews [5, 11] and international workshops,
sponsored by the World Climate Research Pro-
gramme’s Climate & Cryosphere project, Interna-
tional Arctic Science Committee (IASC), and the
U.S. Climate Variability and Predictability program,
reached divergent conclusions on the relative import-
ance in Arctic/midlatitude linkages between AA-
forced changes and atmospheric internal variability,
based on model simulations and observational data.
While many recent studies have identified associ-
ations andmechanisms linking sea-ice loss and/or AA
with various winter extreme weather regimes in mid-
latitudes (e.g. [5, 12], and references therein), some
conclude that thermodynamic forcing due to recently
sea-ice-free Arctic regions is insignificant relative to
internal atmospheric variability [2, 6, 12–21]. Sev-
eral implicate a particular dominance of an upstream
teleconnection forcing from the Atlantic that ampli-
fies warming over the Barents/Kara Sea (BK) region,
regional ridging of high pressure systems, and then
downstream cooling over Asia [22–26]. A subset of
these investigations focuses on warm air advection
into the BK region [23, 27]. Other forcings include
local heating of the atmosphere, not necessarily from
the loss of sea ice [12, 28], and tropical influences
[29–31]. A large number of papers (27 [5]) based
on climate model simulations do not support sea-ice
loss as a significantmechanism for Arctic/midlatitude
weather linkages. Recent work suggests that models
can underestimate the atmospheric response to AA
[12, 32–34]. Potential Arctic influences remain unre-
solved, but it is generally accepted that possible Arc-
tic/midlatitude weather linkages are not always dir-
ect, can be overwhelmed by internal variability, and
are often subject tomultiple, simultaneous, and time-
lagged ocean-atmosphere processes.

An advance in understanding high-latitude cli-
mate change is that Arctic/midlatitude weather link-
ages depend not only on the magnitude of AA, but

also on the location, amplitude, and movement of
meanders in the polar jet stream [22, 35–37]. That this
connection does not appear in all years or all months
is an argument for the intermittency of weather link-
ages despite continued AA. Spatial and temporal vari-
ations in AA patterns also contribute to intermittency
[38]. Inspection of year-to-year variability reported
in studies claiming weak multi-decadal trends in
linkages (e.g. [39]), suggests such intermittency. In
fact, amplified Arctic warming may not initiate mid-
latitude connections, but instead intensify intrinsic
linkages by enhancing the amplitude of existing
large-scale Rossby waves—subject to the influences
of sea-surface temperature (SST) anomaly patterns
and geographic features—and therefore contribute
to the formation of stationary blocking anticyclones
[37, 40]. Amplified Rossby waves lead to increased
northward warm advection as well as southward cold
advection between the subarctic and midlatitudes.
Some metrics of jet-stream waviness (e.g. sinuos-
ity, meridional circulation index, local wave activ-
ity flux) have indicated an increased frequency of
high-amplitude jet stream days since AA emerged in
the mid-1990s, embedded within large year-to-year
winter natural variability [41–46]. Because cold and
warm extreme events often occur simultaneously in
adjacent regions, according to the axis and amplitude
of jet-stream waves as they progress, metrics based
on averages over a season, across large regions, or
overmanymodel ensemblemembers tend to produce
insignificant composite signals [3, 47]. This fact is one
source of discrepancy among studies.

Three Arctic processes are potentially involved
in feeding back to dynamic longwave atmospheric
patterns: (a) local thermodynamic surface forcing,
often associated with loss of sea ice; (b) north-
ward warm air advection into an existing long-
wave ridge; and (c) internal atmospheric block-
ing processes that add to the persistence of the
wavy jet stream pattern. The state and balance of
these three regional factors comes from a qualitative
interpretation of the geopotential height tendency
equation in pressure coordinates (from [48], which
is a modified version of equation (6.14) from [49]):
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where χ= ∂Φ/∂t is defined as the geopotential tend-
ency, and the static-stability parameter σ is defined
as σ = −(α/θ)(∂θ/∂p), θ is potential temperature, α
is specific volume,Φ denotes the geopotential height,

f (f 0) is the Coriolis parameter (at 45◦), Vg is the
geostrophic wind, Rd is the gas constant for dry air,
cp is the specific heat at constant pressure, and Q is
the external heating. Geopotential heights rise and
fall proportional to negative and positive absolute
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Figure 1. Linear trend of November sea-ice concentration (SIC) in the period 1979–2019. This pattern highlights the delay of
sea-ice freeze-up in the Barents/Kara Seas (BK), Chukchi/Beaufort Seas (CB), and Baffin Bay (BB). SIC data are obtained from the
National Snow and Ice Data Center (NSIDC), https://nsidc.org/data.

vorticity advection (Term A), vertical variation of
geopotential thickness (heat) advection (TermB), and
low-level diabatic heating (Term C). Authors discuss-
ing Arctic/midlatitude connections often focus on the
third element, ocean-to-atmosphere heat flux owing
to the loss of sea ice associated with AA, but the first
two factors are important in midlatitude linkages.
Tying midlatitude weather regimes to internal atmo-
spheric variability of the regional jet stream, which
can bemodulated by Arctic forcing, provides physical
insight into linkage theory.

The delay of fall freeze-up of sea ice is one of
the most conspicuous manifestations of the changing
Arctic. It occurs regionally with the largest changes in
BK, Baffin Bay (BB), and the Chukchi/Beaufort Seas
(CB) (figure 1). Owing to increased turbulent and
radiative fluxes from the surface to the atmosphere in
ice-free Arctic areas during early winter, one would
expect some direct tropospheric geopotential thick-
ness increases in these regions through at least Janu-
ary, the typical time when freeze-up tends to be com-
plete across the Arctic Ocean and its marginal seas.
Two studies that link surface turbulent fluxes to atmo-
spheric circulation are [50] and [51].

During late winter when the Arctic Ocean is gen-
erally frozen over, Arctic/midlatitude connections are
generally less attributable to direct ocean-atmosphere
heat fluxes related to sea-ice loss, although as the
ice thins, heat fluxes increase in influence. A major
controlling factor for classic late-winter cold-air
outbreaks into midlatitudes is the linkage to the

occurrence of stratospheric polar vortex (SPV) dis-
ruptions and displacements over the continents.
Accordingly, improved understanding of factors
causing SPV disruptions is required. A cluster ana-
lysis of daily, pan-Arctic 100 hPa geopotential height
anomalies derived from ERA-Interim Reanalysis
during January/February 1979–2018 suggests five
dominant circulation patterns (figure 2, from [52]).
Cluster 1 is a pole-centered region of lower-than-
average 100 hPa heights that represents a strong SPV.
The corresponding time series indicates a decrease
in the seasonal-mean frequency of this pattern since
2000. Other clusters represent progressively weaker
states of the SPV, in terms of mean polar-cap geopo-
tential heights. Cluster 5 exhibits a positive height
anomaly centered over Greenland/central Arctic,
indicative of a weak SPV related to sudden strato-
spheric warmings (SSWs). Clusters 2 and 4 represent
an SPV center shifted southward over North America
and west of Greenland and occur in more than 40%
of the record. As discussed by [52], configurations
classified as cluster 5 were more frequent during the
last decade, while clusters 2 and 4 occurred relat-
ively frequently during the last 5 years of the analysis
(figure 2).

This review focuses on the differences between
early- and late-winter processes involved in Arc-
tic/midlatitude linkages and acknowledges that not
all Arctic/midlatitude weather connections necessar-
ily originate from recent AA. We consider open sci-
ence questions, address recent studies, and note the
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Figure 2. Representative clusters of 100 hPa geopotential height anomalies (m) during winter (JF) from 1979 to 2018. Numbers in
parentheses above each map reflect the percentage of occurrence. Bar plots present seasonal-mean normalized frequency of
occurrence during each year. Reprinted from [52]. Copyright © 2018, The Author(s). CC BY 4.0.

interaction of multiple processes that have received
less attention in the literature.We organize the review
geographically as follows: (a) East Asian weather
connections to BK sea-ice loss, (b) North Amer-
ican weather events and their relationship with early-
winter ridging and late-winter SPV disruptions, (c)
European severe weather, and (d) possible SPV mod-
ulations based on tropical connections.

2. Linkages affecting Asia

Since the beginning of the 21st century, cold spells
over East Asia occurred not only more frequently, but
they were stronger and more persistent than during
previous decades [53–55]. In December 2009, 2012;
January 2008, 2010, 2013, 2016; and February 2008,
2018, bitter cold periods and heavy snowfall accom-
panied by freezing rain in some areas struck East Asia,
resulting in severe economic and societal disruption
[56, 57]. Previous studies based on statistical ana-
lyses of reanalysis data, as well as sensitivity experi-
ments using both atmosphere-only and atmosphere–
ocean coupledmodels, provided evidence supporting
a relationship between negative surface air temperat-
ure (SAT) anomalies over East Asia and lower-than-
average sea-ice extent in the central Arctic Ocean
and/or the BK [11, 32, 35, 39, 58–62]. Recent cool-
ing in Central Asia accompanied by Arctic warming is
called warm Arctic/cold Eurasia (WACE) pattern [32,
60, 63]. According to the WACE index, the positive
WACE coincides with an anomalously low BK sea-ice
cover with a correlation coefficient of −0.52 at 99%
confidence level (figure 3). The connections between
WACE and BK sea-ice cover can be a consequence
of an interactive process mediated by a changing
atmospheric circulation [64], in which the BK sea-ice
anomaly is a response to regional internal variability
and/or BK can force the atmospheric circulation [63].

Further, the same atmospheric circulation that results
in a cold Eurasian continent also directly contributes
to BK sea ice loss, as Ural blocking results in advection
of southerly air masses over the BK [65].

Two main pathways, a tropospheric pathway and
a stratospheric pathway, have been proposed that
provide plausible explanations for the statistical rela-
tionships between Arctic change and midlatitude
weather [11]. Numerous observational and modeling
studies relate BK sea-ice co-variability to winter mid-
latitude circulation patterns in both the troposphere
and stratosphere; some studies find no robust con-
nection (see [5, 66, 67] for comprehensive reviews).

2.1. Early-winter tropospheric processes
The tropospheric pathway is pronounced in Novem-
ber to December and is discussed in conjunction with
a stationary Rossby wave train excited by anomalous
diabatic surface forcing, partly from sea-ice loss in the
BK region (e.g. [5, 59], and references therein).When
looking at a broader spatial area, a wave train ori-
ginating in the northern North Atlantic Ocean and
extending to Eurasia is common, in part associated
with positive SST anomalies along the eastern sea-
board of North America [23] and extending eastward
to the Ural Mountains (figure 4, far left).

A description of the dominant atmospheric circu-
lation patterns over the extended winter season under
low (2001/2002–2013/2014) and high (1978/1979–
1999/2000) Arctic sea-ice conditions was provided
in [68]. In early winter, an anticyclonic pattern over
Scandinavia that extends toward Siberia, referred to
as the positive phase of the Scandinavian pattern
(SCAN), occurs significantly more often under low
Arctic sea-ice conditions (figure 5, tall red bars for
SCAN). During SCAN blocking episodes the crests
of planetary waves extend into the Arctic causing
high baroclinicity; northward ocean advection into
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Figure 3. Time variation of the mean sea-ice concentration anomaly over the BK (black) and WACE index (green) in early winter
(November and December). Blue (red) dots represent the years when the sea-ice cover was more than 0.5 standard deviation (gray
dashed lines) above (below) the mean during 1979–2019 (black dashed line). Sea-ice concentration data are from HadISST
(www.metoffice.gov.uk/hadobs/hadisst/), and the WACE index is estimated as the difference in surface air temperature between
the BK (65◦ N–82◦ N, 10◦ E–100◦ E) and central Asia (40◦ N–60◦ N, 70◦ E–120◦ E) using the NCEP-DOE Reanalysis 2 data
(https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html).

Figure 4. Regression maps of monthly averaged geopotential heights at 300 hPa from November to February for winters from
1978/79 to 2014/15, regressed onto the detrended and normalized November-averaged BK (70–85◦ N, 15–90◦ E) SIC index. The
sign of the coefficients is reversed, such that positive (negative) height anomalies are associated with negative (positive) SIC
anomalies. Heavy black contours indicate where statistical significance exceeds the 95% level. The analysis is based on
geopotential heights from the Japan Meteorological Agency JRA-55 reanalysis (www.jra.kishou.go.jp/JRA-55/) and the Met Office
Hadley Centre HadISST2 sea ice data (www.metoffice.gov.uk/hadobs/hadisst2/).

the Barents Sea should add to loss of sea ice as a for-
cing [69]. The appearance of the SCAN pattern often
coincides with the occurrence of the North Atlantic-
BK-Asia wave train [70–72]. Lack of BK sea ice and
extensive autumn snowfall anomalies over Siberia are
not necessarily causes for the atmospheric wave train
across Eurasia but may contribute to the initiation
and reinforcement of a Ural blocking pattern [23, 60],
which can further reduce the BK sea-ice cover [70]. In
early winter all three mechanisms (equation (1)) are
involved: surface heat flux, warm-air advection, and
blocking.

On seasonal timescales, blocking in the Ural
region can establish a cold reservoir in central
Siberia, which can affect subsequent downstream
synoptic weather events that advect cold air-masses
into eastern Asia. The figure 6 composite of winter
anomaly maps from 1979 to 2019 captures synoptic
conditions during November–March over Eurasia
prior to the onset of cold surge events in East Asia,

when the BK sea-ice cover was more than 0.5 stand-
ard deviations below the climatological mean during
early winter (November and December) (figure 3).
The onset and termination of the cold event are
definedwhen dailymean SAT over East Asia (35◦–45◦

N; 120◦–130◦ E) exceeded −1.5 standard deviations
over 2 d (onset), then the daily mean SAT recovered
to the climatological mean (termination). From day
−6 to day 0, the area of anomalously low SATs relat-
ive to the climatological mean, high sea-level pressure
(SLP), and geopotential height at 300 hPa all moved
southeastward from the BK and Ural Mountains to
East Asia. The negative SAT anomaly occurred due to
cold advection from the expansion of the high geo-
potential height anomaly [59, 73, 74]. From days −6
to 0, an upper-level atmospheric wave pattern con-
sisted of negative geopotential height anomalies over
northern Europe and Lake Baikal and its surround-
ings, and positive height anomalies over the BK and
the Ural Mountains. A strong east–west SLP gradient
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Figure 5. Relative frequency of five large-scale atmospheric patterns during December, January, February, and March 1979–2019
with respect to Arctic sea-ice conditions from ERA-Interim. Blue bars represent the relative frequency of occurrence for high ice
conditions, and red bars for low ice conditions. The five patterns, resolved through cluster analysis on sea-level pressure fields, are
identified as North Atlantic Oscillation (NAO+), SCAN, ATL−, NAO−, and dipole (reprinted from [68]. ©2017 The Authors.
Published by Elsevier B.V. CC BY 4.0.). Note the frequent occurrence of the SCAN pattern in early winter and the NAO− pattern
in later winter for low sea ice conditions.

formed (figure 6(i)), promoting northerly winds and
cold surges across East Asia (figure 6(c)).

A record event occurred in late December 2020
representing a classic Ural High and a deep coastal
Asia/North Pacific low, with a 1094 hPa high, 920 hPa
low, and a major eastern Asia cold event.

2.2. Late winter pathway
The second mechanism, termed the stratospheric
pathway, has a longer timescale extending from
mid- to late-winter (e.g. [5, 11, 58, 61, 75, 76]).
It is characterized by a series of dynamically con-
sistent, time-lagged relationships, i.e. enhanced ver-
tical propagation of planetary-scale Rossbywaves that
weaken the SPV, followed by a downward progression
of connections to the troposphere and a resultant neg-
ative North Atlantic/Arctic Oscillation (NAO/AO) in
January through March (figure 4, right) [58, 77–80].
Observational studies link the recent increase in weak
SPV events (cluster 5 pattern in figure 2) to negative
sea-ice anomalies in the BK (figure 3), and negat-
ive NAO in February and March (figure 5) [58].
However, modeling studies provide only mixed sup-
port for these relationships, although some models

with a well resolved stratosphere and/or interactive
stratospheric chemistry more realistically simulate
observed linkages between BK sea-ice loss and a
weakened SPV [5, 81].

During late winter, a circulation pattern sim-
ilar to the negative phase of the NAO is preferred
when low-ice conditions occur, indicated by the taller
red bars than blue bars in February and March for
NAO− in figure 5. A negative NAO is the most com-
mon response following weak SPV events along with
the corresponding downward propagation of posit-
ive polar cap geopotential height anomalies from the
stratosphere to the surface [61, 82, 83]. The time-lag
regression of February 300 hPa geopotential height
anomalies on the November BK sea ice anomaly (far-
right of figure 4) provides supporting evidence for a
NAO shift toward the negative phase in late winter,
with a high/low dipole of anomalous heights over
the Nordic Seas and the North Atlantic. Anomal-
ously extensive snow cover and cold soil temperat-
ures during fall can influence winter weather in Asia
by preconditioning (albedo and temperature) and
through positive feedbacks [84–87], although some
studies question these interactions (e.g. [70, 75]).
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Figure 6. Composite anomaly maps of winter (November through March from 1979 to 2019) for (left) surface air temperature
(SAT, ◦C) with wind vectors (m s−1) at 850 hPa, (middle) 300 hPa geopotential height anomalies (m), and (right) sea-level
pressure anomalies (hPa), when the BK sea-ice concentration is at least 0.5 standard deviation lower than normal in early winter
(November and December), as shown in figure 3. Top to bottom: 6 d before, 3 d before, and the day of cold-surge occurrence.
Wind vectors and SAT, 300 hPa geopotential height anomalies, and sea level pressure anomalies significant at 95% confidence
level are represented as dark arrows and dots, respectively, from student’s t-test. Data are from NCEP/NCAR reanalysis.

Challenges remain in understanding how the
wave train over the North Atlantic-Eurasian sector
and the phase shift to the negative NAO evolve over
the extended winter season (November to March).
Table 1 summarizes the potential impacts of BK sea-
ice loss on weather in Asia during early- versus late-
winter. Despite evidence of Arctic/midlatitude link-
ages during some SSW events, not all such episodes
result in strong troposphere cooling, as was the case
with the marked SPV weakening of February/March
2019 [88].

2.3. A case study for the impacts of local heat fluxes
Here we use a recent case study to better under-
stand underlying physical mechanisms between BK
sea-ice/SAT and atmospheric conditions over Asia,
augmenting previous discussions based on statist-
ical approaches. To demonstrate the usefulness of
synoptic-scale analysis, we present potential vorticity
(PV) fields and a daily evolution of anomalies in SAT,
turbulent heat fluxes, sea-ice concentrations (SICs),
and downward longwave radiation fluxes (DLR) for
the remarkable amplification of the Arctic warm
anomaly that occurred in late December 2015 to early
January 2016 [65, 89, 90] followed by an exceptional
cold spell in East Asia during late January.

According to the operational analysis from
the European Centre for Medium-Range Weather

Forecasts, high Arctic SAT exceeded 0 ◦C in early
January 2016, a value 25 ◦C above the winter clima-
tological mean with a record high daily temperature
since 1950 [91]. Following this warm event, a large
reduction in the Arctic sea-ice extent occurred in the
middle of the cold season [92–95], and a cold wave
struck much of East Asia in late January 2016, bring-
ing record low SATs and snowfall to many parts of
southeast and central Asia [90, 96, 97].

Figure 7 presents daily isentropic PV fields for
28–31 December 2015, when an abrupt temperature
increase began over the BK. On 28 December 2015,
a lobe of low PV (less than 5 PV units on the 330 K
isentropic surface, approximately 300 hPa) intruded
into the Arctic with a corresponding warm air flow
into the Arctic (figure 7(a)). At the same time, an area
of high PV developed and amplified to the south on
both sides of the low PV over theNorth Atlantic. Dur-
ing 29–31 December 2015, the low PV region reached
its minimum value over the BK (figures 7(b)–(d)).
The warm and humid air intrusion from lower lat-
itudes reached the central Arctic, showing an active
role in the initiation of the extreme warming event.
The high PV to the south developed to its max-
imum value and a gradual reversal of the PV gradient
occurred, indicating a cyclonic wave-breaking event,
which is a typical initial indicator of block forma-
tion. A precursor to the warm BK event was thus
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Table 1. Summary of sea-ice related anomalies from the lagged-regression analysis using the detrended November-averaged
Barents-Kara (30–90◦ E and 65–85◦ N) sea-ice concentration time series, such as in figure 4 for 300 hPa geopotential height data.
Supporting information: ∗: results are similar to figure 2 but using an analysis based on monthly averaged sea level pressure (SLP) and
surface air temperature (T-2m) fields. ∗∗: similar to figure 4 but the analysis is based on the daily zonal-mean zonal winds at 60◦ N and
the vertical Eliassen-Palm flux (i.e. EP-flux) component averaged over 40–80◦ N at 100 hPa. The analyses are for the winters from
1979/80–2016/17. The features listed are also discussed by [5, 58, 59, 61, 80].

Early winter Late winter

Nov Dec Jan Feb Ref. and Notes

Tropospheric circulation
anomalies

•Wave train from North
Atlantic to Eurasia

• Deeper Icelandic Low in Nov

• NAO becomes more negative
in Feb

Figures 6 and 7

Surface conditions in
Siberia

• Siberian high becomes stronger and is expanded eastward and westward
• Surface temperature becomes lower

∗

Stratospheric polar
vortex (SPV)

Progressively weaker ∗∗

Vertical EP-flux
component

Increase in Dec A large peak in Jan and
subsequent weak SPV

∗∗

internal atmospheric variability from vorticity advec-
tion (Term A in equation (1)).

After the initiation of the abrupt warming by
the intrusion of a low-PV airmass, a WACE pattern
developed during the first 10 d of January 2016. Over
the following 10 d, positive SAT anomalies over the
BK decreased. During the evolution of this extreme
event, a stationary positive geopotential height anom-
aly persisted for nearly a month over the Ural Moun-
tains region, a Ural blocking event [74, 98, 99].

We examined the BK regional co-variability of
daily SAT and sea ice anomalies (figure 8(a)), along
with area-averaged turbulent heat fluxes and DLR
during this event (figure 8(b)). Here, the BK region is
defined by 76◦ N–83◦ N, 20◦ E–80◦ E. In figure 8(a),
the local temperature variation leads SIC variation
by 1 or 2 d. Note that SAT increases abruptly on
28–29 December 2015 (figure 8(a)), coincident with
the PV analysis shown in figures 7(a) and (b),
which indicates intrusion of a low-PV airmass to
BK from lower latitudes [92]. The DLR anomaly in
figure 8(b) is strongly correlated with the SAT anom-
aly in figure 8(a) (r = 0.92). On daily time scales,
the anomalies in turbulent heat flux and SIC are
not identifiably correlated. Nevertheless, the turbu-
lent heat flux exhibits an anti-correlation with DLR
on daily time scales (r = −0.69), with DLR slightly
leading the turbulent heat flux. This suggests periods
of warmer SAT and humid air flow, illustrating the
active role of warm and moist air advection (Term B
in equation (1)) in driving both surface warming and
sea-ice melt over the BK [22, 28, 100–102]. Assum-
ing that a positive DLR anomaly is indicative of a
warm-air intrusion, we note that the several events
occurred with less than a 10 d life cycle (figure 8(b)).
At the same time, the overall sea-ice cover of the
BK during winter of 2015/16 was well below normal
(figure 8(a)). In summary, integrating through the
entire period from 20 December 2015 to 10 Febru-
ary 2016, the turbulent heat flux anomaly is positive
(upward), contributing to amplified Arctic warming

due to sea-ice loss, while warm-air advection is epis-
odic (figure 8(b)).

3. North America

3.1. Early winter tropospheric pathway
Over North America in early winter, loss of sea
ice in CB may reinforce an existing climatological
ridge/trough jet stream pattern [36, 39, 51, 63, 103,
104], although it is clear that the connection does
not occur in every year despite continuing AA. It
is thus worthwhile to investigate year-to-year shifts
in the background jet stream pattern. The pattern
in December 2016 contrasts with December 2017
(figure 9). During both years, sea-ice freeze-up was
delayed in association with abnormally warm SAT in
the CB; in 2017 the anomalously warm SAT rein-
forced the climatological wavy jet stream over North
America [51] and downstream trough with cold east-
ern U.S. temperatures [39, 63, 105] (figure 9(b)),
while in 2016 (figure 9(a)) the more zonal prevail-
ing jet stream was located too far south to tap into
the surface heat source north of Alaska. During 2016
the northeast Pacific also featured a cold SST anom-
aly that stretched latitudinally along ∼45◦ N, which
favored an enhancement of the southern located
zonal jet.

To put December 2017 in context, figure 10 shows
the time series of December cold and warm temper-
ature events over the eastern U.S. and the indices of
ridging (500 hPa geopotential heights) over Green-
land/Baffin Bay (GBB) and Alaska ridging (AR). AR
was associated with the 2017 pattern, GBB block-
ing was influential in 2010, and ridging in both
regions was coincident with the eastern U.S. cold
event in 2000. During warm Decembers, AR and/or
GBB indices tend to be negative. Note that five
major cold events in the 1980s occurred before the
emergence of significant AA, dominated by internal
atmospheric variability [51]. showed quantitatively
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Figure 7. Evolution of daily-mean potential vorticity (PV) at 330 K in the Northern Hemisphere for the period of extreme Arctic
amplification that occurred during late December 2015 (a)–(d). For better visualization, only areas with PV over 5 PV units
(PVU) are shaded (1 PVU= 10−6 km2 kg−1 s−1). Data are from the Japan Meteorological Agency JRA-55 reanalysis
(www.jra.kishou.go.jp/JRA-55/).

that all three potential linkage mechanisms contrib-
uted to the North American weather pattern during
early winter 2017 (equation (1)): direct ocean surface
fluxes (their figure 6(b)), warm air advection, and a
wavy background jet stream. A key implication from
figure 10 is that the jet stream configuration was not
favorable for an early-wintermonthlyweather linkage
between the Arctic and North America inmost recent
years [106] with the notable example of extreme
warmth in 2015 accompanied by negative AR and
GBB. Also apparent is that wavy jet stream patterns
were associated with cold winters in eastern North
America before the start of AA due to the connection
between an AR or GBB index and the cold temper-
ature anomalies. Individual cold spells can span less
than a month preceded or followed by warm anom-
alies, thus monthly averaging may obscure linkage
events with durations on sub-monthly timescales.

While the direct connection with the fall-early
winter jet stream is in December, an interesting new
case is late October 2020 (figure 11). Figure 11(b)
shows the jet across the eastern North Pacific well

south of the Arctic but with a slight ridge as seen in
the height anomaly pattern due to warm near surface
temperatures (figure 11(a)). Warm Arctic temper-
atures contribute to a separate height anomaly and
ridging over Alaska (figure 11(b)). The combination
of the North Pacific and Alaskan ridging supports
the North American ridge/trough pattern with record
October cold temperatures in the central plains of the
U.S. and southern Canada.

3.2. Late winter pathway
In late winter conditions leading to persistent cold
spells in central and eastern North America are often
associated with enhancement of the climatological
tropospheric western ridge/eastern trough jet-stream
pattern across the continent that can be instigated
and maintained by SPV displacements. A signific-
ant shift of the SPV away from the central Arctic is
evident as an elongated pattern, with a negative geo-
potential height center in the vicinity of Greenland
(clusters 2 and 4 in figure 2). A connection may also
exist between higher geopotential heights north of

9

https://www.jra.kishou.go.jp/JRA-55/


Environ. Res. Lett. 16 (2021) 043002 J E Overland et al

Figure 8. Time-series of anomalies in (a) surface air temperature (SAT; red) and sea-ice concentration (SIC; blue); (b) turbulent
heat flux (THF; red) and downward longwave radiation (DLR; green) from 20 December 2015 to 10 February 2016 over BK Seas
(76–83◦ N, 20–80◦ E). Note that positive (negative) DLR (THF) is directed downward. The analysis is based on the variables
downloaded from Japan Meteorological Agency JRA-55 reanalysis (www.jra.kishou.go.jp/JRA-55/).

Figure 9.Mean 500 hPa geopotential heights (contours in m) and 925 hPa temperature anomalies (shading in ◦C) for (a) 3–28
December 2016 and (b) 8–31 December 2017. The jet stream approximately follows the strongest gradient in the height contours.
In 2017 positive temperature anomalies align well with the ridge in Alaska, and cold anomalies are located under the trough in
eastern North America. Data from NCEP/NCAR reanalysis.

East Asia and lower heights over Greenland involving
tropospheric/stratospheric coupling [52, 107, 108].
During February 2015 and 2018, for example, a pos-
itive temperature anomaly occurred in Alaska, while
cold conditions persisted in eastern or central North
America (figures 12(a) and (c)). Negative geopoten-
tial height anomalies at 500 hPa and 100 hPa were

nearly vertically collocated (figures 12(b) and (d))
[109]. During the winter of 2018 associated with
this SPV disruption, record persistence of anomalous
open water in the Bering and Chukchi Seas—and the
resulting ocean-to-atmosphere heat transfer—helped
to anchor and amplify a ridge in the polar jet stream,
with a strong southerly flow aloft bringing unusually
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Figure 10. Time series of surface air temperature anomalies (T2m, grey bars) averaged over eastern U.S., indices of
Greenland-Baffin Blocking (GBB, blue circles), and Alaska ridging (AR, red squares) for the month of December. GBB and AR are
defined as the areal-averaged geopotential height anomaly at 700 hPa over domains: GBB: 60–75◦ N, 70–50◦ W; AR: 60–75◦ N,
150–130◦ W; NE America: 36–46◦ N, and 85–70◦ W. Data are based on NCEP/NCAR reanalysis, obtained from
https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.surface.html.

Figure 11. (a) 925 hPa temperature anomalies for 16–31 October 2020. (b) 700 hPa geopotential height field (contours) and
anomalies (color shading; both in m). Data are from NCEP/NCAR reanalysis.

warm conditions to those regions [103]. Downstream
(east) of this ridge, a deep trough persisted over
Hudson Bay and western Canada, causing a pro-
longed and intense late-winter cold spell across cent-
ral North America [110]. This pattern occurred again
in January/February 2019, though in 2019 the pattern
was shifted even farther westward relative to 2018.
In 2015 (figures 12(a) and (b)) the trough was dis-
placed east, resulting in anomalously cold temperat-
ures across eastern North America.

Evidence suggests that late winters (JFM) dur-
ing the AA era (since ∼1990) featured more fre-
quent amplified tropospheric ridge-trough longwave
circulation patterns over North America [41, 110].
Extreme cold events (<−1.0 standard deviation)
in eastern North America corresponding to an
enhanced western ridge/eastern trough jet-stream
pattern occurred during Februarys of 1959, 1967,
1976, 1989, 1990, 1992, 1995, 1997, 2000, 2002, 2011,
2014, 2015, 2018, and 2019 [108, 110, 111]. When
this pattern sets up, persistent cold spells and heavy

snow events typically affect eastern North America,
including the densely populated I-95 corridor from
Boston to New York City and as far south asWashing-
ton, D.C [112]. Existence of an enhanced west-coast
ridge also intensifies drought conditions in Califor-
nia [105]. When an amplified ridge/trough pattern
exists over North America, the eastward propagation
of the longwave jet-stream pattern tends to stagnate,
thereby slowing the migration of weather systems
across the continent and creating persistent weather
conditions. Some studies [36, 39, 51] argue that the
pattern is favored when low sea ice in the CB region
occurs in combination with anomalously warm SSTs
in the eastern North Pacific, as has been the case dur-
ing most years since the Pacific Decadal Oscillation
(PDO) shifted to its positive phase in winter 2013/14
[113–115].

It is unclear whether the intensification of the
Alaskan ridge during late winter precedes or succeeds
the downstream deepening of the aforementioned
trough. These two circulation systems have been
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Figure 12. Averaged February 2015 and February 2018 (a) and (c) 500 hPa geopotential height (m) and 2 m air temperature
anomalies (◦C, shading), and (b) and (d) geopotential height anomalies (m) at 500 hPa (shading) and 100 hPa (contour). Data
are from the NCEP/NCAR reanalysis.

hypothesized to act in concert to amplify an existing
wavy jet pattern in recent decades [39, 51, 116]. Here
we focus on the within-season timing of ridging in
the vicinity of Alaska versus Greenland from 1989
through 2019. The frequency of both of these fea-
tures has increased during this period (figure 13), but
the temporal behavior is dominated by interannual
variability. A metric defined as the Alaska Blocking
Index (ABI) [117] describes the mean 500 hPa geo-
potential height field across greater Alaska: 54–76◦ N
and 125–180◦ W; note the ABI (late winter) has a
slightly different domain than AR (December) from
earlier discussion (figure 10). The maximum daily
ABI value within each month is compared with the
lowest Greenland blocking index (GBI) value within
±14 d of that anomaly (figure 12); note that the GBI’s
center is slightly east of the GBB used in figure 10. The
Greenland trough (negative GBI) developed roughly
one week before the Alaskan ridge for cases high-
lighted from 1989 to 2007, with the exception of con-
current ridge-trough extremes during late February
of 1995. Since 2014, however, the Pacific ridge (i.e.
ABI maximum) has strengthened [117] and has con-
sistently preceded the formation of the Greenland
trough by∼10 d (figure 13). This change in behavior
coincides with the shift in the PDO from its negat-
ive to positive phase [113], with anomalously warm
SSTs in the northeastern North Pacific that favors
development of a ridge in this location [36, 39]. This

suggests that NE Pacific SST anomalies are helping
to drive the start of current jet stream sequencing,
with the strengthening of the ABI due to constructive
interference between the ridge and AA in the Pacific
sector of the Arctic.

The timeseries analyses above (figures 10 and 13)
[51], SPV disruptions, stratospheric congruence with
tropospheric events (figure 12 [109]), recent anom-
alously warm SSTs in the northeast Pacific, and con-
tinued record low CB SICs during winter combine to
support the hypothesis that background, pre-existing
state-dependence of the longwave geopotential height
pattern combined with warm air advection (Term B
in equation (1)), are all factors helping to drive Arc-
tic/midlatitude linkages that lead to extreme winter
weather events over North America [35]. There has
always been a connection among the jet stream, SPV,
and U.S. cold spells (figures 10 and 13), and we
argue that the connection may been further modu-
lated by AA in certain wavy jet stream configurations.
Other possible factors include time-lagged interac-
tions involving thinner sea ice in winter, anomal-
ous land-surface cooling rates, and Eurasian fall snow
coverage; these phenomena create linkage mechan-
isms that involve anomalous surface/atmosphere tur-
bulent heat fluxes, transient eddy activity, eddy–
mean flow interactions, and vertical wave activity
fluxes that can trigger or amplify SPV disruptions
[36, 84, 118, 119].
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Figure 13. Daily occurrence of the February/March Alaska Blocking Index (ABI) maximum (i.e. ridge) and Greenland blocking
index (GBI) minimum (i.e. trough) since 1989. Years of anomalous monthly ABI values (>0.5σ) are listed (1989, 1993, 1994,
1995, 2003, 2007, 2014, 2015, 2018, 2019) and the daily GBI minimum (green circles) are shown with respect to±14 d of the ABI
maximum (black squares) within those years. Red dashed line indicates the switch from negative to positive Pacific Decadal
Oscillation (PDO) in winter 2013/14. The ABI maximum and GBI minimum overlap in 1995. Data are from ERA-Interim
Reanalysis.

4. European weather extremes

Extreme European winter weather is often related to
the weakening of the SPV, seen as cluster 5 of figure 2.
Table 2 lists recent anomalously cold winter months
for Central England temperature (CET [120]) rep-
resenting northwest Europe, defined by anomalies of
at least 1.0 ◦C below the respective monthly mean
for 1981–2010. The Table highlights the year-to-year
intermittency of such events. The positive anom-
alies of the average 100 hPa polar cap geopotential
height field anomaly (PCA) north of 60◦ N is an
indicator of weakening of the SPV (table 2 right,
figure 2 right), as is the proxy indicator, the neg-
ative AO. Winters in the United Kingdom during
2013/14, 2015/16, and 2019/20 were exceptionally
mild, wet, and stormy, while winters during 2009/10
and 2010/11 were unusually cold with record snow-
falls [121]; March 2013 was the coldest March in
England since 1962. In late-winter 2018, extremely
cold air invaded Europe from Siberia in an event
known as the ‘Beast from the East’ following a SSW
and disrupted SPV, giving the coldest March day
in over a century over much of England and Wales
[122, 123]. These events correspond with observed
increases in interannual variability in the AO, NAO,
jet latitude, and Greenland Blocking during winter
[124, 125]. Synchrony exists among various large-
scale indices for some of these events, such as the
AO/NAO and the GBI; a southward-shifted North

Atlantic polar jet stream (negative AO/NAO) gen-
erally coincided with high geopotential heights over
Greenland, indicated by a positive GBI [126, 127].

These cases illustrate that different and some-
times multiple factors are associated with extreme
cold spells in Europe. In March 2013, for example,
extensive cold SATs persisted across northern Eurasia
coincident with the SPV displaced to northern
Siberia (figure 14). The evolution of the earlier
events in table 2 (December–February 2009/10 and
November–December 2010) contrasts with March
2013. During January/February 2010, blocking began
over the Barents Sea, moved southward, then com-
bined with a block that had developed in the west-
ern North Atlantic before shifting north over Green-
land, and finallymoving west toward Canada. During
Nov/Dec 2010, which featured a record high Decem-
ber GBI value since the record began in 1850 and
the coldest December CET value since 1890, a pos-
itive 500 hPa geopotential height anomaly formed
over Scandinavia then moved west to form an intense
Greenland block.

For the Beast-from-the-East case, in late February
2018 the SPV was displaced over northeast Canada
similar to the pattern resolved by cluster 2 in figure 2
along with anomalously high stratospheric geopoten-
tial heights over Europe and associated tropospheric
high pressure settling over Scandinavia and the Bar-
ents Sea. During March 2018 in contrast, observed
100 hPa geopotential heights featured a strong SPV
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Table 2. North Atlantic/Arctic atmospheric circulation indices, Arctic Oscillation (AO), North Atlantic Oscillation (NAO), and
Greenland blocking index (GBI), for recent anomalously cold winter months between winters (NDJFM) 2010 and 2020 inclusive in
northwest Europe (defined by Central England Temperature (CET [120],) anomalies of at least 1.0 ◦C below the respective monthly
mean for 1981–2010). AO is from the CPC website . NAO is from NCAR Climate data guide, and average polar cap height anomaly
(PCA) north of 60◦ N is from NCAR/NCEP reanalysis.

Year Month CET anom. AO NAO GBI PCA

2009 December −1.5 −3.41 −3.01 2.39 1.50
2010 January −3.0 −2.59 −2.13 1.59 0.79
2010 February −1.6 −4.27 −3.99 2.41 3.10
2010 November −1.9 −0.38 −1.61 1.92 0.10
2010 December −5.3 −2.63 −3.61 3.15 0.73
2013 February −1.2 −1.01 −1.00 0.79 1.82
2013 March −3.9 −3.18 −4.12 2.37 0.46
2016 November −1.5 −0.61 −0.09 0.74 1.48
2018 February −1.5 0.11 0.52 −1.06 1.34
2018 March −1.7 −0.94 −2.29 1.33 0.88

Figure 14. Air temperature anomalies at 925 hPa (◦C, shading) and 100 hPa geopotential heights (m, contours) for March 2013.
Data are from the NCEP/NCAR reanalysis.

center that shifted to Arctic Eurasia, also evident
at 500 hPa. The time sequence of the late winter
Beast-from-the-East case illustrates that internal vari-
ability of the SPV, and remote drivers including mid-
and high-latitude blocking [123], were responsible
for different forcing of the severe cold spells over
Europe during February and March 2018.

Taken together, these four European examples
(early and late 2010, March 2013, and February/-
March 2018) indicate the sometimes importance of
Greenland for reinforcing blocking, but blocking can
initially develop elsewhere, typically either in theNor-
wegian or Siberian Arctic. High-latitude Greenland
and SCANblocks tend to be associatedwith an anom-
alous meridional circulation in the polar jet stream,
thus providing an important conduit for poleward
temperature and moisture advection and high to

midlatitude weather linkages [1, 126, 128]. In sum-
mary, European winter cold air outbreaks are often
related to the weakening of the SPV and SSW [129].
In contrast to figure 2 that implies stationarity of SPV
patterns, these studies show the importance of the
movement of the SPV location, and forming daughter
vortices in the case of splitting, within awinter season.

5. Potential tropical modulation of
Arctic–midlatitude linkages

The SSW event in February 2018 has also been stud-
ied in conjunction with circulation and temperat-
ure anomalies arising from the Madden–Julian oscil-
lation (MJO), the quasi-biennial oscillation (QBO),
andElNiño-SouthernOscillation (ENSO).Webriefly
describe the MJO, QBO and ENSO and discuss their
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possible roles in the context of the Arctic-midlatitude
linkage.

The MJO is the dominant mode of intra-seasonal
variability in the tropical troposphere on timescales
typically around 40–50 d [130]. It consists of eastward
propagation of large-scale circulation cells and organ-
ized cloud complexes from the Indian Ocean to the
Pacific Ocean. The phase of MJO is captured by the
EOF-based multivariate MJO index [131], which has
eight phases closely matching the geographical loca-
tion of the MJO-related enhancement of convection.
Two phases are relevant to our discussion; the MJO
phases 2–3 and 5–6 correspond to conditions with
high convection activity in the tropical Indian Ocean
and the western Pacific, respectively.

The QBO is an oscillation of zonal winds in
the equatorial stratosphere at about 2 year intervals
(see [132] for a review). During its easterly (west-
erly) phase, the SPV in the Northern Hemisphere
tends to be weaker (stronger), known as the Holton–
Tan relation [133, 134]. Through modulating stabil-
ity in the tropical tropopause layer, the easterly QBO
phase is associated with enhanced convective activity
in the warm pool region, which generates a Rossby
wave train that propagates into the midlatitude tro-
posphere [135, 136].

ENSO is an interannual oscillation of the ocean-
atmosphere coupled system over the tropical Pacific,
occurring typically at 3–5 year intervals, with related
climate anomalies in many parts of the globe
[137, 138]. During its warm phase (El Niño), a strong
convective region moves eastward from its climato-
logical position in the tropical western Pacific with
positive SST and negative SLP anomalies to the trop-
ical central/eastern Pacific.

TheMJO, QBO and ENSO have timescales longer
than synoptic, making them potential sources of
improved sub-seasonal to seasonal prediction [139].
A study of the MJO in the 2018 SSW event sugges-
ted the importance of the record-breaking strength of
MJO phase 6, with the amplification of wavenumber-
2 planetary wave and associated teleconnection to
this SSW [140]. Evidence is presented for the MJO
phase 3 and 6 being precursors of the NAO regimes
[141–143]. Low sea ice coverage in the BK is
linked with a weaker SPV through enhanced upward
propagation of planetary-scale waves.

Not only the MJO but ENSO and QBO phases
favored a weak SPV for the 2018 SSW event [144].
MJO amplitude is significantly larger in the east-
erly phase of QBO, presumably with stronger signals
in the extra-tropics via teleconnection [145]. Even
without a joint influence with the MJO, the QBO has
control on SPV strength, e.g. [132]. A first concern
is the stratospheric pathway and downward influence
of the weak SPV on the lower troposphere. A second
part addresses if and how sea-ice variability influ-
ences the SPV that is already under strong influence
by the QBO. When a high-top atmospheric general

circulation model was used to investigate the influ-
ence of the QBO, a weakening of the SPV was a
response to sea ice loss under the easterly phase of
the QBO through strengthened upward propagation
of planetary-scale wave [146].

We analyzed the polar cap height (PCH) anomaly,
defined as the averaged geopotential height anomaly
for the area northward 60◦ N at the 50 hPa level,
as a measure of the SPV strength and its relation
with the QBO phase and BK ice conditions. Figure 15
shows how the PCH varies under different QBO
and sea ice conditions. There is an apparent shift
towards negative values (stronger SPV) for the QBO-
west (QBOW) compared with the QBO-east (QBOE)
(figure 15(b)). A similar shift within the QBOW
high/low (H/L) ice composites is seen but is not sig-
nificant (figure 15(c)). There is no clear difference in
PCH anomalies between the high and low ice com-
posites within the QBOE.

To ascertain whether the above description indic-
ates joint influence from the QBO and sea ice on the
strength of the SPV, we invoke dynamical evidence.
A recent study found that weak SPV events, includ-
ing SSWs, have distinct characteristics in upward
propagation of planetary-scale waves depending on
the sea ice condition, i.e. increased wavenumber-1
and wavenumber-2 E-P flux components in high and
low sea conditions, respectively [80]. The anomalous
structure in the wavenumber space under low sea ice
and weak SPV conditions is similar to that under the
low sea ice condition only, e.g. [147]. This is inter-
preted as indicating a sea ice influence on the SPV is
constructive with respect to QBOE.

ENSO and its connection to the extratropics has
been studied in a tropospheric and stratospheric
context [148, 149]. Both observational and mod-
elling studies document that during El Niño (La
Niña) events the SPV is weakened (strengthened)
by enhanced (reduced) upward planetary-scale wave
propagation [150–152]. However, this relation is not
always clear owing to the short observational record
and the relatively long and irregular intervals between
ENSO events [153, 154]. The tropospheric pathway
is more active during El Niño, while the stratospheric
pathway is more active during La Niña [155].

Tropical variability, such as theMJO,QBO, ENSO,
and stratospheric/tropospheric vertical propagation,
can influence Arctic sea ice, the NAO, and SPV, and
modify sub-seasonal weather.

6. Summary

In this review we discuss four aspects of Arctic/mid-
latitude connections that have so far received relat-
ively little attention: (a) the differences between early-
and late-winter processes, (b) details of factors that
can amplify synoptic cold events inAsia, NorthAmer-
ica, and Europe, (c) the role of SPV disruptions,
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Figure 15. Frequency distributions of monthly mean polar cap height (PCH) anomalies (m) at 50 hPa for 1972/73- 2018/19
winter (DJF) months for (a) all winter months; (b) QBOW (red) and QBOE (blue) composites; (c) high-ice (red) and low-ice
(yellow) groups within the QBOW composite; (d) high-ice (blue) and low-ice (light blue) groups within the QBOE composite.
The QBOW and QBOE were defined using the criterion of±3 m s−1 applied to the tropical (5◦ S–5◦ Nmean) zonal-mean zonal
wind at the 40 hPa level. For the sea ice condition, daily BK SIC anomalies were used after applying the second-order polynomial
fitting and averaged for December with the±0.5 sigma criterion. Data are from the JRA-55 reanalysis and the HadISST2 sea ice
data that includes the compilation of the National Ice Center sea ice chart.

and (d) tropical modulation of Arctic/midlatitude
linkages.

Early winter Arctic/midlatitude weather linkages
are more likely to involve reinforcement of tele-
connection patterns for Eurasia and climatological
jet-stream patterns for North America by surface
enhancement related to delayed fall sea-ice freeze-
up primarily in the BK, CB, and BB, where early
winter sea-ice reduction has been substantial. Upward
surface energy flux over newly ice-free areas and
poleward temperature advection (Terms C and B in
equation (1)) increase the geopotential thickness and
thus augment regional AA. Warm anomalies and
positive geopotential height anomalies in both BK
and CB initiate changes in existing large-scale atmo-
spheric dynamics (Term A in equation (1)). During
the early winter in Eurasia, an increase in the fre-
quency of SCAN/Ural blocking is observed (figure 5)
in association with the loss of BK sea ice [68, 128]
and serves as a downstream forcing of individual
synoptic weather events in East Asia, as well as a more

frequent potential progenitor of Greenland blocking.
The role of direct forcing from recent sea-ice-free
areas appears secondary in this process relative to
internal atmospheric variability, as modeling exper-
iments forced by sea-ice variability alone produce
weak atmospheric responses; but these experiments
have been shown to understate AA and the corres-
ponding responses (e.g. [12, 33],). Empirical and
model evidence suggests that decreasing CB sea ice
can strengthen ridging in the northeastern Pacific
under the right atmospheric background conditions,
thereby increasing persistence of the downstream
trough and cold spells over central or eastern North
America [51]. Constructive interaction between jet-
stream ridging along North America’s west coast and
regional heating is more likely when northeastern
Pacific SSTs are anomalously warm, as was the case
when the PDO phase shifted to a predominantly pos-
itive phase in 2014. Varying positions of the trough
axis along with overall global warming reduces the
likelihood of breaking cold records; both of these
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factors contribute to the infrequent occurrence of
extreme cold periods displayed in figure 10. The ridge
location is critical for precipitation patterns along
the west coast of North America, with extreme dry
(wet) winters favored when the ridge is farther east
(west).

Late-winter connections are less likely to involve
surface fluxes related to sea-ice loss and open water.
Instead, linkages occur in response to the form-
ation of atmospheric blocks associated with dis-
ruptions and movement of the SPV [110], which
are occasionally triggered by vertical propagation of
wave energy from various sources at the surface
or in the troposphere. An increasing trend in SPV
disruptions/movements have been emerging in the
mid-to-late winter, perhaps a consequence of AA in
the peripheral Arctic seas.

In early winter the mean flow is inhibited at
the Atlantic jet stream entrance region and atmo-
spheric heat and moisture is meridionally advected
into the Arctic (TermB in equation (1)). In late winter
there is stronger zonal flow with a negative phase
of the AO [155, 156]. Possible tropical modulation
of Arctic/midlatitude linkages is from a constructive
effect of the QBO and sea ice decline on the variabil-
ity of PCH and SPV.

Attributing any particular extreme event or series
of related events to one or more of the many factors
that can excite them, including natural variability,
remains challenging. In any given year, a different
combination of factors and timing are in play with
differing levels of influence, magnitudes of response,
and locations of extremes. Causal relationships can-
not be established purely through analysis of observed
trends or covariability, while at present studies based
on numerical models appear to be fall short in fully
capturing the multiple interacting factors that cause
extremeweather events [5, 34, 156, 157] nor a realistic
strength of response [32, 33].Modeling results should
be challenged when observed values are an outlier rel-
ative to ensemble model means and to the probability
distribution function of all individual members [53].

Simple cause-and-effect relationships between
low sea ice, SPV variability, and subarctic and mid-
latitude tropospheric circulation anomalies are not
consistent from event to event or from one year or
season to the next [15]. An emerging insight is that
regional Arctic and subarctic temperature anomalies
may amplify (constructive interaction) or dampen
(destructive interaction) a naturally occurring jet-
stream pattern rather than cause a particular event.
Alternative physical explanations, such as internal
atmospheric vorticity dynamics (figure 7), influence
the initiation and/or persistence of blocking near
Alaska, Greenland, and BK, which may then be mod-
ulated by changes in SST patterns, disruptions in the
SPV, or tropical variability .

Further understanding of subarctic linkages
would aid in predicting extreme weather events and

help society better prepare for future winters, as
anthropogenic greenhouse gas concentrations con-
tinue to rise. The fact remains that the Arctic is an
influential component of the global climate system,
and it is challenging to conceive how three-quarters of
its late-summer sea-ice volume can be lost over three
decades with no implications for the NorthernHemi-
sphere large-scale atmospheric circulation. Overall,
the processes linking sea-ice variability, tropospheric
teleconnection patterns, SST fluctuations, the SPV,
and midlatitude severe winter weather remain a topic
of great societal importance and active research,
requiring the use ofmultiple datasets,metrics,models
and methods to disentangle underlying mechanisms.
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