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A Scalable Algorithm for Large-scale
Unsupervised Multi-view Partial Least Squares

Li Wang and Ren-cang Li

Abstract—We present an unsupervised multi-view partial least squares (PLS) by learning a common latent space from given
multi-view data. Although PLS is a frequently used technique for analyzing relationships between two datasets, its extension to more
than two views in unsupervised setting is seldom studied. In this paper, we fill up the gap, and our model bears similarity to the
extension of canonical correlation analysis (CCA) to more than two sets of variables and is built on the findings from analyzing PLS,
CCA and its variants. The resulting problem involves a set of orthogonality constraints on view-specific projection matrices, and is
numerically challenging to existing methods that may have numerical instabilities and offers no orthogonality guarantee on
view-specific projection matrices. To solve this problem, we propose a stable deflation algorithm that relies on proven numerical linear
algebra techniques, can guarantee the orthogonality constraints, and simultaneously maximizes the covariance in the common space.
We further adapt our algorithm to efficiently handle large-scale high-dimensional data. Extensive experiments have been conducted to

evaluate the algorithm through performing two learning tasks, cross-modal retrieval and multi-view feature extraction. The results
demonstrate that the proposed algorithm outperforms the baselines and is scalable for large-scale high-dimensional datasets.

Index Terms—Partial least squares, unsupervised subspace learning, multi-view learning

1 INTRODUCTION

N real-world applications, data is often collected in mul-

tiple views. They are the same object but from different
perspectives. Multi-view data provides more information,
but, at the same time, it creates difficulties due to large
discrepancies among views. In the cross-modal retrieval [1],
[2], it is needed to perform classification and retrieval on
the gallery and query data in text and image that represent
different views. These tasks are challenging since text and
image are two heterogeneous concepts (views) from differ-
ent feature spaces and there generally lacks a meaningful
priori to directly compare two heterogeneous views. Multi-
view learning [3], [4], [5] is designed to overcome such
challenges by exploiting the consensual and complementary
information among different views. A popular and natural
approach [6], [7] is to first learn view-specific projections
for all views — one projection for one view — and then
project the original multi-view data from different views
onto a common space by the view-specific projections to
make comparison possible.

Several multi-view learning approaches have been stud-
ied in the literature (see survey papers [3], [4], [5] for de-
tails). Among them, subspace learning methods have been
extensively explored and successfully applied to various
learning scenarios, such as sparse low-rank approximation
for incomplete data [8], online method for streaming multi-
view data [9], adaptive graph learning for multi-view clus-
tering and semi-supervised learning [10], and multi-view
data representation learning for supervised learning [11]
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and sparse learning [12], and deep representation learning
for multi-view data [13]. In this paper, we seek to study
multi-view learning through an approach of unsupervised
subspace learning using multivariate analysis techniques.
Specifically, we assume that all views are generated from a
common latent space and no label information is available
during learning process.

Common unsupervised subspace learning approaches
for two views include the classical canonical correlation
analysis (CCA) [6] and partial least squares (PLS) [7]. CCA
attempts to learn view-specific projections by maximiz-
ing the correlation between two views. It has been the
workhorse for learning a common latent space, as evidenced
by its successful applications in various domains [14]. CCA
does not produce orthonormal projection matrices in the
first place, but orthogonality is a preferred property for
data visualization and metric preservation [15], [16], [17].
Due to the special structure of CCA, the orthogonality
can be obtained by whitening the original view data as a
preprocessing step [18]. Unfortunately, the covariance of the
original views is no longer preserved after the whitening.
Orthogonal CCA (OCCA) is proposed to solve the above
issue by maximizing correlation between two views and
simultaneously imposing orthogonality constraints on each
individual view-specific projection matrices [18], [19], [20],
[21]. The merit of OCCA compared to CCA is that the
orthogonal projection matrices are obtained to maximize
correlation while the original covariances are preserved.
PLS [7] maximizes the covariance of two views in the
common space based on the assumption that information
is over-represented so they can be reduced. Some appealing
properties brought by PLS are its abilities to handle datasets
in which the numbers of features are more than the number
of samples and there are massive colinearities between two
sets of variables [22]. PLS has been successfully used in
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many applications such as cross-modal retrieval and pose
estimation of face images [23]. An alternative interpretation
of PLS is that it simultaneously maximizes the correlation
and view-specific variances [24]. This explains the connec-
tions of PLS to CCA and OCCA: they are based on the
same criterion of maximizing correlation but with different
constraints on variances or covariance of the original data.
Due to the modeling variability for data with more than
two views, various formulations can be used. The extension
of CCA to more than two views, called the multiset CCA
(MCCA), has been extensively studied with various learning
criteria, including maximizing the sum of correlations [25],
maximizing the sum of the squared correlations, minimizing
the smallest eigenvalue or the determinant of the correlation
matrix [26], maximizing the sum of all the pairwise corre-
lations and the high-order correlation [27], and exploiting
Hessian for intrinsic local geometry [28]. In [29], twenty
variants are proposed based on four types of constraints and
five different objective functions. An OCCA extension to
more than two views has also been explored [30]. However,
the extension of PLS to more than two views is seldom
studied. We notice that the recent work [24] explored PLS
for more than two views for the multivariate regression
problem, in which the regressors are represented in terms
of multiple views and the response is required so that the
covariance between a linear combination of regressors and
the response in the common space is maximized. Hence, the
work [24] targets at a regression model and is different from
the study of this work for unsupervised subspace learning.
To fill up the gap of PLS for handling more than two
views in unsupervised learning, we will first explain a
connection of PLS to CCA and OCCA, and then propose our
Unsupervised Multi-view Partial Least Squares (UMvPLS),
a multi-view variant of PLS. It bears similarity to the exten-
sions of CCA and OCCA to their multi-view versions. The
resulting problem is numerically challenging due to the set
of orthogonality constraints. To solve the problem, we pro-
pose a stable deflation algorithm so that the orthogonality
constraints are automatically satisfied while simultaneously
the covariance in the common space is being maximized. We
notice that existing methods in [19], [24], [30] cannot guaran-
tee orthonormality of computed projection matrices and can
even breakdown, more often than one might think, due to
their numerical instability. The proposed algorithm resolves
all these issues. Moreover, we adapt our algorithm to effi-
ciently handle large-scale high-dimensional data. Extensive
experiments have been conducted to evaluate our algorithm
while conducting two learning tasks: cross-modal retrieval
and multi-view feature extraction. The experimental results
show that our proposed method outperforms CCA, OCCA
and their multi-view extensions, especially when the com-
mon space has a small dimension, and runs much faster
than CCA methods for large-scale high-dimensional data.
The rest of this paper is organized as follows. We first
review the existing methods that are most related to this
work in Section 2. In Section 3, we present an extension
of PLS for unsupervised multi-view subspace learning and
propose novel optimization algorithms for large-scale high-
dimensional data. Extensive experiments are conducted in
Section 4. Finally, we draw our conclusions in Section 5.
Notation. R"**" is the set of m xn real matrices, R® = R"*1,

2

and O"**F = {X € R™*F . XTX = I}, where I, € RF**F
is the identity matrix. 1,, € R™ is the vector of all ones. ||z||2
is the 2-norm of vector £ € R". For B € R™*", R(B) is the
column space and, when B is square, tr(B) is the trace of
B.

2 RELATED WORK

We review some existing methods such as CCA, OCCA,
and PLS for unsupervised multi-view learning. Denote the ¢
datasets associated with the multiple views, in terms of data
matrices, by

S; € R™*Y fori=1,2,...,¢, o)
where n; is the number of features of the ith view and q is
the number of samples. Without loss of generality, assume
that each dataset is centered, i.e., S;1, = 0; otherwise they
can be preprocessed by

S; + S; (L, - élqlg) =S — é(Silq)lg Vi. )

21 CCA

CCA is a two-view multivariate statistical method [6], where
the variables of observations can be partitioned into two
sets, leading to the two views of the data, S; and 5o,
and its goal is to find a common subspace so that two
views are maximally correlated within in the subspace.
Let Y; € R%** Vi = 1,2, be the projection matrices and
X, = YiTS’i € RF*"i be the embedded points in the
common subspace. The correlation between two views in
the common subspace is naturally defined as

tr(X,X3) 3)
[ X1 [lel| Xalr’
where || - || is the matrix Frobenius norm. By maximizing

the correlation (3), the optimization problem of the CCA
model is formulated as

tr(Y{1 S154 Ya)
Vir(VT s STV tr(V5251Y2)

(4)

max
Y1,Y2

p({Yi}) ==

Problem (4) can be solved by the singular value decomposi-
tion (SVD) [31]. Specifically, let

Vi = (S187) 20, Ys = (8250) 2w, (5)

Problem (4) can be equivalently reformulated as the SVD
problem:

Inax tr(UIWWs) st Ui0; = I, U305 = I, (6)
1,%¥2
where W = (5,57)725,51(9,51)"2. The optimal ¥,

and W, are the left and right singular vector matrices of
W corresponding to its top k singular values [32, p.195].
After (6) is solved, the optimal solutions Y7 and Y> can be
recovered according to (5).
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22 OCCA

According to (5) and (6), it is clear that the columns of ¥,
and W5 forms two orthonormal bases, but the columns of Y;
and Y5 usually do not unless data points as the columns of
both S; and S, are orthogonal, respectively. However, this
case seldom happens in the real world. Another interpreta-
tion is that the classical CCA whitens dataset matrices S
and Sy, and then orthogonally projects these whitened data
into a common space such that correlation is maximized
[18]. This whitening step causes the change of correlation of
the original data. To overcome this issue, an OCCA [18] is
proposed to maximize the correlation of two views in the
common space with orthogonality constraints:

max p({Vi}) st YiIVi = I, VJ'Vs = I,. )
Y1,Y2

In (7), the original covariance of two views is maintained.
Problem (7) is no longer solvable by SVD, unlike CCA.
Several methods were proposed to solve this problem, in-
cluding generic optimization methods on matrix manifolds
[18], and a method (which we will call OCCA-SSY) in [19]
via deflation that somewhat solves (7).

23 PLS

PLS was originally developed as a method for supervised
multivariate analysis [7]. It aims to find orthonormal bases
so that the variances and correlation are all maximized in
a common space. Specifically, PLS is to solve the following
problem

max p({Y:})/tr(YT 81571 tr(VS Sa5Ta) @®)

Y1,Y2

st YY: = I, Yo Y = I

According to (3), the objective function of (8) is the same
as the covariance matrix between the projected input and
output data, that is, tr(Y;'.9;51Y5). In other words, PLS is
equivalent to the following problem

max (Y] $152) st ViVi =LYYo =T (9)
Mathematically, this is the same as (6), explicitly solvable by
the SVD of S;51.

In what follows, we consider PLS as an unsupervised
subspace learning method since two views are equivalently
treated with no distinction for regressors and responses as
commonly used in regression models. In this case, PLS not
only maximizes correlation and variances, but also directly
produces the orthonormal projection matrices, in contrast to
CCA.

2.4 CCA and OCCA for multiple sets of variables

Multiset CCA (MCCA) is the extension of CCA for mult-
variables. Different from two views, multi-view data leads
to modeling flexibility for MCCA. Here, we briefly intro-
duce one widely used variant by seeking projections to
maximize the sum of the pairwise correlations between any
two canonical variates given by
4
max Z tr(YiTSiSJTY}),

i,j=1

(10)

where Y is some feasible set of projection matrices. Two
commonly used ones are [29]:

3
L

Y= {0, ) oSty = 0 s (11)
=1

MCCA (10) with condition (11) can be turned into a gener-
alized eigenvalue problem [29].

Similarly, OCCA is extended for multi-variables in [30]
and the extension does not directly solve (10). For the ease
of reference, we name the extension as OMCCA-SS [30].

3 UNSUPERVISED MuLTI-VIEW PLS
3.1 Motivation and contributions

PLS has the advantages of having the variances maximized
and producing orthonormal projection matrices in contrast
to CCA, and having the covariance maximized instead of
maintaining covariance as modeled by OCCA [18]. How-
ever, the extension of PLS to multiset variables is seldom
studied. We notice that in the most recent work [24] it is
proposed to extend supervised PLS for multi-view learn-
ing where the relationships between the response and the
weighted combination of multi-view regressors are mod-
eled. In addition, the optimization method proposed in [24]
cannot guarantee that projection matrices are orthonormal
and also its convergence analysis is questionable.

In what follows, we will formulate a multi-view PLS for
unsupervised subspace learning — UMvVPLS, and propose
two algorithms for its robust and efficient implementations
with Algorithm 1 geared towards modest-scale multi-view
data while Algorithm 2 towards large-scale multi-view
data. Because they are built upon well-developed numerical
linear algebra techniques, both algorithms are free from
any numerical instability issues previously witnessed for
OCCA-SSY [19] and OMCCA-SS [30], and they can prov-
ably guarantee that computed projection matrices {Y;} are
orthonormal.

3.2 Formulation of unsupervised Multi-view PLS

Let n = Y.'_, n;. By concatenating all ¢ data matrices
vertically, we have the following compact representation:
S Si1,
Sa Sol,
S = ER™, 71, = =0. 13)
S Sel,

We further partition the covariance matrix .. and pro-
jection matrix Y as

Ci1 Ci2 Che Y1

T Co1 Cao Cap Ys
5”«7 == 527 = : . : ’ Y = : I (14)

Con Ce Che Y:

where Cy; = S;5T and Y; € R™*F Vi, j =1,... L
Following the modeling process of MCCA, we propose
our unsupervised multi-view PLS (UMvPLS) model as the
following optimization problem
T
max {F({Yi}) = (¥ T/}
stYY; =1, Vi=1,...,¢.

(15)
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The difference between (15) and OMCCA-SS [30] is in their
feasible sets of projections, analogously to that between PLS
and OCCA as discussed in Section 2. As a result, problem
(15) is also not an easy optimization problem to solve. Its
KKT condition is given by a multi-parameter eigenvalue
problem

Y1 YlAl
YQ YQAQ
|| = . ; (16)
Y.'e Y}z.Ae
where AZ-T =N eRF<Ffor1 <i <@ By (16), we have for
(15)

f{vih) = Ztr
It is not clear how to find the solution to (16) that maximizes
>, tr(A;). The multi-parameter eigenvalue problem (16) is
numerically challenging and there is no existing numerical
linear algebra technique that can readily solve it, even for
the case £ = 1. For this reason, in what follows, we will
propose efficient algorithms to approximately solve (15).

17)

3.3 An incremental algorithm for UMVPLS

Due to the difficulty in solving the multi-parameter eigen-
value problem (16), we seek to compute one column of Y
at a time with the help of a deflation idea that traces back
to [33] so that the ¢ orthogonality constraints in (15) are
satisfied, R(Y;) C R(S;) Vi (thus range constrained), and at
the same time f({Y;}) is decently maximized. The approach
is incremental in nature and we shall call it an incremental
algorithm for UMVPLS.

The building block of our overall algorithm can be best
described by the case k = 1 of (15). Instead of solving (15)
directly, we consider a simpler problem

r?zzﬁ(f({zi}) = mzaszthz s.t. Zz}zi =2lz=1, (18)
where 2T = [2T, 21, ..., 2]|T. This problem is equivalent to

the standard eigenvalue problem

Az = Az. (19)

Let Amax(7) be the largest eigenvalue of &/ and z°P' the
corresponding unit eigenvector. Then 2°P' is a maximizer of
(18) and f(2°P") = Apax (7). It is worth noting that problem
(18) is not equivalent to problem (15) with k¥ = 1. The key
part of the proposed algorithm is to transform the solution

2°P* to the simpler problem (18) to an approximate solution
y°P* to problem (15) for k = 1 as follows: first partition z°P*
conformally as

opt
2 .
t ng t i
2P =] " with 277" € R™,
opt
e
and let
opt
Y1
opt
opt opt opt . opt __ y2 20
= 12" e, v =2 v ¥ = | (20)
opt
Ye

4

Evidently, >°,7? = 1. This y°P' will be regarded as an
approximate maximizer of (15) for the case k = 1. Since

opt Zczjzopt _ S Z T opt

we conclude that 3P = 27" /; € R(S;) Vi.

In terms of the singular value decomposition (SVD), z
is also the top left singular vector of . associated with the
largest singular value oyay () of .7, ie., || #T2P|y =
Omax (7). In fact,

R(S:), (21)

Arnax

opt

of = ny, Amax(vg{) = [UmaX(y)]Q'

From the numerical point of view, computing 2°P* via
calculating the top left singular vector of .7 is both more
accurate and economical (especially when ) ., n; > ¢ or
< q) [34], [35]. Hence, the proposed method is extremely
helpful for solving UMVPLS for large-scale data or high-
dimension data in cases when either there are a large
number of views or there some views residing in very high-
dimensional spaces.

The set {y{"} well represents the first set of most cor-
related unit vectors for the ¢ datasets, and it gives the first
column of Y. For the next set of unit vectors representing the
second most significant ones, each of which is orthogonal to
the corresponding one in the set just computed, we propose
to use a classical deflation idea [33] from numerical linear
algebra:

1) update each S; by

Si 4 [Ln, =y (") 1] S0 = S — P [P 'Si): (22)

7,

2) use these updated .S; to form .# as in (13) and compute
its top left smgular vector 2°P* = [éom]

3) post-process 2°°* like in (20) to yield " = [§7*"] for
the next column of Y.
We claim that the orthogonahty between each ;"' and the

corresponding y;"
the updated S; in (22), i.e., S, =5,
be verified that

b is guaranteed To see it, we let S denote
— Pt [(yfpt) S;]. It can

(™)"8 = ™) [T = 07 ™)' 8: = 0.

’L

By the range constraining property in (21), §°** = S;w; for

some vector w; and consequently

( opt)Tg?pt _ (yopt)TS

yz Wi = 0

We summarize our algorithm for UMVPLS in Algorithm 1.

The brackets in the last expression of (22), as well as these
at line 4 of Algorithm 1, shall be respected for numerical
efficiency. Algorithm 1 as stated is suitable for a small to
medium scale UMVPLS problem. Later in section 3.4, we
will explain how it can be adapted for large scale multi-view
data.

Theorem 1 below shows that the solution returned by Al-
gorithm 1 satisfies the orthogonality constraints in problem
(15).

Theorem 1. Let {Y;} be the output of Algorithm 1. Then
Y;-T}/i = I and R(Y;) C R(Sl) Vi.

Proof. Denote the jth updated S; at line 4 of Algorithm 1 by
SZ(] ), and Si(o) = 5, is the input one. Similarly,
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Algorithm 1 UMVPLS: an incremental algorithm

Input: {S; € R™*?} (each S; is centered), integer 1 < k <

min{ni,..., ng,q;r;

Output: {Y; € O™ *"}, the set of most correlated orthonormal
projection matrices.

1: compute the most dominant left singular vector z =

[zf, T]T of . in (13), where z; € R™;

2.y = zl/HziHQ fori=1,2,...,4

3: for] =1,2...,k—1do

4: update S; «+ S; — yl(]) [yE”]TSi) fori=1,2,...,4

5: compute the most dominant left singular vector z =
[le, e zz} of . in (13) with the updated S;, where
z; € R™;

6 YUY = 2 /||zills fori=1,2,...,¢;

7: end for

8: :[ygl),...,yfk)}fori:1,2,...,4;

9: return {Y; € Q"*F},

Y9 =y Ly, (23)

We will prove

by induction on j. Evidently, the claims in (24) hold for j =
1, based on our discussions leading to Algorithm 1 in this
section. Suppose they are true for j < t. We have to prove
them for j = ¢ + 1. To this end, we note

5O =TT (1~ W) 50 = [1

j=1

_ Y_(t) (Y_(t))T:| S;

because (Y(t))TY( )= 1, Immediately,

R(S™) € R(Si) + R(V,V) € R(S).
By construction, y( +D) ¢ R(S( )) and thus y(t'H) SZ-(t)w
for some vector w;. Therefore,

(Yi(t))Tyl(tJrl) _ (Yz( )) Sl(t) wi
— (Y(t))T |:I7h _ Y;(f)(y;(t))T} Szwz — O7

K3

leading to (24) for j =t + 1. O

3.4 Scalable algorithm for UMVPLS on large-scale data

Algorithm 1 is not scalable for large-scale data since all
S; there are likely dense and computing a full SVD is an
expensive operation. At lines 1 and 5 of Algorithm 1, if a
full dense SVD is computed by, e.g.,, MATLAB’s svd which
is based on LAPACK [36], as a way to extract the top left
singular vector, the cost is O(min{ng? n%q}) flops, where
n = Y, n;. Fortunately, only the top left singular vectors
are required at both lines. Therefore a Krylov subspace type
iterative method based on the Golub-Kahan bidiagonliza-
tion [35], [37], [38] can get the job done in O(nq) flops for
each top left singular vector. The saving will be even greater
when original data matrices S; (unlikely centered however)
are sparse.

A key requirement of these Krylov subspace methods
[35, chapter 10] is the ability to compute matrix-vector
products, in our case,

Algorithm 2 UMVPLS: an incremental algorithm (scalable
version)

Input: {S;* € R"*9} (each S;*" is not necessarily centered),
integer 1 < k < min{ni,...,n¢,q};
Output: {Y; € Q"**}, the set of most correlated orthonormal
projection matrices.
1Y =[fori=1,2,...,6
2. call MATLAB's svds to comﬁgute the most dominant left
singular vector z = [21,.. of 7, where z; 6 R™,
and matrix-vector products by 7O and by (7T are
calculated according to (27) and (28), respectively;
3y =z /||zi])2 and VP =y fori=1,2,...,4
s forj=1,2...,k—1do
5:  call MATLAB s svds to com}_:;ute the most dominant left
singular vector z = [2], .. of ¥, where z; € R™,
and matrix-vector products by 70 and by (#U)T are
calculated according to (27) and (28), respectively;

'S

6: y£‘7+1) = 2|zl and Yi(J+1) — [5/1'(])7yij+1)] for i =
1,2,...,¢
7: end for
8 Y, = kaorz—12 N2
9: return {Y; € O™ Xk}
f(j)m, (y(j))Ty (25)

fast, for any given € R? and y € R", where .70 is
given by (13) with S; replaced by Si(]) (introduced in the
proof of Theorem 1). We now explain how these two matrix-
vector products should be done for an efficient scalable
implementation of Algorithm 1. Recall that S; (denoted by

ng ) hereafter) at line 4 there can be written as
Si(J) = [In - glqlq) s

where 57" represents the original raw data matrix that may
not even be centered, and Yi(j ) is given by (23). An efficient

computation of Wz =: z = [T, 21, ..., 2] is as follows:

OO s (1, 20

1) compute

vz — [(142)/q, (27a)

2) fori=1,2,...,¢do
2 SV, (27b)
2 2 — Y;(J) (v 2], (27¢)

where (27b) and (27c) are executed in order.

Likewise, z := (.#(1))Ty should be done as follows: parti-
tiony = [y, v3,...,yf|T with y; € R", and then

1) fori=1,2,...,¢do
yi + yi — Y,V [(Y;U))TyiL (28a)
— (57) Ty, (28b)
where (28a) and (28b) are executed in order;
2) compute
4
ye >y 2y —[(13y)/dl, (28¢)

i=1
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TABLE 1
Data sets used in the experiments, where the number of features for each view is shown inside the bracket.
samples
Data set training | testing | class view 1 view 2 view 3 view 4 view 5 view 6
TVGraz 500 1558 | 10 Text (100) Image (1024) - - - -
Wikipedia 693 2173 | 10 Text (100) Image (1024) - - - -
Pascal 300 700 20 Text (100) Image (1024) - - - -
Multiple-Features 2000 10 fac (216) fou (76) kar (64) mor (6) pix (240) zer (47)
Caltech101-7 1474 7 |CENTRIST (254)| GIST (512) LBP (1180) HOG (1008) CH (64) SIFT-SPM (1000)
Caltech101-20 2386 20 |CENTRIST (254)| GIST (512) LBP (1180) HOG (1008) CH (64) SIFT-SPM (1000)
Scenel5 4310 15 |CENTRIST (254)| GIST (512) LBP (531) HOG (360) |SIFT-SPM (1000) -
NUSWIDEOB] 30000 31 CH (65) CM (226) CORR (145) EDH (74) WT (129) -
Reuters 18758 6 | English(21531) |France (24892)|German (34251)|Italian (15506) | Spanish (11547) -

It is very important to notice that during (27) and (28), S;*
as the raw input matrices are never changed.

In our implementation of the incremental algorithm
for UMVPLS for large scale (possibly sparse) multi-view
data, we take advantage of MTALAB’s svds, an implicit-
restarted Lanczos type method based on the Golub-Kahan
bidiagonlization. For more details about the mathematics
and algorithm of svds, the reader is referred to [38], [39].
Algorithm 2 summarizes our current implementation for
large-scale multi-view data.

Compared to the deflation method used in [30] for
OMCCA-SS, Algorithms 1 and 2 have three major advan-
tages:

1) Our algorithms are robust and efficient because it uses
proven numerical linear algebra techniques as building
blocks;

2) They do not require any Cj; to be positive definite
because it relies on solving the standard symmetric
eigenvalue problem like (19).

3) Algorithm 2 is scalable in handling large-scale high-
dimensional multi-view data.

4 EXPERIMENTS

We conduct experiments to compare the proposed UMv-
PLS (solved by our incremental algorithm) with baseline
methods on various datasets in terms of two applications:
cross-modal retrieval and multi-view feature extraction. As
UMVPLS is devised for multi-view data, it is expected to
work well for two view data, as well as data of more than
two views. In the following, we will first evaluate UMVPLS
for cross-modal retrieval due to its inherent problem of two
views, and then conduct extensive experiments for multi-
view feature extractions with various number of views.

4.1 Experimental settings

Datasets used in the experiments are shown in Table 1.
The first three datasets [40]: TVGraz, Wikipedia, and Pascal,
each of which consists of pairs of image and text, are used
for the task of cross-modal retrieval. Specifically, there are
2058 pairs from 10 categories in TVGraz, 2866 pairs from 10
categories in Wikipedia, and 1000 pairs from 20 categories in
Pascal. Images are represented by the bag-of-words (BOW)
model using SIFT descriptors quantized with the 1024 visual
word codebook [41] and texts are represented by the proba-
bilities of text words under 100 hidden topics from latent
Dirichlet allocation model [42]. As discussed in [40], the
three datasets have different properties: Wikipedia contains

high quality images and texts, but the image intra-class vari-
ability is large because of the broad class categories, so the
classification accuracy is generally low on images; TVGraz
has good correlations of image and text to the narrow object
classes, so accuracies on both image and text are acceptable;
Pascal is the most challenging visual datasets, where the
added text features are not semantically rich, so accuracies
on both image and text are low.

The rest six datasets in Table 1 are used for the task
of multi-view feature extraction. We apply various feature
descriptors to extract features of views for image datasets:
Caltech101! [43], Scenel5? [44], CENTRIST [45], GIST [46],
LBP [47], histogram of oriented gradient (HOG), color his-
togram (CH), and SIFT-SPM [44]. Note that we drop CH
for Scenel5 due to the gray-level images. Multiple-Features
is handwritten numeral data® [48] with six views including
profile correlations (fac), Fourier coefficients of the character
shapes (fou), Karhunen-Love coefficients (kar), morpholog-
ical features (mor), pixel averages in 2 x 3 windows (pix),
and Zernike moments (zer). NUSWIDEOB] contains 30, 000
images from 31 categories, where five precomputed features
are used: color moment (CM), CH, color correlation (CORR),
edge distribution (EDH) and wavelet texture (WT) [49].
Reuters is a multi-view text categorization test collection
dataset containing feature characteristics of documents orig-
inally written in five languages (English, French, German,
Italian, and Spanish) and their translations over a common
set of six categories (C15, CCAT, E21, ECAT, GCAT, and
M11). Only a subset of Reuters, those written in English
and their translations in other four languages, is used.
The six datasets show different properties such as Retuters
has high-dimensional features for each of five views and
NUSWIDEOB]J consists of a large number of samples with a
small number of related features for each view.

To demonstrate the effectiveness of Algorithm 2, we
compare UMvPLS with existing methods CCA [6] and CCA-
SSY [50] for the two-view datasets (the first three in Table 1),
and MCCA with the SUMCOR model [29] and OMCCA-SS
[30] for the multi-view dataset (the last six in Table 1). Except
for the dimension % of the reduced space, all methods do
not have any other hyper-parameter. In addition to the task-
specific performance, we will also report the performance
of the compared methods by varying the dimension k of
the reduced space. All views of each dataset are mapped

1. http:/ /www.vision.caltech.edu/Image_Datasets/Caltech101/
2. https:/ /figshare.com/articles/15-Scene_Image_Dataset/7007177
3. https:/ /archive.ics.uci.edu/ml/datasets /Multiple+Features
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TABLE 2
MAP scores of CCA, OCCA-SSY, and UMVPLS in terms of three metrics and two settings: image query and text query. The average MAP scores
over the two settings are also reported. The best average scores over the three methods and three metrics are printed in bold, where the reduced
dimension corresponding to the MAP score is shown in the bracket.

CCA OCCA-SSY UMvVPLS

data metric | Image Query Text Query Average | Image Query Text Query Average | Image Query Text Query Average
L2 0.1255 (15) 0.1121 (10) ~ 0.1188 0.1188 (1) 0.1553 (20)  0.1370 0.1499 (2) 0.1702 (4) 0.1601
Wikipedia L1 0.1254 (20) 0.1121 (11)  0.1187 0.1188 (1) 0.1484 (20)  0.1336 0.1495 (2) 0.1614 (4) 0.1554
NC | 0.1163 (2) 0.1121 (5) 0.1142 0.1908 (20) 0.1573 (20)  0.1740 0.2445 (3) 0.1773 (6) 0.2109
L2 0.1132 (14) 0.1154 (3) 0.1143 0.1116 (1) 0.1116 (1) 0.1116 0.1772 (3) 0.2290 (9) 0.2031
TVGraz L1 0.1132 (16) 0.1157 (3) 0.1144 0.1116 (1) 0.1116 (1) 0.1116 0.1718 (3) 0.2135 (8) 0.1926
NC | 0.1123 (4) 0.1158 (1) 0.1141 0.1116 (1) 0.1116 (1) 0.1116 0.2764 (9) 0.2494 (9) 0.2629
Pascal L2 0.0653 (3) 0.0584 (5) 0.0619 0.0863 (3) 0.1252 (3) 0.1058 0.1102 (3) 0.1208 (6) 0.1155
L1 0.0645 (5) 0.0586 (20)  0.0616 0.0853 (3) 0.1205 (3) 0.1029 0.1064 (3) 0.1128 (5) 0.1096
NC | 0.0655 (20) 0.0599 (2) 0.0627 0.1576 (19) 0.1274 (19)  0.1425 0.1662 (4) 0.1320 (4) 0.1491

to the common space. Finally, the learning methods and
evaluation approaches are conducted in the common space.

4.2 Cross-modal retrieval

Because of the rapid growth of multimedia data that usually
contain mixtures of things, such as documents with both
texts and images, any capability of decent cross-modal re-
trieval is significant and, as a result, cross-modal retrieval is
attracting more and more attention. However, the inconsis-
tency between different media types makes it challenging
to measure the cross-media similarity of instances [51]. In
overcoming the heterogeneity gap, CCA has become the
standard approach by seeking a common representation for
different media types [1], [2], [52].

Following [1], we consider two tasks given a set of pairs
of text and image. One is the text retrieval using an image
query, and the other is the image retrieval using a text query.
For both tasks, the mean average precision (MAP) is used to
measure the performance of the ranking produced by each
CCA model. Note that MAP is a widely used measure in
the image retrieval literature. The larger the MAP is, the
better the model performs. Three distances, the L1 distance,
the normalized correlation (NC) and the L2 distance, are
evaluated by computing the similarity between a query
and its retrieved object mapped into the common space
produced by CCA and its variants.

Table 2 shows the best MAP and average scores for k €
[2,3,5 : 5 :90] by CCA, OCCA-SSY, and UMvVPLS for the
two tasks on the datasets Wikipedia, TVGraz, and Pascal.
From Table 2, we have the following observations:

e Both OCCA-SSY and UMvVPLS outperform CCA on
Wikipedia and Pascal. UMvPLS is significantly more
accurate than any of the two CCA-based methods for
both tasks, especially on the most challenging data
Pascal. This demonstrates that UMvPLSA is most
effective for cross-modal retrieval.

e OCCA-SSY performs worst on TVGraz. Its MAP
scores for both tasks are equally bad. One of the
reason is that OCCA-SSY encountered numerical
instability and, as a result, cannot obtain proper
orthonormal projection matrices for both views. But
UMVPLS does not face this issue. This empirically
verifies the theoretical results in Section 3.3.

e Among all three methods with three distance met-
rics, UMvVPLS shows the best results for both tasks.

e The MAP scores with NC for all three methods are
the best among with any of the three metrics. This is
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Fig. 1. Average MAP scores of CCA, OCCA-SSY, and UMvPLS over two
tasks on datasets: Wikipedia, TVGraz, and Pascal with respect to NC,
L2, and L1.

(g) Pascal, NC

consistent with the observations in [1]. Additionally,
the ones by UMVPLS are the best among all three
methods and that further proves that UMvVPLS can
maximize the correlation between image and text
better.

We also demonstrate the robustness of the three methods
as the dimension k of the reduced space varies. Fig. 1
illustrates the average MAP scores of the compared methods
over two tasks on the three datasets with respect to metrics
NC, L2, and L1. In all cases, CCA performs very poorly and
is a noncontender, compared to the better one of UMVPLS
and OCCA-SSY. On TVGraz, UMvPLS outperforms OCCA-
SSY by wide margins; On Wikipedia, UMvPLS achieves sig-
nificantly better results than OCCA-SSY for smaller tested
ks but their performance gap starts to shrink as k increases;
On Pascal, UMVPLS holds an edge over OCCA-SSY for
small ks (k < 50 for NC, k£ < 30 for L2, and k£ < 25 for L1).
The peak average MAP scores of UMVPLS can generally be
obtained for k € [2, 30], but OCCA-SSY often requires larger
k for decent average MAP scores. Hence, UMvPLS is more
suitable than OCCA-SSY for retrieval and achieves faster
responses since computing similarity between two points in
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TABLE 3

Classification accuracy of MCCA, OMCCA-SS, UMVPLS, and the single-view classifier with 20% training and 80% testing split on data.

NUSWIDEOB]

Scenel5

Reuters

0.1597 +£ 0.0023
0.1733 £ 0.0033
0.1915 +£ 0.0019
0.1698 + 0.0022
0.2011 +£ 0.0013

0.5537 £ 0.0108
0.5100 =+ 0.0099
0.5385 + 0.0051
0.4478 £ 0.0072
0.6484 + 0.0174

0.5019 +£ 0.0312
0.4784 £ 0.0271
0.4537 £ 0.0453
0.4556 £ 0.0318
0.4503 + 0.0282

Multiple-features Caltech101-7 Caltech101-20
viewl 0.9434 £ 0.0056 0.9214 £ 0.0049 0.7543 £ 0.0056
view?2 0.7396 + 0.0105 0.9312 + 0.0064 0.8023 + 0.0056
view3 0.9133 £ 0.0081 0.9359 £ 0.0065 0.8017 £ 0.0066
view4 0.6731 + 0.0124 0.9080 + 0.0126 0.7760 + 0.0126
viewd 0.9530 £ 0.0059 0.7504 + 0.0082 0.5816 £ 0.0118
view6 0.7731 £ 0.0110 0.9111 £ 0.0061 0.7404 £ 0.0121
MCCA 0.8666 + 0.0064(6)  0.8750 + 0.0099(15)  0.8427 + 0.0070(40)
OMCCA-SS| 0.8198 £ 0.0077(6) ~ 0.9390 & 0.0083(45)  0.8329 =+ 0.0057(50)
UMVPLS | 0.9599 + 0.0037(5)  0.9525 4 0.0049(10)  0.8621 = 0.0079(20)

0.6696 =+ 0.0095(30)  0.7616 = 0.0040(25)
0.6792 £ 0.0085(50)  0.7825 + 0.0026(45)
0.6801 == 0.0067(15)  0.7949 - 0.0028(30)

0.2130 = 0.0037(30)
0.1190 == 0.0000(3)
0.2737 = 0.0025(10)

reduced spaces of lower-dimensions is much cheaper.

4.3 Multi-view feature extraction

We evaluate the performance of UMVPLS and two other
CCA-based multi-view learning methods, MCCA and OM-
CCA for the multi-view feature extraction task in terms
of classification. By following the experimental settings in
[30], we divide each experiment in four steps: 1) split data
into training and testing data with certain ratio, 2) learn
the mapping function from the training data to map the
data of each view to a reduced common space, 3) obtain
the representations of multi-view data points for both train-
ing and testing data via the serial feature fusion strategy
[19], and 4) predict/evaluate the labels of testing data via
the 1-nearest neighbor (INN) classifier learned from the
training data. In the experiments, we use the Euclidean
distance as the distance metric in the INN classifier and
classification accuracy to measure learning performance. As
in our cross-modal retrieval experiments, we also investi-
gate the impact of the dimension k of the reduced space.
Moreover, we study the influence of the ratio of training
and testing data split. To achieve statistically meaningful
results, we repeat each experiment with 10 random splits of
training and testing data and report the mean accuracies
with the associated standard deviations. In addition, we
evaluate the performance of the 1NN classifier using its
results on each single view as the baselines. It is worth
noting that Reuters contains large-scale high-dimensional
data. MCCA and OMCCA-SS cannot handle such high-
dimensional data due to the high computational complexity
of eigen-decomposition and large memory requirement. To
make them feasible and use their results as the baselines for
Reuters, we apply PCA to each of its view and to reduce
their dimensions to 1000. Since UMVPLS is efficient for and
can tackle data of very high dimensions (even more so when
all S7*V are sparse), we don’t need and don’t do such a
preprocessing step when it comes to UMVPLS.

The classification accuracies of MCCA, OMCCA-SS, and
UMvVPLS on six multi-view datasets are shown in Table 3,
together with the classification results obtained by each of
the single-view data, respectively. From Table 3, we have the
following observations:

o The classification results based on each single view
data can be very different viewwise. MCCA achieves
better accuracies on four out of the six datasets than
the best single-view classifier results. On the other
two datasets, Multiple-features and Caltech101-7,
MCCA is still better than the worst single-classifier.

e OMCCA-SS also achieves better accuracies on four
out of the six datasets than the best single-view

classifier, but not all of the four datasets on which
OMCCA-SS performs better are the same as the four
datasets on which MCCA performs better. Overall,
OMCCA-SS and MCCA are comparable and, in fact,
each method beats the other on three out of the
six datasets. It is also clear to see that OMCCA-
SS can achieve much better result than MCCA on
Caltech101-7, but it performs worse on Multiple-
features.

e UMVPLS obtains the best accuracies over all six
datasets. It not only demonstrates the ability to im-
prove the best single-view classifier, but also shows
significantly better results than MCCA and OMCCA-
SS. Another interesting phenomenon is that the peak
performance of UMvPLS as k varies is often achieved
at a relatively small k. That leads to an important
practical consequence, i.e., to use UMVPLS with a
relatively small k for the best performance and yet at
the lowest cost.

These observations demonstrate that UMVPLS improves
classification performance for multi-view feature extraction
over MCCA, OMCCA-SS, and the single-view classifier.
Compared to OMCCA-SS, UMVPLS can obtain better accu-
racies possibly for two reasons: 1) UMVPLS can better maxi-
mize variance matrices, and 2) OMCCA-SS has a numerical
instability issue and indeed it fails on Multiple-features.
UMVPLS is built on proven numerical linear algebra tech-
niques and guarantees to produce numerically orthonormal
projection matrices (Theorem 1).

We further investigate the influence of three important

factors to the multi-view feature extraction, including:
1) how does the reduced dimension k affect the classifica-

tion performance?
2) how does the size of training data relative to whole data
affect the classification performance?

3) how does the reduced dimension k affect the CPU time?
Fig. 2 displays our numerical results with respect to these

three factors on five of the six datasets.

First, we observe that accuracy increases when the ratio
of training data increases, as one might expect. On some
datasets such as Caltech101-7 and Caltech101-20 (view 5),
the accuracies obtained by the single-view classifier from
some of the views are noticeably lower than from other
views. These views may be considered as weak views for
the purpose. The improvements of MCCA and OMCCA-SS
over the single-view classifier are quite dramatic on Reuters,
for which the accuracies by the single-view classifier on each
view are all much poorer. UMvPLS produces the best results
over all datasets and the tested training ratios, except for the
single-view classifier on view 5 for Scenel5 with training
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Fig. 2. Accuracies with respect to the ratio of training data over all tested ks (the first row), the dimension & with 20% training data (the second row),
as well as the empirical computational cost in CPU time on five multi-view datasets (the third row).

ratio larger than 60%. These results confirm that multi-view
feature extraction using subspace learning can work better,
and often much better, than the best single-view classifier.

Second, the accuracies of MCCA, OMCCA-SS, UMvPLS
behave very differently from one another as k varies. UMv-
PLS often obtains the peak accuracy at a relatively small &,
while CCA and OMCCA-SS need a large reduced dimension
k in order to achieve reasonable accuracies that are still
worse than UMVPLS at a much smaller k. In particular,
OMCCA-SS fails on NUSWIDEOB]J.

Third, UMvPLS takes much less CPU time on high-
dimensional data, except for NUSWIDEOB] for a good
reason to be explained in a moment. As discussed in Sec-
tion 3.4, UMvVPLS has a computational complexity that is
linear in the number of input samples, so the reported
CPU times are consistent with the observed computational
times on NUSWIDEOB]J. On the other hand, UMvVPLS is also
linear in the input dimension of the sample points, so it is
much cheaper than O(n?), the computational complexity
of MCCA, and O(kn?), the computational complexity of
OMCCA-SS, where n = 3‘_, n;. As observed, UMvPLS
runs fastest on the rest of the four datasets.

We now explain why UMvVPLS uses more time on
NUSWIDEOBJ than the other two methods. In fact, for
NUSWIDEOB], the total number of features n = >, n; in
all views is 639 while the number ¢ of samples in each
view is 30,000 which is much bigger than 639. In such a
case, the more efficient way is to form covariance matrix
o = ST € R explicitly once and for all at a cost
O(n?q) and then work with & exclusively afterwards at
a cost O(n?). This idea helps only when n is modest and
n <K ¢g. But for n so large that storing n x n dense matrices
becomes an issue, the idea will not work even if n < g. In
this latter case, UMVPLS (solved by Algorithm 2) can still
get the job done if all S]*V are sparse.

In summary, the proposed method UMVPLS not only

outperforms baseline methods, but also runs faster on
and are feasible for high-dimensional data. It is scalable
for unsupervised subspace learning on large-scale high-
dimensional multi-view data because of its linear compu-
tational complexity in the number of nonzero entries in the
given dataset.

5 CONCLUSION

In this paper, we study an extension of the partial least
squares (PLS) method for multi-view data in the unsuper-
vised setting. A new method called the unsupervised multi-
view partial least squares (UMvPLS) method is presented
and it is inspired by the analogous study to CCA and its
variants. To solve the resulting challenging optimization
problem, we propose a stable deflation approach with the-
oretical guarantee and further adapt it to efficiently handle
large-scale high-dimensional data, based on well-developed
matrix computational techniques. Our experimental results
for two learning tasks, cross-modal retrieval and multi-view
feature extraction, show that our new method outperforms
existing methods and is scalable for multi-view data.
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