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A Self-Consistent-Field lteration for
Orthogonal Canonical Correlation Analysis

Lei-Hong Zhang, Li Wang, Zhaojun Bai, and Ren-Cang Li

Abstract—We propose an efficient algorithm for solving orthogonal canonical correlation analysis (OCCA) in the form of

trace-fractional structure and orthogonal linear projections. Even though orthogonality has been widely used and proved to be a useful
criterion for visualization, pattern recognition and feature extraction, existing methods for solving OCCA problem are either numerically
unstable by relying on a deflation scheme, or less efficient by directly using generic optimization methods. In this paper, we propose an
alternating numerical scheme whose core is the sub-maximization problem in the trace-fractional form with an orthogonality constraint.

A customized self-consistent-field (SCF) iteration for this sub-maximization problem is devised. It is proved that the SCF iteration is
globally convergent to a KKT point and that the alternating numerical scheme always converges. We further formulate a new
trace-fractional maximization problem for orthogonal multiset CCA and propose an efficient algorithm with an either Jacobi-style or
Gauss-Seidel-style updating scheme based on the SCF iteration. Extensive experiments are conducted to evaluate the proposed
algorithms against existing methods, including real-world applications of multi-label classification and multi-view feature extraction.
Experimental results show that our methods not only perform competitively to or better than the existing methods but also are more

efficient.

Index Terms—canonical correlation analysis; self-consistent-field iteration; orthogonal multiset canonical correlation analysis.

1 INTRODUCTION

ANONICAL correlation analysis (CCA) [1], [2] is a
C standard statistical technique and widely-used feature
extraction paradigm for two sets of multidimensional vari-
ables. It finds basis vectors for the two sets of variables such
that the correlations between the projections of the variables
onto these basis vectors are mutually maximized. During
the last decade, CCA has received a renewed interest in the
machine learning community and its applicability has been
demonstrated in various fields [3].

In this paper, we are particularly interested in a variant
of CCA, namely orthogonal CCA (OCCA), in which projec-
tions are constrained to be orthogonal [2], [4]. Distinguished
from the classical CCA, OCCA has its exclusive property
of preserving the covariance of the original data [2]. In
addition, OCCA inherits many advantages such as being
less sensitive to noise, better suited for data visualization
and preserving metrics, brought by various other learning
models for pattern recognition and feature extraction, where
the orthogonality has been proved as an effective learning
criterion. For examples, orthogonal linear discriminant anal-
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ysis (LDA) is observed to have better performance than
the standard LDA since the orthogonality constraint to
some extent can remove noise [5]; orthogonal neighborhood
preserving projections [6] achieves better representation of
the global structure and is effective for data visualization;
orthogonal locality preserving indexing [7] shares the same
locality preserving character as locality preserving indexing
and at the same time requires the basis functions to be
orthogonal so that the metric structure of the document
space is preserved. OCCA has further been extended for
more than two views [8].

Comparing to CCA, OCCA brings the above-mentioned
advantages for data analysis, but it no longer retains an
analytic solution. A common heuristic approach is to or-
thogonalize the basis vectors obtained by CCA. However,
this produces a suboptimal solution for the OCCA problem.
In [4], an incremental scheme is employed to produce cur-
rent basis vectors with additional constraints to enforce the
orthogonality with the previously computed basis vectors.
We will point out in Section 2 that the incremental scheme
relies on a generalized eigenvalue problem that is numeri-
cally unstable in the sense that the theoretically dominant
eigenvalue, although provably real, could be numerically
computed to be complex and as a result, no real basis vector
can be found and the scheme breaks down. When that
happens, some kind of post-processing step is required to
obtain a feasible solution [4]. In [2], generic optimization
methods for minimizing a smooth function over the product
of the Stiefel manifolds are used for OCCA. These methods
usually converge to a local minimizer but they do not take
the trace-fractional structure of OCCA into consideration.
As a result, they are usually less efficient than custom-
made algorithms. These challenges hinder OCCA from be-
ing widely used.

0162-8828 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on September 15,2020 at 15:07:16 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.3012541, IEEE

Transactions on Pattern Analysis and Machine Intelligence

JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, X XXXX

The goal of this paper is to propose new efficient algo-
rithms for solving the OCCA problem with guaranteed the-
oretical convergence and numerical stabilizability. In order
to fully explore the trace-fractional structure of OCCA, we
first uncover the connection of OCCA with an eigenvector-
dependent nonlinear eigenvalue problem (NEPv), and then
naturally come up with a simple iterative method whose
numerical efficiency is guaranteed by a structure-exploiting
self-consistent-field (SCF) iteration. Global convergence and
local convergence of this customized algorithm are estab-
lished.

Contributions. The main contributions of this paper are
summarized as follows:

o We propose a novel algorithm OCCA-scf for solving
OCCA in the form of a trace-fractional matrix opti-
mization problem. The proposed algorithm is built
upon an efficient and effective SCF iteration to solve
a very special trace-ratio sub-maximization problem
through taking the trace-fractional structure into ac-
count. It is proved that the SCF iteration is always
convergent and, as a result, OCCA-scf is guaranteed
to converge. It can also integrate the state-of-the-
art eigensolvers within the iteration framework for
large scale problems. Moreover, it guarantees the
orthogonality of the computed basis vectors.

e We present a new orthogonal multiset CCA (OM-
CCA) model with integrated weights for each pair of
views and the trace-fractional objective for correla-
tions between any two views. By leveraging the same
customized SCF iteration, a novel range constrained
OMCCA algorithm is proposed with an either Jacobi-
style or Gauss-Seidel-style updating scheme.

o Extensive experiments are conducted for evaluating
the proposed algorithms against existing methods
in terms of various measurements, including sen-
sitivity analysis, correlation analysis, computation
analysis, and data visualization. We further apply
our methods for two real world applications: multi-
label classification and multi-view feature extraction.
Experimental results show that our methods not only
perform competitively to or better than baselines but
also are more efficient.

Paper organization. We first review classical CCA models
and existing OCCA variants in Section 2. In Section 3, we
propose a novel algorithm for solving OCCA problem and
the main theoretical results are presented in Section 4. In
Section 5, we develop a new algorithm for OMCCA by
leveraging the same SCF iteration. Extensive experiments
are conducted in Section 6. Finally, we draw our conclusions
in Section 7. All proofs are given in the supplementary
material.

Notation. R™*" is the set of m X n real matrices and R" =
R™*1. T, € R™*" is the identity matrix, and 1,, € R" is the
vector of all ones. ||x||2 is the 2-norm of a vector x € R". For
B € R™*", R(B) is the column subspace and its singular
values are denoted by o;(B) for ¢ = 1,...,min(m,n)
arranged in the nonincreasing order. |B|1 (||B||2) is the
1-norm (2-norm) of matrix B. The thin SVD of B is the
one B = USVT such that ¥ = Diag(o1(B),...,0.(B))

2

is diagonal with r = rank(B), the rank of B, and || B||iy =
>i_,0i(B) is its trace norm (also known as the nuclear
norm). When m = n, sym(B) = (B + BT)/2; if B is
also symmetric, then eig(B) = {\;(B)}?_; denotes the set
of its eigenvalues (counted by multiplicities) arranged in
the neninereasing order, and B > 0(> 0) means that B
is symmetric positive definite (semi-definite). The Stiefel
manifold

@nxk:{XeRnXk . XTX:Ik}

is an embedded submanifold of R"** endowed with the
standard inner product (X,Y) = tr(X'Y) for X,V €
R™*F, where tr(XTY) is the trace of XTY. The tangent
space TxQ"** of O"*F at X € O"** is given by (see, e.g.,
1)

TxQ"* = {H e R"*|X"H + H" X =0}

x| H=XK+ (I, — XXT)J
I{HGR X VK:_KT(ekak J)ERnxk}' (1b)

(1a)

2 RELATED WORK

We review the classical CCA and OCCA methods, as well
as their extensions to multiple sets of variables.

2.1 Classical CCA via SVD

CCA is a two-view multivariate statistical method [1], where
the variables of observations can be partitioned into two
sets, i.e., the two views of the data. Denote the data matrices
S1 € R™4 and S € R™*? from view 1 and view 2
with n and m features, respectively, where ¢ is the number
of samples. Assume both S; and S are centralized, i.e.,
S114 = 0 and S>1, = 0; otherwise, we may preprocess S; as
Si = Si—(Silg)1] /q fori = 1,2. Letx; € R" and x5 € R™
be the canonical weight vectors. The canonical variates are
the linear transformations defined as z; = S{xi,zy =
SFxo. The canonical correlation between the two canoni-
cal variates is defined as p(x1,%x2) = z722/(||z1]|2]|22]|2)-
CCA aims to find the pair of canonical weight vectors that
maximize the canonical correlation:

max p(xi,Xz). 2)
It can also be interpreted as the problem of finding the best
pair of canonical weight vectors so that the cosine of the
angle between the two canonical variates is maximized, that
is, the smallest angle in [0, 7].

This single-vector CCA (2) has been extended to obtain
the pair of canonical weight matrices, namely, the pair of
canonical weight matrices X; € R"** and X, € R™*k by
solving the following optimization problem

max 'CI"()(lTCYLzXVQ)7 s.t. XZTC%ZXZ =1Ir,1=1,2, (3)

X1,X2
where C; ; = SiS;F, i,j = 1, 2. Hereafter, (3) is referred to as
the classical CCA, or simply CCA for short. In general, the
closed-form solution of (3) can be obtained by the singular
value decomposition (SVD) [10], and it can be proved that
XlTCLng > 0 for any optimal solution pair (X1, X2) [11,
Theorem II1.2].
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2.2 OCCA via generic methods over matrix manifolds

The classical CCA is not suitable for settings where an
orthogonal projection is required in an orthogonal coordi-
nate system, such as for data visualization. This is because
optimal X; and X, in (3) usually do not have orthonor-
mal columns. Although one can always orthogonalize their
columns as a post-processing step, the resulting orthogonal
projections are generally suboptimal. For that reason, an
orthogonal CCA (OCCA) is proposed in [2], [4] to maximize
the correlation

tr(XTCh 2 X
F(X1,Xa) = et X1 12 Xa) @
\/tI‘(Xl 01,1X1) tI‘(X2 02,2X2)

directly over orthonormal matrices, i.e.,

f(X1, Xz). ©)

max
Xle@"Xk,XQGGJka

As pointed out in [2], OCCA is different from the classical
CCA because OCCA preserves the covariance of the orig-
inal data S; and Sy by finding orthonormal matrices that
maximize the correlation, while the classical CCA whitens
each dataset and projects them so that the correlation is
maximized.

Generic optimization methods for minimizing or max-
imizing a smooth function over the product of the Stiefel
manifolds are available. Classical optimization algorithms
such as the steepest descent gradient or the trust-region
methods over the Euclidean space have been extended to
the general Riemannian manifolds in [9]. However, besides
only guaranteeing to converge to a local optimizer at best,
these generic algorithms do not make use of the special
trace-fractional structure in (5), and therefore, they usually
are less efficient than custom-made algorithms for trace-
ratio-related optimizations (see [12], [13] for numerical re-
sults of trace-ratio optimizations).

2.3 OCCA via a greedy method

The motivation of imposing orthogonality constraints was
also explored in [4]. A greedy method (which we will
call OCCA-SSY for short) is employed to find k pairs of
orthogonal vectors, computed one pair at a time. The initial
step is the same as the classical CCA to find the pair of
canonical weight vectors (xgl),xg)) that solves (2). Given
{(th), Xét))}tr:l, the (r + 1)st step is to solve the following
problem

(D) (r+1))

(x = arg max p(X1,X2)
X1,X2

st xiCixi=1, xix" =0,i=1,2,t=1,...,7

Such an approach relies on a deflation scheme, and the pair
(x\" ™Y s claimed to correspond to the dominant
eigenpair of a generalized eigenvalue problem, which, how-
ever, numerically may not have any real eigenpair and thus
is unusable’.

1. Private communications with the authors of [4], 2019.

2.4 Classical multiset CCA

Multiset CCA (MCCA) [14], [15] is proposed to analyze lin-
ear relationships among more than two canonical variates. It
is a generalization of the classical CCA [1]. Here, we briefly
introduce a widely used model [15] by seeking projections
to maximize the sum of the pairwise correlations between
any two canonical variates. Specifically, given £ datasets in
the form of matrices

S; e R™* fori=1,2,...,¢, 6)

where n; is the number of features in the ith dataset, and ¢
is the number of data points in each of the datasets. Without
loss of generality, we may assume that all \S; are centered,
ie., Si1; = 0 for all 5. Let C; ; = SiSJT fori,j=1,...,¢
MCCA seeks to find the set of ¢ canonical weight vectors
that solves

14

T
ma i 1,587
Xluua);é Z Xl C ’]XJ’ (7)
i, =1
subject to
¢
either ZX;FCz’,iXi =1, ®)
=1
or x,Ciixi=1,i=1,...,L )

KKT conditions for MCCA under either (8) or (9) can be
found in [15]. In particular, under (8), MCCA (7) is equiva-
lent to a generalized eigenvalue problem [15, p.297], which
can be solved by an eigensolver [10], [16], [17].

2.5 OMCCA via a greedy method

In [8], a greedy orthogonal MCCA (OMCCA) (called
OMCCA-SS for short) was proposed. Similar to [4], it goes
as follows. Given {xl(-t),W =1,....0} fort = 1,...,r,
OMCCA-SS recursively solves the following subproblems

¢
1 T
.,xéﬂr >} = arg max E x; C; %5,
£

X1, X

r+1
{7,

i, j=1
st. ®and x;xV =0,i=1,...6t=1,...r

OMCCA-SS inherits the same issues as OCCA-SSY dis-
cussed in Subsection 2.3.

3 NOVEL ALGORITHM FOR OCCA

In this section we propose a new optimization scheme for
solving the OCCA problem (5) by fully taking the advantage
of its underlying structure.

3.1 Reformulation of OCCA

Following the annotation in Section 2, both views of the data
S1 and S; are centralized in advance. Define

A=3815T eR™" B=5,55 e R™™ C =855 € R™*™.

Let X € 0"*F and Y € 0"** have orthonormal columns,
where 1 < k < min{m, n} (usually & < min{m,n}). Then
we immediately have the following equivalent reformula-
tion of OCCA (5):
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max
XE@"X’C,YE(DJMX"

o tr*(XTCY)
{F(X’ Y)= tr(XTAX) tr(YTBY) }
(10a)

st tr(XTCY) > 0. (10b)

In the next subsection we will present an algorithm to
solve (10). Our algorithm can take the advantage of the
specific structure of the problem with theoretical guarantees
of convergence as shown in Section 4. Furthermore, in
Section 5, we show that the algorithm can be extended easily
to handle an orthogonal multiview CCA model.

3.2 The proposed algorithm

We propose the numerical scheme as shown in Algorithm 1
by maximizing F'(X,Y’) (or equivalently f(X,Y")) alterna-
tively with respective to X and Y until convergence.

Algorithm 1 An alternating optimization scheme for (10)

Input: {X©@ YO} with X©@ ¢ "<k y(© ¢ gmxF,
Output: a solution {X™, Y} to (10).

1: for v =1,2,... until convergence do

2: solve, subject to tr(XTCY 1) >0,

X" carg max F(X,Y"¥ V) (11)
XeQnxk
3:  solve, subject to tr([X]TCY) >0,
Y™ carg max F(X",Y); (12)

YeQmXxk

4 compute SVD of (X)TCYy™ = UxvVT,
5 set X« XPTand Y Y(”>\~/;

6: end for

7: return {X®) Y1

The role of line 4 in Algorithm 1 is to make sure X () and
Y®) are always well aligned. It is based on the structure
of the function F(X,Y): Given a pair (X®),Y()), the
denominator is unchanged when this pair is changed to
(XU, YWV) for any U,V € QF**, while the numerator
is maximized by the particular pair (U,V) = (U, V) given
by

(U,V)=arg max tr (UT(X(”))TCY(”)V) ,

U,VeQkxk

as can be justified by Lemma 3 in Subsection 3.3. The max-
imum value is Zle o; ((X (”))TC’Y(V)). Stopping criteria
for line 1 will be discussed later in Subsection 6.2.

The efficiency of Algorithm 1 relies heavily on solving
the sub-maximization problems (11) and (12). Abstractly,
they are of the following type
tr>(GTD
n(G) = tr(c(:TAG))’

max
GeQnXxk

subject to tr(GTD) > 0, where 0 # D € R"** and A =~ 0.
In Subsection 3.3, we present an SCF iteration that directly
aims at solving (13).

(13)

3.3 A novel algorithm for solving (13)

It can be seen that the global maximum of (13) is posi-
tive unless D = 0. Moreover, (13) is very much like the

4

trace ratio (or trace quotient) maximization, i.e., maximiz-
ing tr(GTA1G)/ tr(GTA3G) over G € O™*F with given
Ay, Ay = 0, for which an efficient SCF iteration is available
[18], [19], [20], [21]. It has been proved that the SCF itera-
tion is globally convergent and the convergence is locally
quadratic. Historically, the SCF iteration was commonly
used to solve the Eigenvector-Dependent Nonlinear Eigen-
value Problem (NEPv) [18] from the Kohn-Sham density
functional theory in electronic structure calculations [22],
[23]. Recently, it has been attracting a great deal of attention
in data science (e.g., [12], [13], [18], [24], [25]).

Next, we will first transform the problem (13) into a
novel NEPv that is not quite the same as the KKT condition
of (13), and then apply the SCF iteration to solve the NEPv.
The most challenging part is the convergence analysis of the
resulting SCF iteration, which will be studied in Section 4.

3.3.1 A nonlinear eigenvalue problem

We will first derive the partial derivative dn(G)/0G, where
all entries of (G are treated as independent variables. Conse-
quently, the gradient gradn(G) at G € O™** on the Stiefel
manifold 0" is given by
on(G

gradn(G) = Ilg (%) € TaO™ <k,
where [g(Z) = Z — G sym(G* Z) for Z € R"*¥, see e.g.,
[9].

By straightforward calculations, we have

(14)

on(G) _ 2tr(G'D) 2tr*(GT D) AG
oG ~ tr(GTAG) = t2(GTAG)
and
2
grad(G) = —m{[AG — €(G)D] — GM(G)}, (15)
where H(GTAG)
£(@) = (@D M(G) = sym(GTAG — £(G)GT D). (16)

From (15), we immediately have Lemma 1 below.

Lemma 1. If G is a KKT point of (13), then

AG — £(G)D = GM(G). (17)

Note that the condition (17) is a type of nonlinear
Sylvester equation but with the orthogonality constraint
GTG = I. To solve it, we will convert it into an NEPv
so that the SCF iteration is applicable. One straightforward
way is to use the constraint GTG = I, and then rewrite (17)
equivalently as [A — £(G)DGT)G = GM(G). However, we
notice that the matrix A — £(G) DG is not necessarily sym-
metric, even at a maximizer GG. This means that we cannot
ensure A — £(G)DG™ has real eigenvalues at G € O"**. To
overcome that obstacle, we construct the following NEPv

E(G)G = GM(G), (18)
where ]\/Z(G) = GTE(G)G € R¥** and
E(G) := A—¢(G)(DGT + GD™). (19)

Evidently, E(G) is always symmetric. The following lemma
establishes a relation between (17) and (18).

Lemma 2. Suppose G € Q™*k. Then G satisfies (17) if and only
if G is an eigenbasis matrix of E(G), i.e., G satisfies (18).
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Lemma 2 characterizes any maximizer G of (13) as an
orthonormal eigenbasis matrix of E(G). By (18), we find

cig(M(G)) = {An (E(G)), -, Any (B(G))} C eig(E(G)),
where {m <--- <m,} C{1,2,...,n}.

3.3.2 Eigenspace associated with a global maximizer

Even though our maximization problem (13) is very much
like the trace ratio problem [19], unfortunately, it does not
enjoy some nice properties as the trace ratio problem. For
example, it is shown that any local maximizer of the trace
ratio problem is also a global solution. The problem (13)
in general admits local but non-global maximizers (see
Example A in the supplementary material). The following
theorem provides a necessary condition for the local maxi-
mizer in terms of the NEPv in (18).

Theorem 1. If G is a local maximizer of (13), then R(G) is an
eigenspace of E(G) associated with eigenvalues A, (E(G)) <
oo < A (BE(Q)) satisfying mp < k.

Theorem 1 indicates that for any local maximizer G, the
smallest eigenvalue associated with the eigenspace R(G)
must be no bigger than A;(E(G)). This offers a necessary
condition for a KKT point to be a local maximizer. As
a much stronger version, the next theorem says that any
global maximizer G’ must be an eigenbasis matrix associated
with the k smallest eigenvalues of E(G).

Theorem 2. If Gopy, is a global maximizer of (13), then Gy is
an orthonormal eigenbasis matrix associated with the k smallest
eigenvalues of E(Gopt ). Moreover, the matrix G, D is symmet-
ric and positive semidefinite.

3.3.3 A self-consistent-field (SCF) iteration

Suppose Gopt is a global maximizer of (13). NEPv (18),
equipped with the necessary condition in Theorem 2, im-
plicitly defines a fixed point mapping which maps the
eigenspace R(Gopt) associated with the k smallest eigenval-
ues of £/ (Gopt) to itself. To find this eigenspace numerically,
the SCF iteration is a natural technique which is outlined in
Algorithm 2.

Algorithm 2 A SCF iteration for solving (13)

Input: G € Qnxk,
Output: approximate maximizer G to (13).
1: for v = 1,2, ... until convergence do
2:  construct E(,y = E(G(,_1)) as in (18);
3:  compute an orthonormal eigenbasis matrix G/, associ-
ated with the k smallest eigenvalues of E,;
4 compute SVD: G(TU)D =UxvT,
5:  update G(,) + G(,,)UVT;
6: end for
7: return G(,).

Remark 1. We have three comments for Algorithm 2.

(a) Comparing with the standard SCF iteration [18] for
a general NEPv, our proposed SCF version for (18)
has an additional step at lines 4 and 5, which aims
to maximally push up the value of objective func-
tion 7 in (13) for an (arbitrarily) chosen orthonor-
mal eigenbasis matrix G,y € Q"*k of E(G-1))

5

associated with its k£ smallest eigenvalues. We note

that an eigenbasis matrix is not unique. In fact,

G = G,)P forany P € OF** is also one. Since

tr(GT;/)AG(D)) = tI‘(Ga)AG(V)) but tr(GE,)D) #*
tr(G(,)D) in general, it makes sense to update
G to Gy, so that tr(éa)D) is maximized over
P € O"*F, That is when Lemma 3 below comes to
help.

(b) The goal of Algorithm 2 is to seek a maximizer of
(13) and at a maximizer G, grad n(G) = 0 in theory.
Considering roundoff errors in evaluating grad n ac-
cording to (15), a reasonable stopping criterion to use
at line 1 of Algorithm 2 is

2 Il grad n(Gw))
¢ G fal T e@Ioh

where €4 is a preset tolerance. In our later exper-
iments, we use €5 = 1072 and as a safe guard,
we set 30 as the maximum number of iterations
allowed. Here || - ||; is the ¢;-matrix norm which
works equally well for all practical purposes as to
the matrix-spectral norm that we should use ide-
ally but the latter is more expensive to compute. A
good initial guess G|y is the orthogonal factor in
the polar decomposition of D, which maximizes the
numerator of (@) among all G such that R(G) =
R(D). (An additional modification is required when
rank(D) < k.)

(¢) At line 3, we need to compute an orthonormal
eigenbasis matrix G(,) of E(,) which is n x n. For
modest n, say up to a few hundred, we may simply
call, e.g.,, MATLAB's eig, to compute a full eigen-
decomposition of E(,,) which costs O(n?) flops, but
for large n, O(n?) is too much and we should use
an iterative eigensolver. More discussions will come
later.

Lemma 3. Let W € R***, Then |tr(W)| < SF_, ou(W).
If [tr(W)| = S5, 00(W), then W is symmetric and is either
positive semidefinite when tr(W) > 0, or negative semidefinite
when tr(W) < 0.

S €scfy

According to Lemma 3, lines 4 and 5 of Algorithm 2
ensures

k
w(GTyD) = max (G PI"D) = Y oGy D) 20

PecO

and also GF

(V)D = 0forallv > 1.

4 MAIN THEORETICAL RESULTS
4.1 Brief sketch

In this section, we shall establish the convergence of both the
outer-loop alternating optimization scheme of Algorithm 1
and the inner core SCF iteration of Algorithm 2 for the
subproblem (13). Our analysis reveals that the inner SCF
iteration converges monotonically (Theorem 4(ii)), and gen-
erally, any limit point is a KKT point satisfying the necessary
optimality condition given in Theorem 2 for the global max-
imizer (Theorem 4(v)). Moreover, the linear convergence
rate of the SCF iteration is discussed (Theorem 5). Based
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on the inner SCF solver for the subproblem (13), the mono-
tonic convergence of the outer-loop alternating optimization
scheme of Algorithm 1 is guaranteed (Theorem 3).

4.2 Analysis for Algorithm 1

We first mention that our specialized SCF iteration Algo-
rithm 2 with the additional procedure in lines 4 and 5 brings
another nice property for the sequence {(X®),Y®))}o
that is, (X)TCY®) is symmetric and positive semidefi-
nite, which is a necessary condition for any global solution
pair (Xopt, Yopt) (see Theorem 3(i)). Moreover, by using
the effective solvers for (11) and (12), Algorithm 1 always
converges. We summarize these results in the following
theorem.

Theorem 3. Let (Xop, Yopt) be an optimal solution pair to (10)
and (X ), Y ")) be the v-th approximation by Algorithm 1. Then

(i) XOTptCYopt is symmetric and positive semidefinite.

(i) (XNTCYW) is symmetric and positive semidefinite
for v > 1, and thus for any limit pair (X,Y) of
{(X®), yW)yee,, XTCY is symmetric and positive
semidefinite.

(iii)  The sequence {F(X®) Y (")} | is monotonically in-

creasing and converges.

4.3 Analysis for Algorithm 2

Before our discussion on the convergence of the SCF it-
eration (Algorithm 2), we first provide the following two
lemmas.

Lemma 4. For any G, Ge Qnxk, if@TD = D'G > 0 and
tr(GTE(Q)G) < tr(GTE(Q)Q), (20)

-~

then 1(G) > n(G). Furthermore, if the inequality in (20) is strict,
then n(G) > n(QG).

The action at line 3 of Algorithm 2 can now be justified
by Lemma 4. In fact, the chosen G/, satisfies

tr(Gy E(Gw—1))Gw)) < tr(Gl—1 B(G-1))G 1))

and thus 7(G(,)) > n(G(,—1)), implying monotonic increase
of {n(G))}-

As an eigenbasis matrix is not unique, one may ask if
G,y at lines 4 and 5 of Algorithm 2 is well-defined. The
next lemma addresses this issue.

Lemma 5. At line 3 of Algorithm 2, if the eigenvalue gap
G-1 =M1 (E(Gw-1)) = A(E(G-1))) >0,

then any two orthonormal eigenbasis matrices é(y) and C:’(y)
associated with the k smallest eigenvalues of E(G(,_1)) sat-
isfy CNJ(U) = CA?(V)Q for some orthogonal matrix Q € QF*F,
Furthermore, if additionally rank(DTCA?(,,)) = k, then the next
approximation G,y from line 4 of Algorithm 2 is uniquely
determined.

We next provide basic convergence properties of the SCF
iteration Algorithm 2 for solving the problem (13).

Theorem 4. Let the sequence {G )} be generated by the SCF
iteration (Algorithm 2). Then

6
(i) For each v > 1, DTG(,y = 0 and tr(GF,D) =
(v) v)

k
21 Uj(GEF,,)D);
(i)  The sequence {1(G,))} is monotonically increasing and
convergent;
(i) If
(G B(Gw-1)G)
< tr(Gly-1) E(G-1))Gw-1)),s

then n(G(,—1)) <1(Gw));

{G )} has a convergent subsequence {G ()}, ez;

Let {G ) }vez be any convergent subsequence of {G )}
with the accumulation point G satisfying

¢ = M1 (E(Gy)) — Me(E(Gy)) > 0.

Then G, satisfies the first order optimality condition in
Lemma 1 and also the necessary condition for a global
maximizer in Theorem 2.

1)

(iv)
\

(22)

Remark 2. We have three comments for Theorem 4.

(@) Item (iii) of Theorem 4 implies that, to only guar-
antee monotonicity of {7(G(,))}, the partial eigen-
decomposition at line 3 of Algorithm 2 can be in-
exact. In particular, we can choose any approxima-
tion G(,) € O"** satisfying (21), and then refine
it by line 4 to ensure DTG(V) = 0; by Lemma 4,
N(Gwy) > n(G(,—1)) still holds. This facilitates us
to employ sophisticated eigensolvers [26] for the
computation task at line 3.
Item (iv) is rather obvious because {G(,)} is a
bounded sequence in R"**. Tt is explicitly listed to
substantiate part of the assumption in item (v). A
stronger claim in Theorem 5 later says the entire
sequence {G(,} converges under a mild condition.
(¢) Item (v) shows one of advantages of our SCF it-
eration over the generic Riemannian optimization
methods for solving the core subproblem (13). In
particular, as our SCF iteration is built upon the nec-
essary conditions of a global maximizer, besides the
general KKT conditions, the convergent point also
fulfills the necessary conditions for being a global
maximizer.

(b)

To further analyze the convergence of the sequence
{G)}, we now consider the sequence {R(G(,))} of sub-
spaces. For this purpose, we denote by || - ||, any unitarily
invariant norm [27], and introduce the distance measure
between two subspaces G and Y of dimension k [28, p.95]

diStui(gy y) = || sin @(g7 y)”ui (23)

in terms of the matrix of the canonical angles between G and
V.
O(G,Y) = Diag(61(G,Y),...,0k(G,Y)).

Let G = R(G) and Y = R(Y), where G, Y € R"** with
G'G = YTY = I. The canonical angles 6;(G,)) > --- >
61(G,Y) are defined by

0<6;(G,Y) :=arccos (G Y) < = forl1<i<k.

E
2
The collection of all k-dimensional subspaces in R™ is the
so-called Grassmann manifold % (R"), and the distance
measure (23) is a unitarily invariant metric [28, p.95] on
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9. (R™). For the trace norm, also known as the nuclear norm,
we have

dist: (G, V) = Zsm@ (G,Y).

Using the metric dist, (G, )), we have the following conver-
gence result for the sequence {G .} by the SCF iteration in
Algorithm 2.

Theorem 5. Let the sequence {G .} be generated by the SCF
iteration (Algorithm 2), and let G, be an accumulation point of
{G )} Suppose that R(G.) is an isolated accumulation point
(in the metric (23)) of {R(G (,)) }o2o. Then

(i) {R(G)) o2, converges to R(G);

(i) if also rank(GTD) = k and if (22) holds, then
{G ) )L converges to G (in the standard Euclidean
metric), and for sufficiently large v,

dister(R(Gx), R(Gv+1))) < col| Gy — Gsller,

(24)
where

_ 3D 2
C b

with ||All gy = 35_; 05(A), wi(A) = 35, o0 j11(A).

What is remarkable about Theorem 5 is that we start
with an accumulation point G, which always exists because
0"k is a bounded set in R"** and thus is compact, and
end up with the conclusions that {R(G(,))};Z, converges
to R(G.) and that {G(,)}52, converges to G, under mild
conditions.

AT (k
IAll2 + /20 D))

(G )wi(A)

1Al %)
+ 2k
n(G+)

5 ALGORITHMIC EXTENSION FOR OMCCA

We propose a new formulation of OMCCA and then solve
it by extending our algorithms in Section 3.

Analogously to (5), our new formulation of OMCCA
naturally arises:

I . fHXH). (25)
where 1 < k < min{ny,...,nsq}, and
KD = Z o (X7 Ciy X;) 26)
1‘#]‘ 1 tI‘(X;TCz’le) tI"(XJTijij)
i#]

with weighting factors p;; > 0. Ideally, the optimal weights
should be learned from data, but this is out of the scope
of this paper. Here, we employ some heuristic weighting
schemes. To begin with, we define

rank(Cj ;
S 00 (Cuy)
tr(Cmv) tI‘(Cj,j)
It is known 0 < p;; < 1[29, (3.5.22) on p.212]. Envision a
graph of ¢ nodes corresponding to datasets .5;, respectively,

with every two nodes connected with an edge whose weight
is to be determined. We take three heuristic strategies:

ﬁij: 5 fori,j:l,...,é. (27)

1) uniform weighting: p;; = 1,Vi,j =1,... /L

2) tree weighting: find the minimal spanning tree of the
graph with the edge (4, j) having weight 1 — p;;, record
the spanning tree with its edge weights reset back to p;;

7

and weights p;; for all other edges not in the tree reset
to 0.
3) top-p weighting: find the p largest weights among p;;
for ¢ > j, and reset all other weights p;; to 0.
For the last two strategies, we apply the soft-max function
over those reset weights p;; with a bandwidth parameter
(e.g., 20 used in our experiments) to yield p;; to use in (26).
As a by-product, the sum of all p;; is 1.

Based on the machinery we have built in Section 3, we
propose to optimize f({X;}) cyclically over each matrix
variable X; in the styles similar to either the Jacobi or
the Gauss-Seidel iteration for the linear system of equa-
tions [30]. Specifically, we establish an inner-outer iterative
method to solve (25). The most outer iteration — each step
called a cycle — generates from the current approximation
{Xi(y)}f:1 to the next {XZ-(VH)}fZ1 of the maximizer set of
(25); each cycle can be of an either the Jacobi-style or Gauss-
Seidel-style updating scheme that relies on the proposed
novel SCF iteration for solving a series of subproblems in
the form of (13).

Some denominators in f in (26) may vanish if
rank(C; ;) +k < n;, which is possible when ¢ < n,; for some
1. When it does happen, numerical difficulties may arise. To
circumvent them, we propose to add range constraints

R(X:) C R(S;) fori=1,2,...,0 (28)

In what follows, we describe an SVD-based implementation.
Let the SVDs of S; be

Sz' — U@Eq‘/ZT, Uz c R”'ix'ri7 ‘/z ERqX”, Ez c RTiXTi7 (29)

where r; = rank(S;). With the SVDs in (29), we have
X18,8TX; = XTUS VIV U X = X VTV R X,

where X = UrX, € R"**. Under (28), we will have X; =
U; X;. The function f({X;}) is then transformed into

S (XTI ViTV; 8, X;)
ij

= 9({)?1})7
7 Jexres, ) /(X752

and

max
X, €0mi Xk R(X,;)CR(S;), Vi

max
X, e0mi Xk v;

F{Xa}) = g({X:}).

The key step to maximize g({X;}) by either the Jacobi- or
Gauss-Seidel-style updating scheme is to maximize it, for

any s € {1,---,£}, over X, while freezing all other X;
(j # s). That is equlvalent to
T
_ max %, (30)
Xo€Omexk  Jer(XT2X,)
where
D.({Ri}ie) = SVE Y poy—mits 3
j#s tr(X X2 X))
Problem (30) is equivalent to
2T
max (X Ds) (32)

Rocomsxk tr(XIN2X,)

subject to tr(XTD,) > 0, which takes the same form as (13),
and has been studied in Subsection 3.3.
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For the ease of reference, we name the above proposed
extension algorithm for OMCCA as Range Constrained
OMCC (RCOMCCA). More details are presented in part
III of the supplementary material. It is worth noting that
RCOMCCA allows two updating schemes and is capable
of integrating various weighting schemes. Hence, we name
the variants of RCOMCCA by suffixing “-G” for Gauss-
Seidel-style and “-J” for the Jacobi-style, together with three
weighting schemes shown in bracket. As a result, there are
six variants of RCOMCCA in total (as listed in the first
column of Table 4 in Section 6).

6 EXPERIMENTS
6.1 Implementation details and complexity

First we note that the function f in (4) is well-defined
when its denominator never vanishes. This is guaranteed if
rank(C4 1) + k > n and rank(Cs 2) + k > m. The same can
be said about the function F' in (10). Otherwise, numerical
difficulty may arise, and some kind of pre-cautionary mea-
sure such as the range constraint discussed in Section 5 must
be taken. For simplicity, we will focus our discussion here
on the case without such a pre-cautionary measure (which,
in fact, is not needed for all datasets used in this section,
except yeast_ribosomal in Table 3). Indeed, our discussion
can be minorly modified if there is one.

Our SCF-based algorithm for solving OCCA (10), re-
ferred as OCCA-scf for short hereafter, is Algorithm 1 that
uses Algorithm 2 as its workhorse to solve all involved
subproblems in the form of (13). Current implementation for
line 3 of Algorithm 2, when n < 500, calls MATLAB’s mex
version mexeig of LAPACK’s [31] eigen-decomposition
subroutine dsyevd? to compute G(l,). For n > 500, it uses
the locally optimal block preconditioned conjugate gradi-
ent method® (LOBPCG) (see [32], [33]) with the diagonal
preconditioner. As LOBPCG searches an approximate G,
by optimizing the Rayleigh quotient initially in a subspace
containing R(G(,_1)), the condition (21) is always met,
implying that the sequence {n(G/,))} is monotonically in-
creasing and convergent (Theorem 4).

To get an idea of how the overall computational com-
plexity in flops is, we let 1,1, be the number of full alternat-
ing iterations taken by Algorithm 1 and ng.s be the average
number of SCF iterative steps taken by Algorithm 2. The
overall complexity is roughly

NattNsct [COSteig +O(nk® + mk® + k%)),

where O(nk? + mk? + k3) is for the SVD and updating
at lines 4 and 5 of Algorithm 2, and costeig is the cost for
executing its line 3. For using full eigen-decomposition such
as dsyevd, costeg = O(n® +m?), but for using an iterative
solver such as LOBPCG, costeig = O(nk? + mk?). Both na
and ngr are capped at 30. In the case when n = m =~ g,
overall computational complexity is O(n?) for n < 500 and
O(nk?) for n > 500 for the current implementation.

2. mexeig (available at: www.math.nus.edu.sg/~matsundf/) is
a MATLAB interface to call LAPACK eigen-decomposition subroutine
dsyevd of a real symmetric matrix.

3.The MATLAB version of LOBPCG is available at:
http:/ /cn.mathworks.com /matlabcentral / fileexchange /48-lobpcg-
m.

synthetic data yeast

|
3

CPU time (in seconds)
CPU time (in seconds,

relative correlation to OCCA-scf
relative correlation to OCCA-scf
o

grad_norms

0 20 40 60 80 100 2 4 6 8 10 12 14
k k

Fig. 1. Comparison of four optimization methods on synthetic data and
multi-label classification data yeast in terms of three different criteria.
The plots in the second row are for the differences: subtracting the
objective value by each of the three stiefel methods from the one by
OCCA-scf.

6.2 Comparisons with generic optimization methods

We conduct extensive experiments to compare OCCA-scf
with three generic optimization methods over Stiefel man-
ifolds implemented in LDR toolbox [2]*. They are stiefel,
stiefel_trust, and stiefel_trust_prod for solving problem (5)
(i.e., ¢ = 2). stiefel and stiefel_trust are based on the alternat-
ing scheme as in Algorithm 1 except that all involved sub-
problems (13) are solved by the generic Riemannian steepest
descent method and the Riemannian trust-region method
[9], respectively. stiefel_trust_prod is the plain Riemannian
Trust-Region (RTR) of [9] applied to (5) directly. We use
the default settings of these three algorithms coded in the
LDR toolbox, in which stiefel, stiefel_trust stop whenever
the number of alternating steps v > 100 or

f(X<"), Y(V)) _ f(X(Vfl)’ y(V*l))

FX®, V@) 9

< €alt,

with e = 107% and f is given by (4), whereas
stiefel_trust_prod uses the default setting of RTR [34] in the
package manopt. OCCA-scf is terminated if v > 30 or (33).

Our experiments are performed over synthetic data with
m = n = 1000 for varying k € [3,100], and the yeast data
shown in Table 1 with m = 101,n = 14 for varying k €
(2, 14]. Following [2], we generate synthetic data with ¢ =
10* and two views controlled by two sets of latent variables
W and Z as follows:

4. https:/ / github.com/cunni/ldr
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30
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The objective function values vs. iteration v

Fig. 2. Convergence curves of Algorithm 1 on the multi-label classifica-
tion data yeast.

2 e 5
Sx = sz+wa+)\Ex, Sy = PyZ-f—QyW-i-AEy,

where Z € R%*9, W € R%*4, Py € R™*%, Qx €
R™>dw, Py € R4, Qy € R™%, Ex € R™*Y, and
Ey € R™9 are matrices whose entries are ii.d. sampled
from a normal distribution with zero mean and unit stan-
dard deviation, and A = 2 x 10~

The performance is evaluated in terms of the following
three measurements:

o= [restnn)] | [omexmn)],

1) Computational complexity measured by CPU time;

2) Correlation difference: they are computed by subtract-
ing the objective value by the three stiefel methods from
the one by OCCA-scf. The larger the difference is, the
better OCCA-scf performs;

3) The 2-norm grad_norm of the Riemannian gradient (4)
of f on the manifold O"** x Q™** at an approximate
solution.

Figure 1 shows the numerical results obtained by four
different methods (all starting with the initial guess
(X© vy = (I, &, Inx) where I,, ;, € R" ¥ consists of
the first £ columns of I,,). We have the following observa-
tions:

1) For small k, OCCA-scf converges much faster than
others. The CPU time by OCCA-scf is similar to stiefel,
while stiefel_trust is most expensive among all.

2) OCCA-scf obtains similar correlation values on both
datasets to stiefel_trust and stiefel_trust_prod. stiefel is
worst. Correlation values of stiefel_trust_prod shows
opposite trend as k increasing. This implies that stiefel
is sensitive to k and input data.

3) Among the three stiefel-related methods, stiefel is
fastest but is too inaccurate to be in the competition,
and stiefel_trust achieves competitive accuracy but is

1 T

I CCA
[ OCCA-SSY| |
[ JOCCA-scf

correlation

I
CorelSk Delicious  birds

I
Bibtex emotions mediamill  scene yeast

2-D orthogonal space

1 T

[ CCA
[ OCCA-SSY| |
[ JOCCA-scf

correlation

mm .
Corel5k Delicious  birds

.
Bibtex

emotions mediamill

scene yeast

3-D orthogonal space

Fig. 3. Correlations obtained by three CCA methods in the 2-D and
3-D orthogonal spaces. The higher the bar is, the better the method
performs.

too expensive to use. This leaves stiefel_trust_prod as
the only one for further considerations.

4) Between OCCA-scf and stiefel_trust_prod, on the syn-
thetic data, the former beats the latter, but on the
yeast data the comparison is mixed: stiefel_trust_prod
is slightly more accurate at an expense of about 10
times slower. Another advantage of OCCA-scf over
stiefel_trust_prod is that the former can be easily ex-
tended to solve the multi-view problem, the OMCCA
model (25), whose gradient over all of its arguments
is rather messy and expensive to compute, making
applying stiefel_trust_prod cumbersome.

5) OCCA-scf, stiefel, and stiefel_trust all adopt the same
alternating scheme, except for their difference in how
all involved subproblems (13) are solved. Yet, the latter
two perform miserably. The major reason we think is
the way how Algorithm 2 is designed: directly drive
the Riemannian gradient to 0 while efficiently push up
the objective.

So far as to n,, the number of full alternating iterations
taken by OCCA-scf, we observed that the stopping crite-
rion (33) is satisfied with n,; < 8 on the synthetic data
for all tested k. On the yeast data, however, for several
k € [2,14] the maximum number 30 of alternating iterations
is reached, as shown in Figure 2. Despite that, the plots
clearly show that the objective function has visually con-
verged in these hard cases. In fact, Figure 1 demonstrates
that the overall solution accuracy by OCCA-scf compares
favorably with the generic optimization solvers.

6.3 Correlation Analysis and Data Visualization

In this section, we first explore the embedded subspaces
obtained by three different CCA methods: the classical CCA,
OCCA-SSY and OCCA-scf. For data visualization, the or-
thogonal spaces of 2-D and 3-D are the main focus. As afore-
mentioned, the classical CCA method does not generate
the orthonormal basis matrices for projection, and OCCA-
SSY also does not guarantee to generate the orthonormal
basis matrices either because of its numerical instability as
mentioned before.
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Fig. 4. Comparisons of three OCCA methods on the scene data in terms
of 2-D and 3-D embeddings. Colors represent classes. The markers
circle and square represent input data points and output classes. There
are 15 classes extracted from 6 multiple labels.
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We first investigate the quality of orthonormal basis
matrices obtained by baseline methods in terms of corre-
lation score. To obtain orthonormal basis matrices, we post-
orthogonalize the columns of the basis matrices obtained by
CCA and OCCA-SSY. (Note that the post-orthogonalization
step is only applied in this experiment for studying the or-
thonormal property and data visualization.) If the matrices
is rank deficient, we set the correlation to 0 since the number
of orthogonal basis vectors is smaller than requested. Fig-
ure 3 shows the comparisons of three CCA methods in terms
of the correlation score over eight real datasets in Table 1 for
multi-label classification (detailed description is presented
in Subsubsection 6.4.1). It can be seen that our proposed
OCCA-scf achieves the best performance among all. More
importantly, our method never encounters the matrix rank
deficient issue, while it happens to CCA and OCCA-SSY on
some datasets, such as Bibtex and Delicious.

We then explore the embeddings in 2-D and 3-D spaces
and examine the correlations between the input data and its
multi-label outputs. Since each sample may have multiple
labels, we transform the multi-label classification problem
into the multi-class classification problem using the label
powerset approach [35] for the purpose of data visualiza-
tion. The set of multiclass labels consists of all unique label
combinations found in the data. For example, the data scene
has 6 labels, and there are 15 unique label combinations
in total. Figure 4 shows the embeddings of both input and
output in 2-D and 3-D spaces colored by unique classes.
Since multiple data points are assigned to the same unique
class, there are only 15 embedded output points. In the

10
TABLE 1
Datasets for multi-label classification
Dataset Samples  Attributes labels
birds 645 260 19
Corel5k 5000 499 374
emotions 593 72 6
scene 2407 294 6
yeast 2417 101 14
Bibtex 7395 1836 159
Mediamill 43903 120 101
Delicious 16105 500 983

cases of both 2-D and 3-D, our OCCA-scf method shows
the best alignments between input data and output labels,
for example, the majority of classes such as the red, green
and blue ones are aligned best in the reduced space with the
input data clouds.

6.4 Applications

We evaluate our proposed methods on two real-world appli-
cations for multi-label classification and multi-view feature
extraction, where various CCA methods have been explored
in the literature [4], [8], [36], [37], [38].

6.4.1 Multi-label classification

Multi-label classification [39] is a variant of the classification
problem, where one instance may have various number of
labels from a set of predefined categories, i.e., a subset of
labels. It is different from multi-class classification, where
each instance only has a single label. In general, the output
class labels of one instance are represented by the indicator
vector of size m where m is the number of class labels. If
the cth label is assigned to the instance, the cth element of
the indicator vector is 1, and otherwise 0. Let S; € R"*4? be
the ¢ instances of size n and S € R™*9 be comprised of the
g indicator vectors of size m. The popular use of CCA for
multi-label classification is to treat X as one view and S5 as
the other view [36], [37], [38].

The multi-label classification datasets used in our exper-
iments are the ones shown in Table 1. All datasets are pub-
licly available®. Following [36], we take CCA as a supervised
dimensionality reduction step for multi-label classification
so that the embeddings obtained by CCA methods can
encode certain correlations among input data and labels.
Hence, it expects to have better performance for multi-label
classification. Since some datasets have a small number of
output labels, the reduced dimension is upper bounded by
the number of output labels due to the inherent property
of CCA. To alleviate the limitation from CCA and improve
classification performance for general datasets, we propose
to augment the learned embeddings using the original in-
put data through a simple concatenation over two sets of
features.

In this paper, we choose to use ML-kNNP as our backend
multi-label classifier [40], which has demonstrated good
performance over various datasets. We compare our OCCA-
scf with other CCA methods including OCCA-SSY [4], LS-
CCA [36] and classical CCA. All CCA-based methods take
ML-KNN as the base classifier and corresponding augmen-
tation approach for each CCA method is indicated by the

5. http:/ /mulan.sourceforge.net/datasets-mlc.html
6. http:/ /lamda.nju.edu.cn/files/MLKNN.rar
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TABLE 2
Results in terms of the 5 measurements on the five datasets (40% for training and 60% for testing over 10 random splits). Best results are in bold.

dataset method HammingLoss RankinglLoss OneError Coverage Average_Precision
OCCA-scf 0.0503 £ 0.0035  0.2173 + 0.0062  0.4964 £ 0.0201 2.8866 + 0.1580 0.5452 £ 0.0118
OCCA-scf-aug | 0.0545 +0.0026  0.3045 £ 0.0047  0.7101 £ 0.0136 3.8597 £ 0.1754 0.3942 + 0.0107
CCA 0.1167 £ 0.0095  0.3509 £ 0.0197  0.8110 =+ 0.0302 4.2028 £ 0.2954 0.3087 £ 0.0192
CCA-aug 0.0545 £ 0.0026  0.3046 £+ 0.0046  0.7101 + 0.0136 3.8602 £ 0.1745 0.3942 + 0.0107
birds LS-CCA 0.1167 £ 0.0095  0.3509 £ 0.0197  0.8110 =+ 0.0302 4.2028 £ 0.2954 0.3084 + 0.0191
LS-CCA-aug 0.0545 £ 0.0026  0.3046 £+ 0.0046  0.7101 + 0.0136 3.8602 £ 0.1745 0.3942 + 0.0107
OCCA-SSY 0.0618 £ 0.0049  0.2669 £ 0.0150  0.5978 + 0.0269 3.4499 + 0.2146 0.4722 £ 0.0182
OCCA-SSY-aug | 0.0545 +0.0026  0.3046 £ 0.0046  0.7101 £ 0.0136 3.8607 £ 0.1752 0.3942 + 0.0108
ML-kNN 0.0545 + 0.0026  0.3046 £ 0.0046  0.7101 £ 0.0136 3.8607 £ 0.1752 0.3942 + 0.0108
OCCA-scf 0.2283 £+ 0.0064 0.2016 + 0.0091  0.3258 + 0.0201 1.9643 + 0.0456 0.7640 + 0.0118
OCCA-scf-aug | 0.2716 £0.0057  0.2799 £ 0.0098  0.3989 £ 0.0171 2.3862 £ 0.0573 0.6959 £ 0.0085
CCA 0.2395 £ 0.0090  0.2204 £+ 0.0138  0.3497 + 0.0169 2.0736 £ 0.0730 0.7443 + 0.0126
CCA-aug 0.2718 £ 0.0059  0.2801 £ 0.0094  0.3986 + 0.0168 2.3860 =+ 0.0595 0.6960 =+ 0.0082
emotions LS-CCA 0.2346 £ 0.0084  0.2088 £+ 0.0149  0.3385 + 0.0182 2.0096 + 0.0930 0.7553 + 0.0154
LS-CCA-aug 0.2719 £ 0.0056  0.2795 £ 0.0099  0.3983 + 0.0172 2.3848 £ 0.0572 0.6964 £ 0.0085
OCCA-SSY 0.2577 £0.0141  0.2543 £ 0.0198  0.3860 + 0.0274 2.2309 +£ 0.0916 0.7190 £ 0.0172
OCCA-SSY-aug | 0.2719 +0.0057  0.2800 £ 0.0095  0.3986 + 0.0170 2.3862 £ 0.0589 0.6958 + 0.0084
ML-kNN 0.2720 £ 0.0057  0.2798 4+ 0.0097  0.3983 + 0.0169 2.3862 + 0.0589 0.6960 + 0.0085
OCCA-scf 0.1214 £ 0.0024  0.1375 £ 0.0070  0.3329 + 0.0073 0.7772 £ 0.0360 0.7902 +£ 0.0060
OCCA-scf-aug | 0.0941 £ 0.0016  0.0817 £ 0.0028  0.2428 =+ 0.0081 0.4981 + 0.0154 0.8557 + 0.0041
CCA 0.1267 £ 0.0032  0.1448 4+ 0.0068  0.3451 + 0.0087 0.8153 + 0.0369 0.7810 £ 0.0065
CCA-aug 0.0949 £ 0.0020  0.0820 £ 0.0035  0.2440 =+ 0.0080 0.4999 + 0.0194 0.8555 + 0.0044
Scene LS-CCA 0.1228 £+ 0.0028  0.1401 4+ 0.0059  0.3361 + 0.0085 0.7909 + 0.0326 0.7873 +£ 0.0058
LS-CCA-aug 0.0948 £ 0.0021  0.0821 £ 0.0034  0.2440 =+ 0.0082 0.5003 + 0.0187 0.8553 + 0.0044
OCCA-SsY 0.1183 £ 0.0030  0.1302 4+ 0.0055  0.3226 + 0.0086 0.7405 £ 0.0314 0.7979 + 0.0063
OCCA-SSY-aug | 0.0943 +0.0020  0.0818 £ 0.0025  0.2431 + 0.0090 0.4981 + 0.0137 0.8558 =+ 0.0042
ML-kNN 0.0949 £ 0.0020  0.0823 4+ 0.0033  0.2442 + 0.0085 0.5009 + 0.0188 0.8554 £ 0.0042
OCCA-scf 0.0094 £+ 0.0000 0.1365 &+ 0.0015 0.7252 £ 0.0055 116.3179 + 1.2727 0.2529 + 0.0034
OCCA-scf-aug | 0.0094 £ 0.0000 0.1373 £ 0.0016  0.7309 £ 0.0067  116.9343 £ 1.3411 0.2474 £ 0.0031
CCA 0.0094 £ 0.0000 0.1396 + 0.0012  0.7519 £ 0.0079  117.9406 £ 1.1541 0.2339 + 0.0035
CCA-aug 0.0094 + 0.0000 0.1381 4+ 0.0016 ~ 0.7327 £ 0.0056  117.3671 £ 1.2944 0.2436 £ 0.0031
Corel5k LS-CCA 0.0095 £ 0.0000  0.1379 4+ 0.0015  0.7432 £ 0.0082  116.8526 + 1.3332 0.2463 + 0.0027
LS-CCA-aug 0.0094 + 0.0000 0.1376 &+ 0.0015  0.7323 £ 0.0082  117.1294 + 1.2682 0.2459 + 0.0039
OCCA-SsY 0.0094 £ 0.0000 0.1365 & 0.0015 0.7263 £ 0.0085  116.4133 £ 1.3187 0.2522 + 0.0038
OCCA-SSY-aug | 0.0094 + 0.0000 0.1371 £ 0.0016  0.7304 £ 0.0054  116.8367 £ 1.2580 0.2481 +£ 0.0032
ML-kNN 0.0094 £+ 0.0000 0.1381 4+ 0.0019  0.7323 £ 0.0062  117.5434 + 1.4205 0.2434 + 0.0035
OCCA-scf 0.2080 £ 0.0021  0.1838 £ 0.0039  0.2538 =+ 0.0066 6.5615 £ 0.0736 0.7445 £ 0.0049
OCCA-scf-aug 0.1997 £+ 0.0033  0.1735 + 0.0034  0.2356 + 0.0075 6.3870 + 0.0859 0.7556 + 0.0041
CCA 0.2108 £ 0.0031  0.1894 £ 0.0056  0.2539 =+ 0.0069 6.6438 £ 0.0969 0.7364 £ 0.0054
CCA-aug 0.2011 £ 0.0026  0.1762 £ 0.0035  0.2398 + 0.0068 6.4152 + 0.0827 0.7512 +£ 0.0040
yeast LS-CCA 0.2077 £ 0.0038  0.1855 £ 0.0044  0.2518 =+ 0.0092 6.5928 £ 0.1040 0.7436 + 0.0054
LS-CCA-aug 0.2012 £ 0.0028  0.1760 £ 0.0036  0.2405 =+ 0.0060 6.4096 + 0.0864 0.7511 £ 0.0038
OCCA-SSY 0.2097 £ 0.0035  0.1871 £ 0.0052  0.2526 =+ 0.0058 6.6265 £ 0.1023 0.7403 £ 0.0055
OCCA-SSY-aug | 0.1997 +0.0033  0.1740 £ 0.0033  0.2356 + 0.0074 6.3907 £ 0.0984 0.7554 + 0.0036
ML-kNN 0.2017 £ 0.0029  0.1759 4+ 0.0036 ~ 0.2397 + 0.0067 6.4075 £ 0.0831 0.7512 £ 0.0036
TABLE 3 e OneError: the average number of times the top-
Multi-view datasets ranked label is not in the set of proper labels of the
Dataset Samples Multiple views classes ?stance . th h £ d
foat 5000 716.76,64:6240:47 0 . overage: on the average how far we need to go
Caltech101-7 1474 254.512;1180;1008;64:1000 7 down the list of labels in order to cover all the proper
Caltech101-20 2386 254:512;1180;1008;64;1000 20 labels of the instance.
yeas?ffgeo]simal %84118 254;5317%5529%?%%;1000 125 o Average Precision: the average precision of labels

ranked above a particular label in the same label set.

Except Average_Precision, the first four measurements show
good performances of multi-label classification if the mea-
surement value is small.

Table 2 shows the results obtained by the compared
methods over the five datasets in terms of the five measure-
ments. We observe that our OCCA-scf and OCCA-scf-aug
show the best results on almost all the five measurements
except Average_Precision on Scene by OCCA-S5Y-aug. For
datasets scene and yeast, OCCA-scf-aug shows better re-
sults than OCCA-scf. This implies that our augmentation
approach is effective when the features obtained by dimen-
sionality reduction method such as CCA somehow lose the

suffix “-aug”. We randomly split the data into 40% for
training and 60% for testing and tune the neighborhood
parameter within the set {1,3,5,7,9,13,15} for ML-kNN.
Following [40], we report the best results and their standard
deviations over 10 random train/test splits in terms of the
following five measurements:

e HamminglLoss: the average number of times an
instance-label pair is misclassified.

o RankingLoss: the average fraction of label pairs that
are reversely ordered for the instance.

0162-8828 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Texas at Arlington. Downloaded on September 15,2020 at 15:07:16 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.3012541, IEEE
Transactions on Pattern Analysis and Machine Intelligence

JOURNAL OF IATEX CLASS FILES, VOL. XX, NO. X, X XXXX 12

TABLE 4
Means and standard deviations of accuracy obtained by 1-nearest neighbor classifier on each view and embeddings obtained by three CCA
methods over 10 random draws from each dataset (30% training and 70% testing). Parameter k& used by CCA methods to achieve the best
accuracy is shown in the bracket. The symbol “-” is for the non-existence of the view.

mfeat Caltech101-7 Caltech101-20 Scenel5 yeast_ribosomal
viewl 0.9513 + 0.0053 0.9259 + 0.0049 0.7659 + 0.0046 0.5766 + 0.0091 0.8553 £ 0.0472
view2 0.7604 £ 0.0104 0.9443 + 0.0051 0.8257 £ 0.0064 0.5269 £ 0.0070 0.8831 £ 0.0072
view3 0.9293 + 0.0043 0.9415 + 0.0070 0.8226 + 0.0106 0.5528 + 0.0081 0.9856 + 0.0046
view4 0.6780 £ 0.0064 0.9287 £ 0.0105 0.7968 £ 0.0118 0.4609 £ 0.0079 -
view5 0.9630 + 0.0025 0.7759 + 0.0133 0.6042 + 0.0122 0.6946 + 0.0130 -
view6 0.7814 £ 0.0077 0.9152 £ 0.0059 0.7645 £ 0.0128 - -
MCCA 0.8679 £ 0.0073 (6)  0.8865 + 0.0072 (15)  0.8620 £ 0.0072 (40)  0.6851 & 0.0043 (35)  0.8155 + 0.0139 (3)
OMCCA-SS 0.8298 £+ 0.0089 (6)  0.9493 + 0.0024 (45)  0.8527 + 0.0057 (50)  0.7030 £ 0.0081 (50) ~ 0.8379 + 0.0110 (5)
RCOMCCA-G (uniform)  0.7634 4= 0.0134 (5)  0.8880 & 0.0052 (50) ~ 0.7150 4= 0.0075 (45)  0.4866 + 0.0044 (50)  0.8639 + 0.0291 (40)
RCOMCCA-G (top-p) 0.9696 + 0.0035 (5)  0.9664 & 0.0060 (35)  0.8887 £ 0.0077 (25)  0.7542 4 0.0054 (30)  0.8756 + 0.0095 (45)
RCOMCCA-G (tree) 0.9566 £ 0.0031 (6)  0.9392 4 0.0043 (45)  0.7882 £ 0.0078 (50)  0.4004 £ 0.0063 (30)  0.8678 & 0.0161 (45)

RCOMCCA-] (uniform)

RCOMCCA-] (top-p)
RCOMCCA-J (tree)

0.7540 + 0.0121 (5)
0.9692 + 0.0038 (5)
0.9581 + 0.0055 (6)

0.8868 + 0.0068 (30)
0.9649 + 0.0029 (15)
0.9474 + 0.0041 (45)

0.7350 + 0.0091 (50)
0.8893 + 0.0074 (25)
0.7799 + 0.0084 (50)

0.4995 -+ 0.0059 (50)
0.7574 = 0.0077 (30)
0.4188 -+ 0.0123 (35)

0.8492 £ 0.0201 (35)
0.8782 £ 0.0071 (35)
0.8678 £ 0.0099 (25)

information that is also useful for multi-label classification
although the correlations remain. It is worth noting that
our methods outperform ML-kNN over all experimented
datasets. These observations imply that OCCA with orthog-
onality constraints improves ML-kNN for multi-label clas-
sification and our proposed OCCA-scf methods outperform
other CCA methods.

6.4.2 Multi-view feature extraction

Previous experiments focus on problems with only two
views. Here, we aim to evaluate our proposed RCOMCCA
in terms of multi-view feature extraction [4], [8]. Following
[4], we employ the serial fusion strategy to concatenate em-
beddings from all views for classification based on 1-nearest
neighbor classifier. Since LDR-based CCA and LS-CCA are
not easy to be extended for learning with multiple views,
we compare our proposed RCOMCCA with MCCA [14],
[15] and OMCCA-SS [8]. For the top-p weighting scheme,
p € {1,3,6} is used, except that p € {1,3} is used for
dataset yeast_ribosomal.

The datasets with relevant statistics are shown in Table 3.
For image datasets such as Caltech101” [41] and Scenel5®
[42], we apply various feature descriptors to extract features
of views including CENTRIST [43], GIST [44], LBP [45], his-
togram of oriented gradient (HOG), color histogram (CH),
and SIFT-SPM [42]. Note that we drop CH for Scenel5 due
to the gray-level images. mfeat is the handwritten numeral
data’ [46] with 6 views including 76 Fourier coefficients of
the character shapes, 216 profile correlations, 64 Karhunen-
Love coefficients, 240 pixel averages in 2 x 3 windows, 47
Zernike moments, and 6 morphological features. The Berke-
ley genomic dataset yeast_ribosomal'’ is used where three
aspects of the protein are considered as the views including
Pfam HMM, Hydrophobicity FFT and Gene expression for
binary classification, e.g., ribosomal vs. non-ribosomal.

We use l-nearest neighbor classifier as the base clas-
sifier for evaluating the performance of multi-view fea-
ture extraction. We run CCA methods to generate em-
beddings by varying k£ € {3,4,5,6} for mfeat, and k €

7. http:/ /www.vision.caltech.edu/Image_Datasets/Caltech101/

8. https:/ /figshare.com/articles/15-Scene_Image_Dataset/7007177
9. https:/ /archive.ics.uci.edu/ml/datasets /Multiple+Features

10. https:/ /noble.gs.washington.edu/proj/sdp-svm/

Caltech101-7 yeast_ribosomal

& T 08

accuracy
°
o

07 -6~ MCCA [-e-mcca
-6-0MCCASS 0.7 [-8-omcca-ss
RCOMCCA-G(uniform}

Accuracy

RCOMCCA-G(uniform)
-9~ RCOMCCA-Gitop-p)
06 -6~RCOMCCA-G(tree) 0.65 |8 RCoMCCA

RCOMCCA-J(uniform) RCOMCCA-
-6~ RCOMCCA-(10p-p) -9~ RCOMCCA-
RCOMCCA-(iree) RCOMCCA-J(tree)

0 10 20 30 40 50 0 10 20 30 40 50

8- ICCA
4 —8-OMCCA-SS
510 RCOMCCA-G(uniform|_g
8

E -6~ RCOMCGA-Gitop-p)
-~ RCOMCCA-

; op‘e—’:’*ﬂrAév\

TN —ﬂ:(* S0
N ;}._,& @
-6~ NCCA N £
~6-OMCCA-SS =]
a RCOMCCA-Giuniform 5 .
. -6~ RCOMCCA-Gitop-p) 10

~8-RCOMCCA

CPU time
CPU time (in seconds)

RCOMCCA )

-~ RCOMCCA-J(top-p)
RCOMCCA-itree)

0 10 20 30 40 50 0 10 20 30 40 50

o 094 5Ticon
-6~ OMCCA-SS
0.96 0.92 RCOMCCA-G(uniform)
—o o RCOMCOA Giopp)
8 S~ ROOMCCA Glee)

0.9 |- RCOMCCA-J(uniform)|
-©~ RCOMCCA-J(top-p) ¢
RCOMCCA-J(iree) &

B =l
oo J:/e/e_/\‘
—
0.84 o
ogz‘W

10 2 30 40 50 60 70 80 90 10 20 3 40 50 6 70 8 90
training ratio (in percentage) training ratio (in percentage)

=6~ NCCA
-8-0MCCA-SS
RCOMCCA-G(uniform)

accuracy

e o

%

Training ratio
accurcy
§

Fig. 5. Accuracy and CPU time of three MCCA methods on four datasets
for varying the reduced dimension & and the training ratio.

{3,5,10, 15, 20, 25, 30, 35, 40,45, 50} for other datasets. We
split the data into training and testing with the ratio 30/70.
Classification accuracy is used as the performance evalua-
tion criterion. Experimental results are reported in terms of
the average of 10 randomly drawn splits.

We first compare eight variants of CCA methods and the
classifiers based on each single view using all input features.
Table 4 shows the results over five multi-view datasets with
the best k shown in bracket for each method. From Table 4,
we have the following observations:

1) CCA-based methods can achieve competitive or better
results using a small set of features comparing with the
best single view of the input features.

2) OCCA methods including RCOMCCA (top-p) and
OMCCA-SS generally show better results than classi-
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cal MCCA. This implies that orthogonality constraints
added to MCCA can improve learning performance.

3) Our proposed RCOMCCA methods with the top-p
weighting scheme demonstrates much better results
than MCCA and OMCCA-SS can by large margins.
Except for yeast_ribosomal, RCOMCCA-G (top-p) and
RCOMCCA-] (top-p) outperform the classifier of the
best single view on the other four datasets.

4) RCOMCCA with the top-p weighting scheme outper-
forms RCOMCCA with other two weighting schemes.
This implies that pairs of views can contribute differ-
ently to the downstreaming classification problem.

5) For the same weighting schemes, our proposed RCOM-
CCA methods with Gauss-Seidel-style and Jacobi-style
yield almost similar results. It is recommended to take
the problem structure into account for selecting the
proper solver for efficiency as discussed in Section 5.

We also compare eight variants of CCA methods in terms
of three other measurements including the sensitivity of
parameter k, CPU time, and sampling ratio of training and
testing data. The results are shown in Figure 5. It is clear to
see that

1) Accuracies of all CCA methods increase with k. How-
ever, MCCA on Caltech101-7 and OMCCA-SS on
yeast_ribosomal behave abnormally since their perfor-
mances degrade significantly after a few small k.

2) RCOMCCA generally is the most efficient method
among the three methods. Due to its incremental op-
timization scheme, OMCCA-SS takes linear computa-
tional complexity with k, and so its CPU time in-
creases with k. MCCA becomes less efficient if the
total number of features in all views are large, for
example yeast_ribosomal, because it has to solve the
generalized eigenvalue problem whose size is the sum
of the numbers of features in all views. As shown in
Figure 5, MCCA on yeast_ribosomal takes more than
10 times longer than RCOMCCA.

3) All methods show better performances when the num-
ber of training data increases. One notable exception is
MCCA on yeast_ribosomal, which does not show much
gain as training data ratio increases significantly. All
orthogonally constrained CCA methods do not show
this issue.

These observations demonstrate that our proposed RCOM-
CCA not only can achieve noticeably better performance but
also is much faster than OMCCA-SS and MCCA for multi-
view feature extraction.

7 CONCLUSIONS

In this paper, we start by proposing an efficient way for
solving CCA with orthogonality constraints, called the or-
thogonal CCA (OCCA). Then to model the data with more
than two views, we present a novel weighted multiset
CCA again with orthogonality constraints (OMCCA). Our
algorithms rely on the solution of a subproblem with trace-
fractional structure, which is solved by a newly proposed
SCF iteration. Theoretically, we perform a global and local
convergence analysis. Extensive experiments are conducted
to evaluate the proposed algorithms against existing meth-
ods in terms of various measurements, such as parameter

13

sensitivity, correlation, computational time, and data visual-
ization. We further apply our methods to real-world appli-
cations for multi-label classification and multi-view feature
extraction. Experimental results show that our methods not
only perform competitively to or significantly better than
baselines in terms of accuracy but also are more efficient.
This work focuses on the linear orthogonal projection. In the
future, we would like to explore similar ideas for nonlinear
CCA and other variants of CCA methods with orthogonality
constraints.
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