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Abstract 
This study tests speech-in-noise perception and social ratings 
of speech produced by different text-to-speech (TTS) 
synthesis methods. We used identical speaker training datasets 
for a set of 4 voices (using AWS Polly TTS), generated using 
neural and concatenative TTS. In Experiment 1, listeners 
identified target words in semantically predictable and 
unpredictable sentences in concatenative and neural TTS at 
two noise levels (-3 dB, -6 dB SNR). Correct word 
identification was lower for neural TTS than for concatenative 
TTS, in the lower SNR, and for semantically unpredictable 
sentences. In Experiment 2, listeners rated the voices on 4 
social attributes. Neural TTS was rated as more human-like, 
natural, likeable, and familiar than concatenative TTS. 
Furthermore, how natural listeners rated the neural TTS voice 
was positively related to their speech-in-noise accuracy. 
Together, these findings show that the TTS method influences 
both intelligibility and social judgments of speech — and that 
these patterns are linked. Overall, this work contributes to our 
understanding of the nexus of speech technology and human 
speech perception. 

Index Terms: concatenative TTS, neural TTS, speech-in-
noise perception, social ratings 

1. Introduction 
The recent pervasiveness of household voice-activated 
artificially intelligent (voice-AI) devices (e.g., Google Home, 
Amazon Echo) means that users are interacting with synthetic, 
text-to-speech (TTS) voices in their everyday lives. Yet, 
whether the speech generated by these modern systems is 
equally intelligible across different listening conditions (e.g., 
background talkers, music, fans, etc.) has not been thoroughly 
explored (cf., [1]). Further, there have been increasing efforts 
to make voice-AI speech as naturalistic as possible, resulting 
in more seamless, connected speech. For example, the 
application of long short-term (LSTM) neural networks in 
TTS (e.g., Wavenet [2]; for review see [3]) has resulted in 
more naturalistic connected speech that is rapidly being 
adopted industry-wide [4]. How differences in TTS methods 
impact speech intelligibility, however, is an open question. 

In the present study, we consider how different TTS 
methods influence users’ perception of synthesized speech. 
First, we test whether TTS generated via concatenative versus 
neural synthesis methods might result in differences in 
intelligibility during speech-in-noise perception. In 
concatenative TTS, individually recorded utterances are 
chunked into segments then re-combined via unit selection, 
which listeners perceive as having prosodic peculiarities (cf. 
[5]). Further, the concatenation process, particularly for pre-

recorded real words, lacks the between-word coarticulation, or 
articulatory overlap, that is present in natural, connected 
speech [6]. Autoregressive neural TTS methods, on the other 
hand, generate words that are conditioned on all previous 
utterances, as well as on the immediately preceding segmental 
content (the local acoustic-phonetic context), resulting in 
significantly higher perceived ‘naturalness’ ratings by listeners 
[2]. This reported difference in perceived naturalness leads us 
to ask a second question: are there differences in how users 
rate social characteristics of the neural and concatenative TTS 
voices? Finally, we relate these two speech perception 
behaviors and test whether these social judgments related to 
intelligibility.  

In the following sections, we provide a background on the 
speech-in-noise perception literature (§1.1), reviewing 
differences based on ‘clear’ and ‘connected’ speech (§1.1.1), 
the impact of semantic context (§1.1.2), and finally individual 
differences in listeners’ ratings of social attributes and how 
they are related to speech intelligibility in the human-human 
literature (§1.1.3). 

1.1. Speech-in-noise Perception 

Difficulty in perceiving speech in the presence of noise is well 
attested in the literature [7]–[11], particularly for adults and 
children with hearing impairment [8]–[10]. Competing 
auditory signals (e.g., a lawn mower, other talkers, etc.) can 
interfere with a listener’s ability to hear a speaker’s intended 
message, whether they are a dinner companion in a noisy 
restaurant or if they are a voice-AI device in a noisy room. 
While work has shown that the type of masking noise has an 
effect on perception (e.g., multitalker babble versus white 
noise in [11]), the acoustic-phonetic properties of the speech 
signal are also a factor. For one, the type of voice matters: 
listeners show lower intelligibility for TTS voices, relative to 
naturally-produced human voices [12]. 

1.1.1. Casual vs. clear speech 

Speech style also has an impact on perception: many studies 
have shown reduced intelligibility for more ‘casual’ and 
connected speech, relative to ‘clear’ speech [13]–[17]. Based 
on their synthesis differences, neural and concatenative TTS 
could serve as proxies for ‘casual’ and ‘clear’ speech, 
respectively. For one, neural TTS is more likely to contain 
phonetic reductions, typical of natural human speech; for 
example, [18] show that neural TTS automatically generated 
speech that included filled pauses (e.g., “um”) after training on 
podcast episodes. Concatenative TTS, on the other hand, is 
more likely to result in relatively more hyper-articulated 
‘clear’ speech; each segment is carefully selected and 
combined. Accordingly, we can set up several predictions for 
the present study. On the one hand, less effortful and casual 

Copyright © 2020 ISCA

INTERSPEECH 2020

October 25–29, 2020, Shanghai, China

http://dx.doi.org/10.21437/Interspeech.2020-13361733



speech results in shorter durations and less canonical segments 
than in speech produced in a clear manner (‘clear speech’ 
[19]). As a result, there is less robust content for listeners to 
glean from a noisy signal. Therefore, one prediction is that 
speech-in-noise perception for neural TTS utterances will be 
more difficult for listeners, relative to concatenative TTS, in 
line with prior work in the human-human literature [13]–[17]. 

On the other hand, greater coarticulatory overlap [6], or 
segmental connectedness, in casual speech might improve 
‘auditory streaming’, allowing listeners to ‘chunk’ sets of 
sounds and disentangle them from background noise [20]. For 
example, [20] presented listeners with synthetic TTS varying 
in degree of coarticulation on vowel F2 (cueing neighboring 
/r/ or /z/); they found that speech-in-noise accuracy was higher 
when the TTS output included the consonant-vowel 
coarticulation, relative to when it did not. In the human-human 
literature, there is also some evidence that coarticulation can 
be helpful: [21] found that listeners displayed faster reaction 
times for words produced with greater coarticulation in a 
lexical decision experiment, than when the words were 
produced with less coarticulation. Accordingly, another 
prediction for the present study is that more connected TTS 
methods (i.e., neural TTS) might improve intelligibility across 
increasingly noisy contexts, with greater cues of coherence to 
extract a word from background noise.  

1.1.2. Semantic predictability 

In addition to acoustic-phonetic variations as a function of 
clarity (e.g., ‘clear’ versus ‘casual’ speech), listeners also use 
semantic context from an utterance to aid in word 
identification of speech in noise (e.g., [22]–[25]). How 
listeners integrate this context, however, may differ according 
to how their interlocutor is speaking: for example, [24] found 
worse keyword identification in semantically anomalous 
contexts, but less of a decline when the utterance was 
produced in ‘clear’ compared to ‘casual’ speech (produced by 
the same talker). In other words, the effect of semantic context 
on word intelligibility is mediated by the acoustic-phonetic 
properties of the utterance. Thus, we ask whether the effect of 
semantic predictability during speech-in-noise perception 
differs across concatenative and neural TTS. One prediction is 
that neural TTS, conditioned on the previous utterances (i.e., 
long-term) as well as the immediately preceding acoustic 
context (i.e., short-term), will improve intelligibility of the 
final target word since it provides more robust acoustic-
phonetic cues in the signal (e.g., coarticulation) which 
listeners might be able to leverage when semantic context is 
not helpful. An alternative prediction is that neural TTS will 
result in even lower accuracy for low predictability sentences, 
if listeners are not able to disentangle the target utterance from 
the competing background noise.  

1.1.3. Individual differences in speech-in-noise perception 

There is also a great deal of variation among listeners in 
speech-in-noise tasks (cf. [26], [27]). For one, a listeners’ 
familiarity with the speech variety has been shown to 
influence their speech-in-noise perception [22], [23], [28]. For 
example, [22] found that the intelligibility benefit of 
semantically predictable contexts is reduced when the speaker 
produces a dialect that the listener is unfamiliar with.  

Others have shown differences in intelligibility and 
participants’ ‘likeability’ of certain synthetic voices (but note 
that a direct relationship between TTS voice and these ratings 
was not observed) [29]. One possibility is that, in [29], there 

was a confound between the socio-indexical characteristics of 
the TTS voice itself and intelligibility. Here, we disentangle 
these factors by holding the ‘speaker’ constant (i.e., same set 
of AWS Polly voices), but manipulating the type of TTS 
method. Therefore, an additional consideration in the present 
study is whether individual language attitudes of the TTS 
voices may relate to their intelligibility under difficult 
listening conditions. In particular, the current study tests 
whether there are differences in how listeners perceive neural 
and concatenative TTS voices for four dimensions: how 1) 
machine-like / human-like, 2) unfamiliar / familiar, 3) eerie / 
natural, and 4) unlikeable / likeable the voice sounds. We 
predict that there will be a relationship between these ratings 
and intelligibility: in particular, that voices rated as more 
human-like, natural, and familiar will show intelligibility 
benefits, in line with the work on naturally produced voices.  
1.2. Current Study  

The present study consisted of two experiments. In 
Experiment 1, we test keyword identification accuracy of 
sentences presented in noise (comparing semantically 
predictable and unpredictable contexts) for speech generated 
from two different types of TTS methods: neural and 
concatenative TTS. Both TTS types were trained on 4 
identical speaker datasets. Using TTS voices generated by 
distinct methods allows us to explicitly test predictions about 
the role of neural versus concatenative speech on 
intelligibility. It also provides a benefit for direct replication of 
this study in other labs, where idiosyncratic properties of 
recruited speakers may otherwise contribute to differences in 
their relative intelligibility. In Experiment 2, we collect each 
participant’s ratings of four social attributes: human-likeness, 
familiarity, naturalness, and likeability of each voice. We first 
test whether there are systematic differences in these ratings 
by TTS Condition (neural vs. concatenative) and then relate 
patterns of variation directly to intelligibility ratings in 
Experiment 1.  

2. Experiment 1: Intelligibility in Noise 

2.1. Methods 

Participants consisted of 28 native English speakers (24 
female; mean age = 19.29 years, sd = 1.41 years) recruited 
through the UC Davis Psychology subjects pool. 26 
participants reported that they had experience using at least 
one voice-AI system: 15 for Amazon Alexa, 8 for Google 
Assistant, and 11 for Apple’s Siri.  

We selected 192 sentences from the Speech Perception in 
Noise (SPIN) test [30], where monosyllabic target words 
occurred sentence-finally. Half of the sentences contained 
target words were semantically predictable based on context 
(e.g., “The boat sailed along the coast.”), while the other half 
were semantically unpredictable (e.g., “Miss Brown might 
consider the coast.”). Using AWS Polly, all 192 sentences 
were generated with both concatenative TTS and neural TTS 
for 4 adult female Amazon Polly voices (US-English): ‘Salli’, 
‘Kendra’, ‘Kimberly’, and ‘Joanna’. All sound files were 
resampled to the lower sampling rate of the two (neural TTS: 
22,050 Hz) and amplitude-normalized (60 dB). The beginning 
and end of each sentence was padded with 800 ms of silence; 
as a result, when mixed with the speech-shaped noise, all 
target sentences were gated into noise. Next, we generated 
speech-shaped noise using the long-term average spectrum 
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(LTAS) for all sentences combined [31], [32]. Then, all 
sentences were combined with the speech-shaped noise at two 
signal-to-noise ratios: -3 dB and -6 dB SNR [33]. 

Participants completed the experiment in a sound-
attenuated booth in the UC Davis Phonetics Lab. Participants 
were seated in the booth facing a computer monitor and 
keyboard and wearing over-ear headphones (Seinheiser Pro). 
On each trial, participants heard a sentence and were prompted 
to type the last word of the sentence using the keyboard. The 
192 sentences were presented equally across the 8 voices (4 
speakers x 2 TTS conditions) and 2 SNRs; which sentence 
was presented in which condition was fully randomized 
between subjects. Finally, participants completed a short 
hearing screen (250-8000 Hz [34]). Data for participants who 
did not pass the screening were excluded from the analysis.  

2.2. Word Identification Analysis  

Keyword accuracy on each trial was coded as binomial data (1 
= correct word identification, 0 = incorrect) automatically 
using string matching. Trial accuracy (1 or 0) was modeled 
with a mixed effects logistic regression with the lme4 R 
package [35]. Fixed effects included TTS Condition (2 levels: 
concatenative, neural), Signal-to-Noise Ratio (2 levels: -3 dB 
SNR, -6 dB SNR), Semantic Predictability (2 levels: low, 
high), and all possible interactions. Random effects included 
by-Listener random intercepts and by-Listener random slopes 
for TTS method, SNR, and Semantic Predictability conditions. 
Additionally, we included by-Talker random intercepts to 
account for variation in baseline intelligibility for each speaker 
dataset. Contrasts were sum coded.  

2.3. Word Identification Results  

Table 1 provides the summary statistics of the accuracy 
model. Figure 1 shows the mean accuracy across the 
conditions. First, there was a main effect of TTS Condition: 
listeners were less accurate at keyword identification for 
neural TTS than for concatenative TTS (see Figure 1). SNR 
level and Semantic Predictability were also significant main 
effects: listeners were less accurate at keyword identification 
for sentences presented at a lower SNR (-6 dB SNR), relative 
to a higher SNR; and listeners were less accurate at identifying 
words occurring in low semantic predictability sentences than 
high semantic predictability. There was also a significant 
interaction between SNR and Semantic Predictability: low 
predictability sentences at a low SNR (-6 dB SNR) had even 
lower keyword identification accuracy.   

 Table 1: Model summary for word identification accuracy  
 Beta 

Coef 
Std 

Error z p 

(Intercept) 0.13 0.07 1.8 0.07 

TTS(Neural) -0.21 0.03 -6.2 <0.001*** 

SNR(-6) -0.53 0.03 -16.5 <0.001*** 

Predict(Low) -0.73 0.03 -23.7 <0.001*** 

TTS(Neural) x SNR(-6) -0.04 0.03 -1.3 0.20 

TTS(Neural) x Predict(Low) -0.02 0.03 -0.5 0.59 

SNR(-6) x Predict(Low) 0.01 0.03 4.3 <0.001*** 

TTS(Neural) x SNR(-6) x 
Predict(Low) 0.03 0.03 0.9 0.35 

 

 
Figure 1: (Experiment 1) Mean accuracy of keyword 
identification in high and low Semantic Predictability 
contexts, lower and higher SNR, across two TTS synthesis 
types. Error bars = standard error. 

 
Figure 2: (Experiment 2) Mean ratings for TTS type: neural 
(blue circle) vs. concatenative (green triangle). Error bars = 
standard error. 

3. Experiment 2: Language Attitudes  

3.1. Methods 

Following Experiment 1, the same participants completed a 
ratings study, where they heard a single sentence (“The girl 
knows about the swamp.”) produced by each of the 4 speakers 
in the 2 TTS conditions (8 voices in total) and provided 4 
ratings of the voice using a sliding scale (0-100): (1) How 
machine-like/human-like, (2) How unfamiliar/familiar?, (3) 
How eerie/natural? and (4) How unlikeable/likeable? Order of 
neural and concatenative TTS voices was blocked, so that the 
TTS for the same speaker was not presented sequentially. The 
ratings task was also blocked by question: Participants 
provided a rating for each of the 8 voices for a given 
dimension (e.g., ‘human-likeness’).  
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3.2. Analysis & Results 

Participants’ ratings of the voices were analyzed using 
separate linear mixed effects models with the lme4 R package 
[35]. Fixed effects included TTS Condition; random effects 
included by-Listener and by-Speaker random intercepts.  

As seen in Figure 2, all models showed a similar main 
effect of TTS Condition: listeners rated the neural TTS voices 
as more human-like [β=9.92, t=8.6, p<0.001], likeable [β=8.5, 
t=6.4, p<0.001], natural [β=8.5, t=6.3, p<0.001], and familiar 
[β=3.50, t=2.0, p<0.05] than the concatenative TTS.  

4. Relating Intelligibility and Ratings 
To test whether there was a relationship between an individual 
participant’s rating for a given voice (e.g., ‘Salli’, neural) and 
their word identification accuracy for that voice, we conducted 
a post-hoc analysis. We modeled word identification accuracy 
in separate mixed effects logistic regression models for the 4 
ratings (familiar, human-like, natural, and likeable), with the 
fixed effect of TTS Condition, Rating Score (continuous, z-
scored within speaker/rating), their interaction, and by-Subject 
and by-Speaker random intercepts.  

All four models showed no main effect of ratings on 
accuracy. However, two models revealed significant 
interactions: word identification accuracy was higher for 
neural TTS when they were rated as being more human-like 
[β=0.09, t=2.9, p<0.01] or more natural [β=0.06, t=2.0, 
p<0.05]. There was no effect of familiarity [β=-0.05, t=1.7, 
p=0.10] or likeability [β=0.05, t=1.8, p=0.08] by TTS. 

5. Discussion 
The present study investigated whether the type of TTS 
synthesis method (concatenative or neural) results in different 
listener perception patterns. In Experiment 1 (speech-in-
noise), we found that neural TTS resulted in overall reduced 
intelligibility, relative to the concatenative TTS method. This 
result is in line with prior research indicating that more casual, 
connected speech results in more difficulty for listeners in 
identifying the linguistic message in human-human interaction 
[19], suggesting that it extends to synthesized voices. For one, 
this finding suggests that neural TTS, while increasingly 
naturalistic, may actually reduce listeners’ ability to 
understand speech from a modern voice-AI system, if it's 
being used in the presence of competing noise (e.g., a fan, 
multiple background talkers). At the same time, this finding 
counters prior work where increased coarticulation has been 
shown to improve speech-in-noise perception for TTS voices 
[20]. While we also used TTS voices in the present study, the 
synthesis method greatly differed (here, concatenative and 
neural TTS; formant-based synthesis in [20]). Future work is 
needed to test what types of coarticulation might be 
advantageous in more recent TTS methods (e.g., neural TTS). 
Additionally, this reduction in accuracy for neural TTS was 
not further modulated by signal-to-noise ratio (SNR) or 
semantic predictability; in line with prior work [22]–[25], 
these factors independently reduced accuracy (lower for low 
predictability; lower at -6 dB SNR) and were additive: 
accuracy was further reduced at low SNR and low 
predictability.  

Meanwhile, in Experiment 2 (social ratings), we observed 
differences in listeners’ ratings of concatenative versus neural 
TTS for four social attributes: listeners rated neural TTS as 

more human-like, natural, and familiar, and likeable than 
concatenative TTS, consistent with prior work (e.g., [2]).   

Finally, we linked the data from Experiments 1 & 2. We 
found individual variation of ratings was linked to word 
intelligibility. A given listener’s ratings of how human-like or 
natural they found a neural TTS voice correlated with their 
accuracy in identifying words in that voice: voices that were 
rated as sounding more natural and more human-like showed 
less of a decrease in intelligibility than voices that were rated 
as less natural and less human-like. One possible explanation 
is that a listener who rated the voice as sounding less human-
like may assume they would not be able to understand the 
TTS. This is in line with work on stereotyping of human 
speakers: where listeners show reduced accuracy in speech-in-
noise tasks based on top-down expectations (e.g., [38]). At the 
same time, listeners might assume that the more ‘human-like’ 
TTS voices should also produce the clear speech adaptations 
that real humans produce in more challenging listening 
conditions (e.g., a lower SNR [36], low semantic predictability 
[25]), i.e., hyper-speech to the assumed benefit of their listener 
(cf. H&H Theory: [37]); that these adaptations do not occur 
might be one reason for the lowered accuracy for neural TTS 
overall (but note that we did not observe any interactions 
between TTS type and SNR / semantic predictability in the 
present study). Future work varying the voice qualities across 
different listening conditions, as well as measuring individual 
differences (e.g., in computer personification) can tease apart 
this possible contribution.  

There are many other open questions, which can serve as 
areas for future research. For one, the present study does not 
include a pre-test to measure listeners’ a priori expectations 
for TTS voices; for example, ratings of the voices (e.g., 
human-likeness) might have been influenced by the listeners’ 
difficulty hearing that voice in the speech-in-noise study. 
Additionally, the relative contribution of speakers’ experience 
with voice-AI systems may be a factor in how well they can 
perceive TTS sentences in noise; in the present study, nearly 
all listeners (26/28) had prior experience using voice-AI. How 
this experience might interact with listeners’ expectations is 
also an area to be explored. Moreover, an in-depth 
investigation of coarticulation patterns would be insightful to 
quantify why neural TTS voices sound more human-like, as 
well as what coarticulatory adjustments may improve 
intelligibility.  

Finally, this study has implications for voice user interface 
design. For one, it is noteworthy that the more advanced and 
realistic TTS method results in less intelligible speech in 
adverse listening conditions. Further work exploring this 
effect across different types of background noise (e.g., 1-
talker, multitalker babble) and across listeners (e.g., older 
individuals, hearing-impaired individuals, individuals with 
autism) can be insightful for tailoring TTS across individuals 
and communicative scenarios. Additionally, our work suggests 
having a user choose the voice that sounds most human-like 
and natural to them may aid intelligibility across listening 
conditions, even if this speech synthesis method is less 
intelligible in adverse listening conditions overall. 

6. Acknowledgements 
This  material  is  based  upon  work  supported  by  the  
National Science   Foundation   SBE   Postdoctoral Research   
Fellowship under  Grant  No.  1911855  to  MC and by an 
Amazon Faculty Research Award to GZ. Thank you to Yulan 
Liu and Roland Maas for their feedback on the paper. 

1736



7. References 
[1] M. Cooke, C. Mayo, and C. Valentini-Botinhao, 

“Intelligibility-enhancing speech modifications: the hurricane 
challenge.,” in Interspeech, 2013, pp. 3552–3556. 

[2] A. Van Den Oord et al., “WaveNet: A generative model for 
raw audio.,” in SSW, 2016, p. 125. 

[3] Z. Malisz, G. E. Henter, C. Valentini-Botinhao, O. Watts, J. 
Beskow, and J. Gustafson, “Modern speech synthesis for 
phonetic sciences: A discussion and an evaluation,” 2019. 

[4] T. Merritt et al., “Comprehensive Evaluation of Statistical 
Speech Waveform Synthesis,” in 2018 IEEE Spoken 
Language Technology Workshop (SLT), Dec. 2018, pp. 325–
331, doi: 10.1109/SLT.2018.8639556. 

[5] S. Ronanki, “Prosody generation for text-to-speech synthesis,” 
Dissertation, University of Edinburgh, 2019. 

[6] E. Farnetani and D. Recasens, “Coarticulation and connected 
speech processes,” The handbook of phonetic sciences, pp. 
371–404, 1997. 

[7] P. Assmann and Q. Summerfield, “The perception of speech 
under adverse conditions,” in Speech processing in the 
auditory system, Springer, 2004, pp. 231–308. 

[8] M. Fallon, S. E. Trehub, and B. A. Schneider, “Children’s 
perception of speech in multitalker babble,” The Journal of the 
Acoustical Society of America, vol. 108, no. 6, pp. 3023–3029, 
2000. 

[9] M. N. Ruscetta, E. M. Arjmand, and S. R. Pratt, “Speech 
recognition abilities in noise for children with severe-to-
profound unilateral hearing impairment,” International 
Journal of Pediatric Otorhinolaryngology, vol. 69, no. 6, pp. 
771–779, 2005. 

[10] P. E. Souza and C. W. Turner, “Masking of speech in young 
and elderly listeners with hearing loss,” Journal of Speech, 
Language, and Hearing Research, vol. 37, no. 3, pp. 655–661, 
1994. 

[11] M. L. G. Lecumberri and M. Cooke, “Effect of masker type on 
native and non-native consonant perception in noise,” The 
Journal of the Acoustical Society of America, vol. 119, no. 4, 
pp. 2445–2454, Mar. 2006, doi: 10.1121/1.2180210. 

[12] O. Simantiraki, M. Cooke, and S. King, “Impact of Different 
Speech Types on Listening Effort.,” in Interspeech, 2018, pp. 
2267–2271. 

[13] R. C. Gilbert, B. Chandrasekaran, and R. Smiljanic, 
“Recognition memory in noise for speech of varying 
intelligibility,” The Journal of the Acoustical Society of 
America, vol. 135, no. 1, pp. 389–399, 2014. 

[14] M. A. Picheny, N. I. Durlach, and L. D. Braida, “Speaking 
clearly for the hard of hearing I: Intelligibility differences 
between clear and conversational speech,” Journal of Speech, 
Language, and Hearing Research, vol. 28, no. 1, pp. 96–103, 
1985. 

[15] A. R. Bradlow and T. Bent, “The clear speech effect for non-
native listeners,” The Journal of the Acoustical Society of 
America, vol. 112, no. 1, pp. 272–284, 2002. 

[16] K. L. Payton, R. M. Uchanski, and L. D. Braida, 
“Intelligibility of conversational and clear speech in noise and 
reverberation for listeners with normal and impaired hearing,” 
The Journal of the Acoustical Society of America, vol. 95, no. 
3, pp. 1581–1592, 1994. 

[17] A. R. Bradlow, N. Kraus, and E. Hayes, “Speaking clearly for 
children with learning disabilities,” Journal of Speech, 
Language, and Hearing Research, 2003. 

[18] É. Székely, G. E. Henter, J. Beskow, and J. Gustafson, “How 
to train your fillers: uh and um in spontaneous speech 
synthesis,” 2019. 

[19] L. Shockey, “Phonetic and phonological properties of 
connected speech,” The Ohio State University, 1973. 

[20] S. Hawkins and A. Slater, “Spread of CV and V-to-V 
coarticulation in British English: Implications for the 
intelligibility of synthetic speech,” 1994. 

[21] R. Scarborough and G. Zellou, “Clarity in 
communication:‘Clear’ speech authenticity and lexical 

neighborhood density effects in speech production and 
perception,” The Journal of the Acoustical Society of America, 
vol. 134, no. 5, pp. 3793–3807, 2013. 

[22] C. G. Clopper, “Effects of dialect variation on the semantic 
predictability benefit,” Language and Cognitive Processes, 
vol. 27, no. 7–8, pp. 1002–1020, Sep. 2012, doi: 
10.1080/01690965.2011.558779. 

[23] S. Kennedy and P. Trofimovich, “Intelligibility, 
Comprehensibility, and Accentedness of L2 Speech: The Role 
of Listener Experience and Semantic Context,” Canadian 
Modern Language Review, Mar. 2008, doi: 
10.3138/cmlr.64.3.459. 

[24] S. V. van der Feest, C. P. Blanco, and R. Smiljanic, “Influence 
of speaking style adaptations and semantic context on the time 
course of word recognition in quiet and in noise,” Journal of 
Phonetics, vol. 73, pp. 158–177, 2019. 

[25] C. G. Clopper and J. B. Pierrehumbert, “Effects of semantic 
predictability and regional dialect on vowel space reduction,” 
J Acoust Soc Am, vol. 124, no. 3, pp. 1682–1688, Sep. 2008, 
doi: 10.1121/1.2953322. 

[26] L. E. Humes, B. U. Watson, L. A. Christensen, C. G. Cokely, 
D. C. Halling, and L. Lee, “Factors associated with individual 
differences in clinical measures of speech recognition among 
the elderly,” Journal of Speech, Language, and Hearing 
Research, vol. 37, no. 2, pp. 465–474, 1994. 

[27] J. I. Alcántara, E. J. Weisblatt, B. C. Moore, and P. F. Bolton, 
“Speech-in-noise perception in high-functioning individuals 
with autism or Asperger’s syndrome,” Journal of Child 
Psychology and Psychiatry, vol. 45, no. 6, pp. 1107–1114, 
2004. 

[28] K. J. Van Engen, “Similarity and familiarity: Second language 
sentence recognition in first- and second-language multi-talker 
babble,” Speech Communication, vol. 52, no. 11, pp. 943–953, 
Nov. 2010, doi: 10.1016/j.specom.2010.05.002. 

[29] S. V. Berg, A. Panorska, D. Uken, and F. Qeadan, “DECtalkTM 
and VeriVoxTM: Intelligibility, Likeability, and Rate 
Preference Differences for Four Listener Groups,” 
Augmentative and Alternative Communication, vol. 25, no. 1, 
pp. 7–18, Jan. 2009, doi: 10.1080/07434610902728531. 

[30] D. N. Kalikow, K. N. Stevens, and L. L. Elliott, “Development 
of a test of speech intelligibility in noise using sentence 
materials with controlled word predictability,” The Journal of 
the Acoustical Society of America, vol. 61, no. 5, pp. 1337–
1351, 1977. 

[31] H. Quené and L. E. Van Delft, “Non-native durational patterns 
decrease speech intelligibility,” Speech Communication, vol. 
52, no. 11–12, pp. 911–918, 2010. 

[32] M. Winn, Make speech-shaped noise. 2019. 
[33] D. McCloy, Mix speech with noise. 2015. 
[34] J. Reilly, V. Troiani, M. Grossman, and R. Wingfield, “An 

introduction to hearing loss and screening procedures for 
behavioral research,” Behavior Research Methods, vol. 39, no. 
3, pp. 667–672, Aug. 2007, doi: 10.3758/BF03193038. 

[35] D. Bates, M. Mächler, B. Bolker, and S. Walker, “Fitting 
Linear Mixed-Effects Models Using lme4,” Journal of 
Statistical Software, vol. 67, no. 1, pp. 1–48, Oct. 2015, doi: 
10.18637/jss.v067.i01. 

[36] J.-C. Junqua, “The influence of acoustics on speech 
production: A noise-induced stress phenomenon known as the 
Lombard reflex,” Speech communication, vol. 20, no. 1–2, pp. 
13–22, 1996. 

[37] B. Lindblom, “Explaining phonetic variation: A sketch of the 
H&H theory,” in Speech production and speech modelling, 
Springer, 1990, pp. 403–439. 

[38] M. Babel and J. Russell, “Expectations and speech 
intelligibility,” The Journal of the Acoustical Society of 
America, vol. 137, no. 5, pp. 2823–2833, 2015. 

 

1737


