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Abstract - Contribution: This study indicates that supporting 
debugging processes is a strong method to improve debugging 
outcome quality among preservice, early childhood education 
(ECE) teachers. 
Background: Key to preparing ECE teachers to teach computer 
science is helping them learn to debug. Little is known about how 
ECE teachers’ motivation and debugging process quality 
contributes to debugging outcome quality. 
Research Questions: How do debugging process and motivation 
variables predict the quality with which participants debug 
lower- and higher-complexity programs? 
Method: A Bayesian multiple linear regression model with 
debugging process and motivation variables as predictors was 
used to predict debugging outcome quality. An inverse gamma 
prior distribution for sigma2 and uniform prior distribution for 
Betas was used.  
Findings: The strongest positive predictor of debugging outcome 
quality for both the lower-complexity and higher-complexity 
debugging task was debugging process quality. 

 
Index terms –computing education; teacher learning; 

regression analysis; software debugging 
 

I. INTRODUCTION 
Within early childhood education (ECE), computer science 

(CS) is often taught by inviting children to control robots 
using block-based programming [1], [2]. Within block-based 
programming, bugs can occur, and resolving such can be 
challenging [3]. In this study, preservice, ECE teachers used 
debugging scaffolding. Motivational and process variables 
were used to predict the quality with which they completed 
lower- and higher complexity debugging tasks. 
In the next sections, background literature is described, 

research questions are articulated, method is described, and 
results are presented and discussed, including a statement of 
limitations and conclusions. 

II. BACKGROUND 

A. Debugging 
In this study, we focused on debugging of preservice ECE 
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teachers because of its importance in programming and also its 
relation to motivation to learn. Debugging is the process of 
identifying faulty code or logic usage, determining how to fix 
it, and fixing it [4], [5]. Debugging skill is central to 
programming success not only in text-based programming but 
also in block-based programming [3]. Still, challenges with 
debugging cause frustration at best, and dropping out of CS 
pathways at worst [4], [6]. Novice programmers often 
examine isolated sections of code for bugs, attempt to fix what 
they find, and fail to consider how that section of code 
interacts with remaining code [7], [8]. Unskillful debugging 
often creates new bugs, which deepens difficulties with 
debugging because new bugs are often unnoticed [4], [9]. 
Debugging skills also have a close relation with the 
programmer’s self-efficacy [6]. As such, the need for 
programming instruction with an emphasis on debugging has 
received increasing attention in CS education [3], [10]. 

B. Motivation 
To get a more complete picture of preservice ECE teachers’ 

debugging process and outcomes, their motivational variables, 
including goal orientations [11] [12], interests [16], and 
stereotypical conceptions [14], [15], need to be understood. 
Achievement goal orientation refers to what an individual 
wishes to accomplish within a learning task. Individuals with 
mastery goals aim to achieve mastery of content, individuals 
with performance-approach goals aim to demonstrate 
competence, and individuals with performance-avoid goals 
avoid challenging tasks to avoid appearing incompetent [11], 
[12]. While performance-avoid goal orientations are almost 
always maladaptive, performance-approach goal orientations 
can be adaptive when faced with high challenge tasks [13]. 
Lack of domain identification is often associated with 
stereotype threat, in which knowledge of a stereotype (e.g., CS 
jobs are not seen as feminine), causes participants to perform 
worse in a domain-relevant task than their capability would 
predict [14], [15]. Stereotype threat impacts one’s motivation 
to pursue CS careers [16].  

C. Scaffolding 
As part of our effort in educating preservice ECE teachers, 
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we used debugging scaffolding in this study. Scaffolding 
supports learners as they engage in problem solving by 
problematizing task elements essential to gaining problem 
solving skill, while simplifying unessential elements [17], 
[18]. Scaffolding forms include question prompts to which 
learners respond, and experts modeling how they would think 
about a similar problem [19], [20]. Ill-structured problem-
solving ability is enhanced more when learners receive 
scaffolding than when they receive lecture, with the largest 
effects at the university, graduate, and adult levels [21], [22]. 
Analysis of scaffolding responses can be used to capture not 

only debugging knowledge and process, but also attitudes 
toward debugging. For example, word count can be used as a 
proxy for response quality, because respondents with good 
programming knowledge and mindful thinking are likely to 
generate more words to answer prompts than respondents 
without. Several studies have indicated word count to be a 
strong predictor of domain knowledge [23], [24]. Sentiment 
analysis has been used to monitor learners’ attitudes toward 
learning and engagement/performance in learning [25], [26]. 
The current study is innovative because it uses only data 

that can be collected before and during debugging to predict 
debugging outcome quality, thereby providing the opportunity 
to remediate during real time. No prior, published study 
predicted debugging outcome quality using motivation 
variables, sentiment, or word count. Existing work uses 
variables such as prior performance, hint usage, activity 
progress, interface interactions, and binary classification of 
passing or failing [27]. This study employs a numeric scale to 
address how participants engage in different debugging stages 
and substages (see Table I in the method section).  

III. RESEARCH QUESTIONS 
1. How do process and motivation variables predict the 

quality with which participants debug low complexity 
programs? 

2. How do process and motivation variables predict the 
quality with which participants debug high complexity 
programs? 

IV. METHOD 

A. Setting and Participants 
The study took place during 3 sessions of 2.5 h each of a 

class on play-based activities in ECE in a large university in 
the eastern USA. Nineteen students (all female) participated. 
Eighteen were ECE majors (4 seniors, 10 juniors, and 4 
sophomores) who had completed field experience at the 
infant/toddler, preschool, kindergarten, or early elementary 
levels. The other was a non-major who had not completed 
field experience. Two participants (10%) were Black, while 
the rest were white. That participants were all female aligns 
with demographics in the ECE and elementary workforces, of 
which 97.4% [28] and 89% [29], respectively, are women. 
Also, most (78%) ECE teachers in the USA are white [30]. 

B. Materials 
1) Ozobots 
Ozobot Evos are small robots that can sense colors, lines, 

and obstacles and use such information for navigation and in 

logic. Ozobots were chosen because they are simple enough 
for  preschool, while still involving coding (Ozoblockly) [31]. 
2) Scaffolding 
Scaffolding design was informed by performing (a) a two-

step cluster analysis of an expanded coding dataset from a 
meta-analysis [21], (b) a literature review on debugging 
education, and (c) a synthesis of Kim et al.’s scaffolding 
recommendations for debugging in block-based programming 
[3]. The cluster analysis generated a list of scaffolding features 
of clusters where scaffolding led to medium or high effect 
sizes in university or graduate-level CS or engineering classes. 
The scaffolding invited participants to: (a) identify blocks 
(e.g., movement) used within the buggy code, (b) identify the 
order in which blocks were used, (c) create hypotheses about 
the bug that caused the unexpected robot behavior, and 
articulate reasons for each hypothesis, (d) articulate changes 
made to test each hypothesis, why the changes were made, 
what happened after the changes were made, and the current 
sequence of blocks, and (e) reflect on the process. 
3) Debugging tasks 
Complexity of debugging tasks is defined by number of 

tasks/goals and sub tasks/goals, the degree of connectivity 
among bugs, and the clarity of the presented goal state [32]. 
 

 
Fig. 1. Higher-complexity buggy code 
 
The higher-complexity task (see Fig. 1) included the 

following CS concepts: variables, logic, loops and elementary 
operations. In it, participants needed to debug a program in 
which an Ozobot used line navigation to follow a grid with red 
and green intersections. The program used equations to (a) add 
one point to the Energy score and play a happy sound when 
the Ozobot passed through a green intersection, and (b) add 
one point to the Obstacle score and play a sad sound when it 
passed through a red intersection. The Ozobot was supposed 
to move along the grid as long as obstacle points were less 
than or equal to energy points. But one bug did not allow the 
Ozobot to make it out of a small area of the grid, and the other 
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bug caused the Ozobot to never stop moving even when 
Obstacle points are greater than Energy points. To fix the 
program, participants needed to examine Ozobot movement 
under four conditions: when the Ozobot passes a green 
intersection, when the Ozobot passes a red intersection, when 
energy points are greater than or equal to obstacle points, and 
when energy points are less than obstacle points. Another 
factor that made this task complex was the connectivity among 
bugs. One bug hindered observing the effect of fixing the 
other bug; participants needed to fix one bug before the other 
to judge the appropriateness of debugging.  
The lower-complexity task (see Fig. 2) included the CS 

concepts of variables, logic, loops and geometry. Participants 
needed to debug a program that instructed the Ozobot to make 
an octagon pattern. Bugs caused the Ozobot to not turn the 
correct angle and not turn enough times. The goal state was 
clear because participants were given a printed octagon that 
they needed to make the Ozobot trace. Participants needed to 
fix values within two variables: angle (rotate block) and the 
number of repetitions (repeat while block). These bugs were 
not isolated from each other; both had to be fixed to perform 
the desired behavior. However, without fixing one, the effect 
of the other bug was easily observable. For example, without 
changing 5 to 8 in the repeat while block, the robot turns were 
noticeably misaligned with the octagon pattern.  
 

 
Fig. 2. Lower-complexity buggy code.  

C. Data Collection 
1) Presurvey 
The STEM interest survey section contained 30 items using 

a 7-point Likert scale to measure interest in STEM content and 
careers [33], [34]. A prior study using this scale reported good 
reliability with Cronbach’s a = 0.89 - 0.91 [34]. A modified 
version of the a questionnaire on academic emotions in 
mathematics [35], contained 7 items using a 5-point Likert 
scale (e.g., When doing my STEM-related homework, I am in 
a good mood.). A recent study used the scale, reporting good 
reliability (a = .90) [36]. The Learning Self-Regulation 
Questionnaire (LSRQ) section contained 6 items with 5-point 
Likert scale that assessed participants’ reasons for engaging in 
STEM learning behaviors (e.g., I would feel bad about myself 
if I didn’t do STEM-related class activities) [37]. LSRQ 
showed good reliability (a = .83) in a prior study [38]. The 
Domain Identification Measure contained 16 items on a 5-
point Likert scale that assesses identification with 
Mathematics and English (e.g., I do badly in tests of math) 
[39], and 8 items on a 5-point Likert scale that assesses 

perceptions of CS and engineering (e.g., Computer science is 
stressful). Prior studies indicate that it exhibited good 
reliability (a = 0.9-0.93) [39], [40]. The Patterns of Adaptive 
Learning Section contained 14 items on a 5-point Likert scale 
that measure personal goal orientations (e.g., One of my goals 
is to show others that I’m good at my class work); good 
reliability (a = 0.7-0.89) for the scale was found in prior 
studies [41]. The Views of Coding section assessed attitudes 
toward coding using 19 questions on a 5-point Likert scale 
(e.g., I think that coding is interesting.) [42]. 
 Mean value imputation [43] was used to fill in missing data 

(about 1% of presurvey data). Mean value imputation is 
appropriate, and accuracy of estimates using imputed data is 
likely good, because less than 5% of data was missing [44]. 
2) Debugging process quality rubric 
Quality of debugging processes was assessed using a rubric 

to evaluate participants’ processes of identifying, locating, and 
fixing bugs (see Table I). Identifying bugs included the 
subprocesses of reviewing program, running program to 
evaluate output, describing discrepancy between program 
goal and program output, and generating hypothesis for a bug 
causing the discrepancy. Locating bugs included the 
subprocesses of reviewing program structure to investigate 
probable location of bug, using cues while examining 
program, and locating bug. Fixing bugs included the 
subprocesses of examining program goal to determine how to 
fix bug, revising program, reevaluating program after 
revision, and concluding. Each subprocess was evaluated on a 
scale from 1 (poor quality) to 4 (high quality). 
Two raters applied the rubric independently to each group’s 

scaffold responses. Before coming to consensus, interrater 
reliability was 0.954, based on the intraclass correlation 
coefficient metric. The raters met to discuss and reach 
consensus on scores. A unique debugging process quality 
score was assigned to each team’s debugging of the lower-
complexity task and the higher-complexity task. 
3) Debugging outcome quality rubric 
The debugging outcome quality rubric (see Table II) 

assessed whether participants found the bug and fixed it. Two 
raters applied the rubric independently to assess the final code 
for each debugging task, and then came to consensus. 
Interrater reliability before coming to consensus was 0.88, as 
measured by the intraclass correlation coefficient.  
4) Word count 
A unique word count was assigned to each team’s scaffold 

responses and debugging reflections of the lower-complexity 
and higher-complexity debugging tasks. The word counts 
were then averaged to arrive at 2 unique word counts for each 
team: (a) word count of scaffold responses during the lower-
complexity task, and reflections on such, and (b) word count 
of scaffold responses during the higher-complexity task, and 
reflections on such. Missing data was not included in the 
calculations of averages in the absence of evidence that the 
student saw the writing prompt and failed to write anything. 
5) Sentiment analysis 
The SentimentAnalysis package for R [45] was used to 

determine the valence of scaffolding responses and debugging 
process reflections. Analysis was at the level of each entire 
response to a prompt or reflection question [46]. Possible 
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scores ranged from -1 to 1. Scores were averaged to arrive at 2 
unique sentiment analysis scores for each team: (a) sentiment 
analysis of scaffold responses while debugging the lower- 
complexity task, and reflections on such, and (b) sentiment 
analysis of scaffold responses while debugging the higher-
complexity task, and reflections on such. 

D. Analysis 
Bayesian multiple linear regression was used to predict the 

quality with which participants debugged the higher- and 
lower-complexity debugging tasks because, with small  

TABLE I 
DEBUGGING PROCESS QUALITY RUBRIC 

Points assigned 
 1 2 3 4 

Identifying bug 
Reviewing 
code 

Did not 
review code 

NA Reviewed code;  
Block list 
incomplete 

Reviewed code;  
Block list 
complete  

Running 
program to 
evaluate 
output  

Did not run 
program  

NA NA Ran program  

Describing 
discrepancy 
between 
program goal 
and output 

Did not 
describe 
discrepancy  

Described 
discrepancy 
incorrectly 
 

Described 
discrepancy 
correctly yet 
vaguely  

Described 
discrepancy 
correctly and 
clearly  

Generating 
hypothesis for 
a bug causing 
the 
discrepancy  

Did not 
generate a 
hypothesis 

Generated 
hypothesis 
that was 
unrelated to 
discrepancy 

Generated 
hypothesis that 
was partially 
related to 
discrepancy 

Generated 
hypothesis that 
was fully 
related to 
discrepancy 

Locating bug 
Reviewing 
program 
structure to 
investigate 
probable 
location of 
bug  

No attempt 
to locate 
bug 

Line-by-line 
review of 
program; no 
review of 
program 
structure 

Chunk-by-
chunk review 
of program; no 
review of 
program 
structure 

Thoroughly 
reviewed 
program and 
program 
structure 

Using cues 
while 
examining 
program 

No cue was 
mentioned 

Cues 
mentioned; 
cues unrelated 
to bug 

Cues 
mentioned; 
cues partially 
related to bug 

Cues 
mentioned; 
cues related to 
bug 

Locating bug No attempt 
to locate 
bug 

Attempted but 
failed to locate 
bug 

Bug was 
partially 
located 

Bug was 
correctly 
located 

Fixing bug 
Examining 
program goal 
to determine 
how to fix bug  

Did not 
mention 
program 
goal 

NA NA Mentioned 
program goal 

Revising 
program 

No attempt 
to revise  
program 

Revised 
program 
incorrectly  

NA Revised 
program 
correctly  

Reevaluating 
program after 
revision 

 

No attempt 
to 
reevaluate  

Failed 
numerous 
trial-and-error 
attempts 

Success after 
numerous trial-
and-error 
attempts 

Success 
without trial-
and-error 
attempt 

Concluding  Bug was not 
fixed 

Bug fixed but 
not in 
structurally 
correct 
manner; 
Desired output 
produced 

Bug fixed in 
structurally 
correct 
manner; 
Desired output 
not produced 

Bug fixed in 
structurally 
correct 
manner; 
Desired output 
produced 

 
samples, frequentist methods often lack precision due to 
limitations of the central limit theorem [47]. In the Bayesian 
paradigm, a probability model is set up using a prior 
distribution and then updated using observed data to obtain the 
posterior distribution; the end result is a credible interval that 
represents a distribution of the parameter [48], [49]. The prior 
distribution can be updated through Markov Chain Monte 
Carlo (MCMC) sampling, which samples from the population 
distribution [50]. This is because in the Bayesian approach, 
one assumes that data are fixed and parameters are random 
[47]. It is easier to work with and understand a regression 
model with a limited number of predictors [51]. In addition, 
too many variables in the model may increase the sampling 
variance of model coefficients and decrease the model’s 
descriptive and predictive abilities [51]. The stepwise model 
selection algorithm in Bolstad R package [52] was used to 
extract the potentially useful subset of explanatory variables. 

TABLE II 
DEBUGGING OUTCOME QUALITY RUBRIC 

0 3 5 7 10 

Failed to 
find 
buggy 
block 

Found buggy block 
but not exact 
location requiring 
change(s) in  
value and/or 
sequence; Failed to 
fix 

Found buggy block 
and exact location 
requiring 
change(s) in value 
and/or sequence 
but (b) failed to fix 

Found buggy block 
and exact location 
requiring 
change(s) in value 
and/or sequence; 
Fixed bug partially 

Fixed 
bug 

Note: Two points were deducted (-2) for each unnecessary code change 

 
Prior distributions of inverse gamma for sigma2 and uniform 

prior for Beta values were used. MCMC sampling (11,000 
iterations with 1,000 burn in) was run in MCMCpack R 
package [53] to determine the posterior distribution.  

V. RESULTS 

A. Descriptives of Significant Variables within Each Model  
See Tables III and IV for descriptive statistics of the 

significant predictors for the models predicting debugging 
outcome quality of the lower-complexity task and debugging 
outcome quality of the higher-complexity task. Debugging 
process quality was substantially higher on average (Cohen’s 
d = 4.23) and more tightly clustered around the mean in the 
lower-complexity task (SD = 2.41) than in the higher-
complexity task (SD = 7.55). Word count was slightly higher 
in the higher-complexity debugging task than in the lower-
complexity debugging task (Cohen’s d = 0.3), but its standard 
deviation was two times higher in the higher-complexity 
debugging task versus the lower-complexity debugging task.  

TABLE III 
DESCRIPTIVE STATISTICS: SIGNIFICANT PREDICTORS OF QUALITY WITH WHICH 

PARTICIPANTS DEBUGGED THE LOWER-COMPLEXITY TASK 
Variable Mean SD Min Max SE 
Debugging process quality 82.56 2.41 80 88 8.48e-3 

Performance-avoid goal orientation 10.74 3 5 16 4.78e-3 

Word count 282.2 100.34 157 481 4.81e-6 

Sentiment analysis 0.09 0.05 0.03 0.19 2.001e1 
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TABLE IV 
DESCRIPTIVE STATISTICS: SIGNIFICANT PREDICTORS OF QUALITY WITH WHICH 

PARTICIPANTS DEBUGGED THE HIGHER-COMPLEXITY TASK 
Variable Mean SD Min Max SE 
Debugging process quality 58.85 7.55 45 71 1.1e-2 

Performance approach goal orientation 11.32 3.59 5 18 4.44e-2 

Word count 331 207.73 146 807 1.58e-5 

 
Debugging outcome quality scores were substantially higher 

(Cohen’s d = 2.53) and scores were more tightly clustered 
around the mean in the lower-complexity task (SD = 1.3) than 
in the higher-complexity task (SD = 4.42; see Table V). This is 
not surprising in that defining the problem and goal state 
required more effort for the higher-complexity task. 

TABLE V 
DESCRIPTIVE STATISTICS: DEBUGGING OUTCOME QUALITY 

Variable Mean SD Min Max SE 
Lower-complexity task debugging 

outcome quality 
18.56 1.3 16 20 3.9e-2 

Higher-complexity task debugging 
outcome quality 

10.31 4.4 -1 17 4.92e-
1 

 

B. Convergence Diagnosis 
Trace plots showed sufficient state change, histograms and 

density plots showed no problems in normality in the 
simulated samples, and autocorrelation plots showed no issue. 

C. How do process and motivation variables predict the 
quality with which participants debug low complexity 
programs? 
The maximum number of predictors a Bayesian regression 

model can take with sample size n =19 is 12. Thus, we needed 
to remove a few predictors before fitting the full model. We 
tried to fit multiple initial full models and went through the 
selection procedure multiple times to decide which predictors 
to remove. From the pool of potential predictors (n = 18), we 
removed seven: achievement emotions in STEM, self-
regulated learning ability, views of coding, technology 
interest, perceptions of STEM careers, engineering interest, 
and mathematics domain identification, because these 
predictors either had large (>= 4) variance inflation factors, or 
were not significant. The remaining predictors were: (1) 
science interest, (2) mathematics interest, (3) computer science 
interest, (4) English domain identification, (5) computer 
science and engineering domain identification. (6) mastery 
goal orientation, (7) performance-approach goal orientation, 
(8) performance-avoid goal orientation, (9) debugging process 
quality (lower-complexity debugging task), (10) sentiment 
analysis (lower-complexity debugging task), and (11) word 
count (lower-complexity debugging task). We then used the 
step() function (using both backward and forward direction 
and AIC criterion) to decide on final predictors. AIC penalizes 
models with more predictors and if two models explain the 
same amount of variation, the model with fewer predictors is 
preferred. AIC removed the following seven predictors from 
the model: science interest, mathematics interest, computer 
science interest, English domain identification, computer 
science and engineering domain identification, performance 
approach goal orientation, and mastery goal orientation. The 

final model (See Table VI) was: LCDOQ = 0.3 * LCDPQ - 
0.19 * PAvGO - 0.003 *LCWC - 9.3 * LCSA - 2.97.  
The Beta for lower-complexity task debugging process 

score was 0.3. For each one-point increase in lower- 
complexity task debugging process quality, one can expect an 
increase in lower-complexity task debugging outcome quality 
score of 0.3 points. The Beta for performance-avoid goal 
orientation was -0.19. For each one-point increase in 
performance-avoid goal orientation, one can expect a decrease 
in lower-complexity task debugging outcome quality of 0.19 
points. The Beta for lower-complexity debugging task word 
count was -0.003. For each additional word typed in the 
lower-complexity task, one can expect a decrease in lower-
complexity debugging outcome quality of 0.003 points. The 
Beta for lower-complexity task sentiment analysis score was -
9.3. For each one-point increase in lower-complexity task 
sentiment analysis, one can expect a decrease in lower-
complexity task debugging outcome quality of 9.3 points. 

TABLE VI 
BAYESIAN MULTIPLE REGRESSION MODEL PREDICTING LOWER-COMPLEXITY 

TASK DEBUGGING OUTCOME QUALITY (LCDOQ) 
Coefficients Estimate (95% CrI) Naïve SE 
(Intercept) -2.97 (-19.66, 14.17) 8.47e-2 
Lower-complexity debugging process quality 

(LCDPQ) 
0.3 (0.1, 0.5) 9.91e-4 

Performance-avoid goal orientation (PAvGO) -0.19 (-0.34, 0.49) 7.53e-4 

Lower-complexity Word count (LCWC) -0.003 (-0.007, 0.002) 2.38e-5 
Lower-complexity sentiment analysis (LCSA) -9.3 (-18.85, 0.34) 4.82e-2 

Note. MCMC iterations = 10,000; 95% CrI = 95% credible interval 
 

D. How do process and motivation variables predict the 
quality with which participants debug high complexity 
programs? 
From the pool of potential predictors (n = 18), we removed 

seven: engineering interest, computer science interest, science 
interest, achievement emotions in STEM, self-regulated 
learning, mathematics domain identification, and views of 
coding because these predictors either had large (>= 4) 
variance inflation factors, or were not significant. The 
remaining predictors were: (1) performance-approach goal 
orientation, (2) performance-avoid goal orientation, (3) 
mastery goal orientation, (4) mathematics interest, (5) 
technology interest, (6) STEM career interest, (7) English 
domain identification, (8) computer science and engineering 
domain identification, (9) debugging process quality (higher-
complexity debugging task), (10) word count (higher-
complexity debugging task), and (11) sentiment analysis 
(higher-complexity debugging task). Then we fitted the full 
model and used the AIC criterion to remove the following 
eight variables: higher complexity sentiment analysis, 
mathematics interest, technology interest, STEM career 
interest, English domain identification, computer science and 
engineering domain identification, performance-avoid goal 
orientation, and mastery goal orientation. The final model (See 
Table VII) was: HCDOQ = 0.45 * HCDPQ + 0.41 * PApGO - 
0.005 * HCWC - 19.17.  

TABLE VII 
BAYESIAN MULTIPLE REGRESSION MODEL PREDICTING DEBUGGING OUTCOME 

QUALITY FOR THE HIGHER-COMPLEXITY DEBUGGING TASK (HCDOQ) 
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Coefficients Estimate (95% CrI) Naïve SE 
(Intercept) -19.17 (-32.75, -5.18) 6.96e-2 
Higher-complexity debugging process  
quality (HCDPQ) 

0.45 (0.22, 0.67) 1.14e-3 

Performance-approach goal orientation 
(PApGO) 

0.41 (-0.05, 0.86) 2.28e-3 

Word count (HCWC) -0.005 (-0.014, 0.003) 4.28e-5 

Note. MCMC iterations = 10,000; 95% CrI = 95% credible interval 
 
The Beta for higher-complexity task debugging process 

quality was 0.45. For each one-point increase in higher-
complexity task debugging process quality, one can expect an 
increase in higher-complexity task debugging outcome quality 
of 0.45 points. The Beta for performance-approach goal 
orientation was 0.41. For each one-point increase in 
performance-approach goal orientation, one can expect a 
decrease of 0.41 points in higher-complexity task debugging 
outcome quality. The Beta for lower-complexity task word 
count was -0.005. For each additional word typed in the 
higher-complexity task, one can expect a decrease in higher-
complexity task debugging outcome quality of 0.005 points. 

VI. DISCUSSION 

A. Similarities in Predictors of Debugging Quality 
In this study, the strongest positive predictor of debugging 

quality for both the lower-complexity and higher-complexity 
debugging tasks was debugging process quality. This indicates 
that well-designed scaffolding has great potential to improve 
debugging quality among ECE teachers. Quality of problem-
solving processes has consistently been shown to be a positive 
predictor of problem solving quality [54], [55]. And yet, 
studies that predict success in introductory computing courses 
often identify different top predictors: predicted grade in the 
class [56], comfort level [57], and total debugging time [58]. 
Word count for the higher- and lower-complexity tasks had 

similar Betas (-0.003 and -0.005, respectively). Thus, writing 
more or less in response to scaffolding prompts did not change 
debugging quality much, which goes against much scaffolding 
literature [23], [24]. One may expect that as more is 
articulated in response to scaffolding, learning would increase. 
If more changes were made and documented, word count may 
have been higher and debugging quality lower compared to 
students who documented less changes (in the scaffolding, 
they needed to list changes they made, explain why they made 
each change, and report the consequence of each change). But 
this could have been counter-balanced by the typical finding 
that more written in response to scaffolding indicates higher 
achievement, resulting in the Betas close to zero. 

B. Differences in Predictors of Debugging Quality 
While participants wrote more words on average (ES = 0.3) 

in response to scaffolding when engaging with the higher-
complexity debugging task, the quality with which they 
debugged the higher-complexity debugging task was 
substantially lower (ES = 4.23) than the quality with which 
they debugged the lower-complexity task. Participants may 
have engaged more deeply with the scaffolding when they 
were engaging with a demonstrably more difficult debugging 
task. But this did not translate to stronger debugging 
performance. It is thus critical to carefully unpack predictors 

of debugging outcome quality to understand what led to 
stronger and weaker debugging outcome quality. 
That performance-approach goal orientation positively 

predicted higher-complexity debugging outcome quality but 
did not predict lower-complexity debugging quality makes 
sense in that performance approach goals are associated with 
strong performance in high challenge contexts, but not in low-
challenge contexts [13]. But performance approach goal 
orientation has also been associated with help avoidance and 
anxiety [59]. Avoiding help can lead to ignoring scaffolding 
[60] and procrastination when self-efficacy is low [61].  
Learners with performance-avoid goal orientations often 

refrain from engaging in activity so as to avoid appearing less 
competent than peers [62]. So it makes sense that having a 
performance-avoid goal orientation is a negative predictor of 
lower-complexity debugging quality. But yet it is not so for 
the higher-complexity debugging task. One possibility is that 
participants who were higher in performance-avoid goal 
orientation simply asked the instructor for hints or the answer, 
rather than engage deeply with the higher-complexity 
debugging task. Future research may add an observation 
checklist to quantify the number of times participants ask the 
instructor for hints or the answer.  
Intriguingly, sentiment analysis was associated with a large 

negative Beta for the lower-complexity debugging task. This 
was the strongest predictor from among the two Bayesian 
regression models. Thus, as what people write in response to 
scaffold prompts when debugging a lower-complexity 
program demonstrates a more negative valence, debugging 
quality improves. Note that sentiment analysis is performed by 
a computer with no human intervention. When the computer 
deems writing to be more negatively valenced, that does not 
necessarily mean that the participant wrote negatively worded 
posts such as “I hate this scaffolding.” Rather, a response to 
scaffold prompt of “I did X, but I should have done Y,” would 
likely be interpreted as negatively valenced. However, that is 
the type of response that would lead to better debugging, as it 
evidences critical reflection on action, and on how to improve.  

C. Notable Absences from the Final Models 
The absence of mastery goals from the final models is 

striking because such are assumed to be the best predictor of 
persistence in the face of difficulty [63]. Participants with 
mastery goal orientations are said to engage in high challenge 
tasks because doing so has the potential to promote learning 
[11], [12]. Still, the regression models in this paper predicted 
debugging outcome quality, not willingness to engage in 
debugging. Furthermore, much research does not find a link 
between mastery goals and cognitive learning outcomes [64].  
It is surprising that CS and engineering domain 

identification was not in the final models. Future studies 
should use additional data sources (e.g., interviews) to gauge 
participants’ CS and engineering domain identification. 
That STEM career interest was not a significant predictor 

makes sense in that all but one participant were ECE majors, 
presumably because of an interest in being ECE teachers.  

D. Limitations and Threats to Validity 
The study is observational and thus no causal relation 

between a participant’s debugging process and motivation 
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variables and debugging outcome quality can be found. Due to 
the nature of these process and motivation variables, it is not 
possible to make the study a controlled experiment. 
Sample size was small, which can lead to erroneous 

conclusions. Using a Bayesian approach can partially mitigate 
such concerns. By generating a distribution of true effects 
instead of a single point estimate, Bayesian regression can 
avoid overfitting, a problem often associated with Maximum 
Likelihood linear regression. However, non-informative priors 
can become informative with small sample size [47].  
Using self-report data related to motivation relies on 

participants’ appropriate interpretation of motivational 
constructs and principles. But this concern is strongest among 
K-12 participants [65]. This study included a behavior-related 
data source related to motivation: sentiment analysis of 
scaffolding responses and debugging reflections. Future 
research may consider engaging in further behavioral-based 
data collection methods related to motivation [65]. 
Because participants only engaged in two debugging tasks 

using the same Ozoblockly level and supported by scaffolding, 
only one debugging task for each debugging complexity level 
was used in this study. Future studies should employ more 
than one debugging task for each complexity level because 
different predictors and corresponding Betas could emerge for 
debugging outcome quality for different programming errors. 
Only one block-based coding language (Ozoblockly) was 

used. It is beyond the scope of this paper to determine whether 
results can be generalized to other block-based coding 
languages. But Ozoblockly is similar to other block-based 
coding languages. 

VII. CONCLUSION 
Debugging process quality was a positive predictor, and 

performance-avoid goal orientation, and word count and 
sentiment analysis were negative predictors of the quality with 
which participants debugged a lower-complexity program. 
Debugging process quality and performance-approach goal 
orientation were positive predictors, and word count was a 
negative predictor of the quality with which participants 
debugged a higher-complexity program. This paper has 
important implications. First, scaffolding should challenge 
learners to engage in constructive criticism of their work. 
Greater challenge may cause writing sentiment to become 
more negatively valenced, but it can in turn lead to stronger 
debugging outcome quality. Next, performance-avoid goal 
orientations need to be addressed, because they are deleterious 
to the quality with which learners debug lower-complexity 
debugging tasks. Finally, scaffolding should enhance 
performance-approach goal orientations, as such are positive 
predictors of debugging quality of higher-complexity tasks. 
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