IEEE TRANSACTIONS ON EDUCATION

Using process and motivation data to predict the
quality with which preservice teachers debugged
higher and lower-complexity programs

Brian R. Belland, ChanMin Kim, Anna Y. Zhang, Afaf Baabdullah, and Eunseo Lee

Abstract - Contribution: This study indicates that supporting
debugging processes is a strong method to improve debugging
outcome quality among preservice, early childhood education
(ECE) teachers.

Background: Key to preparing ECE teachers to teach computer
science is helping them learn to debug. Little is known about how
ECE teachers’ motivation and debugging process quality
contributes to debugging outcome quality.

Research Questions: How do debugging process and motivation
variables predict the quality with which participants debug
lower- and higher-complexity programs?

Method: A Bayesian multiple linear regression model with
debugging process and motivation variables as predictors was
used to predict debugging outcome quality. An inverse gamma
prior distribution for sigma? and uniform prior distribution for
Betas was used.

Findings: The strongest positive predictor of debugging outcome
quality for both the lower-complexity and higher-complexity
debugging task was debugging process quality.

Index terms —computing education; teacher learning;
regression analysis; software debugging

I. INTRODUCTION

Within early childhood education (ECE), computer science
(CS) is often taught by inviting children to control robots
using block-based programming [1], [2]. Within block-based
programming, bugs can occur, and resolving such can be
challenging [3]. In this study, preservice, ECE teachers used
debugging scaffolding. Motivational and process variables
were used to predict the quality with which they completed
lower- and higher complexity debugging tasks.

In the next sections, background literature is described,
research questions are articulated, method is described, and
results are presented and discussed, including a statement of
limitations and conclusions.

II. BACKGROUND

A. Debugging
In this study, we focused on debugging of preservice ECE

This Manuscript received July 22, 2020; revised December 11, 2020 and
January 14, 2021; accepted January 29, 2021. This work was supported by the
National Science Foundation (USA) under grants 1906059 and 1927595.
(Corresponding author: Brian R. Belland).

B. R. Belland (email: bbelland@psu.edu), A. Y. Zhang, and E. Lee are with
the Department of Educational Psychology, Counseling, and Special Education,

teachers because of its importance in programming and also its
relation to motivation to learn. Debugging is the process of
identifying faulty code or logic usage, determining how to fix
it, and fixing it [4], [5]. Debugging skill is central to
programming success not only in text-based programming but
also in block-based programming [3]. Still, challenges with
debugging cause frustration at best, and dropping out of CS
pathways at worst [4], [6]. Novice programmers often
examine isolated sections of code for bugs, attempt to fix what
they find, and fail to consider how that section of code
interacts with remaining code [7], [8]. Unskillful debugging
often creates new bugs, which deepens difficulties with
debugging because new bugs are often unnoticed [4], [9].
Debugging skills also have a close relation with the
programmer’s self-efficacy [6]. As such, the need for
programming instruction with an emphasis on debugging has
received increasing attention in CS education [3], [10].

B. Motivation

To get a more complete picture of preservice ECE teachers’
debugging process and outcomes, their motivational variables,
including goal orientations [11] [12], interests [16], and
stereotypical conceptions [14], [15], need to be understood.
Achievement goal orientation refers to what an individual
wishes to accomplish within a learning task. Individuals with
mastery goals aim to achieve mastery of content, individuals
with performance-approach goals aim to demonstrate
competence, and individuals with performance-avoid goals
avoid challenging tasks to avoid appearing incompetent [11],
[12]. While performance-avoid goal orientations are almost
always maladaptive, performance-approach goal orientations
can be adaptive when faced with high challenge tasks [13].
Lack of domain identification is often associated with
stereotype threat, in which knowledge of a stereotype (e.g., CS
jobs are not seen as feminine), causes participants to perform
worse in a domain-relevant task than their capability would
predict [14], [15]. Stereotype threat impacts one’s motivation
to pursue CS careers [16].

C. Scaffolding
As part of our effort in educating preservice ECE teachers,

Pennsylvania State University (Penn State), University Park, PA 16802 USA

C. Kim is with the Departments of Learning Performance Systems and
Educational Psychology, Counseling, and Special Education, Penn State and A.
Baabdullah is with the Department of Learning Performance Systems, Penn
State, and the Department of Curriculum and Instruction, King Saud University,
Riyadh, Saudi Arabia

IEEE TRANSACTIONS ON EDUCATION

we used debugging scaffolding in this study. Scaffolding
supports learners as they engage in problem solving by
problematizing task elements essential to gaining problem
solving skill, while simplifying unessential elements [17],
[18]. Scaffolding forms include question prompts to which
learners respond, and experts modeling how they would think
about a similar problem [19], [20]. Ill-structured problem-
solving ability is enhanced more when learners receive
scaffolding than when they receive lecture, with the largest
effects at the university, graduate, and adult levels [21], [22].

Analysis of scaffolding responses can be used to capture not
only debugging knowledge and process, but also attitudes
toward debugging. For example, word count can be used as a
proxy for response quality, because respondents with good
programming knowledge and mindful thinking are likely to
generate more words to answer prompts than respondents
without. Several studies have indicated word count to be a
strong predictor of domain knowledge [23], [24]. Sentiment
analysis has been used to monitor learners’ attitudes toward
learning and engagement/performance in learning [25], [26].

The current study is innovative because it uses only data
that can be collected before and during debugging to predict
debugging outcome quality, thereby providing the opportunity
to remediate during real time. No prior, published study
predicted debugging outcome quality using motivation
variables, sentiment, or word count. Existing work uses
variables such as prior performance, hint usage, activity
progress, interface interactions, and binary classification of
passing or failing [27]. This study employs a numeric scale to
address how participants engage in different debugging stages
and substages (see Table I in the method section).

III. RESEARCH QUESTIONS

1. How do process and motivation variables predict the
quality with which participants debug low complexity
programs?

2. How do process and motivation variables predict the
quality with which participants debug high complexity
programs?

IV. METHOD

A. Setting and Participants

The study took place during 3 sessions of 2.5 h each of a
class on play-based activities in ECE in a large university in
the eastern USA. Nineteen students (all female) participated.
Eighteen were ECE majors (4 seniors, 10 juniors, and 4
sophomores) who had completed field experience at the
infant/toddler, preschool, kindergarten, or early elementary
levels. The other was a non-major who had not completed
field experience. Two participants (10%) were Black, while
the rest were white. That participants were all female aligns
with demographics in the ECE and elementary workforces, of
which 97.4% [28] and 89% [29], respectively, are women.
Also, most (78%) ECE teachers in the USA are white [30].

B. Materials

1) Ozobots
Ozobot Evos are small robots that can sense colors, lines,
and obstacles and use such information for navigation and in

logic. Ozobots were chosen because they are simple enough
for preschool, while still involving coding (Ozoblockly) [31].
2) Scaffolding

Scaffolding design was informed by performing (a) a two-
step cluster analysis of an expanded coding dataset from a
meta-analysis [21], (b) a literature review on debugging
education, and (c) a synthesis of Kim et al.’s scaffolding
recommendations for debugging in block-based programming
[3]. The cluster analysis generated a list of scaffolding features
of clusters where scaffolding led to medium or high effect
sizes in university or graduate-level CS or engineering classes.
The scaffolding invited participants to: (a) identify blocks
(e.g., movement) used within the buggy code, (b) identify the
order in which blocks were used, (c) create hypotheses about
the bug that caused the unexpected robot behavior, and
articulate reasons for each hypothesis, (d) articulate changes
made to test each hypothesis, why the changes were made,
what happened after the changes were made, and the current
sequence of blocks, and (e) reflect on the process.
3) Debugging tasks

Complexity of debugging tasks is defined by number of
tasks/goals and sub tasks/goals, the degree of connectivity
among bugs, and the clarity of the presented goal state [32].

wait (I3 - B3 second(s)
EEY energy ~ REME 0 |
L2 obstacle ~ REME 0 |
n follow line to next intersection or line end
repeat Lo line end ~ |
B © i get intersection/line-end color [EE3)

intersection/line-end color

do say color get intersection/line-end color

energy ~ i+~ JE{ 1]

EEl energy ~ B0

ﬂ set top light color

® i get intersection/line-end color [ER@ ~ intersection/line-end color

do say color get intersection/line-end color

[obsiacio]+ - | 1 |

-8 obstacle v RG)

[E#f set top light color

@
e play

ﬂ set top light color

Fig. 1. Higher-complexity buggy code

The higher-complexity task (see Fig. 1) included the
following CS concepts: variables, logic, loops and elementary
operations. In it, participants needed to debug a program in
which an Ozobot used line navigation to follow a grid with red
and green intersections. The program used equations to (a) add
one point to the Energy score and play a happy sound when
the Ozobot passed through a green intersection, and (b) add
one point to the Obstacle score and play a sad sound when it
passed through a red intersection. The Ozobot was supposed
to move along the grid as long as obstacle points were less
than or equal to energy points. But one bug did not allow the
Ozobot to make it out of a small area of the grid, and the other

IEEE TRANSACTIONS ON EDUCATION

bug caused the Ozobot to never stop moving even when
Obstacle points are greater than Energy points. To fix the
program, participants needed to examine Ozobot movement
under four conditions: when the Ozobot passes a green
intersection, when the Ozobot passes a red intersection, when
energy points are greater than or equal to obstacle points, and
when energy points are less than obstacle points. Another
factor that made this task complex was the connectivity among
bugs. One bug hindered observing the effect of fixing the
other bug; participants needed to fix one bug before the other
to judge the appropriateness of debugging.

The lower-complexity task (see Fig. 2) included the CS
concepts of variables, logic, loops and geometry. Participants
needed to debug a program that instructed the Ozobot to make
an octagon pattern. Bugs caused the Ozobot to not turn the
correct angle and not turn enough times. The goal state was
clear because participants were given a printed octagon that
they needed to make the Ozobot trace. Participants needed to
fix values within two variables: angle (rotate block) and the
number of repetitions (repeat while block). These bugs were
not isolated from each other; both had to be fixed to perform
the desired behavior. However, without fixing one, the effect
of the other bug was easily observable. For example, without
changing 5 to 8 in the repeat while block, the robot turns were
noticeably misaligned with the octagon pattern.

-8 rotate v B0 ﬂ
repest (1IR3 5]

move distance: mm speed: mm/s

rotate angle:

deg speed: mm/s
change by

terminate program and switch to idle

Fig. 2. Lower-complexity buggy code.

C. Data Collection

1) Presurvey

The STEM interest survey section contained 30 items using
a 7-point Likert scale to measure interest in STEM content and
careers [33], [34]. A prior study using this scale reported good
reliability with Cronbach’s o = 0.89 - 0.91 [34]. A modified
version of the a questionnaire on academic emotions in
mathematics [35], contained 7 items using a 5-point Likert
scale (e.g., When doing my STEM-related homework, I am in
a good mood.). A recent study used the scale, reporting good
reliability (o = .90) [36]. The Learning Self-Regulation
Questionnaire (LSRQ) section contained 6 items with 5-point
Likert scale that assessed participants’ reasons for engaging in
STEM learning behaviors (e.g., I would feel bad about myself
if I didn’t do STEM-related class activities) [37]. LSRQ
showed good reliability (o. = .83) in a prior study [38]. The
Domain Identification Measure contained 16 items on a 5-
point Likert scale that assesses identification with
Mathematics and English (e.g., I do badly in tests of math)
[39], and 8 items on a 5-point Likert scale that assesses

perceptions of CS and engineering (e.g., Computer science is
stressful). Prior studies indicate that it exhibited good
reliability (c = 0.9-0.93) [39], [40]. The Patterns of Adaptive
Learning Section contained 14 items on a 5-point Likert scale
that measure personal goal orientations (e.g., One of my goals
is to show others that I’'m good at my class work); good
reliability (o = 0.7-0.89) for the scale was found in prior
studies [41]. The Views of Coding section assessed attitudes
toward coding using 19 questions on a 5-point Likert scale
(e.g., I think that coding is interesting.) [42].

Mean value imputation [43] was used to fill in missing data
(about 1% of presurvey data). Mean value imputation is
appropriate, and accuracy of estimates using imputed data is
likely good, because less than 5% of data was missing [44].

2) Debugging process quality rubric

Quality of debugging processes was assessed using a rubric
to evaluate participants’ processes of identifying, locating, and
fixing bugs (see Table I). Identifying bugs included the
subprocesses of reviewing program, running program to
evaluate output, describing discrepancy between program
goal and program output, and generating hypothesis for a bug
causing the discrepancy. Locating bugs included the
subprocesses of reviewing program structure to investigate
probable location of bug, using cues while examining
program, and locating bug. Fixing bugs included the
subprocesses of examining program goal to determine how to
fix bug, revising program, reevaluating program after
revision, and concluding. Each subprocess was evaluated on a
scale from 1 (poor quality) to 4 (high quality).

Two raters applied the rubric independently to each group’s
scaffold responses. Before coming to consensus, interrater
reliability was 0.954, based on the intraclass correlation
coefficient metric. The raters met to discuss and reach
consensus on scores. A unique debugging process quality
score was assigned to each team’s debugging of the lower-
complexity task and the higher-complexity task.

3) Debugging outcome quality rubric

The debugging outcome quality rubric (see Table II)
assessed whether participants found the bug and fixed it. Two
raters applied the rubric independently to assess the final code
for each debugging task, and then came to consensus.
Interrater reliability before coming to consensus was 0.88, as
measured by the intraclass correlation coefficient.

4) Word count

A unique word count was assigned to each team’s scaffold
responses and debugging reflections of the lower-complexity
and higher-complexity debugging tasks. The word counts
were then averaged to arrive at 2 unique word counts for each
team: (a) word count of scaffold responses during the lower-
complexity task, and reflections on such, and (b) word count
of scaffold responses during the higher-complexity task, and
reflections on such. Missing data was not included in the
calculations of averages in the absence of evidence that the
student saw the writing prompt and failed to write anything.
5) Sentiment analysis

The SentimentAnalysis package for R [45] was used to
determine the valence of scaffolding responses and debugging
process reflections. Analysis was at the level of each entire
response to a prompt or reflection question [46]. Possible

IEEE TRANSACTIONS ON EDUCATION

scores ranged from -1 to 1. Scores were averaged to arrive at 2
unique sentiment analysis scores for each team: (a) sentiment
analysis of scaffold responses while debugging the lower-
complexity task, and reflections on such, and (b) sentiment
analysis of scaffold responses while debugging the higher-
complexity task, and reflections on such.

D. Analysis

Bayesian multiple linear regression was used to predict the
quality with which participants debugged the higher- and
lower-complexity debugging tasks because, with small

TABLEI
DEBUGGING PROCESS QUALITY RUBRIC
Points assigned
1 2 3 4
Identifying bug

Reviewing Did not NA Reviewed code; Reviewed code;

code review code Block list Block list
incomplete complete

Running Did not run NA NA Ran program

programto program

evaluate

output

Describing Did not Described Described Described

discrepancy describe discrepancy discrepancy discrepancy

between discrepancy incorrectly correctly yet correctly and

program goal vaguely clearly

and output

Generating Did not Generated Generated Generated

hypothesis for generate a hypothesis hypothesis that hypothesis that

a bug causing hypothesis that was was partially was fully

the unrelated to related to related to

discrepancy discrepancy discrepancy discrepancy

Locating bug

Reviewing No attempt Line-by-line Chunk-by- Thoroughly
program to locate review of chunk review reviewed
structureto bug program; no of program; no program and
investigate review of review of program
probable program program structure
location of structure structure
bug
Using cues No cue was Cues Cues Cues
while mentioned mentioned; mentioned; mentioned;
examining cues unrelated cues partially cues related to
program to bug related to bug bug
Locating bug No attempt Attempted but Bug was Bug was
to locate failed to locate partially correctly
bug bug located located
Fixing bug
Examining Did not NA NA Mentioned
program goal mention program goal
to determine program
how to fix bug goal
Revising No attempt Revised NA Revised
program torevise program program
program incorrectly correctly
Reevaluating No attempt Failed Success after Success

program after to numerous numerous trial- without trial-

revision reevaluate trial-and-error and-error and-error
attempts attempts attempt

Concluding Bug was not Bug fixed but Bug fixed in Bug fixed in

fixed not in structurally structurally

structurally correct correct
correct manner; manner;
manner; Desired output Desired output

Desired output not produced
produced

produced

samples, frequentist methods often lack precision due to
limitations of the central limit theorem [47]. In the Bayesian
paradigm, a probability model is set up using a prior
distribution and then updated using observed data to obtain the
posterior distribution; the end result is a credible interval that
represents a distribution of the parameter [48], [49]. The prior
distribution can be updated through Markov Chain Monte
Carlo (MCMC) sampling, which samples from the population
distribution [50]. This is because in the Bayesian approach,
one assumes that data are fixed and parameters are random
[47]. 1t is easier to work with and understand a regression
model with a limited number of predictors [51]. In addition,
too many variables in the model may increase the sampling
variance of model coefficients and decrease the model’s
descriptive and predictive abilities [51]. The stepwise model
selection algorithm in Bolstad R package [52] was used to
extract the potentially useful subset of explanatory variables.

TABLE II
DEBUGGING OUTCOME QUALITY RUBRIC
0 3 5 7 10

Failed to Found buggy block Found buggy block Found buggy block Fixed

find but not exact and exact location and exact location bug
buggy location requiring requiring requiring
block change(s) in change(s) in value change(s) in value

and/or sequence and/or sequence;
but (b) failed to fix Fixed bug partially

value and/or
sequence; Failed to
fix

Note: Two points were deducted (-2) for each unnecessary code change

Prior distributions of inverse gamma for sigma? and uniform
prior for Beta values were used. MCMC sampling (11,000
iterations with 1,000 burn in) was run in MCMCpack R
package [53] to determine the posterior distribution.

V. RESULTS

A. Descriptives of Significant Variables within Each Model

See Tables III and IV for descriptive statistics of the
significant predictors for the models predicting debugging
outcome quality of the lower-complexity task and debugging
outcome quality of the higher-complexity task. Debugging
process quality was substantially higher on average (Cohen’s
d =4.23) and more tightly clustered around the mean in the
lower-complexity task (SD = 2.41) than in the higher-
complexity task (SD = 7.55). Word count was slightly higher
in the higher-complexity debugging task than in the lower-
complexity debugging task (Cohen’s d = 0.3), but its standard
deviation was two times higher in the higher-complexity
debugging task versus the lower-complexity debugging task.

TABLE IIT
DESCRIPTIVE STATISTICS: SIGNIFICANT PREDICTORS OF QUALITY WITH WHICH
PARTICIPANTS DEBUGGED THE LOWER-COMPLEXITY TASK

Variable Mean SD Min Max SE

Debugging process quality 82.56 2.41 80 88 8.48e73
Performance-avoid goal orientation 10.74 3 5 16 4.78e73
Word count 282.2 100.34 157 481 4.81le®
Sentiment analysis 0.09 0.05 0.03 0.19 2.001e?

IEEE TRANSACTIONS ON EDUCATION

TABLE IV
DESCRIPTIVE STATISTICS: SIGNIFICANT PREDICTORS OF QUALITY WITH WHICH
PARTICIPANTS DEBUGGED THE HIGHER-COMPLEXITY TASK

Variable Mean SD Min Max SE
Debugging process quality 58.85 7.55 45 71 1.1e?
Performance approach goal orientation 11.32 3.59 5 18 4.44e?
Word count 331 207.73 146 807 1.58e°

Debugging outcome quality scores were substantially higher
(Cohen’s d = 2.53) and scores were more tightly clustered
around the mean in the lower-complexity task (SD = 1.3) than
in the higher-complexity task (SD = 4.42; see Table V). This is
not surprising in that defining the problem and goal state
required more effort for the higher-complexity task.

TABLE V
DESCRIPTIVE STATISTICS: DEBUGGING OUTCOME QUALITY
Variable Mean SD Min Max SE
Lower-complexity task debugging 18.56 13 16 20 3.9e?
outcome quality
Higher-complexity task debugging 10.31 44 -1 17 4.92e
outcome quality L

B. Convergence Diagnosis

Trace plots showed sufficient state change, histograms and
density plots showed no problems in normality in the
simulated samples, and autocorrelation plots showed no issue.

C. How do process and motivation variables predict the
quality with which participants debug low complexity
programs?

The maximum number of predictors a Bayesian regression
model can take with sample size n =19 is 12. Thus, we needed
to remove a few predictors before fitting the full model. We
tried to fit multiple initial full models and went through the
selection procedure multiple times to decide which predictors
to remove. From the pool of potential predictors (n = 18), we
removed seven: achievement emotions in STEM, self-
regulated learning ability, views of coding, technology
interest, perceptions of STEM careers, engineering interest,
and mathematics domain identification, because these
predictors either had large (>= 4) variance inflation factors, or
were not significant. The remaining predictors were: (1)
science interest, (2) mathematics interest, (3) computer science
interest, (4) English domain identification, (5) computer
science and engineering domain identification. (6) mastery
goal orientation, (7) performance-approach goal orientation,
(8) performance-avoid goal orientation, (9) debugging process
quality (lower-complexity debugging task), (10) sentiment
analysis (lower-complexity debugging task), and (11) word
count (lower-complexity debugging task). We then used the
step() function (using both backward and forward direction
and AIC criterion) to decide on final predictors. AIC penalizes
models with more predictors and if two models explain the
same amount of variation, the model with fewer predictors is
preferred. AIC removed the following seven predictors from
the model: science interest, mathematics interest, computer
science interest, English domain identification, computer
science and engineering domain identification, performance
approach goal orientation, and mastery goal orientation. The

final model (See Table VI) was: LCDOQ = 0.3 * LCDPQ -
0.19 * PAvGO - 0.003 *LCWC-9.3 * LCSA - 2.97.

The Beta for lower-complexity task debugging process
score was 0.3. For each one-point increase in lower-
complexity task debugging process quality, one can expect an
increase in lower-complexity task debugging outcome quality
score of 0.3 points. The Beta for performance-avoid goal
orientation was -0.19. For each one-point increase in
performance-avoid goal orientation, one can expect a decrease
in lower-complexity task debugging outcome quality of 0.19
points. The Beta for lower-complexity debugging task word
count was -0.003. For each additional word typed in the
lower-complexity task, one can expect a decrease in lower-
complexity debugging outcome quality of 0.003 points. The
Beta for lower-complexity task sentiment analysis score was -
9.3. For each one-point increase in lower-complexity task
sentiment analysis, one can expect a decrease in lower-
complexity task debugging outcome quality of 9.3 points.

TABLE VI
BAYESIAN MULTIPLE REGRESSION MODEL PREDICTING LOWER-COMPLEXITY
TASK DEBUGGING OUTCOME QUALITY (LCDOQ)

Coefficients Estimate (95% Crl) Naive SE

(Intercept) -2.97 (-19.66, 14.17) 8.47e?

Lower-complexity debugging process quality 0.3 (0.1, 0.5) 9.91e*
(LcDPQ)

Performance-avoid goal orientation (PAVGO) -0.19 (-0.34, 0.49) 7.53e*

Lower-complexity Word count (LCWC) -0.003 (-0.007, 0.002) 2.38e"

Lower-complexity sentiment analysis (LCSA) -9.3 (-18.85, 0.34) 4.82e?

Note. MCMC iterations = 10,000; 95% CrI = 95% credible interval

D. How do process and motivation variables predict the
quality with which participants debug high complexity
programs?

From the pool of potential predictors (n = 18), we removed
seven: engineering interest, computer science interest, science
interest, achievement emotions in STEM, self-regulated
learning, mathematics domain identification, and views of
coding because these predictors either had large (>= 4)
variance inflation factors, or were not significant. The
remaining predictors were: (1) performance-approach goal
orientation, (2) performance-avoid goal orientation, (3)
mastery goal orientation, (4) mathematics interest, (5)
technology interest, (6) STEM career interest, (7) English
domain identification, (8) computer science and engineering
domain identification, (9) debugging process quality (higher-
complexity debugging task), (10) word count (higher-
complexity debugging task), and (11) sentiment analysis
(higher-complexity debugging task). Then we fitted the full
model and used the AIC criterion to remove the following
eight variables: higher complexity sentiment analysis,
mathematics interest, technology interest, STEM career
interest, English domain identification, computer science and
engineering domain identification, performance-avoid goal
orientation, and mastery goal orientation. The final model (See
Table VII) was: HCDOQ = 0.45 * HCDPQ + 0.41 * PApGO -
0.005 * HCWC - 19.17.

TABLE VII
BAYESIAN MULTIPLE REGRESSION MODEL PREDICTING DEBUGGING OUTCOME
QUALITY FOR THE HIGHER-COMPLEXITY DEBUGGING TASK (HCDOQ)

IEEE TRANSACTIONS ON EDUCATION

Coefficients
(Intercept)

Estimate (95% Crl) Naive SE
-19.17 (-32.75, -5.18) 6.96e?

Higher-complexity debugging process 0.45 (0.22, 0.67) 1.14e3
quality (HCDPQ)
Performance-approach goal orientation 0.41 (-0.05, 0.86) 2.28¢e3

(PApGO)
Word count (HCWC) -0.005 (-0.014, 0.003) 4.28eS
Note. MCMC iterations = 10,000; 95% CrI = 95% credible interval

The Beta for higher-complexity task debugging process
quality was 0.45. For each one-point increase in higher-
complexity task debugging process quality, one can expect an
increase in higher-complexity task debugging outcome quality
of 0.45 points. The Beta for performance-approach goal
orientation was 0.41. For each one-point increase in
performance-approach goal orientation, one can expect a
decrease of 0.41 points in higher-complexity task debugging
outcome quality. The Beta for lower-complexity task word
count was -0.005. For each additional word typed in the
higher-complexity task, one can expect a decrease in higher-
complexity task debugging outcome quality of 0.005 points.

VI. DISCUSSION

A. Similarities in Predictors of Debugging Quality

In this study, the strongest positive predictor of debugging
quality for both the lower-complexity and higher-complexity
debugging tasks was debugging process quality. This indicates
that well-designed scaffolding has great potential to improve
debugging quality among ECE teachers. Quality of problem-
solving processes has consistently been shown to be a positive
predictor of problem solving quality [54], [55]. And yet,
studies that predict success in introductory computing courses
often identify different top predictors: predicted grade in the
class [56], comfort level [57], and total debugging time [58].

Word count for the higher- and lower-complexity tasks had
similar Betas (-0.003 and -0.005, respectively). Thus, writing
more or less in response to scaffolding prompts did not change
debugging quality much, which goes against much scaffolding
literature [23], [24]. One may expect that as more is
articulated in response to scaffolding, learning would increase.
If more changes were made and documented, word count may
have been higher and debugging quality lower compared to
students who documented less changes (in the scaffolding,
they needed to list changes they made, explain why they made
each change, and report the consequence of each change). But
this could have been counter-balanced by the typical finding
that more written in response to scaffolding indicates higher
achievement, resulting in the Betas close to zero.

B. Differences in Predictors of Debugging Quality

While participants wrote more words on average (ES = 0.3)
in response to scaffolding when engaging with the higher-
complexity debugging task, the quality with which they
debugged the higher-complexity debugging task was
substantially lower (ES = 4.23) than the quality with which
they debugged the lower-complexity task. Participants may
have engaged more deeply with the scaffolding when they
were engaging with a demonstrably more difficult debugging
task. But this did not translate to stronger debugging
performance. It is thus critical to carefully unpack predictors

of debugging outcome quality to understand what led to
stronger and weaker debugging outcome quality.

That performance-approach goal orientation positively
predicted higher-complexity debugging outcome quality but
did not predict lower-complexity debugging quality makes
sense in that performance approach goals are associated with
strong performance in high challenge contexts, but not in low-
challenge contexts [13]. But performance approach goal
orientation has also been associated with help avoidance and
anxiety [59]. Avoiding help can lead to ignoring scaffolding
[60] and procrastination when self-efficacy is low [61].

Learners with performance-avoid goal orientations often
refrain from engaging in activity so as to avoid appearing less
competent than peers [62]. So it makes sense that having a
performance-avoid goal orientation is a negative predictor of
lower-complexity debugging quality. But yet it is not so for
the higher-complexity debugging task. One possibility is that
participants who were higher in performance-avoid goal
orientation simply asked the instructor for hints or the answer,
rather than engage deeply with the higher-complexity
debugging task. Future research may add an observation
checklist to quantify the number of times participants ask the
instructor for hints or the answer.

Intriguingly, sentiment analysis was associated with a large
negative Beta for the lower-complexity debugging task. This
was the strongest predictor from among the two Bayesian
regression models. Thus, as what people write in response to
scaffold prompts when debugging a lower-complexity
program demonstrates a more negative valence, debugging
quality improves. Note that sentiment analysis is performed by
a computer with no human intervention. When the computer
deems writing to be more negatively valenced, that does not
necessarily mean that the participant wrote negatively worded
posts such as “I hate this scaffolding.” Rather, a response to
scaffold prompt of “I did X, but I should have done Y,” would
likely be interpreted as negatively valenced. However, that is
the type of response that would lead to better debugging, as it
evidences critical reflection on action, and on how to improve.

C. Notable Absences from the Final Models

The absence of mastery goals from the final models is
striking because such are assumed to be the best predictor of
persistence in the face of difficulty [63]. Participants with
mastery goal orientations are said to engage in high challenge
tasks because doing so has the potential to promote learning
[11], [12]. Still, the regression models in this paper predicted
debugging outcome quality, not willingness to engage in
debugging. Furthermore, much research does not find a link
between mastery goals and cognitive learning outcomes [64].

It is surprising that CS and engineering domain
identification was not in the final models. Future studies
should use additional data sources (e.g., interviews) to gauge
participants’ CS and engineering domain identification.

That STEM career interest was not a significant predictor
makes sense in that all but one participant were ECE majors,
presumably because of an interest in being ECE teachers.

D. Limitations and Threats to Validity

The study is observational and thus no causal relation
between a participant’s debugging process and motivation

IEEE TRANSACTIONS ON EDUCATION

variables and debugging outcome quality can be found. Due to
the nature of these process and motivation variables, it is not
possible to make the study a controlled experiment.

Sample size was small, which can lead to erroneous
conclusions. Using a Bayesian approach can partially mitigate
such concerns. By generating a distribution of true effects
instead of a single point estimate, Bayesian regression can
avoid overfitting, a problem often associated with Maximum
Likelihood linear regression. However, non-informative priors
can become informative with small sample size [47].

Using self-report data related to motivation relies on
participants’ appropriate interpretation of motivational
constructs and principles. But this concern is strongest among
K-12 participants [65]. This study included a behavior-related
data source related to motivation: sentiment analysis of
scaffolding responses and debugging reflections. Future
research may consider engaging in further behavioral-based
data collection methods related to motivation [65].

Because participants only engaged in two debugging tasks
using the same Ozoblockly level and supported by scaffolding,
only one debugging task for each debugging complexity level
was used in this study. Future studies should employ more
than one debugging task for each complexity level because
different predictors and corresponding Betas could emerge for
debugging outcome quality for different programming errors.

Only one block-based coding language (Ozoblockly) was
used. It is beyond the scope of this paper to determine whether
results can be generalized to other block-based coding
languages. But Ozoblockly is similar to other block-based
coding languages.

VII. CONCLUSION

Debugging process quality was a positive predictor, and
performance-avoid goal orientation, and word count and
sentiment analysis were negative predictors of the quality with
which participants debugged a lower-complexity program.
Debugging process quality and performance-approach goal
orientation were positive predictors, and word count was a
negative predictor of the quality with which participants
debugged a higher-complexity program. This paper has
important implications. First, scaffolding should challenge
learners to engage in constructive criticism of their work.
Greater challenge may cause writing sentiment to become
more negatively valenced, but it can in turn lead to stronger
debugging outcome quality. Next, performance-avoid goal
orientations need to be addressed, because they are deleterious
to the quality with which learners debug lower-complexity
debugging tasks. Finally, scaffolding should enhance
performance-approach goal orientations, as such are positive
predictors of debugging quality of higher-complexity tasks.

VIII. REFERENCES

[1] M. Bers, “The tangibleK robotics program: Applied computational
thinking for young children,” Early Child. Res. Pract., vol. 12, no. 2,
Sep. 2010.

[2] M. Bers and A. Ettinger, “Programming robots in kindergarten to
express identity: An ethnographic analysis,” in Robots in K-12
education, I1GI Global, 2012, pp. 168—184.

[3] C. Kim, J. Yuan, L. Vasconcelos, M. Shin, and R. B. Hill, “Debugging
during block-based programming,” Instr. Sci., vol. 46, no. 5, pp. 767—
787, Oct. 2018, doi: 10.1007/s11251-018-9453-5.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

S. Fitzgerald et al., “Debugging: Finding, fixing and flailing, a multi-
institutional study of novice debuggers,” Comput. Sci. Educ., vol. 18,
no. 2, pp. 93-116, Jun. 2008, doi: 10.1080/08993400802114508.

1. Vessey, “Expertise in debugging computer systems: A process
analysis,” Int. J. Man-Mach. Stud., vol. 23, no. 5, pp. 459—494, Nov.
1985, doi: 10.1016/S0020-7373(85)80054-7.

M. Ahmadzadeh, D. Elliman, and C. Higgins, “An analysis of patterns
of debugging among novice computer science students,” in /7iCSE
’05, Caparica, Portugal, Jun. 2005, pp. 84-88, doi:
10.1145/1067445.1067472.

K. M. Rich, C. Strickland, T. A. Binkowski, and D. Franklin, “A K-8
debugging learning trajectory derived from research literature,” in
SIGCSE 19, Minneapolis, MN, USA, 2019, pp. 745-751, doi:
10.1145/3287324.3287396.

D. Spinellis, “Modern debugging: The art of finding a needle in a
haystack,” Commun ACM, vol. 61, no. 11, pp. 124-134, Oct. 2018,
doi: 10.1145/3186278.

R. McCauley et al., “Debugging: A review of the literature from an
educational perspective,” Comput. Sci. Educ., vol. 18, no. 2, pp. 67—
92, Jun. 2008, doi: 10.1080/08993400802114581.

T. Michaeli and R. Romeike, “Current status and perspectives of
debugging in the k12 classroom: A qualitative study,” in J[EEE
EDUCON 19,2019, pp. 1030-1038.

M. V. Covington, “Goal theory, motivation, and school achievement:
An integrative review,” Annu. Rev. Psychol., vol. 51, no. 1, pp. 171—
200, Feb. 2000, doi: 10.1146/annurev.psych.51.1.171.

P. R. Pintrich, “Multiple goals, multiple pathways: The role of goal
orientation in learning and achievement,” J. Educ. Psychol., vol. 92,
pp. 544-555, 2000, doi: 10.1037/0022-0663.92.3.544.

C. Senko, A. M. Durik, L. Patel, C. M. Lovejoy, and D. Valentiner,
“Performance-approach goal effects on achievement under low versus
high challenge conditions,” Learn. Instr., vol. 23, pp. 60-68, Feb.
2013, doi: 10.1016/j.learninstruc.2012.05.006.

M. Appel and N. Kronberger, “Stereotypes and the achievement gap:
Stereotype threat prior to test taking,” Educ. Psychol. Rev., vol. 24,
pp. 609-635, 2012, doi: 10.1007/s10648-012-9200-4.

D. B. Thoman, J. L. Smith, E. R. Brown, J. Chase, and J. Y. K. Lee,
“Beyond performance: A motivational experiences model of
stereotype threat,” Educ. Psychol. Rev., vol. 25, no. 2, pp. 211-243,
Jun. 2013, doi: 10.1007/s10648-013-9219-1.

S. Cheryan, A. Master, and A. N. Meltzoff, “Cultural stereotypes as
gatekeepers: Increasing girls’ interest in computer science and
engineering by diversifying stereotypes,” Front. Psychol., vol. 6,
2015, doi: 10.3389/fpsyg.2015.00049.

B. Reiser, “Scaffolding complex learning: The mechanisms of
structuring and problematizing student work,” J. Learn. Sci., vol. 13,
pp. 273-304, 2004, doi: 10.1207/s15327809i1s1303_2.

D. Wood, J. Bruner, and G. Ross, “The role of tutoring in problem
solving,” J. Child Psychol. Psychiatry, vol. 17, pp. 89-100, 1976, doi:
10.1111/5.1469-7610.1976.tb00381.x.

S. N. Demetriadis, P. M. Papadopoulos, I. G. Stamelos, and F.
Fischer, “The effect of scaffolding students’ context-generating
cognitive activity in technology-enhanced case-based learning,”
Comput. Educ., vol. 51, pp. 939-954, 2008, doi:
10.1016/j.compedu.2007.09.012.

M. Liu and S. Bera, “An analysis of cognitive tool use patterns in a
hypermedia learning environment,” Educ. Technol. Res. Dev., vol. 53,
no. 1, pp. 5-21, 2005, doi: 10.1007/BF02504854.

B. R. Belland, A. E. Walker, N. J. Kim, and M. Lefler, “Synthesizing
results from empirical research on computer-based scaffolding in
STEM education: A meta-analysis,” Rev. Educ. Res., vol. 87, no. 2,
pp. 309-344, 2017, doi: 10.3102/0034654316670999.

B. R. Belland, A. E. Walker, and N. J. Kim, “A Bayesian network
meta-analysis to synthesize the influence of contexts of scaffolding
use on cognitive outcomes in STEM education,” Rev. Educ. Res., vol.
87, no. 6, pp. 1042-1081, 2017, doi: 10.3102/0034654317723009.

J. E. Blumenstock, “Size matters: Word count as a measure of quality
on wikipedia,” in WWW ’08, Beijing, China, Apr. 2008, pp. 1095—
1096, doi: 10.1145/1367497.1367673.

B. Rehder, M. Schreiner, M. Wolfe, D. Laham, T. Landauer, and W.
Kintsch, “Using latent semantic analysis to assess knowledge: Some
technical considerations,” Discourse Process., vol. 25, no. 2-3, pp.
337-354, Jan. 1998, doi: 10.1080/01638539809545031.

M. Wen, D. Yang, and C. Ros¢, “Sentiment analysis in MOOC
discussion forums: What does it tell us?,” 2014.

IEEE TRANSACTIONS ON EDUCATION

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]

[47]

(48]

[49]

L. C. Yu et al., “Improving early prediction of academic failure using
sentiment analysis on self-evaluated comments,” J. Comput. Assist.
Learn., vol. 34, no. 4, pp. 358-365, 2018, doi: 10.1111/jcal.12247.
A. Emerson et al., “Predicting early and often: Predictive student
modeling for block-based programming environments,” in EDM 2019,
2019, vol. 39, p. 48.

DataUSA, “Preschool & kindergarten teachers | Data USA,” 2020.
Accessed: May 28, 2020. [Online]. Available:
https://datausa.io/profile/soc/preschool-kindergarten-teachers.
National Center for Educational Statistics, “The Condition of
Education - Preprimary, Elementary, and Secondary Education -
Teachers and Staff - Characteristics of Public School Teachers -
Indicator May (2020),” 2020. Accessed: May 28, 2020. [Online].
Available: https://nces.ed.gov/programs/coe/indicator_clr.asp.

G. Saluja, D. M. Early, and R. M. Clifford, “Demographic
characteristics of early childhood teachers and structural elements of
early care and education in the united states,” Early Child. Res. Pract.,
vol. 4, no. 1, 2002.

Ozobot and Evollve, “OzoBlockly,” 2019.
https://ozobot.com/ozoblockly (accessed Aug. 02, 2019).

D. H. Jonassen, “Toward a design theory of problem solving,” Educ.
Technol. Res. Dev., vol. 48, no. 4, pp. 63-85, 2000, doi:
10.1007/BF02300500.

G. Knezek and R. R. Christensen, “STEM Semantics Survey.” 2008,
[Online]. Available:
http://stelar.edc.org/sites/stelar.edc.org/files/STEM Semantics 1 0x.pdf.
R. Christensen, G. Knezek, and T. Tyler-Wood, “Student perceptions
of Science, Technology, Engineering and Mathematics (STEM)
content and careers,” Comput. Hum. Behav., vol. 34, pp. 173-186,
May 2014, doi: 10.1016/j.chb.2014.01.046.

R. Pekrun, T. Goetz, A. C. Frenzel, P. Barchfeld, and R. P. Perry,
“Measuring emotions in students’ learning and performance: The
Achievement Emotions Questionnaire (AEQ),” Contemp. Educ.
Psychol., vol. 36, no. 1, pp. 36-48, Jan. 2011, doi:
10.1016/j.cedpsych.2010.10.002.

J. S. Rosas, “The Achievement Emotions Questionnaire-Argentine
(AEQ-AR): internal and external validity, reliability, gender
differences and norm-referenced interpretation of test scores,” Rev.
Evaluar, vol. 15, no. 1, 2015.

A. E. Black and E. L. Deci, “The effects of instructors’ autonomy
support and students’ autonomous motivation on learning organic
chemistry: A self-determination theory perspective,” Sci. Educ., vol.
84, no. 6, pp. 740-756, 2000, doi: 10.1002/1098-
237X(200011)84:6<740::AID-SCE4>3.0.CO;2-3.

C. P. Cerasoli and M. T. Ford, “Intrinsic motivation, performance, and
the mediating role of mastery goal orientation: A test of self-
determination theory,” J. Psychol., vol. 148, no. 3, pp. 267-286, 2014.
J. L. Smith, C. L. Morgan, and P. H. White, “Investigating a measure
of computer technology domain identification: A tool for
understanding gender differences and stereotypes,” Educ. Psychol.
Meas., vol. 65, no. 2, pp. 336-355, 2005.

J. L. Smith and P. H. White, “Development of the domain
identification measure: A tool for investigating stereotype threat
effects,” Educ. Psychol. Meas., vol. 61, no. 6, pp. 1040-1057, 2001.
C. Midgley et al., Manual for the Patterns of Adaptive Learning
Scales (PALS). Ann Arbor, MI: University of Michigan, 2000.

A. Yadav, N. Zhou, C. Mayfield, S. Hambrusch, and J. T. Korb,
“Introducing computational thinking in education courses,” in
SIGCSE 11,2011, pp. 465-470.

D. J. Sheskin, Handbook of parametric and nonparametric statistical
procedures, 5th ed. Boca Raton, FL, USA: CRC Press, 2011.

J. L. Schafer, “Multiple imputation: A primer,” Stat. Methods Med.
Res., vol. 8, no. 1, pp. 3—15, Feb. 1999, doi:
10.1177/096228029900800102.

S. Feuerriegel and N. Proellochs, SentimentAnalysis R package. 2019.
B. Liu, “Sentiment analysis and opinion mining,” Synth. Lect. Hum.
Lang. Technol., vol. 5, no. 1, pp. 1-167, May 2012, doi:
10.2200/S00416ED1V01Y201204HLTO16.

D. M. McNeish, “Challenging conventional wisdom for multivariate
statistical models with small samples,” Rev. Educ. Res., vol. 87, no. 6,
pp. 1117-1151, Aug. 2017, doi: 10.3102/0034654317727727.

R.J. Little, “Calibrated Bayes: A Bayes/frequentist roadmap,” Am.
Stat., vol. 60, pp. 213-223, Aug. 2006, doi:
10.1198/000313006X117837.

A. Smith and A. Gelfand, “Bayesian statistics without tears: A

[50]

[51]
[52]
[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

sampling-resampling perspective,” Am. Stat., vol. 46, no. 2, pp. 84—
88, 1992, doi: 10.2307/2684170.

A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D.
B. Rubin, Bayesian data analysis, 3rd ed. Boca Raton, FL, USA: CRC
Press, 2013.

M. Kutner, C. Nachtsheim, J. Neter, and W. Li, Applied linear
statistical models, 5th edition. Boston, MA: McGraw-Hill, 2004.

J. Curran, Bolstad: Functions for elementary Bayesian inference.
2018.

A. D. Martin et al., MCMCpack: Markov Chain Monte Carlo
(MCMC) package. 2018.

D. H. Jonassen, Learning to solve problems: A handbook for
designing problem-solving learning environments. New York, NY,
USA: Routledge, 2011.

M. D. Mumford, “Process-based measures of creative problem-
solving skills: II. Information encoding,” Creat. Res. J., vol. 9, no. 1,
p. 77, Jan. 1996, doi: 10.1207/515326934c¢rj0901_7.

N. Rountree, J. Rountree, and A. Robins, “Predictors of success and
failure in a CS1 course,” SIGCSE Bull, vol. 34, no. 4, pp. 121-124,
Dec. 2002, doi: 10.1145/820127.820182.

B. C. Wilson and S. Shrock, “Contributing to success in an
introductory computer science course: A study of twelve factors,” in
SIGCSE °19, New York, NY, USA, 2001, pp. 184188, doi:
10.1145/364447.364581.

C. Watson, F. Li, and J. L. Godwin, “No tests required: Comparing
traditional and dynamic predictors of programming success,” in
SIGCSE 14, New York, Jan. 2014, pp. 469-474, doi:
http://doi.acm.org/10.1145/2538862.2538930.

C. Senko and B. Dawson, “Performance-approach goal effects depend
on how they are defined: Meta-analytic evidence from multiple
educational outcomes,” J. Educ. Psychol., vol. 109, no. 4, pp. 574—
598, May 2017.

I. Roll, R. S. J. d Baker, V. Aleven, and K. R. Koedinger, “On the
benefits of seeking (and avoiding) help in online problem-solving
environments,” J. Learn. Sci., vol. 23, no. 4, pp. 537-560, Oct. 2014,
doi: 10.1080/10508406.2014.883977.

E. D. Deemer, M. Yough, and S. A. Morel, “Performance-approach
goals, science task preference, and academic procrastination:
Exploring the moderating role of competence perceptions,” Motiv.
Emot., vol. 42, no. 2, pp. 200-213, Apr. 2018, doi: 10.1007/s11031-
017-9649-z.

A. Elliot and H. McGregor, “A 2 X 2 achievement goal framework.,”
J. Pers. Soc. Psychol., vol. 80, no. 3, pp. 501-519, Mar. 2001.

M. Vansteenkiste, J. Simons, W. Lens, B. Soenens, L. Matos, and M.
Lacante, “Less is sometimes more: Goal content matters,” J. Educ.
Psychol., vol. 96, pp. 755-764, 2004.

J. L. Meece, E. M. Anderman, and L. H. Anderman, “Classroom goal
structure, student motivation, and academic achievement,” Annu. Rev.
Psychol., vol. 57, no. 1, pp. 487-503, Jan. 2006, doi:
10.1146/annurev.psych.56.091103.070258.

S. M. Fulmer and J. C. Frijters, “A review of self-report and
alternative approaches in the measurement of student motivation,”
Educ. Psychol. Rev., vol. 21, no. 3, pp. 219-246, Sep. 2009, doi:
10.1007/s10648-009-9107-x.

Brian R. Belland ecarned a BA in French from the College of
Wooster in 1999, and a PhD in Educational Technology from
Purdue University in 2008. He is an associate professor of
Educational Psychology at Penn State. He published 1 book, 43
articles, and 9 book chapters. His honors include an NSF
CAREER award, and 6 best paper awards.

ChanMin Kim received a BA in special education from Ewha
Women’s University, Seoul, Korea in 1998, and a PhD in
Instructional Systems from Florida State University in 2007.
She is an associate professor of Learning, Design, and
Technology and Educational Psychology at Penn State. She
published 41 articles and 11 book chapters. She received
multiple research, design, and software programming awards.

IEEE TRANSACTIONS ON EDUCATION

Anna Y. Zhang earned a BS in Statistics from, and is
pursuing a PhD in Educational Psychology at Penn State. Her
awards include the Matthew Rosenshine Fund for Excellence
in Statistics and a Dean’s Graduate Assistantship.

Afaf A. Baabdullah earned a BA in Computers & Education
in 2001. She is pursuing a Ph.D. in Learning, design, and
technology at Penn State, and is faculty in the department of
Curriculum and Instruction at King Saud University.

Eunseo Lee received a BA in English in 2009 from Yonsei
University. She is pursuing a PhD in Educational Psychology
at Penn State.

