IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 2, FEBRUARY 2021 853

Probabilistic Semi-Supervised Learning via
Sparse Graph Structure Learning

Li Wang™, Raymond Chan, and Tieyong Zeng

Abstract— We present a probabilistic semi-supervised learn-
ing (SSL) framework based on sparse graph structure learning.
Different from existing SSL methods with either a predefined
weighted graph heuristically constructed from the input data
or a learned graph based on the locally linear embedding
assumption, the proposed SSL model is capable of learning a
sparse weighted graph from the unlabeled high-dimensional data
and a small amount of labeled data, as well as dealing with
the noise of the input data. Our representation of the weighted
graph is indirectly derived from a unified model of density
estimation and pairwise distance preservation in terms of various
distance measurements, where latent embeddings are assumed
to be random variables following an unknown density function
to be learned, and pairwise distances are then calculated as the
expectations over the density for the model robustness to the data
noise. Moreover, the labeled data based on the same distance
representations are leveraged to guide the estimated density
for better class separation and sparse graph structure learning.
A simple inference approach for the embeddings of unlabeled
data based on point estimation and kernel representation is
presented. Extensive experiments on various data sets show
promising results in the setting of SSL compared with many
existing methods and significant improvements on small amounts
of labeled data.

Index Terms— Graph structure learning, kernel learning,
latent variable model, semi-supervised learning (SSL).

I. INTRODUCTION
EMI-SUPERVISED learning (SSL) [1], [2] aims to
improve the learning problem in the case that small

amounts of labeled data and relatively large amounts of
unlabeled data are available. SSL has been widely used in
many machine learning applications when annotating training
data are time consuming, costly, and error-prone.
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Many SSL algorithms have been proposed in the lit-
erature. They are built on various assumptions of the
given data, including generative models [3], density-region
approaches [4], [5], graph-based methods [1], [6], [7], and
embedding learning [8], [9]. Among these, graph-based meth-
ods have received much attention [1], [2]. The fundamental
assumption of the graph-based methods is that the data are
embedded in a low-dimensional manifold that may be rea-
sonably expressed by a graph, where each vertex is associated
with an input data point and the weight of each edge represents
the similarity between two vertices so that nearby vertices are
more likely to have the same labels. Label propagation [6] and
manifold regularization [10] are two popular graph-based SSL
methods. Besides, generative SSL. models have the advantage
to model the posterior distribution of latent variables with
priors [3].

In graph-based SSL methods, weighted graphs are often
constructed directly from the input data. The neighborhood
graphs are commonly used, e.g., the K-nearest neighbor (NN)
graph. A similarity matrix (often very sparse) is constructed
from the adjacency matrix of the given graph based on some
prefixed similarity functions, such as binary variable 0 and 1
for disconnection and connection, respectively, and the heat
kernel in terms of the Euclidean distances of two points and
the neighborhood connectivities [10]. Although these methods
have been successfully applied to many SSL problems, it could
be very sensitive due to the high dependence on the ad hoc
weighted graph, which becomes unreliable since the curvature
of the manifold and the density of data points may be varied
in different regions of the manifold [11]. Moreover, most
distance-based manifold learning methods suffer from the
curse of dimensionality, i.e., there is little difference in the
distances of pairs of data points [12]. Furthermore, for data
with noise, a precomputed neighborhood graph to approximate
the manifold of data is not reliable anymore. Hence, it is
less robust to directly construct a neighborhood graph in a
high-dimensional space.

Learning a graph from data recently becomes popular for
SSL. The graph is either preoptimized [13]-[19], or jointly
optimized with SSL prediction models [20]-[23] based on cri-
teria, such as locally linear embedding (LLE) [24]. However,
it is well known that LLE has some inherent drawbacks [25],
so these SSL methods also inherit these drawbacks. Moreover,
structure learning methods [11], [26], [27] have been pro-
posed for unsupervised learning, but they are seldom explored
in SSL.

The information that we can leverage to achieve a better
SSL model is not restricted to the data and its small amounts
of labels. Various label priors have been explored, such as
class mass normalization and label bidding as a postprocessing
step [6], and class balance constraint [7]. The discriminative
expectation constraints estimated with labeled data are also
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studied in [3]. In the setting of unsupervised learning, dimen-
sionality reduction methods, such as t-SNE [28] and maxi-
mum variance unfolding (MVU) [29], achieve great success
by assuming to preserve certain information, including the
clustering assignment in a low-dimensional space and pairwise
distances in the reproducing kernel Hilbert space (RKHS),
respectively, in order to better explore the characteristics of the
input data. These learning criteria are proved to be effective
for unsupervised learning, so it might also be useful for SSL.
Moreover, these unsupervised learning methods provide the
capability of exploratory analysis via data visualization with
the natural interpretation. Hence, it is worth exploring these
criteria for traditional SSL, even though embeddings of the
input data have recently been explored in the paradigm of
deep learning [8], [9].

In this article, we propose a novel probabilistic SSL frame-
work by simultaneously taking the following crucially impor-
tant factors into SSL.

1) A sparse similarity matrix is learned from data.

2) Low-dimensional embeddings for data visualization are

optimized for the learning problem.

3) Various priors of the data can be naturally incorporated.
Specifically, we propose to model the density distribution of
latent variables given the input data with small amounts of
labels. Various distance measurements can be employed to
characterize the relationships between any two data points
specifically for the target domain. The expectation distance
preservation criterion over the density leads to the robust
learning of a sparse similarity matrix for capturing the
intrinsic manifold structure of data. Priors related to the
density are incorporated, including the data noise model
based on the shrinkage effect of pairwise distances, and
the prior of low-dimensional embeddings. Supervised labels
guide the learning of density distribution by constraining
their embeddings to be close if their data points are of
the same classes, otherwise to be distant. The optimized
low-dimensional embeddings are then uncovered from the
learned density for data visualization.

The main contributions of this article are listed as follows.

1) A novel probabilistic SSL framework is proposed by
learning a density function over low-dimensional latent
variables from the input data. This framework as a
Bayesian model is flexible to integrate various priors
for characterizing the data in the target domain and
modeling data noise.

2) The distance preservation criterion and the class sep-
arability from a small amount of labeled data as the
supervised information are integrated into the pro-
posed SSL framework. The resulting model shows the
following.

a) A weighted graph is obtained from the data with
an optimized sparse similarity matrix and the guid-
ance of supervised information.

b) Low-dimensional embeddings are uncovered from
the weighted graph or a kernel matrix.

¢) The embeddings are used to infer labels of unla-
beled data for semi-supervised classification and
data visualization.

3) We conduct extensive experiments on synthetic and
benchmark data sets by comparing them with a variety
of state-of-the-art methods in SSL. Our experimental
results show that our proposed model not only achieves

encouraging classification results for SSL but also leads
to an optimized kernel matrix for extracting embeddings
that are built on a learned sparse similarity matrix.
The rest of this article is organized as follows. We first
briefly introduce various existing methods in Section II.
In Section III, we propose a unified probabilistic SSL frame-
work with distance preservation criterion, class separability
criterion, and various priors and then present an optimization
algorithm to solve the reformulated problem. Extensive exper-
iments are conducted in Section IV. We conclude this article
in Section V.

II. RELATED WORK

We briefly discuss our SSL setting and several existing
methods that are most related to this work by illustrating
different perspectives of learning paradigms, including SSL,
kernel learning, and graph structure learning.

The problem of SSL aims to learn a classifier based on
both the labeled and unlabeled data [1], [2]. There are two
SSL paradigms: transductive learning [4], [7], [30], [31]
and inductive learning [8], [10], where transductive learning
applies the classifier to unlabeled data during the training stage
and the classifier does not generalize to unseen data, while
inductive learning learns a parametric function to explicitly
represent the classifier so that it is applicable to unseen data.
For graph-based SSL methods, the graph can either be derived
from data [31] or known as the external domain knowledge,
such as a knowledge graph [32] or a citation network [33]. In
this article, we mainly focus on the transductive SSL, and the
graph is unknown.

Various learning criteria have been explored by existing SSL
algorithms. Transductive SVM [4], [S] maximizes the margin
of the classifier based on low-density separation assumption
so that the classifier lies in a sparse area of the feature space.
Graph-based SSL methods [10], [31] assume that the nearby
vertices on the graph are more likely to have the same labels.
Learning a kernel matrix for supervised classification problem
has been widely studied, e.g., the multiple kernel learning
(MKL) [34], and it is also extended for the graph-based
SSL [35], where the spectrum of the graph Laplacian matrix
derived from data is optimized to achieve a ridge regression
model for SSL classification problems. The kernel matrix is
dense so it is not interpretable for exploring the manifold
structure of the input data as usually represented by a sparse
graph.

Since the graph is the key to the success of the graph-based
SSL methods, improving the quality of the graph has become
one of the hot topics. For example, manually crafted graphs
are often used. In constrained large margin local projection
methods [36], [37], graphs are preconstructed from a K-NN
graph of the labeled data and pairwise constraints of the
class labels, such as must-link (ML) and cannot-link (CL)
constraints.

Inspired by learning the graphs from data for better quality,
the sparse representation techniques, e.g., LLE, are widely
used as a separate step for graph construction. Instead of
manually crafting graphs as in label propagation [30], lin-
ear neighborhood propagation method [38] learns a sparse
graph using LLE, which is then incorporated into the label
propagation for SSL. In [19], class labels are also used for
neighborhood graph construction by defining a novel distance
between the input data points, and the constructed graph is
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further used to improve the flexible manifold embedding [16]
for SSL. For large-scale data, an anchor graph is con-
structed based on anchor points, and the weights are then
obtained by local anchor embedding (LAE) [13]. It is lately
improved by modifying either the graph construction step,
e.g., imposing the absolute operator on the weights of equality
constraints [14], constructing multiple-layer anchors with a
pyramid-style structure [15], or the SSL. model using the flex-
ible manifold embedding [16]. In [17], a graph precomputed
via LLE for the locality information is later incorporated into
MMD-Isomap [18] by preserving pairwise geodesic distance
for SSL. Instead of the conventional graphs, a hypergraph is
constructed using ¢ sparse representation, and then, the hyper-
edge weights and predicted labels are jointly optimized [39].
The graphs obtained by the abovementioned methods highly
rely on the LLE, so they may not work well in the case that
the LLE assumption does not hold [25].

The joint optimization of LLE-type graph learning and
SSL models have also been explored. In [20], local manifold
structure learning and constrained concept factorization are
jointly optimized so as to improve the representation and
discriminating abilities by imposing the consistency among
the data reconstruction, the learned representation, and the
predicted labels. The nonnegative ¢, regularized graph learn-
ing is simultaneously solved with the objective of the positive
and negative label propagation [21] in kernel space for the
improvement of semi-supervised classification [22]. In [40],
the robust embedded label propagation is proposed by simul-
taneously learning LLE-type graph weight and inductive linear
classifier, where ¢, ; norm is fully leveraged to enhance the
robustness of the model to noise. In order to further remove
noise or mixed signs from the soft labels, a triple matrix
recovery mechanism is then introduced to recover the clean
data, labels, and graph weights by fitting the noise using
additive error part [23].

Another approach for graph construction is that the coeffi-
cients from the low-rank representation are used to construct
a graph for SSL [41]. In addition, metric learning is also used
to learn the weights of a graph with the fixed connectivities,
e.g., the weights parameterized by the Gaussian kernel with
the Mahalanobis distance [42], [43]. These methods update the
weights of graphs instead of learning a sparse representation,
S0 it is not easy to control the sparsity of the graph weights.

In the unsupervised setting, kernel learning and graph
structure learning have been studied to capture the intrin-
sic manifold structure of the input data. MVU [29] learns
a kernel matrix by maximizing the variance of the ker-
nel and simultaneously maintaining the pairwise distances
over the set of neighbors. Maximum posterior manifold
embedding (MPME) [44] learns a posterior distribution of
low-dimensional latent variables by preserving the expectation
distances over an unknown density distribution, so it is treated
as a probabilistic version of MVU. MPME owns the advan-
tages to easily incorporate prior information of data. Moreover,
various graph structure learning algorithms [11], [26], [27]
have been proposed to automatically derive a good weighted
graph for dimensionality reduction and clustering. However,
these learning criteria are seldom explored for SSL.

III. PROBABILISTIC SEMI-SUPERVISED LEARNING VIA
SPARSE GRAPH STRUCTURE LEARNING

In this section, we first present the motivation of the
proposed work and then give detailed descriptions of model
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TABLE I
NOTATION AND DEFINITIONS

Notation Definition
c the number of class labels
m the dimension of the latent space

Dy = {(xi, i)},

Dy, = {Xi}?:nl+1

A labeled data set consists of n; data points x; €
R and its label y; € {1,2,...,c}
An unlabeled data set consists of n—mn; data points

Z =z1,...,2n] A matrix of random variables for embedded data
with the ith column z; € R™ corresponding to x;

Zri A random variable for the rth row and the ith
column of Z

Z =f,..., fm]T f, is a column random vector corresponds to the
rthrow of Z,Vr =1,...,m

b, @ Pairwise distance functions over two points in the
latent space and input space, respectively

p, ™, E, KL Density function, prior density, the expectation
function, and KullbackLeibler divergence of two
density functions, respectively

« The Lagrangian multipliers and also the matrix

representation of the learned graph

formulation, optimization method, and the inference of unla-
beled data. For the ease of reference, we summarize some
important notation and definitions in Table I, which will be
used throughout this article.

A. Motivation

As discussed in Section II, graphs are the key information
extracted from the input data for graph-based SSL methods.
The most commonly used graph construction approaches are
considered as some variants of LLE.

1) Vertexes of graphs are defined in the original data
space together with constraints, e.g., simplex constra-
ints [13], [16] and linear constraints with absolute
operator [14].

Vertexes of graphs are defined in some representation
space [17], but the weights are learned from the input
data.

Vertexes of graphs are consistent in the input space,
some representation space and label space [20], or kernel
space and label space [22].

Hence, they inherit the assumption of LLE, that is, a man-
ifold is formed by local patches that are nearly linear and
overlap with one another. However, LLE has its intrinsic
drawbacks [25].

1) It is unavoidable to derive the nonuniform warps and
folds if the sample density is low or the points are
unevenly sampled.

It is very sensitive to noise.

The general metric is not easy to be incorporated except
the inherent Euclidean distance.

It cannot guarantee that the two embedded points must
be different if their corresponding input data points are
different.

A single continuous manifold is assumed, so it is not
proper for multiclass classification problems.

As a result, the graph-based SSL methods discussed in
Section II face similar drawbacks as LLE.

Inspired by overcoming the abovementioned drawbacks
brought by LLE, we, in this article, seek a completely different
approach for learning graphs from the input data. We aim
at estimating a density function for unknown embeddings
given a data set with certain priors. The drawback 1) will

2)

3)

2)
3)

4)

5)
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not be an issue if the manifold is built on a continuous
density function instead of a set of drawn data points.
Moreover, the probabilistic density estimation approach can
easily incorporate priors, such as noise model for draw-
back 2) and a general metric function for calculating proper
pairwise distances between any two input data points for
drawback 3). Furthermore, our approach is built on distance
preservation criterion by simultaneously integrating labeled
data so it does not assume any single continuous manifold.
Hence, the drawbacks 4) and 5) will be resolved.

B. Model Formulation

Let D; = {(x;, y;)}iL, be a labeled data set and D, =
{xi}_,, ;1 be an unlabeled data set, where n data points
{x;}/_, and their associated labels {y;}7_, are sampled from
some unknown distribution. Every data point x;Vi = 1,...,n
resides in R?, and its label y; is assigned as one of the given
set {1,2,...,c} of ¢ classes. There are only n; known labels
although n data points are given. We aim to develop a novel
probabilistic density estimation approach for SSL via graph
structure learning based on ; and D, and then predict the
labels of unlabeled data.

Our method is motivated by the idea of distance preserva-
tion [29], where pairwise distances between data points are
preserved so that the distances between two data points in
the original space can be maintained for their corresponding
embedded points. Based on this motivation, we assume that
both labeled data and unlabeled data share some latent space
in terms of distances. We further infer the class labels of
unlabeled data through this latent space. Moreover, the given
set of labeled data is leveraged to push away data points of
different classes and pull data points of the same classes as
close as possible.

Denote the latent space by R™, where m < d. Let {z;}}_,
with z; € R™Vi, be the latent embeddings associated with the
given data points {x;}?_,. Now, the pairwise distance between
two latent points is defined as

¢(zi,2)) = llzi — 2113 Vi, j M
where the Euclidean distance is used in the latent space.
As mentioned earlier, we assume that data points are sampled
from some unknown distribution, so it is reasonable to assume
there is a density function over the latent variables. To model
the unknown distribution over latent variables, we treat z as a

set of real values sampled from m random vectors of size n
and denote its density function as

r2)=[]r) )
r=1

where Z = [z1,...,2,] = [fi,....£,]7 € R In other
words, the m random vectors {f,}'_, are independent and iden-
tically distributed by following p(f,) with samples in R”". Since
Z is assumed to be a matrix of m x n random variables, (1),
now, stands for a probability distribution instead of a distance
metric. To model the distance metric in the probabilistic latent
space, the expectation of (1) over the given density function
of Z is used. As a result, we define the following function as
the transformed distance in the probability space Vi, j:

E[¢(Zi,zj)] = IE[||zi - zj||§]
= Z/ p(E) (i — z,)%dE, 3)
r=1

where the second equality holds due to (2). It is clear that
the Bayesian average of pairwise distances over the density of
latent embeddings (3) can be more robust than the determin-
istic counterparts (1).

Given labeled data set D;, we aim to maximize the class
separation by minimizing the within-class distances and max-
imizing the between-class distances. To achieve this goal,
we propose to minimize the following function as:

v 1—v
ED] = E z E[¢(Zi,lj)] — - IDI Z E[¢(Zi5zj)]
(i,/)es (i,j))eD
“4)
where S = {(, j)lyi = y;Vi,j = 1,...,m} and D =

{G, )yi # y;Vi,j = 1,...,n;} are pairs of labeled data
points with same and different classes, respectively. |S| is the
size of the set S (same notation for |DJ), and v € [0, 1] is
a parameter to regulate the strength of pushing and pulling
operations on ;. We notice that similar criteria for leveraging
supervised information can be found in the literature. In super-
vised learning, the learning criterion called class separability
is widely used in the linear discriminant analysis (LDA) [45].
In SSL, the ML and CL constraints from labeled data are also
explored [36], [37]. The key advantage of (4) is the robustness
of the class separability criterion to the data noise because of
the Bayesian average on the pairwise distances, which is not
applicable for the abovementioned methods.

For all data points {x;}/_, from both I; and ID,,, the pairwise
distances need to be preserved in the latent space so as to build
the bridge between ID; and D, that is

E[¢(zi,z))] = p(xi,x;) Vi, j (5)

where ¢ is a task-specific distance function. The distance
preservation provides a simple and natural way to incorporate
various distance metrics. Some examples of various distance
functions are shown as follows:

1) Euclidean Distance:
p(xi, X)) = Ixi = x;II* Vi, j (6)

2) Cosine Discrepancy:
T

Xi X L.
p(xi, X)) =1——=——>— Vi, j (7
lIx:11211%; 112
where cosine similarity is frequently used in document
classification.
3) Gaussian Kernel Distance:
p(xi,x;) = 2(1 —x(x;,%;)) Vi, j (3)

where x is the Gaussian kernel function defined as
Kk (x;, X;) = exp(— (¢ (x;, x;)/20%)) with bandwidth o.
In some cases, it is known that the input data have some
manifold structure, and the structure can be properly captured
by a neighborhood graph, such as the K-NN graph. Denote the
neighbors of x; by &;. We preserve these distances represented
for the manifold given by

E[¢(z,2))] = o(xi,x;) Vi, j €& )

It is worth noting that the neighborhood graph here can be
less sensitive to SSL than the prefixed graph used in existing
graph-based methods since our method is able to impose the
sparsity over a full connectivity graph. However, the neighbors
of each data point can significantly reduce the computation
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complexity of the proposed method, which will be clarified in
the following.

To prevent p(Z) from being arbitrary, we further constrain
the unknown distribution to be close to a prior distribution

7(2)=[]=t) =[N0,y D) (10)
r=1 r=1

where [ is the identity matrix of size n x n and y > 0 is the
bandwidth of the normal distribution with zero mean and y
variance. The noise of embeddings can be naturally modeled
by density 7. The abovementioned constraint can be achieved
effectively by minimizing the KL-divergence between p(Z)
and 7 (Z) given by

p(2)
n(Z)

c p(
= (f.) log
>/

r)
x(f,)
By combining the abovementioned three ingredients (4), (9),
and (11), we propose the probabilistic SSL by solving the
following optimization problem:

dzZ

KL(p(2) |17 (2)) = / p(Z)log

af,. (1)

min  KL(p(Z)|z (Z)) + 42 Lp,
{p(E)L)
st E[¢(zi,2)] = o(xi,x;) Vi, je&
p&) P (12)

where P, is a feasible set of all density functions over f, and
A2 > 0 is the regularization parameter.

In reality, data points are usually contaminated with noisy
signals. Strictly preserving distances might not be the best
choice. To tolerate the data noise, in this article, we consider
to learn a smooth skeleton structure of latent variables to
represent the inherent manifold of the input data via the
shrinkage approach [46] given by

min  KL(p(2)|7(2)) + 1), &)+ 4L,
{p(E)]L 1,451 i et
st. E[p(zi,z)] <o(xi,x)+ & Vi, j€&
&G =0 Vi, je&

p() eP, (13)

where 1) is the regularization parameter for shrinkage effect.
Next, we transform (13) to its dual problem and present an
optimization method to solve the dual problem.

C. Problem Reformulation

As problem (13) involves the functional optimization vari-
ables, it is challenging to solve it directly. Fortunately, prob-
lem (13) is convex with respect to {p(f.)}/L, and {& ;}.
Rather than solving (13), we consider to solve its dual
problem by applying an equivalent transformation via the
Lagrangian duality [47]. Specifically, we introduce multipliers
{a;,; =0} and {p;; =>0}. The Lagrangian function can be
written as

L({p@®)r_ }. (&) ais) {Bis))

m (f
=3 [ p(t)tog 2
>/

r)
n(f,)dfr + /112 Gij— z Bijéii

i,j€&; i,j€&;

857

+ > 0 (B¢, z)] - o(xi,x)) — &)

i,jeé‘;

v
+h|

5 > Els@.z)]).

(i,/)eD

1 —
> Elp@.z)] - |T|U

(i,/)es

Here, we assume that the neighborhood graph is undirected,
so the shrinkage constraints are symmetric. This leads to the
symmetric multipliers, i.e., a; ; = a;;Vi, j. Moreover, the dis-
tance function ¢ enforces the condition that the shrinkage
constraint always holds, so a;; = OVi is optimal for (13).
Let 1 be the vector of all ones. We derive the KKT conditions

6§i’jL = /11 — G _ﬁi,j =0 Vi,j S 5,‘ (14)
Opt) L = log p(f,) —logz (f,) + 1
N o AR e
ISI £ r,i r,J
i,j)es
_ 1—v z (2 — ,)2
IDI p- Zl‘,l Zr,/
(i.j)eD
+ Z i Gri = 2r))
i,je&-
= log p(f,)—logm (f,)+ 1+ 2Tr(f, (A2 Lsp + L))
=0 Vr (15)
/p(f,)df, =1, p)>0Vr (16)

(Zi’j(E[¢(Z,’,Zj)] — (D(Xi,Xj) — 51’,]) =0 Vl, ] € 5,'
a7
where Lsp = (v/|S|)Ls—(1—v/|D|)Lp, Ls = diag(S1)— S,

Lp = diag(D1)— D, and L, = diag(A1)— A, with matrices S,
D, and A are defined as

I, G,j)es
S, = . 18
’J 0, otherwise. (18)
1, (,j)eD
D = : 19
’J 0, otherwise. (19)
i j, i’ .] S gi
A= +J 20
b 0, otherwise. (20)

According to (15) and (16), we have the analytic solution

p(E,) oc 7 (£;) exp(=2Te (£, (a Lsp + L)E!)

n £ 113 T
2 — —2Tr(f, (1, L L)H)f
o y CXP( 2 t(f- (12 Lsp + La)f,

= Qry)? exp(—%Tr(f,. (% Q)f,.T))

where Q = I+4y (1, Lsp+La). According to (17), it is clear
to see that a; ; = 0 if pairwise distance constraint is strictly
unequal. As a result, the optimal solution of a should be
sparser than the initial neighborhood graph. By substituting the
abovementioned equations back to the Lagrangian function,
we obtain the dual problem of (13) as

m
Sa-
r=1

21

> i jp(xi,x)) (22)

i,je&;

max —
AcA
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where the logarithm of partition term of density (21) is

Q = 1og/(2ny)—% exp(—%Tr(f,(le)frT))dfr
= L ogder( !
- yee(je)

Let A be the bounded feasible set for matrix A and matrix
A = [a;,j] with the (i, j)th element defined as
w10 JE&Vi=]
" aji €10, 411, otherwise
where the box constraints over a; ; is obtained from (14) and
the multipliers a; ; > 0 and f; ; > OVi, j € &;.
Finally, we obtain the simplified dual problem as

m
— logdet(Q) + >t jo (%i, X))
i,j
S.t. Q =1+ 4)’ (XZLSD + LA) (25)
Problem (25) is the dual problem of (13) as a semidefinite
programming (SDP) [47]. Next, we will present an efficient
optimization method for solving (25).

(23)

(24)

min
AeA,0>0

D. Optimization Algorithm

Due to the positive semidefinite constraint and special
structure of A, we propose to solve (25) using the alternating
direction method of multipliers (ADMM) [48]. Specifically,
we first formulate the proximal regularized Lagrangian func-
tion with multiplier R and parameter p given by

m
Ly(A, 0,7, R) = =7 logdet(Q) + > ai,j(Xi, X;)
i.J
— (R, Q = (I +7y (44 Lsp +4L1)))
+210 — (1 +y @i Lsp + 4L}

According to [48], the following updates can be taken to
solve (25) by iterating them until convergence:

A « argrjleiEZai,jgo(xi, X;)
irj

1 2
+§ 0~ U +7@hLsp +4L) = R|  (26)
F
. m
Q0 «~ argr(rzllrol 3 log det(Q)
1 2
+§ 0~ (I 4y @hlsp +4La) = R ()
F
R <« R—p(Q—(+y@iLsp +4Ly))). (28)

In the following, we will show the method for solving each
subproblem separately.

1) Solve Problem (26): Define 4y P = Q—1—4/,y Lsp —
%R and ¥ = [y (x;, x;)]. We have

fA) =D aijoxix;) +8py*ILa — P}
i,j
= (A, V) + 8py ?||diag(A1)—A — P||}..

Let U = diag(A1)—A — P. We obtain the first derivative with
respect to a; ; fori < j

of (A O(diag(A1)—A — P
T — gy me{0r CEEELED ) )
605,»,/» 605,»,/»

= 8py Tr(U” Bi ;) + 20 (x:, X;) (29)

due to the symmetric property of A, where the (s, t) entry of
matrix B; ; is given by

I, s=t=iors=t=]
—1, s=iandt=jors=jandt=1i
0, otherwise.

st
B =

(30)

We can further simplify the computation of gradient for the
upper triangular part of the symmetric matrix A as

o (A)
o = 807 Wi+ Ujj = Uiy = Uja) + 20 (i, X)),
L]

With this reformulation, the total number of variables to be
optimized in (26) is about (1/2) >, |&;|. For a large n,
the total number of variables will be a linear function of
the total number of data points. Fortunately, problem (26)
is convex with box constraints, so it can be solved effi-
ciently for large-scale problems by existing methods, such as
L-BFGS-B [49].

2) Solve Problem (27): Denote C = I 4+ 4y (4o Lsp +
L)+ /l)R and eigendecomposition C = VX VT with diagonal
matrix X;; = o0;Vi and matrix V of orthonormal columns. The
optimization problem (27) is reformulated as

.om p )
—— logdet = -C 31
min ——-log e(Q)+2||Q i (1)
which has the optimal solution [44]
0—vEVT e =Ty [T Ly @y
= L0 = — — — 1
2 4 2m

where T is a diagonal matrix with the (i, i)th entry ;.

The adaptive update of p is adopted for fast conver-
gence [48]. The convergence criteria of ADMM in [48] are
employed.

E. Initialization

To solve problem (25) using ADMM, a good initializer
can speed up the convergence. If we disable the supervised
information in (13), i.e., 1, = 0, we have

min  KL(p(Z)|7(Z2) + 41 D &,
PO ) ) =
S.t. E[¢(Z,’,Zj)] < QZS(X,',XJ') +§i,j Vl,] € 5,’
=0 Vi, je&

pt) € P (33)

Accordingly, we have its dual problem as

..om
Elelg—zlogdet(l +4y Ly + Zai,jgb(xi,xj). (34)
ij
It is well-known that the graph Laplacian matrix L 4 is positive
semidefinite for A > 0. Hence, the semidefinite constraint
in (34) is automatically satisfied for all A € A. As a
result, (34) can also be solved by L-BFGS-B due to the
similar formulation to subproblem (26). It is worth noting
that problem (34) is the same as MPME [46], so our newly
proposed model (25) is more general than MPME with the
capability of SSL and various distance measures.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on July 14,2021 at 18:31:08 UTC from IEEE Xplore. Restrictions apply.



WANG et al.: PROBABILISTIC SSL VIA SPARSE GRAPH STRUCTURE LEARNING

Algorithm 1 StructSSL

1: Input: labeled data D; and unlabeled data D,, neighbors
&, Vi, reduced dimension m, parameters 4;, 4,,v, y

: compute distance measures using (6), or (7), or (8)

: Initialize A by solving (34)

: repeat

update Q using (32)

update R using (28)

obtain A by solving (26) using L-BFGS-B

: until Convergence

. obtain Z using KPCA

: train a classifier on labeled embeddings and predict labels
for unlabeled data

: Output: embeddings Z, sparse graph matrix A, kernel
matrix O~ and the labels of unlabeled data

—_
(=]

—_
—

F. Inferring the Labels of Unlabeled Data
via the Learned Graph

After Q is obtained, we recover the embeddings of the
input points and then conduct supervised classification based
on the embedded points by training on labeled data only and
predicting the labels of the unlabeled data.

First, we need to recover the latent variables {z;}?_, via
point estimation based on (21), which is further written as a
multivariate normal distribution

p(t) =N(©,y07").

The expectation of pairwise distance between two latent vari-
ables can be simplified as

(35)

E[¢(zi.z)]| =my [0} + Q7 =207 ] Vi.j (36)
which leads to the point-based estimation {z;}?_, as
27, =myQ;; Vi,j. (37)

Interestingly, this is equivalent to the definition of a linear
kernel over {z;}?_, according to the kernel trick [50]. For
kernel-based classification method, this kernel can be directly
used to measure the similarity between two input data points,
such as support vector machines (SVMs) [50]. To further
investigate the property of the latent variables, such as the
visualization for exploration analysis, it is natural to use
KPCA [51] to uncover {z;}/_, from Q~! by keeping the top
m basils with the largest eigenvalues of the centralized matrix
of 07 _

Given Z = {z; 1 we can construct two new data sets,
including the labeled data I, = {(Z;, yi)};_, and the unlabeled
data D, = {Z}?:n, 41+ Any classifiers, such as SVMs [52]
and K-NN classifier, can be trained on the labeled data Iy
and applied to make the prediction of unlabeled data D,,. The
proposed SSL algorithm is shown in Algorithm 1.

G. Computational Complexity Analysis

The computational cost of Algorithm 1 is mainly con-
tributed by the following components. Denote by g the num-
ber of nonzeros in the lower triangular part of the initial
neighborhood graph {&;}!_,. In step 2, the computational cost
for the distance measures of pairs of neighbors is O(gqd).
In step 5, the eigenproblem is solved for Q, so the complexity

859

TABLE 11
DATA SETS USED IN THE EXPERIMENTS

Data Set n c d
three-moon | 1500 3 100
Digitl 1500 2 241
Text 1500 2 11960
USPS 1500 2 241
COIL6 1500 6 241
Opt-Digits | 5620 10 64

is in O(n?). In step 6, updating R takes O(n?). In step 7,
problem (26) is solved by L-BFGS-B, where the number of
optimized variables is ¢. In L-BFGS-B, the computational
complexity is contributed mostly by the following parts:
1) computing gradients with respect to A takes 4¢q since there
is only 4 nonzeros in B;; and 2) computing objective value
takes O(n?). As discussed in [49], the L-BFGS-B algorithm
shares many features of quasi-Newton algorithms, but it is very
efficient for computing the approximate Newton’s direction
using the efficient Hessian updates with limited memory foot-
print. In practice, it is very efficient for solving problem (26)
with millions of variables. KPCA takes O(n’) to get the
embeddings of the whole data in step 9. Except for the cost
of training classifier on the data of size n; x m is negligible,

the majority cost of Algorithm 1 is on the scale of O(n?).

Due to the cubic computational complexity, Algorithm 1
is not scalable for large-scale data, but it works well for
moderate-size data sets. As will be shown in Section 1V,
the proposed structure SSL (StructSSL) demonstrates practical
values on unveiling sparse graph structure of input data guided
by an extremely small amount of labeled data and showing sig-
nificantly better prediction performance than various baseline
methods. Hence, our proposed method can be well suitable
for various scientific fields, such as neuroscience [53] and
computational biology [54], where large-scale unlabeled data
are not accessible, let alone the scarce labeled data, and the
learned graph turns to be crucially important for exploratory
analysis [53], [54].

I'V. NUMERICAL EXPERIMENTS

A. Experimental Setting

We evaluate the performance of our proposed method in
terms of three predefined distance measures, i.e., (6)—(8),
on one synthetic data set and five benchmark SSL data sets,
as shown in Table II, by comparing against various existing
methods that are capable of conducting SSL and following
the experimental setting used in [35], [55], and [56]. The
synthetic three-moon data are simulated with details shown in
Section IV-B. Except Opt-digits from UCI machine learning
repository,! the other four data sets are available.” The descrip-
tions of all benchmark data sets are given in Section I'V-C.
All compared methods in this article are illustrated with their
specific parameters (common parameters shared by various
baselines will be discussed later for the concise representation)
and are tuned in their own proper ranges in order to report their
best results for fair comparisons:

1) K-Nearest Neighbor (K-NN) Classifier: K is tuned in

a wide range {1, 2,4,5, 10, 20, 30, 40, 50, 70, 90, 100,
120, 140, 150, 160, 180, 200}.

Varchive.ics.uci.edu/ml/data sets/opticaH-recognitiontoff-handwritten-+digits
2olivier.chapelle.cc/ssl-book/benchmarks.html
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2)

3)

4)

5)

6)

7)

8)

9)
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TABLE III

MEAN ACCURACIES WITH STANDARD DEVIATIONS OF EIGHT COMPARED METHODS ON THREE-MOON DATA OVER TEN RUNS WITH RANDOMLY
SELECTED NUMBER OF LABELS. THE BEST RESULTS ARE IN BOLD

ny 6 (0.4%) 15 (1%) 25 (1.67%) 30 2%) 50 (3.3%) 75 (5%)

multicalss MBO - - 68.3 - 84.1 94.3

LapRF (m=1) 95.1 96.4 98.1

TVRF (m=1) 96.4 98.2 98.4

LapRF (m=2) 96.4 97.9 98.5

TVRF (m=2) - - 96.4 - 98.2 98.6
StructSSL (Euclidean, 1-NN) | 99.26 £ 0.08  99.27 £ 0.06  99.14 + 0.36  99.19 + 0.23  99.19 £ 0.26  99.25 £+ 0.18
StructSSL (Euclidean, 3-NN) | 99.26 + 0.03  99.25 £+ 0.04 99.32 £ 0.07 99.26 & 0.14  99.28 4+ 0.07  99.31 + 0.06
StructSSL (Euclidean, SVM) | 99.34 + 0.06 99.33 + 0.05 99.38 + 0.08 99.37 + 0.06 99.36 + 0.09 99.39 + 0.07

Spectral Graph Transformation (SGT) [7]: The para- ut =10'"" and u~ = 1 are used for labeled data and 0

meter ¢ is searched in {10° a: a € {3,3.2,3.4,
3.8,5,100}}.

Laplacian Regularized Least Squares (LapRLS) [10]:
Two regularization parameters are tuned over y4 €
{10 a € {—6,—4,—-2,0,2}} and y; € {10 a €
{—o00, —4, -2,0,2}}.

Pso Using SQ-Loss-1 and Measure Propagation
(MP) [55]: The tradeoff parameters x# and v are tuned
over {10“: a € {—8, —6,—4,—-2,0,1,2}} and {10*: a €
{—8, —6,—4, 2,0, 1}}, respectively.

Multiclass Ginzburg—Landau Energy (Multiclass GL)
and Multiclass Graph-Based Merriman—Bence—Osher
(Multiclass MBO) [57]: The convexity parameter C =
1+ 1/€ is used in multiclass GL, and the diffusion step
Ns = 3 is used before any thresholding. As claimed in
this article, other parameters are specially tuned for each
data set.

Laplacian-Based Multiclass Graph Partitioning With a
Region-Force (LapRF) and TV-Based Multiclass Graph
Partitioning With a Region-Force (TVRF) [56]: m = 1
considers the direct neighbors of the labeled points, and
m = 2 uses the second neighbors. Other parameters are
tuned as suggested by the authors.

SimpleMKL [34] and Spectral Kernel Learning
(SKL) [35]: Two kernel learning methods can be used
for SSL. SimpleMKL learns a convex combination
of multiple base kernels, including Gaussian kernels
with bandwidth in {0.5,1,2,5,7,10, 12,15, 17, 20}
and polynomial kernels with degrees in {I,2,3}.
The graph Laplacian in SKL is constructed from
K-NN using heat kernel weights and its degree
in {2, 5}. For both methods, parameter C is turned in €
{0.01,0.1, 1, 10, 100}.

AGR [13] and f/r-FME [16]: The f/r-FME methods
extend FME by taking the use of LAE graph for scalable
SSL. The number of anchor points is the ratio of the
number of data tuned in the range {0.01,0.1: 0.1 : 1},
where large anchor points are used in order to achieve
good performance on mediate data sets. The tradeoff
parameters x and y in FME are tuned in [107°, 10°].
The rest of the other parameters follow the experimental
settings in [16].

KernelLP [22]: Tt is a joint optimization method for
positive and negative label propagation and adaptive
weights learning in kernel space. In the experiments,
the Gaussian kernel is used and tuned as explained
below. Both tradeoff parameters o and S are tuned
in range {0.01,0.1, 1, 10, 100}. The weighting factors

for unlabeled data, as stated in [22].

SSLRR [41]: Low-rank representation is used for graph
construction by incorporating label information of the
labeled data. The parameter A for balancing the effects
of the nuclear norm of the coefficient matrix and the
sample-specific corruptions and regularization parame-
ter u of label propagation are tuned in the range
{0.01,0.1, 1, 10, 100}.

MVU [29] and MPME [44]: Both methods are learning
the embeddings of all data points in the unsupervised
setting. Due to the high complexity of SDP solver used
in MVU, we try two variants of MVU called Landmark
MVU and Fast MVU and choose the best results for
comparison [58].

StructSSL: Tt is the proposed method, as shown in
Algorithm 1. Two base classifiers, SVM and K-NN
classier, are used, and three distance functions are tested.
We fix 4y = 1.0 and tune m € {5, 10, 20, 50} for the
dimensionality of latent points and K € {5, 10, 20} for
K-NN graph. The label balance parameter v is chosen
in the grid {0.2, 0.4, 0.8}, and the tradeoff parameter for
supervised information is 4, € {0.01, 0.1, 1}. The prior
parameter y is tuned in {0.1, 1}.

In addition to the method-specific parameters, some para-
meters shared by the abovementioned methods are discussed
as follows. In the graph-based methods, K in the neighbor-
hood graph is tuned over {2, 5, 10, 50, 100, 200, n — 1}. The
bandwidth parameter of the Gaussian kernel in SQ-Loss-1,
SGT, and MP is determined over {g,/3 :a € {2,3,...,10}},
where g, is the average distance between each sample and its
ath NN over the entire data set. In LapRLS, the bandwidth
parameter is tuned in a slightly different set {2¢ : a €
{-3,-2,—-1,0,1,2,3}}, where o is the average norm of
the feature vectors as recommended in [1]. In StructSSL
with (8), the bandwidth parameters tuned for LapRLS are
used to calculate the Gaussian kernel. For methods without
an inherent classification model, SVM for classification [52]
with Gaussian kernel is used for evaluation. In the following
results, we mark the unavailable results from corresponding
methods as “—.” Results taken from [55] do not report the
standard deviation of each setting.

For binary classification methods, such as SGT, LapRLS,
and SimpleMKL, the one-versus-rest strategy is used to obtain
the results for multiclass data sets. The average accuracies over
ten runs with a randomly selected number of labeled samples
are reported, where n; € {10, 20, 50, 80, 100, 150}. For a fair
comparison, we compare the results of our proposed method
StructSSL with the best results reported in baseline methods

10)

11)

12)
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Results obtained by StructSSL for three-moon data with six labels. (a) Ground-truth data in 2-D space over the two true features where pentagram

markers stands for the selected labeled data. (b) Adjacency matrix A learned by StructSSL (nz is the number of nonzero entries). (c) Kernel matrix 0!
learned by StructSSL. (d) Visualization of latent points in 2-D space with the corresponding predicted labels.

TABLE IV

MEAN ACCURACIES WITH STANDARD DEVIATIONS OF 16 COMPARED METHODS ON DIGIT]I DATA OVER TEN RUNS
WITH RANDOMLY SELECTED NUMBER OF LABELS. THE BEST RESULTS ARE IN BOLD

n; 10 (0.7%) 20 (1.3%) 50 (3.3%) 80 (5.3%) 100 (6.7%) 150 (10%)
k-NN 67.6 79.5 90.2 93.2 91.2 95.2
SGT 92.1 93.6 96.2 97.1 97.4 97.7
LapRLS 92.4 95.3 95.7 96.2 97.1 97.4
SQ-Loss-1 91.2 94.9 96.9 96.6 97.2 97.1
MP 92.1 95.4 96.1 97.4 97.4 97.8
AnchorGraph 9397 £1.83 96.75 +£1.03 97.11 £1.29 9757 £0.60 98.02 £ 0.25 97.77 £+ 0.59
f-FME 9423 £2.00 96.71 £1.00 9730 £0.55 97.61 £0.61 97.82 £ 031 97.70 £ 0.39
r-FME 9422 £205 9649 £0.89 97.07 £0.79 9744 £ 053 9749 £ 043 97.54 £ 043
KernelLP 93.08 £2.75 94.09 £ 1.86 9574 £ 129 96.01 &£ 1.17 9556 £ 0.86 95.61 £ 0.66
SSLRR 83.02 £ 3.50 88.45 + 247 93.04 £122 9473 £1.64 9549 +£0.82 96.01 £ 0.66
SimpleMKL 7828 £ 4.16 8436 £ 432 9141 £237 9391 £190 9467 £0.78 94.69 £+ 1.10
SKL 9376 £3.01 9591 £ 150 9732 £0.87 9753 £0.67 97.78 £0.49 97.87 £ 0.35
MVU 91.78 £ 1.53 9276 £ 1.33 9383 £ 1.05 9435+ 094 9435 £ 0.79 94.40 £ 0.58
MPME 90.65 £ 339 9232 £3.60 9645+ 1.16 9742+ 127 97.83 £0.64 97.81 £ 0.64
StructSSL (Euclidean, SVM) | 95.58 +2.48 9632 £ 1.62 98.65 £ 0.39 98.66 = 0.50 98.91 + 0.35 98.81 £ 0.35
StructSSL (Gaussian, SVM) | 95.62 + 2.09 96.84 + 148 98.85 + 0.40 98.49 + 0.54 98.86 + 041 98.90 £+ 0.33
TABLE V

MEAN ACCURACIES WITH STANDARD DEVIATIONS OF 15 COMPARED METHODS ON TEXT DATA OVER TEN RUNS
WITH RANDOMLY SELECTED NUMBER OF LABELS. THE BEST RESULTS ARE IN BOLD

ny 10 (0.7%) 20 (1.3%) 50 (3.3%) 80 (5.3%) 100 (6.7%) 150 (10%)
k-NN 60.2 64.2 71.6 72.4 723 74.5
SGT 70.4 70.9 73.1 76.9 71.0 78.1

LapRLS 68.2 69.1 71.2 73.4 74.2 76.2

SQ-Loss-I 67.9 72.0 74.1 76.8 76.8 76.6

MP 70.3 72.6 73.0 75.9 754 719
AnchorGraph 62.11 =593 6443 £ 139 6855+ 0.10 6944 £1.79 73.61 £0.96 73.19 £ 0.73
f-FME 63.66 £ 0.52 69.05 £ 3.73 7355+ 1.12 7408 £0.60 76.71 & 0.40 78.52 + 1.57
r-FME 69.40 £ 1.14 6841 + 330 7221 £039 7408 £1.79 7521 £0.10 75.33 + 0.73
KernelLP 6591 +4.84 7034 £343 7494 £ 127 7678 £ 094 78.08 &£ 1.35 78.94 £ 1.09
SSLRR 61.66 £545 66.52 +£3.08 7217 £3.71 7481 £ 136 76.69 £ 133  78.70 £ 1.15
SimpleMKL 6240 £ 4.62 6846 & 3.26 73.86 £ 1.62 7485 £ 1.02 76.86 & 0.89  73.93 + 2.81
SKL 6238 524 67.08 £392 71.78 £2.94 7464 £ 183 7529 £ 1.06 76.19 £ 1.24
MVU 62.88 £1.76  62.72 £ 275 63.83 £ 094 6442 £0.52 6446 £0.79 65.02 + 0.38
MPME 67.30 & 4.87 7241 £2.10 7478 £1.96 77.06 £ 1.00 76.84 £ 1.19 77.38 £ 0.85
StructSSL (Cosine, SVM) | 73.97 + 4.27 76.69 + 1.65 7826 + 0.71 78.78 &+ 1.26  79.47 £ 0.97 79.55 + 1.05

on the same data sets when the
under the same setting.

experiments are conducted

B. Synthetic Data

The three-moon data are used to investigate the properties of
the proposed method, which has also been used in the existing
SSL methods [56], [57]. The three-moon data consists of three
2-D half circles with added Gaussian noise, i.e., N'(0,0.14).
The center locations of three points are (0, 0.5), (3, 0.5), and
(1.5, —0.5) with radii 1, 1 and 1.5, respectively. 500 points

are uniformly sampled from each half circle. The data are
expanded to space R!% with only Gaussian noise for the rest
of 98 dimensions. The data are visualized in 2-D space using
the two true features, as shown in Fig. 1(a). The results are
obtained by applying three different classifiers (1-NN, 3-NN,
and SVM) on the learned embeddings in 2-D space using the
Euclidean distance (6) with prefixed parameters: 1, = 1073,
v=20.9, and K = 5.

The mean accuracies of StructSSL over ten runs with
randomly sampled labels are shown in Table III by comparing
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TABLE VI
MEAN ACCURACIES WITH STANDARD DEVIATIONS OF 16 COMPARED METHODS ON USPS DATA OVER TEN RUNS
WITH RANDOMLY SELECTED NUMBER OF LABELS. THE BEST RESULTS ARE IN BOLD
ny 10 (0.7%) 20 (1.3%) 50 (3.3%) 80 (5.3%) 100 (6.7%) 150 (10%)
k-NN 80.0 80.4 90.7 92.7 93.6 94.9
SGT 86.2 87.9 94.0 95.7 96.0 97.0
LapRLS 83.9 86.9 93.7 94.7 95.4 95.9
SQ-Loss-1 81.4 82.0 93.6 95.8 95.2 95.2
MP 88.1 90.4 93.9 95.0 96.2 96.8
AnchorGraph 72.90 £+ 6.17 77.05 £ 6.60 8225 4+ 4.68 87.96 4+ 3.62 86.46 + 3.64 91.32 + 2.17
f-FME 73.34 £+ 6.63 80.70 + 6.20  87.26 £ 3.63 90.52 + 1.71  90.05 4+ 3.48 92.38 + 1.51
r-FME 72.89 £+ 6.18 7722 £ 486 8224 +4.70 8797 +3.60 86.44 £+ 3.74 91.01 £ 3.07
KernelLP 69.68 £ 5.50 7893 £ 6.28  86.15 448 89.26 + 3.08 91.39 + 1.75 9345 + 1.48
SSLRR 79.66 + 2.28 80.80 + 091 80.88 +£ 048 81.69 £ 0.00 82.14 4 0.00 83.33 4+ 0.00
SimpleMKL 62.48 £ 22.06 80.78 & 5.74 81.26 +4.82 84.14 +£ 6.32 8453 £ 6.32 89.70 £+ 2.36
SKL 66.83 £+ 9.17 84.52 + 856 90.94 + 2.81 95.01 £ 1.13  92.84 £+ 1.61 95.46 £+ 0.69
MVU 78.08 £+ 9.17 88.14 +£ 278 9033 £223 9254 +£1.29 91.21 +£1.55 93.57 £ 0.73
MPME 86.68 £+ 7.82 93.07 £2.62 9566 + 1.39 96.77 + 0.86 96.81 £ 0.86  97.27 £ 0.36
StructSSL (Euclidean, SVM) 91.11 £ 3.37 9422 £229 9634 4+ 041 96.83 +£ 0.22 96.81 £ 0.33 97.03 £ 0.21
StructSSL (Gaussian, SVM) 91.48 + 2.95 9532 + 191 9697 + 0.62 9741 + 0.19 9748 + 0.24 97.59 + 0.13
TABLE VII
MEAN ACCURACIES WITH STANDARD DEVIATIONS OF 19 COMPARED METHODS ON COIL6 DATA OVER TEN RUNS WITH RANDOMLY SELECTED
NUMBER OF LABELS. WE MARK THE UNAVAILABLE RESULTS FROM CORRESPONDING METHODS AS “—.” THE BEST RESULTS ARE IN BOLD
ng 10 (0.7%) 20 (1.3%) 50 (3.3%) 80 (5.3%) 100 (6.7%) 150 (10%)
k-NN 34.5 53.9 66.9 77.9 79.2 83.5
SGT 40.1 61.2 78.0 88.5 89.0 89.9
LapRLS 49.2 61.4 78.4 80.1 84.5 87.8
SQ-Loss-1 48.9 63.0 81.0 87.35 89.0 90.9
MP 47.7 65.7 78.5 89.6 90.2 91.1
LapRF (m=1) - - 71.7 - 87.0 91.0
TVRF (m=1) - - 80.3 - 90.0 91.7
multiclass GL - - - - - 91.2
multiclass MBO - - - - - 91.46
AnchorGraph 4822 439 5833 +£559 8043 +£533 87.67 191 91.09 +2.12 91.53 + 1.24
f-FME 47.07 £ 3.11  57.03 586 81.52 + 6.38 89.42 +2.68 9148 + 141 92.87 + 0.66
r-FME 47.64 £ 4.11 57.19 +3.84 81.59 + 6.27 89.40 + 2.67 91.60 &+ 1.51 92.87 + 0.64
KernelLP 4196 +2.86 4736 +=4.08 69.13 + 428 7851 +£2.23 81.79 +1.85 86.10 £+ 1.63
SSLRR 3579 £ 469 38.08 £ 3.34 43.09 +4.30 4893 430 51.08 £ 2.60 5341 4 3.72
SimpleMKL 21.16 £ 254 21.13 £2.15 27.67 &£ 3.67 31.05 497 3559 +4.86 41.04 &+ 3.56
SKL 4460 & 573 5489 £ 5.16 78.88 £ 6.95 86.48 + 2.63 86.83 + 1.82  89.85 £ 1.46
MPME 48.86 &£ 6.73  56.00 & 5.22 7474 +£ 2771 80.39 + 1.15 80.86 & 1.39  82.41 + 1.83
StructSSL (Euclidean, SVM)  52.76 £ 5.19  65.89 £ 4.78 8227 395 88.81 & 1.58 90.60 & 1.68  91.72 4+ 0.55
StructSSL (Gaussian, SVM) 5491 + 431 67.36 = 490 85.09 + 4.76 89.54 + 1.87 91.88 + 1.06 93.24 + 0.84

with other methods on the same data, where the results of these
methods are taken from [56]. From the results in Table III,
we observe the following.
1) StructSSLs outperform compared methods over all the
varied number of labels such as n; € {25, 50, 75}.
2) StructSSLs with the less labeled data, for example, n; =
6, outperform baseline methods with more labeled data.
3) SVM as the classifier in StructSSL is marginally better

than 1-NN and 3-NN.
In the following experiments, we will report StructSSL based

on the SVM classifier.

In addition, we show various intermediate results obtained
by StructSSL, including the sparse similarity matrix A
(weighted graph), kernel matrix 0!, and latent embeddings
Z, of the three-moon data with the predicted labels in Fig. 1.
First, we observe from Fig. 1(b) that the number of nonzero
entries of the learned sparse similarity matrix is 12344, which
is less than 0.6% of 1500 x 1500 matrix and also smaller
than the 5-NN graph. Hence, StructSSL can reduce the initial
nonzero entries of the K-NN graph to a sparser similarity
matrix. The kernel matrix in Fig. 1(c) shows a very clear
blockwise diagonal structure, which corresponds to the fact

that data points are sampled from three half-circles. Finally,
from Fig. 1(d), it is easy to see that the embedded points in the
2-D space demonstrate three components where two smaller
ones (blue and red) and a larger one (green). Each component
corresponds to one half-circle of the ground-truth data. Hence,
StructSSL can recover the proper inherent smooth manifold
structure of data regardless of the noise.

Since the classification results of six available labels can
achieve much better results than compared methods over a
varied number of labels, this implies that StructSSL with
distance preservation is effective and less sensitive to the
number of labeled data due to the robustness of the embedding
space over a smooth skeleton structure for SSL.

C. Benchmark Data Sets

We conduct extensive experiments by comparing StructSSL
with various baseline methods for both binary classification
and multiclass classification in terms of classification accuracy
over the unlabeled data and report the mean (£ standard devia-
tion) accuracies over ten runs with a randomly selected number
of labels. Data descriptions for three binary classifications and
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TABLE VIII
MEAN ACCURACIES WITH STANDARD DEVIATIONS OF 17 COMPARED METHODS ON OPT-DIGITS DATA OVER TEN RUNS WITH RANDOMLY SELECTED
NUMBER OF LABELS. WE MARK THE UNAVAILABLE RESULTS FROM CORRESPONDING METHODS AS “—.” THE BEST RESULTS ARE IN BOLD

ny 10 (0.18%) 20 (0.36%) 50 (0.89%) 80 (1.42%) 100 (1.78%) 150 (2.67%)

k-NN 79.6 83.9 85.5 90.5 92.0 93.8

SGT 90.4 90.6 91.4 94.7 97.4 97.4

LapRLS 89.7 91.2 92.3 96.1 97.6 97.3

SQ-Loss-1 92.2 90.2 95.9 97.2 97.3 97.7

MP 90.6 90.8 94.7 96.6 97.0 97.1

LapRF (m=1) - - 79.0 - 95.2 96.8

TVRF (m=1) - - 95.9 - 97.2 98.3
AnchorGraph 92.29 £+ 3.02 93.29 £ 487 97524+ 0.59 97.88 £ 0.60 97.90 £ 0.55 98.01 £ 0.38
f-FME 92.22 4+ 3.00 9339 £4.76 9731 £ 0.56 97.86 = 0.60 97.90 £ 0.55 98.05 £ 0.61
r-FME 92.30 £ 3.02 93.31 £4.86 97.54 £0.60 9791 +0.60 97.90 + 0.55 98.03 + 0.38
KernelLP 69.17 + 8.81 72.09 £ 2.00 86.99 + 0.67 89.17 + 0.20 91.68 + 1.83  93.78 £+ 0.28
SSLRR 69.67 £+ 9.01 69.81 +£3.30 83.68 + 048 86.71 & 0.71 86.86 + 3.27 89.25 + 0.16
SimpleMKL 4227 +23.00 75.56 +3.29 87.01 £2.32 90.63 £ 1.27 92.12 £ 0.82 93.24 4+ 0.93
SKL 88.02 £ 3.89 9134 £ 447 96.79 £ 093 97.21 +£1.02 97.66 £ 0.80 97.98 £ 0.75
MPME 91.81 £+ 4.54 9536 £ 1.62 97.68 £ 0.38 97.92 &+ 0.20 97.97 + 026  98.18 + 0.20
StructSSL (Euclidean, SVM) 92.39 £+ 4.03 95.81 £ 1.81 97.71 045 98.10 &+ 0.15 98.20 £ 0.20 98.33 £ 0.15
StructSSL (Gaussian, SVM) 96.30 + 2.64 97.61 + 1.50 9835 + 0.29 98.53 + 0.09 98.59 + 0.14 98.67 + 0.10
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Fig. 2. Intermediate results obtained by various baseline methods on Digitl data including kernels, weighted graph matrices, and embeddings. For embeddings,
the pentagram markers stand for the labeled data, and each color represents one class.

two multiclass classifications, as well as the best experimental
results of the compared methods with parameter tuning in the
abovementioned grids, are shown as follows.

1) Digitl Data: This data consist of artificially generated
writings (images) of the digit “1” developed by [59], which
was designed to show that the low-dimensional manifold is
not the cluster structure. Each image is the size of 16 x 16,
and 1500 images are sampled. The class labels are assigned
according to the tilt angle, with the boundary corresponding
to an upright digit. A sequence of transformations is applied

to the data for increasing the learning difficulty. Both the
Euclidean distance (6) and the Gaussian kernel distance (8) are
evaluated in StructSSL. The mean accuracies of 16 compared
methods on Digitl are reported in Table IV.

2) Text Data: This is the five comp.* groups from the
Newsgroups data set for classifying the IBM category versus
the rest [60]. Each document is a sparse representation of
a term frequency/inverse document frequency with 11960
dimensions. The cosine discrepancy (7) is used in StructSSL
as the input distance since it generally works better in text
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Fig. 3. Intermediate results obtained by various baseline methods on COIL6 data including kernels, weighted graph matrices, and embeddings. For embeddings,
the pentagram markers stand for the labeled data, and each color represents one class.

classification. The mean accuracies of 15 compared methods
on Text are reported in Table V.

3) USPS Data: The benchmark USPS data are derived from
the famous USPS set of handwritten digits; 150 images are
randomly drawn for each of the ten digits. The digits “2”
and “5” are assigned to the class +1, and the others are
assigned to the class —1. The obscured data [1] are obtained in
order to prevent researchers from exploiting the known spatial
relationship of features in the image. Both the Euclidean
distance (6) and the Gaussian kernel distance (8) are used
in StructSSL. The mean accuracies of 16 compared methods
on USPS are reported in Table VI

4) COIL6 Data: COIL6 [1] is created from the Columbia
object image library (COIL-100), which is a set of color
images of 100 different objects taken from different angles
(in steps of 5 degrees) at a resolution of 128 x 128 [61]. The
red channel of each image is downsampled to 16 x 16 by
averaging over blocks of 8 x 8 pixels; 24 of the 100 objects
are randomly selected and then are partitioned to six classes
of four objects each. Both the Euclidean distance (6) and the
Gaussian kernel distance (8) are used in StructSSL. The mean
accuracies of 19 compared methods are reported in Table VII.

5) Opt-Digits Data: This data consist of normalized
bitmaps of handwritten digits from a preprinted form. The
32 x 32 bitmaps are divided into nonoverlapping blocks of
4 x 4, and the number of pixels is counted in each block.
This generates an input matrix of 8 x 8, where each element
is an integer in the range [0, 16]. Each bitmap has one label of
ten classes, i.e., {0, 1,...,9}. Both the Euclidean distance (6)
and the Gaussian kernel distance (8) are used in StructSSL.

The mean accuracies of 17 compared methods are reported
in Table VIII.

D. Discussions on Experimental Results

Experimental results in Tables IV-VIII show that the pro-
posed method StructSSL in terms of three different dis-
tance measurements are very competitive to baseline methods,
including the state-of-the-art SSL methods, two unsupervised
dimensionality reduction methods, and two kernel learning
approaches on five data sets with three binary-class and two
multiclass problems. By looking into the details, we have the
following observations.

1) StructSSLs show promising results compared with other
SSL methods. Significant improvements can be observed
with small amounts of labels over all the data sets used
in the experiments. Moreover, StructSSL is flexible to
take different distance functions as the input. This is
crucially important for the success of StructSSL applied
to Text data, where cosine similarity is known to be a
good measurement. The distance metric derived from the
Gaussian kernel generally works better than the Euclid-
ean distance. Although some methods are specifically
designed for multiclass SSL, such as multiclass MBO
and TVRE, StructSSL can achieve competitive or even
better results.

2) Although the distance preservation criterion is used in
MVU, MPME, and StructSSL, our StructSSL demon-
strates better performance than MVU and MPME on
SSL due to the integration of labels into the learning
model.
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3) In regards to kernel learning, StructSSL shows signifi-
cantly better results than SimpleMKL, which does not
take advantage of labels. SKL takes labels into learning
a better kernel for unlabeled data. However, it is less
robust when the number of available labels is small.
In contrast, StructSSL shows good results in all levels
of available labels. The key difference of our StructSSL
from SimpleMKL and SKL is the learning of a sparse
weighted graph, which is not able to be obtained by the
compared kernel learning methods.

We further demonstrate the effectiveness of StructSSL in
terms of sparse graph matrix, kernel matrix, and the embed-
dings with ground-truth labels by comparing with baseline
methods. For methods without natural embeddings as the
output, such as SKL and simpleMKL, we take KPCA as
the embedding approach. In addition, we also show the
sparse weighted graphs learned by MPME and our method.
Figs. 2 and 3 show these intermediate results on Digitl and
COILO6, respectively. We have the following observations.

1) The weighted graph learned by StructSSL is much
sparser than that learned by MPME. This is because
the labeled data as the guide contributes to the learned
density function, and this guidance promotes the sparsity
so that more inactive distance preservation constraints
are obtained. As observed in Figs. 2 and 3, embeddings
of StructSSL show better class separation than MPME.
Both MVU and simpleMKL learn kernel matrices in an
unsupervised setting. Their class separation patterns are
not as good as StructSSL. This can be confirmed easily
on COIL6. Although SKL takes both the manifolds of
the data and labels into account, the learned kernel does
not properly capture the manifold structure, which is
affected significantly by the initial weighted graph.

The abovementioned observations imply that both the dis-
tance preservation criterion and label information contribute to
the success of our proposed method. It is worth noting that the
weighted graph, kernel matrix, and the embeddings learned by
the proposed method can be useful for other purposes, such as
data visualization, which is not restricted to semi-supervised
classification problems as studied in this article.

2)

E. Parameter Sensitivity Analysis

We conduct the sensitivity analysis of six parameters used
in Algorithm 1. Parameters y and A; have impacts on the
embeddings and the learned graph, while y, and v balance
the influence of labels and the whole input data. Moreover,
the neighborhood size K and the dimensionality of latent
embeddings m improve the sparsity of the initial graph
for learning and the performance of classification by using
dimensionality reduction to remove data noise. As there are
six parameters, we cannot visualize the results of all varied
parameters in one plot. We take the commonly used strategy
by varying one parameter in a given range and fixing the others
by reporting the best results over all the other parameters.

Fig. 4 shows the sensitivity analysis of one parameter by
fixing the others. We have the following observations.

1) Our proposed method is robust in terms of y and 4,
for constructing a graph based on distance preservation
criterion.

2) The proposed method is a bit sensitive to the super-
vised information. We observe that the classification
performance decreases when 1, becomes large on USPS.
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Fig. 4. Parameter sensitivity analysis of the proposed StructSSL (Euclidean
SVM) method using USPS with 150 labels.

In other words, the balance between graph structure
learning and the importance of labels is data-dependent.
For both K and m, they demonstrate the better accura-
cies at the beginning and tune to be stable later if both
parameter values increase. In general, the accuracies

vary in a small interval.
From the abovementioned observations, StructSSL is a bit sen-

sitive to A, but robust to other parameters. More importantly,
the embeddings and the learned graph are not too sensitive to
their controlled parameters.

3)

V. CONCLUSION

In this article, we propose a probabilistic SSL framework
based on the assumption of distance preservation criterion,
which has been successfully explored in unsupervised dimen-
sionality reduction methods and class separability criterion on
labeled data. Moreover, our proposed method can naturally
integrate different priors from either probability perspective
or prior knowledge in the form of constraints. In addition
to classification problems, our method can also provide the
learned sparse weighted graph with the optimized similarities
between data points and also the embeddings for data visu-
alization. Experiments on synthetic and benchmark data sets
show promising results by comparing with the best results of
a variety of existing methods with a significant improvement
in small amounts of labeled data.
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