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RADICAL SUBGROUPS AND THE
INDUCTIVE BLOCKWISE ALPERIN WEIGHT CONDITIONS FOR PSp,(q)

JULIAN BROUGH AND A. A. SCHAEFFER FRY

We determine explicitly the 2-radical subgroups and their normalizers for the group Sp,(g), where g
is odd. We then show that the corresponding simple group PSp,(q) satisfies the inductive blockwise
Alperin weight conditions for the prime 2 and odd primes dividing g> — 1. When combined with exist-
ing literature, this completes the verification that PSp,(g) satisfies the conditions for all primes and all
choices of g.

1. Introduction

Given a prime £, an £-weight of a finite group G is a pair (R, u), where R is an £-radical subgroup and
u is a defect-zero character of Ng(R)/R. Thatis, R is an £-subgroup such that R = Oy(Ng(R)) and u is
an irreducible character with (1), = |[Ng(R)/R|¢. More generally, a weight for a block B of G is a pair
(R, 1) as above, where u further lies in a block b of Ng(R) for which B is the induced block »®. The
Alperin weight conjecture (AWC) posits that if G is a finite group and £ is a prime dividing |G|, then the
number of irreducible £-Brauer characters of G equals the number of G-conjugacy classes of £-weights
of G. The blockwise Alperin weight conjecture (BAWC) refines the statement to say that the number of
irreducible £-Brauer characters belonging to a block B of G equals the number of G-conjugacy classes
of £-weights of B.

Navarro and Tiep [11] and Spéth [16] reduced the AWC and BAWC, respectively, to simple groups.
In particular, to verify these conjectures it suffices to show that certain more complicated “inductive”
conditions hold for all finite nonabelian simple groups. Simple groups satisfying the inductive conditions
for the AWC or BAWC are sometimes said to be “good” for the corresponding conjecture.

In this article, we deal especially with the simple groups PSp,(g). It is shown in [11] and [16] that
a simple group of Lie type defined in characteristic p satisfies the inductive BAWC conditions for the
prime £ = p. In [13], the second author has shown that when ¢ is even, Sp,(q) and Spg(g) satisfy the
inductive conditions for all £ 7 2. Furthermore, in [9], S. Koshitani and B. Spith show that for £ odd,
the inductive conditions hold whenever a Sylow £-subgroup is cyclic.

Hence, to complete the proof that PSp,(g) satisfies the inductive BAWC conditions (and therefore
also the inductive AWC conditions), we must verify that these groups are good when g > 5 is odd for
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the prime ¢ = 2 and for odd primes ¢ dividing q2 — 1. (Note that PSp,(3) = PSU4(2), and hence this
group satisfies the inductive BAWC conditions for g =3 and £ =2 by [11; 16].) Our main result is the
following:

Theorem 1.1. Let g be a power of an odd prime. Then the simple groups PSp,(q) satisfy the inductive
blockwise Alperin weight conditions [16, Definition 4.1] for any prime £ dividing g° — 1.

This completes the statement that the simple groups PSp,(g) are good for the BAWC for all primes ¢
and all choices of g.

We begin in Section 2 by explicitly describing all 2-radical subgroups of Sp,(¢) and their normalizer
structures. We see that the situation here is much more complicated than for other choices of pairs (¢, g).
In Section 3, we discuss some relevant defect-zero characters of these normalizers after summarizing re-
sults from [19] regarding the Brauer characters of Sp,(¢). Finally, we complete the proof of Theorem 1.1
in Section 4 by describing explicit bijections.

1.1. Notation. We write Irr(X) for the set of irreducible ordinary characters of a finite group X and
dz(X) C Irr(X) for the subset of those with defect zero. We further write IBr,(X) for the irreducible
£-Brauer characters. When the characteristic £ is understood, we also write ¥ for the £-Brauer character
obtained from x € Irr(X) by restriction to £’ elements. If a group X acts on a set €2, then we write X,
for the stabilizer in X of an element w € .

Given an integer n, we write ny and ny for the largest power of ¢ and largest number coprime to ¢,
respectively, dividing n. We write C,, for the cyclic group of size n and X .n for an extension of a group X
by C,. The symmetric and alternating groups of degree n will be denoted by &,, and %,,, respectively.

For the remainder of the article, let g be a power of an odd prime p and let £ # p be another prime.
We will write e to denote the order of g> modulo ¢ and let € € {41} be such that ¢ = ¢ (mod 4) when
£ =2,0r g° =€ (mod £) when ¢ is odd. Let a be the positive integer such that £¢ = |g° — €|,. In the
case £ = 2, note that this means 2¢+! = (q2 — 1),. Further, we remark that in Sections 3 and 4, we will
be primarily interested in the case e = 1.

Throughout G will denote the group Sp4(q) and S the group PSp,(q) = G/Z(G). Further, we will
write G for the group CSp,(g) and S=G /Z (G) for the group of inner-diagonal automorphisms of S.

2. Radicals of Sp,(q)

To produce radical £-subgroups for G = Sp,(q), we make use of [4] for £ odd and [2] for £ = 2. In
particular we have the following theorem.

Theorem 2.1 ([2, 3A] and [4, 2D]). Let R be an €-radical subgroup of Sp,,(q) = Sp(V). Then there
exists an orthogonal decomposition V. = Vo + Vi + Vo +---+ V, such that R = Ry X R{ X Ry X -+ X R;.
Here if £ =2, for each i > 0, either R; = {X1y,} or R; is a basic subgroup of Sp(V;). If £ is odd, then
Ro = Iy, and R; is a basic subgroup of Sp(V;) for i > 1. (See Definitions 1 and 2 below.)

As symplectic groups are only defined over vector spaces of even dimension, each dim(V;) must be
even. Thus the aim is to study the basic subgroups of Sp,(q) and Sp,(g); see Definition 2 below for their
construction. We will first consider the basic subgroups for £ odd, as the arguments are easier, before
dealing with the more involved case £ = 2.
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2.1. {-radical subgroups of Sp,(q) for £ odd. We follow the notation as given in [4]. For integers
a,y >0, let V,, denote the symplectic or orthogonal space of dimension 2e£**”, where e = 0(q?)
modulo £. Recall that the integer a > 1 and € € {£1} are defined by the equation £ = |¢g° — €|,. Let
Zy := Cyate denote the cyclic group of order £“** and E, the extraspecial group of order ¢2v+1 and
exponent £. Set R, , to be the image of the central product Z, o E,, under the natural embedding through
GLy» (eqeza). (Here Z, is mapped to O,(Z(GL» (eqeza)). For any integer m > 1, let V,, o ,, denote the
m-times orthogonal sum of copies of V, ,,, and let R, ., be the image of the natural m-fold diagonal
embedding of R, , .

For a sequence of nonnegative integers ¢ = {cy, ..., ¢/}, set [¢| =cy+---+ ¢ and V;, 4 5 ¢ tO be the
orthogonal sum of £/¢! copies of Vin,a,y- Denote by A, the elementary abelian group of order ¢¢ and
define A := A - 0A, and Ry, 4y := Ry o,y VAc.

Definition 1. For odd primes ¢, the subgroups R, 4, ¢ are called the basic subgroups for Sp(V,, a,.¢)-
The basic subgroups Ry, «,,.c are uniquely determined up to conjugacy in Sp(V,, «,y,¢) and we have

dim(Vypa,y.¢) = €m0ty Let Um,a,y,c denote the multiplicity of the basic subgroup Ry, 4,y ,¢ in the
decomposition of R.

Proposition 2.2 [4, 2E]. Let ¢ be an odd prime and R an {-radical subgroup in Sp,, (q) such that
R=1Ivx [] Riye
m,x,y,c

Then
Nsz,,(q)(R)/R = SP(VO) X 1_[ (NSp(V,,,,D,,w)(Rm,a,y,c)/Rm,a,y,c) e Gum,a_y,c-

m,o,y,c

Since we see that wreath products play an integral role in these normalizers, we provide the following
statement to understand radical subgroups with respect to wreath products.

Lemma 2.3. Let H be a finite group, r a prime and n an integer. Assume that H contains an element of
order coprime to r. Then O,(H S,) = O,(H)". In particular, for any finite group H, O,(H: G,) =
O,(H)" unless H is a 2-group and (n,r) € {(2,2), (4,2)}, or H is a 3-group and (n,r) = (3, 3).

Proof. Let N := O,(H:6,)). Then NH"/H" < 0,(6,)) = 1 unless (n, r) € {(2, 2), (4,2), (3, 3)}. Thus
the second statement clearly follows by proving the first statement.

Fix an element g € H whose order is coprime to r. Note that if {h,07, ..., h,,0,,} is a coset transversal
of O,(H:6,) over O,(H") with h; € H" and 0 € G,,, then the o; must be distinct permutations. After
suitable conjugation, we can assume that o(1) # 1. Let g := (g, 1,...,1) € H". Then (h101)¢ =
(gh1(g°)"YHoy. Thus (gh(g®)~") = hhy with h € O, (H™). However it now follows, by the choice
of g, that g€ O,(H), which is a contradiction. O

In particular, the following corollary is an immediate consequence.

Corollary 2.4. Let £ be an odd prime not dividing q and let R < Sp,, (q) be of the form
R=Idy, x [] Ruaye
m,a,y,c

Then R is a radical £-subgroup of Sp,,(q) if and only each Ry, 4,y ¢ is radical in Sp(Viy ¢,y ,¢)-
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Proof. In [4] it has been shown that 2 always divides

|NSp(V,,,‘a_w) (Rm,oz,y,c) : Rm,a,y,cl
and therefore the result follows by combining the previous results. (]

Observe that to construct the radical subgroups of G = Sp,(¢q), we need only consider the basic
subgroups with dimension 2 or 4. In particular, as dim(V,,, q.y.¢) = 2lm2ee®t7 it follows that for our
cases, « =y = 0 and c is empty. Therefore, the following observation will deal with the basic subgroups
of interest.

Lemma 2.5. Let £ be an odd prime and let R,y o . be a basic £-subgroup of Sp(Vin,0,y.c)- Then Ry, 0. .c
is radical in Sp(Vu0,y,¢)-

Proof. First note that by [4, Equation 2.5],

NSp(Vm,a,V_c) (Rm,a,y,c)/Rm,a,y,c = NSp(Vm,a_y)(Rm,a,y) X l_[ GLC,‘ (6)»

cieC

and therefore it suffices to assume that ¢ is empty.

Set R=Ru0,y, C =Cspv,,,)(R),and N = Ngyv,, ) (R). Then for Ny := Cn(Z(R)), page 12 of [4]
yields that N/ Ny = Cyepe, Ng/CR = szy (¢), and C = GL;, (qzeed). Thus O;(Ny) = O¢(C)R = R and
if @ = 0, it follows that Ny has £’-index in N as e < £ — 1 and therefore Oy(N) = O;(Np). Il

Corollary 2.6. Let £ # p be odd primes and g a power of p. In addition, let R be a nontrivial £-subgroup
of G =Sp,(q). Then R is £-radical if and only if

e { does not divide qz —1land R=R;00= Cpa;
o { divides q2 —land R = Id2 XRI,O,O = Cea, RI,O,O X R[,()’() = Cga X an or Rz,(),() = Cga.

Proof. By Theorem 2.1, R is either a basic subgroup of dimension 4 or R = R; x R, where R, R, are
basic subgroups of dimension 2 or trivial. As the dimension of R, . y.¢ 1S 2/m2e0**7 it follows that
o =y =0 and ¢ is empty for each basic subgroup of interested and thus by Lemma 2.5 and Corollary 2.4,
R is radical in G. The result now follows by listing the basic subgroups.

If ¢ does not divide g> — 1, then e = 2 and hence m = 1 and the only basic subgroup is Rj 0. While,
if ¢ divides g> — 1, then e = 1 and either m = 1 or 2 depending on whether the basic subgroup has
dimension 2 or 4, respectively. This yields the basic subgroups Rj g0 and Ry g,0- O

2.2, 2-radical subgroups of Sp,(¢). As with odd ¢, to construct the 2-radical subgroups of G, we first
need to construct the list of basic subgroups. As £ = 2, we have that £ always divides g> — 1 and so let €
and a > 2 be defined so that 2 = |g — €|,. This case requires some additional families of basic subgroups,
which are obtained by taking the extra special group E, = 27+ and replacing Z, by a central product
with Sya+a+1, Doata+1, O Qqata+1: the semidihedral group, dihedral group, and generalized quaternion
group of order 249+ respectively.

We now turn our attention to summarizing the details of the required basic subgroups, taken from
[2, Sections 1 and 2]. Note that as we are interested in the symplectic case, we have Sym(V) = —1 and
n(V) =1= —Sym(V) in the notation of [2]. We use o to denote a central product.
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R(’;W isomorphism type condition on « and y dim(VO’;’y)
Ry, E, 27
R}, E,0Z, 2oty
Rgl,y EV o S2a+a+l o> 1 20l+]/+1
Ry, | EyoDan 20tr+2
1

4 a >1and m > 2 (see below) | 2¢Tr+

Ra’y EV o Q2a+a+l o = 0 27/+1
Using the same construction as in the odd ¢ case, we then obtain the subgroups R/ y.c- Note that
for the corresponding vector space Vril,a,y, ¢» we have

dim(V,, ., ) = 20l . dim(V, ).

i

Definition 2. For the prime 2, the subgroups R;, , .,
excluding the case in whichi =y =0and ¢; = 1.

Throughout, for R < G = Sp,(g) a 2-subgroup, we write N := Ng(R) and C := Cg(R). Let By;
denote the set of basic subgroups of Sp,;(¢). Applying Theorem 2.1, a 2-radical subgroup of G is a
member of one of the following:

are called the basic subgroups for Sp(V"‘;,a,yY o)

{14}, (D} x{£h}, {*bh}x By, Byx B, By.

2.2.1. The basic subgroups B,. In this case, the dimension of the underlying vector space Vn’;’a’y’g is
equal to 2. Thus
2 =2 m-dim(V, ).

As Vo’;y is a symplectic space, it has even dimension. Therefore m =1 and ¢ = &. In particular, the
basic subgroups in B, are R8,1 =EX! = Os, Ré,o = EyZy = Coa, and RS’O = Qoa+l.

From this list we can in fact deduce the following well-known result. We note that this can be proven
without the use of [2], however we shall use it here to help outline the details for the basic subgroups

of Spy(q).
Theorem 2.7. The radical 2-subgroups of Sp,(q) = SLa(q) are given in Table 1.

Proof. Let R be aradical 2-subgroup of Sp,(¢q). Either R is from the list above or R = {£1} = Z(Sp,(q)).
Thus assume R is a basic subgroup of Sp,(g).

First consider R = R8’]. Then Csp, ) (R) = Z(Sp,(g)) and Nsp,g)(R)/E = &3 or C3 whena > 3 or
a = 2 respectively, using [2, 1G]. Moreover, there is one conjugacy class when @ = 2 and two conjugacy
classes of subgroups when a > 3.

IfR= Rg,o’ then Csp,(4)(R) = Z(Sp,(¢)) and Nsp,(4)(R)/R is trivial by [2, 2G], and R is determined
uniquely up to conjugation.

Finally, if R = Ré,o’ then Csp,(g)(R) = GL{(¢g) and Nsp,(q)(R)/Csp,(g)(R) = C2, using [2, 1K].
However, it follows that any element in Ngp,4)(R) not in Csp,4)(R) acts on Csp, 4 (R) by inversion.
Therefore, O2(Nsp,)(R)) = R if and only if Csp,4)(R) # R. Moreover, R is determined uniquely up
to conjugation. O
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R Csp,(q)(R) | Outsp, () (R) conditions
G2 | Spa(q) 1 g>5
Qs & S3 a > 3 (two classes)
Os 18 C3 a=2
Coa Ciq-o 6)) (g —e€) #2°
Qra+i C, 1 a>3

Table 1. The radical 2-subgroups of Sp,(q).

We now have the following proposition.

Proposition 2.8. Let R = H, x H, with H; = {1} or H; € By. Then R is a 2-radical subgroup of
G = Sp4(q) if and only if H; is a 2-radical subgroup of Sp,(q), unless Hy = Hy = Qya+1 and a > 3.

Proof. We have Z(H;) = {15} unless H; = Coa, in which case Z(H;) = H;. Furthermore, it can be
assumed that Z (H;) consists only of diagonal matrices.

As Z(R) is characteristic in R and diag(/,, —I5) € Z(R), it follows that diag(l,, —1,)% =diag(l,, — 1)
or diag(—1,, I7) for any g € Ng(R). Hence g =diag(A, D) or h -diag(A, D), where A, D € Sp,(g) and

. 0, I
h_(lz 02).

Ng(Hy x Hy) = Nsp,(q)(H1) X Nsp,(q)(H2) or Nsp, ) (H1) 1 Ca.

Thus

Hence the result now follows by applying Lemma 2.3. O
In Table 2 we list all the radical 2-subgroups of Sp,(q) that are not contained in By.

2.2.2. The basic subgroups Bs. In this case the dimension of the underlying vector space V,fi’a’% o 1

equal to 4. Thus
4=2m-dim(V, ).

The following lemma deals with the case that ¢ is nonempty. In particular, as dim(VO’;’y) > 2, it follows
that ¢ = {1}.

Lemma 2.9. Let R = H:C, for H € By. Then R is radical in G = Sp,(q) if and only if H is radical in
Sp,(q) and H # Z(Sp,(q)). Furthermore, the structure of C and N are given in Table 3.

Proof. By [2, Equation 3.4], R,"n’a,y’c is radical in Sp(Vrf;’a’y’c) if and only if R;'n’a’y is radical in
Sp(Vn’;’a’y), except when i = y = 0 and ¢; = 1, in which case R1(1)1,0,0,c is not radical as Rg’l is not
radical in Sp,(g) by [2, 1J]. O

Thus, we can assume that ¢ is empty. Next we deal with the case that m =2 and dim(VO’;’y) =2. In this
case the basic subgroups are the 2-fold embeddings of basic subgroups in B;. In particular, the relevant
groups are:

i 0 1 4
Rm,oz,y ‘RQ,O,I R2,0,0 RZ,O,O

isomorphism type‘ Qs Co  Qoari



RADICAL SUBGROUPS AND THE INDUCTIVE BLOCKWISE ALPERIN WEIGHT CONDITIONS FOR PSpy(q)

1187

type R Cs(R) Outg(R) = 2% conditions
{£14} Z(G) = G 1
(£} x{£hL} | Co, x Cy SLz(q) X SLz(q) C, q = 5
Cr X Cpa SLr(g) x Cy—e C q—e€#2°
(£} x By Cr x Qg SLa(g) x Co Cs a=2andg >5
Cr x Qg SLy(g) x C; 63 a > 3 two classes
Cy x Q2a+l SLz(q) x Cp 1 a>3
Czu X C2a Cq_é X Cq—e D8 q—€ # 24
Cra x Qg Cq_GXCZ Co a=2andg >7
Cra x Qg Cie x D> a >3 and g — € # 2° two classes
By x By Cra X Qoa+i Cy_e xCo C a>3and g —e€ #£2¢
QgXQg C2XC2 (C3XC3).2 a=2
Qg x Og Cr x Cy (63 x63).2 | a >3 two classes
Os x Qg Cax Gy (G3x63) |a=3
Qg X Qoa+i Crx(Cy S3 a > 3 two classes

Table 2. The radical 2-subgroups of G = Sp,(g) not of type By.

Proposition 2.10. Let R = R2 01 = Qg Then R is a radical 2-subgroup of G = Sp,(q) if and only if
q > 5. In addition C = Dy and - RC = = Dg.

Proof. Let R := R20 | = QOs. In this case we make use of [2, 1Jb]. Write C := Cg(R), N := Ng(R),
and N! := Cy(C). Then N!C = N! oz C and X = Dg or C3 depending on a > 3 ora = 2
respectively. Thus O2(N'C) = R. Asm =2, R is determlned uniquely up to conjugation. Furthermore,
C= 02_6 (@) = Dy(g+¢)- Note that O2(Dzy+¢)) # Z(R) if and only if D>(,4) is a 2-group, if and only
if g =3.

If a > 3, then N = N!C and so R is radical and Y zC = N% = Dg. Thus assume a =2. By [2, 1Jb]
we have that —= = Dg. Thus it remains to show that R is radical. Cons1der =, which has a normal
subgroup 2-€ of index 2. As R = 0,(N'C), it follows that 02(N =1 Therefore if 0,(X)=H/R,
then HCR <1 N and HCR/CR is a nontrivial normal 2-subgroup in Dg, which is a contradiction. Thus

02(N)=R. g

Proposition 2.11. Let R = R2 0.0 = Coe. Then R is a radical 2-subgroup of G = Spy(q). In addition,

C =GL5(q) and L zc = Ca.

Proof. Let

J:(_Ol 3)
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By [7], the subgroup Co« is generated by

n 0
0 -1 when ¢ = 1 modulo 4, or
n

0 1\
when g = 3 modulo 4,
1 n+nd

where 7 has order 2 in F or [F;z, respectively. Furthermore w’ = w™!. As the image inside G is taken
from the double embedding, we can take the symplectic form for G to be J, := diag(J, J).

Using eigenvalues, it follows that the image of w in G under conjugation must be either w or w™".
Thus it follows that N = {C, J). Furthermore, O,(N) equals either O,(C) or (O,(C), xJ,) for some
xeC.

If xJ5 is in O2(N), and A € N, then A(xJ,)A~! = zx J, for some z € 0,(C). As C = GL5(g) by
[2, 1Ka], it follows that O,(C) = R and z € R. Furthermore, as J, is the symplectic form we have chosen,
we see that A’ J, = JbA~!. Hence AxA’ = zx. Assume

X1 X2
X = s
X3 X4

with x; € Maty(F,). The element diag(l>, —1I7) € C, so

12 X1 X2 12 | X1 x| |z X1 X2
—12 X3 X4 —12 o —X3 X4 - Z X3 X4
for some z € R viewed as a subgroup of Sp,(g). In particular, either (z — 1)x; = (z — 1)x4 =0 or

(z+ Dxp, = (z+ 1)x3 = 0. However either x;y =x4 =0 or xp =x3 =0, as (z — 1) or (z + 1) is invertible.
(Indeed, z is of the form diag(x, A~') after possibly conjugating in sz([Fq).) Thus

) o [

However, in either case it now follows that at least one x; J lies in O2(Nsp,4)(R)), which is a contra-
diction. Thus O2(Nsp,g)(R)) = O2(Csp,(4)(R)) = R. O

Proposition 2.12. Let R = Rg,o,o = Qqa+1. Then R is not a radical 2-subgroup of G = Sp4(q).

Proof. Let J, J>, and w be as in the proof of Proposition 2.11. Then (J, w) = Q,.+1 < GLy(g), and
J> is the symplectic form for G. Let A € C. Then A~'J,A = J, and A’ JA = J. Therefore A’ = A~

Moreover, if
Al Ap
A=
<A3 A4)’

then each A; is conjugate to a matrix of the form diag(a;, a;) in GL2(g?). Thus C = 05(q) = Dayy—e)-
However Oz(Dy—¢)) = Cae > Z(R) = (3, and so R is not radical. O
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It now only remains to consider the case that dim(VO’;’y) = 4. Here the groups of interest are:

i 0 1 1 2 3 4
Ry ‘Ro,z R Rio Rio Roo Ry,

isomorphism type ‘ 21+ 0g0Coa Coart Srarz Doar1 Qg0 Qoa+i

Proposition 2.13. Letr R = R8’2 > 24 If a4 =2, then there is a unique conjugacy class of subgroups
isomorphic to R, while if a > 3 then there are two classes 0f subgroups isomorphic to R. Furthermore,
R is a radical 2-subgroup of G = Sp,(q), with C = C; and Y- zc =825 whena > 3, or Us.2 when a = 2.

Proof. By [2, 1]Jb], C = C; and
N N [0;,)=%2 ifa=3,
CR R |Q@=A ifa=2,

s0 O2(N/R) =1 and R is a radical 2-subgroup. Moreover, if a = 2 then there is a unique class for R,
while if @ > 3 then there are two classes for R up to conjugacy. O

Proposntlon 2.14. Let R = R1 1 =Cxo Qg Then R is a radical 2-subgroup of Sp,(q) if and only if
— € £ 2% In addition, C = Cq _c and X ®C = = Dq».

Proof. In this case we use [2, 1K]. We obtain R = Qg o Cy« by the inclusion
R < GL5(q) = Sp4(q).,

where Cy« < Z(GL2(q)). Let H denote the image of NGL;(q)(R) under this inclusion, so that H has
index 2 in N and C = GL{(q) is the image of CgLs(g)(R).
By [1, Lemma 1B] and [3, Lemma 1L], we have O,(H) = R, since O,(CR) = R. Then

()2 W% K H
R CRR CR CR ’

Moreover, - zc has a normal subgroup Dg of index 2, so RC = Dy». (Indeed, this is the only group of
order 12 containing a normal subgroup isomorphic to Dg.)

If g —e=2% then CR =R and so 02(%) > 1 so R is not radical. On the other hand, if g — € # 29,
then there exists x € C of odd order, and after the embedding is of the form diag(n, n, n~!, n™!). Let
h € O,(N). If x* = x~!, then h* = x~2h, which implies x72 € 0,(N), so x = 1. Therefore x" = x for
all h € O2(N). Thus O2(N) < Cy(C) < H. In particular, it now follows that O,(N) = R. Il

Proposition 2.15. Let R = R% 0= C2a+1 Then R is a radical 2-subgroup of G = Sp,(q) if and only if
q > 5. In addition, C = Cpy and X zC = Cy x Cs.

Proof. The group C,u+1 is obtained via the embedding
Fy2 = GL2(q) <> Sps(q).

If Bely\ F2, then the image of F,2 in GL(g) is given by the subgroup

K = {[; ﬂ)\“} ‘ A, u € Fy such that both A, 750} =Cp_y,
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while the embedding from GL;(g) into Sp,(g) is given by
A [A

Let g generate the subgroup Cha+1 < [quz. Then CgL,4)(g) = K. Moreover, since det(g) # 1, we see that g
and (g’)~! have different eigenvalues, so the Sylvester matrix equation implies C¢(g) is the image of K.
As the eigenvalues of g are A & /B, it follows that Ngi,(g)(Caar1) = (CoL,(4)(8), X) for

=2

Furthermore, as the eigenvalues of (g/) ! are (A £ /Bu)/ (A% — Bu?) it follows that any element in
NG (Cpat1) is a product of an element from H, the embedding of Ngp,(¢)(Coa+1), with the element

. . I
(Af)_1:| ,  with symplectic form J = |:_12 i| .

which acts on H by inversion on Cgp,(4)(g) and sending the image of X to its negative. Thus C :=
Csp,(q)(Caat1) = C,2_y has index 2 in H and H has index 2 in N := Ngp, (¢)(Cpa+1). Then if g2 —1 =21,
the group R is not radical.

Assume q2 —1# 20+1 e, g > 3. 1If O,(H) > 0,(C), it follows that cX € O,(H) for some ¢ € C.
Let d be an element of odd order in C; then [d, cX] = det(d~")d* € 0,(C), which yields a contraction.
If O,(N) > O,(H), it follows that an element cY or ¢ XY is in O,(N) for ¢ € C and X is taken to be its
image in N. Furthermore, c'Y =¢™'Y and (¢X)¥Y = —¢~' XY and therefore ¢? lies in O»(N), which
provides a contradiction. Thus O,(N) = R. Il

Proposition 2.16. Let R = Rlz’0 = Sya+2. Then R is a radical 2-subgroup of G = Sp4(q) if and only if
q > 5. In this case, C = Cyqc and % = (.

Proof. Whene =1, wehave C=¢g +1 N >~ Chp =y, and R = 02(N) by [2, 2Bd]. When € = —1,

» RC =
wehave C =g — 1, % = (Cy, and R = O,(N), unless ¢ = 3 as in this case C is a 2-group and thus N is
a 2-group by [2, 2Cc]. In each case, R is determined uniquely up to conjugation. O

Proposition 2.17. Let R = RS,O = Dya+1. Then R is a radical 2-subgroup of G = Sp,(q) if and only if
q = 5. In addition, C = Sp,(¢q) = SL1(q) and 4= = C».

Proof. By [2, 2Ce], R = O2(N), Csp,(g)(Dy+1) = Spy(q) = SL2(g), and % = (C,. Furthermore, R is
determined uniquely up to conjugation. O

Proposition 2.18. Let R = Rg,l = Qg0 Qy+i. Then R is a radical 2-subgroup of G = Sp,(q). If a =2,
then R = R8,2 and the structures of C and N are given in Proposition 2.13. If a > 3, then C = Z(G) = C,
and év—c = Gs.

Proof. Let R = RS"] = Qg0 Qp+1. Whena =2, R = Rg,z- Thus assume that a > 3. In this case, [2, 2G]
yields that C = Z(Spy(¢)) and £5 = % = Sp,,(2) =Sp,(2) = &s. O
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type for By R Cs(R) Outg(R) = &% conditions
ol ) Q) =As |a=2
21+ C, 0, (2)=2As.2 | a > 3 two classes
C2a 03 Qg Cyec Dy, q—e€#2°
c=0andm =1 Crat Cpy Cr xCy qg=>>5
S2a+2 Cq+e C2 q > 5
Doaxi SLa(q) G qg=>5
Qg 02 Qari C, S; qg>5a=>3
c=0and m =2 QS OEE(Q)EDZ(Q-FG) 63 qu
- Coa GL3(q) (&) qg=>5
Cza 2C2 Cq—g Cz q—¢€ 752“
c=landm=1| Z81© €2 Cs a=2
- 03:C, C S3 a > 3 two classes
Ora+12Cy C, 1 a>3

Table 3. The radical 2-subgroups of G = Sp,(g) of type Bj.
We finish by giving Table 3, which lists the radical 2-subgroups of type Bj.

3. Relevant characters for £ =2

3.1. Brauer characters of Sp,(g). White [19] computed the 2-block distributions and 2-decomposition
numbers for G = Sp,(g). In an effort to keep this article self-contained, we summarize in Table 4 some
of the relevant information.

Given x € Irr(G), we write x for the 2-Brauer character obtained by restricting x to 2-regular elements
of G. The notation for characters and indexing sets is taken from [17]. Further, the integer x in the
description of the principal block characters is a number satisfying 0 < x < (¢ — 1)/2, and does not affect
our work here. The indexing sets are defined as in [17] and [19], as follows:

The set 7| is the set of multiples of (g —1)2in {1, ..., (g —1)/2—1}. The set T} is the set of multiples
of (g+1)2in {1,..., (g +1)/2 — 1}. We will further write 7, for 7| when € =1 and T, when € = —1.
Similarly, T, denotes T, when € =1 and 7| when € = —1.

The set R| is comprised of the even integers in the equivalence classes of {1, ..., I\ (@G> +1)/2)
under the equivalence relation i ~ j when i =+ or +¢j (mod g2+ 1).

The set R} is comprised of the set of multiples of (g> — 1) in the equivalence classes of

{l<i<q’—11(@+Dtis (g—1Dti}
under the equivalence relation i ~ j when i = £ or ¢ (mod g — 1).

3.2. Defect-zero characters of Ng(R)/R. In this section, we develop the notation to describe the
defect-zero characters of Ng(R)/R for the 2-radical subgroups R described in Tables 2 and 3. Recall
that € € {£1} is such that ¢ = ¢ (mod 4), so that (¢g> — 1), = 2(g — €)». Throughout, let n, n’, and 6
denote fixed generators of the subgroups Cy—c, Cye, and Cp2_y in [F;z, respectively.
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block B Brauer characters IBr,(B)  indexing information number of blocks
2
Py - 1
bi(r) xX1(r) reR] 4 3
— 1)y —1 1)y —1
by(r) X2(r) reR, (g =12 {4((61 +D2— 1
“ Dy —1D((g—1)2 —3
bs(r, s) X3(r, 8) ros €T, r#s (tg = 1) )8((q )y = 3)
1 / — 1 1 / — 3
ba(r, s) Xa(r,s) r,s €Ty, r#s g+ 1o )8((q + D2 =3)
— 1y —1 Dy —1
bs(r, s) Xs5(r, s) rel,),seT| (g =12 L,((q + 1o )
~ (g+1)ry—1
ber (1) R6(r) reTy "f
X7(r) — Xe(r)
> (g—Dy—1
bgo(r) Xs(r) ref| qf
Xo(r) — Xs(r)
- G+ 1)y —1
bi(r) E1(r) reTy %
En(r)
?21(’”)
- G —1)y—1
by (r) &3(r) ref| %
En(r) —&50)
§a1(r) —&3(r)
bo go=1 1
p3=01p—1
P6=00
o1 =3 —x010—07
Y2 =Dy —x010— 03
@4 =07
¥s =03

We may embed the group C,_..2 into SL;(q) naturally with C,_, realized as the subgroup generated
by diag(n, =), up to SLQ([I_:q)—conjugation. Here, the C; factor maps 1 — n~!. We will denote by 7 the
character of C,;_¢.2 whose restriction to C;_¢ is n* 4+
1 to a fixed primitive g — € root of unity in C. The corresponding characters of C,; ), .2 are the 7
for k € T/. We will use the same notation when C,_. is embedded into G via SL(g) x SL2(g) as the
subgroup generated by diag(n, n~

1

. h.

k

Table 4. The blocks and Brauer characters of Sp,(¢g) for the prime 2; see [19].

, where 7 is a generator of Irr(Cy_¢) sending




RADICAL SUBGROUPS AND THE INDUCTIVE BLOCKWISE ALPERIN WEIGHT CONDITIONS FOR PSpy(q) 1193

Similarly, we may embed C, .2 in G so that the C, ¢ factor is Sp4([Fq)—conjugate to

1

diag(n’, 0", 0, n'™h

and the C5 factor maps 1’ — n'~!. Here 17, will denote the character of C,.2 whose restriction to C,
is n'F + 1'%, where 1’ is a generator of Irr(C ) sending 1’ to a fixed primitive ¢ + € root of unity in C.

We may also embed the group Cg2_; .2% in G so that the C,2—; factor is generated by the element
diag(9,09,6~1,679), upto Sp4([Fq)—conjugacy, with the two copies of C; in Cy x C, mapping 6 +— 69 and
6 — 6~!. We denote by 6 the character of Cpy .2? whose restriction to Cpo_yis Ok + 0% 9=k 1 g—ak,
where 0 is a generator of Irr(C, 42—1), mapping 6 to a fixed primitive g”> — 1 root of unity in C.

We will also require characters of PSL;(g) of degree ¢ — €. Specifically, when € = 1, we will denote
by xe(k) the family of characters x¢(k) in CHEVIE notation of degree ¢ — 1, which may be indexed by
k € T,. We remark that this indexing is slightly different than that of CHEVIE; taking the indexing to
be T, yields the value —£i¥ — &%, where & is a primitive ¢ + 1 root of unity (rather than —& 2% — &%)
on the class Cs5(i) in CHEVIE notation, since the indices are divisible by 2. Similarly, when € = —1, we
will denote by x,(k) the family xs(k) of characters of PSL;(g) of degree ¢ 4+ 1, which may be indexed
by k € T/, keeping similar considerations in mind. Note that under our notation, the indexing set for x,
is 7’.. Finally, we let  denote the irreducible character of G5 of degree 2, v denote the irreducible
character of s of degree 4, and p denote a fixed generator of Irr(C3).

3.3. Defect groups. We begin by considering the normalizers of the radical subgroups that are defect
groups (according to [19]) of blocks of G = Sp,(q).

First, consider the radical subgroup R = C, x C; of type {£1>} x {£1>}. Here R is in fact the defect
group of the block B = b3(r, s) when € = —1 and b4(r, s) when € = 1. The normalizer Ng(R) is of the
form SL,(g) : Co, where the base subgroup SL, (q)z, which is also the centralizer C;(R), can be viewed
as being embedded blockwise in the natural way. Here Ng(R)/R is of the form PSL,(g) : C,, and
ING(R)/R|, =2(q — e)%. Hence we see that dz(Ng(R)/R) is comprised of characters whose restriction
to PSLz(q)2 iS (Xe(r) X Xe(5)) + (Xe(5) X xo(r)) for r # s in T' . We will write x,(r, s) for such a
character.

Now let R = Cy x Cpa be the radical subgroup of type {15} x B. Then R is the defect group of the
blocks of the form bs(r, s). Here Ng(R) = SLa(q) x Cj—.2 and Ng(R)/R = PSLy(q) x C(4—e), -2.
Hence a defect-zero character of Ng(R)/R has degree 2(g — €);, so must be x,(k) x 7, for some (k, t) €

T x T/
Let R = Cp x Qq+1 be the radical subgroup of type {15} x By, which is the defect group of the
blocks of the form b;(r) when € = 1 and by;;(r) when € = —1. We remark that these blocks each contain

three irreducible Brauer characters. We remark that in Section 4, we will define IBr; (G |R) to contain
just one of these from each block. Here Ng(R) = SLy(q) X Qs+t and Ng(R)/R = PSL;,(gq), whose
defect-zero characters are those in the family x,(k) fork e T _.

Let R = Cy« x Cya be the radical subgroup of type B, x B;, which appears as the defect group of the
blocks b4(r, s) when € = —1 and b3(r, s) when € = 1. Here Ng(R) = Cg_e.Dg = (Cy—c.2)2C; and
NG(R)/R = (C(y—e), -2) 2 C3. Since defect-zero characters of Ng(R)/R have degree 8, for k # ¢ in T/
they must be of the form (7% x ;) + (1; x 1) on restriction to (C(g—e), .2)2. In this case, we will denote
such a character of Ng(R)/R by 7 k.
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When R is the radical subgroup of type By x B, of the form Cy« x Qya+1, R is the defect group
of a block of the form by;(r) when € = 1 and b;(r) when € = —1. Again, these blocks each contain
three irreducible Brauer characters, and we will define IBr(G|R) in Section 4 below to contain just
one of these from each block. Here Ng(R) = Cy—.2 x Qg1 and Ng(R)/R = C(4—), .2, which has
defect-zero characters 7j; for k € T.

The subgroups R = Cy+1 of type By are the defect groups for the blocks of the form b,(r). Here we
have Ng(R) = Cpoy .22~and Ng(R)/R = C(qz_l)z, .2%. Then dz(Ng(R)/R) is comprised of characters
of degree 4, of the form 6y for k € R).

Now let R be semidihedral of size 2472, Here R is a defect group for a block of the form bg7(r)
when € = 1 and bgg(r) when € = —1, which contain two Brauer characters in each block. We will define
IBr2(G|R) in Section 4 to contain one such character from each block. We have Ng(R)/R = Cy4¢), .2
and the defect-zero characters are of the form 7; fork € 7' .

Now let R be of type By of the form Cp : C;. Here we have R is a defect group for a block of
the form bgo(r) when € = 1 and bg7(r) when € = —1, which contain two Brauer characters in each
block. Again, we will define IBr (G| R) below to contain one such character from each block. We have
NG(R)/R = C(4—e), -2 and the defect-zero characters are of the form 7 for k € T

Let R € Syl,(G), so R is a defect group of by and Ng(R)/R is trivial when a > 3, which means there
is a unique (trivial) defect-zero character. When a = 2, Ng(R)/R = C3, and we have three defect-zero
characters corresponding to the three members of Irr(C3).

3.4. The remaining radical subgroups. We now address the radical subgroups that are not defect
groups for any block of G.

For the radical subgroups of type B4 of the form R = Dj.+1 with ¢ > 5, we have Ng(R)/R =
PSL,(q) .2, where the C, acts as the diagonal automorphism on PSL,(g). Since |Ng(R)/R|» =2(q —€)2,
a character of defect zero must be x,(k) for some k € T”_ when restricted to PSL,(¢g). However, these
characters are invariant under the diagonal automorphisms, as they extend to PGL,(g). Hence we see
that dz(Ng(R)/R) is empty in this case.

For the radical subgroups of type By of the form R = Qg with ¢ > 5, we have

NG(R)/R = Dagve)/ Z(Dagre)) X 63 = Dyye x G3,

so that defect-zero characters have degrees whose 2-parts are 4. Hence these are Y x ¢ fork € T,
where ;. is the character of D, . which takes values 2 cos(k/(g + €)) on the generating rotation.

When R = Cy« with ¢ > 5, we have Ng(R)/R is (GL5(g)/C2).2, where Co« < Z(GL5(g)). Then a
defect-zero character has 2-part 2(¢> — 1)», which is impossible, since the largest 2-part of a character
of GL5(g) is (¢ — €)>. Hence there are no defect-zero characters in this case.

When R = Ca 0p Qg with (¢ —€) # 1, we have NG(R)/R is C(y—¢), - D12 = C(4—¢), -2 x G3. Then
the defect-zero characters are of the form 7y x ¢ for k € T/.

For the remaining radical subgroups, the set dz(Ng(R)/R) (and sometimes R itself) depends on
whether a > 3 or a = 2. We discuss the two situations separately.

3.4.1. The case a > 3. Recall that there are two classes of the form R = C, x Qg when a > 3, from the
two classes of radical subgroups Qg in SL,(q). Here R is of type {15} X By, Ng(R) =SL,(g) x 0s.53,
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and Ng(R)/R = PSL,(g) x &3. Then [Ng(R)/R|2 = 2(q — €)2, and defect-zero characters are of the
form yo(k) x ¢ fork e T .

There are also radical subgroups of the form R = Cy« x Qg with a > 3, (¢ — €)» # 1, coming from
the two classes of radical subgroups Qg in SL,(g). Here R is type B, x B, and

NG(R) = Cq_€.2 X Q8.63 = (Cq_e X Qg).Dlz.

This yields Ng(R)/R = C4—¢), -2 X &3. Then the defect-zero characters have degree 4, and are of the
form 7 x ¢ for k € T/.

Let R = Qg x Qg with a > 3 be of type B, x B, where the two copies of Qg are the same class
in the respective SL,(q), yielding two classes of radical subgroups like this and Ng(R)/R = &3 C;.
Here defect-zero characters have degree 8. However, this means that on restriction to the base subgroup
G3 x G3, the character must be ¢ x . But this character is invariant under the C; action, and hence
extends. Then in this case, Ng(R)/R has no defect-zero characters.

When the two copies of Qg come from the distinct classes in SL;(g), we get one additional class of
radical subgroups for G, with Ng(R)/R = G3 x G3. In this case, defect-zero characters of Ng(R)/R
have degree 4 and must be of the form i x .

When R is a member of one of the two classes of radical subgroups Qg X Qq.+1 of the form By x By,
we get Ng(R)/R = G3. Here ¢ is the only defect-zero character.

If R =2 then Ng(R)/R =%2s.2. This has no defect-zero characters, as the degree would need to
have 2-part 8, but 2s has only one degree-4 character, which would extend to Ng(R)/R.

When R = Qg 0y Qsett or Qg2 Cy with a > 3, we have Ng(R)/R = G5 and  is the only defect-zero
character.

3.4.2. The casea=2and q >5. When a =2 and g > 5, there is one class of the form R = C, x Qg, with
Ng(R)/R =PSL,(g) x C3. Here for each k € T’ _, there are three characters of defect zero corresponding
to xe(k) x ', where u' e Irr(C3) with i € {0, 1, 2}.

There is also one class of radical subgroups of the form R = Cy x Qg witha =2, (g — €)» # 1 (that
is, g > 7), with NG(R)/R = C(4_),, .2 x C3. Then for each k € T/, there are three defect-zero characters
of the form 7j; x u' corresponding to the three characters u/ € Irr(C3).

In this case, we have one class of the form R = Qg x Qg, with Ng(R)/R = C3:C,. The defect-
zero characters here have degree 2 and are of the form (u' x /) + (u/ x p') with i # j € {0, 1,2}
when restricted to the base subgroup C2, which we will denote as j; ;. This yields three characters in
dz(Ng(R)/R).

We also have one class of the form R = 2}+4 and such that Ng(R)/R = 2s. Then there is exactly one
character in dz(Ng(R)/R), namely v.

4. The inductive BAWC conditions for PSp4(q)

In this section, we prove the inductive conditions for the BAWC for § = PSp,(q) when g > 5 is a power
of an odd prime p and ¢ is a prime dividing g> — 1. Note that by [16, Remark 4.2], to show that § is
BAWC-good, it suffices to show that S satisfies Conditions 4.1(ii)(3) and 4.1(iii)(4) of [16] in addition
to being AWC-good in the sense of [11, Section 3].
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4.1. The sets and bijections for £ = 2. Since |Z(G)| =2 when ¢q is odd, note that Z =1and S =X
in the notation of [11, Section 3]. Hence for S to be AWC-good for the prime £ = 2 in the sense
of [11, Section 3], we require a partition | IBr,(S|R) of Brauer characters of S, where the union is
taken over classes of 2-radical subgroups R of S. There should then be an Aut(S)-equivariant bijection
xp 1 IBrp(S|R) — dz(Ng(R)/R) satisfying certain other properties. However, the fact that |Z(G)| =2
also implies that the 2-blocks and 2-Brauer characters of G and S = G/Z(G) can be identified, using [10,
Theorem 7.6]. Further, the 2-radical subgroups of S are of the form R/Z(G), where R is a 2-radical sub-
group of G, and Ng(R/Z(G))/(R/Z(G)) = Ng(R)/R. Hence in what follows, we define the necessary
sets IBro(G|R) and bijections *xg for G rather than S.

Tables 5-6 and 7-8 describe the sets and bijections in the cases a > 3 and a = 2, respectively. We note
that when R is the defect group of a block B of G, we have defined IBr,(G|R) naturally as a subset of
IBr;(B). The indexing in the tables is taken as in Table 4. We remark that the condition (¢ — €)» # 1 for
several of the radical subgroups is not restrictive, given the enumerations in 3.1, and that the discussions
in Sections 3.1 and 3.2 yield that these do in fact define bijections.

Recall that G denotes the conformal symplectic group CSp4 (g), so that G contains an index-two
subgroup G o Z(G) which is a central product of G with Z(G) =[F;. Then the outer automorphism
group of S is isomorphic to C; x Cr, where g = p/. Here the C, component is induced by the action of
§/ S=G /(GoZ (6)) and the Cy component is given by field automorphisms. We also remark that by
[18, Theorem 16.2], we may choose a field automorphism ¢ generating the C ; component such that for
x € Irr(G), we have (5 XAP))y = G 5 X (@) . Throughout, let ¢ denote such a field automorphism and
let § denote a diagonal automorphism inducing the action of §/ S=G /(G o Z(G)).

Using [17] for the character table of G, arguments as in the proof of [13, Proposition 5.1] yield
that the chosen maps are equivariant with respect to the field automorphism. Further, from [5] and the
descriptions summarized in Section 3.1, we see that the action of §/ S interchanges the following pairs of
Brauer characters: {¢1. ¢a). {9, @s). (§5,(r). €, (). Eaa(r) = €3(r). €41(r) — €3(r)). The remaining
irreducible Brauer characters are invariant under the action of .

On the other hand, when a > 3, the Brauer characters interchanged by § correspond under our map
to pairs of classes of radical subgroups which are also interchanged by . Indeed, note that § induces a
diagonal automorphism as well on SL,(q), and that these pairs of classes come from pairs of classes of
radical subgroups Qg in SL;(g), which are fused in GL,(g), by [14, Corollary 7.15]. When a = 2, it
suffices to see that i and p? are interchanged by 8 when C; is viewed as a subgroup of SL,(g) inducing
an automorphism of order 3 on Qg embedded into SL,(g). Indeed, constructing Qg in the standard way
in SL;(g), for example as in [7], one can construct a generator for such an automorphism of Qg and see
that there is an appropriate representative for é that inverts it. This yields:

Proposition 4.1. The sets IBry(G|R) and bijections *g defined in Tables 5-8 satisfy the partition and
bijection conditions in [11, Sections 3.1 and 3.2].

4.2. The sets and bijections for Sylow £-subgroups, £ odd. From Section 2.1, we see that for £ an odd
prime dividing g% — 1, the only noncyclic radical subgroups for G are the Sylow £-subgroups. Hence
applying the results of [9], in order to complete the proof of Theorem 1.1 when £ is odd, it suffices to
consider the case that R € Syl,(G) and construct bijections from irreducible Brauer characters in blocks
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R 0 € IBro(G|R) 6*k e dz(N/R)
2(G)=0C xX1(r) xX1(r)
Cy x Cy x4(r,s) x6(r, )
C2 x Coa Xs(r,s) X6(r) X 1;
Cy x Qg (two classes) %Z(r) X6(r) x ¥

&5,(r) X6(r) X ¥
Ca X Qoer §1(r) X6(r)
Caa X Cpa x3(r,s) Mr.s
Cya x Qg (two classes) §42(r) B §3 (r) ?r XV
Ea1(r) —&3(r) N XY
Cou X Qnar E3(r) iy
Qs x Qs (two classes), N/R = (63 x 63).2 empty empty
Qs x 03, N/R= 63 x &3 ¥3 Xy
0g X Qqa+1 (two classes) @ v
©2 v
21+ (two classes) empty empty
Caa 03 Qg Xo(r) — Xs(r) N XY
Court X2(r) r
Sat2 X6(r) o,
Dia+i empty empty
Qg 02 Qoati 23 v
Os X7(r) — Xe(r) Vr XY
Cha empty empty
Cr2Cy Xs(r) Mor
031 Cy (two classes) P4 v
@s 14
Qre+12C2 lg 1

Table 5. The sets and bijections for £ =2, a > 3: the case € = 1.

1197

of maximal defect to dz(Ng(R)/R) satisfying Conditions 4.1(ii)(3) and 4.1(iii)(4) of [16] and those of

[11, Section 3].

Let € € {1} be such that £ | (g — €). Note then that R = C(;,_¢), X C(4—_¢),, that

NG(R)/R = Cye), -22Ca,
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R 0 € IBro(G|R) 6*k e dz(N/R)
2(G)=0C xX1(r) xX1(r)
Cy x Cy x3(r,s) xs5(r, s)
Cy x Cpa Xs(r,s) X5(s) X 1y
C> x Qg (two classes) §42(r) - % r) xs5(r) x ¥

E41(r) —&3(r) xs(r) x ¢
Ca X Qoer §3(r) X5(r)
Cha X Coa Xa(r,s) Nr.s
Cya x Qg (two classes) %Z(r) ?r XV
€5, (r) r X Y
Coa X Qe Ei1(r) ir
Qs x Qs (two classes), N/R = (63 x 63).2 empty empty
Qs x 03, N/R= 63 x &3 @3 Xy
Qs X Qe+t (two classes) @1 v
2 14
21+ (two classes) empty empty
Caa 03 Qs X7(r) — Xe(r) N Xy
Coati X2(r) o,
Soat2 x8(r) ﬁlzr
Dia+i empty empty
0302 Qpa+l ®6 (4
03 Xo(r) — Xs(r) Vr XYy
Coa empty empty
Cr 2 Cy Xo6(r) M2
031 C; (two classes) P4 v
®s v
Qra+12C I 1

Table 6. The sets and bijections for £ =2, a > 3: the case € = —1.

and that dz(Ng(R)/R) =Irr(Ng(R)/R). Here we may embed C;_E through the block-diagonal embed-
ding of SL»(¢)? in G. With this identification, the C, components act on C;_ and on (Cy—e),, .2)? via
inversion and reversing components, respectively. These can be viewed as induced from the elements

X = [_01 (1)] and y:= [_012 102], respectively. We further remark that the nontrivial diagonal automorphism &
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R 0 € IBro(G|R) 6** € dz(Ng(R)/R)
Z(G)=0C X1(r) X1(r)
Cy x Cy Xa(r,s) xe6(r, )
Cy x Cpa Xs5(r,s) X6(r) X 15
§5,(r) X6(r) X 1
Cy x Qg £5,(r) Xo(r) x pu?
&1(r) X6(r) X 1c,
Cra x Coa x3(r,s) Mr.s
Ea(r) —53(r) fir X
Coa x Qg | §41(r) —&3(r) i x pu?
§3(r) nr X 1c,
@3 M12
O x 0g ®1 o1
©2 o2
21_+4 %6 v
Cra 02 Qg | Xo(r) —Xs(r) nr XY
Coasi 22(r) o,
Soat2 Xe6(r) ﬁ/Zr
Dyat1 empty empty
Os X7(r) — Xe(r) Yr X Y
Coa empty empty
Cra 2 Cy x8(r) N2r
04 I
08:C ®s w?
Is Ic,

Table 7. The sets and bijections for £ =2, a =2, g > 5: the case € = 1.

of S can be seen as induced by the matrix diag(—1, 1) on each SL;(q) component, which fixes y and
sends x to —x.

Let £1 denote the characters of C(;—), of order dividing 2. These characters are invariant under
the action of the C> components of C;—),, .2, and we denote by +1, and +1, the two corresponding
extensions to Cy—e),, -2. Then we obtain 14 characters of Ng(R)/R whose restrictions to C (Zq_ o), are of
the form 1 x £1. In what follows, we will in most cases identify these characters by their restrictions
to (Cg—e), .2). However, for those that extend from (Cg—o)y 2)? to Cg—e), -22C2, we use subscripts a
and b again to denote the two extensions. Further, we remark that § fixes 1, and 1, and interchanges —1,

and —1,. Table 9 describes the bijections for these characters. The corresponding blocks of maximal
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R 0 € IBro(G|R) 6** € dz(Ng(R)/R)
Z(G)=0C X1(r) X1(r)
Cy x Cy X3, s) x5(r, s)
Cy x Cpa Xs5(r,s) xs5(s) x 1y
Ea(r) —83(r) Xs(r) x 1
Cox Qg | §a41(r)—5§3(r) Xs(r) x pu?
§3(r) x5(r) X 1c,
Cra x Coa Xa(r,s) Mr.s
%22(’”) Nr X 1
Cra X Q3 %-/21(”) nr X MZ
&1(r) nr X 1c,
@3 M12
O x 0g ®1 o1
©2 o2
21_+4 () Vv
Cra 02 Qg | X7(r) — Xe6(r) nr XY
Caani X2(r) 0,
Soat2 Xs(r) ﬁ/Zr
Dyat1 empty empty
Os Xo(r) — xs(r) Yr X Y
Coa empty empty
Cra 2 Cy Xe(r) N2r
04 I
03¢ ®s u?
Is Ic,

Table 8. The sets and bijections for £ =2, a =2, g > 5: the case € = —1.

defect and Brauer characters for G are obtained from [20]. (We remark that the number « is determined
in [12] to be 1 or 2.) From [5], we see that the pairs {®;, ®;;1} and {6;, 0;+,} for i = 1,3,5,7 are
interchanged by 6 and that ®9 and 6; for j = 9,10, 11, 12, 13 are fixed by §. Since all characters
listed are fixed by field automorphisms, we see that the bijections are Aut(S)-equivariant. Further, by
construction, (IBr¢(G|R) NIBry(G|v))*® C Irr(Ng(R)/R|v) for each v € Irr(Z(G)).

Now, consider the characters of C(;—e),, .2 that are not =1 on restriction to C(;—¢),, . These characters
are of the form 7, where the notation is analogous to that in Section 3.2 for the case that £ =2 above.
If m =2mo = (g — €)¢, this yields (m —2)/2 = mg — 1 characters of this form for C(;_), .2. These
characters are indexed by k in T, where, analogous to the case £ = 2, the set T, is the set of multiples of
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6 € IBry(B)
¢-block Bof G | e =1 €e=-—1 0*r € Irr(Ng(R)/R)
1G 1G (la X 1a)a
B9 010 (Ia X 12)p
bo o1 11 —1c (Ip X 1p)q
012 O12—1c (1p x 1p)p
013 0O13—012—011—abp+1g (Ia x 1p) +(1p x 14)
®s o) (—la X 1) + (g x —1,)
by Ol 0%) (=1p x 1g) + (1 x —1p)
oy Dy — Dy (—1a x 1p) + (1 x —14)
g D3 — P, (=1p x 1p) + (1p x —13)
/9\3 é\3 (_111 X _1a)a
04 04 (=1p x =1p)q
by O D9 — 04— 03 (=la x =1p) + (=1, x —1y)
01 01+603 — Do (—1a x =14)p
0> 02+ 04 — Do (=1p x =1p)p
Table 9. The bijection for R € Syl,(G), £ odd, isolated blocks.
(g—e¢€)ein{l,..., (g —€)/2 —1}. Given such a k, there are two characters of Ng(R)/R that restrict to

Mk XNk on (Cig—e),/ .2)2, which we again denote with an a and b. Further, for each ¢ € {1,, 15, —1,, —15},
we have one character whose restriction is of the form 7, X ¢ + ¢ X 17j;.

Finally, the characters of Ng(R)/R whose restriction to neither component of C(;—), is £1 must be,
on restriction to (Cg—e¢), .2)2, of the form (7 x ;) + (il; % fj) for k # t in T]. In this case, there
are (mg — 1)(mo — 2)/2 characters of this form. Table 10 describes the bijections for these remaining
characters. Again the Brauer character information is taken from [20], we have constructed the bijection
so that (IBry(G|R) NIBr¢(G|v))*® C Irr(Ng(R)/R|v) for each v € Irr(Z(G)), and the discussion from
above and arguments exactly as in [13, Propositions 5.1] yield that the bijection is Aut(S)-equivariant.

Together, we have the following:

Proposition 4.2. Let R € Syl,(G) and £ | (q2 — 1) odd. The sets 1Bry(G|R) and bijections xg defined in
Tables 9-10 satisfy the partition and bijection conditions in [11, Sections 3.1 and 3.2].

4.3. The normally embedded conditions. In this section, let G = Sp,(g) with ¢ odd and let £ | (¢ — 1)
be a prime. Let R be any 2-radical subgroup in the case £ =2 or a member of Syl,(G) if £ is odd, and
fix 6 € IBry(G|R), where IBr,(G|R) is defined as in Tables 5-10. Notice that Aut(S)g/S is cyclic unless
q is a square and 6 is fixed by é and a field automorphism of order 2.

Lemma 4.3. The characters 6 € 1Br;(G|R) extend to their inertia groups in G x (¢). Further, the
characters 0*® extend to their inertia groups in the normalizer of R in G % (¢), where xp is as defined
in Tables 5-10.
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e=1 e=-1
¢-block B of G 0 € IBry(B) | ¢-block Bof G 6 € IBry(B) | 6* € Irt(NG(R)/R)
b k 5(\8(]() b k 5(\6(]{) (ﬁk X ﬁk)a
w®) Xo (k) 7O 2w - 2 Gk X )
b (k) §/3(k) by (k) N §1(k) (ﬁ~k x 1) + (14 Xﬁk)
&5(k) &\ (k) —&1(k) (M x 1p) x 15 x 1)
b4y (k) §41(k) by (k) é:ﬂ(k) (7?.]( X —la) 4 (=1a x ]?k)
E4p(k) &5, (k) Mk x —1p) + (=1 x 1g)
bs(k,1) x3(k, 1) ba(k, 1) Xa(k, 1) (ke X 1) + (M X k)

Table 10. The bijection for R € Syl,(G), £ odd, nonisolated blocks.

Proof. This is clear if Aut(S)y/S is cyclic. Hence we may assume that ¢ = 1 (mod 8) is a square and
that 6 is fixed by é. In particular, @ > 3 and € = 1 in the case £ = 2. Note that 6 and 6** extend to G
and Gp, respectively. We claim that this extension can be chosen to be invariant under the same field
automorphisms as 6, respectively 6%,

Comparing the notations and values of the characters x in [17] for the families y; for 1 <i <9,
&1, S]’ , €3, and the unipotent characters of G fixed by § to those of their extensions, using [5; 15], yields
that each of these characters has an extension to G which is also invariant under the field automorphisms
fixing x. Hence each such x extends to its inertia subgroup, and therefore so does 6.

Observing the character tables of PSL;(g) and PGL;(g), we see that the characters in the family y¢
extend to characters of PGL,(¢g) that are invariant under the same field automorphisms. Further, § can
be chosen to commute with the groups Cy+ and C,2,, and modulo Z(G), WithNDQ(q_H) as well as the
elements x and y introduced in Section 4.2. Then §*F extends to a character of G g invariant under the
same field automorphisms as 6%, except possibly in the cases that N/R contains &3 as a factor. Since
the only group containing G3 with index 2 contains G3 as a direct factor, we see that § must act trivially
on G3, and hence the characters of N/R in the latter case also extend to characters of G g invariant under
the same field automorphisms. U

Corollary 4.4. Let G = Sp,(q) with q odd and let £ | (qg*> — 1) be a prime. Let R be a 2-radical subgroup
of Gif £ =2, o0raSylow £-subgroup if € is odd, and let IBr;(G|R) and xg be defined as in Tables 5-10.
Then the normally embedded conditions [11, Section 3.3] are satisfied.

Proof. Fix 0 € IBr;(G|R) and write G := G/ ker(0|zc)). If 0 is trivial on Z(G), identify S = G/Z(G)
with Inn(S), so that we may write G = S<Aut(S)g <Aut(S) and write X := Aut(S)y. If 6 is nontrivial on
Z(G), let X := Gy x (¢)g. In any case, let B := X be the subgroup of X stabilizing R. Then certainly,
G <X, Z(G) < Z(X), 0 is X-invariant, and B is exactly the set of automorphisms of G induced by
the conjugation action of Nx(R) on G. Moreover, Cx(G) is trivial and since 6 and 6** extend to X
and B, respectively, by Lemma 4.3, their corresponding cohomology elements in H*(X/G, [FZ) are
trivial. Hence the normally embedded conditions [11, Conditions 3.a-3.d] are satisfied, completing the
proof. O
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4.4. The block conditions. In this section, we consider Conditions 4.1(ii)(3) and 4.1(iii)(4) of [16].
Recall that to show that S is BAWC-good, it suffices by [16, Remark 4.2] to show that S satisfies these
two conditions in addition to being AWC-good in the sense of [11, Section 3].

We will begin with an adaption of [16, Lemma 6.1] for our purposes. To do this, we consider a more
general situation and set some notation. Let G be a simple, simply connected algebraic group over an
algebraic closure of [, and let F' be a Frobenius morphism such that G is a finite group of Lie type,
Z(G") is cyclic, and GF/Z(GF) is simple. Further, let G <— Gbea regular embedding as in [6, 15.1]
and let D be the subgroup of Aut(G’) generated by field and graph automorphisms so that GF'xD
induces all automorphisms of G*'.

Lemma 4.5. Let £ be a prime and let G be the universal £’ covering group of GT' /| Z(G) in the notation
above. Let Q be a radical subgroup of Go and I1Br(Go|Q) and *g be a subset of 1Br,(Go) and map,
respectively, satisfying the conditions of [11, Section 3] and [16, Condition 4.1(ii)(3)]. Further, assume
that x € IBry(Go| Q) is such that the following hold when  is viewed as a character of G* by inflation:

. (6F x D), = 65 X D, and (6; X DX)/GF is abelian;

o x extends to 65 X D, and x*¢ extends to (5F X D)oy
Then [16, Condition 4.1(iii)] holds.

Proof. By assumption, *o is Aut(Go)g-equivariant and x and x*¢ lie in pseudo-corresponding blocks,
in the sense of [16]. We largely follow and adapt the proof of [16, Lemma 6.1]. Let

G :=G" /ker(x|zr) = Go/ker(x12(Gy))-

Write A := GF /ker(le(Gp)) x Dy and A(x) := A/Z(A),. Then because £ { |Z(G)|, our assumption
(GF X D), = G X D, yields that A(x) has the properties of [16, Condition 4.1(iii)(1)]. Let A, be
such that Ay /G 1s a Hall ¢’-subgroup of A(x)/G, which exists since by assumption A(x)/G is abelian.

Now, by assumption, x extends to A(x), and ¢ := x*¢ extends to N(,)(Q). Then there is an extension
of ¢ to Na,(Q). Let ¢ € IBry(Na »(Q)) denote the corresponding Brauer character extending .

Let b be the block of N4 ,(Q) containing ¢ and let B be the block of G containing x. Then b4 is
defined (see for example [10, Theorem 4.14]) and by observing the values of central characters, we see
that b4 covers B, so that by [10, Theorem 9.4], we can choose an extension X of x to Ay so that  is
contained in b4¢ . That is, ¥ and @ lie in pseudo-corresponding blocks. Further, note that since A(x)/G
is abelian, an application of Gallagher’s theorem [8, Theorem 6.17] yields that every character of A(yx)
above yx is an extension, and similarly for characters above ¢ in N4 (,)(Q). It follows that X and ¢ may
be extended to characters of A(x) and Na(,)(Q), respectively. From here, arguing exactly as in the last
two paragraphs of [16, Theorem 6.1] completes the proof. O

In particular, if [16, Condition 4.1(i1)(3)] holds, then [18, Theorem 16.2] and the observations from
previous sections yield that Lemma 4.5 applies in the case that G =Sp,(¢), S = G /Z(G') =PSp,(q)
for g a power of an odd prime, Q = R is a nontrivial 2-radical subgroup of G when £ =2 or a Sylow
£-subgroup for £ | (q2 — 1) odd, and IBr;(G|R) and %y are as defined in Tables 5-10.
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Lemma 4.6. Let G = Sp,(q) for g a power of an odd prime and let R be a nontrivial 2-radical subgroup
of G when £ =2 or a Sylow £-subgroup for £|(qg*> — 1) odd. Let 1Bry(G|R) and xg be as defined
in Tables 5—10. Then if B is the block of G containing 6 € IBry(G|R) and b is the block of Ng(R)
containing 0**, we have b® = B. In particular, [16, Condition 4.1(ii)(3)] holds for S = PSp,(g).

Proof. Let N := Ng(R) and C := Cg(R). As b € BI(N), bC is defined and b® = B if and only if
Ag(HT) = A, (I N C)™) for all conjugacy classes 3 of G, where Ag and A, are the central function
corresponding to the blocks B and b respectively; see, for example, [8, Lemma 15.44]. Let x € Irr(G|B).
The central character w, for G are available in [19] in the case £ = 2 and can be computed in the relevant
cases for ¢ odd from the information in [17]. The values of ¢ € Irr(N|b) on C can be computed by their
descriptions and using the character tables for SL,(q) available in CHEVIE. Hence it remains only to
determine the fusion of classes of C into G in order to compute w,, ((JN O)M) =(1/p(1)) D ecy ©(8)€l,
where g € € and the sum is taken over classes ¢ of C which lie in ¥, and compare the im_age of this
under * with w, (J1)*. (We note that w, (17) =1 =w,((1NC)7) for all x € Irr(G), ¢ € Iir(N), so it
suffices to consider nontrivial classes J{.) The considerations here, though tedious, are very similar to
those in [13, Proposition 5.3], using the information in [17] for the classes of G. We omit the details. [

Proof of Theorem 1.1. The theorem now follows by combining Lemmas 4.3, 4.5, and 4.6 with Proposi-
tions 4.1 and 4.2 and Corollary 4.4. U
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