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RADICAL SUBGROUPS AND THE
INDUCTIVE BLOCKWISE ALPERIN WEIGHT CONDITIONS FOR PSp4(q)

JULIAN BROUGH AND A. A. SCHAEFFER FRY

We determine explicitly the 2-radical subgroups and their normalizers for the group Sp4(q), where q
is odd. We then show that the corresponding simple group PSp4(q) satisfies the inductive blockwise
Alperin weight conditions for the prime 2 and odd primes dividing q2

− 1. When combined with exist-
ing literature, this completes the verification that PSp4(q) satisfies the conditions for all primes and all
choices of q .

1. Introduction

Given a prime `, an `-weight of a finite group G is a pair (R, µ), where R is an `-radical subgroup and
µ is a defect-zero character of NG(R)/R. That is, R is an `-subgroup such that R = O`(NG(R)) and µ is
an irreducible character with µ(1)` = |NG(R)/R|`. More generally, a weight for a block B of G is a pair
(R, µ) as above, where µ further lies in a block b of NG(R) for which B is the induced block bG . The
Alperin weight conjecture (AWC) posits that if G is a finite group and ` is a prime dividing |G|, then the
number of irreducible `-Brauer characters of G equals the number of G-conjugacy classes of `-weights
of G. The blockwise Alperin weight conjecture (BAWC) refines the statement to say that the number of
irreducible `-Brauer characters belonging to a block B of G equals the number of G-conjugacy classes
of `-weights of B.

Navarro and Tiep [11] and Späth [16] reduced the AWC and BAWC, respectively, to simple groups.
In particular, to verify these conjectures it suffices to show that certain more complicated “inductive”
conditions hold for all finite nonabelian simple groups. Simple groups satisfying the inductive conditions
for the AWC or BAWC are sometimes said to be “good” for the corresponding conjecture.

In this article, we deal especially with the simple groups PSp4(q). It is shown in [11] and [16] that
a simple group of Lie type defined in characteristic p satisfies the inductive BAWC conditions for the
prime `= p. In [13], the second author has shown that when q is even, Sp4(q) and Sp6(q) satisfy the
inductive conditions for all ` 6= 2. Furthermore, in [9], S. Koshitani and B. Späth show that for ` odd,
the inductive conditions hold whenever a Sylow `-subgroup is cyclic.

Hence, to complete the proof that PSp4(q) satisfies the inductive BAWC conditions (and therefore
also the inductive AWC conditions), we must verify that these groups are good when q ≥ 5 is odd for
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the prime ` = 2 and for odd primes ` dividing q2
− 1. (Note that PSp4(3) ∼= PSU4(2), and hence this

group satisfies the inductive BAWC conditions for q = 3 and `= 2 by [11; 16].) Our main result is the
following:

Theorem 1.1. Let q be a power of an odd prime. Then the simple groups PSp4(q) satisfy the inductive
blockwise Alperin weight conditions [16, Definition 4.1] for any prime ` dividing q2

− 1.

This completes the statement that the simple groups PSp4(q) are good for the BAWC for all primes `
and all choices of q .

We begin in Section 2 by explicitly describing all 2-radical subgroups of Sp4(q) and their normalizer
structures. We see that the situation here is much more complicated than for other choices of pairs (`, q).
In Section 3, we discuss some relevant defect-zero characters of these normalizers after summarizing re-
sults from [19] regarding the Brauer characters of Sp4(q). Finally, we complete the proof of Theorem 1.1
in Section 4 by describing explicit bijections.

1.1. Notation. We write Irr(X) for the set of irreducible ordinary characters of a finite group X and
dz(X) ⊆ Irr(X) for the subset of those with defect zero. We further write IBr`(X) for the irreducible
`-Brauer characters. When the characteristic ` is understood, we also write χ̂ for the `-Brauer character
obtained from χ ∈ Irr(X) by restriction to `′ elements. If a group X acts on a set �, then we write Xω
for the stabilizer in X of an element ω ∈�.

Given an integer n, we write n` and n`′ for the largest power of ` and largest number coprime to `,
respectively, dividing n. We write Cn for the cyclic group of size n and X .n for an extension of a group X
by Cn . The symmetric and alternating groups of degree n will be denoted by Sn and An , respectively.

For the remainder of the article, let q be a power of an odd prime p and let ` 6= p be another prime.
We will write e to denote the order of q2 modulo ` and let ε ∈ {±1} be such that q ≡ ε (mod 4) when
` = 2, or qe

≡ ε (mod `) when ` is odd. Let a be the positive integer such that `a
= |qe

− ε|`. In the
case `= 2, note that this means 2a+1

= (q2
− 1)2. Further, we remark that in Sections 3 and 4, we will

be primarily interested in the case e = 1.
Throughout, G will denote the group Sp4(q) and S the group PSp4(q)= G/Z(G). Further, we will

write G̃ for the group CSp4(q) and S̃ = G̃/Z(G̃) for the group of inner-diagonal automorphisms of S.

2. Radicals of Sp4(q)

To produce radical `-subgroups for G = Sp4(q), we make use of [4] for ` odd and [2] for ` = 2. In
particular we have the following theorem.

Theorem 2.1 ([2, 3A] and [4, 2D]). Let R be an `-radical subgroup of Sp2n(q) ∼= Sp(V ). Then there
exists an orthogonal decomposition V = V0+V1+V2+· · ·+Vt such that R = R0× R1× R2×· · ·× Rt .
Here if `= 2, for each i ≥ 0, either Ri = {±IVi } or Ri is a basic subgroup of Sp(Vi ). If ` is odd, then
R0 = IV0 and Ri is a basic subgroup of Sp(Vi ) for i ≥ 1. (See Definitions 1 and 2 below.)

As symplectic groups are only defined over vector spaces of even dimension, each dim(Vi ) must be
even. Thus the aim is to study the basic subgroups of Sp4(q) and Sp2(q); see Definition 2 below for their
construction. We will first consider the basic subgroups for ` odd, as the arguments are easier, before
dealing with the more involved case `= 2.
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2.1. `-radical subgroups of Sp4(q) for ` odd. We follow the notation as given in [4]. For integers
α, γ ≥ 0, let Vα,γ denote the symplectic or orthogonal space of dimension 2e`α+γ , where e = o(q2)

modulo `. Recall that the integer a ≥ 1 and ε ∈ {±1} are defined by the equation `a
= |qe

− ε|`. Let
Zα := C`a+α denote the cyclic group of order `a+α and Eγ the extraspecial group of order `2γ+1 and
exponent `. Set Rα,γ to be the image of the central product Zα ◦ Eγ under the natural embedding through
GL`γ (εqe`α ). (Here Zα is mapped to O`(Z(GL`γ (εqe`α )). For any integer m ≥ 1, let Vm,α,γ denote the
m-times orthogonal sum of copies of Vα,γ , and let Rm,α,γ be the image of the natural m-fold diagonal
embedding of Rα,γ .

For a sequence of nonnegative integers c= {c1, . . . , cl}, set |c| = c1+ · · ·+ cl and Vm,α,γ,c to be the
orthogonal sum of `|c| copies of Vm,α,γ . Denote by Ac the elementary abelian group of order `c and
define Ac := Ac1 o · · · o Acl and Rm,α,γ,c := Rm,α,γ o Ac.

Definition 1. For odd primes `, the subgroups Rm,α,γ,c are called the basic subgroups for Sp(Vm,α,γ,c).

The basic subgroups Rm,α,γ,c are uniquely determined up to conjugacy in Sp(Vm,α,γ,c) and we have
dim(Vm,α,γ,c)= `

|c|m2e`α+γ . Let um,α,γ,c denote the multiplicity of the basic subgroup Rm,α,γ,c in the
decomposition of R.

Proposition 2.2 [4, 2E]. Let ` be an odd prime and R an `-radical subgroup in Sp2n(q) such that

R = IV0 ×

∏
m,α,γ,c

Rum,α,γ,c
m,α,γ,c.

Then
NSp2n(q)(R)/R ∼= Sp(V0)×

∏
m,α,γ,c

(NSp(Vm,α,γ,c)(Rm,α,γ,c)/Rm,α,γ,c) oSum,α,γ,c .

Since we see that wreath products play an integral role in these normalizers, we provide the following
statement to understand radical subgroups with respect to wreath products.

Lemma 2.3. Let H be a finite group, r a prime and n an integer. Assume that H contains an element of
order coprime to r. Then Or (H oSn) = Or (H)n . In particular, for any finite group H , Or (H oSn) =

Or (H)n unless H is a 2-group and (n, r) ∈ {(2, 2), (4, 2)}, or H is a 3-group and (n, r)= (3, 3).

Proof. Let N := Or (H oSn). Then N H n/H n
≤ Or (Sn)= 1 unless (n, r) ∈ {(2, 2), (4, 2), (3, 3)}. Thus

the second statement clearly follows by proving the first statement.
Fix an element g ∈ H whose order is coprime to r . Note that if {h1σ1, . . . , hmσm} is a coset transversal

of Or (H oSn) over Or (H n) with hi ∈ H n and σ ∈Sn , then the σi must be distinct permutations. After
suitable conjugation, we can assume that σ1(1) 6= 1. Let g := (g, 1, . . . , 1) ∈ H n . Then (h1σ1)

g
=

(gh1(gσ1)−1)σ1. Thus (gh1(gσ1)−1) = h h1 with h ∈ Or (H n). However it now follows, by the choice
of g, that g ∈ Or (H), which is a contradiction. �

In particular, the following corollary is an immediate consequence.

Corollary 2.4. Let ` be an odd prime not dividing q and let R ≤ Sp2n(q) be of the form

R = IdV0 ×

∏
m,α,γ,c

Rum,α,γ,c
m,α,γ,c.

Then R is a radical `-subgroup of Sp2n(q) if and only each Rm,α,γ,c is radical in Sp(Vm,α,γ,c).
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Proof. In [4] it has been shown that 2 always divides

|NSp(Vm,α,γ,c)(Rm,α,γ,c) : Rm,α,γ,c|

and therefore the result follows by combining the previous results. �

Observe that to construct the radical subgroups of G = Sp4(q), we need only consider the basic
subgroups with dimension 2 or 4. In particular, as dim(Vm,α,γ,c)= `

|c|m2e`α+γ it follows that for our
cases, α = γ = 0 and c is empty. Therefore, the following observation will deal with the basic subgroups
of interest.

Lemma 2.5. Let ` be an odd prime and let Rm,0,γ,c be a basic `-subgroup of Sp(Vm,0,γ,c). Then Rm,0,γ,c
is radical in Sp(Vm,0,γ,c).

Proof. First note that by [4, Equation 2.5],

NSp(Vm,α,γ,c)(Rm,α,γ,c)/Rm,α,γ,c ∼= NSp(Vm,α,γ )(Rm,α,γ )×
∏
ci∈c

GLci (`),

and therefore it suffices to assume that c is empty.
Set R= Rm,0,γ , C =CSp(Vm,0,γ )(R), and N = NSp(Vm,0,γ )(R). Then for N0 :=CN (Z(R)), page 12 of [4]

yields that N/N0 ∼= C2e`α , N0/C R ∼= Sp2γ (`), and C ∼= GLεm(q
2e`α ). Thus O`(N0)= O`(C)R = R and

if α = 0, it follows that N0 has `′-index in N as e ≤ `− 1 and therefore O`(N )= O`(N0). �

Corollary 2.6. Let ` 6= p be odd primes and q a power of p. In addition, let R be a nontrivial `-subgroup
of G = Sp4(q). Then R is `-radical if and only if

• ` does not divide q2
− 1 and R = R1,0,0 ∼= C`a ;

• ` divides q2
− 1 and R = Id2×R1,0,0 ∼= C`a , R1,0,0× R1,0,0 ∼= C`a ×C`a or R2,0,0 ∼= C`a .

Proof. By Theorem 2.1, R is either a basic subgroup of dimension 4 or R = R1× R2, where R1, R2 are
basic subgroups of dimension 2 or trivial. As the dimension of Rm,α,γ,c is `|c|m2e`α+γ it follows that
α = γ = 0 and c is empty for each basic subgroup of interested and thus by Lemma 2.5 and Corollary 2.4,
R is radical in G. The result now follows by listing the basic subgroups.

If ` does not divide q2
− 1, then e = 2 and hence m = 1 and the only basic subgroup is R1,0,0. While,

if ` divides q2
− 1, then e = 1 and either m = 1 or 2 depending on whether the basic subgroup has

dimension 2 or 4, respectively. This yields the basic subgroups R1,0,0 and R2,0,0. �

2.2. 2-radical subgroups of Sp4(q). As with odd `, to construct the 2-radical subgroups of G, we first
need to construct the list of basic subgroups. As `= 2, we have that ` always divides q2

− 1 and so let ε
and a ≥ 2 be defined so that 2a

= |q−ε|2. This case requires some additional families of basic subgroups,
which are obtained by taking the extra special group Eγ = 22γ+1

− and replacing Zα by a central product
with S2a+α+1, D2a+α+1 , or Q2a+α+1 : the semidihedral group, dihedral group, and generalized quaternion
group of order 2a+α+1, respectively.

We now turn our attention to summarizing the details of the required basic subgroups, taken from
[2, Sections 1 and 2]. Note that as we are interested in the symplectic case, we have Sym(V )=−1 and
η(V )= 1=−Sym(V ) in the notation of [2]. We use ◦ to denote a central product.
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Ri
α,γ isomorphism type condition on α and γ dim(V i

α,γ )

R0
α,γ Eγ 2γ

R1
α,γ Eγ ◦ Zα 2α+γ+1

R2
α,γ Eγ ◦ S2a+α+1 α ≥ 1 2α+γ+1

R3
α,γ Eγ ◦ D2a+α+1 2α+γ+2

R4
α,γ Eγ ◦ Q2a+α+1

α ≥ 1 and m ≥ 2 (see below) 2α+γ+1

α = 0 2γ+1

Using the same construction as in the odd ` case, we then obtain the subgroups Ri
m,α,γ,c. Note that

for the corresponding vector space V i
m,α,γ,c, we have

dim(V i
m,α,γ,c)= 2|c|m · dim(V i

α,γ ).

Definition 2. For the prime 2, the subgroups Ri
m,α,γ,c are called the basic subgroups for Sp(V i

m,α,γ,c),
excluding the case in which i = γ = 0 and c1 = 1.

Throughout, for R ≤ G = Sp4(q) a 2-subgroup, we write N := NG(R) and C := CG(R). Let B2i

denote the set of basic subgroups of Sp2i (q). Applying Theorem 2.1, a 2-radical subgroup of G is a
member of one of the following:

{±I4}, {±I2}× {±I2}, {±I2}× B2, B2× B2, B4.

2.2.1. The basic subgroups B2. In this case, the dimension of the underlying vector space V i
m,α,γ,c is

equal to 2. Thus
2= 2|c|m · dim(V i

α,γ ).

As V i
α,γ is a symplectic space, it has even dimension. Therefore m = 1 and c =∅. In particular, the

basic subgroups in B2 are R0
0,1 = E2+1

− = Q8, R1
0,0 = E0 Z0 ∼= C2a , and R4

0,0
∼= Q2a+1 .

From this list we can in fact deduce the following well-known result. We note that this can be proven
without the use of [2], however we shall use it here to help outline the details for the basic subgroups
of Sp4(q).

Theorem 2.7. The radical 2-subgroups of Sp2(q)∼= SL2(q) are given in Table 1.

Proof. Let R be a radical 2-subgroup of Sp2(q). Either R is from the list above or R={±I2}= Z(Sp2(q)).
Thus assume R is a basic subgroup of Sp2(q).

First consider R = R0
0,1. Then CSp2(q)(R)= Z(Sp2(q)) and NSp2(q)(R)/E ∼=S3 or C3 when a ≥ 3 or

a = 2 respectively, using [2, 1G]. Moreover, there is one conjugacy class when a = 2 and two conjugacy
classes of subgroups when a ≥ 3.

If R = R4
0,0, then CSp2(q)(R)= Z(Sp2(q)) and NSp2(q)(R)/R is trivial by [2, 2G], and R is determined

uniquely up to conjugation.
Finally, if R = R1

0,0, then CSp2(q)(R)
∼= GLε1(q) and NSp2(q)(R)/CSp2(q)(R)

∼= C2, using [2, 1K].
However, it follows that any element in NSp2(q)(R) not in CSp2(q)(R) acts on CSp2(q)(R) by inversion.
Therefore, O2(NSp2(q)(R))= R if and only if CSp2(q)(R) 6= R. Moreover, R is determined uniquely up
to conjugation. �



1186 JULIAN BROUGH AND A. A. SCHAEFFER FRY

R CSp2(q)(R) OutSp2(q)(R) conditions

C2 Sp2(q) 1 q ≥ 5
Q8 C2 S3 a ≥ 3 (two classes)
Q8 C2 C3 a = 2
C2a C(q−ε) C2 (q − ε) 6= 2a

Q2a+1 C2 1 a ≥ 3

Table 1. The radical 2-subgroups of Sp2(q).

We now have the following proposition.

Proposition 2.8. Let R = H1 × H2 with Hi = {±I2} or Hi ∈ B2. Then R is a 2-radical subgroup of
G = Sp4(q) if and only if Hi is a 2-radical subgroup of Sp2(q), unless H1 ∼= H2 ∼= Q2a+1 and a ≥ 3.

Proof. We have Z(Hi ) = {±I2} unless Hi = C2a , in which case Z(Hi ) = Hi . Furthermore, it can be
assumed that Z(Hi ) consists only of diagonal matrices.

As Z(R) is characteristic in R and diag(I2,−I2)∈ Z(R), it follows that diag(I2,−I2)
g
= diag(I2,−I2)

or diag(−I2, I2) for any g ∈ NG(R). Hence g = diag(A, D) or h ·diag(A, D), where A, D ∈ Sp2(q) and

h =
(

02 I2

I2 02

)
.

Thus
NG(H1× H2)= NSp2(q)(H1)× NSp2(q)(H2) or NSp2(q)(H1) oC2.

Hence the result now follows by applying Lemma 2.3. �

In Table 2 we list all the radical 2-subgroups of Sp4(q) that are not contained in B4.

2.2.2. The basic subgroups B4. In this case the dimension of the underlying vector space V i
m,α,γ,c is

equal to 4. Thus
4= 2|c|m · dim(V i

α,γ ).

The following lemma deals with the case that c is nonempty. In particular, as dim(V i
α,γ )≥ 2, it follows

that c= {1}.

Lemma 2.9. Let R = H oC2 for H ∈ B2. Then R is radical in G = Sp4(q) if and only if H is radical in
Sp2(q) and H 6= Z(Sp2(q)). Furthermore, the structure of C and N are given in Table 3.

Proof. By [2, Equation 3.4], Ri
m,α,γ,c is radical in Sp(V i

m,α,γ,c) if and only if Ri
m,α,γ is radical in

Sp(V i
m,α,γ ), except when i = γ = 0 and c1 = 1, in which case R0

m,0,0,c is not radical as R0
0,1 is not

radical in Sp2(q) by [2, 1J]. �

Thus, we can assume that c is empty. Next we deal with the case that m = 2 and dim(V i
α,γ )= 2. In this

case the basic subgroups are the 2-fold embeddings of basic subgroups in B2. In particular, the relevant
groups are:

Ri
m,α,γ R0

2,0,1 R1
2,0,0 R4

2,0,0

isomorphism type Q8 C2a Q2a+1
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type R CG(R) OutG(R)∼= N
C R conditions

{±I4} Z(G)= C2 G 1

{±I2}× {±I2} C2×C2 SL2(q)×SL2(q) C2 q ≥ 5

C2×C2a SL2(q)×Cq−ε C2 q − ε 6= 2a

{±I2}× B2
C2× Q8 SL2(q)×C2 C3 a = 2 and q ≥ 5
C2× Q8 SL2(q)×C2 S3 a ≥ 3 two classes
C2× Q2a+1 SL2(q)×C2 1 a ≥ 3

C2a ×C2a Cq−ε ×Cq−ε D8 q − ε 6= 2a

C2a × Q8 Cq−ε ×C2 C6 a = 2 and q ≥ 7
C2a × Q8 Cq−ε ×C2 D12 a ≥ 3 and q − ε 6= 2a two classes

B2× B2
C2a × Q2a+1 Cq−ε ×C2 C2 a ≥ 3 and q − ε 6= 2a

Q8× Q8 C2×C2 (C3×C3).2 a = 2
Q8× Q8 C2×C2 (S3×S3).2 a ≥ 3 two classes
Q8× Q8 C2×C2 (S3×S3) a ≥ 3
Q8× Q2a+1 C2×C2 S3 a ≥ 3 two classes

Table 2. The radical 2-subgroups of G = Sp4(q) not of type B4.

Proposition 2.10. Let R = R0
2,0,1
∼= Q8. Then R is a radical 2-subgroup of G = Sp4(q) if and only if

q ≥ 5. In addition C ∼= D2(q+ε) and N
RC
∼= D6.

Proof. Let R := R0
2,0,1
∼= Q8. In this case we make use of [2, 1Jb]. Write C := CG(R), N := NG(R),

and N 1
:= CN (C). Then N 1C = N 1

◦Z(G) C and N 1

R
∼= D6 or C3 depending on a ≥ 3 or a = 2

respectively. Thus O2(N 1C)= R. As m = 2, R is determined uniquely up to conjugation. Furthermore,
C = O−ε2 (q)∼= D2(q+ε). Note that O2(D2(q+ε)) 6= Z(R) if and only if D2(q+ε) is a 2-group, if and only
if q = 3.

If a ≥ 3, then N = N 1C and so R is radical and N
RC
∼=

N 1

R
∼= D6. Thus assume a = 2. By [2, 1Jb]

we have that N
RC
∼= D6. Thus it remains to show that R is radical. Consider N

R , which has a normal
subgroup N 1C

R of index 2. As R = O2(N 1C), it follows that O2
( N 1C

R

)
= 1. Therefore if O2

( N
R

)
= H/R,

then HC RC N and HC R/C R is a nontrivial normal 2-subgroup in D6, which is a contradiction. Thus
O2(N )= R. �

Proposition 2.11. Let R = R1
2,0,0
∼= C2a . Then R is a radical 2-subgroup of G = Sp4(q). In addition,

C ∼= GLε2(q) and N
RC
∼= C2.

Proof. Let

J =
(

0 1
−1 0

)
.
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By [7], the subgroup C2a is generated by

w =



(
η 0

0 η−1

)
when q ≡ 1 modulo 4, or(

0 1

1 η+ ηq

)2

when q ≡ 3 modulo 4,

where η has order 2a in F×q or F×q2 , respectively. Furthermore w J
= w−1. As the image inside G is taken

from the double embedding, we can take the symplectic form for G to be J2 := diag(J, J ).
Using eigenvalues, it follows that the image of w in G under conjugation must be either w or w−1.

Thus it follows that N = 〈C, J2〉. Furthermore, O2(N ) equals either O2(C) or 〈O2(C), x J2〉 for some
x ∈ C .

If x J2 is in O2(N ), and A ∈ N , then A(x J2)A−1
= zx J2 for some z ∈ O2(C). As C ∼= GLε2(q) by

[2, 1Ka], it follows that O2(C)= R and z ∈ R. Furthermore, as J2 is the symplectic form we have chosen,
we see that At J2 = J2 A−1. Hence Ax At

= zx . Assume

x =
[

x1 x2

x3 x4

]
,

with xi ∈Mat2(Fq). The element diag(I2,−I2) ∈ C , so[
I2

−I2

] [
x1 x2

x3 x4

] [
I2

−I2

]
=

[
x1 −x2

−x3 x4

]
=

[
z

z

] [
x1 x2

x3 x4

]
for some z ∈ R viewed as a subgroup of Sp2(q). In particular, either (z − 1)x1 = (z − 1)x4 = 0 or
(z+ 1)x2 = (z+ 1)x3 = 0. However either x1 = x4 = 0 or x2 = x3 = 0, as (z− 1) or (z+ 1) is invertible.
(Indeed, z is of the form diag(λ, λ−1) after possibly conjugating in Sp2(Fq).) Thus

x =
[

x1

x4

]
or

[
x2

x3

]
.

However, in either case it now follows that at least one xi J lies in O2(NSp2(q)(R)), which is a contra-
diction. Thus O2(NSp2(q)(R))= O2(CSp2(q)(R))= R. �

Proposition 2.12. Let R = R4
2,0,0
∼= Q2a+1 . Then R is not a radical 2-subgroup of G = Sp4(q).

Proof. Let J , J2, and w be as in the proof of Proposition 2.11. Then 〈J, w〉 = Q2a+1 ≤ GL2(q), and
J2 is the symplectic form for G. Let A ∈ C . Then A−1 J2 A = J2 and At J A = J . Therefore At

= A−1.
Moreover, if

A =
(

A1 A2

A3 A4

)
,

then each Ai is conjugate to a matrix of the form diag(ai , ai ) in GL2(q2). Thus C ∼= Oε
2(q)∼= D2(q−ε).

However O2(D2(q−ε))∼= C2a > Z(R)= C2, and so R is not radical. �
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It now only remains to consider the case that dim(V i
α,γ )= 4. Here the groups of interest are:

Ri
α,γ R0

0,2 R1
0,1 R1

1,0 R2
1,0 R3

0,0 R4
0,1

isomorphism type 21+4
− Q8 ◦C2a C2a+1 S2a+2 D2a+1 Q8 ◦ Q2a+1

Proposition 2.13. Let R = R0
0,2
∼= 21+4
− . If a = 2, then there is a unique conjugacy class of subgroups

isomorphic to R, while if a ≥ 3 then there are two classes of subgroups isomorphic to R. Furthermore,
R is a radical 2-subgroup of G = Sp4(q), with C ∼= C2 and N

RC
∼= A5 when a ≥ 3, or A5 .2 when a = 2.

Proof. By [2, 1Jb], C ∼= C2 and

N
C R
=

N
R
=

{
O−4 (2)∼= A5.2 if a ≥ 3,
�−4 (2)∼= A5 if a = 2,

so O2(N/R)= 1 and R is a radical 2-subgroup. Moreover, if a = 2 then there is a unique class for R,
while if a ≥ 3 then there are two classes for R up to conjugacy. �

Proposition 2.14. Let R = R1
0,1
∼= C2a ◦ Q8. Then R is a radical 2-subgroup of Sp4(q) if and only if

q − ε 6= 2a . In addition, C ∼= Cq−ε and N
RC
∼= D12.

Proof. In this case we use [2, 1K]. We obtain R = Q8 ◦C2a by the inclusion

R ≤ GLε2(q) ↪→ Sp4(q),

where C2a ≤ Z(GL2(q)). Let H denote the image of NGLε2(q)(R) under this inclusion, so that H has
index 2 in N and C ∼= GLε1(q) is the image of CGLε2(q)(R).

By [1, Lemma 1B] and [3, Lemma 1L], we have O2(H)= R, since O2(C R)= R. Then

O2

(
H
R

)
∼=

O2
( H

R

)C R
R

C R
R

∼=
K

C R
C

H
C R
∼= D6.

Moreover, N
RC has a normal subgroup D6 of index 2, so N

RC
∼= D12. (Indeed, this is the only group of

order 12 containing a normal subgroup isomorphic to D6.)
If q − ε = 2a , then C R = R and so O2

( N
R

)
> 1 so R is not radical. On the other hand, if q − ε 6= 2a ,

then there exists x ∈ C of odd order, and after the embedding is of the form diag(η, η, η−1, η−1). Let
h ∈ O2(N ). If xh

= x−1, then hx
= x−2h, which implies x−2

∈ O2(N ), so x = 1. Therefore xh
= x for

all h ∈ O2(N ). Thus O2(N )≤ CN (C)≤ H . In particular, it now follows that O2(N )= R. �

Proposition 2.15. Let R = R1
1,0
∼= C2a+1 . Then R is a radical 2-subgroup of G = Sp4(q) if and only if

q ≥ 5. In addition, C ∼= Cq2−1 and N
RC
∼= C2×C2.

Proof. The group C2a+1 is obtained via the embedding

Fq2 ↪→ GL2(q) ↪→ Sp4(q).

If β ∈ Fq \ F2
q , then the image of Fq2 in GL2(q) is given by the subgroup

K :=
{[
λ βµ

µ λ

] ∣∣∣∣ λ,µ ∈ Fq such that both λ,µ 6= 0
}
∼= Cq2−1,
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while the embedding from GL2(q) into Sp4(q) is given by

A 7→
[

A
(At)−1

]
, with symplectic form J =

[
I2

−I2

]
.

Let g generate the subgroup C2a+1 ≤ F×q2 . Then CGL2(q)(g)= K . Moreover, since det(g) 6= 1, we see that g
and (gt)−1 have different eigenvalues, so the Sylvester matrix equation implies CG(g) is the image of K .

As the eigenvalues of g are λ±
√
βµ, it follows that NGL2(q)(C2a+1)= 〈CGL2(q)(g), X〉 for

X =
[

1 0
0 −1

]
.

Furthermore, as the eigenvalues of (gt)−1 are (λ±
√
βµ)/(λ2

−βµ2) it follows that any element in
NG(C2a+1) is a product of an element from H , the embedding of NGL2(q)(C2a+1), with the element

Y =


1

1
−1
−1

 ,
which acts on H by inversion on CGL2(q)(g) and sending the image of X to its negative. Thus C :=
CSp4(q)(C2a+1)∼=Cq2−1 has index 2 in H and H has index 2 in N := NSp4(q)(C2a+1). Then if q2

−1= 2a+1,
the group R is not radical.

Assume q2
− 1 6= 2a+1, i.e., q > 3. If O2(H) > O2(C), it follows that cX ∈ O2(H) for some c ∈ C .

Let d be an element of odd order in C ; then [d, cX ] = det(d−1)d2
∈ O2(C), which yields a contraction.

If O2(N ) > O2(H), it follows that an element cY or cXY is in O2(N ) for c ∈ C and X is taken to be its
image in N . Furthermore, cY Y = c−1Y and (cX)Y Y =−c−1 XY and therefore c2 lies in O2(N ), which
provides a contradiction. Thus O2(N )= R. �

Proposition 2.16. Let R = R2
1,0
∼= S2a+2 . Then R is a radical 2-subgroup of G = Sp4(q) if and only if

q ≥ 5. In this case, C ∼= Cq+ε and N
RC
∼= C2.

Proof. When ε = 1, we have C ∼= q + 1, N
RC
∼= C2α = C2, and R = O2(N ) by [2, 2Bd]. When ε =−1,

we have C ∼= q − 1, N
RC
∼= C2, and R = O2(N ), unless q = 3 as in this case C is a 2-group and thus N is

a 2-group by [2, 2Cc]. In each case, R is determined uniquely up to conjugation. �

Proposition 2.17. Let R = R3
0,0
∼= D2a+1 . Then R is a radical 2-subgroup of G = Sp4(q) if and only if

q ≥ 5. In addition, C ∼= Sp2(q)∼= SL2(q) and N
RC
∼= C2.

Proof. By [2, 2Ce], R = O2(N ), CSp4(q)(D2a+1) ∼= Sp2(q) ∼= SL2(q), and N
RC
∼= C2. Furthermore, R is

determined uniquely up to conjugation. �

Proposition 2.18. Let R = R4
0,1
∼= Q8 ◦ Q2a+1 . Then R is a radical 2-subgroup of G = Sp4(q). If a = 2,

then R ∼= R0
0,2 and the structures of C and N are given in Proposition 2.13. If a ≥ 3, then C = Z(G)∼=C2

and N
RC
∼=S3.

Proof. Let R = R4
0,1
∼= Q8 ◦ Q2a+1 . When a = 2, R = R0

0,2. Thus assume that a ≥ 3. In this case, [2, 2G]
yields that C = Z(Sp4(q)) and N

C R =
N
R
∼= Sp2γ (2)= Sp2(2)∼=S3. �
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type for B4 R CG(R) OutG(R)∼= N
C R conditions

21+4
− C2 �−4 (2)∼= A5 a = 2

21+4
− C2 O−4 (2)∼= A5 .2 a ≥ 3 two classes

C2a ◦2 Q8 Cq−ε D12 q − ε 6= 2a

c = 0 and m = 1 C2a+1 Cq2−1 C2×C2 q ≥ 5
S2a+2 Cq+ε C2 q ≥ 5
D2a+1 SL2(q) C2 q ≥ 5

Q8 ◦2 Q2a+1 C2 S3 q ≥ 5, a ≥ 3

c = 0 and m = 2 Q8 O−ε2 (q)∼= D2(q+ε) S3 q ≥ 5
C2a GLε2(q) C2 q ≥ 5

C2a oC2 Cq−ε C2 q − ε 6= 2a

c = 1 and m = 1 Q8 oC2 C2 C3 a = 2
Q8 oC2 C2 S3 a ≥ 3 two classes

Q2a+1 oC2 C2 1 a ≥ 3

Table 3. The radical 2-subgroups of G = Sp4(q) of type B4.

We finish by giving Table 3, which lists the radical 2-subgroups of type B4.

3. Relevant characters for ` = 2

3.1. Brauer characters of Sp4(q). White [19] computed the 2-block distributions and 2-decomposition
numbers for G = Sp4(q). In an effort to keep this article self-contained, we summarize in Table 4 some
of the relevant information.

Given χ ∈ Irr(G), we write χ̂ for the 2-Brauer character obtained by restricting χ to 2-regular elements
of G. The notation for characters and indexing sets is taken from [17]. Further, the integer x in the
description of the principal block characters is a number satisfying 0≤ x ≤ (q−1)/2, and does not affect
our work here. The indexing sets are defined as in [17] and [19], as follows:

The set T ′1 is the set of multiples of (q−1)2 in {1, . . . , (q−1)/2−1}. The set T ′2 is the set of multiples
of (q + 1)2 in {1, . . . , (q + 1)/2− 1}. We will further write T ′ε for T ′1 when ε = 1 and T ′2 when ε =−1.
Similarly, T ′

−ε denotes T ′2 when ε = 1 and T ′1 when ε =−1.
The set R′1 is comprised of the even integers in the equivalence classes of {1, . . . , q2

} \ {(q2
+ 1)/2}

under the equivalence relation i ∼ j when i ≡± j or ±q j (mod q2
+ 1).

The set R′2 is comprised of the set of multiples of (q2
− 1)2 in the equivalence classes of

{1≤ i ≤ q2
− 1 | (q + 1) - i; (q − 1) - i}

under the equivalence relation i ∼ j when i ≡± j or ±q j (mod q2
− 1).

3.2. Defect-zero characters of NG(R)/R. In this section, we develop the notation to describe the
defect-zero characters of NG(R)/R for the 2-radical subgroups R described in Tables 2 and 3. Recall
that ε ∈ {±1} is such that q ≡ ε (mod 4), so that (q2

− 1)2 = 2(q − ε)2. Throughout, let η, η′, and θ
denote fixed generators of the subgroups Cq−ε , Cq+ε , and Cq2−1 in F×q2 , respectively.
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block B Brauer characters IBr2(B) indexing information number of blocks

b1(r)
∧

χ1(r) r ∈ R′1
q2
− 1
8

b2(r)
∧

χ2(r) r ∈ R′2
((q − 1)2′ − 1)((q + 1)2′ − 1)

4

b3(r, s) ∧

χ3(r, s) r, s ∈ T ′1, r 6= s
((q − 1)2′ − 1)((q − 1)2′ − 3)

8

b4(r, s) ∧

χ4(r, s) r, s ∈ T ′2, r 6= s
((q + 1)2′ − 1)((q + 1)2′ − 3)

8

b5(r, s) ∧

χ5(r, s) r ∈ T ′2, s ∈ T ′1
((q − 1)2′ − 1)((q + 1)2′ − 1)

4

b67(r)
∧

χ6(r) r ∈ T ′2
(q + 1)2′ − 1

2
∧

χ7(r)−
∧

χ6(r)

b89(r)
∧

χ8(r) r ∈ T ′1
(q − 1)2′ − 1

2
∧

χ9(r)−
∧

χ8(r)

bI (r)
∧

ξ 1(r) r ∈ T ′2
(q + 1)2′ − 1

2
∧

ξ ′22(r)
∧

ξ ′21(r)

bIII(r)
∧

ξ 3(r) r ∈ T ′1
(q − 1)2′ − 1

2
∧

ξ 42(r)−
∧

ξ 3(r)
∧

ξ 41(r)−
∧

ξ 3(r)

b0 ϕ0 =
∧

1 1
ϕ3 =

∧

θ12− 1
ϕ6 =

∧

θ10

ϕ1 =
∧

83− x
∧

θ10−
∧

θ7

ϕ2 =
∧

84− x
∧

θ10−
∧

θ8

ϕ4 =
∧

θ7

ϕ5 =
∧

θ8

Table 4. The blocks and Brauer characters of Sp4(q) for the prime 2; see [19].

We may embed the group Cq−ε .2 into SL2(q) naturally with Cq−ε realized as the subgroup generated
by diag(η, η−1), up to SL2(Fq)-conjugation. Here, the C2 factor maps η 7→ η−1. We will denote by η̃k the
character of Cq−ε .2 whose restriction to Cq−ε is η̄k

+ η̄−k , where η̄ is a generator of Irr(Cq−ε) sending
η to a fixed primitive q − ε root of unity in C. The corresponding characters of C(q−ε)2′ .2 are the η̃k

for k ∈ T ′ε . We will use the same notation when Cq−ε is embedded into G via SL2(q)× SL2(q) as the
subgroup generated by diag(η, η−1, η, η−1).
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Similarly, we may embed Cq+ε .2 in G so that the Cq+ε factor is Sp4(Fq)-conjugate to

diag(η′, η′−1, η′, η′−1)

and the C2 factor maps η′ 7→ η′−1. Here η̃′k will denote the character of Cq+ε .2 whose restriction to Cq+ε

is η′k + η′−k , where η′ is a generator of Irr(Cq+ε) sending η′ to a fixed primitive q + ε root of unity in C.
We may also embed the group Cq2−1 .22 in G so that the Cq2−1 factor is generated by the element

diag(θ, θq , θ−1, θ−q), up to Sp4(Fq)-conjugacy, with the two copies of C2 in C2×C2 mapping θ 7→ θq and
θ 7→ θ−1. We denote by θ̃k the character of Cq2−1 .22 whose restriction to Cq2−1 is θ̄ k

+ θ̄qk
+ θ̄−k

+ θ̄−qk ,
where θ̄ is a generator of Irr(Cq2−1), mapping θ to a fixed primitive q2

− 1 root of unity in C.
We will also require characters of PSL2(q) of degree q − ε. Specifically, when ε = 1, we will denote

by χ•(k) the family of characters χ6(k) in CHEVIE notation of degree q − 1, which may be indexed by
k ∈ T ′2. We remark that this indexing is slightly different than that of CHEVIE; taking the indexing to
be T ′2 yields the value −ξ ik

1 − ξ
−ik
1 , where ξ1 is a primitive q+1 root of unity (rather than −ξ 2ik

1 − ξ
−2ik
1 )

on the class C5(i) in CHEVIE notation, since the indices are divisible by 2. Similarly, when ε =−1, we
will denote by χ•(k) the family χ5(k) of characters of PSL2(q) of degree q + 1, which may be indexed
by k ∈ T ′1, keeping similar considerations in mind. Note that under our notation, the indexing set for χ•
is T ′
−ε . Finally, we let ψ denote the irreducible character of S3 of degree 2, ν denote the irreducible

character of A5 of degree 4, and µ denote a fixed generator of Irr(C3).

3.3. Defect groups. We begin by considering the normalizers of the radical subgroups that are defect
groups (according to [19]) of blocks of G = Sp4(q).

First, consider the radical subgroup R ∼= C2×C2 of type {±I2}× {±I2}. Here R is in fact the defect
group of the block B = b3(r, s) when ε =−1 and b4(r, s) when ε = 1. The normalizer NG(R) is of the
form SL2(q) oC2, where the base subgroup SL2(q)2, which is also the centralizer CG(R), can be viewed
as being embedded blockwise in the natural way. Here NG(R)/R is of the form PSL2(q) o C2, and
|NG(R)/R|2 = 2(q − ε)22. Hence we see that dz(NG(R)/R) is comprised of characters whose restriction
to PSL2(q)2 is (χ•(r)× χ•(s))+ (χ•(s)× χ•(r)) for r 6= s in T ′

−ε . We will write χ•(r, s) for such a
character.

Now let R ∼= C2×C2a be the radical subgroup of type {±I2}× B2. Then R is the defect group of the
blocks of the form b5(r, s). Here NG(R) ∼= SL2(q)×Cq−ε .2 and NG(R)/R ∼= PSL2(q)×C(q−ε)2′ .2.
Hence a defect-zero character of NG(R)/R has degree 2(q− ε)2, so must be χ•(k)× η̃t for some (k, t) ∈
T ′
−ε × T ′ε .

Let R ∼= C2 × Q2a+1 be the radical subgroup of type {±I2} × B2, which is the defect group of the
blocks of the form bI (r) when ε = 1 and bIII(r) when ε =−1. We remark that these blocks each contain
three irreducible Brauer characters. We remark that in Section 4, we will define IBr2(G|R) to contain
just one of these from each block. Here NG(R) ∼= SL2(q)× Q2a+1 and NG(R)/R ∼= PSL2(q), whose
defect-zero characters are those in the family χ•(k) for k ∈ T ′

−ε .
Let R ∼= C2a ×C2a be the radical subgroup of type B2× B2, which appears as the defect group of the

blocks b4(r, s) when ε = −1 and b3(r, s) when ε = 1. Here NG(R) ∼= C2
q−ε .D8 ∼= (Cq−ε .2) oC2 and

NG(R)/R ∼= (C(q−ε)2′ .2) oC2. Since defect-zero characters of NG(R)/R have degree 8, for k 6= t in T ′ε
they must be of the form (η̃k × η̃t)+ (η̃t × η̃k) on restriction to (C(q−ε)2′ .2)

2. In this case, we will denote
such a character of NG(R)/R by η̃t,k .
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When R is the radical subgroup of type B2 × B2 of the form C2a × Q2a+1 , R is the defect group
of a block of the form bIII(r) when ε = 1 and bI (r) when ε = −1. Again, these blocks each contain
three irreducible Brauer characters, and we will define IBr2(G|R) in Section 4 below to contain just
one of these from each block. Here NG(R) ∼= Cq−ε .2× Q2a+1 and NG(R)/R ∼= C(q−ε)2′ .2, which has
defect-zero characters η̃k for k ∈ T ′ε .

The subgroups R ∼= C2a+1 of type B4 are the defect groups for the blocks of the form b2(r). Here we
have NG(R)∼= Cq2−1 .22 and NG(R)/R ∼= C(q2−1)2′ .2

2. Then dz(NG(R)/R) is comprised of characters
of degree 4, of the form θ̃k for k ∈ R′2.

Now let R be semidihedral of size 2a+2. Here R is a defect group for a block of the form b67(r)
when ε = 1 and b89(r) when ε =−1, which contain two Brauer characters in each block. We will define
IBr2(G|R) in Section 4 to contain one such character from each block. We have NG(R)/R ∼= C(q+ε)2′ .2
and the defect-zero characters are of the form η̃′k for k ∈ T ′

−ε .
Now let R be of type B4 of the form C2a o C2. Here we have R is a defect group for a block of

the form b89(r) when ε = 1 and b67(r) when ε = −1, which contain two Brauer characters in each
block. Again, we will define IBr2(G|R) below to contain one such character from each block. We have
NG(R)/R ∼= C(q−ε)2′ .2 and the defect-zero characters are of the form η̃k for k ∈ T ′ε .

Let R ∈ Syl2(G), so R is a defect group of b0 and NG(R)/R is trivial when a ≥ 3, which means there
is a unique (trivial) defect-zero character. When a = 2, NG(R)/R ∼= C3, and we have three defect-zero
characters corresponding to the three members of Irr(C3).

3.4. The remaining radical subgroups. We now address the radical subgroups that are not defect
groups for any block of G.

For the radical subgroups of type B4 of the form R ∼= D2a+1 with q ≥ 5, we have NG(R)/R ∼=
PSL2(q).2, where the C2 acts as the diagonal automorphism on PSL2(q). Since |NG(R)/R|2= 2(q−ε)2,
a character of defect zero must be χ•(k) for some k ∈ T ′

−ε when restricted to PSL2(q). However, these
characters are invariant under the diagonal automorphisms, as they extend to PGL2(q). Hence we see
that dz(NG(R)/R) is empty in this case.

For the radical subgroups of type B4 of the form R ∼= Q8 with q ≥ 5, we have

NG(R)/R ∼= D2(q+ε)/Z(D2(q+ε))×S3 ∼= Dq+ε ×S3,

so that defect-zero characters have degrees whose 2-parts are 4. Hence these are ψk ×ψ for k ∈ T ′
−ε ,

where ψk is the character of Dq+ε which takes values 2 cos(πk/(q + ε)) on the generating rotation.
When R ∼= C2a with q ≥ 5, we have NG(R)/R is (GLε2(q)/C2a ).2, where C2a ≤ Z(GLε2(q)). Then a

defect-zero character has 2-part 2(q2
− 1)2, which is impossible, since the largest 2-part of a character

of GLε2(q) is (q − ε)2. Hence there are no defect-zero characters in this case.
When R ∼= C2a ◦2 Q8 with (q− ε)2′ 6= 1, we have NG(R)/R is C(q−ε)2′ .D12 ∼= C(q−ε)2′ .2×S3. Then

the defect-zero characters are of the form η̃k ×ψ for k ∈ T ′ε .
For the remaining radical subgroups, the set dz(NG(R)/R) (and sometimes R itself) depends on

whether a ≥ 3 or a = 2. We discuss the two situations separately.

3.4.1. The case a ≥ 3. Recall that there are two classes of the form R ∼= C2× Q8 when a ≥ 3, from the
two classes of radical subgroups Q8 in SL2(q). Here R is of type {±I2}×B2, NG(R)∼= SL2(q)×Q8 .S3,
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and NG(R)/R ∼= PSL2(q)×S3. Then |NG(R)/R|2 = 2(q − ε)2, and defect-zero characters are of the
form χ•(k)×ψ for k ∈ T ′

−ε .
There are also radical subgroups of the form R ∼= C2a × Q8 with a ≥ 3, (q − ε)2′ 6= 1, coming from

the two classes of radical subgroups Q8 in SL2(q). Here R is type B2× B2 and

NG(R)∼= Cq−ε .2× Q8 .S3 ∼= (Cq−ε × Q8).D12.

This yields NG(R)/R ∼= C(q−ε)2′ .2×S3. Then the defect-zero characters have degree 4, and are of the
form η̃k ×ψ for k ∈ T ′ε .

Let R ∼= Q8 × Q8 with a ≥ 3 be of type B2 × B2, where the two copies of Q8 are the same class
in the respective SL2(q), yielding two classes of radical subgroups like this and NG(R)/R ∼= S3 oC2.
Here defect-zero characters have degree 8. However, this means that on restriction to the base subgroup
S3×S3, the character must be ψ ×ψ . But this character is invariant under the C2 action, and hence
extends. Then in this case, NG(R)/R has no defect-zero characters.

When the two copies of Q8 come from the distinct classes in SL2(q), we get one additional class of
radical subgroups for G, with NG(R)/R ∼=S3×S3. In this case, defect-zero characters of NG(R)/R
have degree 4 and must be of the form ψ ×ψ .

When R is a member of one of the two classes of radical subgroups Q8× Q2a+1 of the form B2× B2,
we get NG(R)/R ∼=S3. Here ψ is the only defect-zero character.

If R ∼= 21+4
− , then NG(R)/R ∼= A5 .2. This has no defect-zero characters, as the degree would need to

have 2-part 8, but A5 has only one degree-4 character, which would extend to NG(R)/R.
When R ∼= Q8 ◦2 Q2a+1 or Q8 oC2 with a ≥ 3, we have NG(R)/R ∼=S3 and ψ is the only defect-zero

character.

3.4.2. The case a= 2 and q ≥ 5. When a= 2 and q ≥ 5, there is one class of the form R∼=C2×Q8, with
NG(R)/R∼= PSL2(q)×C3. Here for each k ∈ T ′

−ε , there are three characters of defect zero corresponding
to χ•(k)×µi , where µi

∈ Irr(C3) with i ∈ {0, 1, 2}.
There is also one class of radical subgroups of the form R ∼= C2a × Q8 with a = 2, (q − ε)2′ 6= 1 (that

is, q ≥ 7), with NG(R)/R ∼= C(q−ε)2′ .2×C3. Then for each k ∈ T ′ε , there are three defect-zero characters
of the form η̃k ×µ

i corresponding to the three characters µi
∈ Irr(C3).

In this case, we have one class of the form R ∼= Q8 × Q8, with NG(R)/R ∼= C3 o C2. The defect-
zero characters here have degree 2 and are of the form (µi

× µ j )+ (µ j
× µi ) with i 6= j ∈ {0, 1, 2}

when restricted to the base subgroup C2
3 , which we will denote as µi j . This yields three characters in

dz(NG(R)/R).
We also have one class of the form R ∼= 21+4

1 and such that NG(R)/R ∼= A5. Then there is exactly one
character in dz(NG(R)/R), namely ν.

4. The inductive BAWC conditions for PSp4(q)

In this section, we prove the inductive conditions for the BAWC for S = PSp4(q) when q ≥ 5 is a power
of an odd prime p and ` is a prime dividing q2

− 1. Note that by [16, Remark 4.2], to show that S is
BAWC-good, it suffices to show that S satisfies Conditions 4.1(ii)(3) and 4.1(iii)(4) of [16] in addition
to being AWC-good in the sense of [11, Section 3].
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4.1. The sets and bijections for ` = 2. Since |Z(G)| = 2 when q is odd, note that Z = 1 and S = X
in the notation of [11, Section 3]. Hence for S to be AWC-good for the prime ` = 2 in the sense
of [11, Section 3], we require a partition

⋃
IBr2(S|R) of Brauer characters of S, where the union is

taken over classes of 2-radical subgroups R of S. There should then be an Aut(S)-equivariant bijection
∗R : IBr2(S|R)→ dz(NS(R)/R) satisfying certain other properties. However, the fact that |Z(G)| = 2
also implies that the 2-blocks and 2-Brauer characters of G and S = G/Z(G) can be identified, using [10,
Theorem 7.6]. Further, the 2-radical subgroups of S are of the form R/Z(G), where R is a 2-radical sub-
group of G, and NS(R/Z(G))/(R/Z(G))∼= NG(R)/R. Hence in what follows, we define the necessary
sets IBr2(G|R) and bijections ∗R for G rather than S.

Tables 5–6 and 7–8 describe the sets and bijections in the cases a ≥ 3 and a = 2, respectively. We note
that when R is the defect group of a block B of G, we have defined IBr2(G|R) naturally as a subset of
IBr2(B). The indexing in the tables is taken as in Table 4. We remark that the condition (q− ε)2′ 6= 1 for
several of the radical subgroups is not restrictive, given the enumerations in 3.1, and that the discussions
in Sections 3.1 and 3.2 yield that these do in fact define bijections.

Recall that G̃ denotes the conformal symplectic group CSp4(q), so that G̃ contains an index-two
subgroup G ◦ Z(G̃), which is a central product of G with Z(G̃) ∼= F×q . Then the outer automorphism
group of S is isomorphic to C2×C f , where q = p f . Here the C2 component is induced by the action of
S̃/S ∼= G̃/(G ◦ Z(G̃)) and the C f component is given by field automorphisms. We also remark that by
[18, Theorem 16.2], we may choose a field automorphism φ generating the C f component such that for
χ ∈ Irr(G), we have (G̃ o 〈φ〉)χ = G̃χ o 〈φ〉χ . Throughout, let φ denote such a field automorphism and
let δ denote a diagonal automorphism inducing the action of S̃/S ∼= G̃/(G ◦ Z(G̃)).

Using [17] for the character table of G, arguments as in the proof of [13, Proposition 5.1] yield
that the chosen maps are equivariant with respect to the field automorphism. Further, from [5] and the
descriptions summarized in Section 3.1, we see that the action of S̃/S interchanges the following pairs of
Brauer characters: {ϕ1, ϕ2}, {ϕ4, ϕ5}, {

∧

ξ ′22(r),
∧

ξ ′21(r)}, {
∧

ξ 42(r)−
∧

ξ 3(r),
∧

ξ 41(r)−
∧

ξ 3(r)}. The remaining
irreducible Brauer characters are invariant under the action of S̃.

On the other hand, when a ≥ 3, the Brauer characters interchanged by δ correspond under our map
to pairs of classes of radical subgroups which are also interchanged by δ. Indeed, note that δ induces a
diagonal automorphism as well on SL2(q), and that these pairs of classes come from pairs of classes of
radical subgroups Q8 in SL2(q), which are fused in GL2(q), by [14, Corollary 7.15]. When a = 2, it
suffices to see that µ and µ2 are interchanged by δ when C3 is viewed as a subgroup of SL2(q) inducing
an automorphism of order 3 on Q8 embedded into SL2(q). Indeed, constructing Q8 in the standard way
in SL2(q), for example as in [7], one can construct a generator for such an automorphism of Q8 and see
that there is an appropriate representative for δ that inverts it. This yields:

Proposition 4.1. The sets IBr2(G|R) and bijections ∗R defined in Tables 5–8 satisfy the partition and
bijection conditions in [11, Sections 3.1 and 3.2].

4.2. The sets and bijections for Sylow `-subgroups, ` odd. From Section 2.1, we see that for ` an odd
prime dividing q2

− 1, the only noncyclic radical subgroups for G are the Sylow `-subgroups. Hence
applying the results of [9], in order to complete the proof of Theorem 1.1 when ` is odd, it suffices to
consider the case that R ∈ Syl`(G) and construct bijections from irreducible Brauer characters in blocks
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R θ ∈ IBr2(G|R) θ∗R ∈ dz(N/R)

Z(G)= C2
∧

χ1(r)
∧

χ1(r)

C2×C2
∧

χ4(r, s) χ6(r, s)

C2×C2a
∧

χ5(r, s) χ6(r)× η̃s

C2× Q8 (two classes)
∧

ξ ′22(r) χ6(r)×ψ
∧

ξ ′21(r) χ6(r)×ψ

C2× Q2a+1
∧

ξ 1(r) χ6(r)

C2a ×C2a
∧

χ3(r, s) η̃r,s

C2a × Q8 (two classes)
∧

ξ 42(r)−
∧

ξ 3(r) η̃r ×ψ
∧

ξ 41(r)−
∧

ξ 3(r) η̃r ×ψ

C2a × Q2a+1
∧

ξ 3(r) η̃r

Q8× Q8 (two classes), N/R ∼= (S3×S3).2 empty empty

Q8× Q8, N/R ∼=S3×S3 ϕ3 ψ ×ψ

Q8× Q2a+1 (two classes) ϕ1 ψ

ϕ2 ψ

21+4
− (two classes) empty empty

C2a ◦2 Q8
∧

χ9(r)−
∧

χ8(r) η̃r ×ψ

C2a+1
∧

χ2(r) θ̃r

S2a+2
∧

χ6(r) η̃′2r

D2a+1 empty empty

Q8 ◦2 Q2a+1 ϕ6 ψ

Q8
∧

χ7(r)−
∧

χ6(r) ψr ×ψ

C2a empty empty

C2a oC2
∧

χ8(r) η̃2r

Q8 oC2 (two classes) ϕ4 ψ

ϕ5 ψ

Q2a+1 oC2 1S 1

Table 5. The sets and bijections for `= 2, a ≥ 3: the case ε = 1.

of maximal defect to dz(NG(R)/R) satisfying Conditions 4.1(ii)(3) and 4.1(iii)(4) of [16] and those of
[11, Section 3].

Let ε ∈ {±1} be such that ` | (q − ε). Note then that R ∼= C(q−ε)` ×C(q−ε)` , that

NG(R)/R ∼= C(q−ε)`′ .2 oC2,
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R θ ∈ IBr2(G|R) θ∗R ∈ dz(N/R)

Z(G)= C2
∧

χ1(r)
∧

χ1(r)

C2×C2
∧

χ3(r, s) χ5(r, s)

C2×C2a
∧

χ5(r, s) χ5(s)× η̃r

C2× Q8 (two classes)
∧

ξ 42(r)−
∧

ξ 3(r) χ5(r)×ψ
∧

ξ 41(r)−
∧

ξ 3(r) χ5(r)×ψ

C2× Q2a+1
∧

ξ 3(r) χ5(r)

C2a ×C2a
∧

χ4(r, s) η̃r,s

C2a × Q8 (two classes)
∧

ξ ′22(r) η̃r ×ψ
∧

ξ ′21(r) η̃r ×ψ

C2a × Q2a+1
∧

ξ 1(r) η̃r

Q8× Q8 (two classes), N/R ∼= (S3×S3).2 empty empty

Q8× Q8, N/R ∼=S3×S3 ϕ3 ψ ×ψ

Q8× Q2a+1 (two classes) ϕ1 ψ

ϕ2 ψ

21+4
− (two classes) empty empty

C2a ◦2 Q8
∧

χ7(r)−
∧

χ6(r) η̃r ×ψ

C2a+1
∧

χ2(r) θ̃r

S2a+2
∧

χ8(r) η̃′2r

D2a+1 empty empty

Q8 ◦2 Q2a+1 ϕ6 ψ

Q8
∧

χ9(r)−
∧

χ8(r) ψr ×ψ

C2a empty empty

C2a oC2
∧

χ6(r) η̃2r

Q8 oC2 (two classes) ϕ4 ψ

ϕ5 ψ

Q2a+1 oC2 1S 1

Table 6. The sets and bijections for `= 2, a ≥ 3: the case ε =−1.

and that dz(NG(R)/R)= Irr(NG(R)/R). Here we may embed C2
q−ε through the block-diagonal embed-

ding of SL2(q)2 in G. With this identification, the C2 components act on Cq−ε and on (C(q−ε)`′ .2)
2 via

inversion and reversing components, respectively. These can be viewed as induced from the elements
x :=

[ 0
−1

1
0

]
and y :=

[ 0
−I2

I2
0

]
, respectively. We further remark that the nontrivial diagonal automorphism δ
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R θ ∈ IBr2(G|R) θ∗R ∈ dz(NG(R)/R)

Z(G)= C2
∧

χ1(r)
∧

χ1(r)

C2×C2
∧

χ4(r, s) χ6(r, s)

C2×C2a
∧

χ5(r, s) χ6(r)× η̃s
∧

ξ ′22(r) χ6(r)×µ
C2× Q8

∧

ξ ′21(r) χ6(r)×µ2
∧

ξ 1(r) χ6(r)× 1C3

C2a ×C2a
∧

χ3(r, s) η̃r,s
∧

ξ 42(r)−
∧

ξ 3(r) η̃r ×µ

C2a × Q8
∧

ξ 41(r)−
∧

ξ 3(r) η̃r ×µ
2

∧

ξ 3(r) η̃r × 1C3

ϕ3 µ12

Q8× Q8 ϕ1 µ01

ϕ2 µ02

21+4
− ϕ6 ν

C2a ◦2 Q8
∧

χ9(r)−
∧

χ8(r) η̃r ×ψ

C2a+1
∧

χ2(r) θ̃r

S2a+2
∧

χ6(r) η̃′2r

D2a+1 empty empty

Q8
∧

χ7(r)−
∧

χ6(r) ψr ×ψ

C2a empty empty

C2a oC2
∧

χ8(r) η̃2r

ϕ4 µ

Q8 oC2 ϕ5 µ2

1S 1C3

Table 7. The sets and bijections for `= 2, a = 2, q ≥ 5: the case ε = 1.

of S can be seen as induced by the matrix diag(−1, 1) on each SL2(q) component, which fixes y and
sends x to −x .

Let ±1 denote the characters of C(q−ε)`′ of order dividing 2. These characters are invariant under
the action of the C2 components of C(q−ε)`′ .2, and we denote by ±1a and ±1b the two corresponding
extensions to C(q−ε)`′ .2. Then we obtain 14 characters of NG(R)/R whose restrictions to C2

(q−ε)`′
are of

the form ±1×±1. In what follows, we will in most cases identify these characters by their restrictions
to (C(q−ε)`′ .2)

2. However, for those that extend from (C(q−ε)`′ .2)
2 to C(q−ε)`′ .2 oC2, we use subscripts a

and b again to denote the two extensions. Further, we remark that δ fixes 1a and 1b and interchanges −1a

and −1b. Table 9 describes the bijections for these characters. The corresponding blocks of maximal
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R θ ∈ IBr2(G|R) θ∗R ∈ dz(NG(R)/R)

Z(G)= C2
∧

χ1(r)
∧

χ1(r)

C2×C2
∧

χ3(r, s) χ5(r, s)

C2×C2a
∧

χ5(r, s) χ5(s)× η̃r
∧

ξ 42(r)−
∧

ξ 3(r) χ5(r)×µ
C2× Q8

∧

ξ 41(r)−
∧

ξ 3(r) χ5(r)×µ2
∧

ξ 3(r) χ5(r)× 1C3

C2a ×C2a
∧

χ4(r, s) η̃r,s
∧

ξ ′22(r) η̃r ×µ

C2a × Q8
∧

ξ ′21(r) η̃r ×µ
2

∧

ξ 1(r) η̃r × 1C3

ϕ3 µ12

Q8× Q8 ϕ1 µ01

ϕ2 µ02

21+4
− ϕ6 ν

C2a ◦2 Q8
∧

χ7(r)−
∧

χ6(r) η̃r ×ψ

C2a+1
∧

χ2(r) θ̃r

S2a+2
∧

χ8(r) η̃′2r

D2a+1 empty empty

Q8
∧

χ9(r)−
∧

χ8(r) ψr ×ψ

C2a empty empty

C2a oC2
∧

χ6(r) η̃2r

ϕ4 µ

Q8 oC2 ϕ5 µ2

1S 1C3

Table 8. The sets and bijections for `= 2, a = 2, q ≥ 5: the case ε =−1.

defect and Brauer characters for G are obtained from [20]. (We remark that the number α is determined
in [12] to be 1 or 2.) From [5], we see that the pairs {8i ,8i+1} and {θi , θi+1} for i = 1, 3, 5, 7 are
interchanged by δ and that 89 and θ j for j = 9, 10, 11, 12, 13 are fixed by δ. Since all characters
listed are fixed by field automorphisms, we see that the bijections are Aut(S)-equivariant. Further, by
construction, (IBr`(G|R)∩ IBr`(G|ν))∗R ⊆ Irr(NG(R)/R|ν) for each ν ∈ Irr(Z(G)).

Now, consider the characters of C(q−ε)`′ .2 that are not ±1 on restriction to C(q−ε)`′ . These characters
are of the form η̃k , where the notation is analogous to that in Section 3.2 for the case that `= 2 above.
If m = 2m0 = (q − ε)`′ , this yields (m − 2)/2 = m0 − 1 characters of this form for C(q−ε)`′ .2. These
characters are indexed by k in T ′ε , where, analogous to the case `= 2, the set T ′ε is the set of multiples of
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θ ∈ IBr`(B)
`-block B of G ε = 1 ε =−1 θ∗R ∈ Irr(NG(R)/R)

1G 1G (1a × 1a)a
∧

θ9
∧

θ10 (1a × 1a)b

b0
∧

θ11
∧

θ11− 1G (1b× 1b)a
∧

θ12
∧

θ12− 1G (1b× 1b)b
∧

θ13
∧

θ13−
∧

θ12−
∧

θ11−α
∧

θ10+ 1G (1a × 1b)+ (1b× 1a)
∧

85
∧

81 (−1a × 1a)+ (1a ×−1a)

b1

∧

86
∧

82 (−1b× 1a)+ (1a ×−1b)
∧

87
∧

84−
∧

82 (−1a × 1b)+ (1b×−1a)
∧

88
∧

83−
∧

81 (−1b× 1b)+ (1b×−1b)
∧

θ3
∧

θ3 (−1a ×−1a)a
∧

θ4
∧

θ4 (−1b×−1b)a

b2
∧

89
∧

89−
∧

θ4−
∧

θ3 (−1a ×−1b)+ (−1b×−1a)
∧

θ1
∧

θ1+
∧

θ3−
∧

89 (−1a ×−1a)b
∧

θ2
∧

θ2+
∧

θ4−
∧

89 (−1b×−1b)b

Table 9. The bijection for R ∈ Syl`(G), ` odd, isolated blocks.

(q − ε)` in {1, . . . , (q − ε)/2− 1}. Given such a k, there are two characters of NG(R)/R that restrict to
η̃k× η̃k on (C(q−ε)`′ .2)

2, which we again denote with an a and b. Further, for each ϕ ∈ {1a, 1b,−1a,−1b},
we have one character whose restriction is of the form η̃k ×ϕ+ϕ× η̃k .

Finally, the characters of NG(R)/R whose restriction to neither component of C(q−ε)`′ is ±1 must be,
on restriction to (C(q−ε)`′ .2)

2, of the form (η̃k × η̃t)+ (η̃t × η̃k) for k 6= t in T ′ε . In this case, there
are (m0− 1)(m0− 2)/2 characters of this form. Table 10 describes the bijections for these remaining
characters. Again the Brauer character information is taken from [20], we have constructed the bijection
so that (IBr`(G|R)∩ IBr`(G|ν))∗R ⊆ Irr(NG(R)/R|ν) for each ν ∈ Irr(Z(G)), and the discussion from
above and arguments exactly as in [13, Propositions 5.1] yield that the bijection is Aut(S)-equivariant.

Together, we have the following:

Proposition 4.2. Let R ∈ Syl`(G) and ` | (q2
− 1) odd. The sets IBr`(G|R) and bijections ∗R defined in

Tables 9–10 satisfy the partition and bijection conditions in [11, Sections 3.1 and 3.2].

4.3. The normally embedded conditions. In this section, let G = Sp4(q) with q odd and let ` | (q2
−1)

be a prime. Let R be any 2-radical subgroup in the case `= 2 or a member of Syl`(G) if ` is odd, and
fix θ ∈ IBr`(G|R), where IBr`(G|R) is defined as in Tables 5–10. Notice that Aut(S)θ/S is cyclic unless
q is a square and θ is fixed by δ and a field automorphism of order 2.

Lemma 4.3. The characters θ ∈ IBr`(G|R) extend to their inertia groups in G̃ o 〈φ〉. Further, the
characters θ∗R extend to their inertia groups in the normalizer of R in G̃ o 〈φ〉, where ∗R is as defined
in Tables 5–10.
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ε = 1 ε =−1
`-block B of G θ ∈ IBr`(B) `-block B of G θ ∈ IBr`(B) θ∗R ∈ Irr(NG(R)/R)

b89(k)
χ̂8(k) b67(k)

χ̂6(k) (η̃k × η̃k)a

χ̂9(k) χ̂7(k)− χ̂6(k) (η̃k × η̃k)b

bIII(k)
∧

ξ 3(k) bI (k)
∧

ξ 1(k) (η̃k × 1a)+ (1a × η̃k)
∧

ξ ′3(k)
∧

ξ ′1(k)−
∧

ξ 1(k) (η̃k × 1b)× 1b× η̃k)

b41(k)
∧

ξ 41(k) b21(k)
∧

ξ ′21(k) (η̃k ×−1a)+ (−1a × η̃k)
∧

ξ 42(k)
∧

ξ ′22(k) (η̃k ×−1b)+ (−1b× η̃k)

b3(k, t) χ̂3(k, t) b4(k, t) χ̂4(k, t) (η̃k × η̃t)+ (η̃t × η̃k)

Table 10. The bijection for R ∈ Syl`(G), ` odd, nonisolated blocks.

Proof. This is clear if Aut(S)θ/S is cyclic. Hence we may assume that q ≡ 1 (mod 8) is a square and
that θ is fixed by δ. In particular, a ≥ 3 and ε = 1 in the case ` = 2. Note that θ and θ∗R extend to G̃
and G̃ R , respectively. We claim that this extension can be chosen to be invariant under the same field
automorphisms as θ , respectively θ∗R .

Comparing the notations and values of the characters χ in [17] for the families χi for 1 ≤ i ≤ 9,
ξ1, ξ

′

1, ξ3, and the unipotent characters of G fixed by δ to those of their extensions, using [5; 15], yields
that each of these characters has an extension to G̃ which is also invariant under the field automorphisms
fixing χ . Hence each such χ extends to its inertia subgroup, and therefore so does θ .

Observing the character tables of PSL2(q) and PGL2(q), we see that the characters in the family χ6

extend to characters of PGL2(q) that are invariant under the same field automorphisms. Further, δ can
be chosen to commute with the groups Cq±1 and Cq2+1, and modulo Z(G), with D2(q+1) as well as the
elements x and y introduced in Section 4.2. Then θ∗R extends to a character of G̃ R invariant under the
same field automorphisms as θ∗R , except possibly in the cases that N/R contains S3 as a factor. Since
the only group containing S3 with index 2 contains S3 as a direct factor, we see that δ must act trivially
on S3, and hence the characters of N/R in the latter case also extend to characters of G̃ R invariant under
the same field automorphisms. �

Corollary 4.4. Let G = Sp4(q) with q odd and let ` | (q2
− 1) be a prime. Let R be a 2-radical subgroup

of G if `= 2, or a Sylow `-subgroup if ` is odd, and let IBr`(G|R) and ∗R be defined as in Tables 5–10.
Then the normally embedded conditions [11, Section 3.3] are satisfied.

Proof. Fix θ ∈ IBr`(G|R) and write G := G/ ker(θ |Z(G)). If θ is trivial on Z(G), identify S = G/Z(G)
with Inn(S), so that we may write G= SCAut(S)θCAut(S) and write X :=Aut(S)θ . If θ is nontrivial on
Z(G), let X := G̃θ o 〈φ〉θ . In any case, let B := X R be the subgroup of X stabilizing R. Then certainly,
G C X , Z(G) ≤ Z(X), θ is X -invariant, and B is exactly the set of automorphisms of G induced by
the conjugation action of NX (R) on G. Moreover, CX (G) is trivial and since θ and θ∗R extend to X
and B, respectively, by Lemma 4.3, their corresponding cohomology elements in H 2(X/G, F×` ) are
trivial. Hence the normally embedded conditions [11, Conditions 3.a–3.d] are satisfied, completing the
proof. �
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4.4. The block conditions. In this section, we consider Conditions 4.1(ii)(3) and 4.1(iii)(4) of [16].
Recall that to show that S is BAWC-good, it suffices by [16, Remark 4.2] to show that S satisfies these
two conditions in addition to being AWC-good in the sense of [11, Section 3].

We will begin with an adaption of [16, Lemma 6.1] for our purposes. To do this, we consider a more
general situation and set some notation. Let G be a simple, simply connected algebraic group over an
algebraic closure of Fp, and let F be a Frobenius morphism such that GF is a finite group of Lie type,
Z(GF ) is cyclic, and GF/Z(GF ) is simple. Further, let G ↪→ G̃ be a regular embedding as in [6, 15.1]
and let D be the subgroup of Aut(GF ) generated by field and graph automorphisms so that G̃F o D
induces all automorphisms of GF .

Lemma 4.5. Let ` be a prime and let G0 be the universal `′ covering group of GF/Z(GF ) in the notation
above. Let Q be a radical subgroup of G0 and IBr`(G0|Q) and ∗Q be a subset of IBr`(G0) and map,
respectively, satisfying the conditions of [11, Section 3] and [16, Condition 4.1(ii)(3)]. Further, assume
that χ ∈ IBr`(G0|Q) is such that the following hold when χ is viewed as a character of GF by inflation:

• (G̃F o D)χ = G̃F
χ o Dχ and (G̃F

χ o Dχ )/GF is abelian;

• χ extends to G̃F
χ o Dχ and χ∗Q extends to (G̃F o D)Q,χ .

Then [16, Condition 4.1(iii)] holds.

Proof. By assumption, ∗Q is Aut(G0)R-equivariant and χ and χ∗Q lie in pseudo-corresponding blocks,
in the sense of [16]. We largely follow and adapt the proof of [16, Lemma 6.1]. Let

G := GF/ ker(χ |Z(GF ))
∼= G0/ ker(χ |Z(G0)).

Write A := G̃F
χ / ker(χ |Z(GF ))o Dχ and A(χ) := A/Z(A)`. Then because ` - |Z(G)|, our assumption

(G̃F o D)χ = G̃F
χ o Dχ yields that A(χ) has the properties of [16, Condition 4.1(iii)(1)]. Let A`′ be

such that A`′/G is a Hall `′-subgroup of A(χ)/G, which exists since by assumption A(χ)/G is abelian.
Now, by assumption, χ extends to A(χ), and ϕ :=χ∗Q extends to NA(χ)(Q). Then there is an extension

of ϕ to NA`′ (Q). Let ϕ̃ ∈ IBr`(NA`′ (Q)) denote the corresponding Brauer character extending ∧ϕ.
Let b̃ be the block of NA`′ (Q) containing ϕ̃ and let B be the block of G containing χ . Then b̃A`′ is

defined (see for example [10, Theorem 4.14]) and by observing the values of central characters, we see
that b̃A`′ covers B, so that by [10, Theorem 9.4], we can choose an extension χ̃ of χ to A`′ so that χ̃ is
contained in b̃A`′ . That is, χ̃ and ϕ̃ lie in pseudo-corresponding blocks. Further, note that since A(χ)/G
is abelian, an application of Gallagher’s theorem [8, Theorem 6.17] yields that every character of A(χ)
above χ is an extension, and similarly for characters above ϕ in NA(χ)(Q). It follows that χ̃ and ϕ̃ may
be extended to characters of A(χ) and NA(χ)(Q), respectively. From here, arguing exactly as in the last
two paragraphs of [16, Theorem 6.1] completes the proof. �

In particular, if [16, Condition 4.1(ii)(3)] holds, then [18, Theorem 16.2] and the observations from
previous sections yield that Lemma 4.5 applies in the case that GF

= Sp4(q), S = GF/Z(GF )= PSp4(q)
for q a power of an odd prime, Q = R is a nontrivial 2-radical subgroup of G when `= 2 or a Sylow
`-subgroup for ` | (q2

− 1) odd, and IBr`(G|R) and ∗R are as defined in Tables 5–10.
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Lemma 4.6. Let G = Sp4(q) for q a power of an odd prime and let R be a nontrivial 2-radical subgroup
of G when ` = 2 or a Sylow `-subgroup for ` | (q2

− 1) odd. Let IBr`(G|R) and ∗R be as defined
in Tables 5–10. Then if B is the block of G containing θ ∈ IBr`(G|R) and b is the block of NG(R)
containing θ∗R , we have bG

= B. In particular, [16, Condition 4.1(ii)(3)] holds for S = PSp4(q).

Proof. Let N := NG(R) and C := CG(R). As b ∈ Bl(N ), bG is defined and bG
= B if and only if

λB(K
+) = λb((K ∩C)+) for all conjugacy classes K of G, where λB and λb are the central function

corresponding to the blocks B and b respectively; see, for example, [8, Lemma 15.44]. Let χ ∈ Irr(G|B).
The central character ωχ for G are available in [19] in the case `= 2 and can be computed in the relevant
cases for ` odd from the information in [17]. The values of ϕ ∈ Irr(N |b) on C can be computed by their
descriptions and using the character tables for SL2(q) available in CHEVIE. Hence it remains only to
determine the fusion of classes of C into G in order to compute ωϕ((K∩C)+)= (1/ϕ(1))

∑
C⊆K ϕ(g)|C|,

where g ∈ C and the sum is taken over classes C of C which lie in K, and compare the image of this
under ∗ with ωχ (K+)∗. (We note that ωχ (1+)= 1= ωϕ((1∩C)+) for all χ ∈ Irr(G), ϕ ∈ Irr(N ), so it
suffices to consider nontrivial classes K.) The considerations here, though tedious, are very similar to
those in [13, Proposition 5.3], using the information in [17] for the classes of G. We omit the details. �

Proof of Theorem 1.1. The theorem now follows by combining Lemmas 4.3, 4.5, and 4.6 with Proposi-
tions 4.1 and 4.2 and Corollary 4.4. �
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