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Multi-Material Decomposition for Single Energy
CT Using Material Sparsity Constraint

Yi Xue, Wenjian Qin, Chen Luo , Pengfei Yang , Yangkang Jiang, Tiffany Tsui, Hongjian He ,
Li Wang , Jiale Qin, Yaoqin Xie , and Tianye Niu

Abstract— Multi-material decomposition (MMD) decom-
poses CT images into basis material images, and is a
promising technique in clinical diagnostic CT to identify
material compositions within the human body. MMD could
be implemented on measurements obtained from spectral
CT protocol, although spectral CT data acquisition is not
readily available in most clinical environments. MMD meth-
ods using single energy CT (SECT), broadly applied in radio-
logical departments of most hospitals, have been proposed
in the literature while challenged by the inferior decomposi-
tion accuracy and the limited number of material bases due
to the constrained material information in the SECT mea-
surement. In this paper, we propose an image-domain SECT
MMD method using material sparsity as an assistance under
the condition that each voxel of the CT image contains at
most two different elemental materials. L0 norm represents
the material sparsity constraint (MSC) and is integrated into
the decomposition objective function with a least-square
data fidelity term, total variation term, and a sum-to-one
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constraint of material volume fractions. An accelerated
primal-dual (APD) algorithm with line-search scheme is
applied to solve the problem. The pixelwise direct inversion
method with the two-material assumption (TMA) is applied
to estimate the initials. We validate the proposed method on
phantom and patient data. Compared with the TMA method,
the proposed MSC method increases the volume fraction
accuracy (VFA) from 92.0% to 98.5% in the phantom study.
In the patient study, the calcification area can be clearly
visualized in the virtual non-contrast image generated by
the proposed method, and has a similar shape to that in the
ground-truth contrast-free CT image. The high decomposi-
tion image quality from the proposed method substantially
facilitates the SECT-based MMD clinical applications.

Index Terms— Multi-material decomposition, single
energy CT, material sparsity, two-material assumption.

I. INTRODUCTION

THE interest grows in the development of multi-material
decomposition (MMD) technique, which differentiates

the material compositions within the human body by
decomposing the CT images into multi-material bases [1]–[4].
The decomposed materials can be used in the clinical
applications, such as lesion delineation, organ contour, virtual
monoenergetic synthesis, virtual non-contrast (VNC) imaging,
liver fibrosis quantification, bone mineral quantitative
determination [5]–[8], etc.
The implementation of MMD can be classified into

single-energy CT (SECT) based and spectral CT based
schemes according to the various procedures in CT data acqui-
sition [9]–[12]. In the spectral CT measurement, hardware
modification of the CT scanner is required, including using
multiple scans [13], changing fast x-ray tube voltage [14],
scanning with dual-source [15], [16], using dual-layer [17]
or photon counting detector scheme [4], employing primary
modulation [15], [18], etc.
The efficacy of spectral CT has been demonstrated in some

clinical applications while the hardware modulation presents
a major obstacle toward the extensive applications of spectral
CT in clinic. SECT, however, is omnipresent in almost
all hospitals. SECT based MMD, without the need of any
hardware modification, is thus more attractive in the clinic.
Important advances have been made in the development of
the SECT based material decomposition method in the past
few years. Liao et al. applied a cascade deep convolutional

1558-254X © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on July 14,2021 at 18:32:27 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-6105-4657
https://orcid.org/0000-0002-5803-8859
https://orcid.org/0000-0001-6272-0810
https://orcid.org/0000-0003-2658-4262
https://orcid.org/0000-0002-1412-2354
https://orcid.org/0000-0003-4181-3641


1304 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 40, NO. 5, MAY 2021

neural network (CD-ConvNet), which combines a material
decomposition layer and a noise suppression layer, to enhance
the decomposition performance [19]. This method was
validated using patient data to decompose the bone and soft-
tissue. Nevertheless, it has to perform material-specific neural
network training for a dedicated material basis. The multiple
training operation limits the application of the algorithm.
Currently, Zhao et al. applied U-net on the SECT image to
generate the corresponding dual-energy CT (DECT) images
and performed material decomposition using the acquired
DECT data [20]. This U-net based method is successfully val-
idated in virtual non-contrast imaging, which is an important
diagnostic imaging application of material decomposition.
The deep learning-based material decomposition method is
burdened by a large amount of training data. Additionally,
multi-material images require labeling before operation, but
accurate label generation is still an on-going problem.
In addition to the deep learning-based SECT material

decomposition method, Kis et al. proposed a two-pass SECT
two-material decomposition method using the x-ray total path
length estimation [9]. This method reconstructs the CT image
from the original projections using a standard FDK algorithm
and then calculates the x-ray path length using the ray tracing
algorithm. The x-ray total path length, which is the sum of path
lengths of two materials, is utilized in the decomposition algo-
rithm as a known constraint. Combining the total path length
constraint and the projection measurement, two sets of material
images are successfully estimated. Crawley et al. analyzed the
accuracy of SECT in bone mineral measurements, which relies
on the linear correlation between the in-vivo concentrations of
calcium hydroxyapatite and dipotassium phosphate [8]. These
two methods successfully achieved dual-material decomposi-
tion using SECT while their clinical application is hindered by
the inferior decomposition accuracy and the limited number of
decomposed materials [9]. This is because MMD for SECT
is an ill-posed problem that has to estimate multiple sets of
material images from one measurement. An accurate solution
cannot be acquired if no additional information is included.
In medical imaging, each voxel in the CT image contains

a limited number of materials, indicating that the material
composition in each voxel is sparse. We can design a material
sparsity constraint to assist in the MMD for SECT. L0 norm,
which counts the number of non-zero elements in one vector,
has been introduced in image processing to regularize the
image gradient sparsity [21]–[23]. L0 norm minimizes the
number of voxels that have non-zero gradient magnitudes
rather than the total image gradient magnitude to better
preserve the spatial resolution of the CT image. In this work,
we apply the L0 norm directly on the regularization of material
composition to achieve the material sparsity in each voxel.
In addition to the L0 norm that regularizes material sparsity

constraint, the proposed image-domain MMD method for
SECT formulates the objective function using a least-square
data fidelity term, a total variation (TV) term based on the
piecewise constant property of the material image to suppress
the magnified noise in the decomposition [24], and a char-
acteristic function to satisfy the sum-to-one constraint of the
decomposed material volume fractions. The proposed objec-

tive function is non-convex due to the L0 norm regularization.
An accelerated primal-dual (APD) algorithm with line-search
scheme is applied to solve the problem [25]. To acquire a
good initial value for the non-convex problem, we applied the
pixelwise direct matrix inversion method with the assumption
that each pixel contains at most two materials.
In essence, the main technical innovation of the proposed

method is to introduce the concept of material sparsity into the
decomposition to enhance decomposition accuracy. L0 norm
is selected as an embodiment of material sparsity due to its
definition of counting the number of non-zero elements in one
vector. The proposed method serves as an alternative option
to the clinical applications where DECT or spectral CT is
not readily available. The proposed method is evaluated using
digital phantoms, customized water phantoms, and the patient
data.

II. METHODS AND MATERIALS

A. MMD Mathematical Model Using SECT

In the image domain MMD theory, the mass attenuation of
a mixture µM (E) in the CT image is assumed to be a linear
combination of the mass attenuation of different material bases
and written as [26]:

µM (E) =
∑T0

t=1
βtµtM (E), s.t .

∑T0

t=1
βt = 1, βt ≥ 0,

(1)

where µtM (E) is the mass attenuation coefficient of the t-th
basis material at the energy level E. The subscript M indicates
the mass attenuation coefficient. T0 represents the total number
of material bases. βt is the mass fraction of the t-th basis
material written as:

βt = mt∑T0
t=1mt

, (2)

where mt is the mass of the t-th basis material.
The relationship between the linear attenuation coefficient

(LAC) µE and mass attenuation coefficient µM is expressed
as:

µE = ρµM (E) =
∑T0

t=1mt∑T
t=1 Vt

µM (E), (3)

where Vt is the volume of the t-th basis material.
Combining Eqs. (1) and (2) into Eq. (3), we have:

µE =
∑T0

t=1
(

∑T0
t=1mt∑T0
t=1 Vt

mt∑T0
t=1mt

Vtµt E

mt
) =
∑T0

t=1
µt E xt ,

(4)

where xt = Vt∑T0
t=1 Vt

represents the volume fraction of the t-th

basis material and µt E is the LAC of the t-th basis material.
xt satisfies the sum-to-one and bound between 0 and 1:∑T0

t=1
xt =
∑T0

t=1

Vt∑T0
t=1 Vt

=1, 0≤ xt ≤1, t=1, . . . , T0.

(5)
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The MMD model can be constructed from Eqs. (4) and (5)
as:

µE =
∑T0

t=1
xtµt E , s.t.

∑T0

t=1
xt = 1, xt ≥ 0, ∀t . (6)

To implement the MMD in the CT image of Np pixels,
Eq. (6) is rewritten in the matrix-vector form as:

−→µ = A�x, s.t .
∑T0

t=1
xt = 1, xt ≥ 0, ∀t, (7)

where −→µ is the measured CT images after reordering the data
as a column vector. Similarly, �x = [−→x1 T ,−→x2 T , . . . ,−→xT0T

]T
is

a column vector with size T0 × Np , where entry is the volume
fraction image of the t-th basis material. A ∈ R

Np×T0Np is the
material composition matrix and is written as:

A = A0 ⊗ INp , (8)

where ⊗ represents the Kronecker product. INp is the
Np × Np identity matrix. A0 = [µ1, µ2, . . . µT0

]
is the com-

position matrix composed of the LACs of the material bases.
Performing MMD is mathematically equivalent to solving

the volume fraction �x from Eq. (7), given the measured
CT image −→µ . The solutions to the SECT MMD equation
produce non-unique solutions since multiple solutions �x can be
estimated from one measurement −→µ . The pseudo-inverse A−1

is mathematically unstable and thus Eq. (7) cannot be solved
using the direct matrix inversion since the severe crosstalk
error may occur in the decomposed images.
Least square estimation with regularization is commonly

applied to solve the above ill-posed inverse problem. We for-
mulate the image domain SECT MMD problem as:

min
�x

1

2

∥∥A�x − −→µ ∥∥22 + δ ‖�x‖T V + σ ‖�x‖0 + χs (�x). (9)

The first term is the data fidelity term and ‖�‖22 denotes
the square of a L2-norm operator. The data fidelity term
enforces the minimization between the linear combination
of volume fractions of the estimated and the measured CT
images. The second term ‖�‖T V denotes the TV of each
material image [24]. This term is based on the hypothesis that
different materials in the CT image can be considered as a
piecewise constant [27]. The hypothesis might be valid in the
phantom study while may expire in sophisticated patient data
evaluation. The minimization of the TV term achieves noise
suppression in the material image while maintaining the major
edges of the object. The TV term is calculated using the L1
norm of the material gradient image, i.e.,

‖�x‖T V = ‖∇�x‖1 =
∑T0

t=1

∥∥∇−→xt
∥∥
1 , (10)

where ∇ represents the gradient operator. The third term ‖�x‖0
represents the L0 norm of the material image �x and ‖�‖0 is
a L0 norm operator. This term limits the number of material
types within human organs using the sparsity constraint on the
material volume fraction �x [3], [4]. ‖�x‖0 is calculated as:

‖�x‖0 =
∑Np

p=1

∥∥−→xp∥∥0 , (11)

where −→xp is the vectorized volume fraction of the p-th pixel,
i.e., −→xp = (xp1, xp2, . . . , xpT0)

T . The final term χs (�x) is the

characteristic function which includes the sum-to-one and box
constraints, i.e., Eq. (5), and is calculated as:

χs (�x) =
{
0, −→xp ∈ S, ∀p
∞, otherwi se,

(12)

where S = {−→xp : ∑T0
t=1 xpt = 1, 0 ≤ xpt ≤ 1, p =

1, 2, . . . , Np
}
. Note that, the major clinical applications using

the proposed method are the water solution of various contrast
agents, including the Iodine-based contrast, Gadolinium-based
contrast, and non-dissolving materials. The volume conser-
vation assumption is usually satisfied in these studies. The
scenarios where volume conservation is not met are com-
monly involved with the dissolving process of solid or
high-concentration liquid materials, which are not readily
observed in clinical practice. The parameter δ is utilized to
achieve the tradeoff between image noise and spatial resolu-
tion. σ is the regularization parameter to tune the weights of
material sparsity. A larger σ enforces a fewer number of mate-
rial types within each pixel. We refer to the proposed SECT
MMD scheme as the material sparsity constrained (MSC)
method hereafter.

B. Optimization Method

We utilize an APD algorithm with a line-search scheme to
solve the problem, i.e., Eq. (9) [25]. The advantage of the APD
algorithm is the accelerated convergence rate when compared
against conventional methods including the forward-backward
method [28] and the alternating direction method of multipliers
(ADMM) algorithm [29]. This primal-dual algorithm solves
the optimization problems of the canonical form [25]:

min
x

f (z) + g (x), s.t . z = Kx, (13)

where K is a linear operator. f and g are expected to be convex
functions [25]. In medical imaging inverse problems, these
convex requirements are usually breached without ending
in catastrophic results [30]–[33]. It has been shown exper-
imentally that the primal-dual splitting method for convex
optimization is applicable in the nonconvex setting despite
missing theoretical support. In this work, we propose an
empirical algorithm to solve the non-convex problem.
To solve the image domain SECT MMD problem of Eq. (9),

we define f and g using the following equations to split Eq. (9)
into three convex functions and one non-convex function as:



f1
(−→z1 ) = 1

2

∥∥−→z1 − −→µ ∥∥2
2
, (14-1)

f2
(−→z2 ) = δ

∥∥−→z2 ∥∥1 , (14-2)

f3
(−→z3 ) = χs

(−→z3 ) , (14-3)

g (�x) = σ ‖�x‖0 , (14-4)

where −→z1 = A�x , −→z2 = ∇�x , −→z3 = �x and the linear operator K
is expressed as K = [A,∇, I]T .
The optimization algorithm is composed of outer and inner

iterations. The outer iteration updates the material image by
mapping the estimated difference to the constrained sparse
solution pool using a proximal operation. An inner iteration
performs the line-search scheme to find a sufficiently large step
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size with guaranteed convergence for the outer iteration. The
major operation of APD algorithm is to calculate the convex
conjugate of f which is referred to as f ∗ hereafter and the
proximal operators of f ∗ and g. The proximal operator of a
general function h is defined as [33]:

proxrh (�x) = argmin
�w

(
h ( �w) + 1

2r
‖ �w − �x‖22

)
, (15)

where �x is the dual variable of �w. The step size r controls the
extent to which the proximal operator maps points towards the
minimum of the function h. [34].
We apply the hard thresholding technique to solve the

proximal operator of g [35] and the projection onto hypercube
to solve the proximal operator of f ∗

2 . Moreau decomposition
scheme is performed on the conjugate operators of f ∗

1 and f ∗
3

to translate the calculation into the proximal operators of
original functions f1 and f3 [36], [37]. The proximal maps
of f1 and f3 are eventually solved using the extreme value
property of a quadratic function and projection onto simplex
operation. The details are shown in the following.
Using Eq.(15), the proximal operator of function g

(Eq. (14-4)) is written as:

proxtg (�x) = argmin
�w

(
σ ‖ �w‖0 + 1

2t
‖ �w − �x‖22

)
, (16)

where t is the step size of the proximal operator of g. Eq. (16)
is a non-convex problem due to the L0 norm. To solve Eq. (16),
we apply the hard thresholding technique as proposed in
ref. [35] to approximate the proximal map of g as:

(proxtg (�x))
i
=
{

(�x)i i f
∣∣(�x)i ∣∣ ≥ √

2σ t

0 otherwi se,
(17)

where (�x)i is the i -th element in the vectorized variable �x .
We define s as the step size of the proximal operator of f ∗,

the convex conjugate of function f . The proximal operator of
conjugate function f ∗

2 is written as:

proxs f ∗
2

(−→w2
) = argmin−→z2

(
f ∗
2

(−→z2 )+ 1

2s

∥∥−→z2 − −→w2
∥∥2
2

)
. (18)

We derive an explicit expression of f ∗
2

(−→z2 ) as:
f ∗
2

(−→z2 ) =
{
0 i f

∥∥−→z2 ∥∥∞ ≤ δ

∞ otherwi se.
(19)

The derivation detail of the f ∗
2 function can be found in

Appendix A. By plugging Eq. (19) into Eq. (18), the minimum
of Eq. (18) is reached when −→w2 = −→z2 and f ∗

2

(−→z2 ) = 0. The
final form of the proximal map of conjugate function f ∗

2 is
thus written as:

(
proxs f ∗

2

(−→w2
))

i
=


(−→w2
)
i−δ

δ

i f
∣∣(−→w2
)
i

∣∣ ≤ δ

i f
(−→w2
)
i < −δ

otherwi se
. (20)

Instead of directly solving for the proximal operators of f ∗
1

and f ∗
3 which involves the tedious calculation of conjugate

functions, we apply the Moreau decomposition scheme on
these conjugate operators to translate the calculation into the

proximal operator of original functions f1 and f3. The Moreau
decomposition is defined as [38]:

proxs f ∗ ( �w) + s × proxs−1 f

( �w
s

)
= �w. (21)

By plugging the definition of f1 (Eq.14-1) into Eq. (21),
the proximal operator of f ∗

1 using Moreau decomposition is
written as:

proxs f ∗
1

(−→w1
) =

−→w1 − s−→µ
1 + s

. (22)

Details of the derivation of the f ∗
1 proximal operator can

be found in Appendix B.
The proximal operator of f ∗

3 using Moreau decomposition
is written as:

proxs f ∗
3

(−→w3
) = −→w3 − s × proxs−1 f3

(−→w3

s

)
. (23)

Here proxs−1 f3

(−→w3
s

)
can be solved using the projection

onto a simplex scheme proposed in refs. [36], [37] as:
(
proxs−1 f3

(−→w3

s

))
i
=


(−→w3
)
i

s
− t̂

0

i f

(−→w3
)
i

s
≥ t̂

otherwi se
,

(24)

where i is the index of the i -th element in −→w3. t̂ and k are
defined as:


t̂ := 1

n − k


 n∑

j=k+1

(−→w3

s

)
( j )

− 1


 , (25-1)

k :=

p :

(−→w3

s

)
(p+1)

≥ 1

n − k


 n∑

j=p+1

(−→w3

s

)
( j )

− 1




,

(25-2)

where
(−→w3

s

)
(1)

≤ . . . ≤
(−→w3

s

)
(n)

is the permutation of
(−→w3

s

)
in an ascending order. Combining Eqs. (23), (24) and (25),
we acquire the proximal map of f ∗

3 as:(
proxs f ∗

3

(−→w3
))

i
=
{
st̂(−→w3
)
i

i f
(−→w3
)
i ≥ st̂

otherwi se
. (26)

The pseudocode of the APD algorithm is included from
Lines 22 to 44 in Table I.

C. Initial Value Estimation

Eq. (7) for the p-th pixel can be re-written as:
A0

−→xp = −→µp, s.t .
∑T0

t=1
xpt = 1, xpt ≥ 0, ∀t, (27)

where A0 = [
µ1, µ2, . . . µT0

]
is a 1 × T0 matrix and the

accurate inversion A−1
0 does not exist. We obtain the LAC

of the material basis by manually selecting a uniform region
of interest (ROI) in the CT image that contains the material
bases and calculating the mean value in the ROI as the
entry of the matrix A0 in all the stuies. This method is
verified by other researchers in medical imaging research
[1], [26], [39], [40]. We assume that each pixel is composed
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TABLE I
THE PSEUDOCODE OF THE PROPOSED METHOD

of at most two materials. Similar assumption is utilized in
refs [1], [26], [41]–[44]. Under this assumption, MMD defined
in this manuscript refers to decomposing the whole CT image
volume, rather than each pixel, into multiple material images.
The two-material assumption is expressed as:∑T0

t=1
I{xtp �=0} ≤ 2, ∀p, (28)

where I{�} denotes an indicator function which equals 1 if the
t-th material exists and 0 otherwise. The composition matrix
for a two-material candidate τ=(i, j) can be rewritten by
including the constraint (Eq. (26)) into A0 as:

A′ =
[

µi µ j

1 1

]
, (29)

where µi and µ j are the LACs of the i -th and j -th basis
materials, respectively. The two-material decomposition of the
p-th pixel can be written as:[

µi µ j

1 1

] [
xpi
x pj

]
=
[

µp

1

]
, s.t . xpi ≥ 0, xpj ≥ 0.

(30)

Eq.(30) is initially solved using the direct matrix inversion
since the determinant of A′ is not equal to zero. The MMD can
be achieved by looping over all the two-material candidates
with the total number of C2

T0
options and picking up the

optimal solution with the minimal Euclidean distance between
the LACs of the current pixel and the material bases. The
distance is calculated as:

τ ∗ = arg min
τ=(i, j )

√∥∥µp − µi
∥∥2 + ∥∥µp − µ j

∥∥2. (31)

If no direct solution to Eq.(30) exists, the optimal one is
estimated by minimizing the least-square form of Eq.(30) as:(
τ ∗, x∗

pi x
∗
pj

)
= arg min

τ=(i, j )
x pi ,x pj

∥∥∥∥
[

µi µ j

1 1

] [
xpi
x pj

]
−
[

µp

1

]∥∥∥∥
2
,

s.t .

{
xpi ≥ 0
xpj ≥ 0

. (32)

Eq. (32) can be solved using, e.g., the gradient projection
(GP) algorithm [45]. The pseudocode to calculate the initial
value is presented from Lines 1 to 24 in Table I.

D. Implementation Details

We name the proposed initial decomposition method based
on the Two-Material Assumption as the TMA method. The
proposed MSC method is combined with the TMA ini-
tial estimation to solve the non-convex objective function
(Eq. (9)).
The pseudocode of the proposed method is summarized

in Table I, where the CT images and decomposed material
images are denoted by vector signs, and the symbol: =
means assignment operation. The initial value is generated
using the proposed TMA method as shown in Lines 1-24.
In Lines 15-18 of the multiple solutions case, the optimal
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TABLE II
DATA ACQUISITION AND RECONSTRUCTION PARAMETERS

material candidate is selected by minimizing the Euclidean
distance between the current pixel and the material bases.
In Lines 19-22, if no feasible solution exists, the optimal
solution is estimated by minimizing Eq. (30). Lines 25-47 are
the proposed MSC scheme which is solved using the APD
algorithm with line-search scheme. k is the index of iteration.
The hard thresholding operation is performed in Line 33.
In the optimization, an inner iteration performs the line-search
scheme to find a sufficiently large step size with guaranteed
convergence for the outer iteration. The line-search scheme
starts from selecting a trial step size and decreasing the step
size by multiplying a factor less than one in each inner
iteration. The line-search scheme jumps out the inner iteration
when it reaches the stopping criteria of the convergence
requirement by the APD algorithm as shown in Line 44.

III. EVALUATION

A. Data Acquisition

We evaluated the proposed method using digital phan-
toms, customized water phantoms, and a set of patient data.
We design two elliptical digital phantoms composed of four
to five materials commonly observed in patient imaging to
evaluate the proposed method, and a series of round digital
phantoms composed of four materials to find the critical
relative LAC difference value such that the accurate material
decomposition can be achieved using the proposed method.
We simulate the elliptical digital phantom using the imaging

protocol of 75 kVp. The energy spectra of incident x-ray
photons are simulated using the Siemens simulator [46].
A virtual 12-mm aluminum filter is placed to harden the
x-ray beam. The round digital phatom is simulated using
110 keV. The monoenergetic protocol is simulated to avoid
the beam-hardening effect. The LACs of basis materials are
obtained from the National Institute of Standards and Tech-
nology (NIST) database [47]. The source to detector distance
(SID) and source to axis distance (SAD) are 1500 mm and
1000 mm, respectively. We generate 676 projections within
[0◦, 360◦) on the detector composed of 1024 × 768 pixels.
The standard FDK algorithm is applied to reconstruct the
volumetric data from the projections [48], [49]. In addition to
a noiseless study, we have applied additive Poisson noise in
the data measurements of the elliptical digital phantom using
1×103, 1×104 and 1×105 incident number of x-ray photons in
each detector pixel to mimic the scanning protocols from low
to high doses. The experiment details of the digital phantom
are shown in Table II.
To further evaluate the proposed method on the physical

data, we apply the water solution of iohexol (C19H26I3N3O9),
gadodiamide (C16H26GdN5O8) and calcium chloride (CaCl2)
to customize a water phantom with the IGC material
inserts. The four materials are mixed in different propor-
tions and inserted into six rods fixed in a plastic water
container of 75 mm diameter. The water phantom with IGC
inserts is scanned using the DECT protocol of our lab-built
cone-beam CT (CBCT) system as shown in Fig. 1. The CBCT
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Fig. 1. The lab-built CBCT system.

system employs a rotation stage (DMT130N, OWIS Co.,
www.owis.eu), an x-ray tube (Rad94, Varian Medical Sys-
tems, www.varian.com) of 125kVp and a flat panel detector
(1800RF, Careray Corp., cn.careray.com) with an isotropic
pixel size of 0.154 mm in two dimensions. To suppress
the scatter photons, a collimator (R-301, Dandong Keda
Instrument Co., Ltd, www.ddkdyq.com) is placed in front
of the x-ray tube to limit the z-direction coverage to be
within 10 mm. An aluminum sheet of 3 mm thickness is
placed in front of the x-ray exit window to harden the x-ray
spectrum. In addition to the hardware filtration, we apply a
two-step correction method previously developed in our group
as a preprocessing operation to further alleviate the beam
hardening artifacts [50]. This method models the nonlinear
polychromatic attenuation process of the x-ray projection by
re-projecting a template image with the estimated polychro-
matic spectrum. By adding the scaled difference between the
monochromatic and polychromatic reprojection data to the
one without correction, the raw projection data are mapping
into the corresponding monochromatic domain to achieve
the correction. The corrected projections are reconstructed to
generate a high-quality CT image using the standard FDK
algorithm [48], [49]. The experiment details of the phantom
with IGC inserts are shown in Table II.
Under the same experimental condition as the water phan-

tom with the IGC material inserts, we further apply the
water solution of iohexol and gadodiamide as the contrast
agent to customize a water phantom with the IG material
inserts. The materials are mixed in different proportions and
inserted into four test tubes fixed in a plastic water container
of 70 mm in diameter. We also customize a contrast-free water
phantom with the same geometric dimensions as the water
phantom with the IG inserts. The only difference between the
water phantom with the IG inserts and the contrast-free water
phantom is that all the four test tubes are replaced with pure
water. The phantom details are shown in Table II.
To demonstrate the clinical relevance using the proposed

method, we further perform a patient study. The data of
the patient who is scheduled for the abdominal scan in
our hospital are acquired on a SOMATOM Force scanner
(www.healthcare.siemens.com/). A contrast-free and a
contrast-enhanced scan are obtained using the standard
clinical protocol of 80 kVp and 120 kVp, respectively. The
scanning and reconstruction parameters of the patient data set
are summarized in Table II.
All the MMD operations are performed using Matlab on

a computer installed with a 4th Generation Intel®Core™i7-
5960X @ 3.00GHz with eight cores.

B. Comparison Study

A classical separate low-pass filtration method, which sup-
presses the decomposition noise using the TMA method as the
initialization [51], [52], is performed to evaluate the spatial
resolution maintaining the capability of the proposed MSC
method. The image noise standard deviation (STD) using the
low-pass filtration method is kept at the same level as that
using the proposed MSC method.
We remove the L0 norm from the proposed method and

preserve the TV regularization term. This method is named as
TV method and designed for comparison with the proposed
method to evaluate the performance of L0 norm. Additionally,
we further compare the proposed method with our previously
proposed MMD method, which enhances the decomposition
spatial resolution and decreases the decomposition noise by
utilizing the edge-preserving (EP) regularization in the decom-
position, to demonstrate the performance of L0 norm [43].

To evaluate the decomposition accuracy of the proposed
method with respect to noise fluctuation, we apply the pro-
posed MSC method on the simulated digital phantoms with
three various levels of additive Poisson noise in the measure-
ment. We apply consistent parameters in the decomposition
of the three sets of noisy digital phantom study. The TMA
method is utilized to initialize the optimization.
To evaluate the convergence and sensitivity of the proposed

method on the initial value, we multiply the initial value
generated by TMA method with a factor of zero, 50% and
70% in the noiseless digital phantom study, and zero, 50%
and 100% in the noisy four- and five- material phantom studies
with the incident number of photons of 1×104 in each detector
pixel, equivalent to a normal dose CT scan in the clinical
setting [53].
Finally, we perform a four-material digital phantom study

to investigate the impact of the TV regularization parameter
δ and L0 regularization parameter σ . We tune one parameter
while keeping the other one intact to investigate the individual
contribution. TMA initialization is applied in the studies. The
incident photon number is also set as 1×104 in each detector
pixel to mimic the normal dose.

C. Evaluation Metrics

To evaluate decomposition accuracy and decomposed image
quality of the digital phantom and water phantom, we calculate
the volume fraction accuracy and the average STD on the
decomposed images. The volume fraction accuracy (VFA) of
the decomposition is defined as [33]:

VFA = (1 − 1

T0

∑T0

t=1

∣∣x trutht − xt
∣∣

xtrutht
) × 100%, (33)

where xtrutht is the volume fraction of the ground truth for the
t-th material and xt is the mean value within a uniform ROI
for the t-th material image.
The modulation transfer function (MTF) in the water phan-

tom study is measured to investigate the decomposed image
spatial resolution using the low-pass filtration method and the
proposed MSC method [54]. The line spread function (LSF)
is calculated using the gradient of the object edge profile and
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Fig. 2. CT images of the simulated elliptical digital phantoms listed in Table II. Four-material phantoms: (a) noiseless, (b) 1 × 103, (c) 1 × 104 and
(d) 1 × 105. Five-material phantom: (e) 1 × 104 photons. Display window is [0.01 0.03] mm−1. Material composition in the selected ROIs are listed
in Table II.

is transferred to MTF using the Fourier transform. We average
the profile of adjacent boundaries to acquire the resultant MTF
with the minimal fluctuation due to image noise. The measured
frequencies at MTF magnitude decreased to 0.5 (−3dB) are
compared to evaluate the relative spatial resolution [55].
We further perform VNC imaging in the water phantom

study and patient study using the decomposed images to
demonstrate the accuracy of the proposed method. VNC
imaging is an image postprocessing technique to subtract the
contrast agent from the contrast-enhanced CT image to replace
additional and traditional non-contrast CT scan. Currently,
VNC is mostly achieved using DECT technology. In this
paper, we implement VNC using SECT to acquire the decom-
posed materials and substitute the contrast agent by the water
with the same volume fraction. The VNC image is synthesized
by the linear combination of the substituted materials at a
given pixel p and energy E as:

µV NC
p (E) = xpt1(E)µt2(E) +

∑T0
t=1
t �=t1

xpt (E)µt (E), (34)

where the t1-th material refers to the contrast agent and the
t2-th material refers to the water [56].
In the evaluation of the water phantom data, the root-mean-

square-relative error (RMSRE (%)) of the CT number are
summarized to quantify the accuracy of VNC generated using
the proposed method.
The RMSRE is calculated as:

RMSRE(%) =
√√√√ 1

T0

∑T0

t

(∣∣(µ)t − (µtruth
)
t

∣∣(
µtruth

)
t

)2
× 100%,

(35)

where (µ)t is the average CT number of the t-th material in
the VNC image and

(
µtruth

)
t is the true CT number of the

t-th material calculated in the contrast-free image. T0 denotes
the total number of decomposed materials.

IV. RESULTS

A. Digital Phantom Study

1) Noiseless Four-Material Phantom Study: The noiseless
elliptical digital phantom involving four different components
are shown in Fig. 2(a). The decomposed results are shown in
Fig. 4(a). The brightness in the decomposed image indicates
the volume fraction intensity of each basis material. The
materials are successfully decomposed regardless of the initial

value. For quantitative analysis, we calculate the means of
the volume fraction of the decomposed material images in
the selected ROIs. STDs are all zero due to the noiseless
simulation. The results are summarized in Table III. Though
initialized with different values including zero, 50% TMA
and 70% TMA, the proposed method achieves similar volume
fraction accuracy (VFA), i.e., 98.80%, 99.56% and 99.46%.
This observation indicates that the proposed method is not sus-
ceptible to the initial estimates in the noiseless four-material
elliptical digital phantom study.
We further plot out the logarithmic objective function of

the proposed method with different initializations to show the
stability in the convergence. The result is shown in Fig. 5(a).
The objective function values using the initializations of zero,
50% TMA and 70% TMA are all converged after a certain
number of iterations. The cost functions using zero and 50%
TMA present large oscillations in the convergence while that
of 70% TMA is more stable. The decomposition results
using zero initialization before and after the oscillation as
pointed by the arrow in Fig. 5(a) are shown in Fig. 5(c).
The decomposition accuracy of the muscle image after the
oscillation is significantly improved compared with that before
the oscillation, indicating that the optimization might jump out
of the local minimum after the oscillation. The logarithmic
display of the objective function reveals that solving the non-
convex L0 norm without a good initial value might be unsta-
ble. A desired initial estimate contributes to the convergence
stability in the non-convex optimization algorithm.

2) Digital Phantom Studies With Additive Poisson Noise:
The four-material and five-material elliptical digital phantoms
are shown in Figs. 2(c) and 2(e), respectively. The corre-
sponding decomposed basis material images are shown in
Figs. 4(b) and 4(c). For quantitative evaluation, we calculate
the means and STDs of the volume fraction of the decomposed
material images in the selected ROIs. The results are summa-
rized in Table III. In the four-material study, the materials
are successfully decomposed regardless of the initial value.
Though initialized with different values including zero, 50%
TMA and 100% TMA, the proposed MSC method achieves
comparable volume fraction accuracy (VFA), i.e., 97.66%,
98.47% and 98.80% as the ground truth. This observation
indicates that the proposed MSC method does not depend on
the initial estimates in the four-material digital phantom study.
In the five-material study, when the proposed method is ini-
tialized with 50% TMA and 100% TMA images, the material
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Fig. 3. The decomposed materials of (b) ioxehol solution, (c) CaCl2 solution and (d) water decomposed from (a) the CT image of the round digital
phantom #4. From #1 to #7, the LAC relative difference between iohexol solution and CaCl2 solution is 13.71%, 11.86%, 9.15%, 6.90%, 3.74%,
1.85% and 0.06%, respectively. ROI1, ROI2 and ROI3 indicate the rod of ioxehol solution, CaCl2 solution and water, individually. The display windows
for the CT image and the decomposed material are [0.014 0.022] mm−1 and [0 1], respectively.

bases are successfully decomposed. When the initialization
is zero, the iodine solution, adipose, and muscle cannot be
differentiated. The proposed MSC method initialized with 50%
TMA and 100% TMA has comparable VFA, i.e., 95.56% and
97.12% while that of zero initialization has much lower VFA.
This observation indicates that the proposed MSC method is
not susceptible to the initial value of less than 50% error
relative to the TMA in the five-material phantom study.
As shown in Fig. 4(b6) and (c4). Cross contamination

is observed in the decomposed muscle and adipose images
using the EP and TV method. While in the decomposition
result of the proposed method, the cross contamination is
significantly suppressed. In the quantitative results of Table III,
the EP, TV and proposed method all effectively suppress
the decomposition noise. The VFAs are 93.49% and 98.80%
using the EP and proposed method in the four-material study,
and 67.31% and 95.56% using the TV and proposed method
in the five-material study, respectively. The decomposition
accuracy using the proposed method with L0 norm is improved
compared with that using EP and TV methods. The above
observations show that the proposed material sparsity repre-
sented by L0 norm increases the decomposition accuracy.

We plot the objective function of the proposed method in
a logarithmic format with different initialization to observe
the algorithm’s convergence in the four-material elliptical
digital phantom study with the incident number of photons
of 1 × 104 in each detector pixel. The results are shown in
Fig. 5(b). The cost function using the initialization of zero,
50% TMA and 100% TMA are all converged after a certain

number of iterations. The cost function using zero image
shows severe oscillations in the optimization while those using
100% TMA and 50% TMA initializations are more stable.
This oscillation phenomenon of objective function reveals that
solving the non-convex L0 norm without a good initial value
may be unstable. A desired initial estimation helps with the
convergence stability of the optimization algorithm.

3) Sensitivity Study on Penalty Parameters: We perform a
four-material elliptical digital phantom study to investigate
the impact of the TV regularization parameter δ and L0
regularization parameter σ . We tune one parameter while
keeping the other one intact to investigate the individual
contribution. 100% TMA initialization is applied in all the
studies. The incident photon number is set as 1×104 to mimic
the normal dose. The CT image in the decomposition is shown
in Fig. 2(c).
The decomposed muscle images of the proposed method

using TV regularization parameter δ = 1.5×10−06, 1.5×10−08

and 1.5×10−09 are shown in Fig. 6(a). The quantitative results
are summarized in Table IV. The corresponding mean STDs
of the decomposition result are 0.0060, 0.1387 and 0.1414,
respectively. The decomposition noise increases by around
23 times with the descending of the parameter δ by three
orders of magnitude. The observation indicates that noise in
the decomposition is not sensitive to the selection of the TV
regularization parameter.
The decomposition results of the proposed method using the

L0 norm parameter σ = 0.023, 0.025 and 0.026 are shown
in Fig. 6(b). σ = 0.025 achieves the best decomposition
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TABLE III
THE MEANS AND STDS OF THE DECOMPOSED IMAGES WITHIN EACH ROI IN THE DIGITAL PHANTOM STUDY

performance. The muscle in the mixture cannot be differen-
tiated when σ = 0.023 and 0.026 as pointed by the yellow
arrow in Figs. 6(b1) and (b3). The pure muscle is incorrectly
decomposed when σ = 0.026 as pointed by the red arrow
in Fig. 6(b3). This observation indicates that decomposition
is sensitive to the L0 norm penalty parameter σ . A delicate
selection of the parameter σ is required to find a desirable
solution.

4) Sensitivity Study on Noise: To evaluate the proposed
method using various imaging doses, we generate three sets
of measurements using a different number of incident x-ray
photons in each detector pixel, including 1 × 103, 1 × 104

and 1 × 105, to mimic the scanning protocols from low to
high doses. The CT images of the elliptical digital phantom
are shown in Figs. 2(b) to 2(d) with the corresponding noise
STDs of 3.4 × 10−3, 1 × 10−3 and 3.1 × 10−4. We keep
all the parameters in the optimization, including TV and L0
norm regularization parameters, the same in the decomposition
of the three sets of data. TMA is applied to initialize the
optimization. The decomposition muscle results are shown
from Fig. 6(c1) to 6(c3). The decomposition noise increases
as the photon number decreases. When the photon number is
decreased to 1 × 103 in each detector pixel, severe noise and
cross-contamination could be observed.

5) Critical Relative LACDifferenceStudy: In the round digital
phantom #4, we keep the concentration of CaCl2 solution

unchanged and tune the concentration of iohexol fraction such
that the LAC relative difference between iohexol solution and
CaCl2 solution varies from 0.06% to 13.71%. In the seven
round digital phantoms labeled from #1 to #7, the LAC relative
difference between iohexol solution and CaCl2 solution in each
phantom is 13.71%, 11.86%, 9.15%, 6.90%, 3.74%, 1.85%
and 0.06%, respectively. The reconstructed digital phantom is
shown in Fig. 3(a).
The decomposition results using our proposed method are

shown in Figs. 3(b), (c) and (d). In the 5th and 6th columns
of Fig. 3 (corresponding to 3.74% and 1.85% relative LAC
difference), the iohexol solution is incorrectly decomposed
to the CaCl2 images as pointed by the red arrow. In the
7th column of Fig. 3 (corresponding to 0.06% relative LAC
difference), the CaCl2 material is incorrectly decomposed to
the iohexol image as pointed by the yellow arrow. These
observations indicate that the materials with close LAC cannot
be differentiated.
To find the critical relative LAC difference value such that

the accurate material decomposition can be achieved using the
proposed method, we calculate the VFA of the decomposition
result from the 1st to the 7th columns of Fig. 3 and plot
the fitting curve between VFA and relative LAC difference
in the digital phantom study. The VFA versus relative LAC
difference is fitted using smoothing spline curve with the
fitting sum of squares error (SSE) of 8.5×10−4 and R-square
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Fig. 4. The decomposed material images. (a) Noiseless four-material
digital phantom study. Noisy digital phantom studies (# of photons =
1 × 104): (b) four materials and (c) five materials. (a1), (a3) and a(5),
b(1), b(3) and b(5), c(1), c(3) and c(6) are the initialization images in the
noiseless study and noisy studies, respectively. a(2), a(4) and a(7), b(2),
b(4) and b(7), and c(2), c(5) and c(7) are the corresponding material
images using the proposed MSC in the noiseless and noisy studies.
b(6) and c(4) are the material images using EP method and TV method,
respectively. The display window is set as [0 1] for all.

of 0.9968. The fitted result is shown in Fig. 7. When the
relative LAC difference is 7.1%, the VFA is equal to 95%.
The VFA drops rapidly when the relative LAC difference is
less than 7.1% and maintains a high level when more than
7.1%. We conclude that the critical relative LAC difference
value to achieve accurate material decomposition using the
proposed method is 7.1% in the round digital phantom study.

B. Water Phantom Study

1) Water Phantom With IGC Inserts: The CT image of the
water phantom is shown in Fig. 8. The decomposed basis
material images are shown in Fig. 9. The proposed TMA
method initially decomposes the CT image into five material
images. On the basis of the TMA method, the proposed
MSC scheme further suppresses the decomposition noise while
maintaining the material boundary.

For quantitative analysis, ROIs in Fig. 8 are selected to
calculate the decomposed material volume fraction and STD.
The results are summarized in Table V. The proposed MSC
method achieves a high decomposition accuracy with a VFA
of 97.73%. Additionally, all the mixture regions including

Fig. 5. The logarithmic values of the objective function using the
proposed method with different initializations in: (a) noiseless four-
material elliptical digital study, and (b) noisy four-material elliptical digital
study (number of photons= 1×104). (c) shows the decomposedmaterial
images before and after the oscillation pointed by the arrow in (a).

Fig. 6. The decomposed muscle images of the four-material elliptical
digital phantom using various penalty parameters and incident number
of photons. (a) TV penalty parameter δ = (1) 1.5×10−06, (2) 1.5×10−08

and (3) 1.5×10−09. (b) L0 penalty parameter σ= (1) 0.023, (2) 0.025 and
(3) 0.026. (c) Different incident number of photons: (1) 1×103, (2) 1×104

and (3) 1 × 105. The display windows are set as [0 1] for all.

ROI5, ROI6 and ROI7 are successfully decomposed, which
shows the mixture decomposition capability of the proposed
MSC method.

The average STD using MSC method is decreased by
67.45% compared with its counterparts using the TMA
method. The VFA is accordingly increased by 2.94%.
The comparison indicates better noise suppression using the
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Fig. 7. The fitting curve f VFA versus relative LAC difference in the digital
phantom study.

Fig. 8. DECT images of the water phantom with IGC inserts scanned
on the lab-built CBCT system using the protocols of 125 kVp and 60 mA.
The display window is [0.010 0.040] mm−1.

Fig. 9. The decomposition results from top row to bottom row using the
methods of TMA (the 1st row), low-pass filtration (the 2nd row) and MSC
using 125 kVp (the 3rd row). The material type from left to right is iohexol
(the 1st column), gadodiamide (the 2nd column), calcium chloride (the
3rd column), water (the 4th column) and air (the 5th column). The display
windows are on the bottom right of each column.

TABLE IV
THE MEANS AND STDS OF DECOMPOSED IMAGES WITHIN EACH ROI
IN THE FOUR-MATERIAL PHANTOM STUDY (# OF PHOTONS = 1 × 104)

TV norm and higher decomposition accuracy using the L0
norm.

TABLE V
THE MEANS AND NOISE STDS OF THE VOLUME FRACTION WITHIN

THE ROIS OF THE WATER PHANTOM WITH IGC INSERTS

Fig. 10. MTF curves measured on the bone and muscle.

The typical MTFs of iohexol solution and gadodiamide
solution using the low-pass filtration and MSC methods are
calculated and plotted in Fig. 10. The spatial resolution using
the proposed MSC method is increased by an overall factor
of 1.56 at the MTF magnitude decreased to 50% compared
with that using the low-pass filtration method.

2) Water PhantomWith IG Inserts: The CT images of water
phantom with the IG inserts and the contrast-free pure water
phantom are shown in Figs. 11(a) and (b). The decom-
posed material images are shown in the 2nd row in Fig. 11.
By applying Eq. (35), we acquire the VNC image as shown in
Fig. 11(c). We plot the 1-D drawing of CT image of contrast-
enhanced, contrast-free and VNC image of the customized
water phantom as shown in Fig. 12. The VNC image using the
proposed method is faithfully consistent with the contrast-free
CT image (i.e., the ground-truth image). We achieve the
RMSRE of 0.23% compared with the ground truth. The above
observations show the high decomposition accuracy of the
proposed method.

In Fig. 11(d), the CT number difference between the
contrast-free image and VNC image is mainly concentrated
around the boundary of the plastic water container and test
tube. The reason is that the material edge is composed of
pixels with LAC between water and test tube and the proposed
method decomposes these pixels into water incorrectly.

C. Patient Study

The CT images of the abdominal slice are shown in Fig. 13.
We select the ROIs of the blood vessel (the rectangle areas
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Fig. 11. The first row is the CT image of (a) contrast-enhanced,
(b) contrast-free and (c) VNC of the customized water phantom. Display
windows of (a), (b) and (c) are [0.015 0.025] mm−1. (d) is the difference
image between the contrast-free (b) and VNC (c) images and the display
window is [0 0.004] mm−1. The second row is the decomposed material
of ioxehol solution, gadodiamide solution, water and test tube using the
proposed method. Display windows are [0 1] for all the subfigures.

Fig. 12. The 1-D plot of CT image of contrast-enhanced, contrast-free
and VNC image of the customized water phantom.

Fig. 13. The CT images of (a) ground-truth contrast-free phase,
(b) contrast-enhanced phase and (c) VNC. The top and the bottom rows
show the CT images of abdominal slice #1 and #2 of the patient. The
display window is [0 650] HU for all.

as shown in Fig. 13) to perform the material decomposition
on the contrast-enhanced CT image (Fig. 13(b)). By applying
Eq. (35), we acquire the VNC image as shown in Fig. 13(c).
The blood vessel areas are enlarged in the zoom-in display.
In the contras-enhanced image, we cannot determine the
calcification and its area. The calcification area can be clearly
visualized in the VNC image. The calcification area in the
VNC image has a similar shape to that in the ground-truth
contrast-free CT image. The above observation shows that
the proposed method successfully removes the contrast agent
from the contrast-enhanced images to better visualize the
calcification.

As pointed by the arrow in Fig. 13, the calcification area
boundary in the VNC image is not strictly consistent to
that in the ground-truth contrast-free CT image. The reasons
are mainly two-fold. First of all, as the time lag of a few
seconds exists between the contrast-free and contrast-enhanced
phases, the anatomy within the two phases are not completely
consistent due to the organ motion in the scanning time inter-
val. Secondly, the material boundary is composed of pixels
with LAC between the calcification and contrast agent. The
proposed method may decompose these pixels into contrast
agent material incorrectly.

V. DISCUSSION

We propose an image-domain MMD method for SECT
using material sparsity constraint. The objective function con-
tains a least-square data fidelity term and three regularization
terms. The first regularization term is the TV norm which is
applied according to the piece-wise constant property of the
decomposed material image. The second regularization term is
the L0 norm of the material image to meet the material sparsity
constraint within the human body. The third regularization
term is a characteristic function designed to satisfy the sum-
to-one and box constraints of the decomposition. The above
problem is non-convex due to the introduction of L0 norm.
We applied the APD algorithm with a line-search scheme to
solve the problem. To obtain a good initial estimation of the
non-convex problem, we apply matrix inversion assisted by
the assumption that each pixel contains at most two material
and perform the decomposition pixel by pixel.

The innovation of this work is mainly two-fold. Firstly,
we introduce the concept of material sparsity into the decom-
position to enhance the decomposition accuracy. Achieving
MMD from single energy CT is an ill-posed problem since
multiple unknowns need to be estimated from one set of mea-
surements. Desired results cannot be achieved if no additional
information is added. We apply material sparsity constraint
into the decomposition and select L0 norm as an embodiment
of material sparsity due to its definition of counting the
number of non-zero elements in one vector. Prior to this work,
most MMD methods focus on suppressing the decomposition
noise or increasing the decomposition spatial resolution in
MMD [33], [43], [44]. Nevertheless, the decomposition accu-
racy is not increased in these methods since no additional
information is added to solve the ill-posed MMD. By intro-
ducing the material sparsity into the MMD, we enhance the
decomposition accuracy significantly according to our result
in the phantom and patient studies.

Secondly, we achieve accurate multi-material decomposition
using SECT as an alternative to the clinical application where
DECT or spectral CT is not readily available. Before working
on our SECT project, we have performed a careful literature
review on the topic of material decomposition using SECT and
found that the most related papers all perform two-material
decomposition using SECT [31], [32]. In clinical applica-
tions, more than two-material images are usually required.
For instance, liver-fat quantification requires a four-material
differentiation: liver tissue, blood, fat, and contrast agent
[15], [17]. The proposed method, which achieves more than
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two material decomposition using SECT image, is thus attrac-
tive in clinical practice. We have applied the proposed method
on the virtual non-contrast imaging to demonstrate its clinical
relevance. The calcification area can be clearly visualized
in the virtual non-contrast image generated by the proposed
method, and has a similar shape to that in the ground-truth
contrast-free CT image. The proposed method is thus feasible
and promising in clinical applications.

Although the proposed method has achieved promising
results, there are several aspects for future improvement. In the
current algorithm, the proposed method is evaluated using the
digital phantom, the water phantoms, and patient VNC data.
In further clinical application, complicated tissue composition
is an obstacle to the choice of material bases. We will apply
the material dictionary concept proposed in refs. [3], [4] to
include the major basis materials and develop an automatic
scheme to select the material bases in future patient studies.

According to the nonconvex property of L0 norm, there is
a potential risk that the proposed method might stuck near
the initial if the initial value is far from the optimal. We have
evaluated the potential risk using three distinct levels of initial
values (zero, 50% TMA, and 100% TMA) in the four- and
five-material digital phantom studies. It turns out that the local
minimum trap risk only occurs when zero value is applied in
the five-material phantom study. The ill-posed characteristic
of L0 regularization might increase the risk of local minimum
with the increment of the number of material bases, since more
unknowns are needed to be estimated from one set of mea-
surements. We will focus on the investigation of two schemes
to mitigate the local minimum risk using L0 optimization.
The first one is to find a substitution of L0 norm, includ-
ing the relaxed approximation model [57], [58], fractional
norm [59]–[61] and learning-based schemes [62], [63] which
are shown to be effective in general signal processing [57],
[58], [62], [63]. The other scheme is to provide desired initial
values by integrating additional prior information, includ-
ing the predetermined material composition according to the
physician’s delineation, into the initial estimation [53].

We would point out that, SECT cannot replace the clinical
applications of DECT. For instance, SECT cannot distinguish
the materials of very close or even equal LACs in specific
energy in image domain. In the round digital phantom
study, we find that the critical relative LAC difference
value to achieve accurate material decomposition using
the proposed method is 7.1%. Therefore, the proposed
image-domain method using SECT is complementary to the
clinical application and environment where DECT technique
is not readily available. In our further study, we will extend
the proposed image-domain MMD method to line integral
to tackle for the above issue of failing to differentiate the
materials with very close or equal LACs in specific energy
spectrum since it has been demonstrated that the effective
beam energy of each ray in the measured line integral can
be used to differentiate the materials with different elemental
compositions represented by the same CT number [64].

In our current implementation, within each voxel, a max-
imum of two material composition is assumed due to the
physics constrains of data measurement and volume or mass

conservation. When the number of material bases is more
than two within one voxel or rod, a taken-one-out iterative
scheme might be developed. Supposing that N materials exist
within one voxel. We can select one arbitrary base material
and consider the other (N-1) mixture as one pseudo base
material. The current two-material decomposition scheme can
be applied to separate the one from (N-1) base materials.
The same scheme repeats until all the N base materials are
decomposed.

TV regularization is currently selected as one embodi-
ment of noise suppression schemes in this work since our
intention is to design the L0 norm regularization to enforce
the material sparsity constraint and decomposition accuracy
in the MMD for SECT. Nevertheless, the piecewise con-
stant property using TV regularization in the phantom study
may not hold in more sophisticated patient evaluation since
the phantom image contains little textures, making noise
reduction more readily achievable without loss of texture.
In our future study, we will apply advanced noise suppression
schemes, e.g., BM3D (block-matching 3D Transform [65])
and learning-based methods [66]–[68], to the patient data to
achieve delicate texture maintenance. We will also perform
intensive comparison study on the performance of TV norm
and other delicate texture maintenance schemes in clinical
applications.

The MSC method is implemented in the image domain
which is advantageous and more practical for clinics than
DECT. However, the image domain method is prone the
beam-hardening issues and the decomposition accuracy may
be decreased. Future studies will extend the proposed method
into the projection domain to construct a non-linear inver-
sion model to reconstruct basis materials directly from the
projection data and to reduce the beam-hardening artifacts
simultaneously [24], [26]. In addition, scatter artifacts are
commonly observed in CT images, especially in CBCT since
the scatter photons increases with the enlarged illumination.
The scatter artifacts contaminate the CT images and lead to
incorrect decomposition. We presently narrow the collimation
between the x-ray source and the object to limit the cone angle
to reduce the scatter photons. We will further apply effective
scatter correction schemes to decrease the scatter artifacts in
the future [69], [70].

VI. CONCLUSION

In this paper, we propose an image-domain MMD method
for SECT which integrate the material sparsity, represented
by the L0 norm regularization on the volume fraction, into
the material decomposition model to achieve accurate multi-
material decomposition using SECT as an alternative tech-
nique to the clinical application where DECT or spectral CT is
not readily available. The proposed method is validated using
the phantom and patient studies. Compared with the TMA
method, the proposed MSC method increases the VFA by
7.1% and decreases the noise STD by 85.1% in the phantom
study. In the patient study, the calcification area can be clearly
visualized in the virtual non-contrast image generated by the
proposed method, and has a similar shape to that in the
ground-truth contrast-free CT image. The high decomposition
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quality using the proposed method substantially facilitates the
SECT-based MMD clinical applications.

APPENDIX

A. Conjugate of Function f2
The conjugate of a function h is defined as:

h∗ (�x) = sup
�w (〈�x, �w〉 − h ( �w)) , (36)

where 〈�,�〉 denotes the inner product, sup indicates the
supremum. The conjugate of f2 = δ

∥∥−→z2
∥∥

1 can be written
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Therefore, the conjugate of f2 is written as:
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B. Proximal Map of Conjugate Function f∗1
Using Moreau decomposition in Eq. (21), the proximal map

of f ∗
1 can be written as:

proxs f ∗
1
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By plugging the definition of f1 (Eq. (14-1)) into the
proximal operator of f1, we write proxs−1 f1
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By plugging Eq. (42) into Eq. (41), we acquire the proximal
map of f ∗

1 as:

proxs f ∗
1

(−→w1
) =

−→w1 − s−→µ
1 + s

(43)
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