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Abstract

The Alperin-McKay conjecture relates height zero characters of an ¢-block with the ones of
its Brauer correspondent. This conjecture has been reduced to the so-called inductive Alperin—
McKay conditions about quasi-simple groups by the third author. The validity of those con-
ditions is still open for groups of Lie type. The present paper describes characters of height
zero in £-blocks of groups of Lie type over a field with ¢ elements when ¢ divides ¢ — 1. We
also give information about ¢-blocks and Brauer correspondents. As an application we show
that quasi-simple groups of type C over I, satisfy the inductive Alperin-McKay conditions for
primes ¢ > 5 and dividing ¢ — 1. Some methods to that end are adapted from [MS16].
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1 Introduction

The well-known McKay conjecture from 1972 posits that for a finite group G and a prime ¢ dividing
|G|, there should be a bijection between the irreducible characters of degree prime to ¢ of G and
those of Ng(P) for a Sylow ¢-subgroup P of G. The blockwise version of the McKay conjecture,
known as the Alperin—McKay Conjecture, states that the number of height-zero characters of an
£-block B of G with defect group D should be the same as the number of height-zero characters of
the Brauer correspondent of B in Ng(D).

Reduction theorems for the McKay and Alperin-McKay conjectures are proven in [IMNO07] and
[Spél3], respectively. In particular, in each case it is shown that to prove the conjecture, it suffices
to prove certain “inductive” conditions for all finite non-abelian simple groups. From [Sp&l3]
and [Denl4], we know that the alternating groups satisfy the inductive Alperin-McKay conditions
and that the simple groups of Lie type satisfy the inductive Alperin—-McKay conditions when £ is



the defining characteristic. The situation that a simple group has abelian Sylow ¢-subgroups was
considered in [Mall4], and certain low-rank cases have been settled in [Mall4, SF14]. Further,
[CS15, BS19] consider the case of groups of Lie type A.

In the present paper, we describe the height-zero characters in blocks of finite groups of Lie
type and of an appropriate subgroup containing the normalizer of a defect group for certain good
primes. We prove sufficient conditions for a group of Lie type G in this situation to satisfy the
inductive Alperin—-McKay conditions and, as an application, further prove that if G is of type C,
then these conditions hold. That is, we prove:

Theorem 1.1. The simple groups PSpay(q) with q odd and n > 2 satisfy the inductive Alperin—
McKay conditions from [Spil3, 7.3] for primes £ > 5 dividing g — 1.

Section 2 deals with height zero characters in ¢-blocks of groups of Lie type over F, when ¢
divides g—1. Then Section 3 gives a streamlined version of the inductive Alperin—-McKay conditions
in that case, see Proposition 3.2. Section 4 uses some methods from [MS16] and the description of
normalizers of split Levi subgroups to check those conditions in the case of finite symplectic groups.

1.1 Notation for characters and blocks

Given finite groups H < G, we write Irr(G) for the set of irreducible (complex) characters of G,
Irr(G | @) for the set of irreducible constituents of ¢ := Ind¥ (p) when ¢ € Irr(H), and Irr(H | x)
for the set of irreducible constituents of x|g := Res%(x) for x € Irr(G). More generally, for any
subset X C Irr(H) we write Irr(G | X) 1= UpexIrr(G | ¢).

Let ¢ be a prime number. Given a defect (-subgroup D of G, we write Irr(G | D) and Irro(G | D)
for the set of irreducible characters lying in an ¢-block with defect group D and the set of those
characters with height 0 within their block, respectively. We denote by Bl(G) the set of ¢-blocks
of G and whenever x € Irr(G), we write bg(x) for the block of G containing x. We will write G,
respectively G, for the stabilizer in a group G of a character x, respectively block B, of some
normal subgroup. For a block B € BI(G), we often denote by D(B) a fixed defect group for B.
For b a block of some subgroup of G, we denote by b” the corresponding Brauer induced block of
G when defined (see [Nav98, p. 87]).

For any integer n, we write ny for the largest power of ¢ dividing n. Further, for an abelian
group H, we write Hy for the Sylow ¢-subgroup of H.

Finally, for H <« G, the following definition will be useful.

Definition 1.2. Let H < G and let I be a subset of Irr(H). An extension map with respect to
H < G for1 is any map
A:T— H Irr(G")
G’ H1G'<G

associating to each ¢ € I an extension A(yp) of ¢ in Irr(Gy,).

2 Constructing the Bijection

The inductive Alperin-McKay conditions from [Spal3] require a bijection between height-zero
characters having certain properties. In the present section, we introduce the finite groups of Lie
type and we describe a bijection of characters for certain primes ¢ (see Corollary 2.13).



The Framework and More Notation

We refer to [DM91] for characters of finite groups of Lie type. Throughout this section, we let
G = G! be a group of Lie type, where G is a connected reductive algebraic group defined over a
finite field I, of positive characteristic p and F'is the Frobenius endomorphism on G corresponding
to this F-structure. Further let (G*, F*) be dual to (G, F) and let G* := G*I"".

We write £(G,s) for the rational Lusztig series corresponding to the conjugacy class of the
semisimple element s € G* (see [DM91, 14.41]). The set £(G, s) depends only on the conjugacy
class of s in G* and Irr(G) is the disjoint union of the various sets £(G, s). Let ¢ be a prime not
dividing ¢. If s is a semisimple ¢'-element, then we write (G, s) for the union of series of the form
E(G, st), where the union ranges over f-elements ¢t € Cg+(s). By Broué-Michel’s theorem [CE04,
9.12(1)], £(G, s) is also a union of ¢-blocks. We will write £(G, ') for the union U;E(G, s) where s
ranges over semisimple #'-elements of G*.

Now, we let L be a fixed split Levi subgroup of G (i.e. L is F-stable and the Levi complement
of some F-stable parabolic subgroup) and L := L* the corresponding Levi subgroup of G. We fix a
character A € Irreysp (L), where Irreysp(L) is the set of irreducible cuspidal characters of L, so that
(L, \) is a cuspidal pair (see [DM91, Ch. 6]). Further, assume that A € (L, ).

Assume ¢ divides ¢g—1 and let b := by, () denote the ¢-block of L containing A, which by the main
results of [CE99, KM15] often (and in particular in the situations considered here) parametrizes a
block B := bg(L, ) of G. A defining property (see [CE99, 4.1(a)]) is that B = bg(L, \) contains
the constituents of R¥()), where RY denotes here Harish-Chandra induction (see [DM91, 4.6(iii),
6.1]). Further, we have B = b“ (see Proposition 2.1 below). N

Let N := Ng(L)¥ be the fixed points under F of the normalizer of L in G and let b be a block
of N lying above b.

For a cuspidal pair (L,), the irreducible constituents of Rg(z/z) are in bijection with the
irreducible characters of W (%) := Ny /L, and we will write the constituent corresponding to 7 €
Irr(W ()) as R (), € Irr(G), as in [MS16, 4.D].

2.1 First Steps: The Global Side

Before we state the following proposition, we recall that a prime ¢ is called good for a simple
reductive group if £ satisfies: no condition for type A; ¢ > 3 for types B, C, and D; £ > 7 for type
Eg; and ¢ > 5 for the remaining types (see [CE04, Section 13.2]). More generally, ¢ is good for a
reductive group G if it is good for all simple components of G.

Proposition 2.1. Let G = G be a finite group of type as in the previous section, with F defining
G over a field with q elements. Let ¢ be a prime good for G and dividing ¢ —1. Let v € Irr(L) (not
necessarily cuspidal) for L := LY with L a split Levi subgroup of G. Assume (1 [Z(G)F : Z°(G)F].
Then L = Cg(Z(L)s) and

RS (¥) € ZIrr(b°)
where b is the £-block of 1 in L.

Proof. The first equality comes from [CE99, 3.2]. We now check the second statement.

First, note that it suffices to show that all constituents of Rf(w) lie in the same block B, using
[Nav08, 6.4] for example, since RY (¢) is the induction of the inflation of 1) and hence we must have
b = B.

If ¢p € E(L, V'), then the statement follows from [CE99, 2.5]. So assume 1) & E(L,¢') and let
b be a block of L with Irr(b) C &(L, s) for some semisimple ¢'-element s of L*. By a theorem of



Geck-Hiss [CE04, 14.4], we know d'&(L, s) forms a basic set for £(L, s), where d' is the function
that restricts a class function to #-elements. (Note here that £ is good for L and £ 1 [Z(L) : Z°(L)¥]
by [CE99, 3.3].) In particular, d'1) is an integral linear combination of members of d*&(L, ).

Note that d' and R% commute, see [DM91, 7.5]. Further, the constituents of Rf(w) lie in the
same block if and only if the same is true for d*R¥ (¢)) = RY (d'1)), since this is a sum of Brauer
characters in the same blocks as the constituents of RY (1).

Let ¢ € £(L, ') such that d'¢ appears in the decomposition of d'¢. (Indeed, such a character
exists because E(L, ') is a basic set for £(L, s).) The character ¢ must be in the same block b as v,
and we have R (¢) C ZIrr(b%) from above. Then the irreducible constituents of R¥(d'¢) = d' R¥(¢)
must lie in the block b as well. Since this is true for every such ¢, it is also true for R (d'4), and
hence we must have R (y) C ZIrr(b%). O

The following can be seen from [CE99, 4.1], by considering the case G = L and e = 1.

Lemma 2.2. Let L be a split Levi subgroup of a reductive algebraic group G and let A be a cuspidal
character of L := LY. Let £ > 5 be a good prime for G dividing ¢ — 1. Suppose A\ € E(L,¢') and let
b be the (-block of L containing \. Then X is the unique member of Irr(b) NE(L, ). If (L', N') is
another cuspidal pair such that X' € E(L',0") and bg(L,\) = bg(L', N), then (L, \) is G-conjugate
to (L', \N).

We remark that using [KM15, Theorems A and B], the result of Lemma 2.2 also holds in the
case £ > 3 is a good prime for G dividing ¢ — 1 when G is an F-stable Levi subgroup of a simple,
simply-connected algebraic group H with an [F -rational structure endowed by F'. In fact, using
[KM15], we see that our main results hold in this context, which was pointed out to us by G. Malle
after submission.

2.2 First Steps: The Local Side

For the remainder of the section, we will be interested in the situation that L = Cg(Z(L)s). We
begin by recording two useful consequences of this assumption.

Lemma 2.3. Assume that L = Cg(Z(L),) and let ¢ € BI(L) with defect group D := D(c). Then
(a) Ca(D) < Cg(Z(L)y) = L

(b) If N' is a subgroup of N = Ng(L)¥ containing L, then V' is defined and is the unique £-block
of N’ covering c.

Proof. The first point comes from the fact that D contains any normal /-subgroup of L (see [Nav98,
Theorem 4.8]). For the second point, let ¢ € BI(N’|¢) be a block of N’ covering ¢. Then we may
find a defect group D(c’) for ¢’ such that D < D(¢’). Using (a) we know Cy/(D(¢')) < Cn(D(c)) <
Cn(D) < L. Then by [Nav9g, 9.20], it follows that ¢’ is regular with respect to N’, and hence N
is defined and ¢ = ¢’ by [Nav98, 9.19]. O

We continue with (L, A) as in the situation of Lemma 2.2. Recall our notation B := bg(L,\)
and b := by () with A € (L, ¢'). Further, recall that we let b € BI(IV | b), and hence b is the unique
¢-block of N above b, by Lemma 2.3(b).

Lemma 2.4. Let ¢ be a prime dividing ¢ — 1 and not dividing [Z(G)F : Z°(G)¥], such that £ > 5
and further £ > 7 if G has a component of type Es. Let D := D(B). Then the group N = Ng(L)¥
contains Ng (D) and is Aut([G, G]) p,p-stable.



Proof. We know from [CE99, Lemma 4.16 and Section 5.2] that D has a unique maximal abelian
normal subgroup, Z, such that Ng(Cg(Z)) < N and that the extension 1 - 2 — D — D/Z — 1
is split. Hence Ng(D) < Ng(Z) < Ng(Cg(Z)) < N. The second statement follows from arguing
as in the fifth paragraph of the proof of [BS19, 5.1]. ]

Lemma 2.5. Keep the assumptions of Lemma 2.4. The defect groups may be chosen so that
D(b) = D(B).

Proof. From Lemma 2.3(b) and Proposition 2.1, we have b= bV and B = b¢ = 50, Then by
[Nav98, 4.13], we may choose the defect groups such that D(b) < D(b) < D(B), so Cg(D(b)) <
Cg(D(b)) < L < N by Lemma 2.3(a). Then b is admissible, and by [Nav98, 9.24] and Lemma 2.4,

D(b) = D(B)N N = D(B). O

We will write Irreusp(L) and Irreysp(b) for the set of irreducible cuspidal characters of L and

in the ¢-block b, respectively. By [Gec93] and [Lus84, 8.6] there exists an extension map 1 — "
in the sense of Definition 1.2 with respect to L <t N for Irrcysp(L). The next lemma describes the

members of Irr(b).

Lemma 2.6. Keep the assumptions of Lemma 2.4. Then
Ire(b) = {Ind, (4n) | ¥ € Ireusp(b); 0 € Trr(Ny/L)}.

Proof. Since 1 € Irr(Ny) is an extension of ¢, a special case of Clifford theory [Isa06, 6.17] implies
that the characters of the form n, where n ranges through all members of Irr(N,/L), are all

of the characters of N, above 1. Clifford correspondence [Isa06, 6.11] then implies Ind%w (vm)
is irreducible for € Irr(Ny/L) and that the set Irr(/N[y) is comprised of the characters of this

form. Then since b = b" is the unique block of N above b by Lemma 2.3(b), we see {Ind%w () |

Y € Irreusp(b),n € Irr(INy/L)} is a subset of Irr(b). Here for each ¢ € Irreysp(b), we have fixed an

extension v of ¥ to Ny,.

Conversely, if ¢ € Irr(g), then the constituents of ResY ¢ lie in N-conjugates of b, and hence
Res? ¢ must contain 9 as a constituent for some ¢ € Irr(b) and g € N. But this means that Res® ¢
also contains 1) as a constituent. Let (M, u) be the cuspidal pair labeling the Harish-Chandra
series of L containing . Then note that by ()¢ = b“ by Proposition 2.1 and the transitivity
of Harish-Chandra induction. Further, applying [CE99, 4.1] and Proposition 2.1 to bps(u), we see
that by (p) = R%l(le (1)) for some cuspidal pair (M, u1) of M such that uy € E(My,¢"). But
then again by transitivity of Harish-Chandra induction, we have bg (L, \) = bg(M7, pi1), and hence
(L, M) is G-conjugate to (My, pt1), by Lemma 2.2. Then L = M and 9 € Irreusp(L), completing the
proof. O

2.3 Height-Zero Characters and the Map ()

Keep the notation and assumptions from the previous section, and let Irr(B, L) denote the subset
of Irr(B) comprised of characters of the form R%(¢), for ¥ € Irteusp(b) and n € Irr(W (1)), where

W) := Ny/L. Recall that for each ¢ € Irreusp(b), we have fixed an extension 1 of ¥ to Ny.
Recall that b is the unique ¢-block of N above b.

Definition 2.7. Let Q: Irr(B, L) — Irr(b) be defined via

QRE(0),) = nd, () 1)
for each 1 € Irreysp(b) and n € Irr(W(v))) (see Lemma 2.6).



In this section, we aim to show that € induces a bijection Q: Irrg(B) — Irrg(b), where we
write Irrg(c) for the set of height-zero characters of a block c. Recall that for a finite group H
and ¢ € BI(H), a character x in Irr(c) satisfies x € Irrp(c) if and only if x(1), = |H|¢/|D(c)]-
That is, the f-part of x(1) is as small as possible. Let x € Irrg(B) and write x = Rf(w)n, SO

The next lemma describes Irrg(b).

Lemma 2.8. Let ¢ € Irreysp(b) and n € Irr(W(¢)). Then Ind%w (n) € Irro(b) if and only if all of
the following hold:

o € Irrg(b);
e N(l)y=1; and
® [Nb . N¢]g =1.

Proof. Let x' denote the character Ind% g (”LZT]) and write 7 for the irreducible character 7 :=

Ind%l (1;77) of Ny, so that Ind%bT = x'. Write by, and by, for the blocks of QZ and T, respec-
tively, which are the unique blocks of Ny and Ny, respectively, above b by Lemma 2.3(b). By
[Nav98, 6.2], we have by, = (wa)Nb and b = (wa)N = (by,). By [Nav98, 9.14], the defect groups
of by, and b are the same and the height of 7 is the same as the height of x’. So X’ is of height zero
if and only if 7 is, and hence it suffices to show that 7 is of height zero if and only if the claimed

conditions hold.
Now, by [Nav98, 9.17], Lemma 2.3(b) implies that

ID(®)| = [D(bw,)| = D®)]- [Ny : L]y and  [D(bw,,)| = [D()] - [Ny : L,

SO
[D(bny)| = [D(bw, )| - [No = Ny
Then 7 has height zero if and only if 7(1), = [Ny : D(bn,)]e = % = [L: D(b)]s. But
this happens if and only if
n(1)e- Q)¢+ [Ny : NyJe = [L : D(b)]e.

Hence, we immediately see that if the stated conditions hold, then 7 has height zero. Now assume
conversely that 7 has height zero. Then

[Nyle
|D(bn, )| - [Ny : Nyle

()¢ -n(1)e = [Ny : D(bn,)]e = < [Ny : D(bn,)]e-

But Jn € Irr(by,,) implies (1) - n(1)e > [Ny : D(bn,)]e, so it must be that 1;17 € Irro(bn,,) and
[Ny : Nyl¢ = 1. Then since V(1) - (D) > (1), > [Ny : D(bn,)]e, we also have ¢ is of height
zero and (1), = 1. Finally, [Nav98, 9.18] now implies that ¢ € Irrg(b) by applying Lemma 2.3(b)
again. O

Next we describe the height-zero characters in Irr(B,L). The following lemma generalizes
the statements in [Mal07, Section 7] for ¢'-characters to the case of height-zero characters in our
situation.



Lemma 2.9. Assume the conditions on € from Lemma 2.4. Let ¢ € Irreysp(b) and n € Irr(W(4)).
Then the character x = Rg(w)n € Irr(B, L) has height zero if and only if all of the following hold:

o ) €Irrg(b);
e n(l)y=1; and
® [Nb : N¢]g =1.

Proof. By [MS16, (7.2)] or [Mal07, 4.2], we have

x(1) =[G = Ly Dy(9)(1)

where D, is a rational function of X with numerator and denominator prime to X —1 and D, (1) =
n(1)/|W(¢)|. Further, by [Mal07, 6.3], Dy(q)/Dy(1) is a rational number with numerator and
denominator prime to ¢ and satisfying D, (q)/D,(1) =1 mod ¢. Hence we have

X(We =[G : Llg-n(L)e-(L)e/IW W)l =[G : Ll - n(L)e - ¥(1)e/ [Ny : Lle = [G : Nyle - (1) - (1)e-

Now, applying Lemma 2.5, we see x has height zero if and only if x(1), = [G : D(B)], = [G :
D(b)]e, if and only if N

(G : Nyle-n(1)e-(1)e =[G : D(b)]e.

But this occurs if and only if

[Nyle —_ [L:D()]e
IDO)|[No: Lle [Ny : Nyle

n(1)e - $(1)e = [Ny : D(b)]¢ =

Here the second equality holds by the proof of Lemma 2.8.

Hence we see that if the stated conditions hold, then x has height zero. Conversely, suppose
that x has height zero. Then we must have 1(1), = 1, since x(1); > x'(1);, where ' = R% ()
which lies in the same block by Proposition 2.1. Then we have

Lw (y)s

[L: D(b)le
L:Db)]e<y(l), = < [L: D(b)ls,
L+ DO < 6(1)y = A < (L2 DO
implying equality throughout, so ¢ € Irrg(b) and [Ny : NyJe = 1. O

Next, we aim to show that Irrg(B) is exactly the set of height-zero characters in Irr(B, L). The
following result is key in this direction.

Proposition 2.10. Keep (L, \) as in Lemma 2.2 with B = bg(L, \) for ¢ a prime dividing q — 1,
not dividing 6[Z(G)F : Z°(G)¥], and satisfying £ > 7 if G has components of type Eg. If Irro(B)
contains a cuspidal character, then L = G.

Proof. Let x € Irrg(B) be assumed to be cuspidal. Denote by s € L*!" a semisimple #'-element such
that A € Irreusp(L) NE(LY, ). Then all constituents of RY ()\) are in £(G, s) (see [CE04, 8.25]). So
B meets £(G, s) and is therefore included in &/(G, s) (see [CE04, 9.12]). So we have x € £(G, st)
where t € Cg+(s)f. We know that Cg.(t) is a Levi subgroup (see [CE04, 13.16(ii)]), let G(t)
be an F-stable Levi subgroup of G in duality with it. Denote by f the linear character of G(t)¥
associated with ¢ by duality (see [DM91, 13.30]). For an F-stable Levi subgroup M of G, we write
RE/I to denote Deligne-Lusztig induction. If L is a split Levi subgroup of (G, F') then RE coincides
with Harish-Chandra induction previously denoted by Rg.
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(a) Assume ¢ is central in G*, so that G(t) = G. Since ¢~! has f-power order, 'y and y have
same decomposition numbers, so that 'y € Irr(B) by [Nav98, 3.5]. Moreover {1y € £(G, s)
by [DM91, 13.30]. Using now the description of Irr(B) N E(G, ') (see [CE99, 4.1(b)]), i 1x is a
constituent of REX. Then y is a constituent of {RE(\) = RE(Res (f)\) and cuspidality implies
that L = G.

Let us now use the decomposition G = GaGp from [CE04, 22.4]. In our case, this means that
Ga is generated by Z°(G) and the F-stable components G; of [G,G] such that Gf is of type
An, (¢™) (untwisted) with m;,n; > 1, while Gy, is generated by the other components of [G, G].

(b) Assume G = Gy,. Then any non central f-element ¢t € G*¥" is such that Cg«(t) embeds
in a proper 1-split Levi subgroup C* of G* thanks to [CE04, 13.19 and 22.2]. On the other hand
x = RE (') for some X' € E(CF st) by [DM91, 13.25(ii)] where C is dual to C*. This contradicts
cuspidality, so indeed ¢t is central (in fact trivial) and case (a) gives our claim.

(c) Assume G = G,. Let T* := Cg.(st). This is a Levi subgroup and it is included in no
proper 1-split Levi while having a unipotent cuspidal character corresponding with x by Jordan
decomposition (see for instance [CE99, 1.10]). In type untwisted A, only tori can have a unipotent
(hence trivial) cuspidal character (see for instance [Car93, § 13.7]) . So this implies that T is a
Coxeter torus of G* and x is a constituent of R (st). In particular

X(e =G /| Cax(st)" e (1)

by [DM91, 13.24]. On the other hand, by the main theorem of [BDR17] the block B as an algebra
over a finite extension of Z, is Morita equivalent to a block By of a subgroup M of G where CF' <M
with C* = Cg.(s) and M/CF = Cg«(s)!"/ C&.(s) an abelian group of order prime to £ (see for
instance [DM91, 13.15(i)]). Moreover By, covers a block B¢ of CF with Trr(Bg) € &(CF, s). Then
57!'B¢ is a unipotent block. We have C = C, (see comment after [CE94, 2.3]) so there is only one
CF-conjugacy class of unipotent cuspidal pairs (L¢, A\¢) in C¥' by [CE94, 3.3(i)]. Therefore ' B¢
is the principal block of CF', so both Bo and By, have maximal defect. So height zero characters
of Bjs have degree prime to ¢. Now the Morita equivalence and the fact that x has height zero
imply that

x(1)¢ = [GF : M}, = [GF: CF), . (%)

Combining (1) and (*) implies that [CF : TF], = |Ag+(st)¥'|, where we use the standard notation
Ag+(z) = Cg+(z)/ Cg-(x) for x € G*. One has

[Ag-(st)"]e = [Ac+ (1) e
again because Ag«(s) is an ¢-group. Using now [DM91, 13.14(ii)], we get that
[CT" . T, divides |(Z(C)/ Z°(C))F|. (%)

Let us show that (xx) implies C = T.

Assume G = GI has type [[; An,—1(q;) (n; > 2), where the ¢;’s are powers of q. Since C
contains the Coxeter torus T of G it must have type [], Ami_l(qgi) where n;,m; > 1, n; = myd;
for each ¢ and m; = 1 is understood as C being a (Coxeter) torus on that i-th factor of G (but
those i’s will play no role in what follows). Then |(Z(C)/Z°(C))¥| is a divisor of the order of the

rational fundamental group (see proof of [CE04, 13.12(iv)]) which is Hz(qzdl —1,m;), so we get

[CF - TF], divides [](gf" — 1,mi). (%)

(2



Since T is connected, Lang-Steinberg’s theorem implies that C*' /T = (C/T). The variety C/T
can be seen in the adjoint group of G or equivalently in the corresponding product of general

linear groups. Then C is also a product of general linear groups and we have [CF : TF], =
Hi(q;”_di - 1)g(qm_2d" —1)y... (qfl —1)g. Then (k%) implies

H (qzdi(mi_l) - ]-)f s (qzdl - 1)( < H (qf’ — 1, mi)g.

75 m;>1 75 m;>1
Noting that one has the reverse inequality for each i, we must indeed have

(qdi(m"fl) —1)... (¢ —1), = (qfi —1,m;)y forall ¢ with m; > 1.

K3 2

Since 1l =¢q=¢q; = qg’li mod ¢ this implies that ¢ | m; each time m; > 1. But then m; > 3 and
therefore the LHS above is > E(qldi — 1)¢ , a contradiction. We then get that all m;’s are 1 and
therefore C = T.

We now have Cg.(s) = T*, a Coxeter torus of G* and therefore all elements of £(G,s) are
cuspidal, again by [CE99, 1.10]. But the elements of Irr(B) N E(G, s) are the constituents of RS ()
as was recalled before. This forces L = G.

(d) Before going into the general case, let us notice that if L = G = G, or L = G = Gy, then
all elements of Irr(B) are cuspidal. In the first case, as said at the beginning of (¢) we must have
that Cg.(s) is a Coxeter torus of G* but then it is also the case for any Cg.(st) with ¢t = (st),
since then t € Cg+(s)y < Cg-«(s) (again by [DM91, 13.15(i)]) and therefore Cg«(st) = Cgx(s).
Then any element of &(G,s) is cuspidal by [CE99, 1.10]. In the second case L = G = Gy,
applying [CE99, 2.8] we get that any element of Irr(B) has to be a constituent of some Rg( " (tx¢)
with ¢t € Cg+(s)l’, G(t) a Levi subgroup of G in duality with Cg.(t), x: € E(G(t)F,s) and all
constituents of Rg(t) (x¢) are in Irr(B) N E(G, s). By the description of Irr(B) N E(G, s) (see [CE99,
4.1(b)]), the last requirement implies that Rg( y (xt) is a multiple of the cuspidal character x. This
forbids that G(t), or equivalently Cg«(t), embed in a proper 1-split Levi subgroup. As said in (b),
this implies that ¢ is central. Therefore Rg(t) (tx:) = ng(t) (x¢) is a multiple of £x hence cuspidal.

(e) Let us now return to the proof of the statement of the proposition. We look at the general
case where G = G,Gyp, and x € Irrg(B) is cuspidal. Let H := GLGL, a normal subgroup of
G! with abelian ¢ factor group (see [CE04, 22.5(i)]). It is a group with split BN-pair given by
intersection with the one of G¥. The standard parabolic subgroups correspond in the same way
with same radical, and therefore

*Rj\}me ° Resg = RGS%QH o *R]\G/[ on Zlrr(G)

for each split Levi subgroup M = M’ of G, where *R denotes Harish-Chandra "restriction” (see
[DMO91, Ch. 4], [CE04, 3.11]). One deduces easily that the restriction of x to H is a sum of
cuspidal characters. Let us choose X' € Irr(H | x) and let B’ be its block. Since G/H is an
abelian ¢'-group, B and B’ have a common defect group (see for instance [Nav98, 9.26]). By
Clifford theory, x(1)¢ = x'(1); so X' € Iirg(B’). Now H = GLGL = (GL x Gi)/Z where
Z =2 (G N Z(GL) = Z(Ga N Gp) is central and ¢ by [CE04, 22.5(i)]. The blocks and
characters of H can be seen as blocks and characters of GL x Gf with Z in their kernel. This
obviously preserves defect, height and cuspidality. So B’ corresponds to a block B” of GL x GI
with a character x”, corresponding to x’, that is of height zero and cuspidal. By (b) and (c¢) above
we have B” = ngng(Gg x GE, o) for some Ao € Irreusp(GL x GI). Now (d) implies that all
characters of B” are cuspidal. Therefore the same is true for B’ and B as discussed before. Then
all constituents of RE(\) have to be cuspidal. This clearly implies L = G. O



Remark 2.11. (a) It is easy to deduce from the above proof that the ¢-blocks of the form B =
b (G, \) with X € Irreysp (G) N E(G, £'), have only cuspidal characters, i.e. Irr(B) C Irreysp(G).

(b) One can show that the hypothesis on ¢ can be relaxed to being just that ¢ divides ¢ — 1,
does not divide 2[Z(G)¥ : Z°(G)], is good for G and ¢ > 5 if the type of G involves 3Dy. The
only adaptation needed to prove Proposition 2.10 in this broader case concerns (d) of the proof
above. Indeed, by the assumption that ¢ is good and G = Gy, one has that ¢ does not divide
[Z(G*)F : Z°(G*)F], so that by [CE99, § 5.2] the description of Irr(B) N &E(G, s) in [CE99, 4.1(b)]
applies also to primes ¢ > 3 when good and ¢ > 5 when 3Dy is involved.

This strengthening of Proposition 2.10 leads easily to a proof of Theorem 1.1 in the case of
¢ =3.

Corollary 2.12. Let L be a split Levi subgroup of a reductive algebraic group G and let \ be a
cuspidal character of L := LY. Let ¢ be a prime dividing ¢ — 1 such that £ > 5, £ > 7 if G has
a component of type Eg, and £ 1 [Z(G)F" : Z°(G)¥]. Suppose X € E(L,¢') and let b = br()\) be
the 0-block of L containing \ and B = bC be the (-block of G = GF containing the irreducible
constituents of RY()\) (see Proposition 2.1). Then

Irrg(B) = Trrg (b%) € {RY (1), | ¥ € Trrg(b) cuspidal ;n € Trr(W (1))}

Proof. Let x € Irrg(B). Note that by Lemma 2.9, it suffices to show that x is in the Harish-Chandra
series R¥ (1) for some cuspidal ¢ € Irr(b). We may assume that L # G.

We know x must be a constituent of some Rf/[(,u) for p a cuspidal character of a split Levi
M := MF of G. Write bys(p) for the block of M containing x. By Proposition 2.1, all constituents
of R{, (1) lie in the same block, bys(p)®. Then it must be that by, (\)¢ = B = by ()¢. Further,
applying [CE99, 4.1] and Proposition 2.1 to bys(p), we see that bys(u) = R%I(le (1)) for some
cuspidal pair (M, u1) of M such that 1 € E(My,¢"). But then by transitivity of Harish-Chandra
induction, we have bg(L,\) = bg(Ma, p1), and hence (L, \) is G-conjugate to (M, j11), by Lemma
2.2, and we may assume L < M.

Now, note that the arguments in Lemmas 2.3(b) and 2.5 still hold in the case with N replaced
with K := Ng(M) and b replaced with bys(u), but with the statement D(b) = D(B) replaced
with D(I;]\\//l(u)) < D(B). (Here 5;/[(“) is the block of K above bys(p).) Then we may argue as
in Lemma 2.9 to see that p must have height zero if x does. Indeed, letting Kj, () denote the
stabilizer of bys(p) in K, we have in this case

[0 5 D(bas (1)) < p(1)e = m _

K, || M|, M : D(by ¢

|D(oar () |el Kpppyle By = Kple
implying equality throughout and therefore that p is of height zero in bps(p). Since p is also
cuspidal, Proposition 2.10 applied to bys(p) implies that M = L and x must be a constituent of

R (¢) for some cuspidal 1 € Irr(b), as desired. O

(K, : D(B)e < [K,u 2 D(bar())]e

Lemmas 2.8 and 2.9 and Corollary 2.12 immediately yield the following.

Corollary 2.13. Let £ be a prime dividing ¢ — 1 and not dividing [Z(G)F : Z°(G)¥], such that
0>5and 0 > 7 if G has a component of type Es. Then the map Q (see Definition 2.7) restricts to
a bijection

Q: Irrg(B) — Irro(b)
RE()y - X, (J).
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Remark 2.14. We remark that N, = N, since if € N then A\* € b and lies in £(L, '), and hence
AT = X by Lemma 2.2.

3 The Inductive Alperin—-McKay Conditions

In this section we give a criterion implying the inductive Alperin-McKay conditions of [Spal3, 7.2]
and tailored to simple groups of Lie type. This generalizes the one given in [CS15, Sect. 4] which
doesn’t cover all cases. Instead, to prove Theorem 1.1, we will use the following easy adaptation of
[BS19, 2.4].

Theorem 3.1 (Brough-Spéath). Let S be a finite non-abelian simple group and ¢ a prime dividing
|S|. Let G be the universal covering group of S and assume we have a semi-direct product GxE
with [G,G] = G <1 G x E and B C BI(G) a G-stable subset such that for every B € B the inclusion
(GE)p < (GE)g holds. Assume there exist groups M < G and M < G such that M = M NG
and M > MN@(D), which further satisfy that for every £-block B € B and some defect group D
of B, M is Aut(G)g p-stable and Ng(D) < M < G. Let B C BI(M) be the set of all Brauer
correspondents in M of the £-blocks in B. Additionally assume:

(i) Cq,.p(G) = 7(G) and GE/ Z(G) = Inn(G)Aut(G)p by the natural map,

any element of Irrg(B) extends to its stabilizer in G,

any element of Irrg(B') extends to its stabilizer in ]\7,

the group E is abelian.
(ii) For G := Irr(G | Irrg(B)) and M := Irr(M | Irrg(B')) there exists an N, (D)p-equivariant
bijection N
Q:G—M
with

« 0 (g N Ire(G | 5)) = MNIre(M | D) for all ¥ € Irr(Z(G)),

o b (ﬁ(g))g — ba(X) for all X € G, and

) Q(iﬁ) = ﬁ(i)ﬁﬁ for every 1 € Irr(é | 1¢) and every X € G.
(111) For every X € G there exists some xo € Irr(G | X) such that

e (G x E)y = CNJXO X Ey,, and

e xo extends to G X E,.
(iv) For every ¥ € M there exists some g € Irr(M | ) such that

e 0= (GNO)x(ENO) for O :=G(G x E)rry,, and
o 1y extends to M(G x E)p -

(v) For every B € B and its G-orbit B the group Out(G) g is abelian.

Then the inductive Alperin-McKay conditions (see [Spidl3, 7.2]) hold for all £-blocks in B.
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3.1 Criterion With Levi Subgroups

Here we adapt the conditions from Theorem 3.1 specifically to fit the bijection 2 from Corollary
2.13. Throughout this section, let G be a simple algebraic group of simply connected type over an
algebraic closure of the field with p elements. We assume chosen a Borel subgroup and a maximal
torus T < B and we will denote by ® O A the root system and the basis corresponding to B.
Recall the 1-parameter unipotent subgroups ¢ — X, (t) for « € ® and t € F,,. We let X, := x,(F,).
Define Fy on G by Fjy(x4(t)) = x4 (tP) for all for « € &. We call graph automorphlsms (omitting
to mention T and B) the automorphisms of G defined by x5(t) — x4 (t) for e € {1}, 6 € A and
A >0+ 0 € A an automorphism of the associated Dynkin diagram.

We let G < G be a regular embedding as in [CE04, 15.1]. In particular, G is a central product
G = Z(G)G and both Fy and the graph automorphisms of G extend to G (see [MS16, Sect. 2.B]).
We let F' := F{"vy where 7 is a graph automorphism (possibly trivial) and m > 1. We denote
q = p™ so that G and G are defined over F, via F.

We also denote G := G, G := G and let E be the subgroup of Aut(é) generated by the
restrictions of Fy and the graph automorphisms considered above.

Let ¢ denote a prime not dividing ¢. All blocks considered will be ¢-blocks.

Let L = T (X, | @ € ') be a standard Levi subgroup of G associated with & := & N RA’
for some A’ C A which we assume 7-stable, so that L is F-stable. Now let L = LZ((~}) be
the corresponding split Levi subgroup of G. Write L= = L¥ and L := L¥ for the resulting Levi
subgroups of G and G respectively. Write T := TF, T:=T Z(G) and T := TF. Let N := Ng (L)*
and N := Ngx (L) and note that

N=LN=TN
by a standard application of Lang’s theorem.

In this section, we aim to prove the following:

Proposition 3.2. Let G = G as above and assume that G is the universal covering group of the
non-abelian simple group G/ Z(G). Let £ be a prime dividing ¢ — 1 but not dividing 6| Z(G)|, and
further assume £ > 7 if G is of type Eg. Let B € BI(G) correspond to a cuspidal pair of L, where
L is E-stable. Assume that E is cyclic and that for E,N, and N as above, there is an N E-stable
L-transversal T C Irreusp (L) such that the following hold:

(1) There is an N E-equivariant extension map (see Definition 1.2) with respect to L < N for T.
(2) R(*)\) <ker(dr;) for all N\ €T and t € T with the notation from [MS16, Sect. 4].
(3) For every X € Irr(G | TIrro(B)), there exists some xo € Irr(G | X) such that (G x E)y, =
Gy X Eyy.
(4) Out(G)g is abelian for the G-orbit B of B.
Then the inductive Alperin-McKay conditions hold for B.

Remark 3.3. The condition (3) above is equivalent to the existence of an E-stable G-transversal in
Irrg(B). Indeed, for each G' x E-orbit it suffices to select one xo as in the condition and take its
images under F. The stabilizer property will ensure that this is a G-transversal. The converse is
also easy.

We begin by recording the following straightforward observation:

Lemma 3.4. Suppose (| Z(G)|. Let B € BI(G) and C € BI(N), B = BY(G|B) and C = BI(N|b).
Then Irr(G | Irrg(B)) = Irrg(B) and Irr(N | Irrg(C)) = Irr(C).
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Proof. Note that by [Lus88, Proposition 10], any x € Irr(G) extends to its inertia group éx in G.
Since £ 1 [G : Z(G)G)] and Z(G)G < éx for any x € Irr(G), it suffices to prove the statement for
7(G)G rather than CNJ Let x € Irr(Z 7(G)G|x) be an extension of y € - Irr(G) and let D and D be
the defect groups of B and B in G and G, respectively. Note that 7(G)¢ < D and Z(G)¢ < D, and
hence D can be chosen so that Z(G)gD < D. Further, [Nav98, 9.17] yields that |D| < | Z(G)D|.
Then [Z(G)G : D), = [Z (G)G Z(G)D]; = [G : D]; and X has height zero if and only if x does,
giving the statement in G.
Since N/N = LN/N = L/L = G/G and the defect groups of C and C are the same as
the corresponding defect groups for B and B under the maps constructed in Section 2, the same
arguments show the statement in N. O

As in Sections 2.2 and 2.3, we assume that ¢ divides ¢ — 1 but not 6 - [(Z(G) : Z°(G))"] and
¢ > 7if G is of type Eg. Then by [CE99, 4.1] any {-block of G' = G is of the type bg(L, \) studied
before, and the same is true for GF Note that for D a defect group of some ¢-block of G' and Da
defect group of some (-block of G such that D = DN G, Corollary 2.13 applied independently to
G and G then yields bijections

Q: Irrg(G | D) — Irrg(N | D)

and B o L
Q: Irrg(G | D) — Irrg(N | D)

simultaneously, each preserving Brauer correspondence. We wish to use information about 2 to
obtain the properties for €2 required in Proposition 3.2.

Recall from Definition 2.7 that the construction of {2 depends on the choice of an extension map
1+ 1) with respect to the normal inclusions L <t N for Irreusp(L).

Lemma 3.5. Assume that for any standard Levi subgroup L of G there is an NE- equivariant
extension map A (see Definition 1.2) for Irreysp (L) with respect to L<N. Then:

(a) The map Q: Irro(G | D) — Irrg(N | D) described above is N&p(D)-equivariant.
(b) If the map A satisfies
A(X-ulz) =8 -l

for each X € Irrcusp(f) and each p € Irr(G | 1¢), then Q satisfies

Q(Xw) = Q) -l
for every X € Irro(G) and p € Irr(G | 1¢).

Proof. Both statements follow directly from our construction of Q taking into account [MS16, 4.6,
4.7 for part (a). Note that, thanks to the N E-equivariance of A, the linear character dy o in [MS16,

4.6] is trivial in the case of an automorphism o induced by an element of NE. O

Lemma 3.6. Assume condition (1) of Proposition 3.2. Then there is an NE- equivariant extension
map A for Irreusp (L) with respect to L < N satisfying

K(X-ulz) =K - ulg,
for each X € Irrcusp(Z) and each p € Irr(G | 1¢).
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Proof. Let A € Irrcusp(L) and Ao € Irr(L|X) N'T, where T is the transversal assumed in Proposition
3.2(1). Fix an extension Ag of Ag to Ly, such that X = Indé (XO). Note that since T is N-stable,

we have LN = LN , using Clifford theory. Let A be the assumed extension map with respect to
L<aN,so that A()\o) is a character of N, extending Ag. Then by [CS17a, 5.8 (a)] or [Spil0, 4.1],
there exists a unique common extension, call it ¢, of )\0 and A(\g)] N5, to L /\ON Define

A = md=" (o)

20 NXO

Then A()) is an extension of A to N = LN = ENXO' This defines an extension map A, which by
construction is N F-equivariant. The map Ais L- equivariant, hence N- equivariant since N = LN.
The required equality A ()\ . ,u|z) = AN - pls ;s holds since A(X - p|7) is constructed using Ao €

T N Irr(L|A - p|7) and the common extension of )\O,LL\LA and A(Xo)|ny - O
0 0

We are now ready to prove Proposition 3.2.

Proof of Proposition 3.2. We check that the assumptions of Theorem 3.1 are satisfied. We have
S = G/Z(QG) of which G is a universal covering by assumption and on which G x E induces the
whole automorphism group by [GLS98, 2.5.1]. We also have the stabilizer part of assumption 3.1(iii)
by 3.2(3). Note that the extendibility conditions of 3.1(iii) and 3.1(iv), along with the remainder
of condition 3.1(i) are ensured by the assumption that £ and hence M (GE)p ., /M are cyclic.

Note that a G-orbit B containing B = bg(L,\) € BI(G) is composed of blocks bg(L, X) for
other X € Trreysp(L) N E(L,¢'), and hence N = Ng(L)F contains Ng(Dp) for each B € B, by
applying Lemma 2.4. Taking M := N and M = N, we see using Lemmas 3.4, 3.5, and 3.6,
together with our assumptions, that assumption (ii) of Theorem 3.1 holds.

Our map € is built with the same method as for the bijection in [MS16, 5.2]. The arguments from
there can be applied thanks to assumptions 3.2(1) - (2) and show that € is Nz, (D)-equivariant.

In order to now ensure condition (v) of Theorem 3.1 we apply the considerations from the
proof of [MS16, 5.3]: Let ) e Irro(M). As in the proof of [CS17b, 4.3], it suffices to show that
(M M )% Md,o Mwo, where M := NE and 1y is a suitable element of Irr(M | w) But this follows
by taking 1o := Q(xo0), where xo € Irr(G | X) satisfies assumption 3.2(3) and Y= Q( X)- O

4 Extending Cuspidal Characters in Type

Our main task is now to verify in G = Spy(q) the existence of T satisfying assumption (1) of
Proposition 3.2, namely we construct an N E-stable L-transversal T C Irreusp(L) and an extension
map with respect to L < N for T. Recall that in this case, F is cyclic, generated by Fyp.

We will check this via an application of the following criterion, which is based on [BS19, 4.2].
It will be applied in a case where K = Ky but we show the slightly stronger statement for future
reference.

Proposition 4.1. Let K <M and Ko < M with Ko < K be finite groups, and let E be a group
acting on M, stabilizing K and Ky. In addition, let K C Irr(K) be M E-stable. Assume

(i) K =7(K)Ko;

(ii) there exists some E-stable group V< M such that
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(ii.1) M =KV and H:=V NK <Z(K); and

(ii.2) there exists some V E-equivariant extension map Ao with respect to H<1V' for | Jycx Irr(H |
A);

(iii) denoting e: V. — V/H the canonical surjection, there exists an e(V')E-equivariant extension
map A with respect to Ko < Ko x e(V) for the set |, cx Irr(Ko | A).

Then there exists an M E-equivariant extension map with respect to K << M for K.

Proof. By (ii.1) it is sufficient to construct a V E-equivariant extension map with respect to K <t M
for K. B

Let A € K. Proposition 4.2 in [BS19] defines an extension A of A to M) in the following way:
the unique character ¢ € Irr(H | A) has the extension ¢ := Ag(¢) and Ao := Resj, A extends to
Ac(No) € Irr(Ko x €(V)y)). Let D: K — GLy;)(C) be a linear representation of K affording A,
and D’ a linear representation of Ko x €(V),, extending Resf, D and affording Ac(Xg). We define

D: M, — GLy(1)(C) via the equation

D(vk) = ((v)D'(e(v))D(k) for every v € Vy and k € K. (2)

To check that this is well-defined we evaluate the above at a pair (vz,2z71k) for v,k as above

and z € VN K < Z(K). We get ((v)¢(2)D'(e(v2))D(z71k) = ¢(v)¢(2)D'(e(v))¢(z1)D(k) =
¢(v)D'(e(v))D(k) which is the value at (v, k).

To verify that D is a linear representation, it is clearly enough to check that D(k)D'(e(v)) =
D'(e(v))D(k?) for any v € V), k € K. Let us write k = koz for kg € Ky and z € Z(K). Let us denote

by ¢’ the element of Irr(Z(K) | A), and note that ¢’ = A(l)_lResé((K))\ is Vy-invariant. Remem-

bering also that D and D’ coincide on K, we easily get D(k)D'(e(v)) = C’(z)D’(e(v))D’(kg(U)) =
(D' (e(0))D(kE) = D' (e(v)) D(K).

Now, we obtain an extension map A with respect to K <K'V for K by sending A to A(\) = Tr oD.
Since the extension maps Ag and A, are V E-equivariant, one checks easily using the above formula
that A is V E-equivariant. O

4.1 The structure of L and N in type C

We now concentrate on finite quasi-simple groups of Lie type C. Though the structure of split Levi
subgroups in symplectic groups is a direct product easily dealt with, their normalizers don’t equal
the corresponding wreath products, so the problem of character extensions requires some special
care.

For a positive integer ¢ let i := {1,...,i}.

Notation 4.2. Let G = Spy(F,) be a simply connected simple group of type C; (I > 2) over the
field F,. Let T be the diagonal torus and B be the upper triangular Borel subgroup of G. Let ®
be the T-roots of G given as {2e;,+e; £ e; | 4,5 € I} with basis A := {2eq,e;41 —¢; | 2 < i <[}
as subsets of @felRei, see [GLS98, 1.8.8]. Recall the identification of the Weyl group Wg with the
group Sy, of permutations o of [ U —[ satisfying o(—z) = —o(z) for any x € [ U —[, see [GLS9S,
1.8.8]. For ¥ a subset of ® one denotes by Wy the subgroup of Wg generated by the corresponding
reflections.

The Chevalley generators x,(t), n.(t') and h,(t') (o € ®, t,t’ € F, with ¢’ # 0) together
with the Steinberg relations describe the group structure of G, see [GLS98, Thm. 1.12.1]. Let
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F : G — G be the Frobenius endomorphism with x,(t) — %, (t?) and G := GI', T := TF'. We
take for G the usual conformal symplectic group CSpy(Fy).

Let L = T (X, | @ € ') be a standard Levi subgroup of G associated with ® := ® NRA’ for
some A’ C A. Then &' decomposes as a disjoint union of irreducible root systems, i.e.,

<I>’:<I>_1|_|<I>2|_|...U<I>l_1,

where ®_; denotes a root subsystem with a long root, hence of type A; or C,, (m > 2), and ®4 is
the (possibly empty) union of direct summands subsystems of ®’ of type Ay_1 (d > 2) with only
short roots. Denote L = L¥".

Note that with the notation of Sect. 3.1, E = (Fp). Note that every standard Levi subgroup L
is E-stable. All automorphisms of CEF are induced by G x E as soon as ¢ is odd. Recall that one
calls diagonal the ones induced by G

Write D :=[U{—1}. For each d € D\ {1} let J; C [ be minimal with ®; C (ex | k € Jg). In
addition let J; ;=1\ (J_1 U JoU...UJ;). Then &5 = (e; | k € J3) N ®" and we denote

$d::<ek |ke Jg)Nd

for every d € D. For d € D\ {1} let Oy be the set of Wg -orbits in Jg, and let Oy := {{j} | j € J1}.

Let
0= U Og.

deD

The following lemmas gather facts that are easily checked by use of the Steinberg relations or
the realization of G as Spy(q) given in [GLS98, 2.7].

Lemma 4.3. For I C [ let T; := <h26i(t) liel, teF§>. For each I € Oy with d # 1 let
q)]::q)dﬂ<6i |’i€[>,

Gr:=(Xy|ac®)T; and G;=GYF. (3)
(a) Then Gr = GLy(q) if I # J-1 and Gy, = Spyy_,((q)-
(b) L is the direct product of the groups Gy (I € O).
(¢) L induces diagonal automorphisms on G_, and only inner automorphisms on Gy (I # J_1).
Lemma 4.4. Let hy(—1) := Hje[ hye (—1) for I C,
H:=(h;(-1) |I€0) and Hy= (hy(-1) |I € Oy) (d€ D). (4)
Then H = H_y x Hy x Hy x --- x Hy and H < Z(L)

We keep the same notation as before. Recall that we identify We¢ with the group Si; defined
in [GLS98, 1.8.8].

Proposition 4.5. We have N/L = Wg X [];5, Stabwad (®gq). Moreover

Stabyy, (®a) = <Wq>d X <H(¢,—¢) R 0d>> x So,

icl

for2<d<lI.

16



Proof. This follows from N/L = Ny (T)/NL(T) = Ny (We)/Wer, see [Car93, 9.2.2]. The compu-
tation of stabilizers in root systems of type C is easy using the model descibed in [GLS98, 1.8.8]. [

Notation 4.6 (Introduction of V). We write n; := n,,(—1) whenever ay = 2e; and o; = e; — €,
(2 < i <1). Note that the elements {n; | 1 < i < a} satisfy the braid relations of type C,, see for
example [Spr09, 9.3.2].
For d € 1, let aq := |Oq4l, I3; (1 < j < aq) the elements of Og and Iy ;(k) € Iy, (1 < k < d) the
elements of I ;. For each k € d we fix
Tkt ag — Jq with j — Ig (k) and my, == H n. (1) € G.
Jj€ag

3T Cm ()

For j € aq we define
(d) ._ M,
n® = T n.
ked

Alternatively we write also ny, , for ngd) and ny, . 1, for néd) with j > 1.

Proposition 4.7. For d € D let

(a) n(.d) = {erfm nek(il) if j = 17.
! [Tked nezdyjfl(k)—e,d’j(k)(:tl) otherwise

for at least one choice of the signs in each term of the products above;
(b) [E,V]=1;
(¢c) N=LV and H=LNV;
(d) the elements {ng»d) | J € aq} satisfy the braid relations of type Cq,;
(e) [Va, Vo] =1 for every d,d € D with d # d'.

Proof. The elements {ny | k € aq} satisfy the braid relations as recalled in Notation 4.6. By the
definition together with the Steglberg relations it is a straighforward computation to check that
the elements {nﬁd) | j € aq} satisfy parts (a), (b) and (d).

Denote p: Ng(T) — Wy the canonical surjection. For d € D we see that p(Vy)Ws, =
Stabwgd(q)d) since

p(Va) = <H(i,—i) | 1€ 0d> x Soy,

el
whenever d € D\ {—1}. This implies N = LV by Proposition 4.5.
Note that p(Vy) < ng. Since ®; L ®4 for d # d’ and no non-trivial linear combination of
them is a root, [Vy, Vy] = 1 by the commutator formula.
We now prove that L N Vy; = Hy for any d € D, thus finishing the proof of (c¢). By (d) the

clements n'? (j € aq) satisfy the braid relations and V3 L/L = V;/L NV, is isomorphic to a Coxeter

J
group Wy of type C,, such that each coset n; := ng-d)(L N Vy) corresponds to a reflection along a

simple root. Using the presentation of W, by involutive generators m; (j € aq) submitted to the
(d)

braid relations, we see that L NV, is generated by the (nj )¥s for j € ag. On the other hand we
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have (n

that

d))? _ {hld,1(_1) lf.j - 17
hy, . (=1)hy, .., (=1) otherwise ,

For the second equality one uses that [ [, he ) —er i (1) = lxeq he, ) (=D 1lrea he, 1) (—1).
The above indeed gives L NV; = Hg. ]

For the later proof of assumption (iii) of Proposition 4.1 we need to analyze the action of V' on
L.

Lemma 4.8 (The action of V- on L). (a) Let I,I' € O\ {J_1} such that nyp is defined and
I" € O. Then n%p € Z(L) and

G ifI" =T,
nrr,Gpl =< Gp  if I" =1,
G otherwise .

(b) Let I € O\{J_1} and I" € O with I" # I. Then (Gp)™ = Gn. The element ny induces
on Gp the combination of a graph and an inner automorphism while acting trivially on G pn

ifI#T1".

Proof. The claims follow from Proposition 4.7(a) using the Steinberg relations. O

4.2 Cuspidal characters of L and their extensions

In the following we verify the character theoretic assumptions necessary for applying Proposition 4.1
with M = Ng(L)¥', K = L and V as defined in Proposition 4.7.

Proposition 4.9. There exists an N E-stable L-transversal T in Irreusp (L) such that (LNE)y =
LA\(NE)y for every A € T.

Proof. Note first that the cuspidal characters of L are the products of cuspidal characters of the
Gr’s (I € O). We choose first a L-transversal in Irreusp(G-1) that is E-stable. Such a transversal
T_; exists by [CS17b, 3.1] and Remark 3.3. We also know by Lemma 4.3 that L acts by inner
automorphisms on all other direct factors Gy, so the set T = Irreysp(L | T—1) is an E-stable

L-transversal as required.

Recall that for y_1 € T_; we have V,_, = V and (INJE)Xf1 = EXAEXA, hence altogether we
see (LNE)y_, = Ly_,(NE)y_,.

Let A€ T. Let Ly := (Gg|deD\{~1}) and x4 € Irr(L; | ). We have seen that L acts by
inner automorphisms on L, hence stabilizes y.. and therefore (LN E)y, = L(N E),, . Since A =
X—1X+ for some x_1 € T_q, the required equation holds for every X\ € Irr(L | T_1) NIrreusp(L). O

In the next step we show the following for the groups H <1V from Lemma 4.4 and Proposition 4.7.

Proposition 4.10. Every element of Irr(H) extends to its stabilizer in V. In particular there exists
a V E-equivariant extension map (see Definition 1.2) with respect to H V' for Irr(H).

This will imply that the groups H and V satisfy the assumption (ii.2) of Proposition 4.1.
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Proof. The second statement is a consequence of the first since F acts trivially on V' by Proposi-
tion 4.7(c). So we now show that every element of Irr(H) extends to its stabilizer in V.

By (e) of Proposition 4.7 it is sufficient to prove that for every d € D any character of Hy
extends to its stabilizer in V. The group Hy is the ag4-fold central product of groups (hy(—1))

(I € Og). Let ng) = ﬁgd) and

d d
Cry; = cg- )= (cgjl)

(6)

In addition ng-d) (2 < j < ay) stabilizes {c; | I € O4}.
Let A\g € Irr(Hg). Then )4 is Vg-conjugate to a character A, with

-1 ifj<d
No(h;, (—1)) = o
al Idd( ) { 1 otherwise,

for some 0 < @’ < ag. We assume that \; is of this form. Then
Vir, = CS , where C:= (¢; | I € Oy) and S = <ﬁ§d) |j€ag\{d + 1}>.

By the Steinberg relations we see that [cf,cp] = 1 for I, "€ O4. Hence one can choose an
extension Ay of Ay to HyC' such that

Xd(C[) = B\\d(C]/) for I, I' e Oy.
This character is accordingly S-stable and hence Vj y,-stable.

Since by Proposition 4.7(d) the elements {ng-d) | 2 < j < agq} satisfy the braid relations and
p(S) is the direct product of two symmetric groups, we see that

Sde:<(n§d>)2 \je%\{a’+1}>.

Those elements lie in the kernel of \;. Hence there exists an Aextension ¥ of A\g to HyS such that
S < ker(z)). According to [Spal0, 4.1] the characters 1) and Ay define an extension of Ay to V, ¥
that is Vg »,-invariant and in turn extends to Vg y,.

Proposition 4.11. Let € : V. — V/H be the canonical epimorphism. There exists an NE-
equivariant extension map with respect to L << L x €(V').

In its proof we need the following observation.

Lemma 4.12. Let 7y be an automorphism of GL,(q) commuting with the field automorphism Fy of
GL,.(q). Then there exists a (7, Fy)-equivariant extension map with respect to GLy,(q)<IGLy,(q) > (7).

Proof. 1t clearly suffices to show that any x € Irr(GL,(¢q)) extends to its stabilizer in GLj,(q) »
(Fo,7). By [Bon99, 4.3.1], x has an extension X to GLn(q) % (Fp), with 0 ¢ X((Fb),). This
implies that the various extensions of x to GLy(g) x (Fp), have distinct restrictions to (Fp),, using
Gallagher’s Theorem [Isa06, 6.17]. Let A := <F0,7>X. Then A is abelian and fixes X by what we
have said about restrictions to (Fp),. On the other hand A/ (Fp), injects into (Fp,7) / (Fp) hence
is cyclic, so that y does extend to GL,(q) x A, using [Isa06, 11.22]. This completes our proof. [J
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Proof of Proposition 4.11. 1t is sufficient to prove that there exists an €(Vy) (F)-equivariant exten-
sion map with respect to G4 <1 Gy x €(Vy) for every d € D*. For d = 1 the group H; is abelian and
[e(Va), E] = 1. Hence such a map exists.

Let d € D>p. Then Gy = GY* for some (I € Oy) and Gge(Vy) = (Gr % (e(cr))) U Sa, for
I € O4. For d > 2 the automorphism of G induced by €(cr) commutes with E and there exists an
(e(cr), E)-equivariant extension map with respect to G; <1 Gy (e(cy)) by Lemma 4.12.

From the description of the representations of wreath products (see for instance [Nav18, §10.2])
we deduce easily there exists an (e(Vy), E)-equivariant extension map with respect to G4 < G4 x
e(Vy). O

We can now prove the following.

Proposition 4.13. There exists an N E-equivariant extension map A with respect to L A N for
Irr(L), such that A(\Y) = A(N\)! for every t € T and X € Trr(L) with A\ # .

Proof. We check that all the assumptions of Proposition 4.1 are satisfied with Ko = K =L, M = N,
V' as defined in Proposition 4.7 and T from Proposition 4.9. The group theoretic assumptions are
clear. Proposition 4.10 implies that the assumption 4.1(ii.2) is satisfied while Proposition 4.11
gives 4.1(iii). We obtain an extension map Ao for T and then deduce an extension map for Irr(L)
by setting A(AY) := A(X)! for every t € T and A € T with A\! # X since T is a T-transversal in
Irr(L). To show that A is N E-equivariant, note first that [T,NE] < LZ(G). This is because
[T,N] < [G,GINT < T and [T, E] < TZ(G) since Fy acts trivially on T/T Z(G) < G/G Z(G) the
latter being of order 2. Now let x € NE, A € Irr(L) and let us check A(A\*) = A(\)*. We have it
when A € T, so let us assume A € Irr(L)\T. Since T is a T-transversal in Irr(L) we have A # ‘A € T
for some ¢t € T. Denote = ‘A € T. We must prove A(u'") = A(u')*. The right hand side equals
A(p)® since pu! # p € T. For the left hand side we have seen that [t,z] € LZ(G) hence fixes u, so
put® = p®t £ p® while pu* € T. So

A(u') = Ap™) = A(u")" = A(w)™ = Ap)"™
the last equality since [t, z] acts trivially on Irr(N,). O

In our checking of the inductive Alperin—-McKay conditions via Proposition 3.2, we now have
assumption 3.2(1) for the transversal whose existence is ensured by Proposition 4.9. In the fol-
lowing, we turn to assumption 3.2(2) which deals with the so-called reflection subgroup R()\) of
W(A) := Ny/L (see [Car93, 10.6.3]). The group R(\) is seen as acting on R®/R®’ and generated
by reflections s, for a ranging over a certain root system ®) of R®/R’.

Lemma 4.14. Let A € Irreysp(L) and XeIrr(Ly | A). Then R(\) < W(X).

Proof. The group GL, = (Gz,\)F has a split BN-pair obtained by intersection with the one of
G and standard Levi subgroups correspond. Then (Ly,\) is a cuspidal pair_for reasons already

seen in (e) of the proof of Proposition 2.10. This gives the meaning of W()) as a subgroup of
Nai, (LI /Iy = N/L,

Now to prove our claim, it suffices to check that s, € W(X) for every a € ®). Recall that for
any a € ¢y, one defines a Levi subgroup L, of G as generated by L and the Xg ’s for g € ¢ with
a € RA + R /R (see [Car9d3, p. 330]). By the definition of ®, the character Rr*(\) has two
constituents of different degrees (see [Car93, Sect. 10.6]). Now there exists an extension X of A
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to Ly since E/ LG /G is cyclic. Again by the compatibility of Harish-Chandra induction with
regular embeddings and intermediate inclusions, one has

ReszLA o RL*L(’ (\) = RE(N).

Because of Lq <I L rLa, R?La()\) must also have two constituents of different degrees by Clifford
A ~
theory. This implies s, € W(A). O

We now turn to the condition of Proposition 3.2 on the linear character ) , of Ny introduced
in [MS16, p. 887] and whose definition is recalled in the proof below.

Proposition 4.15. We have R(°\) < ker(6y ) for any o € Aut(G) induced by an element of T.

Proof. Thanks to Lemma 4.14, it suffices to check that W(X) < ker(dy ) for some XeTrr(L | N).
Let us recall the extension map A with respect to L << N for Irr(L) from Proposition 4.13 so that
0x0 is uniquely defined as the linear character of Ny satisfying

Ino A7) = 7(A(N)). (7)

By Proposition 4.9 we know that there exists some N E-stable L-transversal T in Irrcusp( ) and
we may assume A € T. Accordingly (NL)) = NyL, and (NL) = NALA where A € Irr(L) | )\)
with AL = X. Note N5 = N;. According to [Spil0, jll( a)] there exists a unique extension ¢ of A
to NXEA with ¢[n; = A(A)|n;. The character ¢ = "5 is an extension of \.

Assume now that A # A. Then by Proposition 4.13 we have A(°\) = “A()\) and therefore
(7) implies 0y, = 1 which gives our claim. So we consider the case where “A = X. Then our
claim is equivalent to the fact that A(A) and “A(\) have same restriction to Ny thanks to Clifford
theory (see [Isa06, 6.17]). Since o stabilizes A it also stabilizes ¢. We sce that A())] s is the

unique constituent of )| n; extending A. The character A(A)|n; has to be o-stable and this gives
our claim. n

5 Proof of Theorem 1.1

We now finish the proof of Theorem 1.1 by an application of Proposition 3.2 in the case where G =
Spy(q) < G= CSpy;(q) with I > 2, ¢ a power of an odd prime p (ensuring that G is the universal
covering of the simple group PSpy;(q)) and ¢ a prime > 5, dividing ¢ — 1. Let B be an ¢-block of
G, which by what has been recalled before of [CE99, 4.1] contains the irreducible constituents of
RE(\) for L a Levi subgroup of G as described in Section 4 and some A € Irreusp(L) N E(L, ).
Then E is the group generated by the automorphism of G consisting in raising the matrix entries
to the p-th power.

The existence of the N E-stable L-transversal T C Irreysp (L) is implied by Proposition 4.9.
Then assumption (1) of Proposition 3.2 for T is ensured by Proposition 4.13. Now Proposition 4.15
gives assumption (2) of Proposition 3.2.

On the other hand, assumption (3) in Proposition 3.2 follows from [Tayl8, 16.2] or [CS17b,
3.1] thanks to Remark 3.3. Finally, assumption (4) in Proposition 3.2 also holds for G since
Out(G) = Cy x E is abelian in this case.
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