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Multimodal fusion of different types of neural image data provides an irreplaceable opportunity to take
advantages of complementary cross-modal information that may only partially be contained in single
modality. To jointly analyze multimodal data, deep neural networks can be especially useful because
many studies have suggested that deep learning strategy is very efficient to reveal complex and non-
linear relations buried in the data. However, most deep models, e.g., convolutional neural network and
its numerous extensions, can only operate on regular Euclidean data like voxels in 3D MRI. The inter-
Brain structure and function fusion related and hidden structures that beyond the grid neighbors, such as brain connectivity, may be over-
graph-based deep learning looked. Moreover, how to effectively incorporate neuroscience knowledge into multimodal data fusion
Ml with a single deep framework is understudied. In this work, we developed a graph-based deep neural
network to simultaneously model brain structure and function in Mild Cognitive Impairment (MCI): the
topology of the graph is initialized using structural network (from diffusion MRI) and iteratively updated
by incorporating functional information (from functional MRI) to maximize the capability of differenti-
ating MCI patients from elderly normal controls. This resulted in a new connectome by exploring “deep
relations” between brain structure and function in MCI patients and we named it as Deep Brain Connec-
tome. Though deep brain connectome is learned individually, it shows consistent patterns of alteration
comparing to structural network at group level. With deep brain connectome, our developed deep model
can achieve 92.7% classification accuracy on ADNI dataset.
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ity data. Essentially, each imaging modality provides a differ-
ent but unique view to represent brain structure and/or func-

Introduction

With the availability of large-scale multiple types of brain im-
age data, integration of data acquired from different imaging tech-
niques, termed as multimodal data fusion (Damoiseaux & Gre-
icius (2009); Wee et al. (2012); Park & Friston (2013); Sui et al.
(2012, 2014); Suk et al. (2014); Uludag & Roebroeck (2014);
Zhu et al. (2014b)), has gained considerable attention in neu-
roimaging field. Multimodal fusion provides an irreplaceable op-
portunity to take advantages of complementary cross-modal in-
formation that may only partially be contained in single modal-
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tion. For example, diffusion tensor imaging (DTI) can provide in-
formation of brain structural connectivity (e.g., via tractography
(Mori et al. (1999)), and blood oxygen level-dependent (BOLD) sig-
nals derived from functional magnetic resonance imaging (fMRI)
can be used to infer neural activity in vivo through measuring
hemodynamic response. By jointly analyzing DTI and fMRI data
we can investigate organizational architecture of human brain in
both structural and functional domains. Besides studying general
relationships between brain structure and function, multimodal
data fusion can provide complementary knowledge when explor-
ing and identifying potential abnormalities occurred in brain dis-
orders. Mild cognitive impairment (MCI) is considered the precur-
sor of Alzheimer's disease, which is a progressive and irreversible
neurodegenerative disorder characterized by severe cognitive de-
cline and memory loss. Though the neuropathological mechanism
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is not fully understood, increasing evidences have shown that both
structural and functional brain alterations are found in MCI pa-
tients (Supekar et al. (2008); Xie & He (2012); Chen et al. (2013);
Daianu et al. (2013); Franzmeier & Dyrba (2017); Dai et al. (2019)).
As a result, using single modality, e.g., either structural or func-
tional data, for brain disease studies including classification or pre-
diction, can be suboptimal.

Many multimodal fusion approaches have been published
for cognitive and clinical studies (Schonberg et al. (2006);
Honey et al. (2009); Hagmann et al. (2010); Fling et al. (2012);
Jie et al. (2013); Suk et al. (2014); Meng et al. (2017);
Liu et al. (2018); Zhang et al. (2019)) and more details will
be reviewed in Section 2.1. Most multimodal data fusion ap-
proaches have been focusing on simple and linear relationship be-
tween different modalities (Plis et al. (2018)), while many stud-
ies have demonstrated the complexity between the information
conveyed by different types of data: brain structure and func-
tion are closely related, but neither of them can fully interpret
the organizational principles of human brain. Previous publications
(Honey et al. (2009); Li et al. (2012)) suggested that strong struc-
tural connectivity inclines to be accompanied with strong func-
tional connectivity, but not vice versa. The changes of brain struc-
ture or function may also result in the alterations of the other. For
example, when a structural connection between two brain regions
is reduced, these regions can increase neuronal activity to compen-
sate for the loss of communications (Daselaar et al. (2015)).

As an emerging research topic, deep neural network based
machine learning methods (Hinton & Salakhutdinov (2006)) can
be especially useful in capturing the complex and non-linear
relationship between brain structure and function in multi-
modal fusion. Recent development of deep learning has rev-
olutionized the fields of artificial intelligence and machine
learning (LeCun et al. (2015)), and boosted several domains
such as computer vision (He et al. (2016)) and many oth-
ers (Monti et al. (2017); Ying et al. (2018)). As one of
the most popular deep models, convolutional neural network
(LeCun et al. (1990)) (CNN) has demonstrated breakthroughs
of performance in neuroimaging analysis including detection
(Sirinukunwattana et al. (2016)), reconstruction (Sun et al. (2019)),
segmentation (Wang et al. (2015)) and computer-aided diagno-
sis (Roth et al. (2015)). However, it could be difficult to directly
apply CNN on brain network analysis, as CNN and its numer-
ous extensions are designed for operations on regular, Euclidean
data, such as pixels in 2D slices or voxels in 3D volumetric data.
Whereas human brain is a highly complex and interconnected net-
work that can efficiently coordinate regional segregation and spe-
cialization (Tononi et al. (1994); Bullmore & Sporns (2009); Fornito
et al. (2015)). The connectivity, which indicates the influences from
remote brain areas that have either structural connections or func-
tional interactions, provides the physiological basis of informa-
tion representation and processing in brain (Sporns et al. (2004);
Fries (2005); Petersen & Sporns (2015); Lynn & Bassett (2019)).
Therefore, the interrelated and hidden structures (i.e. modular-
ity (Bullmore & Sporns (2009)) that beyond regular grid neigh-
bors can be overlooked in traditional CNN approaches. In addition,
most current deep neural network methods only focused on sin-
gle modality data, such as structural, diffusion or functional MRI,
very few studies have examined the multimodal data fusion using
deep learning at network level. Though some deep models based
on multimodal data have been proposed, the number and scope of
studies are still very limited, and further efforts are highly needed
to investigate appropriate strategies for exploring potential “deep
relationship” between brain structure and function, as well as to
develop disorder-focused deep modeling architecture.

Motivated by the merits of multimodal fusion in neuroim-
age studies and the recent advancement of graph convolu-
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tional network - GCN (Kipf & Welling (2016);Wu et al. (2020);
Zhang et al. (2020b)), we leverage both by integrating them into
a novel graph-based deep model (GBDM) to study brain structure-
function fusion at connectome level. We construct a multi-layer
GCN with trainable graph topology. This graph is parameterized by
both DTI-derived brain structural network and functional activities
so that the learned graph becomes a deeply hybrid connectome
by retaining brain structural substrate and simultaneously taking
into account the functional influences as a complementary cross-
modal information. In general, our GBDM aims to maximize the
performance of classifying MCI patients from elder normal controls
by incorporating functional interactions into structural network.
Fig. 1 illustrates the overall strategy of GBDM. During the training
phase, we used structural network as the initialization of the graph
(Fig. 1(b)). Functional information (Fig. 1(a)) is used in two ways:
the fMRI BOLD signals of each pair of brain regions are parameter-
ized to form trainable functional profiles which are integrated into
the current graph at each iteration; the functional connectivity are
treated as features associated with the nodes that represent dif-
ferent brain regions. GBDM iteratively updates the topology of the
graph (Fig. 1(c)) to minimize its classification loss. In the predic-
tion phase, given individual structural network and functional data,
GBDM outputs the graph topology as well as the predicted clinical
conditions. Because this predicted graph evolves from both struc-
tural and functional connectome in a deep manner, we named it
as Deep Brain Connectome. Using ADNI (Alzheimer’s Disease Neu-
roimaging Initiative) (http://adni.loni.usc.edu/) brain image dataset
as a test bed, we generated deep brain connectome for each sub-
ject in both groups (MCI and aged normal controls). Compared to
DTI derived structural connectome, the learned deep brain con-
nectome displays decreased connectivity within the same hemi-
sphere and increased connectivity across different hemispheres.
These differences come from the integration of functional data
when conducting classification task. Interestingly, the brain regions
involved in the top changed connectivity are widely known for
their close relations to AD/MCI development, such as lateral orbital
and temporal regions. In addition, our experimental results show
that the classification accuracy using our proposed GBDM yields
up to 92.7%.

Our proposed deep multimodal fusion method advances the
state of the art in three ways: first, a graph-based deep model
is proposed to represent and manipulate brain connectome in-
stead of using traditional CNN architecture which only considers
the influences of Euclidean-based (local) neighbors. The primary
motivation comes from the fact that one brain region might in-
teract with other remote regions along the brain network topol-
ogy. Many neurological symptoms are considered to be related to
network level alternations rather than focal abnormality of brain
(Zhu et al. (2014a), Vieira et al. (2017)). Second, the developed
GBDM s trained based on structural network which is used to ini-
tialize the topology of the graph. The neurological rationality is
that recent studies (Guo & Lee (2014); Phillips et al. (2019)) sug-
gests that the neurodegenerative disease related pathogenic pro-
tein (e.g., AP and tau) may aggregate via long-distance transmis-
sion along white matter pathways between remote brain regions.
Hence, it is natural to explore potential MCI/AD related abnor-
malities within individual structural network, instead of using Eu-
clidean neighbors. Thirdly, most current deep learning methods
focused on either brain structural or functional data, few studies
have been conducted on both of them at network level. However,
it is suggested that MCI/AD progression may follow both struc-
tural and functional topologies (Franzmeier & Dyrba (2017)). In our
proposed GBDM, the topology of the graph is learned from func-
tional features and structural network simultaneously, by maximiz-
ing MCI classification performance. The obtained deep brain con-
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Fig. 1. Illustration of the proposed Deep Brian Connectome learning based on Graph Based Deep Model (GBDM). By using Destrieux atlas (Destrieux et al. (2010)) along
with DTI and resting state fMRI data, we extracted the averaged BOLD signal of each brain region (148 regions in total) (Fig. 1(a)) and constructed brain structural network
(Fig. 1(b)). Then the structural network was used as the initialization of graph topology, and the functional information was used by GBDM to iteratively update the topology
of the graph - deep brain connectome (Fig. 1(c)), to maximize its classification power for MCI patients.

nectome reflects a deep fusion of structural and functional network
alterations in MCI patients.

Related work
Multimodal Fusion

There are two widely used strategies to integrate potential com-
plementary information buried in multimodal data for AD classi-
fication — feature concatenation and feature fusion. Feature con-
catenation is simply concatenating the features derived from dif-
ferent modalities and combining them as a single feature vector
for classification. For example, many studies have tried to com-
bine the features from structural MRI and other imaging modal-
ities, such as diffusion MRI, functional MRI and positron emis-
sion tomography (PET), to improve the classification performance.
Cui et al. (2012), Li et al. (2014), and Schouten et al. (2016) used
the combination of regional volumetric measures extracted from
structural MRI, diffusion measures generated from diffusion MRI
and correlation measures calculated from functional MRI as in-
put features to conduct AD classification. Tang et al. (2016) com-
bined volumetric, shape and diffusion measures of hippocampus
and amygdala into a high dimension feature vector. Then they used
PCA and Student’s t-tests to reduce the feature size and fed the se-
lected features into Support Vector Machine (SVM) for AD classifi-
cation. Fan et al. (2008) merged regional volumetric measures with
regional fluorodeoxyglucose PET intensity for MCI classification us-
ing linear SVM. In their work, feature selection methods have been
applied to improve the classification performance. The combination
of imaging modalities with non-imaging features including demo-
graphics, cognitive measures, and genetic data has also been ex-
plored. Vemuri et al. (2008) integrated gray matter (GM), white
matter (WM), and CSF density maps with demographics (age, gen-
der), cognitive measures, and genetic data (APOE genotype) for sin-
gle kernel SVM-based classification. Zhang et al. (2014) applied
PCA on GM density maps, demographics and cognitive measures
for feature extraction. Then based on the selected features, they
constructed a single kernel support vector machine decision tree
(kSVM-DT) for AD classification. Moradi et al. (2015) combined GM
density maps, demographics (age), and cognitive tests as features,
and employed a semi-supervised learning method - low-density
separation, for AD conversion prediction. The advantages of fea-
ture concatenation are straightforward and easy to realize. How-
ever, this strategy has a major limitation: it treats multimodal fea-
tures equally and ignores the different natures and underlying im-
portance of various features extracted from different modalities
(Hinrichs et al. (2011); Liu et al. (2013)). Feature fusion tries to ac-

commodate different information contained in multiple modalities
by designing more sophisticated ways to combine multimodal fea-
tures. Dyrba et al. (2015) used regional GM volumetric measures,
diffusion measures (FA, MD, and mode of anisotropy), functional
measures (the shortest weighted path-length) and network mea-
sures (weighted local clustering) as features and adopted multi-
kernel SVM for AD classification. Different from conventional SVM,
multi-kernel SVM allows using different types of kernels for mul-
timodal data and provides a promising way to account for the
different natures of features extracted from different modalities.
Similarly, Zhang et al. (2011, 2012) applied multi-kernel learning
to regional GM volume, regional average FDG-PET intensity, and
CSF biomarkers to conduct AD and MCI classification. Besides us-
ing different kernels for classification, different modalities can be
used to train classifiers separately. Dai et al. (2012) trained multi-
ple LDA classifiers based on regional GM volumetric measures and
functional measures (functional connectivity strength, homogene-
ity, and amplitude of low-frequency fluctuations). Then, they com-
bined the output of the classifiers by weighted voting. In general,
both feature concatenation and fusion aim to integrate the knowl-
edge from multiple sources by considering their simple (e.g., lin-
ear) relations using shallow models, the complex brain structure-
function interactions have been overlooked.

Graph Convolutional Network in Neuroimaging

Recent advancement of graph convolutional network (GCN)
(Kipf & Welling (2016); Wu et al. (2020); Zhang et al. (2020)) ex-
tends the convolutional operations from regular, Euclidean data
to non-Euclidean data and witnesses great success in brain
disease prediction (Ktena et al. (2018); Parisot et al. (2018);
Kazi et al. (2019); Zhang et al. (2019a); Song et al. (2021)). Based
on the definition of the graph, existing neuroimaging studies us-
ing GCN can be divided into two categories - population-level
graph and individual-level graph. In population-level graph, each
node in the graph represents one subject’s data and the edge
represents the similarity between the two connecting individu-
als. For example, Parisot et al. (2018) represented the whole pop-
ulations by a sparse graph. They used imaging features of each
subject as nodes and encoded pairwise similarities between fea-
tures as edge weights. Based on the constructed sparse graph, a
GCN was trained in a semi-supervised manner to predict conver-
sion to Alzheimer's disease. Kazi et al. (2019) adopted a similar
graph structure, where each node represented an individual and
was associated with a feature vector generated from imaging data.
The similarities between the individuals were calculated via non-
imaging data. Different from conventional models that used con-
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stant filter size throughout all layers, Kazi et al. (2019) proposed
an InceptionGCN to generate class separable output features by
varying the filters’ size across the GCN layers. To better charac-
terize the relationship between nodes and improve the classifica-
tion performance, Song et al. (2021) designed a similarity-aware
adaptive calibrated GCN (SAC-GCN). The SAC-GCN used a calibra-
tion mechanism to fuse fMRI and DTI information into edges and
pre-trained a GCN to calculate the similarity between each pair of
subjects. However, population-level graph is limited in flexibility
when the sample size grows and in capability when represent-
ing rich information of individuals. Individual-level methods con-
struct individual graph for each subject. Each node in the graph
represents a region of interest (ROI), e.g., a brain region defined
in brain atlas, and the edge indicates the relationships (e.g., con-
nectivity) between the two ROIs. Zhang et al. (2019b) constructed
multiple graphs for each subject with respect to multi-modal brain
networks. They trained different GCNs and concatenated features
generated by each GCN to conduct classification of Parkinsons dis-
ease. Ktena et al. (2018) built a single graph for each subject us-
ing functional connectivity and proposed a siamese graph con-
volutional network (s-GCN) to learn a graph similarity metric. In
their work, two GCNs are constructed with shared weights and
followed by a fully-connect (FC) layer. During the training pro-
cess, two graphs from the same and different clinical groups are
fed into the two GCNs respectively and the FC layer outputs the
similarity estimate. In general, most GCN studies fix the topology
of the graph throughout the training process. As a result, they are
designed to study the the relations among different brain regions
(nodes) from either structural or functional perspectives, instead of
the interactions between brain structure and function.

Methods
Method Overview

We proposed a graph-based deep model (GBDM) (Fig. 2) to an-
alyze brain structure-function abnormalities in MCI patients by in-
tegrating both structural and functional data. Brain structural net-
work is used to initialize the topology of the graph, i.e., the ad-
jacency matrix in GCN. An individual functional profile is learned
and combined with structural network iteratively. Pearson’s corre-
lation coefficients of averaged BOLD signals are treated as the fea-
tures associated with the nodes of the graph. The entire model
is designed to differentiate MCI from NC by seamlessly incorpo-
rating functional profile learning (Section 3.2) and brain structure-
function fusion (Section 3.3). Specifically, our model is composed
of four components: 1) learning of functional profile to parameter-
ize pairwise functional relations between any two brain regions;
2) brain structure-function fusion for seeking to best combine both
structural network and the learned functional profile as new topol-
ogy of the graph; 3) brain network convolution conducted upon
the updated graph topology; 4) MCI-NC classification with fully
connected neural network.

Functional Profile Learning

There exist a few measurements to represent pairwise
relationship between two BOLD signals derived from fMRI,
such as mutual information (Hlinka et al. (2011)), covariance
(Challis et al. (2015)), correlation (Zhu et al. (2014a)) and partial
correlation (Smith et al. (2011)). In general, how to effectively rep-
resent the functional relationships among brain regions is still an
open research area. In this work, we aim to learn a disease-related
functional mapping matrix to form a functional profile that can be
used to combine with brain structural network at later step. We
will parameterize the representation of the similarity between two
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BOLD signals and the parameter will be automatically learned dur-
ing the training process. The steps of the parameterization are pre-
sented as follows:

Averaged fMRI Signal Extraction: We used the Destrieux atlas
(Destrieux et al. (2010)) to divide the whole brain into 148 regions.
We calculated the average fMRI signal for each brain region as the
representative for later analysis.

Normalization: We normalized the averaged fMRI signal using
the standard Z-score normalization (Jain et al. (2005)) shown in

(1),
fi—Tu

%

* , 1
fr="% M
where f; is the averaged fMRI signal of brain region i, f,, and fs
are the mean and the standard deviation of all 148 averaged fMRI
signals.

Functional Profile Learning: We defined the parameterized
functional-pairwise distance between region-i and region-j using

(2):
G(fr, FEM)=M(f —f1)". Vi, jel, ..., N, (2)

where M € RT<T is the learnable functional mapping matrix, T is
the number of time points of averaged fMRI signals. f and fJ? are
the normalized averaged signals of two brain regions. It is worth
noting that the proposed parameterization approach (2) has been
widely used in metric learning, where M is interpreted as a lin-
ear projection matrix and qb(fi*, f}‘; M ) becomes the Mahalanobis

distance with precision matrix MTM (Xing et al. (2003)). Differ-
ent from conventional metric learning methods, we will integrate
it into the proposed deep learning model with a natural nonlin-
ear extension. Due to the high complexity of fMRI signals, linear
projection function used in (2) is inadequate for modeling the dis-
tance/similarity of the averaged fMRI signals. To alleviate the above
issue, nonlinear projection can be introduced by applying Gaussian
kernel in terms of kernel trick given by

$(fi. fi:M)

202

Al =exp | — L Vi, jel, ..., N (3)

F . . .
whereAl.j € R represents the pairwise functional profile between

brain region i and region j. A € R¥*N is the matrix including all
pairwise functional profiles between any two brain regions with
the (i, j)tentry — 7A;Fj. o is the bandwidth parameter of Gaussian
kernel and is treated as a hyper-parameter, which will be fully dis-
cussed in Section 4. In order to avoid introducing any bias, M is
initialized as identity matrix. During the training process, M is it-
eratively updated based on classification results.

Brain Structure-Function Fusion

A major goal of this work is to examine MCI related network
alterations via deep fusion of brain structural and functional data.
To this end, we propose a novel strategy to integrate brain struc-
tural networks and functional profiles in a deep and regularized
fashion. First, we calculate individual structural network matrix -
AS € RN which is a symmetric matrix and Afj € R is the number

of DTI-derived fibers connecting brain region i and region j. Then,
we conduct normalization of A using (4) and (5). (A%), and (A%)«
are the mean and the standard deviation of AS. Because the num-
ber of fibers connecting two brain regions can be from zero to a
few thousands and conform to a skewed distribution. Log transfor-
mation can equalize the standard deviations and make the distri-
bution of the sample mean more consistent with a normal distri-
bution (Curran-Everett (2018)). Therefore, we first used log trans-
formation to narrow the range of the number of fibers by (4) and
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Fig. 2. The major steps of the proposed Graph Based Deep Model (GBDM), The model consists of four components: 1) functional profile learning,

2) brain structure-

function fusion, 3) brain network convolution and 4) MCI-NC classification. Functional profile learning aims to learn a new representation of pairwise functional relations
by introducing a trainable functional mapping matrix. In the step of brain structure-function fusion, structural network and the learned functional profile are combined as
a hybrid brain network and it will be updated in each iteration, Using functional connectivity (defined with Pearson’s correlation coefficient) as features associated to the
network nodes (brain regions), we conduct graph convolution based on the hybrid brain network. A fully connected network is appended at last for MCI-NC classification
and the results are used to update the parameters in previous layers. Because the learned hybrid brain network “deeply” integrates brain structure-function information to

maximize its MCI-NC classification power, we name it as Deep Brain Connectome.

then used (5) for normalization.

AU = lOg]O(A?j + 1),

AS— (A5)u
(#),

At last, we combine the normalized structural network (AS) and
functional profile (AF) using (6) and (7):

A=T110,A5 +6,AF,

(4)

A = (3)

(6)

_ e (P
Y i1 €Xp (—Bm)

where [ is an identity matrix of N x N and it makes sure that
each node can be considered in its own convolutional operations.
¢, and 6, control the contributions of structural and functional
components in the combined new brain connectome (A). Here
B (k=1, 2) are introduced in (7) to constrain Z§:1 6, =1 and
6, > 0. During this training process, 6, is iteratively updated (via
By) to improve the classification performance when differentiat-
ing MCI from NC in the fully connected layers (Section 3.5). It is
clear that introducing ;s in (7) can facilitate the gradient descend
method to optimize 6,s without cautious on the simplex con-
straint, and (7) is a continuous and differentiable function, which

(7)

can be easily optimized by the backpropagation method. As a re-
sult, the presented fusion strategy is easily incorporated into our
deep learning models. In general, the disease-related knowledge
(from classification) is passed to functional profile (Af ) and then
transferred to the new brain connectome (ﬁ), by combining with
structural network (AS). This is an iterative process and at each it-
eration, A will be used as the new topology for graph convolution
of node-associated features.

Brain Network Convolution

To represent the latent interactions in brain network, we adopt
a multi-layer GCN architecture to fulfill the joint tasks of classifica-
tion and brain connectome learning. GCN (Kipf & Welling (2016);
Wu et al. (2020); Zhang et al. (2020b)) extends traditional CNN
by applying convolutional operations on graph-based instead of
Euclidean-based neighbors. Here we provide a basic definition of
graph for better understanding of GCN.

Definition. A graph is denoted by G = (N, E, A) where N is the
set of nodes, E is the set of edges and A € R¥*N is the adjacency
matrix, N is the number of the nodes. In a graph, let n; € N denote
node i, e;; = (n;, n;) € E denote an edge connecting n; and n; and
a;j € A to represent the connection strength between n; and n;.

For a graph G, each node n; can have its own attributes rep-
resented by a row vector X; € R! *2 and D is the dimension of at-
tributes (features). X = [xq, ..., xn] € RN*D is the feature matrix of
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the graph. We used the updated hybrid brain connectome A as
the adjacency matrix in each iteration (A :fl). We calculated Pear-
son Correlation Coefficient of every pair of averaged fMRI signals
as feature matrix P € RN*N (X = P). The feature vector of node n;,
P.= (P, Py, ..., Py), is the concatenation of correlations to all
the other nodes. The input graphs in our model are individual-
level graphs which have the same number of nodes representing
the corresponding brain regions. More importantly, the topology of
the graphs (A = A) are flexible and will be iteratively updated in
the training process to maximize its classification power when dif-
ferentiating MCI from NC.

Graph Spectral Convolution: given a graph G= (N, E, A) and
the feature matrix X = {x; € RV*P}N | the spectral convolutions on
graphs was defined as gy #x; =UgyUTx; in the Fourier domain.
8y = diag(@) is a filter parameterized by a vector of Fourier co-
efficients # € RN. U is a set of eigenvectors of normalized graph
Laplacian L = INf’D‘% AD % = UAUT, where D is the degree
matrix of A, A is a diagonal matrix of the corresponding eigen-
values and gy can be viewed as a function of the eigenvalues,
ie. gg(A) . UTx; is the graph Fourier transform of x;. The com-
plexity of calculating UgyUTx; is O(N?) and computing the eigen-
decomposition of graph LaplacianL is prohibitively expensive for
large graphs. To solve this problem, in Michaélet al. (2016) gg(A)
is formulated as a polynomial: g5(A) = Zlk(:‘& O Ak, This is a K-
localized kernel since the filter is represented by the K-order
polynomial of the graph Laplacian, which depends only on nodes
within K steps (K-order neighborhood) away from the central
node. The complexity of calculating Z;‘:& A, A¥ is O(|E|), which
is linear with the number of the edges. A graph convolutional
network can be built by stacking multiple convolutional layers of
the polynomial form: gg(A) = Zf:‘[} O Ak, For example, in Kipf &
Welling (2016), a two-layer GCN is formulated by Z = f(X, A) =
f(A ReLU (AXW @)W (1), where A=DIAD 7 is the Laplacian
transformation of A. In our previous work (Zhang et al. (2019)),
we evaluated A = A and other three different Laplacian transforma-
tions of A: A=D—A, A= D*% A D*%. and A =D-"A. We found
that A=A and A = D’% AD’% give similar classification perfor-
mances. Thus, in this work we used the matrix calculated by (6)
directly without Laplacian transformation. The advantages are as
follows: 1) compared to A = D3 AD*%, A = A needs less com-
putational cost; and 2) in this work, we attempt to explore the
structural and functional network alterations in MCI patients, extra
transformation on the original data may have unknown influence
on the results.

Based on above discussion, in this work the convolutional pro-
cess of multi-layer graph convolutional network is formulated by
(8) and (9).

G = f(AH"'W,). (8)
i {f(AH:YW)b.l =1, (9)

where f is the nonlinear activation function and we used Relu
in our experiment. For the I layer, H' is the output, W, e Rfifio
is the weight matrix, F; and F, are the feature sizes of input
and output feature matrix. As showed in Fig. 3, each W, is a
filter which selects related features from neighbors and defines
how to combine these features. By stacking multiple graph convo-
lutional layers, information from high-order neighbors (indirectly
connected via other nodes) can be propagated along brain connec-
tome defined by current adjacency matrix A. Fig. 4 illustrates the
neighbors with different order and how a multi-layer GCN con-
ducts the graph convolution at different layers. Our previous study
(Zhang et al. (2020a)) suggested that the impact of MCl-related al-
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terations may go beyond the first-order neighbors and be limited
to the third-order neighbors. Therefore, in our experiments, brain
network based convolutions were implemented using a two-layer
GCN.

MCI-NC Classification

In the last part of GBDM, we designed a two-layer fully con-
nected neural network to perform binary classification for two
classes — MCI and NC. Based on the classification performance, the
gradient information will be propagated back to the entire net-
work and the following parameters will be updated accordingly:
1) {W}} in brain network convolution - Section 3.4; 2) {6;} in brain
structure-function fusion - Section 3.3; and 3) M in functional pro-
file learning — Section 3.2. Through this way, the disease-related
knowledge drives the training process to learn a new brain con-
nectome — A (see (6)) which represents a deep fusion of brain
structure and function, that is the deep brain connectome. After the
above three parameters are obtained after training process, we can
make prediction for any given individual data including structural
network matrix AS, feature matrix P, and averaged fMRI signals
{fi}: the first step is to calculate the individual deep brain con-
nectome A by using (6) and the optimized M and {6}; then P to-
gether with A are forward propagated through the trained deep
graph convolutional network with optimized {W,} to the classifica-
tion layer for final prediction.

Results

We applied our proposed GBDM to individual fMRI signals and
brain structural network. For each sample (subject) in training
data, the individual structural network is used to initialize the ad-
jacency matrix with (6). Individual functional signals are used for
functional profile learning (see (3)), brain structure-function fusion
(see (6)) as well as node features in (9). Besides classification, the
major outcome of GBDM is the learned hybrid connectome — deep
brain connectome (A4), which integrates the knowledge from both
brain structural and functional data. In the results, Section 4.1 and
4.2 introduce the participants and data preprocessing. Section 4.3
shows the experimental setting. Section 4.4 shows the comparison
of classification performance with other widely used methods. Sec-
tion 4.5 shows the details of the learned deep brain connectome
and the evaluation of different model settings will be discussed in
Section 4.6.

Participants

In this work, we jointly analyzed three modalities of brain
imaging data in ADNI dataset, including structure MRI (T1-
weighted), resting state fMRI (rs-fMRI) and DTIL. We began with
252 subjects (132 Normal Controls (NC) and 120 MCI patients)
which have all three modalities. 38 (16 NC and 22 MCI) subjects
were not used in this work due to poor image quality. In total,
we have 214 subjects including 116 subjects from NC group (60
females, 56 males; 74.26 + 8.42 yrs.) and 98 subjects from MCI
group (57 females, 41 males; 74.23 4 8.81 yrs.). The proposed anal-
ysis was conducted on these 214 subjects.

Data Description and Preprocessing

The T1-weighted MRI data has 240 x 256 x 208 voxels and the
voxel size = 1.0 mm x 1.0 mm x 1.0 mm, TR = 2.3s. The DTI data
has 54 gradient directions, each volume has 116 x 116 x 80 voxels
and the voxel size = 2.0 mm x 2.0 mm x 2.0 mm, TE = 56ms
and TR = 7.2s. The rs-fMRI data has 197 volumes, each volume has
64 x 64 x 48 voxels and the voxel size = 3.4375 mm x 3.4375
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Fig. 3. Multi-layer graph convolutional network. According to the input adjacency matrix A and feature matrix P, a GCN layer creates a hidden representation for each node
by combining features from its neighbor nodes based on W,. After the combination, a nonlinear transformation is applied to the hidden representation. By stacking multiple
layers, the final hidden representation of each node gathers information from both direct neighbors and high-order neighbors (indirectly connected via other nodes).
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Fig. 4. The influences of using different numbers of GCN layers for aggregating features. We use step to represent the number of edges in a shortest path connecting two
nodes in the graph. The nodes with the same color represent that they have the same steps from the center node (red). With more GCN layers are stacked the deeper of

brain network relations are considered.

mm x 3.4 mm, TE = 30ms, TR = 3s and flip angle = 90°. The
first 6 volumes were discarded during preprocessing procedures to
ensure magnetization equilibrium.

We applied the same standard preprocessing procedures as in
Zhu et al. (2014a) and Wang et al. (2019). In brief, we applied skull
removal for all modalities. For rs-fMRI images, we applied spatial
smoothing, slice time correction, temporal pre-whitening, global
drift removal and band pass filtering (0.01-0.1 Hz). All of these pre-
processing steps are implemented using FMRIB Software Library
(FSL) (Jenkinson et al. (2012)) FEAT. For DTI images, we applied
eddy current correction via FSL and fiber tracking via MedINRIA.
For T1-weighted images, we registered them to DTI space by FSL
FLIRT and then conducted segmentation using FreeSurfer package
(Fischl (2012)). After the segmentation, we adopted the Destrieux
Atlas (Destrieux et al. (2010)) for ROI labeling and the brain cortex
is partitioned into 148 regions after removing two unknown areas
and two empty areas.

Experimental Setting

Data Setting. For each subject, the whole brain is divided into
148 regions using Destrieux Atlas. We calculate averaged fMRI sig-
nal for each brain region and created brain structural network (A%)
and Pearson Correlation Coefficient matrix (P) for each subject. For
classification, we conducted 5-fold cross-validation using the 214
subjects (116NC/98MCI).

Model Setting. The functional profile learning was implemented
by one fully connected layer with the input dimension and the
output dimension of T, where T is the number of time points. We
employed a two-layer GCN for brain network convolution. The out-
put feature dimensions of the first GCN layer and the second GCN
layer are 148 and 296, respectively. The two feature dimensions
are selected according to model evaluation (Section 4.6). The MCI-
NC classification was conducted by one fully connected layer with
input dimension 43808 (region number (148) x feature size (296))
and output dimension C, where C is the number of classes (C=2 in
this work). The entire model was trained in an end-to-end manner.
During the training process, the parameters were initialized fol-
lowing the Xavier scheme. The Adam optimizer was used to train
the whole model with standard learning rate 0.0005, weight decay
0.01, and momentum rates (0.9, 0.999).

Classification Performance

The proposed GBDM is based on MCI/NC classification task.
In this section, we focus on comparing classification perfor-
mance of the proposed method with other widely used meth-
ods. As mentioned earlier, GBDM is designed to learn a deeply
combined structural-functional connectome that can be used to
achieve higher MCI/NC classification performance. For fairly com-
parison, we summarize the overall classification performance of re-
cent MCI studies using both single-modality and multi-modality
as well as our model in Table I. The approaches of classifica-
tion include traditional machine learning methods, such as SVM
(Min et al. (2014); Cheng et al. (2015); Dyrba et al. (2015);
Liu et al. (2015); Moller et al. (2016); Shao et al. (2020) and most
recent deep learning models, such as CNN (Aderghal et al. (2018);
Liu et al. (2018); Huang et al. (2019)). The single modality in-
cludes MRI, DTI, and PET. The multi-modality includes MRI + PET,
MRI + PET + biomarkers, MRl + PET + biomarkers + Genet-
ics, MRI + DTI, and MRI + DTI + fMRIL. For AD/NC classification,
the accuracy of most single-modality methods listed in Table 1 is
bellow 90% while the accuracy of most multi-modality methods
is over 90%. Although the performance of Min et al. (2014) and
Liu et al. (2015) stand out than other listed single-modality meth-
ods and can reach an accuracy over 90%, they used multi-view
and multi-atlas to organize the single-modality data at different
scales and different views. For MCI/NC classification, the accu-
racy of most single-modality methods is bellow 80% while the
accuracy of most multi-modality methods is over 80%. Among
the listed studies, Aderghal et al. (2018), Liu et al. (2018) and
Shao et al. (2020) tested the proposed methods with both single-
modality and multi-modality. Their results indicate that comparing
to single-modality, using multi-modality data can achieve higher
classification accuracy. Some of the listed multi-modality methods
used PET data, which inclines to have better classification power
than MRI based modalities. It is worth noting that our method
used noninvasive DTI/fMRI data and achieves the best performance
of 92.7% for MCI/NC classification. Our result suggests that recogni-
tion of the complex relationship between different modalities may
be critical for better understanding brain structure-function alter-
ations in brain disorder studies.
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Table 1
Performance Comparison of Different Methods in AD/MCI Classification.
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(A) Single-Modality Study

Study Modality Group Method Accuracy (%)
AD MCI NC AD/NC  MCI/NC AD/MCI  pMCI/sMCI
Apostolova et al. (2014)  MRI 95 182 111 Hippocampus; SVM 85.0 79.0 70.0 -
Min et al. (2014) MRI 97 117P+117° 128  Multi-atlas; 91.6 - - 724
Morphometry; SVM
Liu et al. (2015) MRI 97 1177 +117° 128 multi-view; 93.8 - - 80.9
multi-template; SVM
Maller et al. (2016) MRI 84 - 94 Gray matter density 88.0 - - -
maps; SVM
Aderghal et al. (2018) MRI 188 399 228 Hippocampus; CNN; 90 72.5 82.5 -
transfer learning
Aderghal et al. (2018) DTI 48 108 58 Hippocampus; CNN; 85 62.5 82.5 -
transfer learning
Liu et al. (2018) MRI 93 76P1-128° 100 Patch-based; Cascaded 85.0 77.87 60.1° - -
CNNs
Liu et al. (2018) PET 93 76P4+128° 100 Patch-based; Cascaded 88.1 78.4° 63.4° - -
CNNs
Shao et al. (2020) MRI 160 2734187 160  Hypergraph; 88.3 69.1 - 68.5
Multi-kernel SVM
Shao et al. (2020) PET 160  273¢4+187! 160  Hypergraph; 873 65.6 - 67.6
Multi-kernel SVM
(B) Multi-Modality Study
Study Modality Group Method Accuracy (%)
AD MCI NC AD/NC  MCI/NC AD/MCI  pMCI/sMCI
Dyrba et al. (2015) MRI4+DTI4+fMRI 28 - 25 ROI-based; 79.0 - - -
Multi-kernel SVM
Cheng et al. (2015) MRI+PET+ 51 43P 4+56° 52 ROI-based; Doman - 86.4 82.7 79.4
biomarkers transfer SVM
Yu et al. (2016) MRI+PET+ 50 97 52 ROI-based; 92.6 80.0 - -
biomarkers Graph-guided learning
Shi et al. (2017) MRI + PET 51 43P+ 56° 52 ROI-based; Multimodal 97.1 87.2 - 78.9
SDPN
Tong et al. (2017) MRI+PET+ 37 75 35 Nonlinear 91.8 79.5 - -
biomarkers+ Graph-fusion;
Genetics
Aderghal et al. (2018) MRI+DTI 48 108 58 Hippocampus; CNN; 92.5 80 85 -
Transfer learning
Liu et al. (2018) MRI+PET 93 76P+128° 100 Patch-based; Cascaded 933 83.07 64.0° 74.3 - -
CNNs
Huang et al. (2019) MRI+PET 647  326P4+441° 731 Hippocampus; CNN 90.1 87.57 - 76.9
Peng et al. (2019) MRI+PET+ 49 93 47 Structured sparsity; 96.1 80.3 76.9 -
Genetics Kernel representation
Zheng et al, (2019) MRI+PET - 51P+75% - Connectivity-based; - - - 794
Multi-task regression
Shao et al. (2020) MRI+PET 160 2734187 160  Hypergraph; 92.5 82.5 - 75.48
Multi-kernel SVM
Proposed MRI+DTI+fMRI - 98 116  GBDM - 92.7 - -

Group: a®+b': the number of EMCI is a and the number of LMCI is b; ¢’+d°: the number of pMCI is ¢ and the number of sMCI is d.

Accuracy (%): aP: the accuracy of CN/pMCl is a; b*: the accuracy of CN/sMRI is b.

Deep Brain Connectome

Besides classification of MCI patients, the other major outcome
of GBDM is the learned deep brain connectome (A), By compar-
ing the learned deep brain connectome with the original brain
structural network, we are able to examine the functional influ-
ences on the structural connectivity (fusion of structural and func-
tional data) when conducting MCI classification task. All the results
showed in this section are based on the testing dataset.

Overall patterns of deep brain connectome

After applying the trained GBDM to each testing subject, the
individual deep brain connectome - A can be computed via (6).
The difference between A and the structural network reflects the
influence of functional data in the deep structure-function fusion
when classifying MCI from NC. Therefore, we are interested with
the changed connectivity of A comparing to the corresponding

structural network. Fig. 5 (a) shows the averaged results of dif-
ferent groups: NC and MCI. For each matrix, the order of the
brain regions is the same as the order defined in Destrieux atlas
(Destrieux et al. (2010)): the upper left/lower right represents the
connectivity within the same hemisphere and the connections be-
tween different hemispheres are located in upper right/lower left.
The first column displays the group-wise structural network and
we can see that the overall patterns of two groups are similar:
they show relatively stronger fiber connections in the same hemi-
sphere (Tsai (2018)). The second column shows the obtained deep
brain connectome. Through visual examination we can find that
comparing to the structural network, the deep brain connectome
is decreased within the same hemisphere and increased across
different hemispheres. These interesting results suggest that after
incorporating functional data to structural network, some cross-
hemisphere connectivity are strengthened to improve the classifi-
cation power in deep brain connectome. To better demonstrate the
inter- and intra- hemisphere patterns, we showed the increased
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Fig. 5. The results of the learned Deep Brain Connectome and comparison with brain structural network. (a) shows the averaged results for NC group (the first row) and
MCI group (the second row). For each group, the first column displays the group-wise structural network and the order of the brain regions listed in the matrix is the same
as Destrieux atlas. The second column shows the learned deep brain connectome. Compared to brain structural network, the increased and decreased connectivity in deep
brain connectome are shown in the third and fourth column. The top changed connectivity using the thresholds of 70% (for increased connectivity) and 37% (for decreased
connectivity) are shown in the fifth and sixth column. (b) shows the increased and decreased connectivity of 6 randomly selected subjects from NC group (the first block)

and MCI group (the second block).

and decreased connectivity separately at the third and the fourth
columns in Fig. 5 (a). We can see that the increased connectivity is
mostly composed of the ones connecting to different hemispheres
(the third column), while the decreased connectivity is located
within the same hemisphere (the fourth column). Note that in or-
der to improve the robustness and exclude the potential noisy data,
we only consider the increased/decreased connectivity which have
changed by more than 5% on every subject in the testing dataset.
Besides the averaged results, we also randomly selected 6 subjects
from testing dataset for each group and showed the individual in-
creased and decreased connectivity in Fig. 5 (b). The patterns of
the altered connectivity of single subject are consistent with the
averaged results. Moreover, we used medians of the changes (70%

for increased and 37% for decreased) as the thresholds to select the
top increased and decreased connectivity and showed them in the
fifth and the sixth columns in Fig. 5 (a). Our results indicate that
the number of top increased connectivity in MCI group is much
more than that in NC group. To further analyze the group level dif-
ferences, we examine the distribution of the changed connectivity
in deep brain connectome based on the changing scale.

Changed connectivity in deep brain connectome

To further study the changed connectivity in deep brain con-
nectome and better illustrate the group level differences, we calcu-
lated the distribution regarding the changing scale of increased and
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Fig. 6. Changing rate (%) for the increased connectivity ((a)) and decreased connectivity ((b)) of NC and MCI groups.

Table 2

Top 10 Increased Connectivity.
NC
Connection Change Connection Change
Ih_Pole_temporal rh_G_front_inf-Orbital 78% Ih_S_temporal_sup rh_G_front_inf-Orbital 77%
Ih_G_temp_sup-Plan_polar rh_G_front_inf-Orbital 77% Ih_G_temporal_middle rh_G_front_inf-Orbital 77%
Ih_S_precentral-sup-part rh_G_Ins_lg&S_cent_ins 76% Ih_G_pariet_inf-Supramar rh_G_front_inf-Orbital 75%
Ih_S_circular_insula_ant rh_G_front_inf-Orbital 75% Ih_Lat_Fis-post rh_G_front_inf-Orbital 75%
Ih_G&S_subcentral rh_S_central 75% Ih_S_precentral-inf-part rh_G_front_inf-Orbital 75%
Ml
Connection Change Connection Change
rh_G_cuneus rh_Lat_Fis-post 78% rh_S_precentral-sup-part rh_S_temporal_transverse 77%
part Ih_S_central rh_S_collat_transv_post 77% Ih_G_temp_sup-G_T_transv rh_S_precentral-sup- 77%
Ih_G_front_sup rh_S_temporal_transverse 77% Ih_G_temp_sup-Plan_tempo rh_S_precentral-sup-part  77%
Ih_S_temporal_transverse rh_S_precentral-sup-part 77% Ih_S_precentral-sup-part rh_G_cuneus 76%
Ih_G_temp_sup-Plan_temprh_Lat_Fis-ant-Vertical 76% Ih_G_temp_sup-Plan_temporh_G&S_cingul-Mid-Post 76%

decreased connectivity (Fig. 6). For both NC and MCI groups, there
are more increased connectivity (NC=1034, MCI=980 and 2014
in total) than decreased connectivity (NC=153, MCI=153 and 306
in total). The scale of changing for decreased connectivity mainly
ranges from 35% to 40%, whereas increased connectivity has higher
percentage of changing which is from 62% to 80%. The increased
connectivity inclines to possess larger changing scale than the de-
creased ones. Another observation is that for increased connectiv-
ity, the changing scale of MCI group is higher than NC group.

Visualization of the brain regions involved in the top changed
connectivity

For better visualizing the changed connectivity and the related
brain regions, we adopt two strategies to project them back to
brain space. We first show the top 10 increased and decreased con-
nectivity with the largest changing scale for MCl and NC groups
in Fig. 7 (a). It is consistent with Fig. 5 that the increased con-
nectivity are mainly the ones connecting the regions on differ-
ent hemispheres and the decreased connectivity are located within
the same hemisphere. In addition, the top increased connectiv-
ity inclines to connect brain regions with long distance, while
decreased ones mostly connect local areas. We list the top 10
changed connectivity, involved brain regions as well as the per-
centage of changes in Table 2 and Table 3.

The second way to project the changed connectivity is using the
same threshold for the level of changing compared to the initial
structural network. Here, to better demonstrate the differences be-
tween NC and MCI groups and the differences between increased
and decreased connectivity, we used 72% (for increased connec-
tivity) and 38% (for decreased connectivity) and the results are
shown in Fig. 7 (b). For both MCI and NC groups, the number
of increased connectivity is much more than the decreased ones.

This implicates that to improve the classification performance, the
learned deep connectome enhanced many structural connectivity
by deep fusion of structural and functional data. Moreover, with
the same threshold MCI group shows much more increased con-
nectivity than NC group. We summarized all the brain regions that
are involved in the top connectivity in Table S1 and Table S2 in
Supplementary.

Model Evaluation

There are two key hyper-parameters in the proposed GBDM
that may affect our results. The first is the o in (3), which con-
trols functional profile learning. The second parameter is the di-
mension of the output features at each graph convolutional layer,
which directly affects graph convolution. In this paper, we used
G (F, FE) to denote the architecture of graph convolutional net-
work and F is the dimension of the output features at the [
convolutional layer. Since the dimension of the input data is 148
= 148, we will evaluate the influence using different feature di-
mensions ff =148 xa, (a=1, 1.5, 2, ..., 6). For each model set-
ting we conducted 5-fold cross-validation using the same input
data. The influences of the two hyper-parameters on classification
performance, overall patterns of the changed connectivity and the
scale of changing are discussed in this section.

Influence on classification performance

Because the proposed GBDM is driven by the classification re-
sults, we firstly evaluate the influence of o and feature dimensions
on classification performance. We tried a spectrum of o (from 1.0
to 3.0) with different feature dimensions (from (148, 296) to (444,
888)) and showed the classification performance in Table 4. In

10
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Fig. 7. The top increased/decreased connectivity and the involved brain regions for both MCI and NC groups. (a) shows the brain regions related to the top 10 increased and
decreased connectivity and their connections. (b) shows the brain regions related to the increased and decreased connectivity with an averaged changing rate above 72% and
38%, respectively. For subfigures in both (a) and (b), the first row shows the involved regions and the second row highlights the regions as colored bubbles as well as the

connections.

order to evaluate the classification performance in a more com-
prehensive way, we summarized accuracy (Acc), averaged preci-
sion (Pre), averaged recall (Rec), and averaged specificity (Spec)
for each model setting. For accuracy, we showed the best, worst,
and averaged results separately. The combination of o = 2.0 with
G (148, 296) gives the best accuracy - 92.7%. The other settings
also showed decent performance in this work. In general, our pro-
posed GBDM performs relatively stable within a wide range for the
two key parameters.

Influence on the patterns of the changed connectivity

To demonstrate the influence of different parameters on the
changed connectivity in deep brain connectome, we displayed the
top increased and decreased connectivity obtained under different

n

model settings in Fig. 8. In general, the patterns of the changed
connectivity are very consistent: though the number and scale
of the changed connectivity may be slightly different with differ-
ent o and feature dimensions, the top increased and decreased
connectivity display the same inter- and intra- hemisphere pat-
terns as Fig. 5. Here we only showed the top changed connectivity,
the complete comparison including structural network, deep brain
connectome and the changed connectivity can be referenced in Fig.
S1 and Fig. S2 in Supplementary.

Influence on the scale of the changed connectivity

Here we will discuss the influence of o and feature dimen-
sion on the scale of the changed connectivity. We projected the
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Table 3

Top 10 Decreased Connectivity.
NC
Connection Change Connection Change
Ih_G_front_sup rh_G_front_sup 40% 1h_G_front_sup lh_S_front_sup 39%
Ih_G_parietal_sup Ih_G_precuneus 39% rh_G_front_middle rh_S_front_middle 30%
rh_G_parietal_sup rh_S_intrapariet&P_trans 39% 1h_G_front_middle Ih_S_front_inf 39%
Ih_G_parietal_sup 1h_S_intrapariet&P_trans 39% 1h_G_front_middle Ih_G_front_sup 30%
rh_G_front_middle rh_S_front_inf 39% rh_G_postcentral rh_S_central 39%
MCI
Connection Change Connection Change
rh_G_parietal_sup rh_S_intrapariet&P_trans  40% 1h_G_front_middle 1h_S_front_inf 40%
rh_G_parietal_sup rh_G_precuneus 40% rh_G_temporal_middle rh_S_temporal_sup 40%
Ih_G_parietal_sup Ih_G_precuneus 39% 1h_G_parietal_sup lh_S_intrapariet&P_trans 39%
rh_G_temp_sup-Lateral rh_S_temporal_sup 39% rh_G_front_middle rh_S_front_middle 30%
Ih_S_pericallosal rh_S_pericallosal 39% 1h_G&S_cingul-Mid-Ant 1h_G_front_sup 39%

NC

MCI

NC

MCI

NC

MCI

NC

(a) o = 1.0, G(148,296)

(b) 6 = 1.5,G(148,296)

(c)o = 25 G(148296) (d)o =3.0,

e

_NC

MCI

NC

MCI

(e) o = 2.0, G(222,444) fo =20,

. Top increased connectivity

G(296,592) (g) o =20,

(370.740)  (h) ¢ = 2.0, G(444,888)

Top decreased connectivity

Fig. 8. Top increased and decreased connectivity under different model settings. We used different combinations of ¢ and feature dimension to conduct our experiments.
The complete comparison including structural network, deep brain connectome and the changed connectivity are shown in Fig. S1 and Fig. S2 in Supplementary.

Table 4

Classification Performance under Different Model Settings.

Model Setting

Performance (%)

Feature o Acc? PreP Rect Spect
Dimension Best Worst Ave®

G(148, 296) 1.0 87.4 829 842 855 75.7 90.4
G(148, 296) 1.5 89.3 845 87.1 83.1 90.8 84.0
G(148, 296) 2.0 92.7 83.3 86.3 85.7 80.6 89.9
G(148, 296) 2.5 86.6 79.6 83.6 86.2 74.7 88.3
G(148, 296) 3.0 89.5 81.3 85.9 84.1 80.3 90.2
G(222, 444) 2.0 859 789 83.6 824 83.6 83.5
G(296, 592) 2.0 843 79.8 82.9 88.7 723 92.0
G(370, 740) 20 88.8 814 847 90.2 83.3 93.0
G(444, 888) 2.0 90.2 87.3 89.1 82.8 89.8 88.7

2Acc = Accuracy, PPre = Precision, “Rec = Recall, 9Spec = Specificity, CAve = Aver-

age
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trends of maximum and median values of the changing scale in
Fig. 9. Fig. 9 (a) shows the impact of o with fixed feature dimen-
sion. It is obvious that as o becomes larger, both the maximum
and the median of the changing scale for increased connectivity
become larger, while the decreased connectivity inclines to change
less. One reason is that according to (3) the learned functional pro-
file AFis positive proportional to o. Thus, a larger o leads to an
AF with larger values. Because AF contributes to the partial differ-
ences between structural connectivity and deep brain connectome
- A, the change of o will affect the scale of the changed con-
nectivity. Even so, more than 83% of the brain regions associated
with the top 100 changed connectivity are still the same. Fig. 9 (b)
shows the impact of feature dimension with fixed o. The max-
imum and median of the changing scale for both increased and
decreased connectivity are similar across different model settings.
These results suggest that the dimension of the output features
seems less sensitive than the other hyper-parameter - o.
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Discussion

Altered connections in deep brain connectome

The core component of GBDM is the deep fusion of functional
data and structural network: driven by the classification result, the
graph that represents the learned connectome is iteratively up-
dated based on functional features upon current network topology.
Therefore, an interesting question would be how to understand
and interpret the newly learned brain network — deep brain con-
nectome. In the past decades, numerous connectome-based studies
have reported and confirmed both structural and functional alter-
ations in AD/MCI patients (Greicius et al. (2004); Wee et al. (2011);
Agosta et al. (2012); Challis et al. (2015); Nir et al. (2015); Prasad
et al. (2015); Chen et al. (2011, 2017); Yu et al. (2017)). However,
the learned deep brain connectome cannot be treated as a simple
combination of structural and functional connectivity. In this work,
we conducted convolutional operations (see (8)) on graph-based
neighbors which are defined by the adjacency matrix - A. Essen-
tially, the entry in A is proportional to the output at each layer
and a larger connectivity in deep brain connectome indicates this
connectivity may be potentially important in the classification task.
In Table 2, most brain regions related to the increased connectiv-
ity are widely known for their close relations to AD/MCI develop-
ment, such as orbital part of the inferior frontal gyrus (G_front_inf-
Orbital) (Van Hoesen et al. (2000); Wang et al. (2007)) and tem-
poral regions. This result suggests the training process of GBDM
tends to alter brain network topology (initialized using structural
network) to provide more efficient paths for convolution opera-
tions: by increasing or decreasing connectivity in current brain
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network (13.), the way of integrating information from neighbors
can be optimized to improve the overall classification performance.
In addition, it is not necessarily true that the structural and func-
tional connectivity are always consistent as functional connectiv-
ity can be observed between brain regions with no direct connec-
tions (Damoiseaux & Greicius (2009); Honey et al. (2009); Park
& Friston (2013)). Therefore, when incorporating functional data,
the abovementioned training process will increase the connectivity
between the regions in different hemispheres that have little or
no structural connectivity (Fig. 5). Another interesting observation
is the top increased connectivity inclines to connect brain areas
with long distance, while decreased ones mostly connect local re-
gions. In our graph convolutional operations, increasing/decreasing
a connectivity will give more/less consideration to the related re-
gions when combining functional features. Our results in Fig. 5 and
Fig. 7 indicate the deep brain connectome tries to enhance the
weight of long-distance connections instead of short-distance con-
nections. Recent studies show that long-distance connections play
a critical role in functional diversity and complexity of dynamics.
Especially for AD and MCI, the severity of disease and cognitive im-
pairment was more associated to long-distance connected regions
(Liu et al. (2014); Cauda et al. (2020)). In general, the derived deep
brain connectome reflects which connections/paths that are “im-
portant” to the classification task.

Strategies for overfitting in GBDM
Deep neural networks contain multiple non-linear hidden layers

which makes them powerful when learning complicated relation-
ships among data samples. However, with limited training data, it
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is also possible to have overfitting issues. In deep learning field,
several methods are proposed to solve the overfitting problem. A
widely used strategy is data augmentation (Shorten & Khoshgof-
taar (2019)) which aims to overcome the overfitting by artificially
enlarging the training dataset. Because it may be difficult to di-
rectly evaluate the quality of the synthetic data, the improvement
of the model performance (i.e. segmentation/classification accu-
racy) is the only criterion to justify the validity of the augmen-
tation (Mok & Chung (2018); Hesse et al. (2020)). In this work,
a major motivation is to study the fusion of brain structural and
functional data and see how they affect each other when the fu-
sion is driven by classification task. The augmented data may have
unclear influence on the learned deep brain connectome even the
overall classification accuracy improves, therefore, we do not adopt
this strategy in our experiment. Our efforts for preventing over-
fitting focuses on model’s architecture and the training process,
such as batch normalization, early stop and dropout. Batch nor-
malization (loffe & Szegedy (2015)) is a regularization that nor-
malizes the set of activations in a layer by subtracting the batch
mean from each activation and dividing by the batch standard de-
viation. Besides improving the speed of training process, it can
make the learned model more stable and generalized. We per-
formed batch normalization after each GCN layer. Early stopping
(Caruana et al. (2001)) is a training strategy which can significantly
reduce overfitting and improve the generalization of deep neural
networks by terminating training at the point when performance
on a validation dataset starts to degrade. We also adopted early
stopping strategy in this work. Dropout (Srivastava et al. (2014))
is another widely used powerful method to address the overfitting
problem. Previous study show that dropout can remarkably reduce
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overfitting and give major improvements over other regularization
methods. In this work, we set 0.6 as the dropout ratio. We showed
the curve of loss and accuracy of both training and testing dataset
in Fig. 10. We can see that as the training progresses, the loss of
testing dataset doesn’t have obvious increase and the accuracy also
converges smoothly.

Reproducibility and generalizability

Applying our method on large-scale multi-site imaging data is
a good way to evaluate the robustness of our model. Here we used
ADNI imaging dataset (one of the largest datasets of AD) which
were collected from more than 60 centers. Besides the 214 sub-
jects (from 32 centers) we used in Section 4, to better evaluate the
reproducibility and generalizability of our model, we downloaded
the most recent released subset of ADNI including 124 subjects
(62NC (37 females, 25 males; 78.46 + 8.67 yrs.) and 62MCI (35
females, 27 males; 77.96 + 7.84 yrs.)) from other 28 centers as the
second dataset (dataset-2). We applied the same data preprocess-
ing, normalization steps and our method on this new dataset. We
adopted 5-fold cross-validation to evaluate the same nine model
settings as in Section 4.6. The classification performance and over-
all patterns of the changed connectivity are showed in Table 5 and
Fig. 11. As shown in Table 5, the proposed model achieves similar
classification performance - 94.1%. The pattern of changed connec-
tivity showed in Fig. 11 is consistent with the patterns in Fig. 8. All
these results indicate that our proposed model is stable and repro-
ducible on different datasets.

The core idea of deep brain connectome is to identify the dis-
ease related brain network by learning the connectome topol-
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Table 5
Classification Performance under Different Model Settings using Dataset-2.

Model Setting Performance (%)

Feature o Acc? PreP Rect Specd
Dimension
Best Worst Ave®

G(148, 296) 1.0 90.2 76.8 83.9 93.1 78.4 91.7
G(148, 296) 1.5 90.8 85.8 88.7 89.4 90.6 86.3
G(148, 296) 2.0 94.1 88.8 92.0 93.0 91.6 925
G(148, 296) 2.5 88.8 79.3 83.6 86.3 82.5 849
G(148, 296) 3.0 90.3 82.7 87.5 90.1 81.7 924
G(222, 444) 2.0 93.8 88.4 91.7 914 90.8 925
G(296, 592) 2.0 93.2 87.8 91.9 91.1 93.6 90.2
G(370, 740) 2.0 90.8 82.5 87.3 915 85.5 89.8
G(444, 888) 2.0 87.5 78.8 833 92.8 76.7 919

aAcc = Accuracy, PPre = Precision, “Rec = Recall, 9Spec = Specificity, CAve = Aver-
age

ogy (using both structural and functional information) instead of
fixing the predefined brain network. In this work, our proposed
model has been applied to MCI/NC classification task, however,
it can be easily extended to other tasks. In many brain disorders
(Stam (2014); Fornito et al. (2015)), pathological changes tend to
be “global” instead of “local”: the structural and functional alter-
ations are not equally distributed over the brain; instead, they of-
ten spread via structural or even functional network to influence
other brain regions. Thus, our deep brain connectome can be a
promising approach to explore the underlying relations between
brain structural and functional perturbations at network level in
both neurological and psychiatric diseases. In addition, by using
appropriate label information including clinical status, subtyping or
other cognitive/behavior measures, deep brain connectome can be
used in the study of brain development, aging, disease progression
and many other applications. For example, in section 3, classifica-
tion loss is used to train the graph topology, but other loss options
can be adopted based on different tasks, such as regression loss
(e.g., for continuous measures) and task-specific loss (e.g., a com-
bined loss for multiple tasks).

Conclusions

It is widely believed that the AD/MCI related brain alterations
involve both brain structure and function. However, how to com-
putationally model the complex and potentially non-linear rela-
tions between structural and functional data and integrate them
at network level is still challenging. Inspired by the most recent
development of deep learning approaches, in this work we devel-
oped a graph-based deep model - GBDM to classify MCI patients
from normal controls. We constructed a graph convolutional net-
work with trainable topology which is learned from functional fea-
tures and structural network simultaneously. Comparing to the ini-
tialized structural network, the learned new brain network - deep
brain connectome shows increased connections connecting to dif-
ferent hemispheres and regions with long-distance. Our developed
GBDM achieves 92.7% classification accuracy on ADNI dataset and
outperforms most recent studies. Given the complementary infor-
mation stored in multimodal data, we envision that our proposed
deep brain connectome can provide a promising way for the deep
fusion of brain structure and function.
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