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Abstract. We show that the character table of a finite group G determines whether
a Sylow 2-subgroup of G is generated by 2 elements, in terms of the Galois action
on characters. Our proof of this result requires the use of the Classification of Finite
Simple Groups and provides new evidence for the so-far elusive Alperin–McKay–Navarro
conjecture.

1. Introduction

One of the main themes in Finite Group Representation Theory is the study of how the
values of characters in a p-block B of a finite group G affect the structure of a defect group
D of B, and vice versa. This topic was already suggested by R. Brauer in his famous list of
problems on Modular Representation Theory [2], which is still a source of inspiration for
unveiling global/local connections in finite groups. In particular, the structure of p-blocks
with cyclic group (for any p), and with dihedral, semidihedral or quaternion defect groups
(for p “ 2) are cornerstones of the theory, by pioneering work of R. Brauer, E. C. Dade,
and J. B. Olsson in the 1970’s (prior to the Classification of Finite Simple Groups).

After studying cyclic defect groups or defect 2-groups D such that D{D1 has order
4 (these are dihedral, semidihedral or quaternion), where D1 “ rD,Ds is the derived
subgroup of D, it is logical to study 2-blocks in which D is generated by two elements,
a hypothesis that naturally generalizes at the same time both of the previous conditions.
While for a given n ě 3, there are just three isomorphism classes of groups D of order
2n with |D : D1| “ 4, it is interesting to remark that the number of non-isomorphic
2-generated groups of order 2n grows exponentially with n (see [19]).

Note that a non-cyclic 2-group D is 2-generated if, and only if, |D : ΦpDq| “ 4, where
ΦpDq is the Frattini subgroup of D. Our aim in this paper is to show that it is possible
to characterize when |P : ΦpP q| “ 4 by means of the values of the odd-degree irreducible
characters in the principal 2-block of G, where P is a Sylow p-subgroup of G.

2010 Mathematics Subject Classification. 20C20, 20C15.
Key words and phrases. Sylow 2-subgroups, character tables, Principal blocks, Alperin–Galois–McKay

conjecture.
The first, second and fourth authors are partially supported by the Spanish Ministerio de Ciencia

e Innovación PID2019-103854GB-I00 and FEDER funds. The third author is partially supported by
the National Science Foundation under Grant No. DMS-1801156. The fourth author also acknowledges
support by Spanish Ministerio de Ciencia e Innovación MTM2017-82690-P and the ICMAT Severo Ochoa
project SEV-2015-0554. Part of this work was supported by the National Security Agency under Grant
No. H98230-19-1-0119, The Lyda Hill Foundation, The McGovern Foundation, and Microsoft Research,
while the second, third, and fourth authors were in residence at the Mathematical Sciences Research
Institute in Berkeley, California, during the summer of 2019.

1



2 GABRIEL NAVARRO, NOELIA RIZO, A. A. SCHAEFFER FRY, AND CAROLINA VALLEJO

Let σ P GalpQab{Qq be the Galois automorphism that cubes 2-power roots of unity and
fixes odd-order roots of unity. The following global/local result is the main theorem of
this paper.

Theorem A. Let G be a finite group, let B be the principal 2-block of G, and let
P P Syl2pGq. Then |P : ΦpP q| “ 4 if and only if the number of σ-invariant odd-degree
irreducible characters in B is 4.

The statement of Theorem A is yet another consequence of the Alperin–McKay–Navarro
conjecture [29], a conjecture that has turned out to be a quite useful motivation for
contributions to [2, Problem 12] (see, for instance, [32, 35, 37, 39, 40]). In fact, it is also
possible to prove that the Alperin–McKay–Navarro conjecture implies that |P : ΦpP q| “ 9
if and only if the number of τ -invariant, 31-degree characters in the principal 3-block of
a group G with Sylow 3-subgroup P is 6 or 9; where here τ is the Galois automorphism
that fixes 31-order roots of unity and raises 3-power roots of unity to the fourth power.
It seems that a proof of this result would require additional techniques. It also remains
a challenge to find a corresponding statement for primes larger than 3, or for a greater
number of generators, if indeed they exist.

Our proof of Theorem A requires the Classification of Finite Simple Groups and a deli-
cate reduction to almost simple groups of the problem. In particular, we believe that the
results in Section 4 in this paper represent a contribution to the general problem of un-
derstanding the action of Galois automorphisms on the characters in blocks of nonabelian
simple groups.

In view of the fact that 2-blocks with a defect group P with |P : P 1| “ 4 have a
bounded, and quite small, number of irreducible Brauer characters (see Section 6.2 of
[7]), it is natural to ask if the same happens if we instead assume that |P : ΦpP q| “ 4.
The following elegant counterexample is due to G. Malle, and it is not so easy to find.
Let n “ 2a and let H be the Singer cycle in SLnp2q, of order 2n ´ 1. Then its normalizer
contains a regular unipotent element u (of order n). The principal 2-block of the semidirect
product of the natural module V with Hxuy has a Sylow 2-subgroup P with |P : ΦpP q| “ 4
and at least 2n´2

n
` 1 irreducible 2-Brauer characters.
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2. Preliminaries

Our notation for characters follows [17] and [30]. Our notation for blocks follows [27].
Sometimes we denote by B0pGq the principal p-block of G, where p is a fixed prime in
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the context. If p is our fixed prime, let σk P GalpQab{Qq be the automorphism that fixes

p1-roots of unity and sends p-power roots of unity ξ to ξ1`pk . (So the automorphism σ
defined in the introduction is σ1 here, whenever p “ 2.) By elementary number theory,
we have that σk restricted to any cyclotomic field has order a power of p. Notice that a
linear character λ of a finite group is fixed by σk if and only if the p-part of the order of
λ divides pk.

In the next results, we work with slightly more generality than is required. The following
is a well-known result by J. G. Thompson.

Lemma 2.1. Let G be a finite group, p be a prime and P P SylppGq. If every linear
character of P of order p extends to G, then G has a normal p-complement.

Proof. Let M be the minimal normal subgroup of G such that G{M is a p-elementary
abelian group. Clearly, ΦpP q Ď M X P . If λ P IrrpP q has order p and νP “ λ, where
ν P IrrpGq, notice that pνp1qP “ 1, so we may assume that ν has p-power order. Also,
since pνP q

p “ λp “ 1, we have that νp “ 1. Hence M Ď Kerpνq and M XP Ď Kerpλq. We
deduce that M X P Ď ΦpP q. By a theorem of Thompson (see Problem 6.20 of [17])

1 “ Op
pP q “ Op

pGq X P .

Hence G has a normal p-complement. �

Recall that if G is a finite group, P P SylppGq and NŸ G, then ΦpPN{Nq “ ΦpP qN{N .
We will frequently use the following fact.

Lemma 2.2. Suppose that G is a finite group, and let P P SylppGq. Let N Ÿ G be
such that G{N has order divisible by p. Assume that P {ΦpP q has order p2. Then either
PN{ΦpP qN has order p and G{N has a cyclic Sylow p-subgroup, or PN{ΦpP qN has
order p2 and N has a normal p-complement.

Proof. Let Ḡ “ G{N and use the bar notation. Now, 1 ă P̄ {ΦpP̄ q has order a divisor of
p2. If P̄ {ΦpP̄ q has order p, then P̄ is cyclic.

Suppose that P̄ {ΦpP̄ q has order p2. Let Q “ P X N . Then Q Ď ΦpP q and therefore
N X ΦpP q “ Q P SylppNq. By Lemma 2.1 applied in the group NP , we obtain that NP
has a normal p-complement, and so does N . �

Lemma 2.3. Let G b a finite group. Write K “ OppGq, P P SylppGq, and Q “ P XK.

Assume that λ P IrrpQq is linear of order pk and is P -invariant. Then there exists ρ P
IrrpP q of order pk that extends λ.

Proof. Let τ be the restriction of σk to Q|G| “ Qpξq, where ξ P C has order |G|. Consider
A “ xτy ˆ P , so that A is a p-group and λ is A-invariant. By Lemma 2.1 (ii) of [32], λK

has a p1-degree irreducible A-invariant constituent θ with p1-multiplicity. Let χ P IrrpGq
be the canonical extension of θ (using Corollary 6.28 of [17]), which is xτy-invariant (by
uniqueness). Let ψ “ χP . We have that rχQ, λs “ rθQ, λs ı 0 mod p. By Lemma 2.1(ii) of
[32], there is some τ -invariant constituent ρ P IrrpP q of ψ such that rρQ, λs is not divisible
by p. Since λ is P -invariant, Q Ÿ P , and P is a p-group, it follows that ρQ “ λ (using
Corollary 11.29 of [17]). Since opλq “ pk and opρq divides pk (because ρ is τ -invariant),
we have that opρq “ pk. This proves the lemma. �
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Lemma 2.4. Suppose that G is a finite group, P P SylppGq and PCGpP q ď H ď G.
Suppose that θ P Irrpbq has p1-degree and it is σk-invariant, where b is the principal block
of H. Then there exists a σk-invariant χ P IrrpGq of p1-degree in the principal block of G
such that rχH , θs is not divisible by p.

Proof. By the comments before Theorem 9.24 of [27], we know that bG is defined. By
Brauer’s third main theorem (Theorem 6.7 of [27]), we have that bG “ B is the principal
block of G. Now, if

Ψ “
ÿ

χPIrrpBq

rθG, χsχ ,

we have that Ψp1qp “ θGp1qp “ 1 by Corollary 6.4 of [27]. Let A “ xτy, where here τ is
the restriction of σk to the |G|-th cyclotomic field extension Q|G| of Q, as above. Since B
is τ -invariant and θ is τ -invariant, we have that Ψ is τ -invariant. By Lemma 2.1 (ii) of
[32], there is a p1-degree A-invariant constituent χ of Ψ with p1-multiplicity. �

If a group A acts by automorphisms on G and τ P GalpQab{Qq, we shall denote by
Irrp1,A,τ pB0pGqq the set of A ˆ xτy-invariant characters in the principal block of G which
have degree not divisible by p. If A or τ are trivial, we choose not to write A or τ . In
the next three results, we want to relate Irrp1,σpB0pGqq with Irrp1,σpB0pHqq for certain
subgroups H in some special situations.

Lemma 2.5. Let G be a finite group, p be a prime and P P SylppGq. Write N “ OppGq,
and suppose that G{N is cyclic and non-trivial. Then

|Irrp1,σ1pB0pGqq| “ p|Irrp1,P,σ1pB0pNqq| .

Proof. If χ P Irrp1pGq, we have that χN “ θ is irreducible by Corollary 11.29 of [17].
Also θ is P -invariant. Furthermore, if χ is σ1-invariant, then θ is σ1-invariant. Moreover,
since G{N is a p-group, χ lies in the principal p-block of G if and only if θ lies in the
principal p-block of N , using [27, Corollary 9.6]. Conversely, if θ P Irrp1,P pNq, then θ
is G-invariant. We claim that the determinantal order opθq “ |N : Kerpdet θq| of θ is
coprime to p (here det θ is defined as in [18, Problem 2.3]). Write K “ Kerpdet θq Ÿ G
as θ (and hence det θ) is G-invariant. Take O{K “ OppN{Kq, so that O Ÿ G and G{O
is a p-group. By definition O “ N and hence N{K is a p1-group (recall N{K is cyclic).
As pθp1qopθq, |G : N |q “ 1, by [18, Corollary 6.28], θ has a canonical extension γ to G. In
particular, γ is σ1-invariant if and only if θ is. By [27, Corollary 9.6], if θ P B0pNq, then
IrrpG|θq Ď IrrpB0pGqq. In this case, there is a canonical bijection IrrpG{Nq Ñ IrrpG|θq
given by λ ÞÑ λγ (by the Gallagher correspondence Corollary 1.23 of [30]), where linear
characters of G{N correspond to p1-degree characters of G over θ. Notice that if γ is
σ1-invariant and λ is linear, then λγ is σ1-invariant if and only if λ is σ1-invariant, which
happens if and only if λp “ 1. Recall that since G{N ą 1 is a cyclic p-group, there are
exactly p linear characters λ P IrrpG{Nq satisfying λp “ 1. The proof of the lemma easily
follows from these considerations. �

The following is elementary.

Lemma 2.6. If G is a finite group of even order, then |Irr21,σpB0pGqq| is even.

Proof. See Lemma 1.4 of [39]. �
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Next is a well-known result of J. Alperin and E. C. Dade.

Theorem 2.7. Suppose that N is a normal subgroup of G, with G{N a p1-group. Let
P P SylppGq and assume that G “ NCGpP q. Then restriction of characters defines a
natural bijection between the irreducible characters of the principal blocks of G and N . In
particular, |Irrp1,τ pB0pGqq| “ |Irrp1,τ pB0pNqq|, for any τ P GalpQab{Qq.

Proof. The case where G{N is solvable was proved in [1] and the general case in [8].
The last part of the statement follows immediately since τ acts on IrrpB0q (preserving
character degrees). �

Finally, we shall need the following.

Theorem 2.8. Suppose that G is a finite group, and N is a normal subgroup of G with
N “ OppNq. Suppose that G{N has a normal p-complement K{N , and that P P SylppGq.
Let L “ NNGpP q. Then there is a natural bijection

Irrp1pB0pGqq Ñ Irrp1pB0pLqq

which commutes with GalpQab{Qq-action.

Proof. Let C “ K X L, and notice that C{N “ CK{NpP q. By Theorem E of [37], there
is natural bijection ˚ : Irrp1,P pB0pKqq Ñ Irrp1,P pB0pCqq that commutes with GalpQab{Qq-
action. Since N “ OppNq and K{N is a p1-group, notice that K “ OppKq and C “

OppCq. Every θ P Irrp1,P pB0pKqq has a canonical extension θ̂ to G, and every η P
Irrp1,P pB0pCqq has a canonical extension η̂ to L. Using the Gallagher correspondence, and
the fact that G{K is a p-group, we have that each χ P Irr21pB0pGqq can be uniquely written

as χ “ λθ̂ for some λ P IrrpG{Kq linear, where θ “ χK . Similarly, every ψ P Irr21pB0pLqq
can be uniquely written as ψ “ λη̂ for some λ P IrrpL{Cq “ IrrpG{Kq linear, where

η “ ψC . Hence λθ̂ ÞÑ λ pθ˚ yields a natural bijection

Irr21pB0pGqq Ñ Irr21pB0pLqq

that commutes with GalpQab{Qq-action. �

3. Proof of Theorem A

In this section, we prove that Theorem A is true it if holds for certain almost simple
groups. We shall prove the following in Section 4.

Theorem 3.1. Suppose that G is a finite almost simple group, with socle S. Assume that
G{S is a cyclic 2-group or a group of odd order. Let P P Syl2pGq. Then P {ΦpP q has
order 4 if and only if |Irr21,σ1pB0pGqq| “ 4.

Although in some of the following we could work in slightly more generality, let us fix
now our prime p “ 2, and let σ “ σ1 for the rest of the section. We recall that O21pGq
lies in the kernel of every character in the principal block by [27, Theorem 6.10].

We shall need to use one of the main results of [39].

Theorem 3.2. Suppose that G is a finite group. Then G has a cyclic Sylow 2-subgroup
if and only if |Irr21,σpBq| “ 2, where B is the principal 2-block of G.
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Also, we need a different (and much easier version) of the previous result.

Lemma 3.3. Suppose that G is a finite group and B is the principal 2-block of G. Then
G has a normal 2-complement if and only if Irr21,σpBq consists of linear characters. Also,
G has a cyclic Sylow 2-subgroup if and only if Irr21,σpBq consists of two linear characters.

Proof. Let P be a Sylow 2-subgroup of G. We prove the first statement. First suppose
that Irr21,σpBq consists of linear characters. Let λ P IrrpP {ΦpP qq. Write PCGpP q “ PˆU ,

and consider λ̂ “ λˆ 1U . By Lemma 2.4 and the hypothesis, we have that λ extends to a
σ-invariant character of G. By Lemma 2.1, we have that G has a normal 2-complement
K. If furthermore Irr21,σpBq consists of two linear characters, then P {ΦpP q is cyclic, and
P is cyclic.

Suppose that G has a normal 2-complement M . Then IrrpBq “ IrrpG{Mq can be
identified with IrrpP q, by [27, Theorem 9.9.(c)]. Hence the converse follows trivially.

The second statement is a direct consequence of the first one, since groups with a cyclic
Sylow 2-subgroup have a normal 2-complement by a well-known result proved indepen-
dently by Frobenius and Burnside. �

In the final step of the proof of Theorem A, we shall arrive at a particular minimal
situation. To solve that step takes longer than one would have expected.

Lemma 3.4. Suppose that G “ NP , where N is a nonabelian nonsimple minimal normal
subgroup of G, CGpNq “ 1, G{N is cyclic and P P Syl2pGq. Let S Ÿ N be simple,
H “ NGpSq, C “ CGpSq and let V P Syl2pH{Cq. Then the following hold.

(a) |Irr21,σpB0pGqq| “ 4 if and only if H ą SC and |Irr21,σpB0pH{Cqq| “ 4.
(b) |P : ΦpP q| “ 4 if and only if H ą SC and |V : ΦpV q| “ 4.

Proof. Write G{N “ xNxy for some x P P . Notice that H Ÿ G and G{H “ xHxy.

Suppose that G{H has order k. Then N is the direct product of the subgroups tSx
j
u,

j “ 0, . . . , k ´ 1 (where xj P P are representatives of the right cosets of H in G). Write
Q “ H X P “ NP pSq P Syl2pHq. Let R “ N X P “ N X Q P Syl2pNq, and let
R1 “ S XQ “ S X P “ S X R P Syl2pSq. By a standard argument, see for instance, the
next to the last paragraph of the proof of Theorem 2.4 of [32], we have that Q “ NP pR1q.

Also, R “ R1 ˆ Rx
1 ˆ ¨ ¨ ¨ ˆ Rxk´1

1 . Use the bar convention so that R̄1 “ R1C{C is a
Sylow 2-subgroup of S̄ “ SC{C and Q̄ “ QC{C is a Sylow 2-subgroup of H̄ “ H{C.
Furthermore, Q̄ X S̄ “ R̄1, and Q̄{R̄1 is cyclic, and by hypothesis, nontrivial. Since
SC “ S ˆ C, we have that R̄1 is isomorphic to R1. Notice too that H{SC is isomorphic
to Q̄{R̄1.

By hypothesis S ă N . In particular, G{N is non-trivial, H ă G and Q ă P . Since
P {R – G{N is cyclic, we have that |P : RΦpP q| “ 2. Hence Q Ď RΦpP q (otherwise
QRΦpP q “ QΦpP q “ P would yield Q “ P ). If R1 Ď ΦpP q then Rx

1 Ď ΦpP q (hence for
every xj with j P t0, . . . k´1u), and thus R Ď ΦpP q. Then |P : ΦpP q| “ 2 and P is cyclic.
In particular R would be cyclic, a contradiction. Hence, ΦpP q ă R1ΦpP q ď RΦpP q.

First we prove the ‘only if’ implication of (b). Assume that |P : ΦpP q| “ 4. Then
|RΦpP q : ΦpP q| “ 2 and R1ΦpP q “ RΦpP q. Let τ P IrrQpR1q be linear of order 2. (Such
character exists: for example, let λ P IrrpR1ΦpP q{ΦpP qq be the only nontrivial, then λ|R1

is nontrivial linear of order 2 and R1 X ΦpP q Ď Kerpλ|R1q. Since Q Ď RΦpP q “ R1ΦpP q,
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we also have that λ|R1 is Q-invariant. Moreover λ|R1 is the unique linear Q-invariant

character of order 2 of R1 with R1XΦpP q in its kernel.) Write γ “ τ ˆ τxˆ ¨ ¨ ¨ ˆ τx
k´1
P

IrrpRq. Then γ is linear of order 2 and, by Lemma 4.1(ii) of [35], is P -invariant. By
Lemma 2.3, there exists ν P IrrpP {ΦpP qq that extends γ, and therefore τ . In particular,
ΦpP q X R1 is contained in the kernel of τ (so τ “ λ|R1). Hence, we see that IrrQpR1q

contains a unique linear character of order 2. We claim that H ą SC. Otherwise,
QC “ pP XHqC “ PC XSC “ pP XSqC “ R1C. Thus Q̄ “ R̄1, and IrrQpR1q “ IrrpR1q

has a unique linear character of order 2. Hence R1 is cyclic, but this is impossible as S is
nonabelian simple, and the claim follows.

Note that also R̄1 – R1 has a unique Q̄-invariant linear character of order 2 (as QXC “
CP pSq acts trivially on IrrpR1q). Since every nontrivial character of R̄1ΦpQ̄q{ΦpQ̄q corre-
sponds to a Q̄-invariant linear character of order 2 of R̄1 (note R̄1ΦpQ̄q ď Q̄), this implies
that, |R̄1 : ΦpQ̄qX R̄1| “ |R̄1ΦpQ̄q : ΦpQ̄q| “ 2. Note that R ď R1C. Then Q̄{R̄1 is cyclic,
because P {R is cyclic, and nontrivial, since otherwise R1 would be cyclic, as in the para-
graph above (a contradiction). We conclude that |Q̄ : ΦpQ̄q| “ |Q̄ : R̄1ΦpQ̄q||R̄1ΦpQ̄q :
ΦpQ̄q| “ 4.

We now prove the ‘if’ implication of (b). Assume that |Q̄ : ΦpQ̄q| “ 4 and that H ą SC
(that is, Q̄ ą R̄1). Since |P : RΦpP q| “ 2 it suffices to show that |RΦpP q : ΦpP q| “ 2. By
Lemma 2.3, every Q̄-invariant linear character of λ P IrrpR̄1q of order 2 extends to a linear
character of Q̄ of order 2, and hence R̄1 X ΦpQ̄q Ď Kerpλq. Using that |Q̄ : ΦpQ̄q| “ 4, so
that |R̄1ΦpQ̄q : ΦpQ̄q| “ 2 we deduce that λ is unique.

We work to show that |RΦpP q : ΦpP q| “ 2. Note that RΦpP q{ΦpP q – R{R X ΦpP q.
If γ P IrrpR{R X ΦpP qq has order 2, then γ is P -invariant (because it may be identified

with a character of RΦpP q{ΦpP q ď P {ΦpP q). Therefore γ “ τ ˆ τxˆ ¨ ¨ ¨ ˆ τx
k´1
P IrrpRq

for some τ P IrrQpR1q linear of order 2 (by Lemma 4.1(ii) of [35]). In particular τ seen as
a character of R̄1 – R1 is Q̄-invariant of order 2, hence τ “ λ. We deduce that there is
only one choice for γ, and |R : R X ΦpP q| “ 2, as wanted.

Finally, we show (a). By Lemma 4.1(ii) of [35], there is a natural bijection Irr21,QpSq Ñ

Irr21,P pNq given by ψ ÞÑ ψ ˆ ψx ˆ ¨ ¨ ¨ ˆ ψx
k´1

that respects σ-action and principal 2-
blocks. (The last part follows from the definition of principal block as in [27, Defini-
tion 3.1]). In particular, |Irr21,P,σpB0pNqq| “ |Irr21,Q,σpB0pSqq|. Of course, this equals
|Irr21,QC{C,σpB0pSC{Cqq|, since S and SC{C are naturally isomorphic.

By Lemma 2.5 applied in G, we have that |Irr21,σpB0pGqq| “ 2|Irr21,P,σpB0pNqq|. If
H ą SC, by the same lemma we also have that |Irr21,σpB0pH{Cqq| “ 2|Irr21,Q,σpB0pSqq|.

Suppose that |Irr21,σpB0pGqq| “ 4. Then we have that |Irr21,P,σpB0pNqq| “ 2. Thus
|Irr21,Q,σpB0pSqq| “ 2. If H “ SC, then Q “ pQXSqCQpSq fixes all irreducible characters
of S. Then |Irr21,σpB0pSqq| “ 2. By Theorem 3.2, we have that S has a cyclic Sylow
2-subgroup, but this is not possible since S is nonabelian simple. Therefore we have that
H ą SC in both directions, and |Irr21,σpB0pGqq| “ |Irr21,σpB0pH{Cqq|. �

Notice that in Lemma 3.4, we need that H ą SC, otherwise the wreath product of A5

with C2 is a counterexample to both of its statements.

We are finally ready to prove Theorem A (assuming Theorem 3.1 on almost simple
groups), which we restate now.
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Theorem 3.5. Suppose that G is a finite group, and let P P Syl2pGq. Assume that
Theorem 3.1 is true. Then |P : ΦpP q| “ 4 if and only if |Irr21,σpB0pGqq| “ 4.

Proof. For both directions, we may assume that O21pGq “ 1.
Assume first that |P : ΦpP q| “ 4. We prove that |Irr21,σpB0pGqq| “ 4 by induction on

|G|. First note that if U is a complement of P in NGpP q and we write V “ Op1pNGpP qq,
then U{V acts faithfully on P {ΦpP q – C2ˆC2 by [18, Corollary 3.30]. Thus either U “ V
or U{V – C3.

Let N be a minimal normal subgroup of G. Since ΦpP qN{N “ ΦpPN{Nq, we have
that |PN : ΦpP qN | is 1, 2 or 4.

Assume that |PN : ΦpP qN | “ 1, then G{N has odd order. Thus P Ď N . If N is a 2-
group, then we have that P “ NŸG, and either G “ N or G “ A4 (using that O21pGq “ 1
and U{V has order 1 or 3). In both cases, the result is clear. If N is nonabelian, then
N is the direct product of k copies of a nonabelian simple group S. Also, P is the direct
product of k copies of the Sylow 2-subgroup of S, which is not cyclic (as groups with cyclic
Sylow 2-sugroups have a normal 2-complement). Since P {ΦpP q has order 4, necessarily
k “ 1, and N is simple. Since O21pGq “ 1 and ZpNq “ 1, we have that CGpNq “ 1. It
follows that G is almost simple in this case, and the result follows by Theorem 3.1.

Assume now that |PN : ΦpP qN | “ 4. By Lemma 2.2, we have that N has a normal
2-complement. Since O21pGq “ 1, we have in this case that N is a 2-group and N Ď ΦpP q.
By induction, we have that |Irr21,σpB0pG{Nqq| “ 4. Hence, we only need to prove that
if χ P Irr21,σpB0pGqq, then N is in the kernel of χ and χ belongs to the principal block
of G{N when viewed as a character of G{N . If τ is the restriction of σ to the |G|-th
cyclotomic field, we know that τ has 2-power order. By Lemma 2.1(ii) of [32], we have
that χP contains a linear τ -invariant constituent λ P IrrpP q. Since λ is τ -invariant, it
follows that λ2 “ 1. Thus N Ď ΦpP q Ď Kerpλq and hence N Ď Kerpχq. It remains
to show that if χ̄ P IrrpG{Nq is the character given by χ̄pNxq “ χpxq for x P G, then
χ̄ P IrrpB0pG{Nqq. Since χ̄ has odd degree, it follows that χ̄ lies in a block of G{N of
maximal defect P {N . By Problem 4.5 of [27], we only need to prove that if Nx P G{N ,
with x P G, is 2-regular with P {N Ď CG{NpNxq, then

ˆ

|G{N : CG{NpNxq|χ̄pNxq

χ̄p1q

˙

” |G{N : CG{NpNxq|

modulo any maximal ideal of the ring of algebraic integers in C containing 2. First notice
that Nx P NG{NpP {Nq “ NGpP q{N . Also, we may assume that x is a 2-regular element,
using that Nx “ pNxq21 “ Nx21 . Notice that

CG{NpNxq “ CGpxqN{N ,

using that p|N |, opxqq “ 1 (and [18, Corollary 3.28]). We have shown that x is a 2-
regular element of NGpP q centralizing P {N . Therefore x centralizes P {ΦpP q, and by
[18, Corollary 3.29] we have that x centralizes P . In particular, N Ď CGpxq. Then
|G{N : CG{NpNxq| “ |G : CGpxq|. Since χ is in the principal block of G, we have that

ˆ

|G{N : CG{NpNxq|χ̄pNxq

χ̄p1q

˙

“

ˆ

|G : CGpxq|χpxq

χp1q

˙

” |G : CGpxq| ,

modulo any maximal ideal of the ring of algebraic integers in C containing 2, as desired.
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Assume finally that |PN : ΦpP qN | “ 2. Then G{N has a cyclic Sylow 2-subgroup and
therefore, a normal 2-complement K{N . Let Q “ P XN P Syl2pNq. Then P {ΦpP qQ and
ΦpP qQ{ΦpP q have order 2. Notice that U acts (trivially) on P {ΦpP qQ and ΦpP qQ{ΦpP q,
and hence U acts trivially on P {ΦpP q by [18, Problem 3E.3]. In particular, U Ď CGpP q
by [18, Corollary 3.29] and hence V “ U , so NGpP q “ P ˆ U .

If N is a 2-group, then G is (2-)solvable. Hence U Ď O21pGq “ 1, by [18, Theorem
4.33]. In this case, NGpP q “ P , and there is a natural bijection Irr21pGq Ñ Irr21pP q
that commutes with Galois action (see Theorem F of [28], the Galois equivariance follows
immediately from the description of the natural bijection). Since G has only one 2-block
(by Theorem 10.20 of [27]), the theorem is proven in this case. Thus we may assume that
O2pGq “ 1. In particular, N is a direct product of nonabelian simple groups. ( Thus
O2pNq “ 1). By Theorem 2.8, and by induction, we may assume M “ PN Ÿ G. Since
NGpP q “ P ˆ U “ PCGpP q, we have that G “ NNGpP q “ MCGpP q. By Theorem 2.7
and induction, we may assume that G “M . If N “ G, then G is nonabelian simple and
the statement follows by Theorem 3.1. Therefore we may assume that N ă G. Recall
that G{N is a cyclic 2-group. Notice that CGpNq “ 1. Otherwise, since N XCGpNq “ 1
and G{N is a 2-group, we will conclude that O2pGq ą 1. Let S Ÿ N be (nonabelian)
simple, and write H “ NGpSq, C “ CGpSq. We have that H{C is almost simple. Then
|Irr21,σpB0pGqq| “ 4 now follows from Lemma 3.4 and Theorem 3.1.

Assume now that |Irr21,σpB0pGqq| “ 4, and we prove that |P : ΦpP q| “ 4 by induction
on |G|. We divide the proof of this direction in several steps.

Step 1. If N Ÿ G and γ P Irr21,σpB0pNP qq, then there is η P Irr21,σpB0pGqq lying over
γ.

Proof. By Theorem 2.7 (applied to NP Ÿ NPCGpP q), there is an extension γ̂ P

Irr21,σpB0pNPCGpP qqq of γ. By Lemma 2.4, the claim follows.

Step 2. We may assume that G has no proper normal subgroup M of odd index such
that CGpP q ĎM .

Proof. Assume the contrary and let M Ÿ G be a proper normal subgroup of odd index
in G with CGpP q ĎM .

By [33, Lemma 3.1], all irreducible characters of G that lie over characters in the prin-
cipal block of M are in the principal block of G. In particular, IrrpG{Mq Ď Irr21,σpB0pGqq
(for G{M has odd order) and hence |IrrpG{Mq| ď 4 by hypothesis. Then G{M – C3

([3], Note A). Since |IrrpG{Mq| “ 3, we deduce that there is a unique η P IrrpB0pGqq
of odd degree, σ-invariant which does not contain M in the kernel. By Step 1, every
1 ‰ γ P Irr21,σpB0pMqq lies under η. In particular, all such γ are G-conjugate, by Clif-
ford’s theorem, and there are exactly three of them (otherwise γ would give rise to three
extensions in Irr21,σpB0pGqq by [32, Lemma 5.1]). Hence |Irr21,σpB0pMqq| “ 4 and we are
done by induction.

LetN be a minimal normal subgroup ofG. By Lemma 2.6 and using that IrrpB0pG{Nqq Ď
IrrpB0pGqq, we have |Irr21,σpB0pG{Nqq| “ 2 or 4, unless G{N has odd order.

Step 3. G{N does not have odd order.

Proof. Suppose first that N is semisimple. If G{N has odd order, then CGpNq “ 1,
using that O21pGq “ 1. Notice that NCGpP q Ÿ G since G “ NNGpP q by the Frattini
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argument. If NCGpP q “ G, then by Theorem 2.7 and induction, we may assume that
G “ N . In this case, G is simple and the statement is true by Theorem 3.1. So we assume
that NCGpP q ă G, but this contradicts Step 2.

So we are left with the case where N is an elementary abelian 2-group. In this case
N “ P and, since O21pGq “ 1, we have that CGpNq “ N . By Step 2 we conclude that
G “ N , and hence G – C2, a contradiction.

Step 4. If 1 ă K is any normal subgroup of G, then |Irr21,σpB0pG{Kqq| ‰ 4.

Suppose now that |Irr21,σpB0pG{Kqq| “ 4. By induction, we have that |PK : ΦpP qK| “
4. Also, every odd-degree σ-invariant irreducible character of G in the principal block
has K in its kernel. Hence, if θ P Irr21,σpB0pKP qq, then K is in the kernel of θ, by
Step 1. Assume that K is a 2-group. If θ P IrrpP {ΦpP qq, then K Ď Kerpθq. Hence
K Ď ΦpP q and we have that |P : ΦpP q| “ |PK : ΦpP qK| “ 4. Assume that KP has a
normal 2-complement, then K has normal 2-complement. Since O21pGq “ 1, then K is
a 2-group, then K Ď ΦpP q as before and we are also done in this case. Hence, we may
assume that KP does not have a normal 2-complement. By Lemma 3.3, there is some
γ P Irr21,σpB0pKP qq which is nonlinear. In particular, K is not contained in the kernel of
γ, a contradiction.

Final Step. By Steps 3 and 4, it remains to deal with the case where |Irr21,σpB0pG{Nqq| “
2. By Theorem 3.2, we have that G{N has a normal 2-complement K{N and a nontrivial
cyclic Sylow 2-subgroup PN{N . Since N is minimal normal and O21pGq “ 1, we deduce
that O2pKq “ K. By Lemma 2.5, we have that |Irr21,P,σpB0pKqq| “ 2.

Suppose that N is a 2-group. Then G is (2-)solvable, so G and K have only one 2-block
(by Theorem 10.20 of [27]) namely the principal one. In particular, |Irr21,P,σpKq| “ 2.
Since the Sylow 2-subgroup of K is normal and 2-elementary abelian, by [39, Lemma
2.2(a)] we conclude that |IrrP pKq| “ |Irr21,P,σpKq| “ 2. If 1 ‰ λ P IrrP pNq, then λ lies
under some P -invariant irreducible character of K because λK has odd-degree. We see
therefore that |IrrP pK{Nq| “ 1 and by the Glauberman correspondence, CK{NpP q “ 1.
This implies that P “ NGpP q. By [28, Theorem F], there is a natural bijection Irr21pGq Ñ
Irr21pP q that commutes with Galois action (this easily follows from the description of the
bijection). In particular 4 “ |Irr21,σpGq| “ |Irr21,σpP q| “ |P : ΦpP q| and we are done in
this case.

So we may assume that N is semisimple. By Theorem 2.8 and induction, we may
assume that PN Ÿ G. Assume that M “ PN ă G, and write H “ CGpP qM Ÿ G. By
Step 2, we have that H “ G. By Theorem 2.7 (applied with respect to M Ÿ H “ G) and
induction, we may assume that G “ M “ PN . Assume that D “ CGpNq ą 1. Then
D is a 2-group since D X N “ 1, and also D ă P . By Lemma 2.6 and the hypothesis
|Irr21,σpB0pG{Dqq| “ 2 or 4. Step 4 forces |Irr21,σpB0pG{Dqq| “ 2. Thus by Theorem
3.2, the subgroup P {D P Syl2pG{Dq is cyclic. Let Q “ P X N P Syl2pNq. In particular
Q – QD{D ď P {D is cyclic, a contradiction (as N is nonsolvable). We conclude that
D “ 1. If N is simple, then we are done by Theorem 3.1. So we may assume that N is
nonabelian nonsimple. Then the theorem follows from Lemma 3.4 and Theorem 3.1 on
almost simple groups. �
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4. Almost Simple Groups

The goal in this section is to prove Theorem 3.1.

4.1. Alternating and Sporadic Groups. Here we consider the cases of alternating
groups, sporadic groups, and some small groups of Lie type. The following may be well-
known, but we record it in part to illustrate the types of computations with semidirect
products that are also required for the details of some of the results throughout Section
4.3 below.

Lemma 4.1. Let n be a positive integer. Let P P Syl2pSnq and let Q P Syl2pAnq. Then
P {P 1 and Q{Q1 are elementary abelian. If n “ 2k or 2k ` 1 with k ą 1, then |P : P 1| “
|Q : Q1|. Otherwise, |P : P 1| “ 2|Q : Q1|.

Proof. If n “ 2 or 3, then the respective Sylow 2-subgroups are cyclic of order 2, so we
may assume n ě 4.

Suppose that n “ 2k or 2k ` 1, so k ą 1. We proceed by induction on k to see that
P {P 1 and Q{Q1 are isomorphic to Ck2.

If k “ 2, then P {P 1 – C2 ˆ C2 – Q{Q1. Write Pj for a Sylow 2-subgroup of S2j and Qj

for a Sylow 2-subgroup of A2j with Qj Ď Pj. With the notation of [38, Lemma 4.14] we
can write Pk “ tpx, y; zαq | x, y P Pk´1, α P t0, 1uu – Pk´1 o xzy, where z is an involution
of signature 1 that permutes the two copies of Pk´1. Then Qk “ tpx, y; zαq | x, y P
Pk´1, sgnpxq “ sgnpyq, α P t0, 1uu. Hence, we can write Qk “ H ¸ xzy, where H “

tpx, y; 1q | x, y P Pk´1, sgnpxq “ sgnpyqu. Since P 1k “ pP
1
k´1ˆP

1
k´1q∆Pk´1, where ∆Pk´1 “

tpx´1, x; 1q | x P Pk´1u ď Pk, we have that Pk{P
1
k – Pk´1{P

1
k´1 ˆ C2 (by px, y, zαqP 1k ÞÑ

pxy, zαq). By induction Pk{P
1
k – Ck2. Similarly, one can see that Q1k “ pH¸xzyq

1 “ H 1∆H,
where ∆H “ tph´1, h; 1q | h P Pk´1u. In particular, Qk{Q

1
k – H{H 1∆H ˆ C2 and

H{H 1∆H – Qk´1{Q
1
k´1. As before, the conclusion holds by induction.

Now suppose that n “ 2k1 ` ¨ ¨ ¨ ` 2kt , with k1 ą . . . ą kt ě 0, is not of the form
2k nor 2k ` 1. We can write P “ Pk1 ˆ ¨ ¨ ¨ ˆ Pkt , with the notation for Pj as above.
It follows from the first part of the proof that P {P 1 is elementary abelian. Note that
Q “ tpx1, . . . , xtq | xj P Pkj ,

ś

j sgnpxjq “ 1u. Of course, Q1 Ď P 1. Since P is the direct
product of at least two nontrivial wreath products, then each of the projections of Q into
Pkj is surjective. Given rxj, yjs P P

1
kj

, we want to see that p1, . . . , rxj, yjs, . . . , 1q P P
1 is a

commutator in Q. This can be done using auxiliary elements z` P P` with sgnpz`q “ ´1

(for example z` of cycle type p2, 12`´2q) whenever P` ą 1. In particular, P 1 Ď Q1 and so
P 1 “ Q1. Hence Q{Q1 is elementary abelian as it is a subgroup of P {P 1 and |P : P 1| “
2|Q : Q1| as wanted. �

Lemma 4.2. Theorem 3.1 holds when S is an alternating group An with n ě 5.

Proof. If n ď 9, the statement can be checked using GAP, so we assume that n ą 9. Since
AutpSq “ Sn, the only possibilities for A are A “ An or A “ Sn. Let P P Syl2pSnq. If
n “ 2k1 ` ¨ ¨ ¨ ` 2kt where 0 ď kt ă ¨ ¨ ¨ ă k1, then using Lemma 4.1, |P {P 1| “ |P {ΦpP q| “
2k1`¨¨¨`kt ą 8, since n ą 9. Similarly, since the characters of Sn are rational-valued, [23,
Theorem 1.3] yields that |Irr21,σ1pB0pSnqq| “ 2k1`¨¨¨`kt ą 8, and therefore |Irr21,σ1pB0pAnqq|
and |Q{Q1| are at least 8, using Lemma 4.1 and the fact that every odd-degree character
of Sn restricts irreducibly to An. �
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The next lemma reduces us to the case of simple groups of Lie type. Throughout, we
will let PSL˘n pqq denote the group PSLnpqq in the case ` and PSUnpqq in the case ´, and
similar for SL˘n pqq, GL˘n pqq, and PGL˘n pqq.

Lemma 4.3. Let S be a simple sporadic group or one of the simple groups PSL3p2q,
PSL3p4q, PSU4p2q, PSU4p3q, PSL˘5 p2q, PSL˘6 p2q,

2B2p8q, B3p2q, B3p3q, D4p2q, F4p2q,
2F4p2q

1, E6p2q,
2E6p2q, G2p2q

1, or G2p4q. Then Theorem 3.1 holds for S.

Proof. In these cases, the statement can be seen using [11] and the GAP Character Table
Library, together with some computation with semidirect products along the lines of the
groups of Lie type below. �

4.2. General Preliminaries. Due to the nature of their automorphism groups, the fol-
lowing lemmas will often be helpful in the case of groups of Lie type.

Lemma 4.4. Let A be a finite group such that A “ G¸ C is the semidirect product of a
subgroup G with a nontrivial cyclic 2-group C. Let K ď GalpQab{Qq be a subgroup and
let χ P Irr21pGq be invariant under C and K. Then there exist at least two K-invariant
elements of Irr21pAq extending χ. In particular, for K “ xσ1y, there are exactly two
K-invariant extensions.

Proof. If χ is linear, then we may view χ as a character of G{G1. Since χ is invariant
under the cyclic group C – A{G, we know that there are (linear) extensions to A, which
we may view as characters of A{Kerpχq “ G{Kerpχq ˆ C. Hence the characters χ ˆ 1C
and χ ˆ η give the desired extensions, where η denotes the unique member of IrrpCq of
order 2. The general case follows using [17, Lemma 6.24], and the last statement follows
from the fact that t1, ηu are the only characters of a cyclic 2-group fixed by σ1. �

Lemma 4.5. Let A be a finite group and let GŸ A with |A{G| odd. If χ P IrrpGq is fixed
by σ1, then every element of IrrpA|χq is fixed by σ1.

Proof. This is a direct application of [32, Lemma 5.1]. �

The following lemma can be found, e.g., as [5, Lemma 17.2].

Lemma 4.6. Let G be a finite group. Two characters of S “ G{ZpGq are in the same
block if and only if they are in the same block as a character of G.

We also record the following:

Lemma 4.7. Let GŸ A and χ P Irr21pB0pGqq. Then:

(1) There exists rχ P IrrpB0pAq|χq;
(2) If |A{G| is odd, then there exists rχ P Irr21pB0pAq|χq; and
(3) If |A{G| is a power of 2, then B0pAq is the unique block of A above B0pGq.

Proof. Parts (1) and (3) are Theorem 9.4 and Corollary 9.6 of [27] in the case of the
principal block, and part (2) follows from Clifford theory. �
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4.3. Groups of Lie type. By a group of Lie type, we will mean a finite group G “ GF

that is the set of fixed points of a connected reductive algebraic group G defined over Fq
with q a power of a prime p, under a Steinberg map F . We also keep the general set-up of

[39, Section 3.1]. In particular, we fix a regular embedding G ãÑ rG as in [5, Chapter 15],

and write rG “ rGF . Here ZprGq is connected and by [21] (see also [5, Theorem 15.11]),

restrictions of characters from rG to G are multiplicity-free. By a simple group of Lie type
S, we mean S “ G{ZpGq with G “ GF and G simple of simply connected type. In this

situation, we will also write rS “ rG{Zp rGq, so that AutpSq “ rS ¸ D with D generated

by certain so-called graph and field automorphisms of S. We also remark that |rS{S| is
relatively prime to q.

The set Irrp rGq is partitioned into Lusztig series Ep rG, sq, where s ranges over semisimple

elements of the dual group rG˚, up to rG˚-conjugacy. The characters Ep rG, 1q are called

unipotent characters, and there is a bijection between Ep rG, sq and EpC
rG˚psq, 1q such that

if χ P Irrp rGq corresponds to ψ P EpC
rG˚psq, 1q, then χp1q “ r rG˚ : C

rG˚psqsp1ψp1q.
A similar statement holds for G (see [21]), where now we denote by EpCG˚psq, 1q the

set of characters lying above those in EpCG˚psq
˝, 1q. (Here as an abuse of notation, we

define CG˚psq
˝ :“ pCG˚psq

˝q
F˚ where pG˚, F ˚q is dual to pG, F q and G˚ “ pG˚qF

˚

.) We
may therefore parametrize IrrpGq by ps, ψq for s P G˚ semisimple, up to conjugacy, and
ψ P EpCG˚psq, 1q.

We will call any character in Lusztig correspondence with a character lying over one
parametrized by ps, 1CG˚ psq

˝q a semisimple character of G. Note that a semisimple char-
acter has degree rG˚ : CG˚psqsp1 . In particular, for a semisimple element s P G˚, we will
often write χs for a choice of semisimple character of G corresponding to s.

It will be useful to recall that in our situation, a semisimple character χs of rG is trivial

on the center as long as s P rG˚ lies in r rG˚, rG˚s, using [34, Lemma 4.4], and restricts

irreducibly to G as long as s is not conjugate to sz for any 1 ‰ z P Zp rG˚q. Further, from

[36, Corollary 2.5], χϕs “ χsϕ˚ for ϕ P D, where ϕ˚ is an automorphism of rG˚ dual to ϕ.
We begin with the following, which is a direct consequence of [41, Lemma 3.4 and

Proposition 3.8].

Lemma 4.8. Let G be a group of Lie type and let χ P IrrpGq be a semisimple character.
Assume that one of the following holds:

‚ G is defined in characteristic 2; or
‚ G is defined in odd characteristic and χ is in a series indexed by s P G˚ with
s2 “ 1.

Then χ is fixed by σ1.

Proof. Let G be defined over Fq. If s P G˚ is semisimple with s2 “ 1 or with q a power
of 2, then [41, Lemma 3.4] yields that EpG, sq is fixed by σ1, since either s2 “ 1 or |s|
is odd, and σ1 fixes odd roots of unity. Further, the Gelfand-Graev characters are fixed
by σ1 since they are induced from characters obtained from linear characters of pFq,`q,
which is an elementary abelian 2-group or p-group with p odd. Hence [41, Proposition
3.8] yields every semisimple character in EpG, sq is fixed by σ1. �
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4.3.1. Defining Characteristic. Here we consider the case that G is defined in character-
istic 2.

Proposition 4.9. Let S be a simple group of Lie type defined in characteristic 2 and as-
sume S is not isomorphic to an alternating group or one of the groups listed in Proposition
4.3. Let A be an almost simple group with socle S such that A{S is odd or a cyclic 2-

group. Then |Irr21,σ1pB0pAqq| ą 4 and |P {ΦpP q| ą 4 for P P Syl2pAq, unless S “ SL2p2
2bq

or PSU3p2
2b´1
q with b ě 2 and A{S – C2b a 2-group of field automorphisms. In the latter

cases, |Irr21,σ1pB0pAqq| “ 4 “ |P {ΦpP q|.

Proof. We have S “ G{ZpGq, where G “ GF is a (perfect) group of Lie type of simply

connected type over Fq with q a power of 2. Recall that rS{S and ZpGq are trivial unless

G “ SLn or E6, in which cases rS{S – ZpGq is odd and cyclic.

Let Φ and Π be the set of roots and simple roots, respectively, for rG, with respect

to a fixed F -stable Borel subgroup B and maximal torus T for rG. Then we may write
B “ UT where U is the unipotent radical.

1. The Character Side. We have Irr21pB0pSqq “ Irr21pSq using [5, 6.14, 6.15, and
6.18]. Let X denote the set of semisimple characters of G trivial on ZpGq. Then
X Ď Irr21,σ1pB0pSqq, using Lemmas 4.6 and 4.8. Recall that if A{S is a cyclic 2-group, we
may identify A “ S ¸ C, where C ď D is a cyclic 2-subgroup. We aim to show that:

(i) X contains at least five pairwise non-AutpSq-conjugate members; and
(ii) X contains at least three C-invariant members for any cyclic 2-subgroup C ď D.

Note that (i) and (ii) will yield the result in the cases A{S is odd and A{S is a cyclic
2-group, respectively, using Lemmas 4.5, and 4.4, together with Lemma 4.7. Throughout
the proof, let δ P Fˆq2 denote an element of order 3 and when q ě 4, let ξ P Fˆq2 with

|ξ| R t1, 3u.
1.a. First assume S is not one of G2pqq, F4pqq,

3D4pqq,
2B2pqq,

2F4pqq, or PSL˘n pqq. In

paragraphs 5 - 9 of [14, Proposition 4.3], two nontrivial semisimple elements of rG˚ are
constructed in the case of defining characteristic larger than 3, using certain products of
elements hαpδq, where hα denotes a coroot corresponding to a simple root α for fixed root

system for rG and δ is a certain element of Fˆq2 . The exact same arguments work here,
replacing the δ used there with our δ of order 3, yielding two semisimple elements s1 and

s2 of rG˚ whose corresponding characters χs1 and χs2 of rG are trivial on Zp rGq, invariant

under D, and have different degrees. In the case Φ is not of type E6, we have rG “ G, so

we see (ii) holds. In the case Φ is type E6, note that rS{S has size dividing 3. Then if A{S
is a cyclic 2-group, at least one of the constituents of each restriction χS is A-invariant
for each of χ “ χs1 , χs2 , so (ii) still holds. (Here we identify χsi with the corresponding
character of S “ G{ZpGq.)

If q ě 4, then in all cases, taking two additional characters χs11 and χs12 of rG constructed
in the same way as [14, Proposition 4.3], but with δ replaced with ξ will ensure two more
non-Aut pSq-conjugate members of X . Indeed, we see as before that χs11 and χs12 have
different degrees. Further, the orders of the semisimple elements ensure that χsi and χs1i
are not Aut pSq-conjugate for i “ 1, 2, completing the argument for (i).
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Now assume q “ 2 and S is not as in Lemma 4.3. If S is 2D4p2q, E7p2q or E8p2q, then
the list of character degrees available at [20] yields at least 5 odd-degree characters with
multiplicity 1, completing the proof for these groups. If S is Bnp2q or Cnp2q with n ě 3,
then there are 5 odd-degree unipotent characters (see [24, Theorem 6.8]), completing
the proof in this case since OutpSq “ 1 and unipotent characters of classical groups are
rational-valued by [22, Corollary 1.12]. If S is Dnp2q or 2Dnp2q with n ě 5, then we see
that (i) holds since G˚ – G has at least 5 distinct centralizer structures of semisimple
elements.

1.b. If S “ G2pqq or F4pqq, the list of character degrees available at [20] shows that
there are at least five distinct odd character degrees, which must come from semisimple
characters using [24, Theorem 6.8], accomplishing (i). (Recall that here we have excluded
the case q “ 2.) For G2pqq, the character table is also available in CHEVIE [12]. To see
that (ii) holds for G2pqq, we may consider the trivial character, together with the unique
character of degree q3 ` η, where q ” η pmod 3q, and the character χ14pkq or χ18pkq in
CHEVIE notation with ζk1 “ δ or ξk1 “ δ, respectively, in the cases η “ 1 or ´1. Here ζ1

and ξ1 are primitive q ´ 1 and q ` 1 roots of unity, respectively.
To see that (ii) holds for S “ F4pqq in the case q ” 1 pmod 3q (so q is an even power of 2),

we want three members of X invariant under any 2-group of field automorphisms. This is
achieved by considering the trivial character, the unique character of degree Φ2

2Φ2
3Φ2

4Φ8Φ12

(here Φm is the mth cyclotomic polynomial in q), and a semisimple character χs with
s “ h2 “ p1, 1, z, zq in the notation of [43], taking z “ δ. Indeed, the generating field
automorphism maps such an element to its inverse, which defines the same conjugacy
class as s. When S “ F4pqq with q ” ´1 pmod 3q, we need three members of X invariant
under the order-two graph automorphism. The trivial character, the unique character of
degree Φ2

1Φ2
3Φ2

4Φ8Φ12, and the character guaranteed by [41, Lemma 5.7 and Proposition
6.4] yields (ii) in this case.

1.c. Let S “ 3D4pqq. If 3 | pq ´ 1q, then taking the trivial character together with the
characters χ9pk1q, χ9pk2q, χ11p`1q, and χ11p`2q such that |ζk11 | “ |ϕ

`1
3 | “ 3 and |ζk21 | ‰ 3 ‰

|ϕ`23 | in CHEVIE notation show that (i) and (ii) are satisfied. If 3 | pq`1q, we may instead
use χ17pkiq and χ20p`iq with the roles of pζ1, ϕ3q replaced by pξ1, ϕ6q. (Here ζ1 is a q ´ 1
root of unity, ξ1 is a q` 1 root of unity, and ϕ3 and ϕ6 are q2` q` 1 and q2´ q` 1 roots
of unity, respectively.)

1.d. If S “ 2B2p2
2n`1q or 2F4p2

2n`1q, then OutpSq is cyclic with odd order, so it suffices
to know that (i) holds. For 2F4p2

2n`1q with n ě 1, this is clear just from the list of
character degrees, found at [20]. For 2B2p2

2n`1q with n ě 2, there are four distinct odd
character degrees, but using the character table in CHEVIE, we see there are at least
two of the same degree that are not conjugate under field automorphisms, which generate
OutpSq.

1.e. For the remainder of part 1 of the proof, let S “ PSL˘n pqq, rG “ GL˘n pqq – rG˚,

G “ SL˘n pqq “ r rG, rGs, and rS “ PGL˘n pqq – G˚ for an appropriate value of n. Further,

recall that in this situation, semisimple classes of rG˚ are determined by eigenvalues.

If n ě 4 and q ě 4, the characters of rG of the form χs for s P r rG˚, rG˚s with eigenvalues
tδ, δ´1, 1, . . . , 1u, tδ, δ´1, δ, δ´1, 1, . . . , 1u, tξ, ξ´1, 1, . . . , 1u, and tξ, ξ´1, ξ, ξ´1, 1, . . . , 1u are

irreducible on G and trivial on Zp rGq, since each s is non-conjugate to sz for any 1 ‰ z P
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Zp rGq. Since these semisimple elements are pairwise not AutpSq-conjugate and the same
is true for their images in G˚, we see that the same is also true for the corresponding
characters of S. Further, those involving δ are invariant under the field automorphisms,
and in case `, all of these characters are also invariant under the inverse-transpose map,
which induces the graph automorphism. This yields that (i) and (ii) hold for PSL˘n pqq
with n ě 4 and q ě 4.

If n ě 7 and q “ 2, the characters of rG of the form χs for s P r rG˚, rG˚s with eigenvalues
tδ, δ´1, 1, . . . , 1u and tδ, δ´1, δ, δ´1, 1, . . . , 1u satisfy the same properties as above, showing
that (ii) holds. To obtain (i), we note that there are at least two more semisimple ele-

ments of G whose centralizers in rG have distinct structures, yielding at least two more
non-Aut pSq-conjugate characters in X when the corresponding semisimple characters are
restricted to G and viewed as characters of S.
1.f. Let S “ SL2pqq with q ě 8 a power of 2. Then we obtain at least five AutpSq-orbits

in X by taking semisimple characters of rS “ rG “ GL2pqq corresponding to semisimple

elements s P rG˚ – rG with eigenvalues tξ, ξ´1u, where ξ ranges over elements ξ P Fˆq2 ,
since they must restrict irreducibly to S. Write q “ 22b¨m with m odd. If A{S is a cyclic
2-group, we may view A as A “ S ¸ C with C ď xFm

2 y, where F2 is the generating
field automorphism induced by x ÞÑ x2. Then if m ą 1, we may construct characters
as above with ξ “ ξ1 and ξ2, 2m ´ 1 and 2m ` 1 roots of unity, respectively, to obtain
two nontrivial semisimple characters invariant under C and yielding the desired three
C-invariant members of X . If m “ 1 but C does not contain F2, then C is contained in
xF 2

2 y. In this case, taking ξ1 and ξ2 to instead be 3rd and 5th roots of unity yields the
result. Finally, if m “ 1 and C “ xF2y, then the only nontrivial C-invariant character
in Irr21pSq is of the form χs where s has eigenvalues tδ, δ´1u with |δ| “ 3. This yields
|Irr21,σ1pB0pAqq| “ 4 in this case, using Lemma 4.4.

1.g. When S “ PSL˘3 pqq, we may consider the same semisimple elements of rG˚ as in
case 1.f above, adding an eigenvalue of 1. The corresponding semisimple characters of
rS “ PGL˘3 pqq are in this case also fixed by τ . However, in the case 3 | pq¯1q, a semisimple

element s of rG˚ with eigenvalues tδ, δ´1, 1u, where |δ| “ 3, is conjugate to sz with z “

δ ¨ I3 P Zp rG
˚q. This yields that the corresponding character χs of rG (or of rS) restricts to

the sum of three irreducible characters of G (or S). The character χs is invariant under
graph and field automorphisms, and hence for any 2-group of automorphisms C, at least
one of these constituents must be fixed by C. Then with this in mind, the same arguments
as for SL2pqq above yield that (i) holds, and further (ii) holds except possibly if q “ 22b

and C “ xτF2y in the case ` or C “ xF2y in either case ˘.

So, let S “ PSL3pqq, where q “ 22b with b ě 2 and let A “ S¸C with C cyclic of size 2b.
Note that these conditions force 3 | pq´1q and 7 | pq2`q`1q. The semisimple character χs
of rG, where s has eigenvalues tδ, δ´1, 1u, restricts to the sum of three irreducible characters
of G (or S) of degree 1

3
pq ` 1qpq2 ` q ` 1q. Since χs is A-invariant and |C| is a power

of 2, it follows that at least one of these three irreducible characters of S must also be
C-invariant. Further, from [25, Lemma 3.5], we see that that all three of these characters
are invariant under xτF2y, completing (ii) when C “ xτF2y. In the case C “ xF2y, we may

let µ P Fˆq3 with |µ| “ 7 and consider the character χs of rG with s P rG˚ having eigenvalues
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pµ, µ2, µ4q, or equivalently, pµ, µq, µq
2
q. Then χs is trivial on Zp rGq, restricts irreducibly to

G, and is invariant under C, completing the proof of (ii) in this case.

Finally, suppose S “ PSU3pqq with q “ 22b´1
and b ě 2 and let A “ S ¸ C with

C “ xF2y – C2b . Note that S “ G in this case, since 3 | pq ´ 1q. The only nontrivial

C-invariant odd-degree character of G comes from the character χs of rG, where s P rG˚

has eigenvalues tδ, δ´1, 1u, which is trivial on Zp rGq and restricts irreducibly to G. Hence
using Lemmas 4.4 and 4.7, we see that |Irr21,σ1pB0pAqq| “ 4 in this case.

2. The Sylow Side. Note that |ZpGq| and | rG{G| are odd, so a Sylow 2-subgroup of S

may be identified with one of G or rG, which is the unipotent radical U “ UF . Now, by
[10, Lemma 2.2], we have U{U 1 is isomorphic to the direct product

ś

ωPΩpFq|ω|,`q, where
the product is taken over the orbits Ω of the action induced by F on the fundamental

roots Π for rG. In particular, from this we see that U{U 1 is not 2-generated, since we are
assuming q ě 8 in the case of PSL2pqq and 2B2pqq. Then |P {ΦpP q| ą 4 if A{S is odd.

Now, if A “ S ¸ C with C induced by an order-two graph automorphism stabilizing
U , then U{xU 1, rU,Csy is of the form pFq,`qk, where k is the number of orbits of C on
the simple roots Π. Note that in the cases with nontrivial graph automorphisms being
considered, we have q ě 4 or k ě 2, and hence this is at least 2-generated. Then a
generating set for P {P 1 “ U{xU 1, rU,Csy ˆ C contains more than 2 elements.

Finally, if A “ S ¸ C with C a cyclic 2-group generated by a field or graph-field
automorphism ϕ, then U{xU 1, rU,Csy – pU{U 1qϕ, the fixed points under ϕ. Hence this is
at least 2-generated, yielding a generating set for P {P 1 – U{xU 1, rU,Csy ˆ C with more
than two elements, except in the case ϕ “ F2 and G “ SL2 or G “ SL3 with F twisted.
In the latter cases, we see U{xU 1, rU,Csy – pF2,`q is cyclic, so P {P 1 is 2-generated. �

4.3.2. Non-Defining Characteristic. Now we consider the case that G is defined in char-
acteristic p ‰ 2.

Lemma 4.10. Let q be odd and let S be a simple group of type G2pqq, F4pqq, E7pqq, or
3D4pqq. Then every odd-degree character of S is rational-valued, and hence lies in the
principal block. Further, the following hold:

‚ |Irr21pSq| ą 4;
‚ for S ‰ G2pqq, there are more than 4 odd degrees with multiplicity one; and
‚ for S “ G2pqq, exactly 4 of the odd degrees have multiplicity one.

Proof. By [31, Lemma 3.1], we have all odd-degree real-valued characters lie in the prin-
cipal block. Observing the character tables for G2pqq and 3D4pqq in CHEVIE, we see that
odd-degree characters are rational and that the statements about multiplicities holds. We
see from the list of character degrees in [20] that the odd character degrees of F4pqq and
E7pqqsc have multiplicity one. In all cases, there are more than five odd-degree characters.
In the case of E7, since |ZpE7pqqscq| “ 2, these characters are also trivial on the center
and hence are characters of S. This completes the proof. �

Before stating the next lemma, we recall that the unipotent characters of rG are irre-

ducible when restricted to G and trivial on Zp rGq, by the work of Lusztig [21]. Hence we

may view these characters as characters of S, rS,G, or rG, as needed.
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Lemma 4.11. Let G be a group of Lie type defined in odd characteristic such that G is
of simply connected type An´1 with n ě 6, Bn or Cn with n ě 3, Dn with n ě 5, or En
with n ě 6, or such that G is of type 2D4. Then there exist more than four odd-degree
unipotent characters of G. Further, these characters are rational-valued as characters of
rG, lie in the principal 2-blocks of rG and G, and at least five of them extend to AutpSq
when viewed as characters of S “ G{ZpGq.

Proof. By [26, Proposition 7.4], all unipotent characters of G with odd degree lie in the
principal series, and hence are in bijection with Irr21pW q, where W is the Weyl group
of G. Further, by the work of Lusztig [22], every unipotent character is realizable over
Q in the case of classical groups, and by [40, Proposition 4.4], all odd-degree unipotent

characters (of G or rG) are realizable over Q, and hence lie in the principal block using
[31, Lemma 3.1]. For classical groups, W has a quotient isomorphic to Sn, which has
at least 8 odd-degree characters for n ě 6, using [23, Corollary 1.3]. We also see, for
example using GAP, that there are at least 8 odd-degree characters of W in the cases G
is of type Bn or Cn with 3 ď n ď 5, D5, 2D4, or 2D5. In the case G is of type E6, E7, or
E8, the explicit list of unipotent character degrees in [6, Section 13.9] yields more than 4
odd-degree unipotent characters. The last assertion follows using [25, Proposition 2.3 and
Theorem 2.5], noting that there are at least five unipotent characters in the case Dnpqq
with n ą 4 even that are labeled by nondegenerate symbols. �

Proposition 4.12. Let S be a simple group of Lie type defined in odd characteristic and
such that S is not isomorphic to an alternating group or one of the groups listed in Lemma
4.3. Let A be an almost simple group with socle S such that A{S has odd order or is a
cyclic 2-group, and let P P Syl2pAq. Then |Irr21,σ1pB0pAqq| ą 4 and |P {ΦpP q| ą 4, unless
one of the following holds:

‚ S “ PSL2pqq and A{S is not a cyclic 2-group generated by field automorphisms;
or

‚ S “ PSL˘3 pqq and |A{S| is odd.

In the latter cases, |Irr21,σ1pB0pAqq| “ 4 “ |P {ΦpP q|.

Proof. Recall that A may be viewed as a subgroup of a semidirect product rS ¸C, where
C ď D has odd order or is a cyclic 2-group.

1. The Character Side. Similar to Proposition 4.9, except for the listed exceptional
cases and some cases that must be treated slightly differently, our strategy is to show
that there are at least 5 pairwise non-Aut pSq-conjugate members of Irr21,σ1pB0pSqq that

restrict irreducibly from B0prSq, which will give the result when A ď rS or |A{S| is odd using
Lemmas 4.5 and 4.7. We also aim to show that there are three members of Irr21,σ1pB0pSqq
that are invariant under 2-elements in D, which will complete the proof using Lemma 4.4
in the remaining cases that A{S is a cyclic 2-group.

1.i. If S “ G{ZpGq with G as in Lemmas 4.10 or 4.11, then we are done by combining
those with Lemmas 4.4, 4.5, and 4.7. For S “ 2G2p3

2r`1q, we see from the character table
in CHEVIE [12] that there are exactly eight odd-degree characters and they are all fixed
by σ1, and from [44] that they all also lie in the principal block. Further, four of these
character degrees have multiplicity one, yielding at least 5 pairwise non-AutpSq-conjugate
members of Irr21,σ1pB0pSqq, which completes the proof in this case since |OutpSq| is odd.
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In the remaining cases, G is of classical type, and using [5, 21.14], B0pGq is comprised

of those series EpG, sq with |s| a power of 2, and similar for B0p rGq.

1.ii. Now let S “ D4pqq “ PΩ`8 pqq or S “ C2pqq “ PSp4pqq. Here rS{S is a 2-group.
Using [25, Proposition 2.4 and Theorem 2.5], we see that there are four A-invariant
unipotent characters of odd degree if A does not contain the graph automorphism of

order 3 in the case D4pqq, which are also rational-valued (even as characters of rS) by the
work of Lusztig [22, Corollary 1.12]. This is enough if A{S is a nontrivial cyclic 2-group,
using Lemma 4.4. Even if A contains the triality graph automorphism, note that four
unipotent characters of odd degree may still be chosen to be pairwise non-A-conjugate.

Let s P G˚ lie in the center of a Sylow 2-subgroup of G˚ and have order 2. Then χs has
odd degree and is σ1-invariant by Lemma 4.8. Since G is perfect and ZpGq is a 2-group,
we see that χs may be viewed as a character of Irr21pB0pSqq, using Lemma 4.6. Since χs
is not AutpSq-conjugate to any unipotent character, this takes care of the case |A{S| is
odd.

It remains to deal with the cases S “ PSL˘n pqq with 2 ď n ď 5. Let S “ PSL˘n pqq,

G “ SL˘n pqq, and rG – rG˚ “ GL˘n pqq for the appropriate value of n. Note that again in
these cases, unipotent characters lie in the principal block and are rational-valued and
extend to AutpSq, for the same reason as in Lemma 4.11.

1.iii. First let n “ 4 or 5. Then we have four unipotent characters of odd degree,

which may be viewed as characters of rS that restrict irreducibly to S. Note that in the

case n “ 4, there is one more σ1-invariant extension to rS for each of these unipotent

characters, which also must lie in the principal block since rS{S is a 2-group. This yields

eight members of |Irr21,σ1pB0pAqq| if PSL˘4 pqq ă A ď rS. Hence if A{S is a nontrivial cyclic
2-group, we are done by also using Lemma 4.4.

Now, let s P rG˚ be semisimple with eigenvalues t´1,´1, 1, 1u in case n “ 4 or

t´1,´1,´1,´1, 1u in case n “ 5. Note that s P r rG˚, rG˚s – G, and hence the corre-

sponding semisimple character χs of rG is trivial on Zp rGq. Further, since |s| “ 2, χs lies

in B0p rGq, and is fixed by σ1 by Lemma 4.8. In the case n “ 5, χs has odd degree and

s is not rG˚-conjugate to any sz for 1 ‰ z P Zp rG˚q, and hence χs restricts irreducibly to

G. In the case n “ 4, the degree of the character χs of rG is 2 pmod 4q, and it restricts
to the sum of two irreducible odd-degree characters in G, since s is conjugate to ´s.
These restricted characters are also semisimple, indexed by semisimple elements of G˚ of
order 2, and hence are still fixed by σ1 using Lemma 4.8. This yields a fifth member of
Irr21,σ1pB0pSqq that is non-AutpSq-conjugate to the unipotent characters discussed above,
completing the proof for the cases PSL˘4 pqq or PSL˘5 pqq.
1.iv. If S “ PSL2pqq, then there are four odd-degree characters of S. These come from

the two unipotent characters and the two odd-degree restrictions of the character χs of
rG where s has eigenvalues tε4, ε

´1
4 u with |ε4| “ 4. Here as in the case of PSL4pqq in 1.iii

above, the degree of χs is 2 pmod 4q. For the same reasons as there, these characters lie in

B0pSq and are fixed by σ1. Also, note that rS “ PGL2pqq also has exactly four odd-degree
characters, coming from the two extensions of each unipotent character of S, which are

also in Irr21,σ1pB0prSqq following the same reasoning as in 1.iii.
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We can see from the character table of S that the four members of Irr21,σ1pB0pSqq are
fixed by field automorphisms. Hence, if A is the semidirect product S ¸ C with C a
2-group of field automorphisms, then these extend to give 8 members of Irr21,σ1pB0pAqq,
using Lemma 4.4.

If q is square and A ‰ rS is an extension of S by a cyclic 2-group not comprised of field
automorphisms, then we may write A “ Sxαϕy, where α is a diagonal automorphism and
ϕ is a field automorphism. Since the four members of Irr21,σ1pB0pSqq are fixed by field
automorphisms but only the two unipotent characters are fixed by a nontrivial diagonal
automorphism, we see that the odd-degree characters of A are again the extensions of
the two unipotent characters (namely, the trivial and Steinberg characters) of S. As A{S
is a 2-group, each such extension lies in Irr21pB0pAqq. Further, the trivial and Steinberg
characters each extend to a rational-valued character of Aut pSq (see [42] for extensions of
the Steinberg character) and we therefore again obtain exactly two σ1-invariant extensions
of each of these two characters, yielding |Irr21,σ1pB0pAqq| “ 4.

This leaves the case A is the semidirect product A “ S¸C with C a group of field auto-
morphisms of odd order. In this case, we claim that each χ P Irr21pB0pSqq “ Irr21,σ1pB0pSqq
has a unique extension that lies in B0pAq. By Theorem 2.7 and Lemma 4.5, it suffices to

know that α centralizes a Sylow 2-subgroup of S for any α P C. Write q “ p2bm with m
odd and let Fp be the generating field automorphism for S induced by the map x ÞÑ xp.
By considering the construction of a Sylow 2-subgroup of GL2pqq in [4], we see that there

is a P2 P Syl2pGL2pqqq centralized by F 2b

p , and hence centralized by C. To be more precise,
if q ” 1 pmod 4q, we have P2 is generated by matrices with entries 1, 0, and ε with ε a
pq ´ 1q2-root of unity in Fˆq . Since 2 divides Φdppq if and only if d is a power of 2, we

see pq ´ 1q2 “ pp
2b ´ 1q2, and hence F 2b

p fixes ε. If q ” 3 pmod 4q, note that q is an odd
power of p. Here P2 instead is generated by matrices with entries ˘1, 0, ε1 ` ε1q, where ε1

is a pq2 ´ 1q2-root of unity in Fˆq2 . Using the same argument as above, but using instead

the generator F 2
p , shows that again P2 is centralized by C. Then we are done, taking a

Sylow 2-subgroup of SL2pqq as a subgroup of P2.
1.v. If S “ PSL˘3 pqq, there are two unipotent characters of odd degree. We may also

consider the two odd-degree characters that come from the series Ep rG, sq of rG, where
we define s to have eigenvalues t´1,´1, 1u. These correspond to the trivial character
and Steinberg character of C

rG˚psq – GL˘2 pqq ˆGL˘1 pqq under the Jordan decomposition

of characters. Note that these characters are irreducible on G and trivial on Zp rGq since

s P r rG˚, rG˚s – G and s is not rG˚-conjugate to sz for 1 ‰ z P Zp rG˚q. Further, since |s| “ 2,

these characters lie in B0p rGq, and the corresponding characters of G, rS, and S are then

also in the principal block, since B0p rGq covers a unique block of G and using Lemma
4.6. Lemma 4.8 implies χs is fixed by σ1, and hence so is the character corresponding
to the Steinberg character of C

rG˚psq, since it is the unique character in the series with
that degree. Similarly, since the class of s is invariant under AutpSq, we know that so are
these two characters. Note that these two characters and the two unipotent characters
are the only members of Irr21,σ1pB0pSqq. If A{S is a nontrivial cyclic 2-group, this yields
8 members of Irr21,σ1pB0pAqq, using Lemmas 4.4 and 4.7.

If |A{S| is odd, we claim that for each member of Irr21,σ1pB0pSqq, exactly one character
of A above it lies in B0pAq, yielding exactly four characters of Irr21,σ1pB0pAqq using Lemma
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4.5 and 4.7(2). For A “ rS, the characters of rG lying above the series EpG, 1q and EpG, sq
must lie in the series EpG, zq and EpG, szq for z P Zp rG˚q, by [5, Proposition 15.6]. To

be trivial on Zp rGq, we further require z P r rG˚,ĂG˚s X Zp rG˚q, which has size dividing 3.

Recalling that only series indexed by 2-elements are in the principal block of rG, this shows

the claim when A “ rS. To complete the proof, as in the case 1.iv above, it suffices to

know that F 2b

p centralizes a Sylow 2-subgroup of rG “ GL˘3 pqq. Here, we write q̄ “ p2bm

with m odd, where q̄ “ q in the case PSL3pqq and q̄ “ q2 in the case PSU3pqq. Since such
a Sylow 2-subgroup is the direct product of P2 ˆ P1, by [4], where Pi P Syl2pGL˘i pqqq for
i “ 1, 2, we are done by the same arguments as 1.iv, since P1 is cyclic generated by a
pq ¯ 1q2 root of unity in Fˆq̄ .

2. The Sylow Side. If S “ 2G2p3
2r`1q, then |OutpSq| is odd, so P is a Sylow 2-subgroup

of S, which is elementary abelian of order 8. We therefore assume that S is not 2G2pqq.
Let W be the Weyl group NGpTq{T of G and write w “ 1 if q ” 1 pmod 4q and

w “ w0, the longest element of W , if q ” 3 pmod 4q. By [16, Theorem 4.10.2], a Sylow

2-subgroup P0 of either G or rG{Zp rGq contains an abelian normal subgroup PT containing
the 2-part of ZpGq, such that P0{PT is isomorphic to a Sylow 2-subgroup of CW pFwq.
We remark (see [13, Exercise 1.13]) that w0 is central in W unless W is type An with
n ě 2, Dn with n odd, or E6. In any case, P0{PT is isomorphic to a Sylow 2-subgroup of
an irreducible Weyl group. Now, the structure of these groups is well-known, and we see
that a Sylow 2-subgroup of such a Weyl group is at least three-generated, except for the
Weyl groups W pG2q, W pB2q, and W pAnq with n ă 5.

2.i. Assume first that CW pFwq is not one of these groups. That is, we assume S is not
one of G2pqq,

3D4pqq, B2pqq “ PSp4pqq, or PSL˘n pqq with n ď 5. In this case, it remains
to show that the statement holds in the case A{S is a cyclic 2-group generated by graph
and field automorphisms, and hence may be taken to be of the form A “ S ¸ C with
C ď D. Now, from the construction in [16, Theorem 4.10.2], P0 may be chosen so that P0

and PT are normalized by C and such that the action of C on Q0 :“ P0{PT ď CW pFwq
is compatible with that on W , and hence there is a Sylow 2-subgroup P of A that has
a quotient of the form Q :“ Q0 ¸ C. Since field automorphisms act trivially on W (and
hence on Q0), and graph automorphisms permute the generators of W and hence act
trivially on the abelianization of Q0, we see that Q is again at least three-generated.

2.ii. Although the Sylow 2-subgroups of W pG2q are 2-generated, the Sylow 2-subgroups
of S “ G2pqq, which are the same for 3D4pqq, are well-studied (see, e.g. [15]) and not
2-generated. Since OutpSq is generated by field automorphisms unless q is a power of 3
in the case of G2, which act trivially on W , we see a Sylow 2-subgroup of A is also not
2-generated in this case. If A has socle G2pqq with q a power of 3 and contains a graph or
graph-field automorphism, we may argue as in the case of B2pqq in 2.i. For S “ PSL˘n pqq
with n “ 4, 5 or PSp4pqq, we have Q0 is 2-generated. Similarly, we see Q0 ¸ C is more
than 2-generated when C is a nontrivial cyclic 2-group of field automorphisms. A Sylow
2-subgroup of PSL˘5 pqq is the same as that of SL˘5 pqq, which is isomorphic to a Sylow 2-
subgroup of GL˘4 pqq. So, it suffices to note that we can deduce that the Sylow 2-subgroups
of PSL4pqq

˘, GL˘4 pqq, PGL˘4 pqq, PSp4pqq, and PCSp4pqq are at least 3-generated by the
construction in [4] of Sylow 2-subgroups of classical groups.
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2.iii. The Sylow 2-subgroups of PSL2pqq and PGL2pqq are either Klein-4 or dihedral,
and hence 2-generated. When q is square and A{S is a cyclic 2-group with A of the
form PSL2pqqxαϕy, where ϕ is a field automorphism and α is a diagonal automorphism,
α can be induced by the diagonal matrix in GL2pqq with diagonal pω, 1q, where ω is a
pq ´ 1q2-root of unity in Fˆq . Then, modulo ZpSL2pqqq, a Sylow 2-subgroup of A can be
generated by αϕ and the anti-diagonal matrix with anti-diagonal p1,´1q.

Now, the group P2 ˆ P1, where Pi P Syl2pGL˘i pqqq for i “ 1, 2, is a Sylow 2-subgroup
of GL˘3 pqq. Then there is a Sylow 2-subgroup of SL˘3 pqq, which is isomorphic to that of
PSL˘3 pqq, comprised of the set of px, yq P P2ˆP1 with y “ det x´1, which is isomorphic to
P2. By [4], we see P2 is either semidihedral or C2s o C2, both of which are 2-generated. If
A “ S ¸ C with S “ PSL2pqq or PSL˘3 pqq and C ď D a nontrivial cyclic 2-group, and P̄
is a Sylow 2-subgroup of S, then we can see using the constructions in [4] that P̄ can be
chosen so that the order-2 generators of P̄ {ΦpP̄ q are C-invariant, and hence P “ P̄ ¸ C
is three-generated in this case. �

Propositions 4.9 and 4.12, together with Lemmas 4.2 and 4.3, complete the proof of
Theorem 3.1.
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[20] F. Lübeck, Character degrees and their multiplicities for some groups of Lie type of rank ă 9 (web-
page, 2007). http://www.math.rwth-aachen.de/ Frank.Luebeck/chev/DegMult/index.html.

[21] G. Lusztig, On the representations of reductive groups with disconnected centre, Orbites Unipo-
tentes et Représentations, I. Astérisque 168 (1988), 157–166.
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Spain.

Email address : noelia.rizo@uv.es

Dept. Mathematical and Computer Sciences, MSU Denver, Denver, CO 80217, USA
Email address : aschaef6@msudenver.edu
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