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ABSTRACT. We show that the character table of a finite group G determines whether
a Sylow 2-subgroup of G is generated by 2 elements, in terms of the Galois action
on characters. Our proof of this result requires the use of the Classification of Finite
Simple Groups and provides new evidence for the so-far elusive Alperin—-McKay—Navarro
conjecture.

1. INTRODUCTION

One of the main themes in Finite Group Representation Theory is the study of how the
values of characters in a p-block B of a finite group G affect the structure of a defect group
D of B, and vice versa. This topic was already suggested by R. Brauer in his famous list of
problems on Modular Representation Theory [2], which is still a source of inspiration for
unveiling global/local connections in finite groups. In particular, the structure of p-blocks
with cyclic group (for any p), and with dihedral, semidihedral or quaternion defect groups
(for p = 2) are cornerstones of the theory, by pioneering work of R. Brauer, E. C. Dade,
and J. B. Olsson in the 1970’s (prior to the Classification of Finite Simple Groups).

After studying cyclic defect groups or defect 2-groups D such that D/D’ has order
4 (these are dihedral, semidihedral or quaternion), where D’ = [D, D] is the derived
subgroup of D, it is logical to study 2-blocks in which D is generated by two elements,
a hypothesis that naturally generalizes at the same time both of the previous conditions.
While for a given n > 3, there are just three isomorphism classes of groups D of order
2" with |D : D'| = 4, it is interesting to remark that the number of non-isomorphic
2-generated groups of order 2™ grows exponentially with n (see [19]).

Note that a non-cyclic 2-group D is 2-generated if, and only if, |D : ®(D)| = 4, where
®(D) is the Frattini subgroup of D. Our aim in this paper is to show that it is possible
to characterize when |P : ®(P)| = 4 by means of the values of the odd-degree irreducible
characters in the principal 2-block of G, where P is a Sylow p-subgroup of G.
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Let 0 € Gal(Q*/Q) be the Galois automorphism that cubes 2-power roots of unity and
fixes odd-order roots of unity. The following global/local result is the main theorem of
this paper.

Theorem A. Let G be a finite group, let B be the principal 2-block of G, and let
P e Syl,(G). Then |P : ®(P)| = 4 if and only if the number of o-invariant odd-degree
wrreducible characters in B is 4.

The statement of Theorem A is yet another consequence of the Alperin-McKay—Navarro
conjecture [29], a conjecture that has turned out to be a quite useful motivation for
contributions to [2, Problem 12] (see, for instance, [32, 35, 37, 39, 40]). In fact, it is also
possible to prove that the Alperin-McKay—Navarro conjecture implies that |P : ®(P)| =9
if and only if the number of 7-invariant, 3’-degree characters in the principal 3-block of
a group G with Sylow 3-subgroup P is 6 or 9; where here 7 is the Galois automorphism
that fixes 3'-order roots of unity and raises 3-power roots of unity to the fourth power.
It seems that a proof of this result would require additional techniques. It also remains
a challenge to find a corresponding statement for primes larger than 3, or for a greater
number of generators, if indeed they exist.

Our proof of Theorem A requires the Classification of Finite Simple Groups and a deli-
cate reduction to almost simple groups of the problem. In particular, we believe that the
results in Section 4 in this paper represent a contribution to the general problem of un-
derstanding the action of Galois automorphisms on the characters in blocks of nonabelian
simple groups.

In view of the fact that 2-blocks with a defect group P with |P : P/| = 4 have a
bounded, and quite small, number of irreducible Brauer characters (see Section 6.2 of
[7]), it is natural to ask if the same happens if we instead assume that |P : ®(P)| = 4.
The following elegant counterexample is due to G. Malle, and it is not so easy to find.
Let n = 2% and let H be the Singer cycle in SL,(2), of order 2" — 1. Then its normalizer
contains a regular unipotent element u (of order n). The principal 2-block of the semidirect
product of the natural module V' with H{u) has a Sylow 2-subgroup P with |P : ®(P)| = 4
and at least WT_Q + 1 irreducible 2-Brauer characters.

Acknowledgements. This work started at the University of Birmingham, after a ques-
tion of Ben Fairbairn. The first author would like to thank David Craven and Chris
Parker for the kind hospitality. The second, third, and fourth authors thank the Math-
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manuscript. Last but not least, the authors are obliged to the anonymous referee for their
useful suggestions and comments.

2. PRELIMINARIES

Our notation for characters follows [17] and [30]. Our notation for blocks follows [27].
Sometimes we denote by By(G) the principal p-block of G, where p is a fixed prime in
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the context. If p is our fixed prime, let o}, € Gal(Q*®/Q) be the automorphism that fixes
p’-roots of unity and sends p-power roots of unity & to §1+pk. (So the automorphism o
defined in the introduction is o1 here, whenever p = 2.) By elementary number theory,
we have that oy restricted to any cyclotomic field has order a power of p. Notice that a
linear character A\ of a finite group is fixed by o} if and only if the p-part of the order of
A divides p*.

In the next results, we work with slightly more generality than is required. The following
is a well-known result by J. G. Thompson.

Lemma 2.1. Let G be a finite group, p be a prime and P € Syl (G). If every linear
character of P of order p extends to G, then G has a normal p-complement.

Proof. Let M be the minimal normal subgroup of G such that G/M is a p-elementary
abelian group. Clearly, ®(P) € M n P. If A € Irr(P) has order p and vp = A, where
v € Irr(G), notice that (vy)p = 1, so we may assume that v has p-power order. Also,
since (vp)? = AP = 1, we have that v¥ = 1. Hence M < Ker(v) and M n P < Ker(\). We
deduce that M n P < ®(P). By a theorem of Thompson (see Problem 6.20 of [17])

1=07P)=0"(G)n P.
Hence G has a normal p-complement. 0

Recall that if G is a finite group, P € Syl (G) and N< G, then ®(PN/N) = ®(P)N/N.
We will frequently use the following fact.

Lemma 2.2. Suppose that G is a finite group, and let P € Syl (G). Let N < G be
such that G/N has order divisible by p. Assume that P/®(P) has order p*. Then either
PN/®(P)N has order p and G/N has a cyclic Sylow p-subgroup, or PN /®(P)N has

order p* and N has a normal p-complement.

Proof. Let G = G/N and use the bar notation. Now, 1 < P/®(P) has order a divisor of
p?. If P/®(P) has order p, then P is cyclic.

Suppose that P/®(P) has order p?. Let Q = P n N. Then Q < ®(P) and therefore
N n®(P) =Q e Syl,(N). By Lemma 2.1 applied in the group NP, we obtain that NP
has a normal p-complement, and so does V. U

Lemma 2.3. Let G b a finite group. Write K = OP(G), P € Syl (G), and Q = P n K.
Assume that X € Irr(Q) is linear of order p* and is P-invariant. Then there exists p €
Irr(P) of order p* that extends M.

Proof. Let T be the restriction of o, to Q| = Q(§), where £ € C has order |G|. Consider
A ={7) x P, so that A is a p-group and X is A-invariant. By Lemma 2.1 (ii) of [32], \¥
has a p/-degree irreducible A-invariant constituent 6 with p’-multiplicity. Let x € Irr(G)
be the canonical extension of § (using Corollary 6.28 of [17]), which is (7)-invariant (by
uniqueness). Let ¢ = xp. We have that [xq, A| = [0g, A\] # 0 mod p. By Lemma 2.1(ii) of
[32], there is some 7-invariant constituent p € Irr(P) of ¥ such that [pg, A] is not divisible
by p. Since A is P-invariant, Q < P, and P is a p-group, it follows that pg = A (using
Corollary 11.29 of [17]). Since o(\) = p* and o(p) divides p* (because p is 7-invariant),
we have that o(p) = p*. This proves the lemma. O
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Lemma 2.4. Suppose that G is a finite group, P € Syl,(G) and PCg(P) < H < G.
Suppose that 6 € Trr(b) has p'-degree and it is op-invariant, where b is the principal block
of H. Then there exists a o-invariant x € Irr(G) of p'-degree in the principal block of G
such that [xm, 0] is not divisible by p.

Proof. By the comments before Theorem 9.24 of [27], we know that b¢ is defined. By
Brauer’s third main theorem (Theorem 6.7 of [27]), we have that b = B is the principal

block of G. Now, if
v= > [6% I,

x€lrr(B)
we have that ¥(1), = (1), = 1 by Corollary 6.4 of [27]. Let A = {7), where here 7 is
the restriction of oy, to the |G|-th cyclotomic field extension Qg of Q, as above. Since B
is T-invariant and € is T-invariant, we have that W is 7-invariant. By Lemma 2.1 (ii) of
[32], there is a p’-degree A-invariant constituent x of ¥ with p’-multiplicity. O

If a group A acts by automorphisms on G and 7 € Gal(Q*/Q), we shall denote by
Irry a4 -(Bo(G)) the set of A x {7)-invariant characters in the principal block of G’ which
have degree not divisible by p. If A or 7 are trivial, we choose not to write A or 7. In
the next three results, we want to relate Irry ,(By(G)) with Irr, ,(Bo(H)) for certain
subgroups H in some special situations.

Lemma 2.5. Let G be a finite group, p be a prime and P € Syl (G). Write N = OP(G),
and suppose that G/N s cyclic and non-trivial. Then

[lrry o, (Bo(G))] = pllrry, poy (Bo(NV))] -

Proof. If x € Irry(G), we have that xy = 6 is irreducible by Corollary 11.29 of [17].
Also # is P-invariant. Furthermore, if y is oq-invariant, then # is o;-invariant. Moreover,
since G/N is a p-group, x lies in the principal p-block of G if and only if # lies in the
principal p-block of N, using [27, Corollary 9.6]. Conversely, if § € Irry p(N), then 6
is G-invariant. We claim that the determinantal order o(d) = |N : Ker(det #)| of 6 is
coprime to p (here detf is defined as in [18, Problem 2.3]). Write K = Ker(detf) < G
as 0 (and hence det 0) is G-invariant. Take O/K = OP(N/K), so that O < G and G/O
is a p-group. By definition O = N and hence N/K is a p/-group (recall N/K is cyclic).
As (0(1)o(0),|G : N|) =1, by [18, Corollary 6.28], # has a canonical extension vy to G. In
particular, v is oj-invariant if and only if 6 is. By [27, Corollary 9.6], if 8 € Bo(N), then
Irr(G|0) < Irr(Bo(G)). In this case, there is a canonical bijection Irr(G/N) — Irr(G|0)
given by A — Ay (by the Gallagher correspondence Corollary 1.23 of [30]), where linear
characters of G/N correspond to p’-degree characters of G over . Notice that if 7 is
oi-invariant and A is linear, then A7y is oj-invariant if and only if X is oj-invariant, which
happens if and only if A» = 1. Recall that since G/N > 1 is a cyclic p-group, there are
exactly p linear characters A € Irr(G/N) satisfying \? = 1. The proof of the lemma easily
follows from these considerations. OJ

The following is elementary.
Lemma 2.6. If G is a finite group of even order, then |Irry ,(Bo(G))| is even.
Proof. See Lemma 1.4 of [39]. O
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Next is a well-known result of J. Alperin and E. C. Dade.

Theorem 2.7. Suppose that N is a normal subgroup of G, with G/N a p'-group. Let
P e Syl,(G) and assume that G = NCg(P). Then restriction of characters defines a
natural bijection between the irreducible characters of the principal blocks of G and N. In

particular, |Irry (Bo(Q))| = |Irry - (Bo(N))|, for any 7 € Gal(Q*/Q).

Proof. The case where G//N is solvable was proved in [1] and the general case in [§].
The last part of the statement follows immediately since 7 acts on Irr(By) (preserving
character degrees). O

Finally, we shall need the following.

Theorem 2.8. Suppose that G s a finite group, and N s a normal subgroup of G with
N = OP(N). Suppose that G/N has a normal p-complement K /N, and that P € Syl (G).
Let L = NNg(P). Then there is a natural bijection

lrry (Bo(G)) — ey (Bo (L))
which commutes with Gal(Q*®/Q)-action.

Proof. Let C' = K n L, and notice that C/N = Cg/y(P). By Theorem E of [37], there
is natural bijection *: Irr,y p(By(K)) — Irry p(Bo(C)) that commutes with Gal(Q*/Q)-
action. Since N = OP(N) and K/N is a p’-group, notice that K = OP(K) and C =
0?(C). Every € Irry p(By(K)) has a canonical extension § to G, and every n e
Irry p(Bo(C)) has a canonical extension 7 to L. Using the Gallagher correspondence, and
the fact that G/K is a p-group, we have that each y € Irry (By(G)) can be uniquely written
as x = A for some A € Irr(G/K) linear, where 6 = xx. Similarly, every 1 € Irry(By(L))
can be uniquely written as ¢ = A7 for some A € Irr(L/C) = Irr(G/K) linear, where
n = Y¢c. Hence AD > MO yields a natural bijection

II"I‘Q/(BQ(G)) — II'I'Q/(B()(L))
that commutes with Gal(Q*"/Q)-action. O

3. PROOF OF THEOREM A

In this section, we prove that Theorem A is true it if holds for certain almost simple
groups. We shall prove the following in Section 4.

Theorem 3.1. Suppose that G is a finite almost simple group, with socle S. Assume that
G/S is a cyclic 2-group or a group of odd order. Let P € Syl,(G). Then P/®(P) has
order 4 if and only if |Irre ,, (Bo(G))| = 4.

Although in some of the following we could work in slightly more generality, let us fix
now our prime p = 2, and let 0 = o for the rest of the section. We recall that O« (G)
lies in the kernel of every character in the principal block by [27, Theorem 6.10].

We shall need to use one of the main results of [39].

Theorem 3.2. Suppose that G is a finite group. Then G has a cyclic Sylow 2-subgroup
if and only if |Irry ,(B)| = 2, where B is the principal 2-block of G.
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Also, we need a different (and much easier version) of the previous result.

Lemma 3.3. Suppose that G is a finite group and B is the principal 2-block of G. Then
G has a normal 2-complement if and only if Irry ,(B) consists of linear characters. Also,
G has a cyclic Sylow 2-subgroup if and only if Irry ,(B) consists of two linear characters.

Proof. Let P be a Sylow 2-subgroup of G. We prove the first statement. First suppose
that Irry ,(B) consists of linear characters. Let A € Irr(P/®(P)). Write PCq(P) = PxU,
and consider A\ = \ x 1p. By Lemma 2.4 and the hypothesis, we have that \ extends to a
o-invariant character of G. By Lemma 2.1, we have that G has a normal 2-complement
K. If furthermore Irry ,(B) consists of two linear characters, then P/®(P) is cyclic, and
P is cyclic.

Suppose that G has a normal 2-complement M. Then Irr(B) = Irr(G/M) can be
identified with Irr(P), by [27, Theorem 9.9.(c)]. Hence the converse follows trivially.

The second statement is a direct consequence of the first one, since groups with a cyclic
Sylow 2-subgroup have a normal 2-complement by a well-known result proved indepen-
dently by Frobenius and Burnside. ([l

In the final step of the proof of Theorem A, we shall arrive at a particular minimal
situation. To solve that step takes longer than one would have expected.

Lemma 3.4. Suppose that G = NP, where N is a nonabelian nonsimple minimal normal
subgroup of G, Cg(N) = 1, G/N is cyclic and P € Syly(G). Let S< N be simple,
H =Ng(S), C =Cg(5) and let V € Syl,(H/C'). Then the following hold.

(a) |Irty »(Bo(G))| = 4 if and only if H > SC and |Irry ,(Bo(H/C))| = 4.

(b) |P:®(P)| =4 if and only if H > SC and |V : ®(V)| = 4.

Proof. Write G/N = (Nz) for some x € P. Notice that H < G and G/H = {(Hzx).
Suppose that G/H has order k. Then N is the direct product of the subgroups {5*'},
j=0,...,k—1 (where 27 € P are representatives of the right cosets of H in G). Write
QQ = Hn P = Np(S) € Syl,(H). Let R = NnP = NnQ € Syl,(N), and let
Ri=5SnQ=SnP=58nReSyl,(5). By a standard argument, see for instance, the
next to the last paragraph of the proof of Theorem 2.4 of [32], we have that @ = Np(Ry).
Also, R = Ry x R¥ x --- x R¥'. Use the bar convention so that Ry = R,C/C is a
Sylow 2-subgroup of S = SC/C and Q = QC/C is a Sylow 2-subgroup of H = H/C.
Furthermore, Q n S = Ry, and Q/R, is cyclic, and by hypothesis, nontrivial. Since
SC = S x C, we have that R; is isomorphic to R;. Notice too that H/SC is isomorphic
to Q/Rl

By hypothesis S < N. In particular, G/N is non-trivial, H < G and ) < P. Since
P/R =~ G/N is cyclic, we have that |P : R®(P)| = 2. Hence @ < R®(P) (otherwise
QRP(P) = QP(P) = P would yield @ = P). If R; < ®(P) then R} < ®(P) (hence for
every 7 with j € {0,...k—1}), and thus R € ®(P). Then |P : ®(P)| = 2 and P is cyclic.
In particular R would be cyclic, a contradiction. Hence, ®(P) < R, ®(P) < R®(P).

First we prove the ‘only if’ implication of (b). Assume that |P : ®(P)| = 4. Then
|R®(P) : ©(P)| = 2 and R1®(P) = R®(P). Let 7 € Irrg(R;) be linear of order 2. (Such
character exists: for example, let A € Irr(R;®(P)/P(P)) be the only nontrivial, then A|g,
is nontrivial linear of order 2 and R; n ®(P) < Ker(\|g,). Since Q € R®(P) = R, P(P),
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we also have that A|g, is Q-invariant. Moreover \|g, is the unique linear Q-invariant
character of order 2 of Ry with Ry n ®(P) in its kernel.) Write v = 7 x 7% x --- x 7°" " €
Irr(R). Then + is linear of order 2 and, by Lemma 4.1(ii) of [35], is P-invariant. By
Lemma 2.3, there exists v € Irr(P/®(P)) that extends v, and therefore 7. In particular,
®(P) n Ry is contained in the kernel of 7 (so 7 = A|g,). Hence, we see that Irrg(R;)
contains a unique linear character of order 2. We claim that H > SC. Otherwise,
QC =(PnH)C =PCnSC=(PnS)C =RC. Thus Q = Ry, and Irrg(Ry) = Irr(R;)
has a unique linear character of order 2. Hence R is cyclic, but this is impossible as S is
nonabelian simple, and the claim follows.

Note that also R; =~ R; has a unique Q-invariant linear character of order 2 (as Q "C =
Cp(S) acts trivially on Irr(R;)). Since every nontrivial character of R;®(Q)/®(Q) corre-
sponds to a Q-invariant linear character of order 2 of R; (note B;®(Q) < Q), this implies
that, |[Ry : ®(Q) n Ry| = |[R1®(Q) : (Q)| = 2. Note that R < R,C. Then Q/R, is cyclic,
because P/R is cyclic, and nontrivial, since otherwise R; would be cyclic, as in the para-
graph above (a contradiction). We conclude that |Q : ®(Q)| = |Q : B ®(Q)||R1®(Q) :
*(Q)] = 4.

We now prove the ‘if” implication of (b). Assume that |Q : ®(Q)| = 4 and that H > SC
(that is, Q > Ry). Since |P : R®(P)| = 2 it suffices to show that |R®(P) : ®(P)| = 2. By
Lemma 2.3, every Q-invariant linear character of A € Irr(R;) of order 2 extends to a linear
character of @ of order 2, and hence R; n ®(Q) < Ker()). Using that |Q : ®(Q)| = 4, so
that |[R;®(Q) : ®(Q)| = 2 we deduce that X is unique.

We work to show that |[R®(P) : &(P)| = 2. Note that R®(P)/®(P) = R/R n ®(P).
If v € Irr(R/R n ®(P)) has order 2, then v is P-invariant (because it may be identified
with a character of R®(P)/®(P) < P/®(P)). Therefore y = 7 x 7% x --- x 7% ' & Irr(R)
for some 7 € Irrg(R;) linear of order 2 (by Lemma 4.1(ii) of [35]). In particular 7 seen as
a character of Ry =~ R, is Q-invariant of order 2, hence 7 = X\. We deduce that there is
only one choice for v, and |R : R n ®(P)| = 2, as wanted.

Finally, we show (a). By Lemma 4.1(ii) of [35], there is a natural bijection Irry g(S) —
Trry p(N) given by @ — @ x 1* x --- x 1)* " that respects o-action and principal 2-
blocks. (The last part follows from the definition of principal block as in [27, Defini-
tion 3.1]). In particular, |Irry p,(Bo(N))| = |Irry g.(Bo(S))|. Of course, this equals
Irry oo /00 (Bo(SC/C))|, since S and SC/C' are naturally isomorphic.

By Lemma 2.5 applied in G, we have that |Irry ,(Bo(G))| = 2|Irry po(Bo(N))|. If
H > SC, by the same lemma we also have that |Irry ,(Bo(H/C))| = 2|Irry .o (Bo(5))]-

Suppose that |Irry ,(Bo(G))| = 4. Then we have that |Irre p,(Bo(N))| = 2. Thus
Irrer g o (Bo(S))| = 2. If H = SC, then @ = (Q nS)Cq(S) fixes all irreducible characters
of S. Then |Irry ,(Bo(S))| = 2. By Theorem 3.2, we have that S has a cyclic Sylow
2-subgroup, but this is not possible since S is nonabelian simple. Therefore we have that
H > SC in both directions, and |Irry ,(Bo(G))| = |Irre (Bo(H/C))|. O

Notice that in Lemma 3.4, we need that H > SC', otherwise the wreath product of Aj
with C, is a counterexample to both of its statements.

We are finally ready to prove Theorem A (assuming Theorem 3.1 on almost simple
groups), which we restate now.
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Theorem 3.5. Suppose that G is a finite group, and let P € Syl,(G). Assume that
Theorem 3.1 is true. Then |P : ®(P)| =4 if and only if |Irry ,(Bo(G))| = 4.

Proof. For both directions, we may assume that Oy (G) = 1.

Assume first that |P : ®(P)| = 4. We prove that |Irry ,(Bo(G))| = 4 by induction on
|G|. First note that if U is a complement of P in Ng(P) and we write V = O, (Ng(P)),
then U/V acts faithfully on P/®(P) = Cy x Cy by [18, Corollary 3.30]. Thus either U = V/
or U/V = Cs.

Let N be a minimal normal subgroup of G. Since ®(P)N/N = ®(PN/N), we have
that |PN : ®(P)N|is 1, 2 or 4.

Assume that |PN : ®(P)N| = 1, then G/N has odd order. Thus P < N. If N is a 2-
group, then we have that P = N< G, and either G = N or G = A, (using that Oy (G) =1
and U/V has order 1 or 3). In both cases, the result is clear. If N is nonabelian, then
N is the direct product of k copies of a nonabelian simple group S. Also, P is the direct
product of k copies of the Sylow 2-subgroup of .S, which is not cyclic (as groups with cyclic
Sylow 2-sugroups have a normal 2-complement). Since P/®(P) has order 4, necessarily
k =1, and N is simple. Since O»(G) =1 and Z(N) = 1, we have that Cg(N) = 1. It
follows that G is almost simple in this case, and the result follows by Theorem 3.1.

Assume now that |PN : ®(P)N| = 4. By Lemma 2.2, we have that N has a normal
2-complement. Since O (G) = 1, we have in this case that N is a 2-group and N < ®(P).
By induction, we have that |Irry ,(Bo(G/N))| = 4. Hence, we only need to prove that
if x € Irry ,(Bo(G)), then N is in the kernel of y and y belongs to the principal block
of G/N when viewed as a character of G/N. If 7 is the restriction of o to the |G|-th
cyclotomic field, we know that 7 has 2-power order. By Lemma 2.1(ii) of [32], we have
that yp contains a linear 7-invariant constituent A € Irr(P). Since A is 7-invariant, it
follows that A> = 1. Thus N < ®(P) < Ker(\) and hence N < Ker(x). It remains
to show that if x € Irr(G/N) is the character given by y(Nz) = x(z) for x € G, then
X € Irr(Bo(G/N)). Since y has odd degree, it follows that x lies in a block of G/N of
maximal defect P/N. By Problem 4.5 of [27], we only need to prove that if Nz € G/N,
with z € G, is 2-regular with P/N < Cgq/n(Nx), then

(|G/N 1 Can(Nz)|x(Nx)
x(1)
modulo any maximal ideal of the ring of algebraic integers in C containing 2. First notice
that No € Ng/n(P/N) = Ng(P)/N. Also, we may assume that « is a 2-regular element,
using that Nx = (Nx)y = Nxo. Notice that
Cg/N(N.QT) = Cg(.T)N/N,

using that (|N],o(z)) = 1 (and [18, Corollary 3.28]). We have shown that z is a 2-
regular element of Ng(P) centralizing P/N. Therefore x centralizes P/®(P), and by
[18, Corollary 3.29] we have that z centralizes P. In particular, N < Cg(x). Then
|G/N : Cg/n(Nz)| = |G : Cg(x)|. Since x is in the principal block of G, we have that

G/N :C Nz)|x(N : C
(11 Co ) _ (16 ColtIn(e)) _ g, g,
x(1) x(1)
modulo any maximal ideal of the ring of algebraic integers in C containing 2, as desired.
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Assume finally that |PN : ®(P)N| = 2. Then G/N has a cyclic Sylow 2-subgroup and
therefore, a normal 2-complement K/N. Let Q = P n N € Syly(N). Then P/®(P)Q and
O(P)Q/P(P) have order 2. Notice that U acts (trivially) on P/®(P)Q and ®(P)Q/P(P),
and hence U acts trivially on P/®(P) by [18, Problem 3E.3]. In particular, U < Cg(P)
by [18, Corollary 3.29] and hence V = U, so Ng(P) = P x U.

If N is a 2-group, then G is (2-)solvable. Hence U < O« (G) = 1, by [18, Theorem
4.33]. In this case, Ng(P) = P, and there is a natural bijection Irry (G) — Irry(P)
that commutes with Galois action (see Theorem F of [28], the Galois equivariance follows
immediately from the description of the natural bijection). Since G has only one 2-block
(by Theorem 10.20 of [27]), the theorem is proven in this case. Thus we may assume that
0,(G) = 1. In particular, N is a direct product of nonabelian simple groups. ( Thus
O?(N) = 1). By Theorem 2.8, and by induction, we may assume M = PN < G. Since
Ng(P) = P x U = PCg(P), we have that G = NNg(P) = MCg(P). By Theorem 2.7
and induction, we may assume that G = M. If N = GG, then G is nonabelian simple and
the statement follows by Theorem 3.1. Therefore we may assume that N < G. Recall
that G/N is a cyclic 2-group. Notice that C5(N) = 1. Otherwise, since N n Cg(N) =1
and G/N is a 2-group, we will conclude that O9(G) > 1. Let S < N be (nonabelian)
simple, and write H = Ng(5), C = Cg(S). We have that H/C' is almost simple. Then
[Irry »(Bo(G))| = 4 now follows from Lemma 3.4 and Theorem 3.1.

Assume now that |Irry ,(By(G))| = 4, and we prove that |P : ®(P)| = 4 by induction
on |G|. We divide the proof of this direction in several steps.

Step 1. If N < G and v € Irry ,(Bo(NP)), then there is € Irry ,(Bo(G)) lying over
7.

Proof. By Theorem 2.7 (applied to NP < NPCg(P)), there is an extension 4 €
Irry o (Bo(NPCg(P))) of 7. By Lemma 2.4, the claim follows.

Step 2. We may assume that G has no proper normal subgroup M of odd index such
that C(;(P) c M.

Proof. Assume the contrary and let M <« G be a proper normal subgroup of odd index
in G with Cg(P) < M.

By [33, Lemma 3.1|, all irreducible characters of G that lie over characters in the prin-
cipal block of M are in the principal block of G. In particular, Irr(G/M) < Irry ,(By(G))
(for G/M has odd order) and hence |Irr(G/M)| < 4 by hypothesis. Then G/M = Cj
([3], Note A). Since |Irr(G/M)| = 3, we deduce that there is a unique n € Irr(By(G))
of odd degree, o-invariant which does not contain M in the kernel. By Step 1, every
1 # v € Irry ,(Bo(M)) lies under 7. In particular, all such v are G-conjugate, by Clif-
ford’s theorem, and there are exactly three of them (otherwise v would give rise to three
extensions in Irry ,(By(G)) by [32, Lemma 5.1]). Hence |Irry »(Bo(M))| = 4 and we are
done by induction.

Let N be a minimal normal subgroup of G. By Lemma 2.6 and using that Irr(By(G/N)) <
Irr(By(G)), we have |Irry ,(Bo(G/N))| = 2 or 4, unless G/N has odd order.

Step 3. G/N does not have odd order.

Proof. Suppose first that N is semisimple. If G/N has odd order, then Cg(N) = 1,
using that Oy (G) = 1. Notice that NCg(P) < G since G = NNg(P) by the Frattini
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argument. If NCg(P) = G, then by Theorem 2.7 and induction, we may assume that
G = N. In this case, G is simple and the statement is true by Theorem 3.1. So we assume
that NCq(P) < G, but this contradicts Step 2.

So we are left with the case where NV is an elementary abelian 2-group. In this case
N = P and, since Oy (G) = 1, we have that Cs(N) = N. By Step 2 we conclude that
G = N, and hence G = Cy, a contradiction.

Step 4. If 1 < K is any normal subgroup of G, then |Irry ,(Bo(G/K))| # 4.

Suppose now that |Irry ,(Bo(G/K))| = 4. By induction, we have that |PK : ®(P)K| =
4. Also, every odd-degree o-invariant irreducible character of GG in the principal block
has K in its kernel. Hence, if § € Irry ,(Bo(KP)), then K is in the kernel of 6, by
Step 1. Assume that K is a 2-group. If § € Irr(P/®(P)), then K < Ker(#). Hence
K < ®(P) and we have that |P : ®(P)| = |PK : ®(P)K| = 4. Assume that KP has a
normal 2-complement, then K has normal 2-complement. Since Oy (G) = 1, then K is
a 2-group, then K < ®(P) as before and we are also done in this case. Hence, we may
assume that K P does not have a normal 2-complement. By Lemma 3.3, there is some
v € Irry ,(By(K P)) which is nonlinear. In particular, K is not contained in the kernel of
v, a contradiction.

Final Step. By Steps 3 and 4, it remains to deal with the case where |Irry ,(Bo(G/N))| =
2. By Theorem 3.2, we have that G/N has a normal 2-complement K /N and a nontrivial
cyclic Sylow 2-subgroup PN/N. Since N is minimal normal and O9(G) = 1, we deduce
that O?(K) = K. By Lemma 2.5, we have that |Irry p,(Bo(K))| = 2.

Suppose that N is a 2-group. Then G is (2-)solvable, so G and K have only one 2-block
(by Theorem 10.20 of [27]) namely the principal one. In particular, |Irry p,(K)| = 2.
Since the Sylow 2-subgroup of K is normal and 2-elementary abelian, by [39, Lemma
2.2(a)] we conclude that |Irrp(K)| = |Iiry po(K)| = 2. If 1 # A € Irrp(N), then A lies
under some P-invariant irreducible character of K because AX has odd-degree. We see
therefore that |Irrp(K/N)| = 1 and by the Glauberman correspondence, Cr/y(P) = 1.
This implies that P = N¢(P). By [28, Theorem F], there is a natural bijection Irre (G) —
Irroy (P) that commutes with Galois action (this easily follows from the description of the
bijection). In particular 4 = |Irry ,(G)| = |Irry ,(P)| = |P : ®(P)| and we are done in
this case.

So we may assume that N is semisimple. By Theorem 2.8 and induction, we may
assume that PN < G. Assume that M = PN < G, and write H = C¢(P)M < G. By
Step 2, we have that H = G. By Theorem 2.7 (applied with respect to M < H = () and
induction, we may assume that G = M = PN. Assume that D = Cg(N) > 1. Then
D is a 2-group since D n N = 1, and also D < P. By Lemma 2.6 and the hypothesis
Irrer - (Bo(G/D))| = 2 or 4. Step 4 forces |Irry ,(Bo(G/D))| = 2. Thus by Theorem
3.2, the subgroup P/D € Syl,(G/D) is cyclic. Let Q@ = P n N € Syl,(N). In particular
Q =~ QD/D < P/D is cyclic, a contradiction (as N is nonsolvable). We conclude that
D = 1. If N is simple, then we are done by Theorem 3.1. So we may assume that N is
nonabelian nonsimple. Then the theorem follows from Lemma 3.4 and Theorem 3.1 on
almost simple groups. U
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4. ALMOST SIMPLE GROUPS
The goal in this section is to prove Theorem 3.1.

4.1. Alternating and Sporadic Groups. Here we consider the cases of alternating
groups, sporadic groups, and some small groups of Lie type. The following may be well-
known, but we record it in part to illustrate the types of computations with semidirect
products that are also required for the details of some of the results throughout Section
4.3 below.

Lemma 4.1. Let n be a positive integer. Let P € Syl,(S,) and let Q € Syly(A,). Then
P/P" and Q/Q' are elementary abelian. If n = 2% or 28 + 1 with k > 1, then |P : P'| =
|Q : Q'|. Otherwise, |P: P'| =2|Q : Q'].

Proof. If n = 2 or 3, then the respective Sylow 2-subgroups are cyclic of order 2, so we
may assume n = 4.

Suppose that n = 2% or 28 + 1, so k > 1. We proceed by induction on k to see that
P/P' and Q/Q’ are isomorphic to Ck.

If £k =2, then P/P' = Cy x C; = Q/Q'. Write P; for a Sylow 2-subgroup of Sy; and Q);
for a Sylow 2-subgroup of Ay with Q; < P;. With the notation of [38, Lemma 4.14] we
can write P, = {(x,y;2%) | x,y € Py_1, a € {0,1}} = P,_11{z), where z is an involution
of signature 1 that permutes the two copies of P, ;. Then Qp = {(x,y;z%) | =,y €
Py, sgn(z) = sgn(y), o € {0,1}}. Hence, we can write Qr = H x (z), where H =
{(z,y;1) | x,y € Py_1, sgn(z) = sgn(y)}. Since P}, = (P, x P[_{)AP_1, where AP, =
{(z7',2;1) | z € P,_1} < P, we have that P,/P =~ P,_1/P,_, x Cy (by (x,y,2%) P —
(zy, 2%)). By induction P,/P, =~ Ck. Similarly, one can see that Q}, = (H x{z)) = H'AH,
where AH = {(h™',h;1) | h € Py_;}. In particular, Q;/Q, =~ H/H'AH x Cy and
H/H'AH = Qj_1/Q)_,. As before, the conclusion holds by induction.

Now suppose that n = 2F + ... 4 2% with k;y > ... > k, > 0, is not of the form
2 nor 28 + 1. We can write P = Py, x -+ x Py, with the notation for P; as above.
It follows from the first part of the proof that P/P’ is elementary abelian. Note that
Q= {(z1,...,2) | 7; € Py, [];sen(z;) = 1}. Of course, Q' < P'. Since P is the direct
product of at least two nontrivial wreath products, then each of the projections of () into
Py, is surjective. Given [z;,y;] € P,gj, we want to see that (1,...,[z;,y;],...,1) e P'is a
commutator in (). This can be done using auxiliary elements z, € P, with sgn(z,) = —1
(for example z, of cycle type (2,122)) whenever P, > 1. In particular, P’ < @' and so
P’ = @'. Hence Q/Q' is elementary abelian as it is a subgroup of P/P’ and |P : P'| =
2|Q : Q'] as wanted. O

Lemma 4.2. Theorem 3.1 holds when S is an alternating group A, with n = 5.

Proof. If n < 9, the statement can be checked using GAP, so we assume that n > 9. Since
Aut(S) = S,,, the only possibilities for A are A = A, or A = S,,. Let P € Syl,(S,). If
n=2M 4 ... 428 where 0 < k; < - -+ < ky, then using Lemma 4.1, |P/P'| = |P/®(P)| =
2kitthe > 8 since n > 9. Similarly, since the characters of S, are rational-valued, [23,
Theorem 1.3] yields that |Irry ,, (Bo(S,))| = 2" > 8 and therefore |Irry ,, (Bo(A,))|
and |Q/Q)’| are at least 8, using Lemma 4.1 and the fact that every odd-degree character
of S, restricts irreducibly to A,. O
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The next lemma reduces us to the case of simple groups of Lie type. Throughout, we
will let PSL; (q) denote the group PSL,(q) in the case + and PSU,,(q) in the case —, and
similar for SL; (¢), GL: (), and PGL;(q).

Lemma 4.3. Let S be a simple sporadic group or one of the simple groups PSL3(2),
PSL3(4), PSU4(2), PSU4(3), PSLE(2), PSLE(2), 2By(8), Bs(2), Bs(3), D4(2), Fu(2),
’Fu(2)', Es(2), ?Es(2), G2(2)', or Ga2(4). Then Theorem 3.1 holds for S.

Proof. In these cases, the statement can be seen using [11] and the GAP Character Table
Library, together with some computation with semidirect products along the lines of the
groups of Lie type below. 0

4.2. General Preliminaries. Due to the nature of their automorphism groups, the fol-
lowing lemmas will often be helpful in the case of groups of Lie type.

Lemma 4.4. Let A be a finite group such that A = G x C' is the semidirect product of a
subgroup G with a nontrivial cyclic 2-group C. Let K < Gal(Q*/Q) be a subgroup and
let x € Irro (G) be invariant under C' and IKC. Then there ezist at least two K-invariant
elements of Irro/(A) extending x. In particular, for K = {(o1), there are exactly two
KC-invariant extensions.

Proof. 1f x is linear, then we may view y as a character of G/G’. Since x is invariant
under the cyclic group C' = A/G, we know that there are (linear) extensions to A, which
we may view as characters of A/Ker(x) = G/Ker(yx) x C. Hence the characters y x 1¢
and y x 7 give the desired extensions, where 1 denotes the unique member of Irr(C') of
order 2. The general case follows using [17, Lemma 6.24], and the last statement follows
from the fact that {1,7} are the only characters of a cyclic 2-group fixed by o;. OJ

Lemma 4.5. Let A be a finite group and let G< A with |A/G| odd. If x € Irr(G) is fized
by o1, then every element of Irr(A|x) is fized by o;.

Proof. This is a direct application of [32, Lemma 5.1]. O

The following lemma can be found, e.g., as [5, Lemma 17.2].

Lemma 4.6. Let G be a finite group. Two characters of S = G/Z(G) are in the same
block if and only if they are in the same block as a character of G.

We also record the following:

Lemma 4.7. Let G< A and x € Irry (By(G)). Then:

(1) There exists X € Trr(Bo(A)|x);
(2) If |A/G| is odd, then there exists X € Irro/(Bo(A)|x); and
(3) If |A/G)| is a power of 2, then By(A) is the unique block of A above By(G).

Proof. Parts (1) and (3) are Theorem 9.4 and Corollary 9.6 of [27] in the case of the
principal block, and part (2) follows from Clifford theory. O
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4.3. Groups of Lie type. By a group of Lie type, we will mean a finite group G = G’
that is the set of fixed points of a connected reductive algebraic group G defined over F,
with ¢ a power of a prime p, under a Steinberg map F. We also keep the general set-up of
39, Section 3.1]. In particular, we fix a regular embedding G — G as in [5, Chapter 15],

and write G = GF. Here Z(G) is connected and by [21] (see also [5, Theorem 15.11]),

restrictions of characters from G to G are multiplicity-free. By a simple group of Lie type
S, we mean S = G/Z(G) with G = GF and G simple of simply connected type. In this
situation, we will also write S = G/Z(G), so that Aut(S) = S x D with D generated
by certain so-called graph and field automorphisms of S. We also remark that |§ /S| is
relatively prime to g.

The set Irr(G) is partitioned into Lusztig series € (G, s), where s ranges over semisimple
elements of the dual group G* up to G- conjugacy. The characters & (G 1) are called
unipotent characters, and there is a bijection between &(G, s) and & (Cpx(s), 1) such that
if x € Irr(G) corresponds to 1) € E(Cpx(s),1), then x(1) = [G* - Cpx(8)]p(1).

A similar statement holds for G (see [21]), where now we denote by £(Cgx(s),1) the
set of characters lying above those in £(Cgx(s)°,1). (Here as an abuse of notation, we
define Cgx(s)° := (C(;*<S)O)F* where (G*, F'*) is dual to (G, F) and G* = (G*)I™.) We
may therefore parametrize Irr(G) by (s,1) for s € G* semisimple, up to conjugacy, and
w € g(CG* (S), 1)

We will call any character in Lusztig correspondence with a character lying over one
parametrized by (s, L (s)0) a semisimple character of . Note that a semisimple char-
acter has degree [G* : Cg#(s)]y. In particular, for a semisimple element s € G*, we will
often write y, for a choice of semisimple character of G corresponding to s.

It will be useful to recall that in our situation, a semisimple character y, of G is trivial
on the center as long as s € G* lies in [é*,é’*], using [34, Lemma 4.4], and restricts
irreducibly to GG as long as s is not conjugate to sz for any 1 # z € Z(é*) Further, from
[36, Corollary 2.5], x¥ = x,.+ for ¢ € D, where ¢* is an automorphism of G* dual to ®.

We begin with the following, which is a direct consequence of [41, Lemma 3.4 and
Proposition 3.8].

Lemma 4.8. Let G be a group of Lie type and let x € Irr(G) be a semisimple character.
Assume that one of the following holds:

e (G is defined in characteristic 2; or

e (G is defined in odd characteristic and x is in a series indexed by s € G* with
2
s°=1.

Then x is fixed by 0.

Proof. Let G be defined over F,. If s € G* is semisimple with s* = 1 or with ¢ a power
of 2, then [41, Lemma 3.4] yields that £(G, s) is fixed by oy, since either s> = 1 or |s|
is odd, and o; fixes odd roots of unity. Further, the Gelfand-Graev characters are fixed
by o1 since they are induced from characters obtained from linear characters of (F,, +),
which is an elementary abelian 2-group or p-group with p odd. Hence [41, Proposition
3.8] yields every semisimple character in £(G, s) is fixed by ;. O
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4.3.1. Defining Characteristic. Here we consider the case that G is defined in character-
istic 2.

Proposition 4.9. Let S be a simple group of Lie type defined in characteristic 2 and as-
sume S is not isomorphic to an alternating group or one of the groups listed in Proposition
4.8. Let A be an almost simple group with socle S such that A/S is odd or a cyclic 2-
group. Then |Irry 4, (Bo(A))| > 4 and |P/®(P)| > 4 for P € Syly(A), unless S = SLy(22")
or PSU3(2% ") with b = 2 and A/S = Cy a 2-group of field automorphisms. In the latter
cases, |Irry 5, (Bo(A))| = 4 = |P/®(P)].

Proof. We have S = G/Z(G), where G = G! is a (perfect) group of Lie type of simply
connected type over F, with ¢ a power of 2. Recall that S /S and Z(QG) are trivial unless
G = SL, or Eg, in which cases 5/5 = Z(G) is odd and cyclic.

Let ® and II be the set of roots and simple roots, respectively, for é, with respect

to a fixed F-stable Borel subgroup B and maximal torus T for G. Then we may write
B = UT where U is the unipotent radical.

1. The Character Side. We have Irro/(By(S)) = Irre(S) using [5, 6.14, 6.15, and
6.18]. Let X denote the set of semisimple characters of G trivial on Z(G). Then
X € Irry 5, (Bo(S)), using Lemmas 4.6 and 4.8. Recall that if A/S is a cyclic 2-group, we
may identify A = S x C, where C' < D is a cyclic 2-subgroup. We aim to show that:

(i) X contains at least five pairwise non-Aut(S)-conjugate members; and
(ii) X contains at least three C-invariant members for any cyclic 2-subgroup C' < D

Note that (i) and (ii) will yield the result in the cases A/S is odd and A/S is a cyclic
2-group, respectively, using Lemmas 4.5, and 4.4, together with Lemma 4.7. Throughout
the proof, let ¢ € IFZQ denote an element of order 3 and when ¢ > 4, let ¢ € IF; with
€1 ¢ {1,3}.

l.a. First assume S is not one of Go(q), F4(q),?Da(q), *B2(q), 2Fu(q), or PSLE(q). In
paragraphs 5 - 9 of [14, Proposition 4.3], two nontrivial semisimple elements of G* are
constructed in the case of defining characteristic larger than 3, using certain products of
elements h,(d), where h, denotes a coroot corresponding to a simple root « for fixed root
system for G and § is a certain element of IF; . The exact same arguments work here,
replacing the 0 used there with our ¢ of order 3, yielding two semisimple elements s and
sy of G* whose corresponding characters y,, and x,, of G are trivial on Z(G), invariant
under D, and have different degrees. In the case ® is not of type Eg, we have G = G, so
we see (ii) holds. In the case ® is type g, note that S/S has size dividing 3. Then if A/S
is a cyclic 2-group, at least one of the constituents of each restriction yg is A-invariant
for each of x = xs,, Xsy, 50 (ii) still holds. (Here we identify y,, with the corresponding
character of S = G/Z(G).)

If ¢ > 4, then in all cases, taking two additional characters x and x, of G constructed
in the same way as [14, Proposition 4.3], but with § replaced with £ will ensure two more
non-Aut (S)-conjugate members of X'. Indeed, we see as before that y. and x, have
different degrees. Further, the orders of the semisimple elements ensure that x, and x
are not Aut (5)-conjugate for i = 1,2, completing the argument for (i).
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Now assume ¢ = 2 and S is not as in Lemma 4.3. If S is 2D4(2), F7(2) or Fg(2), then
the list of character degrees available at [20] yields at least 5 odd-degree characters with
multiplicity 1, completing the proof for these groups. If S is B, (2) or C,(2) with n > 3,
then there are 5 odd-degree unipotent characters (see [24, Theorem 6.8]), completing
the proof in this case since Out(S) = 1 and unipotent characters of classical groups are
rational-valued by [22, Corollary 1.12]. If S is D,(2) or ?D,,(2) with n > 5, then we see
that (i) holds since G* =~ G has at least 5 distinct centralizer structures of semisimple
elements.

1.b. If S = Gs(q) or Fy(q), the list of character degrees available at [20] shows that
there are at least five distinct odd character degrees, which must come from semisimple
characters using [24, Theorem 6.8], accomplishing (i). (Recall that here we have excluded
the case ¢ = 2.) For G5(q), the character table is also available in CHEVIE [12]. To see
that (ii) holds for G2(q), we may consider the trivial character, together with the unique
character of degree ¢* + 1, where ¢ = n (mod 3), and the character x14(k) or x15(k) in
CHEVIE notation with (¥ = § or £&¥ = §, respectively, in the cases n = 1 or —1. Here (;
and & are primitive ¢ — 1 and g + 1 roots of unity, respectively.

To see that (ii) holds for S = Fy(g) in the case ¢ = 1 (mod 3) (so ¢ is an even power of 2),
we want three members of X invariant under any 2-group of field automorphisms. This is
achieved by considering the trivial character, the unique character of degree ®2P2P3DgP1,
(here ®,, is the mth cyclotomic polynomial in ¢), and a semisimple character x, with
s = hy = (1,1, 2, 2) in the notation of [43], taking z = §. Indeed, the generating field
automorphism maps such an element to its inverse, which defines the same conjugacy
class as s. When S = Fy(q) with ¢ = —1 (mod 3), we need three members of X’ invariant
under the order-two graph automorphism. The trivial character, the unique character of
degree ®ID2P2PsP 15, and the character guaranteed by [41, Lemma 5.7 and Proposition
6.4] yields (ii) in this case.

l.c. Let S = 3Dy(q). If 3| (¢ — 1), then taking the trivial character together with the
characters xo(k1), xo(k2), x11(¢1), and x11(¢2) such that || = |5 = 3 and [¢2] # 3 #
02| in CHEVIE notation show that (i) and (ii) are satisfied. If 3 | (¢+1), we may instead
use x17(k;) and x20(¢;) with the roles of (1, p3) replaced by (&1, ). (Here ¢ isa g—1
root of unity, & is a ¢ + 1 root of unity, and o5 and @g are ¢ + ¢+ 1 and ¢ — ¢ + 1 roots
of unity, respectively.)

1.d. If S = 2By(22"*1) or 2F,(22"1), then Out(S) is cyclic with odd order, so it suffices
to know that (i) holds. For 2Fy(2?"*1) with n > 1, this is clear just from the list of
character degrees, found at [20]. For ?By(2***1) with n > 2, there are four distinct odd
character degrees, but using the character table in CHEVIE, we see there are at least
two of the same degree that are not conjugate under field automorphisms, which generate
Out(9).

l.e. For the remainder of part 1 of the proof, let S = PSLX(q), G = GL:(q) = G,
G = SL¥(q) = [G,G], and S = PGLI(¢q) =~ G* for an appropriate value of n. Further,
recall that in this situation, semisimple classes of G* are determined by eigenvalues.

If n > 4 and q > 4, the characters of G of the form Xs for s € [é*, é*] with eigenvalues
{6,071, ... 1}, {6,07,0,67 11, 1, {E, 6701, 1) and {€, €71, 6,671, ... 1) are
irreducible on GG and trivial on Z((NJ), since each s is non-conjugate to sz for any 1 # z €
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Z(é) Since these semisimple elements are pairwise not Aut(.S)-conjugate and the same
is true for their images in G*, we see that the same is also true for the corresponding
characters of S. Further, those involving § are invariant under the field automorphisms,
and in case +, all of these characters are also invariant under the inverse-transpose map,
which induces the graph automorphism. This yields that (i) and (ii) hold for PSLZ(q)
withn >4 and ¢ > 4

If n > 7 and ¢ = 2, the characters of G of the form Xs for s € [é*, é*] with eigenvalues
{6,674,1,..., 1} and {§,071,6,671,1,..., 1} satisfy the same properties as above, showing
that (ii) holds. To obtain (i), we note that there are at least two more semisimple ele-
ments of G whose centralizers in G have distinct structures, yielding at least two more
non-Aut (S)-conjugate characters in X when the corresponding semisimple characters are
restricted to G and viewed as characters of S.

1.f. Let S = SLa(q) with ¢ = 8 a power of 2. Then we obtain at least five Aut(.S)-orbits
in X by taking semisimple characters of S =G = GL2(q) corresponding to semisimple
elements s € G* =~ G with eigenvalues {£, 7'}, where & ranges over elements £ € Fqﬁ,

since they must restrict irreducibly to S. Write ¢ = 22" m with m odd. If A/S is a cyclic
2-group, we may view A as A = S x C with C' < (F}*), where F; is the generating
field automorphism induced by z + z%. Then if m > 1, we may construct characters
as above with £ = & and &, 2™ — 1 and 2™ + 1 roots of unity, respectively, to obtain
two nontrivial semisimple characters invariant under C' and yielding the desired three
C-invariant members of X. If m = 1 but C' does not contain F,, then C' is contained in
(F§). In this case, taking & and & to instead be 3rd and 5th roots of unity yields the
result. Finally, if m = 1 and C' = (F}), then the only nontrivial C-invariant character
in Irro(S) is of the form y, where s has eigenvalues {5,57'} with |6 = 3. This yields
[Irry 5, (Bo(A))| = 4 in this case, using Lemma 4.4.

1.g. When S = PSL3 (¢), we may consider the same semisimple elements of G* as in
case 1.f above, adding an eigenvalue of 1. The corresponding semisimple characters of
S = PGLE(q ) are in this case also fixed by 7. However, in the case 3 | (¢F1), a semisimple
clement s of G* with eigenvalues {5,671, 1}, where |6] = 3, is conjugate to sz with z =
0-1I3€ Z(G*) This yields that the corresponding character y, of G (or of S ) restricts to
the sum of three irreducible characters of G (or S). The character x; is invariant under
graph and field automorphisms, and hence for any 2-group of automorphisms C', at least
one of these constituents must be fixed by C. Then with this in mind, the same arguments
as for SLy(q) above yield that (i) holds, and further (i) holds except possibly if ¢ = 2%
and C' = (7F) in the case 4+ or C' = (F}) in either case =+.

So, let S = PSLs(q), where ¢ = 22" with b > 2 and let A = S xC with C cyclic of size 2°.
Note that these conditions force 3 | (¢—1) and 7 | (¢*+q+1). The semisimple character
of G , where s has eigenvalues {d,~1, 1}, restricts to the sum of three irreducible characters
of G (or S) of degree (g + 1)(¢*> + ¢ + 1). Since y, is A-invariant and |C| is a power
of 2, it follows that at least one of these three irreducible characters of S must also be
C-invariant. Further, from [25, Lemma 3.5], we see that that all three of these characters
are invariant under (7 F,), completing (ii) when C' = (7 F,). In the case C' = (F3), we may

let p € IE‘ng with |u| = 7 and consider the character x, of G with s € G* having eigenvalues
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(1, 42, %), or equivalently, (s, u?, u4°). Then y, is trivial on Z(G), restricts irreducibly to
G, and is invariant under C, completing the proof of (ii) in this case.

Finally, suppose S = PSUj(q) with ¢ = 227" and b > 2 and let A = S x C with
C = (F,) = Cy». Note that S = G in this case, since 3 | (¢ — 1). The only nontrivial
C-invariant odd-degree character of G comes from the character x, of é, where s € G*

has eigenvalues {4,071, 1}, which is trivial on Z(G) and restricts irreducibly to G. Hence
using Lemmas 4.4 and 4.7, we see that |Irry ,, (Bo(A))| = 4 in this case.

2. The Sylow Side. Note that |Z(G)| and |G/G| are odd, so a Sylow 2-subgroup of S
may be identified with one of G or CNT', which is the unipotent radical U = U”. Now, by
[10, Lemma 2.2], we have U/U" is isomorphic to the direct product | [, .o (F,,, +), where
the product is taken over the orbits €2 of the action induced by F' on the fundamental
roots II for G. In particular, from this we see that U /U’ is not 2-generated, since we are
assuming ¢ > 8 in the case of PSLy(q) and ?By(q). Then |P/®(P)| > 4 if A/S is odd.

Now, if A = S x C with C induced by an order-two graph automorphism stabilizing
U, then U/U',[U,C]) is of the form (F,, +)*, where k is the number of orbits of C' on
the simple roots II. Note that in the cases with nontrivial graph automorphisms being
considered, we have ¢ > 4 or k > 2, and hence this is at least 2-generated. Then a
generating set for P/P' = U/(U’, [U,C]) x C contains more than 2 elements.

Finally, if A = S x C' with C' a cyclic 2-group generated by a field or graph-field
automorphism ¢, then U/(U’, [U,C]) = (U/U")¥, the fixed points under . Hence this is
at least 2-generated, yielding a generating set for P/P" =~ U/(U’,[U,C]) x C with more
than two elements, except in the case ¢ = F» and G = SLy or G = SL3 with F twisted.
In the latter cases, we see U/(U’, [U,C]) = (Fy, +) is cyclic, so P/P’ is 2-generated. [

4.3.2. Non-Defining Characteristic. Now we consider the case that G is defined in char-
acteristic p # 2.

Lemma 4.10. Let q be odd and let S be a simple group of type G2(q), Fi(q), E7(q), or
3D4(q). Then every odd-degree character of S is rational-valued, and hence lies in the
principal block. Further, the following hold:

o |Irry(S)| > 4;

o for S # Gy(q), there are more than 4 odd degrees with multiplicity one; and

o for S = Gs(q), exactly 4 of the odd degrees have multiplicity one.

Proof. By [31, Lemma 3.1], we have all odd-degree real-valued characters lie in the prin-
cipal block. Observing the character tables for G5(q) and *D4(q) in CHEVIE, we see that
odd-degree characters are rational and that the statements about multiplicities holds. We
see from the list of character degrees in [20] that the odd character degrees of Fy(q) and
E7(q)sc have multiplicity one. In all cases, there are more than five odd-degree characters.
In the case of E;, since |Z(FE7(q)s.)| = 2, these characters are also trivial on the center
and hence are characters of S. This completes the proof. 0

Before stating the next lemma, we recall that the unipotent characters of G are irre-

~

ducible when restricted to G and trivial on Z(G), by the work of Lusztig [21]. Hence we
may view these characters as characters of 5,5, G, or GG, as needed.
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Lemma 4.11. Let G be a group of Lie type defined in odd characteristic such that G is
of simply connected type A,_1 withn = 6, B, or C,, withn = 3, D, withn =5, or E,
with n = 6, or such that G is of type 2Dy. Then there exist more than four odd-degree
unipotent characters of G. Further, these characters are rational-valued as characters of
CNT', lie in the principal 2-blocks of G and G, and at least five of them extend to Aut(S)
when viewed as characters of S = G/Z(G).

Proof. By [26, Proposition 7.4], all unipotent characters of G with odd degree lie in the
principal series, and hence are in bijection with Irre/(W), where W is the Weyl group
of G. Further, by the work of Lusztig [22], every unipotent character is realizable over
Q in the case of classical groups, and by [40, Proposition 4.4], all odd-degree unipotent
characters (of G or C~¥) are realizable over QQ, and hence lie in the principal block using
[31, Lemma 3.1]. For classical groups, W has a quotient isomorphic to S,, which has
at least 8 odd-degree characters for n > 6, using [23, Corollary 1.3]. We also see, for
example using GAP, that there are at least 8 odd-degree characters of W in the cases G
is of type B,, or C,, with 3 < n <5, Ds, 2Dy, or ?Ds. In the case G is of type Eg, E7, or
Es, the explicit list of unipotent character degrees in [6, Section 13.9] yields more than 4
odd-degree unipotent characters. The last assertion follows using [25, Proposition 2.3 and
Theorem 2.5], noting that there are at least five unipotent characters in the case D, (q)
with n > 4 even that are labeled by nondegenerate symbols. ([l

Proposition 4.12. Let S be a simple group of Lie type defined in odd characteristic and
such that S is not isomorphic to an alternating group or one of the groups listed in Lemma
4.3. Let A be an almost simple group with socle S such that A/S has odd order or is a
cyclic 2-group, and let P € Syly(A). Then |Irry ,, (Bo(A))| > 4 and |P/®(P)| > 4, unless
one of the following holds:

e S = PSLy(q) and A/S is not a cyclic 2-group generated by field automorphisms;
or
e S =PSL;(q) and |A/S| is odd.
In the latter cases, |Irry 5, (Bo(A))| = 4 = |P/®(P)|.

Proof. Recall that A may be viewed as a subgroup of a semidirect product SxC , where
C < D has odd order or is a cyclic 2-group.

1. The Character Side. Similar to Proposition 4.9, except for the listed exceptional
cases and some cases that must be treated slightly differently, our strategy is to show
that there are at least 5 pairwise non-Aut (S)-conjugate members of Irry ,, (By(S)) that

restrict irreducibly from By(S), which will give the result when A < S or |A/S| is odd using
Lemmas 4.5 and 4.7. We also aim to show that there are three members of Irry ,, (Bo(.5))
that are invariant under 2-elements in D, which will complete the proof using Lemma 4.4
in the remaining cases that A/S is a cyclic 2-group.

1i. If S = G/Z(G) with G as in Lemmas 4.10 or 4.11, then we are done by combining
those with Lemmas 4.4, 4.5, and 4.7. For S = %G5(3*"*1), we see from the character table
in CHEVIE [12] that there are exactly eight odd-degree characters and they are all fixed
by oy, and from [44] that they all also lie in the principal block. Further, four of these
character degrees have multiplicity one, yielding at least 5 pairwise non-Aut(S)-conjugate
members of Irry 4, (By(S)), which completes the proof in this case since |Out(S)] is odd.
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In the remaining cases, G is of classical type, and using [5, 21.14], By(G) is comprised
of those series £(G, s) with |s| a power of 2, and similar for By(G).

1ii. Now let S = Dy(q) = PQi(q) or S = Cy(q) = PSp,(q). Here S/ is a 2-group.
Using [25, Proposition 2.4 and Theorem 2.5], we see that there are four A-invariant
unipotent characters of odd degree if A does not contain the graph automorphism of
order 3 in the case Dy(q), which are also rational-valued (even as characters of S) by the
work of Lusztig [22, Corollary 1.12]. This is enough if A/S is a nontrivial cyclic 2-group,
using Lemma 4.4. Even if A contains the triality graph automorphism, note that four
unipotent characters of odd degree may still be chosen to be pairwise non- A-conjugate.

Let s € G* lie in the center of a Sylow 2-subgroup of G* and have order 2. Then x; has
odd degree and is o;-invariant by Lemma 4.8. Since G is perfect and Z(G) is a 2-group,
we see that ys may be viewed as a character of Irry (By(.S)), using Lemma 4.6. Since x4
is not Aut(S)-conjugate to any unipotent character, this takes care of the case |A/S] is
odd.

It remains to deal with the cases S = PSLI(q) with 2 < n < 5. Let S = PSL:(q),
G = SL¥(q), and G = G* = GLI(g) for the appropriate value of n. Note that again in
these cases, unipotent characters lie in the principal block and are rational-valued and
extend to Aut(S), for the same reason as in Lemma 4.11.

1.iii. First let n = 4 or 5. Then we have four unipotent characters of odd degree,
which may be viewed as characters of S that restrict irreducibly to S. Note that in the
case n = 4, there is one more o;-invariant extension to S for each of these unipotent
characters, which also must lie in the principal block since S /S is a 2-group. This yields
eight members of |Irry ,, (Bo(A))| if PSLE(q) < A < S. Hence if A/S is a nontrivial cyclic
2-group, we are done by also using Lemma 4.4.

Now, let s € G* be semisimple with eigenvalues {—1,—1,1,1} in case n = 4 or
{—=1,—1,—1,—1,1} in case n = 5. Note that s € [é*,é*] ~ (7, and hence the corre-
sponding semisimple character y, of G is trivial on Z(é) Further, since |s| = 2, x; lies
in BO(G), and is fixed by o1 by Lemma 4.8. In the case n = 5, x5 has odd degree and
s is not G*- -conjugate to any sz for 1 # z € Z(G*), and hence y; restricts irreducibly to
G. In the case n = 4, the degree of the character y, of G is 2 (mod 4), and it restricts
to the sum of two irreducible odd-degree characters in (G, since s is conjugate to —s.
These restricted characters are also semisimple, indexed by semisimple elements of G* of
order 2, and hence are still fixed by o7 using Lemma 4.8. This yields a fifth member of
Irry 5, (Bo(S)) that is non-Aut(S)-conjugate to the unipotent characters discussed above,
completing the proof for the cases PSL] (q) or PSLZ (q).

Liv. If § = PSLy(q), then there are four odd-degree characters of S. These come from
the two unipotent characters and the two odd-degree restrictions of the character y, of
G where s has eigenvalues {e4,c;'} with |e4| = 4. Here as in the case of PSLy(q) in 1.iii
above, the degree of x, is 2 (mod 4). For the same reasons as there, these characters lie in
By(S) and are fixed by ;. Also, note that § = PGLs(q) also has exactly four odd-degree
characters, coming from the two extensions of each unipotent character of S, which are
also in Irry 4, (By(S)) following the same reasoning as in 1.ii.
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We can see from the character table of S that the four members of Irry ,, (Bo(5)) are
fixed by field automorphisms. Hence, if A is the semidirect product S x C' with C' a
2-group of field automorphisms, then these extend to give 8 members of Irry ,, (Bo(A)),
using Lemma 4.4.

If g is square and A # S is an extension of S by a cyclic 2-group not comprised of field
automorphisms, then we may write A = S{a), where « is a diagonal automorphism and
¢ is a field automorphism. Since the four members of Irry ,, (By(S)) are fixed by field
automorphisms but only the two unipotent characters are fixed by a nontrivial diagonal
automorphism, we see that the odd-degree characters of A are again the extensions of
the two unipotent characters (namely, the trivial and Steinberg characters) of S. As A/S
is a 2-group, each such extension lies in Irro/(By(A)). Further, the trivial and Steinberg
characters each extend to a rational-valued character of Aut (S) (see [42] for extensions of
the Steinberg character) and we therefore again obtain exactly two o-invariant extensions
of each of these two characters, yielding |Irry ,, (Bo(A))| = 4.

This leaves the case A is the semidirect product A = S x C with C' a group of field auto-
morphisms of odd order. In this case, we claim that each x € Irry (By(S)) = Irra , (Bo(.5))
has a unique extension that lies in By(A). By Theorem 2.7 and Lemma 4.5, it suffices to
know that « centralizes a Sylow 2-subgroup of S for any a € C'. Write ¢ = p2bm with m
odd and let F, be the generating field automorphism for S induced by the map z — 2.
By considering the construction of a Sylow 2-subgroup of GLy(¢) in [4], we see that there
is a Py € Syl,(GLy(q)) centralized by ng, and hence centralized by C'. To be more precise,
if ¢ =1 (mod 4), we have P, is generated by matrices with entries 1,0, and € with € a
(g — 1)p-root of unity in F). Since 2 divides ®4(p) if and only if d is a power of 2, we

see (¢ — 1); = (p*" — 1)5, and hence F2' fixes e. If ¢ = 3 (mod 4), note that ¢ is an odd
power of p. Here P, instead is generated by matrices with entries +1,0, ¢ + €7, where €
is a (¢* — 1)y-root of unity in FJQ. Using the same argument as above, but using instead

the generator Fp2, shows that again P, is centralized by C. Then we are done, taking a
Sylow 2-subgroup of SLy(q) as a subgroup of Ps.

1.v. If S = PSL3(q), there are two unipotent characters of odd degree. We may also
consider the two odd-degree characters that come from the series & (é,s) of G, where
we define s to have eigenvalues {—1,—1,1}. These correspond to the trivial character
and Steinberg character of Cg.(s) = GL3 (¢) x GL{(¢) under the Jordan decomposition

~

of characters. Note that these characters are irreducible on G and trivial on Z(G) since
s € [G*,G*] = G and s is not G*-conjugate to sz for 1 # z € Z(G*). Further, since |s| = 2,

~

these characters lie in By(G), and the corresponding characters of G, S, and S are then
also in the principal block, since BO(CNJ) covers a unique block of G and using Lemma
4.6. Lemma 4.8 implies x; is fixed by oy, and hence so is the character corresponding
to the Steinberg character of Cg,(s), since it is the unique character in the series with
that degree. Similarly, since the class of s is invariant under Aut(S), we know that so are
these two characters. Note that these two characters and the two unipotent characters
are the only members of Irry ., (By(S5)). If A/S is a nontrivial cyclic 2-group, this yields
8 members of Irry ,, (By(A)), using Lemmas 4.4 and 4.7.

If |A/S] is odd, we claim that for each member of Irry ,, (Bo(S)), exactly one character
of A above it lies in By(A), yielding exactly four characters of Irry », (Bo(A)) using Lemma
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4.5 and 4.7(2). For A = S, the characters of G lying above the series £(G, 1) and &(G, s)
must lie in the series £(G, 2) and &£(G, sz) for z € Z(G*), by [5, Proposition 15.6]. To
be trivial on Z(C:'), we further require z € [é*, @ﬂ N Z(C:’*), which has size dividing 3.
Recalling that only series indexed by 2-elements are in the principal block of G , this shows
the claim when A = S. To complete the proof, as in the case 1.iv above, it suffices to
know that szb centralizes a Sylow 2-subgroup of G = GL3 (¢). Here, we write § = p2bm
with m odd, where ¢ = ¢ in the case PSL3(q) and ¢ = ¢* in the case PSUj3(q). Since such
a Sylow 2-subgroup is the direct product of P, x P, by [4], where P; € Syl,(GL;(q)) for
1 = 1,2, we are done by the same arguments as 1.iv, since P; is cyclic generated by a
(¢ F 1)2 root of unity in Fx.

2. The Sylow Side. If S = %Go(3* 1), then |Out(S)] is odd, so P is a Sylow 2-subgroup
of S, which is elementary abelian of order 8. We therefore assume that S is not %Ga(q).

Let W be the Weyl group Ng(T)/T of G and write w = 1 if ¢ = 1 (mod 4) and
w = wy, the longest element of W, if ¢ = 3 (mod 4). By [16, Theorem 4.10.2], a Sylow
2-subgroup Py of either G or G/Z(G) contains an abelian normal subgroup Pr containing
the 2-part of Z(G), such that Py/Pr is isomorphic to a Sylow 2-subgroup of Cy (Fuw).
We remark (see [13, Exercise 1.13]) that wg is central in W unless W is type A, with
n =2, D, with n odd, or Fs. In any case, Fy/Pr is isomorphic to a Sylow 2-subgroup of
an irreducible Weyl group. Now, the structure of these groups is well-known, and we see
that a Sylow 2-subgroup of such a Weyl group is at least three-generated, except for the
Weyl groups W (Gs), W(Bsy), and W (A,,) with n < 5.

2.i. Assume first that Cy (Fw) is not one of these groups. That is, we assume S is not
one of Gs(q), *D4(q), Ba(q) = PSp,(q), or PSLE(q) with n < 5. In this case, it remains
to show that the statement holds in the case A/S is a cyclic 2-group generated by graph
and field automorphisms, and hence may be taken to be of the form A = S x C' with
C' < D. Now, from the construction in [16, Theorem 4.10.2], Py may be chosen so that P
and Pr are normalized by C' and such that the action of C' on Qo := Py/Pr < Cw(Fw)
is compatible with that on W, and hence there is a Sylow 2-subgroup P of A that has
a quotient of the form @ := Qo x C. Since field automorphisms act trivially on W (and
hence on ), and graph automorphisms permute the generators of W and hence act
trivially on the abelianization of g, we see that () is again at least three-generated.

2.ii. Although the Sylow 2-subgroups of W (Gs) are 2-generated, the Sylow 2-subgroups
of S = G5(q), which are the same for 3D,(q), are well-studied (see, e.g. [15]) and not
2-generated. Since Out(S) is generated by field automorphisms unless ¢ is a power of 3
in the case of G, which act trivially on W, we see a Sylow 2-subgroup of A is also not
2-generated in this case. If A has socle Gy(q) with ¢ a power of 3 and contains a graph or
graph-field automorphism, we may argue as in the case of By(q) in 2.i. For S = PSL:(q)
with n = 4,5 or PSp,(q), we have Qg is 2-generated. Similarly, we see )y x C' is more
than 2-generated when C'is a nontrivial cyclic 2-group of field automorphisms. A Sylow
2-subgroup of PSL; (¢) is the same as that of SLZ (¢), which is isomorphic to a Sylow 2-
subgroup of GLT(¢). So, it suffices to note that we can deduce that the Sylow 2-subgroups
of PSL4(q)*, GL; (q), PGLT(q), PSp,(q), and PCSp4(q) are at least 3-generated by the
construction in [4] of Sylow 2-subgroups of classical groups.
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2.iii. The Sylow 2-subgroups of PSLy(q) and PGLy(g) are either Klein-4 or dihedral,
and hence 2-generated. When ¢ is square and A/S is a cyclic 2-group with A of the
form PSLy(q){ap), where ¢ is a field automorphism and « is a diagonal automorphism,
a can be induced by the diagonal matrix in GLy(¢) with diagonal (w, 1), where w is a
(g — 1)2-root of unity in Fx. Then, modulo Z(SLy(q)), a Sylow 2-subgroup of A can be
generated by ay and the anti-diagonal matrix with anti-diagonal (1, —1).

Now, the group P, x Pi, where P; € Syl,(GLI(q)) for i = 1,2, is a Sylow 2-subgroup
of GLZ(¢). Then there is a Sylow 2-subgroup of SLZ (¢), which is isomorphic to that of
PSL; (q), comprised of the set of (z,y) € Py x P, with y = det x~!, which is isomorphic to
Py. By [4], we see P, is either semidihedral or Cys ¢ Co, both of which are 2-generated. If
A =S x C with S = PSLy(q) or PSL; (q) and C < D a nontrivial cyclic 2-group, and P
is a Sylow 2-subgroup of S, then we can see using the constructions in [4] that P can be
chosen so that the order-2 generators of P/®(P) are C-invariant, and hence P = P x C
is three-generated in this case. O

Propositions 4.9 and 4.12, together with Lemmas 4.2 and 4.3, complete the proof of
Theorem 3.1.
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