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Abstract

Let p > 5 be a prime and let G be a finite group. We prove that G is p-solvable of p-length at most 2 if
there are at most two distinct p’-character degrees in the principal p-block of G. This generalizes a theorem
of Isaacs—Smith as well as a recent result of three of the present authors.
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1 Introduction

Let G be a finite group. If all non-linear irreducible characters of G have degree divisible by a prime p, then G
has a normal p-complement by a theorem of Thompson [Tho70, Theorem 1] (see also [Isa06, Corollary 12.2]).
Moreover, Berkovich [Ber95, Proposition 9 and the subsequent remark| has shown that G is solvable in this
situation. This result was extended in Kazarin—Berkovich [KB99] to the case where G has at most one non-
linear character of p’-degree. In a recent paper [GRS], three of the present authors proved more generally that
G is solvable of p-length at most 2 whenever p > 5 and |{x(1) : x € Irr,/(G)}| < 2 where Irr, (G) is the set
of irreducible characters of G of p’-degree. This has solved Problem 1 in [KB99, p. 588] and Problem 5.3 in
[Nav16].

In the present paper we generalize our theorem to blocks. This is motivated by a result of Isaacs and Smith [IS76,
Corollary 3] who showed that G has a normal p-complement if and only if all non-linear characters in the principal
p-block of G have degree divisible by p. The following is our main theorem.

Theorem A. Let By be the principal block of a finite group G with respect to a prime p > 5. Suppose that
{x(1) : x € Irrpy (Bo) }| < 2. Then G/ Oy (G) is solvable and OPP PP (G) = 1. In particular, G is p-solvable.

As usual we define Opp,(G) = Op/(Op (G)) and so on. It is easy to construct groups of p-length 2 satisfying the
hypothesis of Theorem A (e.g. G = (C2 x C11) x Cs with p = 5). In contrast to the main theorem of [GRS]
we cannot conclude further that G is solvable since every p’-group satisfies the assumption of Theorem A.
Furthermore, the examples given in [GRS| show that Theorem A does not extend to p € {2,3}. We also like to
mention a conjecture by Malle and Navarro [MN11], which generalizes the result of Isaacs and Smith to arbitrary
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blocks. More precisely, they conjectured that a p-block B of G is nilpotent if and only if all height 0 characters
in B have the same degree. We do not know if our main result admits a version for arbitrary blocks.

The proof of Theorem A relies on the classification of finite simple groups. In the next section we reduce
Theorem A to a statement about simple groups (Proposition 2.1 below), which is proved case-by-case in the
following two sections. We care to remark that in the case of alternating groups, Proposition 2.1 is deduced as
a consequence of a more general statement giving a lower bound for the number of (extendable) p’-character
degrees in any block of maximal defect. This is Proposition 3.5 below, which we believe is of independent
interest.

2 Reduction to simple groups

The following proposition about simple groups will be proven in the next two sections.

Proposition 2.1. Let S be a finite non-abelian simple group of order divisible by a prime p > 5.
(i) If S # PQF (q), then there exist o, 8 € Trr(S) with the following properties:
catl#5,
e (1) and B(1) are not divisible by p,
o for every S < T < Aut(S), a extends to a character in the principal block of T,

e (3 lies in the principal block of S and is P-invariant for some Sylow p-subgroup P of Aut(S),

e A1)t a(1).
(ii) If S = PQyg (q), then there exist o, B € Irr(S) with the following properties:

catl4B,
e a(l) and B(1) are not divisible by p,

e (1) > 25(1),

e for every S < T < Aut(S) there exist &, 3 € Irr(Aut(T)) in the principal block such that ag € {o, 2a}
and fs € {B,26}.

We make use of the following results.

Lemma 2.2 (Murai [Mur94, Lemma 4.3]). Let N < G be finite groups with principal p-blocks By and Bg
respectively. Suppose that ¢ € Irry (Bn) is invariant under a Sylow p-subgroup of G. Then there exists a
character x € Irry (Bg) lying over 1.

Lemma 2.3. Let x, v € Irr(By) where By is the principal p-block of G. Suppose that p1 x(1) and x € Irr(G).
Then x € Irr(By).

Proof. Clearly, 1 € Irr(By). Hence by [Nav98, Corollary 3.25], we have

Dew 1° = [, 91° # 0.
The claim follows from [Nav98, Theorem 3.19]. O

Now we are in a position to reduce Theorem A to simple groups.

Theorem 2.4. If Proposition 2.1 holds, then Theorem A holds.



Proof. Let p, G and By be as in Theorem A. Suppose first that G is p-solvable. Let N := O,/(G). Then, by
[Nav98, Theorem 10.20], Irr(By) = Irr(G/N). It follows from |[GRS, Theorem A] that G/N is solvable and

Opp/pp/(G/N) = 1. In particular, Opp/p(G)N/N is a p’-group. Since N is a p’-group, this implies Opp/pp/(G) =1.

Thus, it suffices to show that G is p-solvable. Let N be a minimal normal subgroup of G. Since the principal
block of G/N lies in By, we may assume that G/N is p-solvable by induction on |G|. If N is a p-group or a
p’-group, then we are done. Therefore, by way of contradiction, we assume that

N=5 x...x5;

[a=3

with isomorphic non-abelian simple groups S := 57 = ... =2 S, of order divisible by p. Since N is the unique
minimal normal subgroup, Cg(N) = 1. Moreover, G permutes S, ..., S; transitively by conjugation.

Case 1: S # PQJ (q).

Let a, § € Irr(S) as in Proposition 2.1. We may regard « as a character of S Cg(S), since S Cg(S)/ Ca(S) =
S/Z(S) = S. As such it extends to a character & in the principal block of Ng(S), because Ng(S)/ Ca(S) <
Aut(S). Let M := Ng(S1)N...NNg(S;) 4 G. Since the principal block of Ng(S) covers the principal block
Byr of M, the restriction @y lies in Bys. Now by [Nav1s, Corollary 10.5], the tensor induction 1 := 4% is
an irreducible character of G with p’-degree 1 (1) = «(1)!. Let z1,...,2; € G be representatives for the right
cosets of Ng(S) in G such that S7* = S;. Then for g € M we obtain

w(g) =[] a"(9)
i=1

from [Nav18, Lemma 10.4]. In particular, ¥y = o™ x ... x & € Irr(N) and therefore 1 € Irr(M) as well.
Since @y lies in By, so does é7};. Hence, by Lemma 2.3 also ¢y = &7 ... &3 lies in Byy.

Let @ be a Sylow p-subgroup of M. Then @QNS; is a Sylow p-subgroup of S;. It follows that C(Q) C Cq(QNS;) C
Ng(S;) for i = 1,...,t and therefore Cq(Q) C M. Hence, the Brauer correspondent B, is defined (see [Nav9s,
Theorem 4.14]) and equals By by Brauer’s third main theorem. Every block B of G covering Bjs has a defect
group containing @ by [Nav98, Theorem 9.26]. Hence by [Nav98, Lemma 9.20], B is regular with respect to N
and therefore B = Bj by [Nav98, Theorem 9.19]. Thus, By is the only block of G covering Bj;. This implies
¢ € Irry (Bp). Since the trivial character in By has degree 1, d := (1) = «(1)" is the unique non-trivial
p’-character degree in By by hypothesis.

Now we work with . Let P be a Sylow p-subgroup of G such that § is invariant under Np(.S). Without loss of
generality, let {S1,...,S5,} be a P-orbit. Let y; € P such that S{" =S, for i« = 1,...,r. Then 3; := ¥ lies in
the principal block of S;. By Lemma 2.3, 31 X ... x 3, lies in the principal block of N. Moreover, if 57 € Irr(S;)
for some y € P, then yiyyjl € Np(S). Since 8 is Np(S)-invariant, it follows that 37 = ﬁyiyyz‘_lyi = pY% = B;.
This shows that {81,...,05,} is P-orbit and 81 x ... x (3, is P-invariant. If r < ¢, then we consider 3,11 :=
B*r+1 € Irr(Sy41). By Sylow’s theorem, we can assume after conjugation inside Ng/(Sy11) that 541 is Np(Sy41)-
invariant. Now we can form the P-orbit of 3,11 to obtain another P-invariant character 8,41 X ... X 85 € Irr(IV)
in the principal block of N. We repeat this with every P-orbit and eventually get a PN-invariant character

T::le...xﬁtelrr(N)

in the principal block of N. Since o(7) = 1 and ged(7(1),|PN/N|) = 1, 7 extends to PN (see [Isa06,
Corollary 8.16]). By Lemma 2.2, there exists some x € Irr, (By) such that 7 is a constituent of xy. Since
1 # B(1)F = 7(1) | x(1), it follows that x(1) = d = +(1). But then 3(1)* | ¥(1) = «(1)" and B(1) | a(1), a
contradiction to the choice of « and .

Case 2: S = PQ{ (q).

Let o, 8 € Irr(S) and &, 3 € Irr(Ng(S)) as in Proposition 2.1. Since the principal block of Ng(S) covers By,
Gy is the sum of at most two irreducible characters in Byy. If ay € Irr(B)y) is one of those summands, then
ajl...aj" restricts to a® x ... x a® € Irr(N). Hence, by Lemma 2.3, a7* ... 7" lies in By. As in Case 1
we see that (&®%), is a sum of irreducible characters in Bjs. Moreover, (G%¥%)y = d(a® x ... x a®t) where
d € {1,2!}. Since By is the only block of G covering By, all irreducible constituents of 4®¢ lie in By. We may
choose such a constituent x of p’-degree. Then yy = e(a® x ... x a®t) for some integer ¢ < d < 2¢. Similarly,
we choose a constituent ¢ of 3¢ with p’ -degree. Then by Proposition 2.1 we derive the contradiction

a(l) > 218(1)! = (1) = x(1) = a(1)". O



3 Alternating groups

This section is devoted to proving Proposition 2.1 for the alternating groups S = 2, where n > 5. It is
well-known that Aut(S) & &,, is the symmetric group unless n = 6.

Given n € N we let P(n) be the set of partitions of n. Let A = (A1,...,A\x) € P(n). Adopting the notation
of [Ols93, Chapter 1] we let £(A) = k denote the number of parts of A, and Y(A) be the Young diagram of A.
Given a node (i,5) € Y(\) we denote by h;;(\) the length of the hook corresponding to (¢,7). If ¢ € N then
the g-core Cy(\) of X is the partition obtained from A by successively removing all hooks of length ¢ (usually
called g-hooks). We denote by H?(\) the subset of nodes of Y(\) having associated hook-length divisible by g.
A partition v is called a g-core if H()\) = 0.

The set Irr(&,,) is naturally in bijection with P(n). Given A € P(n) we let x* be the corresponding irreducible
character of &,,. Let p be a prime and A\, u € P(n). By [JK81, 6.1.21] we know that x* and x* lie in the

same p-block of &,, if and only if C,(A) = Cp(u). If 7y is a p-core partition then we denote by B(S,,,7) the
corresponding p-block of &,,. We use the notation A I, n to say that x* has degree coprime to p.

The following result follows from [Mac71]| and it will be extremely useful for our purposes.

Lemma 3.1. Let p be a prime and let n be a natural number with p-adic expansion n = Zf:o ajpj. Let X be a
partition of n. Then A by n if and only if |’Hpk (M| = ar and Cpe(N) by 0 — agp®.

A straightforward consequence of Lemma 3.1 is that Irr, (B(S,,7)) # 0 if and only if |y| < p.

For A € P(n), we denote by X its conjugate partition. From [JK81, 2.5.7] we know that ¢* := (x})g, is
irreducible if and only if A # \’. In this case x* and X/\/ are all the extensions of 1/ to &,,. Let A, 1 be non-self-
conjugate partitions of n. Then ¥* and ¥* lie in the same p-block of 2, if and only if C,(\) € {Cp(p), Cp(1)'}.
It follows that also p-blocks of 2, can be labeled by p-core partitions, by keeping in mind that conjugated
p-cores label the same p-block. We denote by B(n;~v) the p-block of 2, labeled by ~.

In order to show that Proposition 2.1 holds for alternating groups, we introduce the following conventions.

Notation 1. Let B be a p-block of 2,,. We let Cdfft(B) be the set of degrees of irreducible characters in B of
degree coprime to p that extend to an irreducible character of &,,. Moreover, when S is a subset of P(n) we let

cd(8) = {x*(1) [ A € S}

Observe that if B is the principal p-block of 2, and ¢* lies in B and extends to &,,, then one of the two
extensions of 1* lies in the principal p-block of &,,. This is explained in [Ols90]. Even if in this article we are
mainly interested in studying the principal block, in Proposition 3.5 below we are going to compute an explicit
lower bound for [cd5* (B(n,v))|, for any p-core 7 such that |v| < p.

Given v = (y1,...,7) F n and natural numbers x and y, we denote by v x (z,y) the partition of n + x + y
defined by

7*(:ray) = (71+x>723"'77271y)'

We start by proving a technical lemma that will be useful later in this section.

Lemma 3.2. Let p be a prime, let m,n,w € N be such that m < p andn =m + pw. Let v+ m and let a € N
be such that [“F1] +1 < a < w. Setting A = v * (ap, (w — a)p) and p = v * ((a — 1)p, (w — a + 1)p), we have
that x*(1) < x*(1).

Proof. For v n we let m(v) := [] hi; () be the product of the hook-lengths in v. From the hook length formula
[JK81, 2.3.21] it follows that x”(1)m(v) = n!. We let h' = hy;(7) and hj = hj1(7) for all i € {1,...,7} and all
je{1,...,£(~)}. It follows that

Y1 £(y)
m(A) = (ap)!- ((w —a)p)! - _H(hi +ap) - H(hi +(w—a)p) -7 - (h11(v) + pw),



where 7 is the product of the hook lengths h;;(7y) for all 4,5 > 2. Similarly

Y1 £(7)
(1) = ((a—=1p)! ((w—a+1)p)!- H(hi +(a—1)p) - H(hi +(w—a+1)p)-7- (hi1(7) + pw).

It follows that m(\)/7(u) = A- B - C, where

P 7 £(7)

Dp+i h' + ap a)p
A —
H (w—a)p+1i’ th +(a—1)p’ and ¢ = Hh —a+1)

=1

We remark that we always regard empty products as equal to 1. We observe that B > 1. Sincea—1> w—a+1
by hypothesis, it is clear that A > 1. Hence, if ¢(v) = 1 then C' = 1 and clearly A- B - C > 1. Suppose that

{(y) > 2. Then observe that p > |y| > ha > h3 > -+ > hyy) > 1. Hence for all i € {2,...,£(y)} we have that

% is one of the factors appearing in A. Moreover

(@a—Dp+hi  hit+(w—a)p
(w—a)p+h; hi+(w-—a+1)p

b

since a — 1 > w — a + 1. We conclude that A-B-C > A-C > 1 and therefore that y*(1) < x*(1). O

Definition 3.3. Let p be a prime and n = wp + m, for some m < p. Let v be a p-core partition of m. We let
H (n;~y) be the subset of P(n) defined by

H(n;y)={AFpn| C,(A\)=v,A=v%(a,n—m —a)}.
We also set Q(n;y) ={A € H(n;vy) | A1 > (M)}

Lemma 3.4. Letn = Ef:o a;p’ be the p-adic expansion of n, with ap # 0. If v - ag, then

k—1

ed(@m)| = 1900 )] > %= T @+ 1),

Proof. Let A =~y * (z,n —ag—x), for some 0 < x <n—ag. Let x = ZE:O b;p' be the p-adic expansion of x. By
definition of H(n;y) we have that A € H(n;~) if and only if A -,y n and C,()\) = ~. In turn, this is equivalent to
have that p divides = (and n —ag — ) so that C,(\) = and by Lemma 3.1 to have that by = 0 and 0 < b; < q;
for all ¢ > 1. It follows that |H(n;v)| = Hle(ai + 1). Moreover, if by > |ar/2] 4+ 1, then certainly A\; > (\');
and therefore A € Q(n;~). It follows that

o1 ko

k

1Q(n; )| = LTJ : H(ai +1
=1

We conclude by observing that Lemma 3.2 implies that given A, u € Q(n;~) we have that x*(1) # x*(1) and
hence that |cd(Q(n;~))| = |Q2(n;v)]. O

Given A € Q(n;v) we have that x* lies in B(&,;v) and that (x*)y, is irreducible and lies in B(n;v). As
explained in Notation 1 above, cd;ft(B (n;7)) denotes the set of degrees of irreducible characters of B(n;~) of
degree coprime to p that extend to B(&,;7).

In the following proposition we are able to establish a lower bound for the number of extendable p’-character
degrees lying in any given p-block of 2,. We believe this statement of independent interest from the topic of
this article.

Proposition 3.5. Let n = Zf:o a;p* be the p-adic expansion of n, with ay # 0. Let v - ag, then

k—1

|- H(al +1).

i=1

ak+1

ledp (B(n:))] = |



Proof. By definition, for every partition A € Q(n;~) we have that (x*)a, is a p/-degree character that lies in

n

B(n;v) and extends to x* in B(&,,;v). The statement now follows from Lemma 3.4. O

Proposition 3.6. Let n > 5 be a natural number and p > 3 be a prime. Then Proposition 2.1 holds for 2,,. In
particular if n > 7 then |cd;§”t(Bo (2An)] > 3.

Proof. Direct verification proves that Proposition 2.1 holds for 2[5 and 2lg. Suppose that n > 7 and that
n = ag + Zle a;p™t is the p-adic expansion of n, with a; # 0 for all ¢ > 1 and with n; < no < -+ < ng.
Since p is odd, for P € Syl (&,) we have that P < 2, and hence that all irreducible characters in Bo(2l,,)
are P-invariant. Thus we just need to show that |cds*(Bo(%y))| > 3. From Proposition 3.5, we deduce that
|cd;,“(Bo(an))| > 3, whenever k > 3. Suppose that k < 2. If ap < 1 then Irr, (Bo(2U,)) = Irry (A,,) and the
statement follows from [GRS, Proposition 3.5]. Hence we can assume that ag > 2 and consider A, u € P(n) to
be defined as follows.

A= (G‘Oa 1n7a0), and H= (a07 2, 1n7a072)'

It is clear that both (x*)s, and (x*)g(, lie in the principal p-block of 2, and extend to the principal p-block of
S, to x* and x* respectively. Moreover A and y label characters of degree coprime to p by Lemma 3.1. Using
the hook-length formula we verify that 1 = x( (1) < x*(1) < x*(1). The proof is complete. O

4 Sporadic groups and groups of Lie type

Proposition 4.1. Proposition 2.1 holds for all sporadic simple groups S and the Tits group 2Fy(2)’.

Proof. Recall that | Aut(S) : S| < 2. Hence, we may take a p’-character & in the principal block of Aut(S) such
that « := &g # 1 is irreducible. For 8 we can choose any non-trivial p’-character in the principal block of S.
Now it can be checked with GAP [GAP18| that there are choices such that (1) t a(1). O

Now we consider simple groups S of Lie type, by which we mean groups of the form G/ Z(G), where G = G
is the set of fixed points of a simple simply connected algebraic group under a Steinberg morphism F'. In the
case where Z(@) is trivial, we define G = G, and otherwise we let G < G be a regular embedding, as in [CE04,

- ~ ~ ~ - F ~
Section 15|, so that Z(G) is connected, [G, G| = [G, G], and G is normal in G := G . We write S for the group
G/ Z(G), so Aut(S) may be viewed as generated by S and graph and field automorphisms.

Recall that the set Irr(é) can be partitioned into so-called Lusztig series £ (67 s), where s is a semisimple element
of the dual group G*, up to conjugacy. Each series 5(6, s) has a unique character of degree [é* 1 Caa(s)]yr,
where F is the field over which G is defined, called a semisimple character. Further, the characters in the series
& (é, 1) are called unipotent characters, and for a prime p, any p-block containing a unipotent character is called
a unipotent block.

When G is type A, (that is, in the case of linear and unitary groups), we will use the notation PSLE (q) to
denote PSL,(q) for e =1 and PSU,(q) for e = —1, and similar for GL¢,(q) and SL (q). Similarly, A%_(g) will

denote the untwisted case A,_1(q) when € = 1 and the twisted case 24,,_1(¢) when ¢ = —1. We also remark
that the group P (¢) corresponds to D,,(q) and P, (q) corresponds to 2D, (q).

The following result settles Proposition 2.1 for most simple groups in defining characteristic.
Proposition 4.2. Let S be a simple group of Lie type defined over Fy, where q is a power of p > 3 not in the

following list: PSLy(q), PSLS(q), or PSpa(q). Then there exist two non-trivial characters x1, x2 € Irrp (Bo(9))
such that x1(1) # x2(1) and:

o If S # PQI(q), then for every S < T < Aut(S), each of x1 and x2 extend to a character in the principal
p-block of T.

e If S = PQI(q), then x1(1) > 2x2(1) and for every S < T < Aut(S), fori = 1,2, there exist X; in the
principal p-block of T such that X;|s € {xi,2xi}-



Proof. In the proof of [GRS, Proposition 4.3], it is shown that there exist two characters xi,x2 € Irr,(S5)
that restrict irreducibly to S, extend to characters of Aut(S), have different degrees, and are obtained from
characters of G trivial on Z(G). Now, since Irr,, (@) = Irrp/(Bo(é)) (using, for example, [CE04, 6.18, 6.14, 6.15])
and using [CE04, Lemma 17.2], we see that in fact these characters are members of the principal block of S ,
and their restrictions are members of the principal block of S.

Now, let S < T < Aut(S). Then for i = 1,2, x4|,~g is in the principal block of 7'N §, since Bo(g) covers a
unique block of T'N S. Note that by [Nav98, Theorem 9.4], there must be a character of By(T) lying above

Xilpng- If S # PQJ (), we have Aut(S)/§ is abelian, and hence every character of T lying above Y;
extension, completing the proof in this case.

If S = PQJ(g), then Aut(S)/S is of the form &3 x C, where C is cyclic. Then the character Y; in By(T) lying
above x;|~g must be such that X;|s € {X:,2x:}, as desired. Switching the roles of the semisimple elements s;
and sy constructed in [GRS, Proposition 4.3], we further see that the characters have been constructed to satisfy
x1(1) > 2x2(1), since the centralizers of s; and sy have types A; x T1 and A3 x Ty with Ty and Ty appropriate
tori, and 2|Cg+(s1)|p < |Ca(s2)|p - O

NS 1S an

The following handles the exceptional cases left by Proposition 4.2.

Proposition 4.3. Let S be one of PSLa(q), PSL5(q), or PSpa(q), where q is a power of a prime p > 3. Then
there exist two non-trivial characters x1,x2 € Irry (Bo(S)) such that x2(1) § x1(1); x2 is invariant under a
Sylow p-subgroup of Aut(S); and for every S < T < Aut(S), x1 extends to a character in the principal p-block
of T.

Proof. In this case, characters x; and X2 are constructed in the proof of [GRS, Lemma 4.4] that satisfy all of
the needed properties, except possibly the property that for every S < T < Aut(S), x1 extends to a character
in the principal block of T'. However, x; is again constructed from a character of G trivial on Z(é) that restricts
irreducibly to G. Hence since again Aut(S)/ S is abelian, the proof is complete arguing as in the second paragraph
of Proposition 4.2. O

For the remainder of the section, we consider the case of non-defining characteristic. That is, we assume p > 3
is a prime and S is a simple group of Lie type defined in characteristic different than p.

Proposition 4.4. Let p > 3 be a prime and let S be a simple group of Lie type defined over ¥y, where q is
a power of a prime different than p and S is not in the following list: PSLy(q), PSL5(q) with p | (¢ + ¢€),
2By (229FY) with p | (22¢FL — 1), or 3G2(3%¢FY) with p | (32T — 1). Then there exist two non-trivial characters
X1, X2 € Irry (Bo(S)) such that x1(1) # x2(1) and:

o If S # PQI(q), then for every S < T < Aut(S), each of x1 and x2 extend to a character in the principal
p-block of T.

e If S = PQJ(q), then x1(1) > 2x2(1) and for every S < T < Aut(S), for i = 1,2, there exist X; in the
principal p-block of T such that X;ls € {xi,2xi}-

Proof. We adapt our proof of [GRS, Proposition 4.5], ensuring that we may choose unipotent characters of p'-
degree satisfying the principal block conditions required here. That is, we will exhibit unipotent characters of G
with different degree (and in the case of PQy (q), satisfying x1(1) > 2x2(1)) that are contained in Irr, (Bo(G)),
which as unipotent characters must be trivial on Z(é) and restrict irreducibly to G. Then the restriction lies
in By(G), since Bo(é) covers a unique block of G, and by [CE04, Lemma 17.2], the resulting characters of S
and S = G/ Z(G) also lie in the principal blocks. By [Mal08, Theorems 2.4 and 2.5], every unipotent character
extends to its inertia group in Aut(S), and except for some specifically stated exceptions, the inertia group is
all of Aut(S). Then arguing as in Proposition 4.2, the required properties will hold for each S < T < Aut(S).

To see that the unipotent characters exhibited are indeed of p’-degree, it will often be useful to recall that
¢ —1= Hm|s ®,,, and note that p | @, if and only if m = dp’ for some non-negative integer i, where ®@,,



denotes the m-th cyclotomic polynomial in ¢ and d is the order of ¢ modulo p. Further, p? divides ®,, only if
m = d. (This is [Mal07, Lemma 5.2].)

First, we consider groups of exceptional type. If S is one of 2G'5(32%"1) or 2By (224+1) but not one of the exceptions
of the statement, then the unipotent characters mentioned in the proof of [GRS, Proposition 4.5] work here,
since by [H90, Proposition 3.2], respectively [B79, Section 2|, there is a unique unipotent block of maximal
defect. If S is 2F;(2%2¢+1), then by [Mal90, Bemerkung 1|, there is again a unique unipotent block of maximal
defect unless p | (222t — 1), in which case the principal block contains the Steinberg character and two more
unipotent characters of p’-degree. Hence we are also done in this case. If S = 3Dy(q), then there is either a
unique unipotent block of maximal defect or the principal block contains the Steinberg character and one other
unipotent character of p’-degree, using [DM87, Propositions 5.6 and 5.8], so we are similarly finished in this
case.

Now let S be one of Ga(q), Fu(q), Es(q), °Fs(q), E7(q), or Es(q). Let d be the order of ¢ modulo p. Using [E00,

Theorem A], we have the unipotent blocks of G are indexed by conjugacy classes of pairs (L, \) for L a d-split
Levi subgroup and A a d-cuspidal unipotent character. In particular, the characters in the d-Harish-Chandra
series indexed by such an (L, A) all lie in the same block of G. Further, [Mal07, Corollary 6.6] then yields that if
a unipotent character in the series indexed by (L, A) has p’-degree, then L is the centralizer of a Sylow d-torus.
Now, using this and [BMM93, Theorem 5.1], we see that either such an L is a maximal torus (yielding a unique
block containing unipotent characters of p’ degree, and hence we are done using [GRS, Proposition 4.5] again)
or we may use the decompositions in [BMM93, Table 2| to see there are at least two non-trivial unipotent
characters in the principal block with different degrees relatively prime to p. (For an example of the argument
in the latter situation, consider Fs(q) in the case d = 7. Then Line 58 of [BMM93, Table 2] shows that the trivial
character and the unipotent characters ¢g 91 and ¢490 7 in the notation of [Ca85, Section 13.9], which have degree
qgl@?l@gq)u@gofbm and %q6¢%©§<I>§<I>8<I)%0<1>14®15<I>18(I>20<I>24<I>30, respectively, lie in the same d-Harish-Chandra
series, and hence the same block. Since p | &7 and p # 2, we see these two non-trivial character degrees are p’
and distinct.)

We are left to consider the classical groups, in which case the unipotent characters of G are parametrized by

certain partitions or symbols. By a symbol of rank n, we mean a pair of partitions (:\Li :\Lz - 2‘;) = (2)’ where

A <Ay < oor < Ag, p1 < fo < o+ < pp, A\p and py are not both 0, and n = Ei)\i+2juj _ L(%H)QJ
(The symbol (2) is equivalent to (%), and if Ay and py are both 0, the symbol is equivalent to (l’\éj i i‘b‘;:}))
The defect of a symbol is |b — al. Given an integer e, an e-hook is a pair of non-negative integers (x,y) with
y—x=ce,x &M (resp. u), and y € A (resp. p). The e-core of a symbol is obtained by successively removing
e-hooks, which means replacing y by = in A (resp. ) and then replacing the result with an equivalent symbol
satisfying that A; and p; are not both 0. An e-cohook is defined similarly, except that z ¢ A and y € p (or
x ¢ pand y € A), and the e-cocore is obtained by removing e-cohooks, which means removing y from p and
adding x to A (resp. removing y from A and adding x to p), and again replacing the result with an equivalent
symbol satisfying that A\; and py are not both 0.

Tables 1 through 4 describe two unipotent characters for each classical type satisfying the properties described
in the first paragraph and not in the list of exceptions of [Mal08, Theorem 2.5|. For each type, we include a brief
discussion, but we remark that a more complete description of the degrees of such characters and the partitions
and symbols can be found in [Ca85, Section 13.8], and a more complete discussion of their distribution into
blocks may be found in [FS82, FS89]. We will include the details for type A,,_1 in this respect, and note that
the other types have similar arguments.

Types A,_; and %4,,_;. Here G = GL: (q). In this case, let e be the order of e¢ modulo p. The unipotent
characters are in bijection with partitions of n, and two such characters are in the same block if and only if
they have the same e-core. In particular, the trivial character is given by the partition (n), which has e-core
(r), where 0 < r < e is the remainder when n := me + r is divided by e. Table 1 lists the desired unipotent
characters in this case when n > 4. Indeed, consider the case ¢ = 1. The partitions listed have e-core (r), and
hence the corresponding characters are in the principal block and it suffices to show that they have p’-degree.
Since p 1 ¢, we need only consider the part of the degree relatively prime to ¢, which are listed following [Ca85,
Section 13.8]. If e = 1, then since p > 3, the character x; in the cases of line 1 or line 2 has p’-degree, since
(¢ —1)/(q — 1) is divisible by p in this case if and only if d is divisible by p. Hence, for 1, we may assume
e # 1. Consider line 3 of Table 1 in this case. Since me + k is not divisible by e for 1 < k < e, we see (g™¢*tF —1)



Table 1: Some unipotent characters in Irry (By(S)) for type A5 _;(¢) with n >4 and p1q

Additional condition on

n=metrr<e Partition x(1) g
noomyon-3_.n-3
e=landp|(n—1) (2,n—2) (g (qug((ﬁ—l; )
X1 e=landpt(n—1) (I,m—1) qnijl%znil
_ _ (e T _cmeT Iy (gmeFZ_gmeF 2y (gin _gny(gme—T—1_cme—7—T,
1 # € 7é T + 1 or p)( (m 1) (T + 17me 1) <q76)(q2,1);1..5?7‘421;:57‘1»1)
l#e=r+1landp|(m—1) (17t me — 1) Hle(q(qii:zi))
r<2 (1)
o r>2,e#r+1orm>2 and
met1_ metly met2 _ me+2y. (n_ .nygme—r—2_ me—r—2y  me—1_ me—1
e#r+2o0rpf(m—1) (1,7 + 1, me — 2) (g € )(g € )--(g"—€")(q € )(g € )

(gm2—e"2)(g—€)(q—€)(¢%=1)-~-(¢"—€")

eFZ e+2 et3 e+3 n ™
N _ — _ _ (@77 —e®T7)(¢° " =c®T7) - (g™ =)
r>2,m=1e=r+1 (1,e—1,e—1) (qié)(qzil);;jge,i:fe,z)
r>2e=r+2,p|(m-1) (172, me — 2) e =)

i=1 (@ —c)

contains no factors of the form ®.,:. Hence we see (gmett —1)...(¢" — 1) is not divisible by p. Similarly, if
r+1 # e, then (¢™¢~"~! — 1) is not divisible by p. If r + 1 = e, then (¢™¢~¢ —1)/(¢° — 1) is divisible by p
only if p | (m — 1), so that (¢™°~¢ — 1) has factors of the form &, with i > 1. Hence the character listed in
line 3 has p’-degree, given the stated conditions, and similar for lines 6 and 7. Line 5 refers to the Steinberg

character, which is certainly of p’ —degree. So, consider the characters in lines 4 and 8, of degree H;l ‘1:;%_11,
with p | (m —1). If p divides []5_, “—*, then p | (¢"" —1)/(¢° — 1) = (¢™° = 1)/(¢° — 1), and hence p | m, a
contradiction. The argument is similar in the case e = —1.

Finally, if n = 3 and p { (¢ + €), then note that e = 1 or 3, » < 2, and the characters listed in Table 1 still
satisfy our conditions. (In this case, the two characters are the Steinberg character and the unipotent character
of degree ¢(q +¢€).)

Types B,, and C,,. Here the unipotent characters of G are in bijection with symbols of rank n and odd defect.
In this case, we let e be the order of ¢> modulo p. Then two symbols are in the same block if and only if
they have the same e-core, respectively e-cocore, if p | ¢° — 1, respectively p | ¢ + 1. The trivial character is
represented by the symbol (g), which has e-core and e-cocore (6), where 0 < r < e is the remainder when
n := me + r is divided by e. Table 2 lists the desired unipotent characters in this case, as long as n # 2 or ¢
is not an odd power of 2. When n = 2 and ¢ is an odd power of 2, we have e = 1 or 2, so we may still take
the Steinberg character for ys, but the the characters listed for x; are not necessarily fixed by the exceptional

graph automorphism (see [Mal08, Theorem 2.5(c)|). Here we may instead take the character indexed by (012)

of degree (¢+1)?/2 when p | (¢ — 1), and otherwise we use the character of degree (¢ — 1)?/2 indexed by (0 é 2).

Type D, and 2D,,. In this case the unipotent characters of G are in bijection with symbols of rank n and
defect 0 (mod 4), respectively 2 (mod 4) in case D,,, respectively 2D,,. Again, let e be the order of ¢*> modulo p,
and let n = me+1r where 0 < r < e is the remainder when n is divided by e. The block distribution is described
the same way as for types B,, and C,,.

For type D, (q), the trivial character is represented by the symbol (), which has e-core ({) if e f n and (8) if

e | n. It has e-cocore ({) if m is even and e { n; (Omr) if m is odd and e 1 n; (8) if m is even and e | n; and ({) if
m is odd and e | n. Table 3 lists the desired unipotent characters as long as n > 5. (In some cases, more than

two characters are listed.) We remark that if n = e, then it must be that p | (¢¢ — 1).

For D4(q) = PQJ (q), note that 1 < e < 3 and that p | (¢> + 1) when e = 2. Then the Steinberg character of
degree ¢'2, labeled by ((1) é g Z) may be taken for y;. For xo, we take the character labeled by (f), of degree
q(¢> + 1)? when e = 1 or 3, and ((1) ‘;’) of degree %q‘?(q +1)3(¢® + 1) when e = 2. In either case, we have
x1(1) > 2x2(1).

For type 2D,,(q), the trivial character is represented by the symbol (00"), which has e-core (Omr) when e {n and
(006) if e | n. The e-cocore is (OQT) if e {n and m is even, (7) if e { n and m is odd, () if e | n and m is even,

and (8) if e | n and m is odd. Table 4 lists the desired unipotent characters in this case. O



Table 2: Some unipotent characters in Irr, (Bo(S)) for types By (q), Cn(q) with n > 2, ptgq, (n,q) # (2,2%¢H1)

Conditions on . . 1
n—metrr<e Symbol X(1)4 (possibly excluding factors of 3)
. 0 r+1 2(met D) _1).. (a2 —1)(qgme—"—1 me T _
P T | e
i (e )(q > )(g?=1)--(q : 1) -
o 0 me g20me —1)- (27— 1) (¢ " 14 1) (¢ —1)(q" T +1
p| (¢¢+1),m odd (T+1) (qzq_l)(q4_ql)...(q2(r+1):11) - :
B T — TomeFI) . 2n me—r—T e ™
Pl (¢ + 1), m even T I v o
| (0 — ) (¢2=1)(g%=1)---(q 1)
eln noa 1
1.--n—1mn
X2 ) 1 me TomeFI) . 2n me—r—T_ e T
p ‘ (qe —1),€fn,e7éT+1 Orp*(m_l) ( Jrl0 ) (q 1)(q(Qq_lquzz(_ql)...(q2(r+3(_ql) +1)(q +1)
e ), o 1 ] 0 e @@ 1) (2" — 1) (@™ +1) (@™ —1)(¢°+1)
pl (q ) Ean € r+ 7p| (m ) (() 1e ) ( — — 2<q27)1()(q471)<-24(q26721( 5
e 1 7 7 ad me g20me —1)- (2" —1) (¢ T 241) (2™ D 1) (g™ —1)
pl(¢°+1),efn,mo (3 r+2 — +1)(q2f1)2ng*l)(q“*1)''‘2§‘12T*12)((‘5!’"“1)71)
e 1 742 me me 1. n_q me—r—2__ me—1) _ me
p | (q + 1)» € 'f n,m even ( 01 ) u (qz),1>(g(q2,1))(((1(14,1)4,.<q2'r)£q1)(q'r+2,1)1)<q +1)
Table 3: Some unipotent characters in Irr, (By(S)) for type D, (¢) withn >5, ptq
Conditions on . . 1
n=metrr<e Symbol X(1)4 (possibly excluding factors of 3)
o (@D 1) (2D 1) (q" — 1) (g™ "1 1)
- 61*)” | () @Il
pl(¢°—1),e[n;or
X1 p|(¢¢ +1), e|n, m even; or (0 11 ’;‘;1) 1
el (n—1)
cr D1 ’ ad T e 0. (P U D" 2 40"+ =1
pl(g®+1) #eln,mo (0 e+1 (=D (2—D)(g*—1)- (2D —1)(q°—1)(q°T1+1)
€ —1), 1 me (@t —1) (T 1) (¢" —1) (™ T 1) (¢ D) (g™ T 1)
pl(g®=1),etn (0 ria (@2 D(g* 1) (2D _1)(q" 1) (q"F1 +1)(g—1)
eln,e£lorpf(n—1), (1 ’VL) (=D _1)
with p | (¢¢ — 1) or m even 01 (¢2-1)
— n mn—2
X2 pl(®=1),pl(n-1) "7 A
e +1 r+1 me @ 1) (PO 1) (¢ =D (@™ T =D (@D (™ T+
p|(¢®+1), efn, meven ( 01 ) - +1)(qz71)(112‘t71)1')-'(q2("*1>71)(qrfl)gq“r1*1)(11+1) .
e 1), , ad 0 me (@) —1) (¢ " T 1) (q" D) (™ T T +1) (g™ 1) (¢ " +1)
pl(@®+1),efn, mo (45 (=Dt =D (T D-D(g"+D (" - D(g 1)
(@ 1 1), e | modd pf(m—2) (n—e) (g2(me—et )_1()_5_({112)({";67;[))_})(2{1'7”.6_1)(q'nLef2e+l)
e gc—1)(g*—1)---(g=¢—1
B ~ Lol (T 1) (20D 1) (q" —1)(q" 2o F I 41)(q" 7T =T
p ‘ (q +1), e | n, m odd, p{ (m 1) ( no : ) . (qjl)((gz,1)(,;4,;5?..(‘12()@(32)71)((;—)1(31)((154:{)1)((1 s
Table 4: Some unipotent characters in Irr, (By(S)) for type 2D,,(q) with n >4, ptq
Conditions on . . 1
n—=metrr<e Symbol X(1)g (possibly excluding factors of 3)
. T n (T gle) (q2(m/e+1) 7(1>2H'(1q)2((7;—1))71()(gﬂ,+1>(qm,ﬂ—r71)
— ~1).-- T_1
PT@ 1), T£e[n modd B
01ln n=L) -
X1 2 or ( 1 ) e [CLE)) 1)
pl(@®—1),pf(n—1)
Pl (@ —D.pl(n—1) ) e
e 01 n—e (q2<n7&+1)—1)~~(q2(n71)—1)(qn+l)(q"72671+1)( nfe_l)( n—e—T_7
p | (q + 1)7 1 75 e I n, m even ( e+1 ) (q+1)(q2_1)(q4_1)“,(q2(e—1)_1)(qc_1;1(qe+1_1)q )
pl(g—1),1#e|n (tetin—ey [ @D (@ DD D@ P T Dt T o)
0 (a=1)(q?2=1)(g*=1)--- (g2~ D —1)(g°+1)(g° 1 —1)
e 1), 01 rt1 (@D _ 1) (20D 1) (" + 1) (™" L4 1) (" +1)(a"° L +1)
pl@—D.efn o) o (@D (PC DL D (gD
o1 (@ +1), ¢ 1, m even (1 1 me) (@D 1) (2 D 1) (1) (™ T I —1) (g e+ 1) (¢ T—1)
’ ’ 0 . +1)(q2—1)(q2‘t—l)l~)~-(q2("*1)—1)(qr+1)(1qT+1—1)(q—1) ;
¢4 1), etn, modd 01 me (=" —1)(¢='" T 1) (q"+ 1) (g™ T A1) (g™ -1 (g™ " —1)
X2 Z’:" EZEH; eTn :Odd € ) (@D =D (0D —1)(g" = 1)(g"F —1)(g+1)
1) e 1
el (n—
e 1 7 0 otln e (D 1) (2T 1) (" 1) (¢ 2 T—1)(q" € —1)(q" ° 1F1)
p| (g ), 1#e|n, meven ( 1 ) (q_21)(q2_%)(q4_1)4"<q2(671)_1)(q€i_1)(q€+1+1>
P D zelnpin-D ] (4 eV e
) (A1) (g% =
e _1 ’ 1 , 1 01 n—et1 (q2(”76+2)—1)~-~(q2(n71)—1)(q"+1)(q"725+1+1)(q"75+1—1)(q"75—1)
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Proposition 4.5. Let p > 3 be a prime and let q be a power of a prime different than p. Let S be one of
PSLy(q), PSL5(q) with p | (q + ¢€), 2Bo(2%¢%1) with p | (2297 — 1), or 2G(3%T1) with p | (3227 — 1). Then
there exist two non-trivial characters x1,x2 € Irry (Bo(S)) such that x2(1) 1 x1(1); x2 is invariant under a
Sylow p-subgroup of Aut(S); and for every S < T < Aut(S), x1 extends to a character in the principal p-block
of T.

Proof. First suppose S is PSLy(q) or PSL§(q) with p | (¢ + €). In these cases the order of ¢ modulo p is 1
or 2, and there is a unique unipotent block of maximal defect, so x; may still be taken to be the Steinberg
character. Let 0 be an element of order p in Fgp.. Write ¢ = £, for some prime ¢ # p, and write a = pbe
with p { ¢. Then p | £2¢ — 1 since the order of ¢ modulo p divides 2a, and hence 2c. Then § is either fixed or
inverted by Fj, where Fj is the generating field automorphism. In particular, since the semisimple classes of
= GLs(q), resp. GL§(q), are determined by their eigenvalues, this means that a semisimple element s of G*
with eigenvalues {8,57'}, respectively {d,67!,1} is conjugate to its image under Ff. Thus the corresponding
semisimple character of G is fixed by Fj, and hence a Sylow p-subgroup of Aut(S). Further, s satisfies (1)-(2)
of [GRS, Section 4.1.1], that is, s is a member of [é*, é*] & SLs(q), resp. SL5(q), and is not conjugate to sz for

any z € Z(é*), since |§] > 5. Then this character is irreducible on G and trivial on the center. Further, it has
degree (g—mn), where n € {1} is such that p | (¢+n) for PSLy(q), and degree ¢> —e for PSL§(q) with p | (¢+¢).
Since s is a p-clement, the character lies in a unipotent block, and hence Bo(G), using [CE04, Theorem 9.12].
Then as in the first paragraph of Proposition 4.4, the corresponding character of .S lies in the principal block.
It also has non-trivial degree prime to ¢, which therefore does not divide the degree of the Steinberg character.

Hence this character satisfies our conditions.

Now let S be 2By(g?) with ¢ = 229! and p | (¢ — 1) and write 2a + 1 = pc with p{c. Let s be such that v
has order p | (2¢ — 1), where v has order ¢? — 1. Then using [B79, Section 2] and arguing as in the case above,
we see that a slight modification of the characters used in [GRS, Lemma 4.8] works here: we may take x; to be
the Steinberg character and x2 to be the character x5(s) in CHEVIE notation.

Finally, let S be %G2(q?) with ¢ = 329! and p | (¢® — 1). Again write 2a + 1 = p’c with p { c. Using [H90,
Proposition 3.2], there is a unique unipotent block of maximal defect, so we may take y; again to be the
Steinberg character. For xa, it follows from [H90, Proposition 4.1] and arguments as above that we may take
the character x11(s) in CHEVIE notation, where now s is such that v° has order p | (3° — 1) and « has order
¢ -1 O

Proposition 2.1 now follows from Propositions 3.6 and 4.1 through 4.5, completing the proof of Theorem A.
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