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Tinkering is often viewed as arbitrary practice that should be avoided. However, tinkering can be performed as part of a sound
reasoning process. In this ethnomethodological study, we investigated tinkering as a reasoning process that construes logical
inferences. This is a new asset-based approach that can be applied in computer science education. We analyzed artifact-based
interviews, video observations, reflections, and scaffolding entries from three pairs of early childhood teacher candidates to
document how they engaged in reasoning while tinkering. Abductive reasoning observed during tinkering is discussed in detail.
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Tinkering can be defined as playful experimentation that
involves a series of changes incrementally applied without
systematic planning (Beckwith et al., 2006; Berland et al.,
2013; Blikstein et al., 2014). To improve computer science
education for learners from underrepresented populations in
STEM (science, technology, engineering, and mathematics),
it is important to acknowledge tinkering as a productive and
even necessary process (Berland et al., 2013; Searle et al.,
2014). Since the seminal work by Turkle and Papert (1990),
discussions on tinkering have mainly focused on tinkering
outcome quality, especially as compared with those of struc-
tured programming (e.g., Rose, 2016). But little is known
about actions of reasoning within tinkering.

Given this gap, we examined conversations and actions
of early childhood teacher candidates during debugging to
understand their reasoning while tinkering. The research
question was, “How do early childhood education (ECE)
teacher candidates reason while tinkering?” Because we
assume that such reasoning is not an additive process of two
individuals’ cognitions, but rather a synergistic product of
interaction, we used an ethnomethodological approach
(Belland et al., 2016; Garfinkel, 1967; Ingram, 2018) to ana-
lyze the data. Specifically, we sought to uncover the meth-
ods by which teammates sought to achieve order within their
interactions directed toward debugging. From this analysis,
we uncovered rules that guided tinkering—rules that were
endemic to interaction. The focus of conversation analysis

teacher learning, equitable computer science education, robot programming and debugging, tinkering, abduc-

within the ethnomethodological approach was on tinkering
“actions rather than the content of talk itself” (Ingram, 2018,
p. 1068). This was not only to understand how the partici-
pants made sense of bugs and debugging but also to identify
particular “features of the interaction that precede particular
outcomes” from tinkering (Ingram, 2018, p. 1069).

Relevant Literature
Teacher Learning of Debugging

Few ECE teachers are prepared to teach computer sci-
ence in the United States and globally (Bers et al., 2013;
Cetin & Demircan, 2020). Within ECE, block-based pro-
gramming platforms are often used (Bers, 2018; Bers et al.,
2014; Kim et al., 2015; Kim et al., 2017; Kim et al., 2020).
While research shows that novice learners are more attracted
to block-based programming than text-based programming
(Akcaoglu, 2014; Bers, 2018; Bers et al., 2014; Lye & Koh,
2014), actual learning of fundamental computer science
concepts and programming through block-based platforms
has been criticized (Brennan & Resnick, 2012; Grover
et al., 2015). Still, learning to debug could improve incom-
plete understanding of programming (Kim et al., 2018). For
example, when debugging to make a robot travel on a
square, sequence and repetition control structures need to
be understood to change 3 to 4 in the repeat block (turquoise
in Figure 1).
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FIGURE 1. Block-based programing examples of buggy code (left) and correct code (right).
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FIGURE 2. Simplified illustration of reasoning while tinkering during debugging.

Tinkering as an Asset

In computer science education, it has been long argued
that tinkering is a culture of programming that can lead to
positive outcomes (Berland et al., 2013; Rose, 2016; Turkle
& Papert, 1992). Still, tinkering is often viewed as a practice
to be avoided (Grigoreanu et al., 2006; Murphy et al., 2008).
In a recent study, an intervention structured the debugging
process to help students avoid “rapid cycles of editing and
testing without deeply understanding their code” (Ko et al.,
2019, p. 474). Others acknowledge that some forms of tin-
kering are productive, especially those involving some ques-
tioning and hypothesizing (Beckwith et al., 2006; Fitzgerald
et al., 2010; Perkins et al., 1986).

We argue that tinkering during debugging involves think-
ing to trace the cause that leads to the result of the code. For
example, to fix the code in Figure 1, learners run the robot
and investigate why it does not complete a square. They do
not know yet that the value, 3, in the repeat block should be
corrected. They simply think that the distance the robot
traveled is too short to complete the square and thus increase
the number of steps in the move block. A rule applied in
reasoning here for what caused the result is that the number
of steps determines the travel distance. The rule was not the
right one for this debugging task, and the change does not
debug the code. They run the robot again to see how much
further it should travel. They now realize that it travels on

only 3 sides. They attend to the repeat block and enter 4
instead of 3. A rule applied here is that the repeat block
loops the action programmed inside the block the number of
times entered in the block. Figure 2 depicts this possible
reasoning while tinkering during debugging. It should be
noted that this figure illustrates tinkering in a simplified
way. Novice programming learners are unlikely to have a
vast repertoire of relevant rules that can be applied in debug-
ging (Metzger, 2003), and actual tinkering processes may
involve extended rounds of applying irrelevant rules before
applying a relevant rule.

Reasoning Types

The debugging example above depicts abductive reason-
ing, defined as a reasoning process used to explain a phenom-
enon with incomplete information at hand (Abe, 2003;
Aliseda, 2006; Leake, 1995; Magnani, 2009, 2015; Peirce,
1931-1935). Through abduction, one reasons probable cases/
causes that seem to have resulted in the phenomenon. The
most probable case at the moment is tested to see if it explains
the phenomenon. In the example above, the first probable
case (i.e., the bug is in the move block) does not explain the
robot’s failure to complete the square, which leads to the sec-
ond probable case (i.e., the bug is in the repeat block). Other
types of reasoning are often used in programming. Deductive
reasoning and inductive reasoning are mainly discussed in



Abduction (Figure 3a)
When learners know:

the rule: the repeat block loops the action programmed inside of the block n times

the result: the action is repeated 4 times
they can abduce:
the case: n =4 in the repeat block

Induction (Figure 3b)
When learners know:

the case: n is entered in the repeat block
the result: the action is repeated n times

they can induce:

the rule: perhaps the repeat block loops the action programmed inside of the block n

times

Deduction (Figure 3c)
When learners know:

the rule: the repeat block loops the action programmed inside of the block n times

the case: n =4 in the repeat block
they can deduce:

the result: the action programmed inside of the repeat block will be repeated 4 times
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FIGURE 3.  Simplified illustration of reasoning types.

the debugging literature (e.g., Dershowitz & Lee, 1993;
Metzger, 2003; Zeller, 2009). The three types of reasoning
are explained in Figure 3 with a task of coding a robot to
repeat an action z times. Peirce’s (1931-1935) illustration of
abduction and Abrahamson’s (2012) inference mechanism
example were the basis for constructing these examples.
Inductive debugging involves enumerating all cases and
studying their relationships with the results. To induce from
specific cases to general rules, cases of code that function
correctly and incorrectly should be reviewed (Myers et al.,
2004). To use deduction in debugging, a rich body of general

Result/
Effect

knowledge drawn on extensive programming experience as
well as a full understanding of the current program is neces-
sary (Metzger, 2003). Deduction is commonly considered a
strong method of debugging (Myers et al., 2004; Zeller,
2009). However, deductive debugging is usually not recom-
mended to novice programmers (Metzger, 2003). This
appears to leave a large role for abduction in the study of
novices’ debugging. Debugging by abduction is scarcely
discussed outside machine learning development. To our
knowledge, the present research is the first that analyzed
abductive debugging in a block-based coding context.
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Method
Participants and Setting

The setting was an undergraduate class on play in early
childhood education at a large, public university in the east-
ern United States. Out of 19 who consented to participate in
the overall study, we focused on three pairs of participants in
this qualitative case study (all female; see Table 1). All three
pairs self-reported having no to little prior programming
knowledge and no prior robot programming experience.
Amelia, Barbara, and Charlotte reported having low prior
programming knowledge on a closed-ended item in a presur-
vey. In reviewing other data (i.e., classroom recordings,
interviews, reflections, scaffolding entries), we found no
detail about, or evidence of the participants referring to, such
prior programming knowledge. Two of the three pairs were
homogeneous in academic standing.

Robot Programming Unit

Participants worked in pairs to explore how to (a) inte-
grate block-based coding into children’s play and learning
and (b) debug errors that impeded successful execution of
block-based code. For example, participants were asked to
debug code that had two bugs (in the repeat while and rotate
blocks) that impeded the Ozobot from tracing an octagon
shape (Figure 4). The unit lasted 3 weeks with a 2.5-hour
class each week (see Table 2). Participants used OzoBlockly
to instruct Ozobot Evo to make desired movements.
OzoBlockly is a block-based programming platform with
five levels to support coding from prereader to advanced
learners.

Data Collection

Classroom Recordings. The three pairs were video recorded
for about 6 hours in three classes. The video recordings were
transcribed by advanced speech recognition software. Two
researchers edited the transcripts to improve accuracy.

Interviews. Individual interviews were done after the unit
(mean interview length = 28.3 minutes). Participants’ resp-
onses to the scaffold were used to prompt recollection. Par-
ticipants were also asked to debug code that instructed an
Ozobot to trace a hexagon.

Reflections. Participants wrote (a) how they might support
children’s learning in play, (b) how their play scenario was
designed with Ozobots, (¢) how they engaged in debugging,
(d) how they would apply their debugging experience to
children’s learning, and (e) how they would support chil-
dren’s problem-solving.

Scaffolding Entries. Debugging scaffolding was provided
for listing block categories, generating and testing

hypotheses, and reflecting on hypotheses. Specifically,
prompts invited students to (a) list block categories in the
buggy code; (b) generate two or three hypotheses along with
their reasons; (c) record changes they made in the code, the
reason for those changes, and the change outcomes for each
hypothesis, and the list of blocks after changes were made;
(d) summarize and reflect on the hypotheses they tested by
writing down the actual problem in the buggy code, how
they fixed the problem, and whether any of the hypotheses
was correct (if not, they were encouraged to generate another
hypothesis); and (e) list block categories used in the final
code. The scaffold included an example hypothesis: “The
numeric value that I entered in the Loops block was too
small. It should have been 4 instead of 3 for my Ozobot to
get to the finish line.”

Data Analysis

The initial coding scheme was developed based on the
programming, debugging, and problem-solving reasoning
literatures (Abrahamson, 2012; Aliseda, 2006; Berland
et al., 2013; Kim et al., 2018; Magnani, 2015; McCauley
et al., 2008; Perkins et al., 1986; Rivera & Becker, 2007;
Turkle & Papert, 1990). To refine the initial coding scheme,
two researchers conducted preliminary coding of data of
two participants from different video-recorded pairs. Then,
the project team discussed the coded data and revised the
coding scheme. Next, five researchers coded the two par-
ticipants’ data independently and peer-reviewed each oth-
er’s coded data. The project team met again to discuss the
recoded data and finalized the coding scheme. Using the
refined coding scheme, three researchers independently
coded the transcript of videos of the two participants
(Cohen’s kappa ranged from .84 to .87) and then met to
discuss their analysis with another researcher in order to
reach consensus. Next, three researchers coded the remain-
ing data and went through multiple rounds of peer reviews
and revisions with another researcher. After finishing cod-
ing, the three researchers independently created a sense-
making table of their coded data to find relations among
coded data under different nodes and to identify salient
observations. Four researchers then (a) peer-reviewed, dis-
cussed, and revised the sensemaking tables and (b) repeated
the process to finalize the sensemaking tables. Throughout
this process, one of the key sticking points was how to use
the coding node facit construction, defined as applying
preexisting perceptual and reasoning tools to model a prob-
lem space (Abrahamson, 2012). The sticking point was
that, when coding the data, we needed to consider whether
participants were using disciplinary tools or their prior or
concurrent perceptual experiences, when constructing the
problem space. This required us to consult multiple data
sources and to carefully use the lens of ethnomethodology
as we considered participants’ actions, as these can often
most appropriately be viewed as the synergistic product of



TABLE 1
Participant Demographic Information

Self-reported prior Self-reported prior
Participant Age in Academic programming robot programming
pseudonym Team No. years standing knowledge experience
Charlotte 1 20 Sophomore Low knowledge No experience
Harper 1 20 Sophomore No knowledge No experience
Barbara 2 20 Junior Low knowledge No experience
Lillian 2 21 Junior No knowledge No experience
Amelia 3 20 Sophomore Low knowledge No experience
Elena 3 21 Senior No knowledge No experience

change by

terminate program and switch to idle

change by

terminate program and switch to idle

FIGURE 4. Buggy code (left) and an example of correct code (right) for the octagon tracing task.

TABLE 2

A Summary of the Unit Activities

Week 1 Week 2 Week 3

e Introduction to robots and their use in e Showcase of OzoBlockly code that e Showcase of OzoBlockly code
education participants created as homework that participants created as

e Introduction to Ozobot Evo and during Week 1 homework during Week 2
OzoBlockly e Introduction to coding and e Debugging practice

e Practice of calibration, loading code debugging, Level 3 line navigation Debugging with scaffolding
on Ozobots, and running Ozobots e Debugging with scaffolding Reflection on children’s play

e Introduction to coding in OzoBlockly Reflection on the debugging task involving debugging
Level 3 e Reflection on children’s play

e Reflection on how Ozobots could be e Exploration of OzoBlockly Level 4

used in children’s play and learning

pairs’ joint cognition (Garfinkel, 1967). NVivo 12 was
used for analysis.

Findings and Discussion

Abduction was often observed in debugging episodes in
that participants (a) determined plausible cases (causes) that
explained misfunctioning code (the result) (b) by applying
the best rule at the moment that connected the case to the
result, and (c) eliminated irrelevant rules when realizing a
disconnect between the case and the result through seeing

reprogrammed robot behaviors. This process of abduction
seemed to have necessitated tinkering. Tinkering observed
in the study was also rather cautious (Berland et al., 2013;
Perkins et al., 1986). Considering that sociocognitive pro-
cesses can mediate abductive reasoning (Abrahamson,
2012), scaffolded pair debugging seemed to have guided
participants to track code, defined as reading code closely to
get a sense of what it does (Perkins et al., 1986). During
interviews, participants noted that responding to scaffolding
prompts made them look back at their thinking process and
the results (i.e., reprogrammed robot behaviors) of their
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actions (i.e., code revision) taken based on the thinking
process.
Our findings can be summarized by the following themes:

Theme 1: Tacit rules were applied in search for best
explanations.

Theme 2: Rules were eliminated based on perpetual
observations.

Theme 3: Reflective abstraction was seldom observed.

Theme 4: Generating multiple hypotheses in advance was
an unnatural requirement.

The themes are sequenced as such because each subse-
quent theme builds off of the previous theme. Our presenta-
tion of Theme 1 reports the process of abduction as a whole
in which tacit rules were used to abduce the case (code) that
led to the result (robot behavior). When presenting Theme 2,
we report perceptual observations that were immediately
available during robot debugging, and how such perceptual
observations contributed to rule elimination during abduc-
tion. In our presentation of Theme 3, we report that scaffold-
ing largely served to facilitate reflective debugging rather
than reflective abstraction. Our reporting of Theme 4 centers
on participants’ perceptions of the scaffolding requirement
to generate multiple hypotheses in advance and reports how
they used the scaffolding.

Theme 1: Tacit Rules Were Applied in Search for Best
Explanations

Use of Tacit Rules in Abducing the Case Leading to the
Result. The rules participants used in search of a best
explanation for the malfunctioning code were rarely articu-
lated. For example, when Charlotte and Harper talked about
the angle value, 70, in the rotate block (see Figure 4), they
did not state a rule that made them think that the angle was
too big. See Table 3 for the dialogue of one debugging epi-
sode in which they changed (a) the angle value from 70, to
110, 50, and 45 in the rotate block and (b) the number in the
repeat while block from 5 to 8. The episode is segmented
into a series of scenes when a new change in the buggy code
was mentioned. In the reasoning analysis column, the result
is what the pair saw and noticed during the scene. For
example, Scene 1 and Scene 2 illustrate the pair’s conversa-
tion about why 70° in the rotate block causes the robot to
veer off the octagon. But in Scene 1, the pair talked about
the robot’s (too-wide) rotation, and in Scene 2, the pair
talked about the robot’s (too-sharp) turn during its transi-
tion between the sides of the octagon. That is, what they see
is the same but what they attend to and talk about is differ-
ent in the two scenes. This is why the results identified in
this column can differ in scenes with the same code and/or
the same robot behavior. The case is what the pair con-
cluded to be the cause of the problem. In Scene 1, the pair

talked about replacing 70° with 50°, and in Scene 2, the pair
talked about replacing 70° with 110°. Such code revision
plans are to fix the causes (i.e., cases) of the problem. Thus,
in Scene 1, the case is “70° is too big,” and in Scene 2, the
case is “70° is too small.” The rule is what the pair used to
justify their claim about the case regardless of its accuracy
and/or applicability. In Scene 1, Charlotte explained that
70° should be replaced with 50° because the robot rotated
too widely. The rule inferred in this scene is about the rela-
tionship between rotation size and the angle value (i.e.,
“when the robot rotates too widely, the angle value in the
rotate block is too large”). In Scene 2, Harper explained that
70° should be replaced with 110° because the robot turned
too sharply. The rule inferred in this scene was about the
interior angle of an octagon (e.g., “when the robot traces an
octagon, its transition between consecutive sides should be
as wide as the interior angle of an octagon”). Rules were
tacit rather than explicitly spoken. Figure 5 illustrates the
tacit rule used to figure out the unknown case resulting in
too-wide rotations in Scene 1. The pair abduced the case
(i.e., 70° is too big) that led to the result (i.e., robot rotation
angle is too wide to trace the octagon). The tacit rule that
they used to make sense of the result is that the size of the
robot rotation angle is determined by the angle value in the
rotate block.

Role of Perceptual Senses in Using Tacit Rules. Without
stating the rule, the pair looked at and traced the robot move-
ment and the octagon on the paper. Instead of trying to
describe or justify the rule that is being applied, they seemed
to use their perceptual senses. This makes sense in that the
rule could be checked immediately by revising the code.
Through changes made in the code, they collected “percep-
tual facts” and dialogued about “the evidence of the senses”
with each other (Peirce, 1931-1935, para. 141). The use of
tacit rules seems necessary in abductive reasoning consider-
ing that while “discovering through doing . . . new and still
unexpressed information is codified by means of manipula-
tions of some external objects” (Magnani, 2009, p. 11).
Abductive inferences and perceptual judgments go together
(Hanson, 1958).

Some “naive perceptual judgment” (Abrahamson, 2012,
p. 636) led to unsound explanations that had to be eliminated
later. This is a natural part of abduction and the reason why
abductive reasoning was needed and applicable. Unlike
deductive inferences, abductive inferences can work with
“an incomplete knowledge base” (Abe, 2003, p. 233). For
example, knowing that A — B and B — C, one can conclude
A — C through deduction, but if either piece of information
is missing, deduction cannot be done but abduction can.
Discovery (Abe, 2003), creative problem-solving, and
design (Kolko, 2009) are possible by abduction despite
incompleteness, constraints, or uncertainty. Debugging tasks
were given to participants of the present study. Debugging



TABLE 3
Charlotte and Harper's Octagon Debugging Episode

Scenes The pair converses . . . It is inferred that . . .
Scene 1 Harper [10:15]: I think it’s the, okay. But I think it’s this rotation [angle] needs With:
to be less. the result: with 70° in the rotate block,
Charlotte [10:23]: Yes, because it’s rotating (She pointed at the point of the the robot rotates too widely.
octagon shape.) @ the rule: the angle value in the rotate
block determines the size of the
rotation that the robot makes; when
the robot rotates too widely, the angle
value in the rotate block is too large.
the pair abduced:
the case: 70° is too big.
Harper [10:26]: So we need to rotate it [Ozobot]. Like what do you think? Like
fifty?
Charlotte [10:30]: Yeah, I’1l try 50.
Scene 2 Harper [10:33]: well ® (She traced the angle between two consecutive sides of With:

the traced octagon with her finger.)
— T WG T R T g ‘?;}!

- ““

Charlotte [10:37]: It’s like . . .

Harper [10:38]: No, no, no, no. The opposite, [the angle] has to get bigger
because 50-degree angles like that [inaudible] has to be obtuse like up to 110
or something. *Cause that’s not already 90 degrees. (She visualized an acute
angle with her fingers in the air, and then visualized an obtuse angle with her
hand on the paper like she did in ©))

Charlotte [10:50]: It’s not 90 degrees, yeah.

Harper [10:53]: Yeah, like maybe like 110. ©

rotate  angle: deg  speed: E mm/s
change CTTE by

terminate program and switch to idle

Charlotte [10:55]: Okay.

Harper [10:56]: Let’s see. It’s like that at least works just for now and then.

Charlotte [10:59]: Yeah (She loaded the code with 110 degrees and ran the
Ozobot on the octagon shape. The Ozobot followed one side, turned to the
inside of the octagon, and did not follow the octagon shape.)

the result: with 70° in the rotate block,
the robot veers off of the traced
octagon by turning too sharply during
its transition between consecutive
sides.

the rule: when the robot traces an
octagon, its transition between
consecutive sides should be as wide
as the interior angle of an octagon.

the pair abduced:

the case: 70° is too small.

(continued)



TABLE 3 (CONTINUED)

Scenes The pair converses . . . It is inferred that . . .
Scene 3 Harper [11:28]: (After seeing the Ozobot veering off of the traced octagon with With:
110° in the rotate block) Okay. Now it’s like maybe we had to do less than. the result: with 110° in the rotate
Charlotte [11:39]: Alright, let’s then try 50. Ok? @ block, the robot veers off of the
traced octagon by rotating even more
widely than with 70° in the rotate
block during its transition between
the consecutive sides.
SE e the rule: the angle value in the rotate
Ea v @ block determines the size of rotation
e ——— that the robot makes; when the robot
rotates too widely, the angle value in
(Charlotte calibrated the Ozobot and loaded the revised code onto the Ozobot) the rotate block is too large.
Harper [11:51]: T know we have to really do it [calibration] every single time the pair abduced:
[we change the code]. the case: 70° is too big.
Charlotte [12:12]: I hate that [calibration] thing.
Harper [12:39]: Yes. Okay. So that’s where it [Ozobot]| goes (Charlotte ran the
Ozobot on the octagon shape. The Ozobot travelled on the shape quite closely
with a little deviation toward the inside of the octagon.(©))
Charlotte [12:45]: Generally, it’s really close.
Scene 4 Harper [12:48]: Oh wait. Why does it [Ozobot] stop? {Harper and Charlotte With:

expected that the Ozobot would travel around the octagon shape by changing
the angle}. Is your thing [Ozobot] like dead or something?

Charlotte [12:50]: Maybe because of that [mic cable]d (The Ozobot stopped
next to the mic cable. She ran the Ozobot again while holding the mic cable
above the paper.)

the result: with 5 in the repeat while
rotate < block, the robot does not
complete its travel on 8 sides of the
octagon.

(continued)



TABLE 3 (CONTINUED)

Scenes The pair converses . . . It is inferred that . . .

the rule: the number in the rotate <
block should be equal to the number
of sides of the octagon.

the pair abduced:

the case: 5 is too small.
‘ @ ‘

Harper [13:09]: Okay. But see that it [Ozobot] literally goes five times, so
that’s why I want to say.

Charlotte [13:14]: A number this (She changed the number for the repetition
count from 5 to 8 without saying so out loud.)®)

~N

change N

terminate program and switch to idle

Harper [13:18]: maybe with the change of angle [the rotations] will change
{She noticed the bug, the number of rotations, but thought the number
depends on the angle.}

Scene 5 Charlotte [13:30]: I don’t really know how to work this fully. (She loaded the code.) With:
Harper [14:05]: It’s like so close. I think maybe what should we do like, um, or the result: with 50° in the rotate block,

would itbe . .. the robot still veers off of the traced
Charlotte [14:13]: 55, 30, 45? octagon by rotating too much during
Harper [14:18]: 45, I think. its transition between the consecutive
Charlotte [14:21]: I am gonna check off (She changed the angle from sides.

50 to 45.)®) the rule: the angle value in the rotate

block determines the size of rotation
that the robot makes; when the robot
rotates too widely, the angle value in
the rotate block is too large.

the pair abduced:

. o M
A T—— pE——— E oy the case: 50° was too big.
change v B

terminate program and switch to idle

Harper [14:32]: That’s where it felt like it [Ozobot] didn’t do 8 times until we
change the angle. {She explained her observation of the relationship between
number of rotations and angle.}

Charlotte [14:35]: I know.

Harper [14:38]: Wonder why. (Charlotte loaded the code.)

(Charlotte ran the Ozobot with 8 repetition count and 45 degrees angle on the
octagon shape. The Ozobot behaved as desired by moving around the octagon
shape but with a little deviation of the angle that resulted from the Ozobot'’s
starting position.)

Charlotte [15:06]: That’s like pretty close. I’d say that’s good enough.

Note. Digits within brackets are time stamps. Text within brackets represents (a) missing word(s). Text in parentheses is the researchers’ description of the
participant’s actions or the robot’s movement that occurred at the same time as the transcribed speech in the immediately preceding sentence. Text within
curly brackets is the researchers’ description of the function of the dialogue and/or action.



known but not expressed: the angle value in the rotate
block determines the size of the robot rotation angle

unknown /“J\—/_\ known: the robot rotates too widely
Case/

Result/
—»_ Effect

Cause

FIGURE 5.  A4n example of abductive reasoning looking for the
best explanation for too-wide rotations.

code created by somebody else creates more difficulties,
external constraints, and uncertainty even with a description
of the programming goal (McCauley et al., 2008). In the
case of the octagon debugging task, even the size and regu-
larity of the octagon were set, which allowed less flexibility
in revising the buggy code.

Tacit rules used when formulating unsound explanations
were also based on perceptual senses. Some rules were not
relevant or conflicted with each other but later were elimi-
nated in the process of tinkering by abduction. For instance, as
illustrated in Scene 2 of the debugging episode in Table 3,
Harper disapproved of her partner’s and her own previously
reasoned case (see Scene 1 in Table 3). This time, she paid
more attention to the octagon that the robot should #race than
the robot itself that should rofate. The robot needed to rotate at
a 45° angle during a transition between consecutive lines and
then keep going straight, but she seemed to think of this move-
ment as merely following the lines making an obtuse angle.
Her newer perceptual judgment caused her to abandon the
previously used rule and generate a new tacit rule: When the
robot traces an octagon, its travel between consecutive sides
should be as wide as the interior angle of an octagon. Grounded
in this rule, Harper said “[the angle value] has to get bigger.”
In Scene 2, the pair thought that 70° was too small (the case)
because the robot veered off the traced octagon during its tran-
sition between consecutive lines (the result). The rule was
unsound and fell into disuse immediately after trying out a
bigger angle than 70° (110°) in the rotate block.

In Scene 3, Charlotte and Harper went back to the initial
rule used in Scene 1 and the initial explanation: 70° was too
big. Then, they tried 50°. They did not converse about
another applicable rule: The rotate angle value should be
equal to the exterior angle of a regular octagon (.. 360°/8 =
45°). It is probable that the pair knew the rule about exterior
and interior angles in an octagon, but they were too occupied
with unfamiliar programming activities to notice the rele-
vance of the rule to the present debugging task. If this rule
were used, the tinkering process would have been shorter:
One change from 70° to 45° could have been made instead
of changes from 70° to 110°, 50°, and 45°.
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Theme 2: Rules Were Eliminated Based on Perceptual
Observations

Rule Elimination Grounded in Ongoing Observation.
Abductive reasoning involves eliminating rules, and it is
often done with incomplete information. Rule eliminations
in the present study were mostly based on ongoing obser-
vations while doing, often without incorporating prior
experience of programming or a general rule. In most epi-
sodes, this process of rule eliminations by doing led to suc-
cessful debugging especially on the octagon task. For
example, as described above, the rule used by Charlotte
and Harper in Scene 2 was eliminated when changing the
value to 110° in the rotate block did not fix the bug (see
Table 3), and the pair eventually corrected the angle to 45°.
However, when observations missed critical details or
were simply inaccurate, relevant rules were eliminated
because the elimination decision was dependent on
observed outcomes of doing. For example, as shown in
Table 4, the pair changed the numeric value in the compare
block within the repeat while block from 5 to 8§ (correctly),
but they miscounted the number of sides the robot traveled
on while observing the change outcome and concluded
(incorrectly) that the change did not fix the bug. The incor-
rect angle value in the rotate block (i.e., the other bug)
made the tracing and counting difficult.

This erroneous elimination of a relevant rule seems to
have stemmed from little sensemaking while and after
doing. When they changed the numerical value back to 5 in
the repeat while block, Charlotte and Harper conversed to
make sense of the buggy code. However, their attempt for
sensemaking after doing their prior change to 8 was not
completed. Sensemaking became more complicated when
considering the last block in the loop: Change rotate by 1
(i.e., change the variable “rotate” that was set as 0 in the
beginning of the code). Since this first debugging attempt,
Charlotte and Harper tinkered through to successful debug-
ging as listed in Table 3. While they recognized the interre-
latedness between the number of rotations and the turn
angle during tinkering, they did not make sense of why 8§
did not work during their initial debugging attempt (see
Scene 5 in Table 3). This is a natural process within abduc-
tive reasoning, which involves “doing-before-understand-
ing” by nature (Abrahamson, 2012, p. 630), and even more
so in manipulative abduction (Magnani, 2009; Park, 2017)
that relies on perceptual facts that are imperfect (Peirce,
1931-1935).

Sensemaking While Doing. Barbara and Lillian eliminated
rules mostly based on observations while doing as observed
during Charlotte and Harper’s debugging. For example, as
shown in Scene 1 of Table 5, Barbara and Lillian decided to
try an obtuse angle for the same reason that Charlotte and



TABLE 4
Charlotte and Harper's Octagon Debugging Initial Episode

The pair converses . . .

Charlotte [05:48]: We have to change it [the code] first because we have to fix it [the code], right? So, maybe this number? (She pointed
at the number of rotations in the code with her mouse cursor.) I don’t know, that’s 5. We said it [Ozobot] was moving, moving that 8, |
don’t know.

Harper [06:02]: Yeah, yeah. Try that and try that to 8. @ (Charlotte changed the number of rotations from 5 to 8.)

change by

terminate program and switch to idle

Charlotte [06:26]: Okay. Let’s see. (She loaded the revised code onto the Ozobot and ran the Ozobot.)

Harper [06:40]: It doesn’t look like it changed. (She stated this while looking at the Ozobot’s movement.) {She reported that the revised
code did not correct the Ozobot’s movement.}

Charlotte [06:42]: No. (She agreed with Harper.) It [Ozobot] is making a . . . *cause it’s going . . . What is that? One, two, three . . . one,
two, three, four, five (She traced the movement of the Ozobot with her finger on the table. ®)). I think it’s making . . . it was making five
... apentagon? {She explained that the Ozobot traveled on five sides.}

b1 ?baﬁbg _fb‘ﬂ _?'bi ?bq

Harper [07:00]: Yeah, pentagon, okay, so that didn’t do anything. {She explained that the change from 5 to 8 in the repeat while block
had no impact on the Ozobot’s movement.)

Charlotte [07:04]: Should I put it back to 5?

Harper [07:05]: Yeah, I guess. {Harper and Charlotte unnoticed that the change to 8 did fix one of the bugs so they changed 8 back to 5. ©}

change L 1]

terminate program and switch to idle

Charlotte [07:21]: I don’t understand what that means “repeat while rotate greater than” like what is that? (She pointed at the repeat while
block. @ Please note that she misread < as greater than.)

(continued)
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TABLE 4 (CONTINUED)

The pair converses . . .

Harper [07:29]: Repeat while (She read the repeat while block.)
Charlotte [07:32]: Set rotate to right now set rotate to zero (She read the set rotate to block.)
Harper [07:38]: It’s rotating. (She explained that the set rotate to block was to make the Ozobot rotate.) 1t’s just, this one’s tricky.
Charlotte [07:49]: You don’t think we need more of these, right? Move. Rotate. (She pointed at the move blocks.)
Harper [07:58]: Maybe if we add two more, maybe there’s . . . {She noticed that the code needed more move and rotate blocks.}
Charlotte [08:03]: Moves, rotates, change rotate by one and it moves. (She traced the movement of Ozobot on the table with

her ﬁnger. ®)

a0,

Harper [08:13]: Move, rotate.

Charlotte [08:18]: Wait, I think I can do it again. (She re-ran the Ozobot.) Moves, rotates (She stated this while looking at the Ozobot’s
movement on the paper.)

Harper [08:33]: Moves, rotates, moves, rotates, moves, rotates. (She stated this while looking at the Ozobot’s movement on the paper.)

Charlotte [08:42]: What does this “change rotate by one?” (She pointed at the change rotate by 1 block with her mouse cursor.) Like what
does that do?

Note. Digits within brackets are time stamps. Text within brackets represents (a) missing word(s). Text in parentheses is the researchers’ description of the
participant’s actions or the robot’s movement that occurred at the same time as the transcribed speech in the immediately preceding sentence. Text within
curly brackets is the researchers’ description of the function of the dialogue and/or action.

TABLE 5
Barbara and Lillian's Octagon Debugging Episode

Scenes The pair converses . . .

Scene 1
(Barbara repositioned the Ozobot on the shape every time it deviated from the shape. @)

z B
Lillian [01:09]: So it’s too small of an angle. So 90 degrees is this, so it’s over 90. (She showed the right angle b1 and the obtuse
angle b2 with her finger.)

F!

(continued)

12



TABLE 5 (CONTINUED)

Scenes The pair converses . . .

Barbara [01:20]: So you want to try 110? (She changed the angle value in the rotate block to 110. ©)

change by

terminate program and switch to idle

Lillian [01:27] Sure.

Scene 2 Barbara [01:27]: So we just gotta guess numbers, ok.
Lillian [01:30]: Or we can cheat and say (She opened up a Google search page.)
Barbara [01:32]: Oh, how do you code?
Lillian [01:33]: What, what degree is an octagon angle? (She typed her utterance, “what degree is an octagon angle” in her
Google search.)
Barbara [01:37]: You are right. (She loaded the code with the angle value of 110 degrees {which she had guessed).)
(Lillian completed her Google search about the angle of an octagon.)
Lillian [02:14]: 135 (Lillian read the angle information from the webpage she found about octagon angles.)
Barbara [02:16]: Yeah, I'll just load this (She changed the angle to 135 @ but a popup message appeared stating that the
numeric value should range only from —128 to 127; then OzoBlockly automatically replaced 135 to 127). Let’s do it.

change by

terminate program and switch to idle

Lillian [02:17]: Sorry. (Lillian continued reading the webpage including the information of the interior angle (135°) and central
angle (45°) values of an octagon)

Barbara [02:17]: Oh, you are good (Barbara loaded the code with 127° and ran the Ozobot on the octagon shape. The Ozobot
followed one side but failed to trace the shape because it veered to the inside of the octagon shape.)

Scene 3 Lillian [03:05]: Maybe it’s not a regular octagon. And also how long do we think this is?
(Lillian questioned about the length of the octagon sides as she pointed with her hand on one of the sides of the shape (the left
side of the photo). Barbara (the right side of the photo) counted the sides of the octagon shape. ©)

Barbara [04:00]: (She attempted to replace the angle value, 127, with 135, but OzoBlockly automatically changed back to 127 as
in Scene 2. She only changed the distance value from 50 to 70. (D) I'm trying a distance of 70.
Lillian [04:09]: Oh, ok.

terminate program and switch to idle

(continued)
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TABLE 5 (CONTINUED)

Scenes The pair converses . . .

Barbara [04:49]: Stupid. (Loading the code to the Ozobot did not work momentarily) There we go.

Lillian [04:59]: Yay.

(Barbara loaded the code with 70 mm for the distance and ran the Ozobot on the octagon shape. The Ozobot followed one side
incorrectly because the distance was not correct and failed to trace the shape because it veered to the inside of the octagon shape.)

Barbara [05:19]: That’s not it.

Scene 4 Lillian [05:19]: It’s a little too much. So maybe 60. (She referred to the distance value.)

Barbara [05:25]: 60 is distance, but the angle . . .

Lillian [05:27]: The angle is crazy, but oh wait (Lillian was on the scaffolding, then she moved to the octagon information
webpage and saw the central angle value part of the webpage while trying to open OzoBlockly to see the code), the internal
angle is 135 then what’s the [exterior angle]? You know what I mean? Would it be 180 minus 135? {Based on her reading of the
webpage about octagon angles, she questioned if the angle value in the rotate block should be for an exterior angle.}

Barbara [05:54]: We can try it.

Lillian [05:57]: Because it’s like this is 135 the inside (Lillian showed the interior angle of an octagon on the webpage ©), and
Barbara changed the angle to 45. ®). But if we’re doing it on the outside, I don’t know, if it’s different you know.

Py oo ~ LR 0
oellllB., o & 8

Ll move dlsuneo:mm W:En\m’t
rotate m:-@«g w:Emm/;

change EXTXB by D

terminate program and switch to idle

Barbara [06:07]: Cool, cool, cool, cool.
Lillian [06:08]: T have no idea, but.

Barbara [06:10]: We’ll try it. | mean it’s a good idea. A [as] good [an] idea as any (Barbara started loading the code.). 1 don’t
know what to do. (Barbara ran the Ozobot on the octagon shape.)

Lillian [06:38]: Oh oh.

(Barbara and Lillian looked at the Ozobot while it was moving.)
Barbara [06:41]: Ahhh! {Barbara expressed her excitement because the Ozobot did not veer off to the inside of the octagon shape.}

Lillian [06:42]: We got it.

Lillian [06:48]: Wow. That was good. (Barbara and Lillian continued to look at the Ozobot while it was tracing the octagon

shape and high-fived.)

{Their change to 45° fixed the bug in the rotate block, but the distance and the number of rotations were incorrect in the code.}

Note. Digits within brackets are time stamps. Text within brackets represents (a) missing word(s). Text in parentheses is the researchers’ description of the
participant’s actions or the robot’s movement that occurred at the same time as the transcribed speech in the immediately preceding sentence. Text within
curly brackets is the researchers’ description of the function of the dialogue and/or action.

Harper once had. But Barbara and Lillian applied the rule of
following the lines making an obtuse angle not only by
observing but also by learning/applying a general rule of
octagon angles. Lillian researched octagon angles on the
internet, and then the pair tried 135° (Scene 2). OzoBlockly
automatically replaced 135° with 127° due to the limited
range of angle values. When changing to 135° failed to
resolve the bug, their explanation was that the travel dis-
tance, 50 mm, was insufficient (Scene 3). While unsound,
the explained cause appeared reasonable to the pair. This
probable explanation was discarded after noticing that the
robot still did not complete the octagon even after increasing
the travel distance (70 mm).

While trying to make sense of why the increased distance
did not fix the bug, Barbara and Lillian noticed that the robot
veered off the octagon, especially the angle (Scene 4). Then

14

they decided to try the exterior angle rule (Scene 4). Their
attempt at sensemaking while doing with the increased dis-
tance as well as 135° led them to change the angle value to
45° (= 180° — 135°) in the rotate block. This sensemaking
process seems to have enabled only one change in the angle
from 135° to 45°, which contrasts with Charlotte and
Harper’s debugging that involved multiple changes from
110° to 50° and again to 45°. Amelia and Elena also went
through multiple changes after their use of an obtuse angle.
That is, they changed the angle from 70° to 120°, then to
20°, then to 25°, and again to 40°. As shown in Table 6, there
was no conversation to make sense of the unexpected result.
They quickly concluded that the angle value should not be
bigger but less than 70°, without sensemaking after their
change to 120° other than depicting the result as follows:
“we made it go too far now”.



TABLE 6
Amelia and Elena’s Octagon Debugging Episode

Scenes The pair converses . . .

Scene 1 (Elena loaded the code and ran the Ozobot on the octagon shape. Amelia and Elena observed the Ozobot’s movement.)

Amelia [05:34]: Ok, goes once, twice . . . (She counted the Ozobot’s turns.)

Elena [05:37]: Oh, wait. It’s making one, but it’s not on the path.

Amelia [05:43]: I feel like it’s, I don’t think it was eight. And also, I think it wasn’t like wide enough.

(Elena ran the Ozobot on the octagon shape again and Amelia and Elena reexamined its movement.)

Elena [05:57]: One.

Amelia [05:57]: Two, three, four, it was five. Six?

Elena [06:07]: It was five. It just rotated back around. {She stated this because the Ozobot did not trace the octagon shape

accurately.}

Amelia [06:07]: Alright.

Elena [06:09]: So then, do we have to, you could do this. (She clicked the number of rotate counts in the code.)

Amelia [06:14]: I would say we would move that [the number of rotations, 5] to 8, but then we also have to do the angle.

(She pointed at the angle part in the code. @) So, what I just want to say (while typing in the scaffolding as a response to its

prompt asking, “Your Hypothesis 1?”), change the repeat while rotating to . . . What was it? 8? (She asked about the number of
rotations.)

Amelia [06:40]: Repeat [while rotate] less than? (Elena looked at the scaffolding prompts and responses on Amelia’s screen.)
Elena [06:42]: Yeah, yeah. Um, repeat one, rotate. Wait. Rotate. I don’t know. I think we keep that there because it was rotating
five times. {She said this to explain the reason why they needed to change the number of rotations from 5 to 8, which was
because the Ozobot was rotating five times.}

Amelia [06:55]: Yeah.

Elena [06:55]: And then move distance. (She pointed at the move distance block with a cursor.)

Amelia [06:58]: Wait. So, we’re doing this because the Ozobot does not complete 8 lines [of the octagon]? {She asked the reason
for the change in the number of rotations from 5 to 8 in order to respond to the scaffolding prompt.}

Elena [07:03]: Correct. (Amelia started typing “The Ozobot does not complete 8 lines” as their response to the scaffolding
prompt asking, “Reason for Hypothesis 1?”) 1 think we can do that first and then figure out what else we need to do in a sense
like that can be our first hypothesis. {She indicated that changing the number of rotations in the repeat while block from 5 to 8
could be their first hypothesis.}

Amelia [07:13]: For the second one [hypothesis], we have to change, yeah yeah.

Elena [07:16]: Yeah.

Amelia [07:16]: Let’s change ours first. (She suggested changing the code first and testing the code before responding to the
scaffolding prompt asking, “Your Hypothesis 2?”) Change it to, wait, do we change it to eight? (She pointed at the number

of rotations in the code.) {She stated this because she noticed that Elena has not changed their code yet according to their
discussion.}

Elena [07:20]: Oh, we do not. (She changed the number of rotations from default, which was 5, to 8. ©)

rot:
S move  distance: mm  speed: E mm/s
rotate  angle: E deg  speed: mm/s

change v @

terminate program and switch to idle

(continued)
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TABLE 6 (CONTINUED)

Scenes

The pair converses . . .

Amelia [07:23]: If this does not work, I’ll just give up because [inaudible].

(Elena loaded the code with 8 rotations and the Ozobot made certain sounds while Elena was loading the code.)

Elena and Amelia [07:33-7:39] {Researchers removed unrelated conversations about sound they heard from other Ozobots in
class.}

Scene 2 (Elena ran the Ozobot on the octagon shape. Amelia and Elena observed the Ozobot’s movement.)

Amelia [07:41]: One, two, three, four, five.
Elena [07:54]: Six, seven. You are right because when it gets here it goes in a 90-degree angle. (She pointed at a vertex of the
octagon shape.)
Amelia [08:03]: Yeah. So, what is that? 120?
Elena [08:05]: What? I think it was 90-degree angle, it goes like that. (She recreated the pathway the Ozobot traveled on the
octagon shape with her hand.)
Amelia [08:09]: Yeah, so are these 120 degrees? (She pointed at a vertex of the octagon shape.)
Elena [08:17]: You’re probably right ’cause this is 90, this is 180. (She visualized the angle on the paper with her finger.) It has
to be 120. So then where do you put that [120 degrees] [in the code]?
Amelia [08:24]: In the angle? (She pointed at the angle part of the code on the computer screen.)
Elena [08:28]: Oh, yes yes yes. I love that idea. (She changed the angle from 70 to 120 degrees in the code. ©)
set 0@ c
.- while ~ | [ =0

SO move  distance: E mm  speed: E mm/s

rotate  angle: deg  speed: mm/s
change (TZXED by )

terminate program and switch to idle

Amelia [08:31]: Rotate was at 70 degrees and we are changing it to 120 degrees because it was turning too sharp of [inaudible]
(She typed her utterance as a response to the scaffolding prompts asking “Your Hypothesis 2?" and “Reason for Hypothesis
2?7)

Amelia [09:10]: Octagon. Alright. (She finished typing their response to scaffolding prompts.)

Elena [09:18]: Let’s do it. {She expressed the pair’s readiness to run the revised code.}

Amelia [09:20]: Hopefully, it works.

Elena and Amelia [09:22-10:09]: {Researchers removed off-topic conversations.}

Scene 3 (Elena loaded the code with 120 degrees in the angle value and ran the Ozobot on the octagon shape. Amelia and Elena observed

the Ozobot’s movement.)
Elena [10:10]: What? {She expected that the angle change would lead to the Ozobot’s correct tracing of the octagon shape but
the Ozobot turned too sharply and went off the octagon shape.}
Amelia [10:16]: So, maybe we made it go too far now. So maybe it has to be less than 70.
Elena [10:20]: Yeah. Yeah. Okay. You can stop right there.
Amelia [10:22]: It maybe.
Elena [10:25]: Let’s try like . . .
Amelia [10:26]: What about like 30 or 20?
Elena [10:28]: Because we go here and it literally just starts to go like that. (She recreated the pathway the Ozobot traveled on the
octagon shape with her hand.) Let’s try 20. (She changed the angle from 120 to 20 degrees in the code. @)
set to d

move  distance:

rotate  angle:

change by

terminate program and switch to idle

Amelia [10:33]: 20. Okay. I’'m not going to write it down yet ’cause I can always change that one. {She stated that she would
not write down the angle value change to 20 degrees as a hypothesis in their response to the scaffold until they know the change
worked or other change is needed.}

Elena [10:37]: Do we have to have three? {She asked about the number of hypotheses they were asked to generate in the

scaffold.}
Amelia [10:37]: Yeah. Who knows if this will work? {She said this to reiterate the need to see if the angle value, 20, works.}
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TABLE 6 (CONTINUED)

Scenes The pair converses . . .

Scene 4 (Elena loaded the code with 20 degrees in the angle and tried to run the Ozobot on the octagon shape.)
Elena [11:01]: Oh, I just turned it off.
Amelia [11:02]: Oh, I was going to say, what did we do wrong?
Elena [11:04]: No. (She turned the Ozobot back on and ran it on the octagon shape again.)
(Elena and Amelia observed the Ozobot’s movement.)
Amelia [11:06]: Oh, no. Why is it like that? {She said this because the Ozobot started to make sounds and blink with colorful
lights, instead of making any movement.}
Elena [11:07]: I don’t know what I do to make it [the Ozobot] freak out every time.
Amelia [11:11]: It’s only yours that freaks out, though, I swear.
Elena [11:17]: I don’t think it did it. I think that it just didn’t calibrate again. (She pointed at the calibration platform in the
OzoBlockly program. ©)) Let’s try calibration ’cause that’s . . .

Amelia [11:21]: That’s the same exact thing. {She explained that the Ozobot’s movement was exactly the same with the movement
before they changed the angle to 20 degrees.}

Elena [11:23]: That’s more than just. . .

Amelia [11:24]: There’s no way that’s 20 degrees. {She reiterated that the angle of the ozobot’s rotation was not 20°.}
Elena [11:27]: Yeah, I agree. Let’s re-calibrate it. (She calibrated the Ozobot again.) Oh there it goes. Alright, perfect. (The
calibration was successful and then she loaded the code.)

(Elena ran the Ozobot on the octagon shape, and Elena and Amelia observed the Ozobot’s movement.)

Amelia [12:00]: What the heck? (With expressions of shock, Amelia and Elena observed the robot spinning its wheels
immediately after being taken off of the calibration circle.)

Elena [12:05]: (She placed the Ozobot on the octagon shape and attempted to start the program.)

Elena [12:15]: No, stop. (She told the Ozobot to stop.)

Amelia [12:18]: Maybe it didn’t calibrate ’cause it’s like turning back on.

Elena [12:21]: You know, you’re right. Oh, okay.

Amelia [12:22]: Oh my gosh.

Elena and Amelia [12:24-14:59] {Researchers removed off-topic, unrelated personal conversations.}

Amelia [15:00]: Ok. Maybe let’s try calibrating it again.

(Elena began to calibrate the Ozobot again.)

Elena [15:20]: Ok. No! Sorry, got really upset at me for a sec. {She stated that the Ozobot was upset because she made a mistake
of not clicking the power button on the Ozobot when calibrating it.}

Amelia [15:38]: Are we gonna have to troubleshoot? Why would we ever need to do this?

Elena [15:45]: It’s just part of coding [inaudible].

(Elena tried to calibrate the Ozobot again.)

Elena [16:04]: Is it [Ozobot] growling at me? {She said this because of the sound that the Ozobot made during

calibration.}

Amelia [16:05]: Yeah, it’s like we don’t want to play with this because it’s too hard.

(Elena tried to re-calibrate the Ozobot three more times.)

Elena [16:55]: Oh.

Amelia [16:55]: Oh.

Elena [16:56]: Oh, my God. [inaudible] {She said this because she was finally able to complete the calibration after multiple
trials.} (Elena loaded the code.)

(continued)
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TABLE 6 (CONTINUED)

Scenes

The pair converses . . .

Scene 5 (Elena loaded the code with a 20 degree angle and ran the Ozobot on the octagon shape. Amelia looked at the Ozobot’s

movement.)

Amelia [17:17]: Oh, gosh. It doesn’t do it enough. {She explained that the Ozobot’s rotation was not big enough to follow the
octagon shape on the map.} 'l try this. (She took over Elena’s computer and started working on the code.)

Elena [17:21]: (Elena stepped out for a while.)

Amelia [17:25-19:32]: (Amelia changed the angle in the code to 25 degrees and reloaded the code, and ran the Ozobot by
herself. She then changed the angle to 40 degrees, ran the code again, and then typed their response to the scaffolding prompts
asking their second hypothesis and the reason for the hypothesis.)

Elena [19:31]: (Elena came back) So, do you, did it do anything?

Amelia [19:33]: I think I got it to work. {She said this to report that she fixed the problem with the angle value, 20, by changing it
to 40 degrees. (D} So it’s not perfect, but look, it’s pretty good. (dmelia ran the Ozobot with 40 degrees angle and showed Elena

the Ozobot’s movement.)
Elena [19:43]: Okay. How did you do that?

Amelia [19:47]: So, it’s not like 100%, but it works pretty well. So, I feel like . . .

Elena [19:54]: I think it’s good.
Amelia [19:55]: That’s fine.
Elena [19:56]: No, I feel like, yeah.

Amelia [19:59]: Yeah. Okay. (She returned to working on the scaffolding prompts.)
Elena [20:20]: So, 40 degrees worked better (She looked at the code on the screen that Amelia had changed) than 20, ’cause
20 it was too little. (She visualized the angle on the paper with her finger.)

-

sot I © @
repect (%D 0

move distance: E mm  speed: mm/s

rotate  angle: deg  speed: E mm/s
change ([GZTED by

terminate program and switch to idle

Note. Digits within brackets are time stamps. Text within brackets represents (a) missing word(s). Text in parentheses is the researchers’ description of the
participant’s actions or the robot’s movement that occurred at the same time as the transcribed speech in the immediately preceding sentence. Text within
curly brackets is the researchers’ description of the function of the dialogue and/or action.

Theme 3: Reflective Abstraction Was Seldom Observed

Scaffolding Reflective Debugging But Not Reflective
Abstraction. When the code was debugged, participants sel-
dom attempted to generalize explanations for why some
code revisions worked and some did not. For example, when
changing the angle value to 110° did not fix the code, Char-
lotte and Harper explained why they changed the angle in
their response in the debugging scaffold: “Because the 110
degrees was making our Ozobot take even sharper turns than
the 70-degree angle it was taking before, we thought we
should make the angle less than 70.” However, while tinker-
ing from 70°, to 110°, 50°, and 45°, a collection of specific
explanations for multiple changes in the angle value did not
lead to a generalizable explanation for why bigger angles
made sharper turns or why 45° worked but 50° did not. As
shown in Table 3, Scene 5, when debugging was completed,
the pair was inquisitive about why using 8 for number of
rotations did not work until the turn angle was fixed but their
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sensemaking attempt did not reach an explanation that could
account for relationships among multiple cases and results.
This finding does not seem unnatural considering that mostly
tacit rules were used (see Theme 1).

The current participants did not have enough experience
programming and debugging to engage in inductive reason-
ing. Still, our findings prompted us to reexamine the scaffold
design intended for reflective debugging. In the scaffold,
participants were invited to describe and reflect on what
actually made their robot behave unexpectedly and in what
ways the code was fixed when debugged. The design intent
was to scaffold them to reflect on the bug location and reso-
lution and solidify their understanding of how the code
worked (Kim et al., 2018). Most responses accurately sum-
marized the bug location and resolution. For example,
Charlotte and Harper’s responses are as follows:

Prompt: What was the real problem that made your Ozobot behave
unexpectedly?
Response: The angle and the amount of turns it was making was off.



Prompt: How was the problem fixed?
Response: We changed the angle to 45 and changed the repeat while
rotate < 8.

In the scaffold, participants were also asked why certain
changes were made. For example, Charlotte and Harper
reflected on their changes in the repeat while block: “We
tried it [8] before we changed the angles and it did not work,
so we changed it [8] back to 5, and then back to 8 after we
changed the angles . . . [because] it was only turning 5
times.” The why questions seem to have invited participants
to describe cases and results that they were seeing without
explaining relationships among multiple cases and results.
For example, participants were asked to describe each case
N and result N and their relationship, but not the relationship
among cases and results:

Case 1 (repeat while rotate < 5 & angle 70 degrees) —
Result 1 (the robot did not work properly)

Case 2 (repeat while rotate < 8 & angle 70 degrees) —
Result 2 (the robot did not work properly)

Case 3 (repeat while rotate < 8 & angle 45 degrees) —
Result 3 (the robot worked properly)

Our scaffolding is not the only tool to invite students
learning computer science to ask why questions; for exam-
ple, another such tool is Whyline, which invites students to
ask why questions and points to areas of the code that could
provide answers (Ko & Myers, 2008). In the current study, it
appears that the scaffolding served as a sociocultural media-
tor (Belland & Drake, 2013) of the pairs’ work, thereby fos-
tering abductive reasoning and, by extension, cautious
tinkering. Scaffolding for participants to review the relation-
ship between case N and result N seems to have played a
facilitative role in cautious tinkering of participants as hinted
by Charlotte in the interview:

What changes you made and then what happened after the changes
were made, writing that down helped. I think completely writing
down the code was a lot [of help] . . . I think because [while] writing
down what you changed and then writing down what the change
did, you could see that [the change] did the opposite of what we
were supposed to do. So let’s try the other way.

Similarly, Amelia considered such scaffolding helpful as
noted in her interview: “I think having the hypothesis and
then writing the reason why kind of helped in debugging it
’cause you were thinking more of how do I fix it when it’s on
there.” In the interview, Elena also explained the role of
hypotheses:

I think the hypotheses part to write it down [was the most helpful], to
really see what my process of thinking was. It was good to understand
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where my line of thinking was starting to go and it was good to have
a second hypothesis and a third if that didn’t work out either.

Data suggest that reflective debugging was scaffolded
but reflective abstraction was not. Reflective abstraction
is the process of arriving at new knowledge through
reflection on current and earlier actions, operations, con-
struction, and reconstruction (Abrahamson, 2012; Cetin
& Dubinsky, 2017; Piaget & Inhelder, 1969). Reflection
on multiple, isolated relationships between each case N
and result NV did not lead to general rules that may explain
the relationships across cases and results. As figural and
numerical cues were used in the pathway from abduction
to induction about algebraic patterns among ECE majors
(Rivera & Becker, 2007), the scaffold of the present
study could be redesigned to facilitate the use of multi-
modal cues in more holistic ways. It may be worthwhile
to use a list of cases and results to not only summarize
the relationship per case but also visualize multiple rela-
tionships as a whole as in inductive debugging (Myers
et al., 2004). The following rules, for example, could be
reasoned when changes in the code (cases) and robot
behaviors on the change (results) are reviewed altogether
and reflected on:

Rule X: The rotate angle value should be equal to the
exterior angle of a regular octagon.

.. 360°/8 = 45

Rule Y: The number of rotations should be the number of
sides of a regular octagon.

-8

Rule Z: To rotate 8§ times, the numeric value in the “repeat
while rotate <” segment should be 8 because the ini-
tial value for the rotate variable is 0.

.. repeat while rotate < 8

Actual Use of the Scaffold Limited Sensemaking. Partici-
pants often used the scaffold to report what they had done.
For example, Barbara and Lillian completed the octagon
debugging task and then answered scaffold prompts that
were designed to be used during the debugging process.
Charlotte and Harper listed only some changes they made in
the buggy code; they listed 70° to 110°, and then to 45°,
instead of listing all the angle changes from 70°, to 110°,
50°, and 45°. Barbara and Lillian made an error in their
final specification of the bug location and resolution by
including the change in the robot travel distance that they
ended up excluding in their final code. Amelia and Elena
responded to the scaffold as they engaged in debugging
more often than others, as exemplified in Scene 1 of Table
6, but they only recorded the last change they made (i.e.,
40°) rather than listing all changes made in Scenes 2 through
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5. Although seemingly trivial, these cases may have also
discouraged reflective abstraction. While the scaffold
helped participants think back on what they had done, using
the scaffold as a retrospective tool may have partially
resulted in little sensemaking while doing (see Theme 2
above). The scaffold was designed in such a way that all
changes needed to be reflected on, not just those that led to
bug resolution. Accumulated reflections could lead to
reflective abstraction (Abrahamson, 2012). If inductive rea-
soning can be attempted after each conclusion of abductive
reasoning, the transition from abduction to induction
(Rivera & Becker, 2007) could be possible sooner than
later. This means that participants would have more reperto-
ries of potential rules that can be used in future abductive
reasoning. Considering that participants applied their octa-
gon debugging experience when asked to explain why the
robot was not tracing a hexagon during the interview, induc-
tive reasoning about the repeat while rotate < n sides block
may have been initiated when they saw familiar code. The
interview with Harper, for example, shows that she mim-
icked octagon debugging for the hexagon code. She talked
about her debugging approach without much exploration.

Harper: I remember doing something like this. I remember we at first
tried to first change this [the number in the repeat while block] to
... well, hexagon is six sides, right? Yeah. So, we changed that to
eight [in the octagon debugging]. But it still wouldn’t work
because of the angles were off. So I think I would just change one
of these, I guess this angle [in the hexagon code]. I don’t know
what I would change it [the angle value] to. I would do trial and
error and see, and then change the sides to six to see if it could
make a hexagon.

Interviewer: Why do you think this angle could be a problem?

Harper: When we did it before [in the octagon debugging] the angle was
too sharp and so before [Ozobot] can even get to eight sides, it
already closed itself off.

Interviewer: Do you think if you change to six and then run it, do you
think the angle should be smaller or bigger than the number that is
there?

Harper: Smaller? Hmm. I think.

Interviewer: Why do you think so?

Harper: Because when I did this [in the octagon debugging], I remember
we changed it to like 110 or something like that cause we thought it
would be an obtuse angle but it did the opposite. It [made] even
sharper turns.

Turkle and Papert (1990) argued that tinkerers may
become decisive when they work on familiar programming
tasks, which they regarded as “the benefits of their long
explorations” (p. 141). However, Harper’s sensemaking of
the repeat while block seems isolated from sensemaking
related to the angle and distance. Reasoning that the angle
should be less than 70° in the hexagon task just because 70°
in the octagon task had to be reduced is evidence of lack of
reflective abstraction. There was a bug in the distance, but
Harper did not mention making any change in the distance
probably because no change was needed in the distance in
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the octagon task. If sensemaking was completed while and
after debugging (see Theme 2), rules about the angle may
have been applied to justify the smaller angle value in fixing
the hexagon code.

Theme 4: Generating Multiple Hypotheses in Advance Was
an Unnatural Requirement

Scaffold Design Intent Misaligned With Abductive Reason-
ing. The scaffold design was grounded in the literature
highlighting the critical role of hypothesis formulation in
debugging (Araki et al., 1991; Kim et al., 2018). Along with
prompts for generating hypotheses, the scaffold guided par-
ticipants’ attention to specific structures of the code, blocks,
and numeric or descriptive value in blocks. For example, the
following questions were given during hypothesis genera-
tion: Is the sequence of blocks arranged correctly? Is the
numeric value in blocks aligned with what you want your
Ozobot to do? Is the logic block used correctly? Scaffolding
design suggested in Kim et al. (2018) included use of com-
mon errors as part of scaffolding for debugging block-based
code, but not as a checklist for step-by-step execution. Thus,
these questions were intended to draw participants’ attention
to common errors. Lillian noted that the questions prompted
her and her partner, Barbara, to pay attention to the code in a
productive way:

The questions that were asked [were helpful] (The interviewee is
looking at the printed copy of her responses to the scaffold). 1
think the numeric value in the blocks was most helpful. . . . So
when we looked at it, that’s the one that sort of tipped us off to
address the issue. The one question is, is the descriptive value in
blocks aligned with what you want your Ozobot to do? And then
the numeric values . . . our first hypothesis was that the distance
was wrong. I don’t think that ended up being right. I’m not exactly
sure, but the issue was the angles. So when we started looking at
the degrees and the numeric values, with that question, it helped
us pay attention to something that we may have missed otherwise.

Regardless of the design intent for hypothesis genera-
tion, the scaffold seems to have asked for an unnatural
course of activities in that two or three hypotheses had to be
written down altogether before testing any. Considering the
salient use of abductive reasoning among our participants,
this part of generating multiple hypotheses in advance
seemed misaligned with their reasoning process. During
reasoning through abduction, a new hypothesis is realized
when there is new information that demotes the probability
of the old hypothesis (Magnani, 2009). That is, it is natural
that the second probable cause (Hypothesis 2) explaining
the robot’s malfunctioning could not be guessed without
testing the first probable cause (Hypothesis 1). Thus, the
requirement of generating multiple hypotheses in advance
may have been misaligned with the participants’ reasoning
approaches:



Interviewer: Which parts of the scaffold most conflicted with your
thinking processes or were not aligned with your thinking pro-
cesses?

Lillian: T feel like it was hard to list out specific hypotheses ’cause we
sort of did a bunch of trial and error. So to specifically look at what
the problem was there. It could have been a lot of things, which I
guess is why it said reason for multiple hypotheses . . . I also think
that we are anxious to just start moving.

Charlotte noted that her partner, Harper, and she responded
to the scaffold retrospectively because they wanted to see what
a change would do first before listing multiple hypotheses:

Charlotte: I guess that hypothesis [was most conflicted] ’cause . . . I
think I’m a more visual person. . . . I'm better at just like trial and
error . . . I would have just like tried a bunch of things and see what
worked instead of writing something out.

Interviewer: How did you handle with that process of writing hypothe-

ses?
Charlotte: *Cause my partner I think was kind of the same way, we
actually would kind of change something and then . . . write a

hypothesis for that. We would kind of do it a little bit back-
wards actually. We would change something and then I’d be
like, okay, we have to write a hypothesis for what we changed
and then do it.

Amelia and Elena exhibited more concurrent engage-
ment with the scaffold and debugging than other pairs, as
discussed earlier (Theme 3). Still, they did not write mul-
tiple hypotheses in advance. They wrote one and tested it
prior to writing another one, as shown in Table 6. Moreover,
when their change to 120° did not work, they decided not
to write another hypothesis yet. That is, they chose to see
what happened with their new change (20°) before writing
their third hypothesis related to the change. Their first
hypothesis was about the number of rotations (Scene 1).
Their second hypothesis was about the angle change from
70° to 120° (Scene 2). Amelia explained to Elena that she
was not writing down their third hypothesis related to the
new angle value, 20°, because they may need to abandon
the hypothesis of the moment if 20° does not fix the bug
(Scene 3).

Natural Process of Abductive Thinking Leading to Tinkering.
Charlotte defined her problem-solving during debugging as
a process of trial and error:

I think it [debugging] is very similar [to other problem-solving]
’cause a lot of things are trial and error. I don’t fix much like cars,
fridge, refrigerators. But even the fridge . . . in my apartment,
there’s like 7 and 1, but I didn’t know which one was cold[est]
and which one was the warmest. So you just try 7 and wait a few
hours and see if it gets colder or warmer. So it’s just like trial and
error.

Positive notions were often expressed about trial and
error used in debugging and problem-solving in general.
Harper wrote in her reflection:
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We thought about what we thought the solution would be, tried it
out, failed, and kept trying until we solved it. This is how a lot of
things in life work, and many math problems as well. If something
is wrong with my phone, I think “maybe if I reset it, it will work,”
then if it doesn’t, I try other things, and if that doesn’t work, I keep
trying things until I find the solution that fixes my phone.

She also wrote that she would apply her debugging expe-
rience to teaching young children as follows: “I would teach
them how failing is not a bad thing, it takes many tries to
solve something and that is okay.” Participants chose to
make a series of incremental changes based on tangible
observations. Lillian seemed to be more of a planner usually,
but for debugging, she tinkered, as she noted here:

The approach we took was more trial and error so see if it worked and
not. And, in my real life I try to plan things out more specifically, but
to visualize it, it was easier to make the changes as we were going.

These findings are similar to the study of Ko et al. (2019) in
which most participants still chose to tinker even though their
intervention was designed to help novice programming learn-
ers debug step-by-step in structured ways. Now knowing our
participants’ common practice of abductive reasoning, the
design feature that required them to come up with multiple
hypotheses with no explorations yet seems far from our
intentions.

As mentioned earlier, tinkering in the present study was
cautious (Berland et al., 2013; Perkins et al., 1986) and
intentional (Fitzgerald et al., 2010). For example, as Amelia
and Elena explained in their interviews, their incremental
changes were grounded in tangible observations of the
robot’s behaviors:

Usually, I would look through the code and see what I didn’t want to
do or what I had planned it to do and then based off of what it
actually did, I would add something or try to reprogram it to make it
better. (Amelia)

When I would program it one way for example, like turning and
going straight along the line, and it wouldn’t work the way I
expected it to, it wouldn’t turn enough or whatever. I would have to
readjust that . . . We went over and double-checked everything and
kind of correlated where the code was with the movement that we
saw it doing. So we would play it again, play the code again, let the
Ozobot move again. We would check on the code, everything that it
was doing and want to stop doing what we wanted it to. We would
figure out where we were in the code and use that. (Elena)

The function of the hypothesis-driven scaffolding was
not misaligned with our participants’ dominant reasoning
(abductive reasoning) possibly because they ended up for-
mulating multiple hypotheses while tinkering, instead of for-
mulating them all at once. Their hypotheses (Table 7) had
explanatory value. Abduction is a “process of reasoning in
which explanatory hypotheses are formed and evaluated”
(Magnani, 2009, p. 8). Considering that abductive reasoning
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TABLE 7

Responses to Multiple Hypothesis Generation Prompts in the Debugging Scaffold

Prompts

Charlotte and Harper

Barbara and Lillian

Amelia and Elena

Your Hypothesis 1
Reason for Hypothesis 1

Your Hypothesis 2

Reason for Hypothesis 2

Your Hypothesis 3

Reason for Hypothesis 3

We need to change the rotate < 5 to
rotate < 8.

The Ozobot was only moving 5 sides and
an octagon has 8 sides.

We need to [change] the angle of our
Ozobot, so we changed it to 110
degrees.

The Ozobot was originally making too
sharp of turns, so we thought we needed
to change it from 70 degrees to an
obtuse angle, which would be 110.

We change the angle from 110 degrees to
45 degrees.

110 was way too big of an angle so we
realized we actually had to choose a
smaller angle than 70 degrees, not a

Distance was off.

It didn’t go far enough
before turning.
Angle was off.

We knew it looked bigger
than 90 degrees on the
inside.

Ozobot stopped before
completing the shape.
We extended the distance

to 70.

[We need to] change the
repeat while rotating to 8.

The Ozobot does not
complete 8 lines.

The rotate was at 70 degrees

and we are changing it to 40

degrees.

The Ozobot was turning at too
sharp of an angle for it to be

an octagon.

larger angle.

“never reaches the status of best hypothesis” and that
hypotheses can be partial and elementary as long as there is
some plausibility (Magnani, 2009, p. 11), all these hypothe-
ses are reasonable explanatory hypotheses. As shown in
Table 7, Barbara and Lillian reported their observation of the
robot’s current movement as hypotheses. Charlotte and
Harper as well as Amelia and Elena wrote their plan for
change in the code as hypotheses. Considering that “expla-
nation deals with the current or past problems, while predic-
tion deals with future problems” (Abe, 2003, p. 232), Amelia
and Elena may have attempted to generate a predictive
hypothesis even though the scaffold asked for hypotheses
for why the robot was behaving incorrectly. Hypotheses
used in deduction are for prediction (Magnani, 2009). Most
hypotheses were still of explanatory value in that they were
used in searching for best explanations during their tinker-
ing. Nonetheless, since ECE teacher candidates are usually
exposed to deduction and induction, not abduction (Rivera
& Becker, 2007), the scaffold could be redesigned to guide
participants to distinguish explanatory hypotheses from pre-
dictive hypotheses and maximize the benefits of their use of
explanatory hypotheses.

Conclusion and Implications for Computing Education

The unique contribution of this article is the finding of
abductive reasoning used in tinkering. Unlike many existing
studies that attempt to identify deficits that lead to tinkering,
we investigated how novice programmers tinkered so that we
could understand their reasoning processes. We made con-
stant efforts throughout this research to avoid assigning value
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to tinkering or attributing the use of tinkering to participants’
low or nonexistent prior programming knowledge and expe-
rience. This may sound counterintuitive considering this
article indeed reports the tinkering process of novices, but the
lens of ethnomethodology enabled our investigation of tin-
kering as in and of itself without value judgment.

Another implication is that the study findings point to a
way to include further instruction on reasoning in ECE con-
texts. A common criticism is that little reasoning is learned
in early learning curricula, even in mathematics education in
which reasoning is essential (Stylianides et al., 2013). This
criticism is applied not only to ECE but also to preservice,
ECE teacher education. For example, inductive and deduc-
tive reasoning is covered in the ECE teacher mathematics
education curriculum but often not abductive reasoning
(Rivera & Becker, 2007). But the relationship between
abduction and induction is critical to generalization (Rivera
& Becker, 2007). If teachers do not recognize abductive
thinking, the potential process to induction and generaliza-
tion could be discarded (Abrahamson, 2012).

Specifically related to scaffolding design for computing
education, this study suggests that hypothesis-driven scaf-
folds can be instrumental to reflective debugging, but it is
important to consider the reasoning processes of computing
learners. After reviewing data from the present study, we
redesigned our scaffold to support reasoning by abduction
and prompt for reflective generation of rules during abduc-
tive reasoning processes. This redesign is meant to scaffold
our teacher candidates to see relationships not only between
individual case N and result N while reasoning by abduction
but also across multiple cases and results throughout reason-



ing processes. This redesign decision calls for further asset-
based scaffolding research.
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