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Abstract
We show that every finite group of order divisible by 2 or q, where q is a prime num-
ber, admits a {2, q}�-degree nontrivial irreducible character with values in ℚ(e2�i∕q) . We 
further characterize when such character can be chosen with only rational values in solv-
able groups. These results follow from more general considerations on groups admitting a 
{p, q}�-degree nontrivial irreducible character with values in ℚ(e2�i∕p) or ℚ(e2�i∕q) , for any 
pair of primes p and q. Along the way, we completely describe simple alternating groups 
admitting a {p, q}�-degree nontrivial irreducible character with rational values.
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1  Introduction

One of the main problems in finite group representation theory is to understand fields 
of values of characters, by which we mean the smallest field containing all values of a 
given character. A classical result of Burnside states that groups of odd order do not 
possess nontrivial irreducible characters with real fields of values. Actually, this prop-
erty characterizes odd-order groups in an elementary way, see Theorem 2.3. It is also 
true that a group G has even order if, and only if, G possesses a nontrivial irreducible 
character with rational field of values [24, Theorem 8.2]. However, unlike the real case, 
the proof of this simply stated result already requires the classification of the finite sim-
ple groups [9] (CFSG for short), evidencing the deep nature of rationality phenomena in 
character theory.

R. Gow conjectured that every finite group of even order has a nontrivial irreduc-
ible character with odd degree and rational field of values. In 2008, G. Navarro and 
P.H. Tiep [24, Theorem B] finally confirmed this prediction. Later (but appearing first 
in the literature [23]), they generalized their result by proving that every finite group of 
order divisible by a prime q admits a nontrivial irreducible character of degree coprime 
to q with values in the rather small cyclotomic extension ℚ(e2i�∕q) . The study of fields 
of values of irreducible characters of degree not divisible by a given prime is a subject 
interesting in its own right [15], which is recently blooming thanks to a growing inter-
est in the Galois refinement of the McKay conjecture proposed by G. Navarro in [20]. 
This refined conjecture has been reduced to a question on simple groups in [21], which 
makes it important to understand the fields of values for such groups.

Usually, extensions of results from one prime to a set of primes � fail (at least with-
out assuming separability properties in the group), and the behavior of finite groups with 
respect to properties related to � is no longer smooth. However, in [8] the first-, third-, and 
fourth-named authors show that every nontrivial group possesses a nontrivial irreducible 
character of degree not divisible by any prime in � , where � is any set consisting of at most 
two primes. In the above-mentioned context of character fields of values, it is natural to 
consider further restrictions on the values of such �′-degree characters.

In Theorem A, we show that every finite group of order divisible by 2 or q possesses a 
nontrivial irreducible character of {2, q}�-degree with field of values contained in ℚ(e2i�∕q) , 
a surprising result that generalizes both [23] and [24, Theorem B] in the fashion of [8].

Theorem A  Let G be a finite group, let q be a prime and write � = {2, q} . Then, G pos-
sesses a nontrivial �′-degree irreducible character with field of values contained in 
ℚ(e2�i∕q) if, and only if, gcd(|G|, 2q) > 1.

The obvious problem suggested by Theorem A is to try to understand when the irreduc-
ible character it identifies can be chosen to be rational, that is, when such character can be 
chosen to have only rational values. In other words, for a group G of even order and an odd 
prime q, we would like to characterize when G has a �′-degree rational character, where 
� = {2, q} . This is not always the case, in contrast to what happens if we allow small cyclo-
tomic field extensions of ℚ as fields of values, as described by Theorem A. For example, 
the only rational linear character of �4 is the trivial one. A complete answer to this problem 
appears difficult to achieve and at the time of this writing, we do not know what form such 
a classification would take. However, in the case where G is a solvable group (or an alter-
nating group, see Theorem D), we can completely solve this problem.
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Theorem B  Let G be a solvable group, q be a prime and set � = {2, q} . Then, G admits a 
nontrivial rational irreducible character of �′-degree if, and only if, H∕H� has even order, 
where H ∈ Hall

�
(G).

We care to remark that the statement of Theorem B does not hold outside solvable 
groups, as shown by �5 and � = {2, 3} (see Remark 5.11).

Our proof of Theorem A relies on the Classification of the Finite Simple Groups. In 
fact, for alternating groups and generic groups of Lie type, the arguments naturally extend 
from a pair {2, q} of primes to any pair {p, q} . Hence we obtain Theorem A as a corollary 
of the following statement, which classifies finite groups admitting a �′-degree character 
with values in certain cyclotomic extensions of ℚ , for any set � consisting of two primes. 
Note that the seemingly random exceptions in Theorem C suggest that the use of the CFSG 
is perhaps unavoidable in the present context. From now on, we will use ℚ(�) to denote the 
field of values of a character �.

Theorem C  Let G be a finite group and � = {p, q} be a set of primes such that either p or q 
divides |G|. Assume that:

	 (i)	 � ≠ {3, 5} or G does not have a composition factor isomorphic to the Tits group 
2F4(2)

�.
	 (ii)	 � ≠ {23, 43}, {29, 43} or G does not have a composition factor isomorphic to the 

Janko group J4.

Then, G possesses a nontrivial irreducible character � of �′-degree such that 
ℚ(𝜒) ⊆ ℚ(e2𝜋i∕p) or ℚ(𝜒) ⊆ ℚ(e2𝜋i∕q).

Theorem C has been used in [11] to obtain a lower bound for the number of almost 
p -rational irreducible characters of p′-degree in a finite group G. A character � is said 
to be almost p-rational if ℚ(𝜒) ⊆ ℚ(e2𝜋i∕n) for some nonnegative integer n with p-part 
at most p. The aforementioned refinement of the McKay conjecture [20, Conjecture A] 
would imply that the number of almost p-rational irreducible characters of p′-degree 
of G is at least the number of conjugacy classes in the group �G(P)∕Φ(P) , where 
P ∈ Sylp(G) and Φ(P) is its Frattini subgroup. Therefore, we expect that any finite group 
of order divisible by p has many almost p-rational irreducible characters of p′-degree. 
Notice that Theorems A and C are consistent with this new consequence of the Galois 
refinement of the McKay conjecture, as the �′-degree characters identified by them are 
almost p-rational regardless of the prime q.

Finally, and as briefly mentioned before stating Theorem  B, we are able to com-
pletely determine which simple alternating groups admit a nontrivial rational irreduc-
ible character of �′-degree, for any set � consisting of exactly two primes. We will write 
Irr

�
� (G) to denote the set of irreducible characters of G of �′-degree.

Theorem D  Let n ≥ 5 be a natural number and let p, q be distinct primes. Let � = {p, q} . 
The alternating group �n admits a nontrivial rational irreducible character of �′-degree 
for all those n ∈ ℕ that do not satisfy any of the following conditions (up to possibly inter-
changing the primes p and q). 
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	 (i)	 n = pm = 2qk + 1 , for some m, k ∈ ℕ≥1 such that m is odd.
	 (ii)	 n = 2pm = qk + 1 , for some m, k ∈ ℕ≥1 such that k is odd.

Moreover, in case (i), ℚ(𝜙) ⊆ ℚ(e2𝜋i∕p) for all � ∈ Irr
�
� (�n) . On the other hand, in case 

(ii), ℚ(𝜓) ⊆ ℚ(e2𝜋i∕q) for all � ∈ Irr
�
� (�n).

This paper is structured as follows: In Sect. 2, we prove Theorems A and C assuming 
Theorem 2.1 on finite simple groups. In Sect. 3, we prove Theorem D, which in particular 
yields the alternating group case of Theorem 2.1. In Sect.  4, we prove Theorem 2.1 for 
sporadic groups and simple groups of Lie type, thus completing the proof of Theorem 2.1. 
Finally, we prove Theorem B in Sect. 5.

2 � Proofs of Theorems A and C

Given a character � of a finite group and a field extension F of ℚ , we say that � is F -val-
ued if ℚ(𝜒) ⊆ F . Recall that � is always ℚ(e2�i∕|G|)-valued. In the special cases where F is 
the field of rational or real numbers, we will sometimes just say that � is rational or real, 
respectively. In particular, rational characters are real. Moreover, given a prime number p, 
we say that � is p -rational if ℚ(𝜒) ⊆ ℚ(e2𝜋i∕n) for some nonnegative integer n not divis-
ible by p [13, Definition 6.29].

The aim of this section is to prove Theorems A and C of the introduction. In order to do 
so, we assume the following result on finite simple groups. This will be shown to hold in 
Sect. 3 and 4.

Theorem 2.1  Let S be a nonabelian simple group and � = {p, q} be a set of primes. Assume 
that (S,�) is not one of (2F4(2)

�, {3, 5}) , (J4, {23, 43}) , or (J4, {29, 43}) . Then, there exists 
�S ≠ � ∈ Irr(S) of �′-degree such that ℚ(𝜒) ⊆ ℚ(e2𝜋i∕p) or ℚ(𝜒) ⊆ ℚ(e2𝜋i∕q).

We start with a lemma.

Lemma 2.2  Let M ⊲ G such that |G ∶ M| = r an odd prime. Let � ∈ Irr(M) with 
ℚ(𝜃) ⊆ ℚ(e2𝜋i∕p) for some prime p ≠ r . Then, there exists � ∈ Irr(G) lying over � with 
ℚ(𝜒) ⊆ ℚ(e2𝜋i∕p).

Proof  If the stabilizer in G of � is G
�
= M then by the Clifford correspondence [13, Theo-

rem 6.11], we have �G ∈ Irr(G) with ℚ(𝜃G) ⊆ ℚ(𝜃) ⊆ ℚ(e2𝜋i∕p) , as required. Therefore, we 
may assume that � is G-invariant.

Note that � is r-rational. It follows from [13, Theorem  6.30] that �G has a unique 
r-rational irreducible constituent � . Indeed, � is extendible to � , and hence ℚ(𝜃) ⊆ ℚ(𝜒).

For each � ∈ Gal(ℚ(�)∕ℚ(�)) , obviously �� is also an r-rational character of G lying 
over � . Therefore, by the uniqueness of � , we have �� = � . Then, � is Gal(ℚ(�)∕ℚ(�))

-fixed, which implies that ℚ(𝜒) ⊆ ℚ(𝜃) . We have shown that ℚ(𝜒) = ℚ(𝜃) ⊆ ℚ(e2𝜋i∕p) , as 
desired. 	�  ◻

We will often use the following classic result of Burnside. We include its elementary 
proof to emphasize the difference between reality and rationality of characters mentioned 
in the introduction.
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Theorem 2.3  (Burnside) A finite group G has even order if, and only if, some nontrivial 
� ∈ Irr(G) is real.

Proof  Let us assume that |G| is even. By [13, Corollary 2.7] and [13, Corollary 2.23.(b)], 
we can write

If |G ∶ G�| is even, then G has a normal subgroup H of index 2 and the only nontrivial 
irreducible character of G/H is rational. It follows that G has a nontrivial real character. 
Otherwise, the sum of the squares of the degrees of nonlinear characters of G is odd. Then, 
the action of the complex conjugation on characters must leave some nonlinear irreducible 
character � of G invariant. Therefore � is a nontrivial real irreducible character of G.

The proof of the converse is also elementary, see [13, Problem 3.16]. 	�  ◻

Theorem  2.4  Let G be a finite group and � = {p, q} be a set of primes. Then, G pos-
sesses a nontrivial irreducible character � of �′-degree such that ℚ(𝜒) ⊆ ℚ(e2𝜋i∕p) or 
ℚ(𝜒) ⊆ ℚ(e2𝜋i∕q) if, and only if, gcd(|G|, 2pq) > 1 , provided that we are not in one of the 
following situations:

	 (i)	 G has a composition factor isomorphic to the Tits group 2F4(2)
� and � = {3, 5}.

	 (ii)	 G has a composition factor isomorphic to the Janko group J4 and � is one of {23, 43} 
or {29, 43}.

Proof  First assume that G is a finite group with gcd(|G|, 2pq) = 1 . Let � ∈ Irr(G) such that 
ℚ(𝜒) ⊆ ℚ(e2𝜋i∕p) or ℚ(𝜒) ⊆ ℚ(e2𝜋i∕q) . Since ℚ(𝜒) ⊆ ℚ(e2𝜋i∕|G|) , we have � is rational-val-
ued. As G is of odd order, it follows from Theorem 2.3 that � is trivial.

Next we assume that gcd(|G|, 2pq) > 1 . We aim to show that G has a nontrivial irreduc-
ible character � of �′-degree such that ℚ(𝜒) ⊆ ℚ(e2𝜋i∕p) or ℚ(𝜒) ⊆ ℚ(e2𝜋i∕q).

Let G = G0 ⊳ G1 ⊳⋯⊳ Gn = 1 be a composition series of G and let 0 ≤ k ≤ n − 1 be 
the smallest such that Gk∕Gk+1 is either nonabelian simple or cyclic of order 2, p, or q. In 
particular, Gi∕Gi+1 is cyclic of order coprime to 2pq for every i < k.

If Gk∕Gk+1 is cyclic of order 2, p, or q, then obviously Gk∕Gk+1 has a nontrivial irreduc-
ible character � of �′-degree such that ℚ(𝜃) ⊆ ℚ(e2𝜋i∕p) or ℚ(𝜃) ⊆ ℚ(e2𝜋i∕q) . On the other 
hand, when Gk∕Gk+1 =∶ S is nonabelian simple, Theorem  2.1 implies that there exists 
�S ≠ � ∈ Irr(S) of �′-degree such that ℚ(𝜃) ⊆ ℚ(e2𝜋i∕p) or ℚ(𝜃) ⊆ ℚ(e2𝜋i∕q).

Viewing the above � as a character of Gk , we now know that Gk possesses a nontriv-
ial irreducible character �k of �′-degree such that ℚ(𝜃k) ⊆ ℚ(e2𝜋i∕p) or ℚ(𝜃k) ⊆ ℚ(e2𝜋i∕q) . 
Using Lemma  2.2, we obtain �k−1 ∈ Irr(Gk−1) lying over �k with ℚ(𝜃k−1) ⊆ ℚ(e2𝜋i∕p) 
or ℚ(𝜃k−1) ⊆ ℚ(e2𝜋i∕q) . Moreover, following the proof of Lemma  2.2, we see that 
�k−1(1) = �k(1) or �k−1(1) = |Gk−1 ∶ Gk|�k(1) , which guarantees that �k−1 is of �′-degree. 
Repeating this process k times, we can produce a nontrivial irreducible character � ∶= �0 
of �′-degree such that ℚ(𝜒) ⊆ ℚ(e2𝜋i∕p) or ℚ(𝜒) ⊆ ℚ(e2𝜋i∕q) . 	�  ◻

Theorems A and C follow immediately from Theorem 2.4.

|G| = |G ∶ G�| +
∑

𝜒 ∈ Irr(G)

𝜒(1) > 1

𝜒(1)2.
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3 � Alternating groups

The aim of this section is to prove Theorem 2.1 for alternating groups. In order to do 
so, we completely describe alternating groups possessing a rational-valued �′-degree 
character. This is done by proving Theorem D of the introduction, which might be of 
independent interest.

We begin by recalling that irreducible characters of the symmetric group �n are 
labeled by partitions of n [17, Chapter  2]. We denote by �� the irreducible character 
of �n corresponding to the partition � of n. We will sometimes use the notation 𝜆 ⊢ n 
to mean that � is a partition of n. Similarly we will write 𝜆 ⊢p′ n to say that ��(1) is 
coprime to p. Given a partition � of n, we denote by �′ its conjugate. If � ≠ �

′ then 
(��)

�n
∈ Irr(�n) . On the other hand, if � = �

� then (��)
�n

= � + �
g for some � ∈ Irr(�n) 

and g ∈ �n ∖ �n.
Assuming that the reader is familiar with the basic combinatorial concepts involved 

in the representation theory of symmetric groups (as explained for instance in [27, Chap-
ter 1]), we recall some important facts that will play a crucial role in our proofs. Given 
𝜆 ⊢ n and i, j ∈ ℕ we denote by hij(�) the length of the hook of � corresponding to node 
(i, j). For e ∈ ℕ , we let He(�) be the set consisting of all those nodes (i, j) of � such that e 
divides hij(�) . Moreover, we let Ce(�) denote the e-core of �.

For any natural number m, we denote by �p(m) the exponent of the maximal power of p 
dividing m. The following lemma follows from [27, Proposition 6.4].

Lemma 3.1  Let p be a prime and let n be a natural number with p-adic expansion 
n =

∑k

j=0
ajp

j . Let � be a partition of n. Then, �p(��(1)) = 0 if, and only if, |Hpk (�)| = ak 
and Cpk (𝜆) ⊢p� n − akp

k.

A consequence of Lemma 3.1 is highlighted by the following statement.

Lemma 3.2  Let p be a prime and let n = pk + � for some � ∈ {0, 1} . Let 𝜆 ⊢ n be such that 
𝜒
𝜆(1) > 1 . Then, �� is an irreducible character of p′-degree of �n if and only if h11(�) = pk.

A second useful consequence of [27, Proposition 6.4] is stated in the following lemma.

Lemma 3.3  Let n = 2k + � for some � ∈ {0, 1} , and let 𝜆 ⊢ n . Then, �2(��(1)) = 1 if and 
only if H2k (�) = � and |H2k−1 (�)| = 2.

We conclude this brief background summary by recalling a well-known fact on cycloto-
mic extensions of the rational numbers [1, Lemma 1.2.1].

Lemma 3.4  If p is an odd prime number, then ℚ(
√
p) ⊆ ℚ(e2𝜋i∕p) if and only if 

p ≡ 1 mod 4 . On the other hand, ℚ(
√
−p) ⊆ ℚ(e2𝜋i∕p) if and only if p ≡ 3 mod 4.

We are now ready to prove the main result of this section, which is Theorem D in the 
introduction.

Proof of Theorem D  Assume first that both primes p and q divide the order of �n . Equiva-
lently, we have p, q ≤ n . Let n =

∑t

i=1
aip

mi =
∑r

j=1
bjq

kj be the p-adic and, respectively, 
q-adic expansions of n. Here m1 > m2 > ⋯ > mt ≥ 0 and k1 > k2 > ⋯ kr ≥ 0 . Without 



1061Characters of ¼'‑degree and small cyclotomic fields﻿	

1 3

loss of generality, we can assume that b1qk1 < a1p
m1 . We consider � ∈ P(n) to be defined 

by:

As done in the proof of [8, Theorem 2.8], we observe that �� ∈ Irr
�
� (�n) and that ��(1) ≠ 1 

unless n = a1p
m1 = b1q

k1 + 1 . We also claim that � ≠ �
′ . This follows by observing that 

� = �
� would imply that

Then, we would have that b1q
k1 = n − b1q

k1 − 1 if n − a1p
m1 = 0 or that 

b1q
k1 = n − b1q

k1 if n − a1p
m1 = 1 . Both these situations cannot occur. We conclude that 

� ∶= (��)
�n

∈ Irr
�
� (�n) and that ℚ(�) = ℚ.

Let us now consider the case where n = apm = bqk + 1 , for some m, k ∈ ℕ , some 
1 ≤ a ≤ p − 1 and some 1 ≤ b ≤ q − 1.

If b ≥ 3 , then we consider � = ((b − 1)qk + 1, 1q
k

) . Since h11(�) = apm , 
h12(�) = (b − 1)qk and h21(�) = qk , we deduce that �� ∈ Irr

�
� (�n) by Lemma 3.1. Since 

b ≥ 3 we also have that � ≠ �
′ and hence that � ∶= (��)

�n
∈ Irr

�
� (�n) is nontrivial and 

such that ℚ(�) = ℚ.
If b ∈ {1, 2} and a ≥ 3 then we consider � = ((a − 1)pm, 2, 1p

m−2) . Since h11(�) = bqk , 
h12(�) = (a − 1)pm and h21(�) = pm , we deduce that �� ∈ Irr

�
� (�n) by Lemma 3.1. As 

above, a ≥ 3 implies that � ≠ �
′ and hence that � ∶= (��)

�n
∈ Irr

�
� (�n) is nontrivial and 

such that ℚ(�) = ℚ.
Let us now study the situation where a, b ∈ {1, 2} . Since apm = bqk + 1 we observe that 

the only cases to consider are (a, b) ∈ {(1, 1), (1, 2), (2, 1)}.
∙ If (a, b) = (1, 2) then n = pm = 2qk + 1 and hence p ≠ 2 . Since 2 = b ≤ q − 1 we also 

have that q ≠ 2 . By Lemma 3.2 we deduce that �� ∈ Irrp� (�n) if and only if � = (d, 1n−d) 
is a hook partition. Moreover, since q is odd, again from Lemma 3.1 we observe that the 
only hook partitions of n that label characters of �n of degree coprime to q are (n), (1n) 
and � = (1 + qk, 1q

k

) = �
� . We also observe that m must be odd in this situation, as 

pm = 2qk + 1 ≡ 3 mod 4 . It follows that �n admits exactly two distinct nontrivial irre-
ducible characters of �′-degree: the two irreducible constituents �1,�2 of (�� )

�n
 . By [17, 

2.5.13] we observe that their fields of values are equal to ℚ(
√
−pm) and strictly contain ℚ . 

Moreover, since m is odd then p ≡ pm = 2qk + 1 ≡ 3 mod 4 . Hence using Lemma 3.4 we 
observe that for all i ∈ {1, 2} we have

∙ If (a, b) = (2, 1) then n = 2pm = qk + 1 and hence q ≠ 2 . The situation is similar to the 
one described above. Using Lemma 3.2 we notice that the nonlinear irreducible charac-
ters of �n of degree coprime to q are labeled by all partitions � such that h11(�) = qk and 
h22(�) = 1 . Since 2 = a ≤ p − 1 , we have that p ≠ 2 . Therefore, Lemma 3.1 implies that 
the only partition that labels a nonlinear irreducible character of �n of degree coprime to p 
and to q is � = (pm, 2, 1p

m−2) = �
� . As before we deduce that �n admits exactly two distinct 

nontrivial irreducible characters of �′-degree: the two irreducible constituents �1 and �2 of 
(��)

�n
 . By [17, 2.5.13] we observe that for all i ∈ {1, 2} we have that ℚ(�i) = ℚ(

√
qk) . It 

follows that for any i ∈ {1, 2} , ℚ(�i) strictly contains ℚ if and only if k is odd. In this case, 
for all i ∈ {1, 2} we have that ℚ(�i) = ℚ(

√
q) . Moreover, since p ≠ 2 then q ≡ 1 mod 4 . 

Therefore ℚ(𝜓i) ⊆ ℚ(e2𝜋i∕q) , by Lemma 3.4.

� = (n − b1q
k1 , n − a1p

m1 + 1, 1b1q
k1−(n−a1p

n1+1)).

b1q
k1 − (n − a1p

m1 ) = n − b1q
k1 − 1 and that n − a1p

m1 ∈ {0, 1}.

ℚ(𝜙i) = ℚ(
√
−pm) = ℚ(

√
−p) ⊆ ℚ(e2𝜋i∕p).
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∙ If (a, b) = (1, 1) then exactly one of p or q is equal to 2.
If q = 2 then n = pm = 2k + 1 . By Lemma 3.2 we deduce that �� ∈ Irrp� (�n) if and only 

if � = (d, 1n−d) is a hook partition. Lemma 3.2 shows that (n), (1n) are the only hook par-
titions labeling an odd-degree character of �n . Moreover, using Lemma 3.3 we observe 
that the partition � = (1 + 2k−1, 12

k−1

) = �
� , is the only hook partition of n such that 

�2(�
� (1)) = 1 . We deduce that the two irreducible constituents �1 and �2 of (�� )

�n
 are the 

only nontrivial irreducible characters of �′-degree of �n . By [17, 2.5.13] we observe that 
ℚ(�1) = ℚ(�2) = ℚ(

√
pm) . Hence ℚ(�1) (and ℚ(�2) ) strictly contain ℚ if and only if m is 

odd. In this case, p ≡ pm ≡ 2k + 1 ≡ 1 mod 4 . Therefore Lemma 3.4 implies that for all 
i ∈ {1, 2} we have that

If p = 2 then n = 2m = qk + 1 and we notice that k is necessarily odd. Moreover, Lemma 
3.2 implies that the only {2, q}�-degree irreducible characters of �n are the linear ones. On 
the other hand, Lemma 3.3 shows that � = (2m−1, 2, 12

m−1−2) = �
� is the only partition labe-

ling a q′-degree irreducible character of �n such that �2(��(1)) = 1 . Arguing as above, we 
deduce that �n admits exactly two distinct nontrivial irreducible characters of �′-degree: 
the two irreducible constituents �1 and �2 of (��)

�n
 . By [17, 2.5.13] we observe that for all 

i ∈ {1, 2} , we have ℚ(�i) = ℚ(
√
−qk) . It follows that for any i ∈ {1, 2} , ℚ(�i) strictly con-

tains ℚ . Since k is odd, for all i ∈ {1, 2} we have ℚ(�i) = ℚ(
√
−q) . Moreover, since p = 2 

we have q ≡ 3 mod 4 . Therefore ℚ(𝜓i) ⊆ ℚ(e2𝜋i∕q) , by Lemma 3.4.
To complete the proof we need to treat the easier case where pq does not divide 

|�n| = n!∕2 . In this setting, we just need to show that there exists a rational-valued �′

-degree irreducible character of �n (as conditions (i) and (ii) of the statement of Theorem D 
cannot be satisfied).

If p, q > n , then every irreducible character of �n has �′-degree. Since n ≥ 5 , we 
have (n − 1, 1) ≠ (n − 1, 1)� and therefore � = (� (n−1,1))

�n
 is a nontrivial irreducible 

character of �′-degree of �n such that ℚ(�) = ℚ . Otherwise, up to possibly interchang-
ing p and q we can assume that p ≤ n < q . In this case, every irreducible character of 
�n has degree coprime to q. Let n = a + pw for some 0 ≤ a ≤ p − 1 and w ≥ 1 . Consider 
� = (n − (a + 1), a + 1) ∈ P(n) . Since n ≥ 5 we notice that necessarily � ≠ �

′ . Moreover, 
Lemma 3.1 implies that p does not divide ��(1) . It follows that � = (��)

�n
 is a nontrivial 

irreducible character of �′-degree of �n such that ℚ(�) = ℚ . 	�  ◻

A straightforward consequence of Theorem D is that Theorem 2.1 holds for alternat-
ing groups.

Corollary 3.5  Let � = {p, q} be a set of two primes and let n ≥ 5 . Then, �n possesses a non-
trivial irreducible character � of �′-degree such that ℚ(𝜒) ⊆ ℚ(e2𝜋i∕p) or ℚ(𝜒) ⊆ ℚ(e2𝜋i∕q).

Proof  If n does not satisfy conditions (i) and (ii) of Theorem D, then �n has a nontrivial 
rational character. If n satisfies condition (i), then the proof of Theorem D shows that there 
exists � ∈ Irr

�
� (�n) such that 𝜙(1) > 1 and such that ℚ(𝜙) ⊆ ℚ(e2𝜋i∕p) . On the other hand, 

if n satisfies condition (ii), we have shown in the proof of Theorem  D that there exists 
� ∈ Irr

�
� (�n) such that 𝜓(1) > 1 and such that ℚ(𝜓) ⊆ ℚ(e2𝜋i∕q) . 	� ◻

ℚ(𝜙i) = ℚ(
√
pm) = ℚ(

√
p) ⊆ ℚ(e2𝜋i∕p).
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4 � Simple groups of Lie type

In this section, we prove Theorem 2.1 for simple groups of Lie type and sporadic simple 
groups. The following reduces us to the case of simple groups of Lie type with nonex-
ceptional Schur multipliers. The list of finite simple groups with exceptional Schur mul-
tipliers is available in [10, Table 6.1.3].

Proposition 4.1  Let S be a simple group of Lie type with an exceptional Schur multiplier, 
or let S be a sporadic group. Assume that S is not the Janko group J4 or the Tits group 
2F4(2)

� . Then, S satisfies Theorem 2.1. Further, the Tits group 2F4(2)
� satisfies Theorem 2.1 

for � ≠ {3, 5} , and the Janko group J4 satisfies Theorem 2.1 for � ∉ {{23, 43}, {29, 43}}.

Proof  This can be confirmed using GAP and the Atlas [4, 32]. In particular, the character 
tables for the groups under consideration are available in the GAP Character Table Library, 
and we make use of the +Conductor+ command in GAP, which returns the smallest natural 
number m for which a character in a stored character table takes its values in ℚ(e2�i∕m) . 	
� ◻

When S is a simple group of Lie type, the required character � ∈ Irr(S) of �′-degree 
we produce will be a semisimple character. Let us recall some brief background on 
these characters from [2, 5, 7]. (We refer the reader in general to these references for 
more on the character theory of groups of Lie type.)

Let G be a connected reductive algebraic group in characteristic p and F a Frobenius 
endomorphism of G . For each rational maximal torus T  of G and character � ∈ Irr(TF) , 
Deligne–Lusztig’s twisted induction RG

T
 is used to define the Deligne-Lusztig character 

RG

T
(�) . Let G∗ be an algebraic group with a Frobenius endomorphism F∗ such that (G,F) 

is dual to (G∗,F∗) . Set G ∶= G
F and G∗ ∶= (G∗)F

∗.
Recall that if (T, �) is G-conjugate to (T�, ��) , then RG

T
(�) = RG

T�
(��) . Moreover, by [5, 

Proposition 13.13], the G-conjugacy classes of pairs (T, �) are in one-to-one correspond-
ence with the G∗-conjugacy classes of pairs (T∗, s) , where s is a semisimple element of 
G∗ and T∗ is a rational maximal torus containing s. Due to this correspondence, we can 
use the notation RG

T∗
(s) for RG

T
(�) . For each conjugacy class (s) of semisimple elements 

in G∗ such that �G∗ (s) is connected, one can define a so-called semisimple character of G 
as follows:

where W(s) is the Weyl group of �G∗ (s) , T∗
w
 is a torus of G∗ of type w, and �G = ±1 , depend-

ing on whether the relative rank of G is even or odd, see [5, Definition 14.40]. Moreover, 
�(s) is irreducible and

where we recall that p is the defining characteristic of G and np′ denotes the p′-part of a 
positive integer n.

Lemma 4.2  With the notation as above, let s ∈ G∗ be a semisimple element such that �G∗ (s) 
is connected. Suppose s has order k and � ∈ Gal(ℚ(e2�i∕|G|)∕ℚ) satisfies �(�) = �

m for 

�(s) ∶=
1

|W(s)|
∑

w∈W(s)

�G�T∗
w
RG

T∗
w

(s),

�(s)(1) = |G∗ ∶ �G∗ (s)|p� ,
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every kth root of unity � , where m is an integer relatively prime to k. Then, ��

(s)
= �(sm) . In 

particular,ℚ(𝜒(s)) ⊆ ℚ(e2𝜋i∕k).

Proof  Let T∗ be a rational maximal torus of G∗ containing s. Let T  be a rational maximal 
torus of G and � ∈ Irr(TF) such that the G-conjugacy class of (T, �) corresponds to the G∗

-conjugacy class of (T∗, s) under the correspondence described above. Then, (T, �m) cor-
responds to (T∗, sm) , and the multiplicative order of � in the group Irr(TF) is the same as the 
order of s. Therefore, the values of � are in ℚ(e2�i∕k).

We recall the character formula for RG

T�
(�) , which we simplify as RT′ ,�:

where t is semisimple, u is unipotent, and g = tu = ut is the Jordan decomposition of 
g ∈ G . Also, �0

G
(t) is the connected component of �G(t) and Q

�
0
G
(t)

xTx−1
 are Green functions of 

�
0
G
(t) , see [2, Theorem 7.2.8]. As the linear character � is ℚ(e2�i∕k)-valued and the Green 

functions are rational-valued, we have R�

T� ,�
= RT� ,�m and ℚ(RT� ,𝜃) ⊆ ℚ(e2𝜋i∕k) for every 

rational maximal torus T′ of G . The conclusion now follows from the definition of �(s) . 	
� ◻

In particular, if �(G) is connected, then �G∗ (s) is connected for every semisimple 
s ∈ G

∗ . (See, for example, [5, Remark 13.15(ii)].) If �(G) is not connected, we may 
embed G into another connected reductive group ̃G satisfying �(̃G) is connected, via a 
so-called regular embedding � ∶ G ↪ ̃G . We record here some of the properties of regu-
lar embeddings. For proofs and a nice detailed discussion, we refer the reader to [7, Sec-
tion 1.7]. In this situation, � may be chosen so that, identifying G with its image �(G) in 
̃G , the Frobenius endomorphism F is naturally the restriction of a Frobenius endomor-
phism on ̃G , which we will also denote by F. Then, writing ̃G ∶= ̃G

F
 , we have G ⊲ ̃G , 

the quotient group ̃G∕G is abelian of order prime to p, and the restriction ResG̃
G
(�) to G 

of any � ∈ Irr(̃G) is multiplicity-free.
Further, the regular embedding � induces a dual map �∗ ∶ ̃G

∗
→ G

∗ that maps 
̃G∗ ∶= (̃G

∗
)F

∗ onto G∗ and whose kernel is central and F∗-fixed. With this in place, fol-
lowing the treatment in [7, Corollary 2.6.18], we may define the semisimple characters 
of G corresponding to a given semisimple s ∈ G∗ to be the irreducible constituents of 
the restriction ResG̃

G
(�(̃s)) of a semisimple character �(̃s) of ̃G , where s̃  is a semisimple 

element of ̃G∗ such that �∗(̃s) = s . Fixing �s to be one such semisimple character of G 
corresponding to s, we again have

Further, the set Irr(G) may be partitioned into subsets known as rational Lusztig series, 
denoted E(G, s) , which are indexed by G∗-conjugacy classes of semisimple elements s ∈ G∗ 
(see, e.g., [5, Proposition 14.41]). In particular, the semisimple characters of G correspond-
ing to s lie in the set E(G, s) . When �G∗ (s) is connected, �(s) is the unique semisimple char-
acter in E(G, s) . To avoid confusion, we will use the notation �(s) only in the case �G∗ (s) is 
connected.

In the case �G∗ (s) is disconnected, and hence Lemma 4.2 does not apply, the fol-
lowing, extracted from [28], will be useful. Here, we write E(G, s)� for the set 
{�� ∣ � ∈ E(G, s)}.

RT� ,�(g) =
1

|�0
G
(t)F|

∑

x∈GF

�(x−1tx)Q
�

0
G
(t)

xT�x−1
(u),

(4.1)�s(1) = |G∗ ∶ �G∗ (s)|p� .
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Lemma 4.3  Let G = G
F be a group of Lie type defined in characteristic p as above. Let 

s ∈ G∗ be semisimple and let � ∈ Gal(ℚ(e2�i∕|G|)∕ℚ) . Then,

	 (i)	 If s has prime order q and m is an integer coprime to q such that �(�) = �
m for each 

qth root of unity � , then E(G, s)� = E(G, sm).
	 (ii)	 If E(G, s)� = E(G, s) and ��(u) = �(u) for all unipotent elements u ∈ G (that is, ele-

ments of order a power of p) and all � ∈ Irr(G) , then every semisimple character in 
E(G, s) is fixed by �.

Proof  Part (i) is a direct application of [28, Lemma 3.4]. Part (ii) is an application of 
[28, Lemma 3.8], since the Gelfand-Graev characters of G (see [5, Definition 14.21]) are 
induced from characters on the unipotent radical, and hence take nonzero values only on 
unipotent elements. 	�  ◻

We remark that the same proof as [28, Lemma 3.4], which is analogous to that of 
Lemma 4.2, yields the corresponding statement of Lemma 4.3(i) for arbitrary |s|, but we 
will not need this here.

Now, if S is a simple group of Lie type not isomorphic to an alternating group or one 
listed in Proposition 4.1, then S = G∕�(G) for G = G

F , where G is simple of simply con-
nected type. The following will be used in conjunction with Lemma 4.3 in many cases in 
which �G∗ (s) is not connected. Although it can be extracted from the proofs of [8, Lemma 
3.3 and Theorem 3.5], we rewrite the proof for the convenience of the reader.

Lemma 4.4  Let S = G∕�(G) be as in the previous paragraph, where G is defined in char-
acteristic p. Let q ≠ p be another prime, let Q be a Sylow q-subgroup of G∗ , and moreover 
assume that |�(G)| is either a power of q or coprime to q. Then, there exists a nontrivial 
semisimple character �s in a series E(G, s) of G satisfying the following properties:

	 (i)	 s ∈ �(Q) and has order q;
	 (ii)	 �(G) is in the kernel of �s;

In particular, �s may be viewed as a nontrivial member of Irr{p,q}� (S).
Proof  Let s ∈ �(Q) have order q. Then, �G∗ (s) contains a Sylow q-subgroup of G∗ , and 
hence any semisimple character in E(G, s) is a member of Irr{p,q}� (G) , using (4.1). Now, 
our exclusions imply that |�(G)| = [G∗ ∶ (G∗)�] . If |�(G)| is a power of q, then elementary 
character theory yields every member of Irrq� (G) is trivial on �(G) (see, e.g., [8, Lemma 
3.4]). If q ∤ |�(G)| , the equality |�(G)| = [G∗ ∶ (G∗)�] implies Q ≤ (G∗)� , so s ∈ (G∗)� . By 
[25, Lemma 4.4(ii)], any character of E(G, s) is then trivial on �(G) . In either case, this 
yields that any semisimple character in E(G, s) satisfies the statement. 	�  ◻

Proposition 4.5  Let S be a simple group of Lie type. Then, Theorem 2.1 holds for S.

Proof  We may assume S is not one of the groups listed in Proposition 4.1 nor isomorphic 
to an alternating group. Further, thanks to [23, 24], we may assume that p ≠ q.

Let S be of the form G∕�(G) , where G = G
F is the set of fixed points of a simple con-

nected reductive algebraic group of simply connected type defined in characteristic r, 
under a Frobenius endomorphism F. Note that the Steinberg character StG of G has degree 
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a power of r, is rational-valued, and is trivial on �(G) . Hence, we may assume that r = p is 
one of the primes in �.

Throughout, let Q ∈ Sylq(G
∗) . If p is an odd prime, let � ∈ {±1} be such that 

p ≡ � (mod 4) , and note that ℚ(
√
𝜂p) ⊆ ℚ(e2𝜋i∕p) , using Lemma 3.4.

By [19, Exercise 20.16], we see that �G∗ (s) is connected whenever |s| is relatively 
prime to |�(G)|p� . Then, if q ∤ |�(G)| , we have q ∤ |�(G)| (see [10, Theorem  1.12.5 and 
Table 6.1.2]) and the character �s constructed in Lemma 4.4 is actually �(s) and takes val-
ues in ℚ(e2�i∕q) , using Lemma 4.2. Hence, we assume q ∣ |�(G)|.

Let G be of type An−1 . Then, G = SLn and ̃G = GLn , and we may write n = a1q +⋯ atq
t 

with 0 ≤ ai < q for 1 ≤ i ≤ t . We write ̃G = GL�

n
(pa) and G = SL�

n
(pa) , where � ∈ {±1} and 

� = 1 gives the untwisted version SLn(p
a) , and � = −1 gives the twisted version SUn(p

a) . 
Recall that �

̃G
∗ (̃s) is connected for any semisimple s̃ ∈ ̃G∗ . Further, note that 

�(G) = G ∩ �(̃G) , ̃G∗ ≅ ̃G , S = PSL�

n
(pa) ≅ (G∗)� , G = (̃G)� ≅ (̃G∗)� , and 

G∗ ≅ ̃G∕�(̃G) = PGL�

n
(pa) . Throughout, we will make these identifications. Let 

̃Q ∈ Sylq(
̃G) . Then, by [3, 34], we have ̃Q =

∏t

i=1
Q

ai
i
 , where the Qi ∈ Sylq(GL

�

qi
(pa)) are 

embedded diagonally in ̃G . Let k = min{i|ai > 0} , so that nq = qk.
First, assume that n is not a power of q. Let s� ∈ �(Qk) have order q. If n ≠ 2qk , define 

s̃ ∈ �(̃Q) to be of the form diag(s�, In−qk ) . If q ∣ (pa − �) , then s′ may further be chosen to be 
of the form �Iqk ∈ �(GL�

qk
(pa)) , where � ∈ Cpa−� ≤ �

×
p2a

 has order q. Then, 
det(̃s) = det(s�) = �

qk = 1 . Otherwise, q ∤ |̃G∕G| , so ̃Q ≤ G . In either case, s̃ ∈ G = (̃G∗)� , 
so the corresponding semisimple character �(̃s) of ̃G is trivial on �(̃G) , by [25, Lemma 4.4]. 
If q is odd and n = 2qk , we may instead let s̃ ∈ �(̃Q) be of the form diag(�Iqk ,�−1Iqk ) if 
q ∣ (pa − �) and diag(s�, Iqk ) if q ∤ (pa − �) , and we again see that s̃ ∈ G . Further, since the 
conjugacy classes of semisimple elements of ̃G are determined by their eigenvalues, we see 
s̃  is not ̃G-conjugate to s̃z for any nontrivial z ∈ �(̃G∗) . But the irreducible characters of 
̃G∕G are in bijection with elements of �(̃G∗) , and 𝜒(�s) ⊗�z = 𝜒(�sz) for ẑ ∈ Irr(̃G∕G) corre-
sponding to z ∈ �(̃G∗) (see [5, 13.30]). Hence �(̃s) is also irreducible when restricted to G. 
By Lemma 4.2, �(̃s) has values in ℚ(e2�i∕q) , so this yields a member of Irr(S) with degree 
prime to both p and q and with values in ℚ(e2�i∕q) , as desired.

Now assume that n = qk . Then, [8, Lemma 3.4] yields that any irreducible character 
of G with degree prime to q is trivial on the center, which has size gcd(n, pa − �) . Hence 
it suffices to show there exists a member of Irr(G) with degree prime to p and to q whose 
values lie in ℚ(e2�i∕p) or ℚ(e2�i∕q).

Let �s be as in Lemma 4.4, where we let Q = ̃Q�(̃G)∕�(̃G) ∈ Sylq(G
∗) , and let 

s̃ ∈ ̃Q�(̃G) be such that s̃�(̃G) = s . Then, notice s̃q ∈ �(̃G) . Let � = e2�i∕|̃s| , so that the 
semisimple character �̃(̃s) of ̃G corresponding to s̃  takes its values in ℚ(� ) , by Lemma 4.2, 
and lies over the {p, q}�-degree character �s of G. Let � ∈ Gal(ℚ(� )∕ℚ(e2�i∕q)) . Then, � 
maps � to �m for some m with gcd(m, |̃s|) = 1 . Further, m ≡ 1 (mod q) , since � fixes qth 
roots of unity. In particular, s̃m = s̃z for some z ∈ �(̃G) . Then, using Lemma 4.2, we have 
�̃
�

(̃s)
= �̃(̃sm) = �̃(̃sz) , and hence �̃

�

(̃s)
 also lies over �s . In particular, 

Res
�G
G
(�𝜒(�s))

𝜎 = Res
�G
G
(�𝜒𝜎

(�s)
) = Res

�G
G
(�𝜒(�sz)) = Res

�G
G
(�𝜒(�s) ⊗�z) = Res

�G
G
(�𝜒(�s)) . So, ResG̃

G
(�̃(̃s)) is 

fixed by each such � , and therefore has values in ℚ(e2�i∕q).
If q is odd and � ∈ Irr(G) , then [30, Theorem 6.1] yields that ℚ(�) = ℚ(ResG̃

G
�̃) for any 

�̃ ∈ Irr(̃G) lying over � . Hence in this case, ℚ(𝜒s) ⊆ ℚ(e2𝜋i∕q) as well. If q = 2 , then the 
above yields ℚ(ResG̃

G
(�̃(̃s))) = ℚ , so [30, Theorem 6.1] yields that ℚ(𝜒s) ⊆ ℚ(

√
𝜂p) , com-

pleting the proof in this case.
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Hence we may assume G is not of type An−1 , and therefore |�(G)| is a power of q. 
Let �s be the character constructed in Lemma 4.4. In this case, note that either q = 2 or 
(G, q) = (E6, 3) . In the latter case, G is the simply connected type group E�

6
(pa)sc , where 

� ∈ {±1} , � = 1 corresponds to the untwisted version, and � = −1 corresponds to the 
twisted version. Using [31, Theorem 1.8 and Lemma 2.6], we see that any irreducible char-
acter of G takes integer values on unipotent elements, and hence Lemma 4.3 yields that �s 
is fixed by any Galois automorphism � that fixes the field ℚ(e2�i∕3) , and hence has values 
in ℚ(e2�i∕3).

We may therefore take q = 2 , p odd, and G to be of type Bn,Cn,Dn , or E7 . Here s2 = 1 , 
and by Lemma 3.4, it suffices to show that �s takes values in ℚ(

√
�p) . The data available 

in CHEVIE and [18] yield that the odd-degree characters of 3D4(p
a) and E7(p

a) are all 
rational-valued, and hence we assume S is Bn(p

a) with n ≥ 2 , Cn(p
a) with n ≥ 3 , Dn(p

a) 
with n ≥ 4 , or 2Dn(p

a) with n ≥ 4.
If S is Cn(p

a) , then G = Sp2n(p
a) , and [29, Theorem B] yields that �s has values in 

ℚ(
√
�p) . If S is Bn(p

a) , Dn(p
a) , or 2Dn(p

a) , [31, Corollary 8.3 and Lemma 2.6] yields 
�(u) ∈ ℚ(

√
�p) for every unipotent element u of G and every � ∈ Irr(G) . Then, Lemma 

4.3 implies that �s takes its values in ℚ(
√
�p) as well, completing the proof. 	�  ◻

5 � Rational characters of �′‑degree in solvable groups

In this section, we prove Theorem B. Namely, we characterize when a solvable group G 
has a �′-degree rational character, where � = {2, q} is a pair of primes. We first note that if 
G has a normal Hall {2, q}-subgroup, then the solution to the characterization problem is 
pretty simple in Lemma 5.1. We thank G. Navarro for pointing out a simplified version of a 
previous argument.

In what follows, we assume that the reader is familiar with the theory of characters and 
normal subgroups as in [13, Chapter 6], for instance.

Lemma 5.1  Let G be a finite group and p < q be two primes. Set � = {p, q} . Suppose that 
H ⊲ G where H ∈ Hall

�
(G) and G/H has odd order. Then, G has a nontrivial irreducible 

character � of �′-degree with values in ℚ(e2�i∕p) if, and only if, H∕H� has order divisible by 
p. Moreover, if � ∈ Irr(H) lies under � , then o(�) = p.

Proof  Notice that to prove both implications, we may assume that H is abelian. If H has 
order divisible by p, then let �H ≠ � ∈ Irr(H) be linear with o(�) equal to p. By [13, Corol-
lary 6.27], let 𝜆̂ ∈ Irr(G

𝜆
) be the only extension of � such that o(𝜆̂) = o(𝜆) . In particular, 

ℚ(𝜆̂) = ℚ(e2𝜋i∕p) and hence �G ≠ 𝜒 = (𝜆̂)G ∈ Irr(G) (by [13, Theorem 6.11]) has values in 
ℚ(e2�i∕p) . Since G/H is a �′-group, it follows that � has �′-degree, as wanted.

Suppose now that �G ≠ � ∈ Irr(G) has �′-degree, ℚ(𝜒) ⊆ ℚ(e2𝜋i∕p) , and p does not 
divide |H|. If p = 2 , then � is a nontrivial rational irreducible character of an odd-order 
group. This would contradict Theorem 2.3. If p > 2 , then |H| = qb and since G/H is a �′

-group, then G is a p′-group. In particular ℚ(𝜒) ⊆ ℚ(e2𝜋i∕p) ∩ℚ(e2𝜋i∕|G|) = ℚ . Since G/H 
is an odd-order group by hypothesis, and q > p > 2 also by hypothesis, then we get again a 
contradiction with Theorem 2.3.

Finally, let � ∈ Irr(H) be a constituent of �H . Then, � is linear and nontrivial. Indeed, 
if � = �H , then � would be a rational irreducible character of G/H of odd order, hence 
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� = �G by Burnide’s theorem, contradicting one of the assumptions on � . We consider 
G∗

�
= {g ∈ G |�g = �

� for some � ∈ Gal(ℚ(�)∕ℚ)} ≤ G , sometimes known as the semi-
inertia group of � in G. By [22, Lemma 2.3] the map given by g ↦ � , whenever g ∈ G∗

�
 

and �g = �
� , defines a monomorphism G∗

�
∕G

�
→ Gal(ℚ(�)∕ℚ) . Write E = ℚ(�) . Since 

� is a linear character of a �-group, then E is obtained by adjoining a root of unity of 
order o(�) = paqb to ℚ , where a, b ≥ 0 are not both zero. Write � = e2�i∕p . We claim that 
ℚ(𝜉) ⊆ E . Otherwise, o(�) = qb with b ≥ 1 , and E ∩ℚ(�) = ℚ . Take any � ∈ Gal(E∕ℚ) 
and extend it to � ∈ Gal(E(�)∕ℚ(�)) by elementary Galois theory. Since �� = � , then 
�
� = �

� = �
g for some g ∈ G . Note that g ∈ G∗

�
 . In particular,

contradicts the oddness hypothesis on |G/H| as 2 ≤ p < q . Now we know that ℚ(𝜉) ⊆ E . 
The above argument actually proves that Gal(E∕ℚ(�)) injects into G∗

�
∕G

�
 , since

The fact that |G/H|, hence |G∗
�
∕G

�
| , is odd and coprime to p forces a = 1 and b = 0 , that is, 

o(�) = p . 	�  ◻

We are working in slightly more generality than needed in this section. We note that 
if p = 2 , then the condition on the order of G/H is trivially satisfied in Lemma 5.1. 
However, it is a necessary condition in general: if p is an odd prime, then the group 
G = �p ⋊ �p−1 where the action is faithful has a �′-degree rational irreducible character 
for every � = {p, q} with q a divisor of p − 1.

For an arbitrary group G and a set of primes � , we will denote by X
�
� , p(G) the set 

of �′-degree irreducible characters of G with values in ℚ(e2�i∕p) . If G is �-separable, 
then the set X

�
� , p(G) consists entirely of monomial characters, given that |�G(H)∕H| is 

odd for H ∈ Hall
�
(G) . In [26] this fact is proven in the case where � consists of a sin-

gle prime, but it generalizes to arbitrary � , see Theorem 5.4. Recall that by work of P. 
Hall and S. A. Čunhihin, Hall �-subgroups in �-separable groups behave like Sylow 
subgroups.

Lemma 5.2  Let G be �-separable, H ∈ Hall
�
(G) , and � ∈ Irr

�
� (G) . If M ⊲ G , then �M con-

tains some H-invariant irreducible constituent and any two of them are �G(H)-conjugate.

Proof  Let � ∈ Irr(M) be a constituent of �M . By the Clifford correspondence [13, Theo-
rem 6.11], |G ∶ G

�
| is a �′-number. Since G is �-separable, then H ⊆ Gx

𝜃
= G

𝜃
x for some 

x ∈ G , and �x is an H-invariant constituent of �M . Write � = �
x . Suppose that �y is also 

H-invariant. Then H and Hy−1 are Hall �-subgroups of G
�
 . In particular, Hy−1 = Hg for 

some g ∈ G
�
 . Note that gy ∈ �G(H) and �y = �

gy . 	�  ◻

The following is a nice application of Theorem 2.3 in the context of coprime group 
actions.

Lemma 5.3  Let a solvable group H act coprimely on a group M with �M(H) of odd order. 
Then Irr(M) contains no nontrivial real H-invariant character.

|G∗
�
∕G

�
| = |Gal(E(�)∕ℚ(�))| = |Gal(E∕ℚ)| = (q − 1)qb−1

|Gal(E∕ℚ(�))| = |Gal(E∕ℚ|)
|Gal(ℚ(�)∕ℚ)| =

{
pa−1 if b = 0,

pa−1(q − 1)qb−1 otherwise.
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Proof  Assume first that H is solvable. By the Glauberman correspondence [13, Theo-
rem 13.1], there is natural bijection between H-invariant characters in Irr(M) and the set 
Irr(�M(H)) . In particular, the number of real H-invariant characters in Irr(M) is the same as 
the number of real characters in Irr(�M(H)) by [13, Problem 13.1]. In this case, the result 
follows from Theorem 2.3 and the hypothesis on the order of �M(H).

If H is nonsolvable then, by Feit--Thompson’s odd order theorem [6], the group M has 
odd order, and the result follows from Theorem 2.3. 	�  ◻

Theorem  5.4  Let � be a set of primes. Let G be �-separable and H ∈ Hall
�
(G) . Sup-

pose that �G(H)∕H has odd order. For every � ∈ X
�
� , p(G) , there is a pair (U, �) with 

H ≤ U ≤ G and � ∈ Irr(U) linear such that ℚ(�) ∈ ℚ(e2�i∕p) and � = �
G . Moreover, any 

other such pair is G-conjugate to (U, �).

Proof  We first prove the existence of a pair by induction on |G|. We may assume that 
H < G and G′

> 1 since otherwise � would be linear and there is nothing to prove. We may 
assume that ker(�) = 1 by working in G∕ ker(�).

Let M ⊲ G . We claim that if for some H-invariant irreducible constituent � of �M , � also 
lies under � , then � = � . Indeed, if � and � are H-invariant irreducible constituents of �M , 
then � = �

x with x ∈ �G(H) by Lemma 5.2. Write N = �G(H) . Note that x2 ∈ N
�
 . Since 

|N : H| is odd, then ⟨xH⟩ = ⟨x2H⟩ , so x ∈ N
�
 and the claim follows.

We may assume that �
�
� (G) = 1 . Otherwise, write K = �

𝜋
� (G) > 1 . Let � ∈ Irr(K) be 

H-invariant lying under � by Lemma 5.2. Note that ℚ(�K) = ℚ because ℚ(𝜒K) ⊆ ℚ(e2𝜋i∕p) 
and K is a �′-group. Hence � lies under � and by the paragraph above � = � . Note that 
�K(H) ≅ �KH(H)∕H can be seen as a subgroup of �G(H)∕H , and hence �K(H) has odd 
order. By Lemma 5.3, we obtain that � = �K , contradicting the fact that � is faithful.

Let M = �
�
(G) . We show that M > 1 is abelian. By [14, Theorem 3.21] we have that 

M > 1 . Let � ∈ Irr(M) be under � . Since � has �′-degree, we have that � is linear. Then M′ 
is contained in the kernel of every G-conjugate of � . Since � is faithful, we conclude that 
M� = 1.

Let L be a minimal normal subgroup of G contained in G′ . Since G is �-separable and 
�

�
� (G) = 1 , then L ⊆ M is q-elementary abelian for some q ∈ �.
Let � ∈ Irr(L) be H-invariant lying under � . Note that � is linear. We show that 

ℚ(𝜈) ⊆ ℚ(e2𝜋i∕p) . If q ≠ p , then ℚ(�L) = ℚ(e2�i∕p) ∩ℚ(e2�i∕|L|) = ℚ . Hence � 
and � lie under � , and by the second paragraph of this proof � = � . In particular 
ℚ(𝜈) = ℚ ⊆ ℚ(e2𝜋i∕p) (in this case q = 2 necessarily). If L is p-elementary abelian, then 
ℚ(�) = ℚ(e2�i∕p).

Next we show that � extends to its stabilizer G
�
 and consequently G

𝜈
< G . In order to 

show that � extends to G
�
 , it is enough to show it extends to every Sylow subgroup of G

�
∕L 

by [13, Theorem 6.26]. Let R∕L ∈ Sylr(G�
∕L) . If r ≠ q , then � extends to R because L is 

a q-group and [13, Corollary 6.27]. If r = q , then R is a q-group. Since � has q′-degree, 
then �R has some linear constituent and hence � extends to R. Note that if G

�
= G , and 

� ∈ Irr(G) is an extension of � then L ⊆ G�
⊆ ker(𝜏) . Then � = �L , a contradiction with 

ker(�) = 1.
Let � ∈ Irr(G

�
) lying over � be the Clifford correspondent of � as in [13, Theo-

rem 6.11]. Since both � and � have values in ℚ(e2�i∕p) , so does � . We have H ⊆ G
𝜈
< G , 

and by induction there exists a pair (U, �) of the desired kind inducing � , hence also induc-
ing �.

For the uniqueness up to G-conjugacy, see the second part of the proof of [33, Theo-
rem 2.6]. 	�  ◻
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The fact that under the hypothesis of Theorem 5.4, the set X
�
� ,p(G) consists entirely of 

monomial characters allows us to construct a map between X
�
� ,p(G) and X

�
� ,p(�G(H)) as in 

[12, Theorem C]. In order to prove that such map is bijective, we will need a �-version of 
[16, Theorem 3.3], which relies on �-versions of [16, Theorem 2.1 and Corollary 2.2]. All 
these versions hold without restrictions on the set � . Their proofs can be obtained by just 
mimicking the proofs in [16] and using the following easy observation.

Lemma 5.5  Let H ≤ G with (|G ∶ H|, |H|) = 1 . Suppose that a linear character � ∈ Irr(H) 
extends to G. Then there is an extension � ∈ Irr(G) of � with o(�) = o(�).

Proof  Since � extends to G, note that H�
⊆ H ∩ G�

⊆ ker(𝜇) . In particular, � seen as a char-
acter of H∕H ∩ G� ≅ HG�∕G�

⊲ G∕G� extends to G∕G� . By [13, Corollary 6.27], � extends 
to some � ∈ Irr(G∕G�) with o(�) = o(�) and the statement follows. 	�  ◻

Theorem 5.6  Let G be a �-separable group and H ∈ Hall
�
(G) . If K ⊲ H , then there is a 

unique subgroup V ≤ G maximal with the property that H ⊆ �G(V) and V ∩ H = K.

Proof  Mimic the proof of [16, Theorem 2.1] using the corresponding properties of Hall �
-subgroups in �-separable groups. 	�  ◻

Corollary 5.7  Let G be a �-separable group and H ∈ Hall
�
(G) . If � ∈ Irr(H) is linear, then 

there exists a unique subgroup U ≤ G containing H and maximal such that � extends to U.

Proof  Mimic the proof of [16, Corollary 2.2] using Lemma 5.5 to guarantee the existence 
of an extension of � with suitable order. 	�  ◻

Theorem 5.8  Let G be �-separable and U ≤ G be a subgroup of �′-index. Let � ∈ Irr(U) be 
linear and such that o(�) is a �-number, Assume that � does not extend to any subgroup of 
G containing U. Then �G ∈ Irr(G).

Proof  Mimic the proof of [16, Theorem 3.3] using Corollary 5.7. 	� ◻

Theorem 5.9  Let p < q be two primes and set � = {p, q} . Let G be a �-separable group 
and H ∈ Hall

�
(G) . Write N = �G(H) and suppose that N/H has odd order. Define a map

in the following way: If � ∈ X
�
� ,p(G) , choose a pair (U, �) where H ≤ U ≤ G and 

� ∈ Irr(U) is linear such that ℚ(𝜆) ⊆ ℚ(e2𝜋i∕p) and �G = � , then set Ω(�) = (�U∩N)
N . Then 

Ω is a well-defined bijection.

Proof  We are basically going to follow the proof of [33, Theorem  2.13]. Given 
� ∈ X

�
� ,p(G) , the existence of the a pair (U, �) as in the statement is guaranteed by Theo-

rem 5.4. Set Ω(�) = (�U∩N)
N . By [12, Lemma 2.3.(a)] we have that Ω(�) ∈ Irr(N) , so in 

particular Ω(�) ∈ X
�
� ,p(N) . Since any other inducing pair for � is G-conjugate to (U, �) 

and

Ω ∶ X
�
� ,p(G) → X

�
� ,p(N)

(�U∩N)
N = (�

g

Ug∩N
)N
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for every g ∈ G , we see that Ω is a well-defined map X
�
� ,p(G) → X

�
� ,p(N) . Now [12, 

Lemma 2.3.(b)] guarantees Ω is injective. It remains to prove that Ω is surjective. Let 
� ∈ X

�
� ,p(N) and � ∈ Irr(H) lie under � . Note that � is linear. By Lemma 5.1, we have 

that o(�) = p . Let � ∈ Irr(N
�
) be the Clifford correspondent of � lying over � as in 

[13, Theorem  6.11]. Since both � and � have values in ℚ(e2�i∕p) so does � . In particu-
lar, ℚ(�) = ℚ(e2�i∕p) . Let 𝜇̂ ∈ Irr(N

𝜇
) be the canonical extension given by [13, Cor-

ollary 6.27], so that o(𝜇̂) = o(𝜇) = p . By Gallagher’s theorem [13, Corollary 6.17], 
we have 𝜑 = 𝛽𝜇̂ , with � ∈ Irr(N

�
∕H) . Note that ℚ(𝛽) ⊆ ℚ(e2𝜋i∕p) must be rational 

as N
�
∕H is a �′-group. Since |N

�
∶ H| is odd by hypothesis, we get � = �N

�

 by Theo-
rem  2.3. Hence (𝜇̂)N = 𝜃 . By Corollary 5.7 and Lemma 5.5, there exists a subgroup 
U ≤ G maximal with the property that � extends to � ∈ Irr(U) and o(�) = p . Note that 
U∕ ker(𝜆) = ker(𝜆)N

𝜇
∕ ker(𝜆) ≅ N

𝜇
∕ ker(𝜇̂) and 𝜆N

𝜇

= 𝜇̂ . By Theorem  5.8, we have 
� = �

G ∈ X
�
� ,p(G) . Hence Ω(𝜒) = (𝜆U∩N)

N = (𝜇̂)N = 𝜃 . 	�  ◻

As an immediate consequence of Lemma 5.1 and Theorem 5.9, we can derive the fol-
lowing result.

Corollary 5.10  Let p < q be two primes and set � = {p, q} . Let G be a �-separable group 
and H ∈ Hall

�
(G) . Assume that �G(H)∕H has odd order. Then G has a nontrivial irreduc-

ible character of �′-degree with values in ℚ(e2�i∕p) if, and only if, H∕H� has order divisible 
by p.

We can finally proof Theorem B of the Introduction.

Proof of Theorem B  If 2 < q , then the statement of Theorem B is equivalent to the p = 2 
case in Corollary 5.10, since the condition on the order of �G(H)∕H becomes superfluos 
and �-separability of G is equivalent to solvability of G by Burnside’s paqb and Feit-
-Thompson’s odd order theorems ([13, Theorem 3.10] and [6], respectively).

We are left to deal with the much easier case where 2 = q . In this case, H ∈ Syl2(G) and 
the condition H∕H� has even order is equivalent to G having even order. Then one of the 
implication follows from Theorem 2.3, while the other is [24, Lemma 3.1]. 	� ◻

Remark 5.11  We observe that the statement of Theorem B does not hold outside the realm 
of solvable groups. For example, let � = {2, 3} and consider the alternating group �5 . 
By Theorem D, we know that �

�
 has a rational �′-degree irreducible character (take for 

instance (� (3,2))
�
�
 ). On the other hand H∕H� has order 3 for every H ∈ Hall

�
(�5) . This fol-

lows by observing that all Hall �-subgroups of �
�
 are isomorphic to �4.
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