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Abstract

We show that every finite group of order divisible by 2 or g, where ¢ is a prime num-
ber, admits a {2, g}’-degree nontrivial irreducible character with values in Q(ei/1), We
further characterize when such character can be chosen with only rational values in solv-
able groups. These results follow from more general considerations on groups admitting a
{p, q}'-degree nontrivial irreducible character with values in Q(e2*/?) or Q(e**'/9), for any
pair of primes p and q. Along the way, we completely describe simple alternating groups
admitting a {p, ¢ }’-degree nontrivial irreducible character with rational values.
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1 Introduction

One of the main problems in finite group representation theory is to understand fields
of values of characters, by which we mean the smallest field containing all values of a
given character. A classical result of Burnside states that groups of odd order do not
possess nontrivial irreducible characters with real fields of values. Actually, this prop-
erty characterizes odd-order groups in an elementary way, see Theorem 2.3. It is also
true that a group G has even order if, and only if, G possesses a nontrivial irreducible
character with rational field of values [24, Theorem 8.2]. However, unlike the real case,
the proof of this simply stated result already requires the classification of the finite sim-
ple groups [9] (CFSG for short), evidencing the deep nature of rationality phenomena in
character theory.

R. Gow conjectured that every finite group of even order has a nontrivial irreduc-
ible character with odd degree and rational field of values. In 2008, G. Navarro and
P.H. Tiep [24, Theorem B] finally confirmed this prediction. Later (but appearing first
in the literature [23]), they generalized their result by proving that every finite group of
order divisible by a prime ¢ admits a nontrivial irreducible character of degree coprime
to ¢ with values in the rather small cyclotomic extension Q(e27#/7). The study of fields
of values of irreducible characters of degree not divisible by a given prime is a subject
interesting in its own right [15], which is recently blooming thanks to a growing inter-
est in the Galois refinement of the McKay conjecture proposed by G. Navarro in [20].
This refined conjecture has been reduced to a question on simple groups in [21], which
makes it important to understand the fields of values for such groups.

Usually, extensions of results from one prime to a set of primes z fail (at least with-
out assuming separability properties in the group), and the behavior of finite groups with
respect to properties related to z is no longer smooth. However, in [8] the first-, third-, and
fourth-named authors show that every nontrivial group possesses a nontrivial irreducible
character of degree not divisible by any prime in 7, where z is any set consisting of at most
two primes. In the above-mentioned context of character fields of values, it is natural to
consider further restrictions on the values of such z’-degree characters.

In Theorem A, we show that every finite group of order divisible by 2 or g possesses a
nontrivial irreducible character of {2, ¢}'-degree with field of values contained in Q(e%n/9),
a surprising result that generalizes both [23] and [24, Theorem B] in the fashion of [8].

Theorem A Let G be a finite group, let g be a prime and write # = {2,q}. Then, G pos-
sesses a nontrivial r'-degree irreducible character with field of values contained in
Q¥4 if, and only if, ged(|G|,2q) > L

The obvious problem suggested by Theorem A is to try to understand when the irreduc-
ible character it identifies can be chosen to be rational, that is, when such character can be
chosen to have only rational values. In other words, for a group G of even order and an odd
prime g, we would like to characterize when G has a n’-degree rational character, where
7z = {2, q}. This is not always the case, in contrast to what happens if we allow small cyclo-
tomic field extensions of Q as fields of values, as described by Theorem A. For example,
the only rational linear character of A, is the trivial one. A complete answer to this problem
appears difficult to achieve and at the time of this writing, we do not know what form such
a classification would take. However, in the case where G is a solvable group (or an alter-
nating group, see Theorem D), we can completely solve this problem.
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Theorem B Let G be a solvable group, q be a prime and set © = {2, q}. Then, G admits a
nontrivial rational irreducible character of n'-degree if, and only if, H/H' has even order,
where H € Hall (G).

We care to remark that the statement of Theorem B does not hold outside solvable
groups, as shown by As;and 7 = {2,3} (see Remark 5.11).

Our proof of Theorem A relies on the Classification of the Finite Simple Groups. In
fact, for alternating groups and generic groups of Lie type, the arguments naturally extend
from a pair {2, g} of primes to any pair {p, q}. Hence we obtain Theorem A as a corollary
of the following statement, which classifies finite groups admitting a z’-degree character
with values in certain cyclotomic extensions of Q, for any set x consisting of two primes.
Note that the seemingly random exceptions in Theorem C suggest that the use of the CFSG
is perhaps unavoidable in the present context. From now on, we will use Q(y) to denote the
field of values of a character y.

Theorem C Let G be a finite group and n = {p, q} be a set of primes such that either p or q
divides |G|. Assume that:

(i) = #{3,5}or G does not have a composition factor isomorphic to the Tits group
2F,(2).

(1) = #{23,43},{29,43} or G does not have a composition factor isomorphic to the
Janko group J .

Then, G possesses a nontrivial irreducible character y of n'-degree such that
Qx) € QE*/P) or Q(x) € Q(e*/9).

Theorem C has been used in [11] to obtain a lower bound for the number of almost
p -rational irreducible characters of p’-degree in a finite group G. A character y is said
to be almost p-rational if Q(y) C Q(e**/") for some nonnegative integer n with p-part
at most p. The aforementioned refinement of the McKay conjecture [20, Conjecture A]
would imply that the number of almost p-rational irreducible characters of p’-degree
of G is at least the number of conjugacy classes in the group Ng(P)/P(P), where
P € Syl,(G) and ®(P) is its Frattini subgroup. Therefore, we expect that any finite group
of order divisible by p has many almost p-rational irreducible characters of p’-degree.
Notice that Theorems A and C are consistent with this new consequence of the Galois
refinement of the McKay conjecture, as the #’-degree characters identified by them are
almost p-rational regardless of the prime q.

Finally, and as briefly mentioned before stating Theorem B, we are able to com-
pletely determine which simple alternating groups admit a nontrivial rational irreduc-
ible character of z’-degree, for any set & consisting of exactly two primes. We will write
Irr,,(G) to denote the set of irreducible characters of G of z’-degree.

Theorem D Let n > 5 be a natural number and let p, q be distinct primes. Let © = {p, q}.
The alternating group A, admits a nontrivial rational irreducible character of n'-degree
for all those n € N that do not satisfy any of the following conditions (up to possibly inter-
changing the primes p and q).

@ Springer



1058 E. Giannelli et al.

(i) n=p"=2¢"+1,for somemk € N such that m is odd.
(i) n=2p"=qg"+ 1, for somem,k € N, | such that k is odd.

Moreover, in case (i), Q(¢) C Q(e*™/P) for all ¢ € Trr,,(A,). On the other hand, in case
(ii), Qy) C Q(e*"/4) for all w € Trr.(A,).

This paper is structured as follows: In Sect. 2, we prove Theorems A and C assuming
Theorem 2.1 on finite simple groups. In Sect. 3, we prove Theorem D, which in particular
yields the alternating group case of Theorem 2.1. In Sect. 4, we prove Theorem 2.1 for
sporadic groups and simple groups of Lie type, thus completing the proof of Theorem 2.1.
Finally, we prove Theorem B in Sect. 5.

2 Proofs of Theorems A and C

Given a character y of a finite group and a field extension F of Q, we say that y is F -val-
ued if Q(y) C F. Recall that y is always Q(e>*/191)-valued. In the special cases where F is
the field of rational or real numbers, we will sometimes just say that y is rational or real,
respectively. In particular, rational characters are real. Moreover, given a prime number p,
we say that y is p -rational if Q(y) C Q(e*¥/") for some nonnegative integer n not divis-
ible by p [13, Definition 6.29].

The aim of this section is to prove Theorems A and C of the introduction. In order to do
so, we assume the following result on finite simple groups. This will be shown to hold in
Sect. 3 and 4.

Theorem 2.1 Let S be a nonabelian simple group and n = {p, q} be a set of primes. Assume
that (S, rr) is not one of CF,(2Y,{3,5}), (U, {23,43)}), or (J4, {29,43)). Then, there exists
15 # y € Irr(S) of n’-degree such that Q(y) C Q(e**/P) or Q) C Q(e**/9).

We start with a lemma.

Lemma 2.2 Let M <G such that |G : M| =r an odd prime. Let 0 € Irr(M) with
Q(8) C Q(e*™/?) for some prime p # r. Then, there exists y € Irr(G) lying over 6 with
Q(y) C Q(e*i/r).

Proof If the stabilizer in G of 8 is G, = M then by the Clifford correspondence [13, Theo-
rem 6.11], we have 8¢ € Irr(G) with Q(8%) C Q(8) C Q(e*"'/P), as required. Therefore, we
may assume that @ is G-invariant.

Note that 6 is r-rational. It follows from [13, Theorem 6.30] that 8¢ has a unique
r-rational irreducible constituent y. Indeed, 6 is extendible to y, and hence Q(0) C Q(y).

For each ¢ € Gal(Q(y)/Q(0)), obviously y° is also an r-rational character of G lying
over 6. Therefore, by the uniqueness of y, we have y° = y. Then, y is Gal(Q(y)/Q(0))
-fixed, which implies that Q(y) C Q(6#). We have shown that Q(y) = Q(0) C Q(e*"/?), as
desired. |

We will often use the following classic result of Burnside. We include its elementary

proof to emphasize the difference between reality and rationality of characters mentioned
in the introduction.

@ Springer



Characters of 7'-degree and small cyclotomic fields 1059

Theorem 2.3 (Burnside) A finite group G has even order if, and only if, some nontrivial
x € Irr(G) is real.

Proof Let us assume that |Gl is even. By [13, Corollary 2.7] and [13, Corollary 2.23.(b)],
we can write

IGI=1G: G+ ), x()
x € Irr(G)
() >1

If |G : G'| is even, then G has a normal subgroup H of index 2 and the only nontrivial
irreducible character of G/H is rational. It follows that G has a nontrivial real character.
Otherwise, the sum of the squares of the degrees of nonlinear characters of G is odd. Then,
the action of the complex conjugation on characters must leave some nonlinear irreducible
character y of G invariant. Therefore y is a nontrivial real irreducible character of G.

The proof of the converse is also elementary, see [13, Problem 3.16]. O

Theorem 2.4 Let G be a finite group and = = {p,q} be a set of primes. Then, G pos-
sesses a nontrivial irreducible character y of n'-degree such that Q(y) C Q(e2"iry or
Q(y) C Q&%) if, and only if, gcd(|G|, 2pq) > 1, provided that we are not in one of the
Sfollowing situations:

(i) G has a composition factor isomorphic to the Tits group *F,(2) and & = {3,5).
(i1) G has a composition factor isomorphic to the Janko group J, and x is one of {23,43}
or{29,43}.

Proof First assume that G is a finite group with ged(|G|, 2pq) = 1. Let y € Irr(G) such that
Q(x) C Qe*/Py or Q) C Q(e*i/9). Since Q(x) C Q(e**/191), we have y is rational-val-
ued. As G is of odd order, it follows from Theorem 2.3 that y is trivial.

Next we assume that gcd(|G|, 2pg) > 1. We aim to show that G has a nontrivial irreduc-
ible character y of z'-degree such that Q(y) C Q(e**/7) or Q(y) C Q(e>*i/4),

Let G = Gy> G, > --- > G, = 1 be a composition series of G and let 0 <k <n—1be
the smallest such that G, /G, is either nonabelian simple or cyclic of order 2, p, or g. In
particular, G;/G,,, is cyclic of order coprime to 2pq for every i < k.

If G, /G,,, is cyclic of order 2, p, or g, then obviously G, /G, has a nontrivial irreduc-
ible character 6 of z’-degree such that Q(8) C Q(e**/?) or Q(0) C Q(e**/9). On the other
hand, when G, /G, =: S is nonabelian simple, Theorem 2.1 implies that there exists
15 # 6 € Irr(S) of #'-degree such that @(6) C Q(e*/7) or Q) C Q(e**/9).

Viewing the above 6 as a character of G,, we now know that G, possesses a nontriv-
ial irreducible character , of z’-degree such that Q(6,) C Q(e**/7) or Q(8,) C Q(e>*/9).
Using Lemma 2.2, we obtain 6,_, € Irr(G,_,) lying over 8, with Q(6,_,) C Q(e**/7)
or Q(6,_,) € Q(e*"i/1). Moreover, following the proof of Lemma 2.2, we see that
0,1 (1) = 0,(1) or 6,_;(1) = |G,_; : G,|6,(1), which guarantees that 6,_, is of z’-degree.
Repeating this process k times, we can produce a nontrivial irreducible character y := 6,
of '-degree such that Q(y) C Q(e**/P) or Q(y) C Q(e*"/9). O

Theorems A and C follow immediately from Theorem 2.4.
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3 Alternating groups

The aim of this section is to prove Theorem 2.1 for alternating groups. In order to do
so, we completely describe alternating groups possessing a rational-valued n’-degree
character. This is done by proving Theorem D of the introduction, which might be of
independent interest.

We begin by recalling that irreducible characters of the symmetric group S, are
labeled by partitions of n [17, Chapter 2]. We denote by y* the irreducible character
of S, corresponding to the partition A of n. We will sometimes use the notation A - n
to mean that A is a partition of n. Similarly we will write 4, n to say that 7M1 is
coprime to p. Given a partition A of n, we denote by A’ its conjugate. If 1 # A’ then
(}(A)A, € Irr(A,). On the other hand, if A = A’ then (;(A)An = ¢ + ¢4 for some ¢ € Irr(A,)
and g €S, \A,.

Assuming that the reader is familiar with the basic combinatorial concepts involved
in the representation theory of symmetric groups (as explained for instance in [27, Chap-
ter 1]), we recall some important facts that will play a crucial role in our proofs. Given
At nandi,j€N we denote by /;(4) the length of the hook of A corresponding to node
(i, j). For e € N, we let H¢(4) be the set consisting of all those nodes (i, j) of A such that e
divides h;;(4). Moreover, we let C,(4) denote the e-core of 4.

For any natural number m, we denote by v, (m) the exponent of the maximal power of p
dividing m. The following lemma follows from [27, Proposition 6.4].

Lemma 3.1 Let p be a prime and let n be a natural number with p-adic fxpansion
n= Z;;O a_]-pi. Let A be a partition of n. Then, v,(x*(1)) = 0 if, and only if, |H" ()| = a,
and C (A b, n — a,p*.

A consequence of Lemma 3.1 is highlighted by the following statement.

Lemma 3.2 Let p be a prime and let n = p* + € for some € € {0, 1}. Let A - n be such that
1) > 1. Then, y* is an irreducible character of p'-degree of S, if and only if hy, (1) = p*.

A second useful consequence of [27, Proposition 6.4] is stated in the following lemma.

Lemma 313 Let n=2F+ ek]for some € € {0,1}, and let A + n. Then, v2()(’1(1)) =1ifand
only if H* (A) = B and |H*>~ (A)| = 2.

We conclude this brief background summary by recalling a well-known fact on cycloto-
mic extensions of the rational numbers [1, Lemma 1.2.1].

Lemma 3.4 If p is an odd prime number, then @(\/13) C Qe /Py if and only if
p = 1 mod 4. On the other hand, Q(1/—p) C Q(e**/P) if and only if p = 3 mod 4.

We are now ready to prove the main result of this section, which is Theorem D in the
introduction.

Proof of Theorem D Assume first that both primes p and ¢ divide the order of A,. Equiva-
lently, we hav.e p.g<n. Letn=Y_ ap™ = 2;21 qukf be the p-adic and, respect.ively,
g-adic expansions of n. Here m; > m, > -+ >m, >0 and k; > k, > --- k, > 0. Without
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loss of generality, we can assume that b;¢© < a,p™. We consider A € P(n) to be defined
by:

= (n—byg",n—a;p™ + 1, 109" ~Cmar D)

As done in the proof of [8, Theorem 2.8], we observe that y* € Irr,/(S,) and that (D #1
unless n = a;p™ = b,g" + 1. We also claim that A # A’. This follows by observing that
A = A’ would imply that

b,¢" —(n—a,p™)=n—b,¢" — 1 and that n — a,p™ € {0, 1}.

Then, we would have that b,¢gf =n—-bgt -1 if n—ap™ =0 or that
b,g" = n—b,g" if n —a,p™ = 1. Both these situations cannot occur. We conclude that
= (y"a €Irry(A,) and that Q(y) =

Let us now consider the case where n = ap™ = bqk + 1, for some m,k € N, some
1<a<p-landsomel <b<g-1

If b>3, then we consider u=(b-1)qg"+1, lqk). Since  hy;(u) = ap™,
hiy(u) = (b — 1)g* and h,,(u) = ¢*, we deduce that y# € Irr,,(S,) by Lemma 3.1. Since
b > 3 we also have that u # u’ and hence that y := (;(”)An € Irr,(A,) is nontrivial and
such that Q(y) =

If b€ {1,2} and a > 3 then we consider v = ((a — 1)p", 2, 17"~2). Since h,,(v) = bqF,
hj,(v) =(a—1)p™ and h,(v) = p™, we deduce that y¥ € Irr,(S,) by Lemma 3.1. As
above, a > 3 implies that v # v/ and hence that y := (y*), € Irr,,(A,) is nontrivial and
such that Q(y) = Q '

Let us now study the situation where a,b € {1,2}. Since ap™ = bqk + 1 we observe that
the only cases to consider are (a,b) € {(1,1),(1,2),(2,1)}.

o If (a,b) = (1,2) then n = p™ = 2¢* + 1 and hence p # 2. Since 2 =b < g — 1 we also
have that g # 2. By Lemma 3.2 we deduce that y* € Irrp,(Sn) if and only if A = (d, 1"79)
is a hook partition. Moreover, since ¢ is odd, again from Lemma 3.1 we observe that the
only hook partitions of n that label characters of S, of degree coprime to g are (n), (1")
and C=1+4, 1) = ¢’. We also observe that m must be odd in this situation, as

=24 +1 =3 mod4. It follows that A, admits exactly two distinct nontrivial irre-
dumble characters of z’-degree: the two 1rredu01ble constituents ¢, ¢, of (y) A, By [17,
2.5.13] we observe that their fields of Values are equal to Q(4/—p™) and strictly contain Q.
Moreover, since m is odd then p = p” = 2¢* + 1 = 3 mod 4. Hence using Lemma 3.4 we
observe that for alli € {1,2} we have

@(d’;) = @(\/—pm) = @(\/__p) - @(ezm/p).

o If (a,b) = (2,1) then n = 2p™ = ¢* + 1 and hence g # 2. The situation is similar to the
one described above. Using Lemma 3.2 we notice that the nonlinear irreducible charac-
ters of S, of degree coprime to g are labeled by all partitions 4 such that h,(4) = ¢* and
hyy(A) = 1. Since 2 =a < p — 1, we have that p # 2. Therefore, Lemma 3.1 implies that
the only partition that labels a nonlinear irreducible character of S, of degree coprime to p
and to g is 7 = (p™,2,17"72) = y'. As before we deduce that A, admits exactly two distinct
nontrivial irreducible characters of z’-degree: the two irreducible constituents y, and y, of
(;(")Aﬂ. By [17, 2.5.13] we observe that for all i € {1,2} we have that Q(y,) = @(ﬁ). It
follows that for any i € {1,2}, Q(y;) strictly contains Q if and only if k is odd. In this case,
for all i € {1,2} we have that Q(y;) = @(\/—) Moreover, since p # 2 then ¢ = 1 mod 4.
Therefore Q(y;) C Q(e* /), by Lemma 3.4.
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e If (a,b) = (1, 1) then exactly one of p or g is equal to 2.

If g =2 then n = p™ = 2F + 1. By Lemma 3.2 we deduce that y* € Irr,,(S,) if and only
if A =(d, 1"™%) is a hook partition. Lemma 3.2 shows that (n), (1") are the only hook par-
titions labeling an odd-degree character of S,. Moreover, using Lemma 3.3 we observe
that the partition ¢ = (1 +2%1,127") = ¢/, is the only hook partition of n such that
vo(x¢(1)) = 1. We deduce that the two irreducible constituents ¢, and ¢, of (y*) A, are the
only nontrivial irreducible characters of z’-degree of A,. By [17, 2.5.13] we observe that
Q(¢y) = Q(¢h,) = Q(+/p™). Hence Q(¢;) (and Q(gb,)) strictly contain Q if and only if m is
odd. In this case, p = p" =2+ 1 = 1 mod 4. Therefore Lemma 3.4 implies that for all
i € {1,2} we have that

Q$) = QH/p™ = Q(/p) € Q7).

If p=2then n = 2" = ¢* + 1 and we notice that k is necessarily odd. Moreover, Lemma
3.2 implies that the only {2, ¢}’-degree irreducible characters of S, are the linear ones. On
the other hand, Lemma 3.3 shows that # = (2~!,2,12""~2) = ¢/’ is the only partition labe-
ling a ¢’-degree irreducible character of S, such that v,(y"(1)) = 1. Arguing as above, we
deduce that A, admits exactly two distinct nontrivial irreducible characters of z’-degree:
the two irreducible constituents y; and y, of (") A By [17, 2.5.13] we observe that for all
i € {1,2}, we have Q(y;) = Q(\/—_qk). It follows that for any i € {1, 2}, Q(y,) strictly con-
tains Q. Since k is odd, for all i € {1,2} we have Q(y,) = @(\/:1). Moreover, since p =2
we have ¢ = 3 mod 4. Therefore Q(y;) C Q(e27i/9), by Lemma 3.4.

To complete the proof we need to treat the easier case where pg does not divide
|A,| =n!/2. In this setting, we just need to show that there exists a rational-valued =’
-degree irreducible character of A, (as conditions (i) and (ii) of the statement of Theorem D
cannot be satisfied).

If p,q > n, then every irreducible character of A, has x'-degree. Since n > 5, we
have (n—1,1)# (n—1,1) and therefore y = ( ;((”*1*1))A” is a nontrivial irreducible
character of z’-degree of A, such that Q(y) = Q. Otherwise, up to possibly interchang-
ing p and g we can assume that p <n < g. In this case, every irreducible character of
A, has degree coprime to ¢g. Let n = a + pw for some 0 < a < p—1and w > 1. Consider
A=m—(a+1),a+ 1) € P(n). Since n > 5 we notice that necessarily 4 # A’. Moreover,
Lemma 3.1 implies that p does not divide y*(1). It follows that y = (y*), is a nontrivial
irreducible character of z’-degree of A, such that Q(y) = Q. ' O

A straightforward consequence of Theorem D is that Theorem 2.1 holds for alternat-
ing groups.

Corollary 3.5 Let & = {p,q} be a set of two primes and let n > 5. Then, A, possesses a non-
trivial irreducible character y of n'-degree such that Q(y) C Q(e**/7) or Q(y) C Q(&27/%),

Proof If n does not satisfy conditions (i) and (ii) of Theorem D, then A, has a nontrivial
rational character. If n satisfies condition (i), then the proof of Theorem D shows that there
exists ¢ € Irr,,(A,) such that ¢(1) > 1 and such that Q(¢p) C Q(e>*"/7). On the other hand,
if n satisfies condition (ii), we have shown in the proof of Theorem D that there exists
w € Trr,(A,) such that (1) > 1 and such that Q(y) C Q(e?*/7), 0
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4 Simple groups of Lie type

In this section, we prove Theorem 2.1 for simple groups of Lie type and sporadic simple
groups. The following reduces us to the case of simple groups of Lie type with nonex-
ceptional Schur multipliers. The list of finite simple groups with exceptional Schur mul-
tipliers is available in [10, Table 6.1.3].

Proposition 4.1 Let S be a simple group of Lie type with an exceptional Schur multiplier,
or let S be a sporadic group. Assume that S is not the Janko group J, or the Tits group
2F,(2). Then, S satisfies Theorem 2.1. Further, the Tits group *F,(2) satisfies Theorem 2.1
Jorm # {3,5}, and the Janko group J, satisfies Theorem 2.1 for = & {{23,43},{29,43}}.

Proof This can be confirmed using GAP and the Atlas [4, 32]. In particular, the character
tables for the groups under consideration are available in the GAP Character Table Library,
and we make use of the +Conductor+ command in GAP, which returns the smallest natural
number m for which a character in a stored character table takes its values in Q(e2%/™).

O

When S is a simple group of Lie type, the required character y € Irr(S) of n'-degree
we produce will be a semisimple character. Let us recall some brief background on
these characters from [2, 5, 7]. (We refer the reader in general to these references for
more on the character theory of groups of Lie type.)

Let G be a connected reductive algebraic group in characteristic p and F a Frobenius
endomorphism of G. For each rational maximal torus 7 of G and character 0 € Irr(75),
Dehgne—Lusztlg s twisted induction Rg is used to define the Deligne-Lusztig character
R7(0) Let G* be an algebraic group w1th a Frobenius endomorphism F* such that (G, F)
is dual to (G*, F*). Set G := GF and G* := (G")".

Recall that if (7,6) is G-conjugate to (7',0"), then R5(0) = R%,(0"). Moreover, by [5,
Proposition 13.13], the G-conjugacy classes of pairs (7, 0) are in one-to-one correspond-
ence with the G*-conjugacy classes of pairs (7%, s), where s is a semisimple element of
G* and 7" is a rational maximal torus containing s. Due to this correspondence, we can
use the notation Ri (s) for Rg(ﬁ). For each conjugacy class (s) of semisimple elements
in G* such that C:(s) is connected, one can define a so-called semisimple character of G
as follows:

1

. G
X = T & 67*R ' (S),
O W)l ZW:() 9oL,

where W(s) is the Weyl group of Cg-(s), 7, is a torus of G* of type w, and £ = +1, depend-
ing on whether the relative rank of G is even or odd, see [5, Definition 14.40]. Moreover,
X (s 18 irreducible and

)((S)(l) =|G": CG*(S)|p,,

where we recall that p is the defining characteristic of G and n,, denotes the p'-part of a
positive integer 7.

Lemma 4.2 With the notation as above, let s € G* be a semisimple element such that Cg-(s)
is connected. Suppose s has order k and o € Gal(Q(e*™/16)/Q) satisfies o(&) = E™ for
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every kth root of unity &, where m is an integer relatively prime to k. Then, )(( Y = Xy In
particular,Q(y ) C Q(e2milky,

Proof Let 7" be a rational maximal torus of G* containing s. Let 7 be a rational maximal
torus of G and @ € Irr(7") such that the G-conjugacy class of (7, 6) corresponds to the G*
-conjugacy class of (7%, s) under the correspondence described above. Then, (7, 60™) cor-
responds to (7%, s™), and the multiplicative order of @ in the group Irr(7") is the same as the
order of s. Therefore, the values of 8 are in Q(e27/*).

We recall the character formula for Rg, (0), which we simplify as Ry ,:

3 om0’ w),

xeg”

1
Ry o(g) =
T8 0y

where ¢ is semisimple, u is unipotent, and g = tu = ut is the Jordan decomposition of
g € G. Also, C° (t) is the connected component of Cy(#) and Q are Green functions of

g(t), see [2, Theorem 7.2.8]. As the linear character 0 is Q(ez’”/ ") valued and the Green
functions are rational-valued, we have R%, /=Ry g, and Q(Ry ) C Q(e27i/%) for every

rational maximal torus 7" of G. The conclusion now follows from the definition of .
a

In particular, if Z(G) is connected, then Cg:(s) is connected for every semisimple
s € G*. (See, for example, [5, Remark 13. 15(i))].) If Z(G) is not connected, we may
embed G into another connected reductive group G satisfying Z(g) is connected, via a
so-called regular embedding: : G & G. We record here some of the properties of regu-
lar embeddings. For proofs and a nice detailed discussion, we refer the reader to [7, Sec-
tion 1.7]. In this situation,  may be chosen so that, identifying G with its image «(9) in
g the Frobenius endomorphism F is naturally the restriction of a Frobemus endomor-
phism on G, which we will also denote by F. Then, writing G:= g we have G < G,
the quotient group G/ G is abelian of order prime to p, and the restriction ResG( )to G
of any y € Irr(G) is multiplicity-free.
Further the regular embedding : induces a dual map r* g — G* that maps
(g )F onto G* and whose kernel is central and F*-fixed. With this in place, fol-
lowrng the treatment in [7, Corollary 2.6.18], we may define the semisimple characters
of G corresponding to a given semisimple s € G* to be the irreducible constituents of
the restriction Resg( X)) of a semisimple character yg of G, where 3 is a semisimple
element of G* such that 1*(s) = s. Fixing y, to be one such semisimple character of G
corresponding to s, we again have

21 =1G" : Cgu(s)l,- (4.1)

Further, the set Irr(G) may be partitioned into subsets known as rational Lusztig series,
denoted &£(G, s), which are indexed by G*-conjugacy classes of semisimple elements s € G*
(see, e.g., [5, Proposition 14.41]). In particular, the semisimple characters of G correspond-
ing to s lie in the set £&(G, 5). When Cg:(s) is connected, y is the unique semisimple char-
acter in &(G, s). To avoid confusion, we will use the notation y/ only in the case Cg:(s) is
connected.

In the case Cg-(s) is disconnected, and hence Lemma 4.2 does not apply, the fol-
lowing, extracted from [28], will be useful. Here, we write &(G,s)° for the set

{(x° | x € &G,s)).
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Lemma 4.3 Let G = G’ be a group of Lie type defined in characteristic p as above. Let
s € G* be semisimple and let 6 € Gal(Q(e**/1%1)/Q). Then,

(i) If s has prime order q and m is an integer coprime to q such that c(§) = &™ for each
qth root of unity &, then (G, 5)° = E(G, s™).

(i) If&G,s)° = &G, s)and y°(u) = y(u) for all unipotent elements u € G (that is, ele-
ments of order a power of p) and all y € Irr(G), then every semisimple character in
&(G, s) is fixed by o.

Proof Part (i) is a direct application of [28, Lemma 3.4]. Part (ii) is an application of
[28, Lemma 3.8], since the Gelfand-Graev characters of G (see [5, Definition 14.21]) are
induced from characters on the unipotent radical, and hence take nonzero values only on
unipotent elements. O

We remark that the same proof as [28, Lemma 3.4], which is analogous to that of
Lemma 4.2, yields the corresponding statement of Lemma 4.3(i) for arbitrary Isl, but we
will not need this here.

Now, if § is a simple group of Lie type not isomorphic to an alternating group or one
listed in Proposition 4.1, then S = G/Z(G) for G = G, where G is simple of simply con-
nected type. The following will be used in conjunction with Lemma 4.3 in many cases in
which Cg-(s) is not connected. Although it can be extracted from the proofs of [8, Lemma
3.3 and Theorem 3.5], we rewrite the proof for the convenience of the reader.

Lemma 4.4 Let S = G/Z(G) be as in the previous paragraph, where G is defined in char-
acteristic p. Let g # p be another prime, let Q be a Sylow g-subgroup of G*, and moreover
assume that |Z(G)| is either a power of q or coprime to q. Then, there exists a nontrivial
semisimple character y,in a series E(G, s) of G satisfying the following properties:

(i) s € Z(Q)and has order gq;
(i) Z(G) is in the kernel of y;

In particular, y; may be viewed as a nontrivial member of Irr,, ,/(S).

Proof Let s € Z(Q) have order g. Then, C.(s) contains a Sylow g-subgroup of G*, and
hence any semisimple character in &G, s) is a member of Irr(, ,1/(G), using (4.1). Now,
our exclusions imply that |Z(G)| = [G* : (G*)']. If|Z(G)| is a power of g, then elementary
character theory yields every member of Irr,(G) is trivial on Z(G) (see, e.g., [8, Lemma
3.4]). If g + |Z(G)|, the equality |Z(G)| = [G* : (G*)']implies Q < (G*), so s € (G*)'. By
[25, Lemma 4.4(ii)], any character of £(G, s) is then trivial on Z(G). In either case, this
yields that any semisimple character in £(G, s) satisfies the statement. O

Proposition 4.5 Let S be a simple group of Lie type. Then, Theorem 2.1 holds for S.

Proof We may assume S is not one of the groups listed in Proposition 4.1 nor isomorphic
to an alternating group. Further, thanks to [23, 24], we may assume that p # g.

Let S be of the form G/Z(G), where G = G* is the set of fixed points of a simple con-
nected reductive algebraic group of simply connected type defined in characteristic r,
under a Frobenius endomorphism F. Note that the Steinberg character St of G has degree
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a power of r, is rational-valued, and is trivial on Z(G). Hence, we may assume that r = p is
one of the primes in z.

Throughout, let Q € Syl (G*). If p is an odd prime, let n € {£1} be such that
p =7 (mod 4), and note that Q(\/_ ) C Q(e27i/7), using Lemma 3.4.

By [19, Exercise 20.16], we see that Cg:(s) is connected whenever sl is relatively
prime to |Z(Q’)|p,. Then, if g } |Z(G)|, we have g } |Z(G)| (see [10, Theorem 1.12.5 and
Table 6.1.2]) and the character y, constructed in Lemma 4.4 is actually y,, and takes val-
ues in Q(e*'/7), using Lemma 4.2. Hence, we assume ¢ | |Z(G)|.

Let G be of type A,_;. Then, § = SL,, and G = GL,, and we may write n = a,q + - a,4'
with0 < g; < gforl < i <t. We write G = GL:(p®) and G = SL; (p”), where € € {+1} and

€ =1 gives the untwisted version SL,(p), and € = —1 gives the twisted version SU,(p“).
Recall that C~*O is connected for any semisimple s € G*. Further, note that
Z(G) = GN Z(G), G* =G, S =PSL: (p*) = (G*), = (G) = (G*), and

G'~G / Z((N;) PGL: (p). Throughout we will make these identifications. Let
Q € Syl (G) Then, by [3 34], we have Q Hl_1 Q where the Q; € Syl (GLE (p")) are
embedded diagonally in G.Letk = min{i|a; > 0} so thatn, = =4~

First, assume that 7 is not a power of g. Let s € Z(Qy) have order g. If n # 24*, define
Se Z(Q) to be of the form diag(s’, I,,_ —g)-1f g | (p* — €), then s” may further be chosen to be
of the form uly € Z(GL€ @), where peCu_, < [F has order g¢. Then,

det(3) = det(s') = u? = 1. Otherw1se qt |G/G| S0 Q < G In erther case, 5 € G = (G*),
so the corresponding semisimple character x6) of G i is trivial on Z(G) by [25, Lemma 4.4].
If ¢ is odd and n = 2¢*, we may instead let 5 € Z(Q) be of the form diag(uly, u~ I ) if
q | (p* — €) and diag(s’, 1) if ¢ + (p* — €), and we again see that 5 € G. Further since the
conjugacy classes of sem1s1mp1e elements of G are determined by their eigenvalues, we see
3 is not G-conjugate to sz for any nontrivial z € Z(G*). But the irreducible characters of
G /G are in bijection with elements of Z(G*), and X6 ®Z= xgy for Z e Irr(G/ G) corre-
sponding to z € Z(G*) (see [5, 13.30]). Hence g is also irreducible when restricted to G.
By Lemma 4.2, y has values in Q(e27/9), 5o this yields a member of Irr(S) with degree
prime to both p and g and wrth values in Q(e?%/9), as desired.

Now assume that n = q . Then, [8, Lemma 3.4] yields that any irreducible character
of G with degree prime to g is trivial on the center, which has size gcd(n, p* — €). Hence
it suffices to show there exists a member of Irr(G) with degree prime to p and to ¢ whose
values lie in Q(e2%/P) or Q(e27i/4), o _

Let y, be as in Lemma 4.4, where we let Q = QZ(G)/Z(G) € Syl,(G*), and let
5 € QZ(G) be such that EZ(N(N?) = 5. Then, notice 3¢ € Z(G). Let ¢ = ¢27/Fl, 5o that the
semisimple character }7(3) of G corresponding to 5 takes its values in Q(¢), by Lemma 4.2,
and lies over the {p, q}'-degree character y, of G. Let ¢ € Gal(Q(¢)/Q(e?*/9)). Then, &
maps ¢ to ¢ for some m with ged(m, [s]) = 1. Further, m =1 (mod g), since o fixes gth
roots of unity. In particular, 3" = sz for some z € Z(G). Then, using Lemma 4.2, we have
)(O )((m) = ;((,), and hence )7(6;) also lies over ;. In Barticular,
ResG()(Q)" ResG(;(O) = ResG()((,)) = ResG()(O ®72) = Resg(;?®). So, Resg(im) is
fixed by each such ¢, and therefore has values in Q(e>"/4). .

If g is odd and y € Irr(G), then [30, Theorem 6.1] yields that Q(y) = (ResG)?) for any
VAS Irr(G) lying over y. Hence in this case, Q(y,) C Q(e>"/4) as well. If g = 2, then the
above yields @(Resc(1®)) = @, so [30, Theorem 6.1] yields that Q(y,) C Q(\/_), com-
pleting the proof in this case.
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Hence we may assume G is not of type A,_;, and therefore |Z(G)| is a power of q.
Let y, be the character constructed in Lemma 4.4. In this case, note that either g = 2 or
(G.q) = (Es,3). In the latter case, G is the simply connected type group Eg(p“)., where
€ € {#1}, e =1 corresponds to the untwisted version, and ¢ = —1 corresponds to the
twisted version. Using [31, Theorem 1.8 and Lemma 2.6], we see that any irreducible char-
acter of G takes integer values on unipotent elements, and hence Lemma 4.3 yields that y,
is fixed by any Galois automorphism o that fixes the field Q(e?**"/3), and hence has values
in @(@27[[/3).

We may therefore take g = 2, p odd, and G to be of type B,,C,,D,, or E;. Here =1,
and by Lemma 3.4, it suffices to show that y, takes values in Q(\/@). The data available
in CHEVIE and [18] yield that the odd-degree characters of *D,(p®) and E,(p?) are all
rational-valued, and hence we assume S is B,(p®) with n > 2, C,(p*) with n > 3, D, (p%)
withn > 4, or 2Dn(p“) with n > 4.

If §is C,(p), then G = Sp,,(p*), and [29, Theorem B] yields that y, has values in
@(\/@). If §is B,(p*), D,(p"), or an(p“), [31, Corollary 8.3 and Lemma 2.6] yields
x() € @(\/@) for every unipotent element u of G and every y € Irr(G). Then, Lemma
4.3 implies that y, takes its values in @(\/ﬁ) as well, completing the proof. O

5 Rational characters of '-degree in solvable groups

In this section, we prove Theorem B. Namely, we characterize when a solvable group G
has a 7’-degree rational character, where = = {2, ¢} is a pair of primes. We first note that if
G has a normal Hall {2, g}-subgroup, then the solution to the characterization problem is
pretty simple in Lemma 5.1. We thank G. Navarro for pointing out a simplified version of a
previous argument.

In what follows, we assume that the reader is familiar with the theory of characters and
normal subgroups as in [13, Chapter 6], for instance.

Lemma 5.1 Let G be a finite group and p < q be two primes. Set &= = {p,q}. Suppose that
H <1 G where H € Hall (G) and G/H has odd order. Then, G has a nontrivial irreducible
character y of n'-degree with values in Q(e*'/?) if, and only if, H/H' has order divisible by
p- Moreover, if A € Irr(H) lies under y, then o(4) = p.

Proof Notice that to prove both implications, we may assume that H is abelian. If H has
order divisible by p, then let 1, # A € Irr(H) be linear with o(4) equal to p. By [13, Corol-
lary 6.27], let le Irr(G,) be the only extension of A such that 0(2) = o(4). In particular,
Q(A) = Q(e**/7) and hence 1, #x = (HC € Irr(G) (by [13, Theorem 6.11]) has values in
Q(e?#i/7). Since G/H is a z'-group, it follows that y has 7'-degree, as wanted.

Suppose now that 1, # y € Irr(G) has n'-degree, Q(y) C Q(e?"i/P), and p does not
divide |HI. If p =2, then y is a nontrivial rational irreducible character of an odd-order
group. This would contradict Theorem 2.3. If p > 2, then |H| = ¢” and since G/H is a «’
-group, then G is a p/-group. In particular Q(y) C Q(e>*/7) N Q(e**/161) = Q. Since G/H
is an odd-order group by hypothesis, and g > p > 2 also by hypothesis, then we get again a
contradiction with Theorem 2.3.

Finally, let A € Irr(H) be a constituent of y,. Then, 4 is linear and nontrivial. Indeed,
if A =1, then y would be a rational irreducible character of G/H of odd order, hence
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x =1, by Burnide’s theorem, contradicting one of the assumptions on y. We consider
G; = {g € G |48 = 4° for some ¢ € Gal(Q(4)/Q)} < G, sometimes known as the semi-
inertia group of 4 in G. By [22, Lemma 2.3] the map given by g — o, whenever g € G}
and A% = A°, defines a monomorphism Gfl/G,1 — Gal(Q(4)/Q). Write E = Q(A). Since
A is a linear character of a z-group, then E is obtained by adjoining a root of unity of
order o(A) = p®q” to Q, where a, b > 0 are not both zero. Write & = ¢**/?. We claim that
Q(&) C E. Otherwise, o(1) = ¢” with b > 1, and En Q(£) = Q. Take any ¢ € Gal(E/Q)
and extend it to & € Gal(E(£)/Q(&)) by elementary Galois theory. Since y° = y, then
A° = A° = 8 for some g € G. Note that g € G7. In particular,

|G%/G,| = |Gal(E(£)/Q())| = |Gal(E/Q)| = (¢ — 1)g"™"

contradicts the oddness hypothesis on IG/Hl as 2 < p < g. Now we know that Q(&) C E.
The above argument actually proves that Gal(E/Q(&)) injects into G} /G, since

|Gal(E/Ql) {p“-l ith=0,

|Gal(E/Q(&))| = 1Gal@@)/@)] ~ | P (g - g"™'  otherwise.

The fact that IG/HI, hence |G /G, |, is odd and coprime to p forces a = 1 and b = 0, that is,
o(4) =p. O

We are working in slightly more generality than needed in this section. We note that
if p =2, then the condition on the order of G/H is trivially satisfied in Lemma 5.1.
However, it is a necessary condition in general: if p is an odd prime, then the group
G = C, X C,_, where the action is faithful has a z’-degree rational irreducible character
for every = = {p, q} with ¢ a divisor of p — 1.

For an arbitrary group G and a set of primes z, we will denote by &, ,(G) the set
of 7’-degree irreducible characters of G with values in Q(e27/?). If G is zm-separable,
then the set &, ,(G) consists entirely of monomial characters, given that [NG(H)/H| is
odd for H € Hall (G). In [26] this fact is proven in the case where x consists of a sin-
gle prime, but it generalizes to arbitrary z, see Theorem 5.4. Recall that by work of P.
Hall and S. A. Cunhihin, Hall z-subgroups in z-separable groups behave like Sylow
subgroups.

Lemma5.2 Let G be n-separable, H € Hall (G), and y € Irr,(G). If M < G, then y,, con-
tains some H-invariant irreducible constituent and any two of them are N;(H)-conjugate.

Proof Let 0 € Irr(M) be a constituent of y,,. By the Clifford correspondence [13, Theo-
rem 6.11], |G : G| is a #’-number. Since G is z-separable, then H C G;f = G,. for some
Xx € G, and 6" is an H-invariant constituent of y,,. Write ¢ = 6*. Suppose that ¢” is also
H-invariant. Then H and H*~ are Hall z-subgroups of G, In particular, H' = H? for
some g € G,,. Note that gy € Ng(H) and ¢ = ¢*. O

The following is a nice application of Theorem 2.3 in the context of coprime group
actions.

Lemma 5.3 Let a solvable group H act coprimely on a group M with C,,(H) of odd order.
Then Irr(M) contains no nontrivial real H-invariant character.
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Proof Assume first that H is solvable. By the Glauberman correspondence [13, Theo-
rem 13.1], there is natural bijection between H-invariant characters in Irr(M) and the set
Irr(C,,(H)). In particular, the number of real H-invariant characters in Irr(M) is the same as
the number of real characters in Irr(C,,(H)) by [13, Problem 13.1]. In this case, the result
follows from Theorem 2.3 and the hypothesis on the order of C,,(H).

If H is nonsolvable then, by Feit--Thompson’s odd order theorem [6], the group M has
odd order, and the result follows from Theorem 2.3. a

Theorem 5.4 Let w be a set of primes. Let G be m-separable and H € Hall (G). Sup-
pose that Ng(H)/H has odd order. For every y € X, (G), there is a pair (U, A) with
H < U < G and 4 € Irr(U) linear such that Q(1) € Q(e**/P) and y = AS. Moreover, any
other such pair is G-conjugate to (U, A).

Proof We first prove the existence of a pair by induction on IGl. We may assume that
H < G and G’ > 1since otherwise y would be linear and there is nothing to prove. We may
assume that ker(y) = 1 by working in G/ ker(y). _

Let M < G. We claim that if for some H-invariant irreducible constituent 8 of y,,, 6 also
lies under y, then 6 = 0. Indeed, if & and 6 are H-invariant irreducible constituents of y;,,
then 6 = 6* with x € N;(H) by Lemma 5.2. Write N = N;(H). Note that x*> € N,. Since
IN : Hlis odd, then (xH) = (x’H), so x € N, and the claim follows.

We may assume that O,,(G) = 1. Otherwise, write K = O,,(G) > 1. Let 6 € Irr(K) be
H-invariant lying under y by Lemma 5.2. Note that Q(yx) = Q because Q(y) C Q(e**/7)
and K is a z’-group. Hence 6 lies under y and by the paragraph above 6 = 6. Note that
Cx(H) = Ngy(H)/H can be seen as a subgroup of N;(H)/H, and hence Cy(H) has odd
order. By Lemma 5.3, we obtain that @ = 1, contradicting the fact that y is faithful.

Let M = O_(G). We show that M > 1 is abelian. By [14, Theorem 3.21] we have that
M > 1. Let u € Irr(M) be under y. Since y has n'-degree, we have that y is linear. Then M’
is contained in the kernel of every G-conjugate of u. Since y is faithful, we conclude that
M =1

Let L be a minimal normal subgroup of G contained in G’. Since G is n-separable and
0,,(G) =1, then L C M is g-elementary abelian for some g € #.

Let v € Irr(L) be H-invariant lying under y. Note that v is linear. We show that
Q) CQ?/Py. If g#p, then Q(y;)=Q/P)nQe*/I)=Q. Hence Vv
and v lie under y, and by the second paragraph of this proof v =v. In particular
Q(v) = Q C Q(e27/7) (in this case g = 2 necessarily). If L is p-elementary abelian, then
Q(v) = Q(e*i/P),

Next we show that v extends to its stabilizer G, and consequently G, < G. In order to
show that v extends to G, it is enough to show it extends to every Sylow subgroup of G, /L
by [13, Theorem 6.26]. Let R/L € Syl,.(G,/L). If r # g, then v extends to R because L is
a g-group and [13, Corollary 6.27]. If r = g, then R is a g-group. Since y has ¢’-degree,
then yj has some linear constituent and hence v extends to R. Note that if G, = G, and
7 € Irr(G) is an extension of v then L C G’ C ker(z). Then v = 1,, a contradiction with
ker(y) =1

Let w € Irr(G,) lying over v be the Clifford correspondent of y as in [13, Theo-
rem 6.11]. Since both y and v have values in Q(e27/7), so does w. We have H C G, <G,
and by induction there exists a pair (U, A) of the desired kind inducing y, hence also induc-
ing .

For the uniqueness up to G-conjugacy, see the second part of the proof of [33, Theo-
rem 2.6]. O
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The fact that under the hypothesis of Theorem 5.4, the set X, ,(G) consists entirely of
monomial characters allows us to construct a map between X,,,,p(G) and X”,YP(NG(H)) as in
[12, Theorem C]. In order to prove that such map is bijective, we will need a z-version of
[16, Theorem 3.3], which relies on z-versions of [16, Theorem 2.1 and Corollary 2.2]. All
these versions hold without restrictions on the set z. Their proofs can be obtained by just
mimicking the proofs in [16] and using the following easy observation.

Lemma5.5 Let H < Gwith (|G : H|, |H|) = 1. Suppose that a linear character u € Irr(H)
extends to G. Then there is an extension A € Irr(G) of u with o(A) = o(u).

Proof Since u extends to G, note that H' C H N G’ C ker(u). In particular, y seen as a char-
acterof H/HN G' 2 HG' /G’ < G/G' extends to G/G’. By [13, Corollary 6.27], u extends
to some A € Irr(G/G") with o(4) = o(u) and the statement follows. a

Theorem 5.6 Let G be a n-separable group and H € Hall (G). If K < H, then there is a
unique subgroup V < G maximal with the property that H C Ng(V)andV N H =K.

Proof Mimic the proof of [16, Theorem 2.1] using the corresponding properties of Hall =
-subgroups in z-separable groups. O

Corollary 5.7 Let G be a n-separable group and H € Hall (G). If u € Irr(H) is linear, then
there exists a unique subgroup U < G containing H and maximal such that u extends to U.

Proof Mimic the proof of [16, Corollary 2.2] using Lemma 5.5 to guarantee the existence
of an extension of A with suitable order. O

Theorem 5.8 Let G be n-separable and U < G be a subgroup of n'-index. Let A € Trr(U) be
linear and such that o(A) is a n-number, Assume that A does not extend to any subgroup of
G containing U. Then A° € Irr(G).

Proof Mimic the proof of [16, Theorem 3.3] using Corollary 5.7. a

Theorem 5.9 Let p < g be two primes and set & = {p,q}. Let G be a n-separable group
and H € Hall (G). Write N = N;(H) and suppose that N/H has odd order. Define a map
Q: X,

z'.p

(G) = X, ,(N)

in the following way: If y € X, (G), choose a pair (U, ) where H<U <G and
A € Irr(U) is linear such that Q(4) € Q(e*/P) and A¢ = y, then set Q(y) = (iUnN)N. Then
Q is a well-defined bijection.

Proof We are basically going to follow the proof of [33, Theorem 2.13]. Given

€ X,/ ,(G), the existence of the a pair (U, 4) as in the statement is guaranteed by Theo-
rem 5.4. Set Q(y) = (/lUmN)N. By [12, Lemma 2.3.(a)] we have that Q(y) € Irr(N), so in
particular Q(y) € &, ,(N). Since any other inducing pair for y is G-conjugate to (U, 4)
and

(A’UQN)N = (/ﬁ,gnN)N
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for every g € G, we see that Q is a well-defined map Xﬂ,,p(G) - Xﬂ,qp(N). Now [12,
Lemma 2.3.(b)] guarantees Q is injective. It remains to prove that Q is surjective. Let
0e X,,,!p(N) and y € Irr(H) lie under 6. Note that y is linear. By Lemma 5.1, we have
that o(u) = p. Let @ € Irr(N,)) be the Clifford correspondent of ¢ lying over u as in
[13, Theorem 6.11]. Since both @ and y have values in Q(e**/?) so does ¢. In particu-
lar, Q(p) = Q7). Let fi € Irr(N,) be the canonical extension given by [13, Cor-
ollary 6.27], so that o(j) = o(u) = p. By Gallagher’s theorem [13, Corollary 6.17],
we have @ = gj, with g€ Irr(N,/H). Note that Q(f) C Q(¢**/P) must be rational
as N,/H is a z'-group. Since [N, : H| is odd by hypothesis, we get f = lN” by Theo-
rem 2.3. Hence (4)V = 0. By Corollary 5.7 and Lemma 5.5, there exists a subgroup
U < G maximal with the property that u extends to A € Irr(U) and o(4) = p. Note that
U/ker(4) = ker(AN,,/ ker(A) = N,/ ker(fi) and ANM = ji. By Theorem 5.8, we have
y=A0¢€ X, ,(G). Hence Q(y) = AN = (@Y = 0. |

As an immediate consequence of Lemma 5.1 and Theorem 5.9, we can derive the fol-
lowing result.

Corollary 5.10 Let p < g be two primes and set * = {p,q}. Let G be a n-separable group
and H € Hall (G). Assume that N;(H)/H has odd order. Then G has a nontrivial irreduc-
ible character of n'-degree with values in Q(e*™/?) if, and only if, H/H' has order divisible
by p.

We can finally proof Theorem B of the Introduction.

Proof of Theorem B 1f 2 < g, then the statement of Theorem B is equivalent to the p =2
case in Corollary 5.10, since the condition on the order of N;(H)/H becomes superfluos
and z-separability of G is equivalent to solvability of G by Burnside’s p%¢” and Feit-
-Thompson’s odd order theorems ([13, Theorem 3.10] and [6], respectively).

We are left to deal with the much easier case where 2 = g. In this case, H € Syl,(G) and
the condition H/H' has even order is equivalent to G having even order. Then one of the
implication follows from Theorem 2.3, while the other is [24, Lemma 3.1]. O

Remark 5.11 We observe that the statement of Theorem B does not hold outside the realm
of solvable groups. For example, let 7 = {2,3} and consider the alternating group As.
By Theorem D, we know that A has a rational z’-degree irreducible character (take for
instance (y*?), ). On the other hand H/H' has order 3 for every H € Hall, (As). This fol-
lows by observing that all Hall z-subgroups of As are isomorphic to A,.
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