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Galois action on the principal block
and cyclic Sylow subgroups

Noelia Rizo, A. A. Schaeffer Fry and Carolina Vallejo

We characterize finite groups G having a cyclic Sylow p-subgroup in terms of the action of a specific
Galois automorphism on the principal p-block of G, for p =2, 3. We show that the analog statement for
blocks with arbitrary defect group would follow from the blockwise McKay—Navarro conjecture.

Introduction

One of the most prevalent questions in the representation theory of finite groups is to determine what
relationships hold between the set Irr(G) of irreducible complex characters of a finite group G and its
local structure, such as the structure of a Sylow p-subgroup P of G. There is, of course, the more
sophisticated question of relating the set Irr(B) of irreducible characters belonging to a given Brauer
p-block B of G with the structure of a defect group D of B.

G. Navarro and P. H. Tiep [2019] conjecture that for a prime p, one can determine the exponent of the
abelianization of P in terms of the action of certain Galois automorphisms on Irr(G). To be more precise,
for a fixed prime p and an integer e > 1, let o, € Gal(@*/Q) = G be such that o, fixes p’-roots of unity
and sends any root of unity of order a power of p to its (p®+1)-st power. In [Navarro and Tiep 2019] it is
proven that the exponent of P /P’ is less than or equal to p® whenever all of the irreducible characters of
p’-degree of G are o,-fixed, and the converse is reduced to a question on finite simple groups. (Thanks to
Malle [2019] we know that the converse holds for p = 2.)

In the present work, we show that one can determine whether P is cyclic (for small primes) by just
counting the number of certain o;-invariant elements of Irr(By), where By is the principal p-block of G.

This is the main result of our paper.
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Theorem A. Let G be a finite group of order divisible by p, where p € {2,3}. Let P € Syl ,(G) and let
By be the principal p-block of G. Then

[Irr, (Bo)”'| = p  if, and only if, P is cyclic,

where Irr, (Bo)°! is the set of irreducible characters in By with degree relatively prime to p that are fixed
under the action of o1.

With the definition above, o7 is an element of the subgroup # < G consisting of all o € G for which
there exists some integer f such that o (§) = Spf whenever £ is a root of unity of order not divisible by p.
Navarro predicted [2004, Conjecture A] the existence of bijections for the McKay conjecture commuting
with the action of H on characters. This is the celebrated McKay—Navarro conjecture (sometimes also
referred to as the Galois—McKay conjecture), which has been recently reduced to a question on finite
simple groups in [Navarro et al. 2019]. The McKay—Navarro conjecture admits a blockwise version
[Navarro 2004, Conjecture B], which remains unreduced at the present moment and which we will refer
to as the Alperin-McKay—Navarro conjecture, as it can also be seen as a refined version of the celebrated
Alperin-McKay conjecture. In this context, it is natural to wonder the extent to which Theorem A holds
for arbitrary blocks. We propose the following.

Conjecture B. Let p € {2, 3}. Let G be a finite group and let B be a p-block of G with nontrivial defect
group D. Then
[Irrg(B)?'| = p if, and only if, D is cyclic,

where Irrg(B)°! is the set of height zero irreducible characters in the block B that are fixed under the

action of oy.

We prove that Conjecture B follows from the Alperin—-McKay—Navarro conjecture. In this sense,
Theorem A provides more evidence of the elusive Alperin-McKay—Navarro conjecture. Since the latter
holds whenever D is cyclic, by work of Navarro [2004], it follows that the “if”” direction of Conjecture B
(and of Theorem A) holds. For many consequences of the (Alperin—)McKay—Navarro conjecture, the state-
ments take different forms depending on the prime (see, for instance, [Navarro et al. 2007; Schaeffer Fry
2019]). This might well be the case here, however, we are not yet aware of such a statement for p > 3.

To prove Theorem A, we use the classification of finite simple groups. In particular, we contribute to
the problem of understanding Galois action on the characters in blocks of nonabelian simple groups in
the following way.

Theorem C. Let S be a nonabelian simple group of order divisible by p < 3, P € Syl ,(S) and X €
Syl, (Aut(S)). Let By be the principal p-block of S.

(a) If P is cyclic, then p = 3 and Irr, (Bo)°' = {lg, ¢1, ¢2}, where the ¢; are nontrivial and not
Aut(S)-conjugate, and some @; is X -invariant.

(b) If P is not cyclic, then Irr,y (Bo)°' 2 {ls, ¢1, ..., ¢}, where the nontrivial ¢; are pairwise not
Aut(S)-conjugate, and some ¢; is X -invariant.
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This paper is structured as follows. In Section 1 we prove that Conjecture B follows from the Alperin—
McKay—-Navarro conjecture. To do so, we study the action of o on the irreducible characters of blocks
with normal defect group. The rest of the paper is devoted to proving Theorem A. In Section 2, we reduce
Theorem A to statements on finite simple groups, and in Section 3 we prove Theorem C thus completing
the proof of Theorem A.

1. Blocks with normal defect group

The aim of this section is to prove that Conjecture B follows from the Alperin-McKay—Navarro conjecture,
stated below.

For a fixed prime p, consider the set BI(G) of Brauer (p-)blocks of G as in [Navarro 1998], so that
BI(G) is a partition of Irr(G) UIBr(G) (recall that p-Brauer characters are defined on p-regular elements
of G). Write Irr(B) = B N Irr(G) and IBr(B) = B N IBr(G) for any B € BI(G). Every block B has
associated a uniquely defined conjugacy class of p-subgroups of G, namely its defect groups. Given a
block B of G with defect group D, we write B € BI(G | D) and we let b € BI(Ng (D) | D) denote its
Brauer first main correspondent. Finally, x € Irr(B) has height zero in B if x (1), = |G : D|,, and we
write Irrg(B) to denote the subset of height zero characters in Irr(B).

Assuming the notation of the introduction, we have that the group G acts on {Irr(B) | B € BI(G)}
by [Navarro 1998, Theorem 3.19]. The group H further acts on the set BI(G) by [Navarro 2004,
Theorem 2.1]. While the action of G on characters is not natural enough in global-local contexts, Navarro
[2004] conjectured the following.

Conjecture (Alperin—-McKay—Navarro conjecture). Let B € BI(G | D) and let b € BI(Ng (D) | D) be its
Brauer first main correspondent. If o € H, then

|Trro(B)? | = [Trro (D)7 |.

Here we are only concerned with the action of a specific element of 7, namely o;. Recall that oy € H
fixes p’-roots of unity and sends any root of unity of order a power of p to its (p+1)-st power. If G is a
finite group of order dividing some integer n and &, is a primitive n-th root of unity, then by elementary
number theory, the restriction w of o7 to the n-th cyclotomic field Q(&,) has order a power of p, and w
acts as o7 on the ordinary characters of every subgroup of G. Abusing notation, we will also write o}
for any such restriction. In particular, o fixes the elements of IBr(G), and hence acts trivially on BI(G).
(Note that in general G does not act on IBr(G), but 4 does by Theorem 2.1 of [Navarro 2004].)

In order to prove that Conjecture B follows from the Alperin—-McKay—Navarro conjecture, we need to
study blocks with a normal defect group. We follow the notation in Chapter 9 of [Navarro 1998]. Let
B € BI(G | D) and assume that D < G. Write C = Cg (D). We will denote by b € BI(CD | D) a root
of B, and we will let 6 € Irr(b) be the canonical character associated with B, which is unique up to
G-conjugacy (see [Navarro 1998, Theorem 9.12] and the subsequent discussion). Recall that D C ker 6
and 0 has p-defect zero when viewed as a character of CD/D (that is, 6(1), = |CD : D|,), the stabilizer



1956 Noelia Rizo, A. A. Schaeffer Fry and Carolina Vallejo

of the block b is G, = Gy, and the inertial index |Gy : CD| is not divisible by p. In this situation,
Irr(b) = {0, | A € Irr(D)}, where the irreducible characters 6, € Irr(CD) are defined for x € CD as follows:
05 (x) = A(x,)0(x)) if x, € D and 6, (x) = 0 otherwise. One can see that

Gg, = Go NG,

Let ¢ € BI(Gy | D) be the Fong—Reynolds correspondent of & and B as in [Navarro 1998, Theorem 9.14].
Then the induction map Irr(c) — Irr(B) defines a height-preserving bijection. By [loc. cit., Theorems 9.21
and 9.22] ¢ = %" is the only block of G}, that covers b and

Ir(B)= | J Tm(G6y). (1)
relrr(D)
It is not difficult to see that height zero characters of B further lie over characters parametrized by linear
characters of D, so that
Irrg(B) = U Irr(G | 6,). ()
relrr(D/D’)

In order to explicitly describe the set Irrg(B)°" when the defect group of B is normal we will use the

following technical lemma.

Lemma 1.1. Let G be a finite group and let p be a prime. Suppose that B is a block of G with normal
defect group D. Let b be a root of B with canonical character 6. Write A = (01) < Gal(Q(§))/Q). If A
is a linear character of D, then let GQAA ={g e G| (6r)8 = (6))" for some a € A}. With this definition

Gyr =Go, =Gy NGy,

Proof. Write C = Cg (D). Recall that b is a block of CD of defect D and 6 € Irr(CD) has defect zero
as a character of CD/D. Note that 9 is A-fixed since b* = b for everya € A. Let g € GO;:L We start by
proving that g € Gy. Since 6 is A-fixed, by the definition of 8, we have (6,)8 = (6,)" = 65« for some
a € A. Evaluating on D we see that

B(DAY(x) = b1 (x) = 05 (x) = O(DAF (x),

for every x € D. Hence A8 = A“. Let x € CD be such that x D € (CD/D)°, the set of p-regular elements
of CD/D, and notice that x,, € D. (Otherwise 6(x) =0.) Then

AE(x )08 (x,) = 05 (x) = 05 (x) = A (x,,)@(x;,) =28 (x,,)@(x;,).

This implies 04 (x ) = 0(x,). Since x D = x,y D, then 6¢ =0 and g € G.

Next we prove that g € G,. We know that A8 = 1 for some a € A, and that g € Gy. Since Gy/CD is
a p’-group, then 28" = A for some integer m relatively prime to p. In particular, A" = A and the order
of a as an element of Gal(Q(A)/Q) = Gal(Q(&,(,))/Q) divides m, which forces a = 1 and A8 = A, as
wanted. O
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Lemma 1.2. Let G be a finite group and let p be a prime. Suppose that B is a block of G with a normal
defect group D. Let b be a root of B with canonical character 6. Then

mo(B)' = ) 1m(G |6y,
relir(D/ (D))
where ® (D) is the Frattini subgroup of D. Moreover, if c € BI(Gy | D) is the Fong—Reynolds correspon-
dent of B, then
Trro(B)?!| = [Irro(c)”'].

Proof. First notice that as a p-group, D has a unique block, the principal one, and Irro(Bo(D)) =
Irr, (D) =Irr(D/D’). Then Irr (D) =TIrre(D/®(D)). Since D/ P (D) is p-elementary abelian, one
inclusion is straight-forward. To see that Irr, (D) C Irr(D/®(D)) notice that if A € Irr(D/D’) is
o1-fixed, then A% = AP*! = A, and hence |D/ker A| < p, implying ® (D) C ker A.

Write A = (o) and let Ge){‘ be as in Lemma 1.1. By (2), we know that

Irrg(B) = U Irr(G | 6,).
relr(D/D")
If x € Irrg(B)°" lies over 6, then (6,)7! = (6,)¢, for some g € G. In particular, g € Gya = G, = GgN G,
by Lemma 1.1. Then A" = A8 = A. Hence ®(D) C ker A and A € Irr(D/ ®(D)). ’

Conversely, let x € Irr(G | 6,), where A € Irr(D/®(D)). Then A%t = A. As b°! = b, we see o) fixes 6
too. Then (6,)°" = 6,. Let ¢ € Irr(Gg, ) be the Clifford correspondent of x over 8,. Since Gy, € Gy,
we know that p does not divide the order of Gy, /CD. By [Navarro and Tiep 2019, Lemma 5.1], ¢ is
op-invariant and so is x.

To prove the last part of the statement, recall that the Fong—Reynolds correspondence states that the
induction map v — ¢ provides a bijection Irrg(c) — Irro(B). In particular, |Irrg(c)®'| < |Irro(B)°!].
Now let x € Irrg(B)°" lie over 6,, for some A € Irr(D/P (D)) by the first part of this proof. Then
(6,)°! = (0,)8 for some g € G. In particular, g € Gg_AA. Since GQ;\ = Gg, by Lemma 1.1, 6, is o;-fixed.
Let & € Irr(Gy, | 6,) be the Clifford correspondent of x. Since both x and 8, are o;-fixed then so is &.
We have that £* is the Fong—Reynolds correspondent of x by the transitivity of block induction (see
[Navarro 1998, Problem 4.2]), which is o;-fixed. O

The Alperin-McKay—Navarro conjecture holds for blocks with cyclic defect groups by [Navarro 2004,
Theorem 3.4]. We obtain the following as a consequence of this fact.

Lemma 1.3. Let G be a finite group and let B be a block of G with cyclic defect group D. Then
1 < |Irro(B)”'] < p.

The set Irrg(B)°' has minimal size 1 if, and only if, D is trivial. Furthermore, if p € {2,3} and D is
nontrivial, then

[Trro(B)?'| = p.
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Proof. By [Navarro 2004, Theorem 3.4], we may assume that D < G. Write C = Cg(D) 2 D. Let
b € BI(C| D) be a root of B with canonical character §. By Lemma 1.2, we may assume that 6 is
G-invariant (in particular, G/C is a p’-group) and

(B = () (G 6;) SIm(G/P(D)).
relr(D/ @ (D))

Write G = G/® (D) and use the bar convention. Let F = C(;(E), where ® (D) C F < G. We claim
that F = C. Clearly C C F. Note that F acts trivially on D and coprimely on D. By [Isaacs 2008,
Theorem 3.29] we have that F acts trivially on D as well. Thus F = C as claimed.

Notice that since D is cyclic and G/C is a p’-group, then G/C is isomorphic to a subgroup of C,_j.
Say |G/C| =m and let {ki}le be a complete set of representatives of the G/ C-orbits on Irr(D) \ {1p},
where here we view Irr(D) C Irr(D), and with this identification Irr(D) are exactly the elements of Irr(D)
with order dividing p. Note that ker A; = (D) forall 1 <i <t¢, hence G,, = C forevery 1 <i <t, and all
the orbits of the action of G/C on Irr(D) \ {1p} have the same size m. In particular, = (p — 1)/m. Since
6 is G-invariant, for every 1 <i <t we have that Gy, = G, = C, and by the Clifford correspondence,
[Irr(G | 6,,)| = [Irr(C | 6y,)| = 1. Also, since G/C is cyclic, 8 extends to G and therefore by Gallagher
theory |Irr(G | 0)| = m. Then

t
—1
Irrg(B) | = Ir(G [ 0)] + Y (G |6 ) | =m +1=m+ T < p.
m

i=1
Note that if p =2, 3 thenm + (p —1)/m = p, whenever m divides p — 1. Also notice that |Irrg(B)°'| =1
if, and only if, D = 1. O

The upper bound in Lemma 1.3 is not generally attained if p > 3, as shown by the dihedral group D,
which satisfies |Irr(By(D2,))?"'| < p. We care to remark that the numerical condition [Irro(B)?'| < p does
not generally imply that a defect group D of B is cyclic. For instance, for p = 11, the semidirect product
H = [F%1 x SL,(5) satisfies |Irr; 1/ (Bo(H))°!| = |Irr(H)| = 10. (We would like to thank Gabriel Navarro
for providing us with this example.)

We will need the following divisibility result, which we obtain by adapting the proof of [Gow 1979,
Theorem 5.2].

Lemma 1.4. Let G be a finite group, let p € {2, 3}, and let B be a block of G with nontrivial defect
group D. Then p divides |Irry(B)°!|.

Proof. Write
y= > x(x, 3)

x €lrr(B)
and notice that v is a character of G that vanishes on p-singular elements by the weak block orthogonality
relation (see [Navarro 1998, Corollary 3.7]). In particular, ¢rp = fpp for some natural number f, where
pp denotes the regular character of P.
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Let Irr(B) = {x1, ..., x:} and write x;(1) = p®~4t"ib; where |P| = p%, |D| = p%, h; > 0 is the
height of x; and p does not divide b;, for 1 <i <t. Arrange the elements in Irr(B) in such a way that
Irrg(B) = {x1, ..., xk}, sothat h; > 1 for all k +1 < j <t. By [Navarro 1998, Theorem 3.28] we have
that /(1) = p?>*~“c, where c is a nonnegative integer relatively prime to p. Thus, evaluating (3) at 1 € G
we obtain

k t
ple=3 0+ Y p0}
i=1 j=k+1
Asd > 1, we get Y*_ b? =0 mod p. Since p € {2, 3}, we have that b? = 1 mod p for every 1 <i <k,
and hence £ is divisible by p.

Recall that the group A = (o7) acts on Irrg(B), and as such, we may view A as having order a power
of p. Since |Irrg(B)°'| = |Irro(B)*|, we obtain that p divides |Irro(B)°!| by the class equation for group
actions. O

The conclusion of the result above does not hold if p > 3, as the dihedral group D, provides a
counterexample. Indeed, D,,, has a unique p-block and every irreducible character has p’-degree and is
o1-fixed. Hence |Irry (Bo(D2,))?"| = [Irr(D2p) | =2+ (p — 1)/2 < p.

Finally, we prove the main result of this section.

Theorem 1.5. Let p € {2, 3}. Let G be a finite group and let B be a p-block of G with a nontrivial normal
defect group D. Then
[Irrg(B)?'| = p if, and only if, D is cyclic.

In particular, Conjecture B follows from the Alperin—-McKay—Navarro conjecture.

Proof. By Lemma 1.3 we know that the “if”” implication holds. We now assume that |Irro(B)°!| = p and
we work to show that D is cyclic.

Write C = C(D) and let 6 € Irr(CD) be the canonical character of B. Let {A;}!_, be a complete
set of representatives of the G/CD-orbits on Irr(D/® (D)) \ {1p}. By Lemma 1.2 we may assume that
Gy =G and

Irro(B)" = _J1rr(G 163,)

i=1

is a disjoint union. If p =2, then

t
2 =Irrg(B)*'| = |Ire(G | 0)| + Y _[Irr(G | 65,)).
i=1
Since D is nontrivial by hypothesis, we have that # > 1. Thus # = 1 and the characters 6 and 6, are fully
ramified with respect to their inertia subgroups. In particular, there are positive integers e and e; such that
|G : C| = e¢? and |G, : Cl= e%. Suppose that |D| = 2". Since G/CD acts transitively on the nontrivial
elements of D/® (D), we have that 2" — 1 =|G : G,,| = (e/e1)2 = f2. The equality f2+1="2" forces
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f to be odd, then f>=1 mod8, and so >+ 1 =2 mod 8 leaves as the only possibility n = 1 = f, that
is, D = C,, as wanted. These techniques do not totally suffice to prove the case where p = 3. We first
need to show that we may assume ® (D) = 1. Indeed, write G= G/®(D), D= D/® (D) and let B bea
block of G contained in B such that D is the defect group of B by [Navarro 1998, Theorem 9.9]. Then
Irro(B)®' CIrrg(B)?'. By Lemma 1.2 we have that Irro(B)°' = Irr(B) is nonempty. Hence by Lemma 1.4,
we have that p divides |Irr(B)®'| < |Irro(B)°!| = p, that forces |Irrg(B)°'| = p. If ®(D) # 1 we can
apply induction to obtain that D is cyclic, and thus D is cyclic. Hence we may assume that ®(D) = 1.
Since D is p-elementary abelian, then Irrg(B)°! = Irr(B) by the description of these sets in (1) and
Lemma 1.2. By [Sambale 2014, Proposition 15.2], if p = 3 then |Irr(B)| = p implies |D| = p and the
proof is finished. g

2. Reducing to simple groups

The aim of this section is to reduce the statement of Theorem A to a problem on simple groups that we

will solve in Section 3.

2A. Preliminaries. We start these preliminaries with results concerning the action of Galois automor-
phisms on characters belonging to principal blocks. Recall that x € Irr(By(G)) if, and only if,

> x(x) #0,

xeGY

where G is the subset of elements of G of order not divisible by p. Some properties of characters in the

principal block are listed below.
Lemma 2.1. Let G be a finite group, and let N < G.

(a) We have that Irr(By(G/N)) C Irr(Bo(G)), with equality whenever N is a p’-group.
(b) If H; are finite groups and y; € Irr(Bo(H;)), fori =1, ..., t,then yy X - - - Xy, €lir(Bo(Hy X - - - X Hy)).

Proof. The first part of (a) and (b) follow directly from the definition of principal block [Navarro 1998,
Definition 3.1]. The second part of (a) is [loc. cit., Theorem 9.9.(c)]. Il

We summarize below some results obtained in Section 1, here stated with respect to the principal block.
The first part was first observed by G. Navarro (in private communication).

Lemma 2.2. Let G be a finite group and let P be a Sylow p-subgroup of G.

(a) If P is normal in G, then Irr  (By(G))?' = Irr(G/ Oy (G) D (P)).

(b) If P is cyclic, then 1 < |Irr,y (Bo(G))°'| < p.

(¢) If P is nontrivial and p € {2, 3}, then |Irr,, (Bo(G))?'| # 0 is divisible by p.
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Proof. To prove part (a), assume that P <G. Then G is p-solvable and by Fong’s theorem [Navarro 1998,
Theorem 10.20] Irr(Bo(G)) =Irr(G/ 0y (G)). Hence we may assume that O ,/(G) =1 and, in particular,
Cs(P)C P. By Lemma 1.2

Irr, (Bo(G)”' =Trrp (G)”' = U Irr(G | A) = Irr(G/ D (P)).
A€lrr(P/®(P))
Part (b) is a straightforward application of Lemma 1.3. Part (¢) is a direct consequence of Lemma 1.4. [
Next is a classical result by J. L. Alperin and E. C. Dade.

Theorem 2.3. Suppose that N is a normal subgroup of G and G/N is a p’-group. Let P € Syl »(G) and
assume that G = NCq(P). Then restriction of characters defines a bijection Irr(By(G)) — Irr(By(N)).
In particular, |Irr , (Bo(G))?' | = |Irr,y (Bo(N))°!|.

Proof. The case where G/N is solvable was proved in [Alperin 1976, Lemma 1.1]. The general case in
the main result of [Dade 1977]. The latter statement follows since oy acts on Irr, (Bo(G)). O

We will also use the following.

Lemma 2.4. Suppose that G is a finite group, P € Syl ,(G) and PC(P) < H < G. If 6 €It (Bo(H))*!,
then there exists a some x € Irr, (Bo(G))°! lying over 6.

Proof. Note that By(H)® = By(G) by the comments before [Navarro 1998, Theorem 9.24] and Brauer’s
third main theorem [loc. cit., Theorem 6.7]. Write

w= Y 6% xlx,
x €lrr(By(G))
so that W has p’-degree by [loc. cit., Theorem 6.4]. (Note that W is exactly (09) 5 where B = By(G) in the
notation of [loc. cit.].) Let A = (o1), where here we view o7 as an element of Gal(Q(£)/Q) for 0(§) =|G].
For every a € A we have that ¢ = W as A acts on Irr(By(G)) and fixes 6. By [Navarro and Tiep 2019,
Lemma 2.1(ii)] there is some x € Irr,,(G)°' appearing with p’-multiplicity in W. The statement now
follows since every irreducible constituent of W lies in the principal block and its multiplicity in W is
exactly the multiplicity of 6 in its restriction to H. O

We end the preliminaries with a technical result.

Lemma 2.5. Let G be a finite group and let N < G be a direct product of t copies of a simple nonabelian
group S transitively permuted by G. Let P € Sylp (G). If some 1s # ¢ € Irr, (Bo(S))°" is X-invariant,
where X € Sylp (Aut(S)), then there exists some P-invariant 1y # 6 € Irry (Bo(N))°'. In particular, if N
is a minimal normal subgroup of G, then 0 extends to a o\-invariant irreducible character of PN.

Proof. Let 1y # 6 € Irr(N) the character of N corresponding to ¢ x - -+ x ¢ € Irr, (Bo(S))?, then
0 € Irry (Bo(N))°' by Lemma 2.1(b). By [Navarro et al. 2007, Lemma 4.1(ii)], we may assume that 6 is
P-invariant.

For the second part of the statement, notice that since PN /N is a p-group and N is perfect, 6 has a
canonical extension 8 € Irr, (PN) by [Isaacs 1976, Corollary 6.28]. In particular, 9 is op-invariant. [
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2B. The reduction. Here we reduce Theorem A to a problem on simple groups, which is done in
Theorem 2.6 below. Theorem C collects the properties of simple groups that will be key for performing
such reduction. We would like to remark that the conditions in Theorem C related to the conjugation by
group automorphisms are not needed in this context, but may be of independent interest.

Theorem 2.6. Let G be a finite group of order divisible by p where p € {2, 3}. Let P € Syl ,(G). Then
[TIrr, (Bo(G))'| = p  if, and only if, P is cyclic.

Proof. If P is cyclic, then |Irr,/ (By(G))?'| = p by Lemma 1.3.

We assume now that [Irr, (By(G))?'| = p and we work to prove that P is cyclic by induction on the
order of G.

First, notice that we may assume that G is not simple, by Theorem C(a), and Ng(P) < G by
Theorem 1.5.

Step 1. We may assume O, (G) = 1. This follows by Lemma 2.1(a) and induction.

Step 2. We may assume that OP,(G) = G. Otherwise, let M < G with |G/M]| not divisible by p and
G/—M> 1 simple. Then P € M and by the Frattini argument M Ng(P) = G. Hence MCg(P) <G and
therefore G = C(P)M or Cg(P) € M. Suppose G = MCg(P), then restriction defines a bijection
Irr, (Bo(G))°" — Irr,y (Bo(M))°' by Theorem 2.3. In this case we are done by induction. Therefore we
may assume that Cg(P) € M. We claim that By(G) is the only block of G covering By(M). Indeed, let
B be a block of G covering Byo(M). By [Navarro 1998, Theorem 9.26], we have that P is a defect group
of B. By [loc. cit., Lemma 9.20], B is regular with respect to M and hence by [loc. cit., Theorem 9.19],
Byo(M)® = B. By Brauer’s third main theorem we have that By(M)® = By(G) and hence B = By(G)
and the claim is proven. In particular, Irr(G/M) C Irr,y (Bo(G))°" as every character in Irr(G/M) has
p’-degree and is oq-invariant (for G/M is a p’-group). By hypothesis |Irr(G/M)| < p. As G/M is a
nontrivial p’-group, we immediately get a contradiction if p = 2. If p =3, then |Irr(G/M)| < 3 forces
G/M = Cy. Write Irr, (Bo(G))°" = {1, A, 0} with M C ker A, for instance. Let t € Irr,/ (Bo(M))°' be
nontrivial by Lemma 1.4. Let x € Irr(Bo(G)) be over t. Since |G /M| is not divisible by p, we have that
x €1Irry (Bo(G))°! by [Navarro and Tiep 2019, Lemma 5.1]. Thus necessarily x = 6. Since 6y has at
most two irreducible constituents, we have that |Irr,,(Bo(M))°'| = 3 and we are done by induction in
this case.

Step 3. If 1 # M <G, then every x € Irr, (By(G))?" satisfies M C ker x and PM /M > 1 is cyclic. By
Step 2, we have that p divides |G /M| and hence [Irr, (Bo(G/M))°'| = p follows from Lemma 1.4. The
claim of the step now follows from Lemma 2.1(a) and by induction.

Step 4. If 1 M <G and y €Irr, (Bo(M P))°!, then there is some x € Irr, (Bo(G))?' lying over y. Write
H = MPCg(P), so that MP < H. By Theorem 2.3, restriction defines a bijection Irr, (Bo(H))°' —
Irr, (Bo(M P))°', and hence some 6 € Irr,(Byo(H))?' extends y. By Lemma 2.4, the claim of the step
follows.
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Step 5. Let N be a minimal normal subgroup of G. We may assume PN < G. Suppose the contrary. By
Fpl and the fact that Ng(P) < G (so G is not a p-group), we have that N is the direct product of ¢
copies of a nonabelian simple group S of order divisible by p (which are transitively permuted by G). By
Theorem C there exist 15 # ¢ € Irr,y (Bo(S))?" X-invariant for some X € Syl » (Aut(S)). By Lemma 2.5,
there is some 1y # 60 € Irr, (Bo(N))?! that extends to a oq-invariant character x € Irr(G). Since By(G)
is the only block covering By(N) by [Navarro 1998, Corollary 9.6], we have that x € Irr, (Bo(G))°!
contradicting Step 3.

Final Step. Since NP < G by Step 5, if |Irr,, (Bo(NP))°'| = p, then we are done by induction. Hence
we may assume that |Irr,, (Bo(NP))°'| > p by Lemma 1.4. By Step 3, we have that PN/ N is cyclic, and
hence |Irry (Bo(PN /N))?'| = p. Therefore there exists some 6 € Irr, (Bo(NP))°' such that N 51 ker(9)
(here we are using that NP /N has just one p-block). By Step 4, some yx € Irr, (Bo(G))°! lies over 6. In
particular N ¢ ker x, a contradiction with Step 3. O

3. Simple groups
In this Section we prove Theorem C, which will complete the proof of Theorem A.

3A. Some generalities on groups of Lie type. Since the groups of Lie type play a large role in what
follows, we begin by recalling some essentials about their blocks and characters.

Let g be a power of a prime. When G = G’ is the group of fixed points of a connected reductive
algebraic group G defined over I]_:q under a Steinberg map F, the set of irreducible characters Irr(G) can be
written as a disjoint union | | £(G, s) of so-called rational Lusztig series corresponding to G*-conjugacy
classes of semisimple elements s € G* (i.e., elements of order relatively prime to ¢). Here G* = (G*)"",
where (G*, F*) is dual to (G, F).

With this notation, we record the following lemma, proved in [Schaeffer Fry and Taylor 2018,
Lemma 3.4], which describes the action of # on the set of rational Lusztig series and will be useful
throughout this section.

Lemma 3.1. Let p be a prime and let s € G* be a semisimple element. Let f and b be integers and let
o € H be such that o (§) = Spf for all p’'-roots of unity &€ and o (¢) = ¢” for all p-power roots of unity ¢.
I x € E£(G.s), then x° € £(G.s") sb).

The characters in the series £(G, 1) are called unipotent characters, and there is a bijection £(G, s) —
E(Cg+(s), 1). Hence, characters of Irr(G) may be indexed by pairs (s, 1), where s € G* is a semisimple
element, up to G*-conjugacy, and ¥ € Irr(Cg+(s)) is a unipotent character of Cg+(s). We remark that
C¢+(s) may fail to be connected, in which case unipotent characters of Cg+(s) are taken to be those lying
over a unipotent character of (Cg+(s)°)F. In particular, we will denote by x, the character indexed by
(s, 1¢ge(s))» which are semisimple, and they have degree |G* : Cg+(s)|y'.

Using [Cabanes and Enguehard 2004, Theorem 9.12], it follows that when p{q, the set £,(G, 1) :=
U E(G, 5), where s ranges over elements of p-power order in G*, is a union of p-blocks (first shown
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in [Broué and Michel 1989]) and that each such block intersects £(G, 1) nontrivially. Such blocks are
called unipotent blocks.

3A1. A general set-up. We will often be interested in the following situation: Let S be a simple group
such that there exist G a simple, simply connected algebraic group over R and F a Steinberg morphism
satisfying S = G/Z(G) with G := G* perfect. Let (G*, F*) be dual to (G, F).

If Z(G) is trivial, we define G := G. Otherwise, we further let t: G < G be a regular embedding as
in [Cabanes and Enguehard 2004, 15.1] and let ¢*: G* — G* be the corresponding surjection of dual
groups. Write G := G¥, G* := (G*)F", and G* := (G*)F". We may then find F-stable maximally split
tori T and T for G and G, respectively, such that T' < T.Write T:=TF and T :=TF. Then Z (G) is
connected, G < é, and Z(G) NG =Z(G). We will write S:= G/Z(é), and note that Aut(S) is generated
by S and the graph-field automorphisms. Further, the (linear) characters of G/G are in bijection with
elements of Z(G*), and we have ¥, ® 2 = Xsz>» Where z € Z(G*) corresponds to Z € Irr(G/G) and for
semisimple s € G*, ¥, denotes the semisimple character of G corresponding to s. (See [Digne and Michel
1991, 13.30].) It will also be useful in what follows to note that if s € [G*, G*] is semisimple, then the
semisimple character of G corresponding to s is trivial on Z(G) by [Navarro and Tiep 2013, Lemma 4.4].

When ¢ is a power of p, we note that Irr,/ (By(S)) = Irr,(S), which can be seen using [Cabanes and
Enguehard 2004, 6.14, 6.15, and 6.18] and the facts that pt|Z(G)| and S is a group with a strongly split
BN pair as in [loc. cit., 2.20].

In the case of types A,_; and A, _1, we have S is PSL{ (¢) with € € {1}; G = SL{ (¢); G= GL; (¢);
and § = PGL; (¢). Here € = 1 means S =PSL,(¢), ¢ = —1 means S = PSU,(g), and similarly for G
and G. We use similar notation for other twisted types. For example, E¢(¢) will denote Eg(g) for € = +
and 2E6(q) fore = —.

3B. The case p =2. Here we prove Theorem C in the case p = 2. The following, found in [Navarro
et al. 2018, Lemma 3.1], will be useful in what follows.

Lemma 3.2 (Navarro, Sambale and Tiep). Let G be a finite group. If x € Irry (G) is real-valued, then x
belongs to By(G).

In particular, note that an odd character degree of G with multiplicity one must necessarily come from a
character fixed by all automorphisms and G, which is therefore an X-invariant member of Irry (Bo(G))°".

Lemma 3.3. Let S be a simple sporadic group, alternating group 2, with n > 5, or one of the simple
groups PSLy(4), PSL3(2), PSL3(4), PSU4(2), PSU4(3), PSLE(2), 2B2(8), B3(2), B3(3), Da(2), F4(2),
2F4(2), E6(2), %E6(2), G2(2)', G2(3), or G2(4). Then Theorem C holds for S and the prime p = 2.

Proof. For n > 7, the automorphism group of 2, is the symmetric group &,,. Recall that every irreducible
character of G, is rational-valued and that an odd-degree character of &,, must restrict irreducibly to 21,
since it has index 2. In this case, if n =2" 4. .- 42" withn| <ny < --- < n, is the 2-adic decomposition
of n, then [Macdonald 1971, Corollary 1.3] yields that there are 2"+ "+ > 8 odd-degree characters of &,,,
whose restrictions therefore yield at least 3 nontrivial members of Irry (By(2l,,))°! invariant under Aut(%(,,).
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For the remaining groups listed, the statement can be seen using [GAP 2004] and the GAP character table
library. In fact, we see that for the sporadic groups other than the Janko groups, there exist at least two
nontrivial odd character degrees with multiplicity 1. U

Proposition 3.4. Let S be a simple group of Lie type defined over [, with q a power of an odd prime .
Then Theorem C holds for S and the prime p = 2.

Proof. We may assume that S is not isomorphic to any of the groups in Lemma 3.3, so is as in Section 3A1.
In this case, the Steinberg character is rational-valued and Aut(S)-invariant, and therefore it suffices to
show that there is another nontrivial member of Irry (Bo(S))?'. Further, we note that if S is not a Suzuki
or Ree group, then unipotent characters of odd degree are rational-valued (see, e.g., [Schaeffer Fry 2019,
Lemma 4.4]). Hence in these cases, applying Lemma 3.2, it suffices to find another nontrivial unipotent
character of odd degree, when possible. By observing the explicit list of unipotent character degrees in
[Carter 1985, Section 13.9], we see that there is at least one other nontrivial odd-degree unipotent character
for the exceptional groups G1(q), 3D4(q), Fy(q), E¢(q), E7(q), and Eg(q). For 2Gz(q), we see from the
generic character table in [Geck et al. 1996] that there is another odd degree with multiplicity one.

For the classical groups A,_1(q), *An—1(q), Bn(q), Cn(q), Du(q), or ’D,(q), we know by [Malle
and Spith 2016, Proposition 7.4] that all unipotent characters of G with odd degree lie in the principal
series, and hence are in bijection with the odd-degree irreducible characters of the Weyl group W of
G. In these cases, W contains a quotient isomorphic to &,,, which has at least 4 odd-degree characters
for n > 4, again using [Macdonald 1971, Corollary 1.3]. We also see, for example using the GAP, that
there are at least 4 odd-degree characters of W in the case of B;, B3, and C3. Using the well-known
character table for PSL;(g), we see that all four odd-degree characters are fixed by o;. Further, in this
case, Irry/ (S) = Irry (Bo(S)). We see from part (iii) of the proof of [Navarro et al. 2018, Theorem 3.3]
that if § = PSL5(g), then the Weil character 4“3(7(1_6)/ ? is a member of Irro (Bp(S)) and is real-valued. [

Proposition 3.5. Let S be a simple group of Lie type defined in characteristic 2. Then Theorem C holds
for S for the prime p = 2.

Proof. Again, we may assume that S is not as in Lemma 3.3. In particular, we may keep the notation as
in Section 3A1 and we have Irry (Bo(S)) = Irry/ (S). If S is 2Bz(q) or 2F, (g), then the generic character
tables available in CHEVIE yield the result, since |Out(S)| is odd and there are at least two distinct
degrees of nontrivial odd-degree characters whose values are fixed by o7.

Otherwise, we may take the Steinberg endomorphism on G to be F = F, o T, where Fj is the standard
Frobenius induced by the map x > x? and t is some graph automorphism. Write 7 := ¢'*! = 22'm with
m odd and let X < Aut(S) such that X/S € Syl,(Out(S5)).

Since ¢ is a power of 2, we have Z(G) =1 and G = G unless S is one of PSL; (q) or E¢(q). In the
latter cases, G = [G, G]. In any case, since G/G has odd order, we may view X /S as generated by '
and graph automorphisms.

Now, if m > 1, then the proof of [Schaeffer Fry and Taylor 2018, Lemma 6.4] (and taking into account
the remark after [loc. cit., Proposition 6.5]) yields a member of Irry (S) invariant under X which is the
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restriction to G of a semisimple character of G trivial on Z(G). Since semisimple elements have odd
order and o fixes odd roots of unity, Lemma 3.1 shows that this character is also fixed by 0. If m =1, we
may similarly obtain an X-invariant member of Irry (§) fixed by o} by arguing as in [loc. cit., Lemma 6.4]
and the remark after [loc. cit., Proposition 6.5] but using an element of F; of order 3 rather than an
element of F; of order 5.

For S = G2(q), F1(q), ’D4(q), E7(q), or Eg(q), the list of character degrees at [Liibeck 2007] yields
at least one more distinct nontrivial odd character degree, completing the proof in these cases, since by
[Malle 2007, Theorem 6.8], odd-degree characters are semisimple (recall that we may assume g # 2
when S = G»(q) or F4(q)), and hence fixed by o using Lemma 3.1.

Now, in the remaining cases, S is a classical group or E¢(g). Here G* = G. In the case S = PSL,(q)
or PSL5(q), we see that there is at least one more odd-degree character with a different degree that is
fixed by o1, using the generic character tables available in [Geck et al. 1996]. If G = GL:(g), Sp,(q),
or ¢ (g) with n > 4 and n even in the latter two cases, let s; and s> be elements of G with eigenvalues
{6,671,1,..., 1} and {8,8,6~",871,1,..., 1}, respectively, where 1 # 8 € F.

Then s; and s, are not Aut(S)-conjugate, and hence the corresponding semisimple characters of G
have odd degree, are not Aut(S)-conjugate, and are fixed by o7 by Lemma 3.1. Further, if G= GL: (¢),
semisimple classes are determined by the eigenvalues, and Z(G) is comprised of scalar matrices, so we
see for i = 1,2, s; is not conjugate to s;z for any z € Z(G) unless possibly if n = 6. In this case, we may
assume g # 2 using Lemma 3.3 and instead take § € [F;(2 to have order at least 5, again yielding s; is not
conjugate to s;z for any z € Z(G). In any case, the corresponding semisimple characters therefore restrict
irreducibly to G and are trivial on Z (G) since s; € [G, G] = G. Finally, let S be Eg (q) with g > 2. Then
we may argue analogously to [Giannelli et al. 2020, Proposition 4.3] to find elements s; and s, in G with
|C i (s1)|2 # |C(s2)]2 such that the corresponding semisimple characters (which again must be fixed by
o1) are irreducible on G and trivial on Z (G). (Indeed, we may replace the é used there with a § € [F;2
such that 31|8]). In all cases, this yields at least one more nontrivial member of Irry (By(S))?" that is not
Aut(S)-conjugate to the X-invariant one from above. 0

Theorem C for p =2 now follows by combining Propositions 3.4 and 3.5 with Lemma 3.3.

3C. The case p = 3. Here we prove Theorem C in the case p = 3. We begin by stating the following
classification of simple groups with cyclic Sylow 3-subgroups.

Proposition 3.6. Let S be a finite nonabelian simple group with order divisible by 3. Then S has a cyclic
Sylow 3-subgroup if and only if S is one of: the alternating group 2s; the sporadic simple group Ju;
PSL;(q) for 3tq; or PSL§(q) for 3| (g +€).

Proof. The main result of [Shen and Zhou 2016] yields a classification of simple groups S and primes p
such that S has an abelian Sylow p-subgroup. In particular, if p =3, then such a simple group must be of
the form 2, with n < 9, one of a short list of sporadic simple groups, PSL1(q), PSL{ (¢) for 3| (g +€)
and n =3, 4,5, or PSp,(q) with 3tq.
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Using the atlas [Conway et al. 1985] and since 2l has a noncyclic Sylow 3-subgroup and can be
viewed as a subgroup of 2, for n > 7, we see that the only simple alternating or sporadic groups with
cyclic Sylow 3-subgroups are 25 and the Janko group J;. The remaining possibilities are of the form
G/Z(G) for G a classical group SL; (¢) with n < 6, or Sp,(q). Further, except in the cases of PSL5(g)
listed in the statement, |Z(G)| is relatively prime to 3, and hence § has a cyclic Sylow 3-subgroup if and
only if G does. Further, for the cases G = SL{ (¢) with n = 3, 4, 5 under consideration, we may view the
Sylow subgroup as a Sylow subgroup of G= GL (g), since [G : G] is not divisible by 3.

Now, using the description of the Sylow subgroups of classical groups in [Carter and Fong 1964;
Weir 1955], we see that the Sylow subgroups of GLj(¢q), GLS(g), and Sp,(g) are direct products of
Sylow subgroups of at least two lower-rank groups, and hence the Sylow 3-subgroup of G is not cyclic.
In the case PSL5(g) with 3| (¢ +¢€) or PSLy(g) with 3tg, we may explicitly construct a cyclic Sylow
3-subgroup. Finally, if S = PSL,(q) with 3| g, the Sylow 3-subgroup can be identified with the unipotent
radical of SL;(g), which is not cyclic unless g = 3, contradicting that S is simple. O

Our goal in the remainder of this section is to prove the following, from which we obtain Theorem C
for p =3 as a corollary.

Theorem 3.7. Let S be a nonabelian simple group with order divisible by 3.

(1) If S has a cyclic Sylow 3-subgroup, then there exist 1s # x1, x2 € Irr3 (Bo(S))°! such that x, extends
to Aut(S).

(i1) If S does not have a cyclic Sylow 3-subgroup and is not a group of Lie type defined in characteristic 3,
then there exist nontrivial x1, x2, x3 € Irry (Bo(S))°! such that x; and x, extend to Aut(S). In this
case, if S is further not one of g, A7, 2F,(2), PSL, (q) withn <4, or PSp4(22m“), then there exist
nontrivial x1, x2, x3 € Irrz (Bo(S))?" such that x; each extend to Aut(S).

(iii) If S is a group of Lie type in characteristic 3, then there exist nontrivial x1, x2, x3 € Irry (Bo(S))°!
that are pairwise not Aut(S)-conjugate and such that x| is invariant under X, where X/S €
Syl; (Aut(S)/S).

We first consider Theorem 3.7 for sporadic and alternating groups, as well as some “small” groups of
Lie type. For two positive integers n and m, we will use n || m to mean that n | m and ged(n, m/n) = 1.

Proposition 3.8. Theorem 3.7 holds for the sporadic simple groups, G>(3), 2F4(2), B3(3), G»(2)' =
PSU;(3), PSU4(3), and the alternating groups 2A,, with n > 5.

Proof. Since the result can be seen directly using GAP for the other cases, we may assume S = 2, with
n > 10. In this case, S does not have a cyclic Sylow 3-subgroup and satisfies Aut(S) = &, where G,
denotes the corresponding symmetric group.

The characters of G,, are rational-valued and parametrized by partitions of n, with their degrees given by
the hook formula. Further, two characters lie in the same 3-block if and only if they have the same 3-core.
We also know that y € Irr(S,,) corresponding to the partition A restricts irreducibly to 2, if and only if
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Condition on n Partition x (1)
3|n (I,n—1) n—1
3|n (1,1,n—2) n—1m—-2)/2
30n, 3% (n=2),0r3|(n—=1) (3,n—23) nin—1)(n—5)/6
32 n,3m—-2),0r3(m—1) (1> n-3) n—1mn—-2)(n—-3)/6
3|(n—1) 2,n—=2) nn—3)/2
32ln—-1) (1,2,n—3) nin—2)(n—4)/3
32|(n—1) (13,2,n=5) n(n—2)(n—3)(n—4)(n —6)/30
3 (n—2) (1"4,2,2) nn—3)/2
31 (n—2) (1"2,2) n—1

Table 1. Some members of Irry (By(S,,)) irreducible on 2A,,, n > 10.

the partition is not self-conjugate. Table 1 lists the partitions and character degrees for three characters in
Irry (S,,) that restrict irreducibly to 2, completing the proof. O

3C1. Lie type in cross-characteristic for p = 3. In this section, we prove Theorem 3.7 for groups of Lie
type in nondefining characteristic. That is, we deal with the case S is of the form G/Z(G) for G a finite
group of Lie type of simply connected type defined over a field F, with 3{g. (Given Proposition 3.8, this
will complete the proof of parts (i) and (ii) of Theorem 3.7.)

We will use ®,, to denote the m-th cyclotomic polynomial in the variable g. Note that using e.g.,
[Malle 2007, Lemma 5.2], 3 divides ®,, if and only if m = 3id for some i > 0, where d is the order of q
modulo 3, and in this case 3 || $,, unless m =d.

Proposition 3.9. Let S be a simple group of Lie type defined over [, with 3{q and assume S is not one of
the groups PSL;, (q) with n < 3. Then there exist three nontrivial characters x1, x2, x3 € Irrz (Bo(S))""!
such that x1 and x, extend to Aut(S).

Further, if S is not PSLZ (q) nor PSp,(2%) with a odd, then x1, x2, and x3 may be chosen to extend to
Aut(S).

Proof. We may assume that S is not isomorphic to one of the groups considered in Proposition 3.8.
Keep the notation and considerations for G, G, T, and S from Section 3A. By the work of Lusztig
[1988], the unipotent characters of G are trivial on Z(G) and restrict irreducibly to G. Further, when
viewed as characters of S , they are extendible to Aut(S), by [Malle 2008, Theorems 2.4 and 2.5], aside
from some specific exceptions. The only unipotent characters which take irrational values occur for
exceptional groups and have values in QW-1, {3, &5, 4/q), where {3 and (s are third and fifth roots of
unity, respectively, by [Geck 2003, Proposition 5.6 and Table 1]. In any case, the unipotent characters are
oy-invariant, since ,/q is a sum of roots of unity of order relatively prime to 3.

Let d be the order of ¢ modulo 3. In particular, we have d = 1 or 2. If d = 1, unipotent characters of
degree relatively prime to 3 are constituents of the Harish-Chandra induced character R?(l) using [Malle
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T Conditi J Character |
ype ondition on (notation from [Carter 1985, 13.9]) x(D)
d—1 2.2 %q@%d%
1
GZ(Q) ¢1,3 ?qq)zq)6
d=2 G-[1] £q P D¢
1.3 1q 3P
1,3 q®i>
3D4(q) d=1,2 ! o
1,3” q 12
d=1 Ps1 39 P304 Ps
F4(q) ¢8,3’ q3¢i®g¢12
1134202
d=2 Bl,e Eq d>1<1>3CI>8
By 1q DI DI dg
Es(q) d=1,2 $20.2 7>y Ps D5 D)
6 =1,
$20,20 gD, D5PyD s
E6(q) d=1,2 P41 g D4 PsD19P12
4,13 gP PP PP
E7(q) d=1,2 1.1 qP7P 1P 14
7 - 9
$7.46 gD, P4
Es(q) d=1,2 5.1 gD} DD 1> Doy
8 =1,
35,2 G D5 D7D 19D14D15 D20 P30
2 2 1 2
B ) Bola - —1
2(4) Note: 31|S] 2lal #4@ -
q2 — 22m+1 ZBz[b] \/Liq(qz — D
@), Note: 3| (¢>+ 1) cusp 154" @703 (P)* P12(Py)°
q* =2""1 cusp 154" P13 (P 1o (95)’

Table 2. Some unipotent characters in Irry (Bo(S))°" for exceptional types with 31g.

2007, Corollary 6.6]. Further, by [Enguehard 2000, Theorem A], all members of R?(l) lie in the same
block, namely Bo(G).

If d =2, then the centralizer of a Sylow d-torus is a maximal torus, using e.g., [Malle and Spith 2016,
Lemma 3.2]. Unipotent blocks of G are parametrized by certain G-conjugacy classes of pairs (L, A
where L is a d-split Levi subgroup of G and A is a d-cuspidal unipotent character of L, by [Enguehard
2000, Theorem A]. Further, a unipotent character in the block parametrized by (L, ) can have 3'-degree
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n Additional Condition on n, e Partition x(Dyg
n>6 e =2 and n even; or (l,ri2— 1) g —er!
e=1and3t(n—1) (1"=%,2) q—¢
2,n—2) (q" —€")(g" > —€"?)
n=>6 e|n and 31n
B | T (1"4,2,2) (g—€)(g*=1)
n>6 3|n;or (1, 1:2—2) (@" =) (g2 —en2)
e=2andn odd and 3| (n —2) (1"=,3) (g—€)(g*—1)

(1 1 2 n—4) (qn_en)(qn—2_€n—2)(qn—3_€n—3)(qn—5_€n—5)

—V2(n2_1)2(2
n>6|e=2andn oddand 3| (n — 1) (@=%a=D%a"+ 1)

_ Q"= (g" ="
2,n—2) @—o@>=1)
(1,4) )
n=>5 e=1 (g+elg=+1)
(1,1,1,2)
5_
(2,3) L=<
n=>5 e=72 q—c¢
(1,1,3) (@*+1(g*+eg+1)
1,3
n=4 e=2 4.3 q*+eq+1
(1, 1,2)
n=4 e=1 2,2) q*>+1

Table 3. Some unipotent characters in Irry (Bo(S))°' for type A¢_,(g) with n > 4 and 31q.

only when L is the centralizer of a Sylow d-torus, using [Malle 2007, Corollary 6.6]. This yields that
again in the case d = 2, there is a unique block of G containing unipotent characters of 3'-degree.

Hence when 3tgq, every unipotent character in Ir@(é) is a member of Irrg/(Bo(G))“' , and restricts to
a member of Irry (By(G))°! trivial on the center. Then this restriction may be viewed as an element of
Irry (Bo(S))°!, using e.g., [Cabanes and Enguehard 2004, Lemma 17.2].

In particular, since the Steinberg character has degree a power of ¢, it suffices to find two more unipotent
characters of 3’-degree that are not one of the exceptional cases in [Malle 2008, Theorem 2.5]. In what
follows, we will use the notation and degrees for unipotent characters as in [Carter 1985, Sections 13.8
and 13.9].

Exceptional Types. In the case that S is an exceptional group of Lie type defined over F, with 3{g, we
list in Table 2 two unipotent characters invariant under Aut(S) that have degree relatively prime to 3,
completing the proof in this case.

Types A,_1 and *A,,_1, n > 4. In this case, let S be PSL{ (q) with n >4 and € € {£1}. Write e € {1, 2}
for the number such that ¢ = €e (mod 3). That is, e is the order of eg modulo 3. Two unipotent characters
are in the same 3-block of G = GL (¢) if and only if they have the same e-core (see [Fong and Srinivasan



Galois action on the principal block and cyclic Sylow subgroups 1971

1982]). For n > 5 or for (n, ) = (4, 2), the unipotent characters described in Table 3 are Aut(S)-invariant
members of Irry (Bo(S))°!.

Now assume n = 4 and e = 1. Then the unipotent character in the last line of Table 3 is an Aut(S)-
invariant member of Irry (By(S))?". In this case, 1g, Stg, and the character listed are the only unipotent
characters in Irry (§). However, since e = 1, we see that every unipotent character is a member of the
principal block of G, which means that £ (G, 1) is comprised of only one block. Let £ € [F;2 with order 3.
Then taking s to be the element diag(¢, ¢, ¢, 1) of G* = GLj(g), the semisimple character x, € £(G, s)
lies in the principal block of G and is trivial on Z(G) since s € SLi(q) = [G*, G*]. Further, we see using
Lemma 3.1 that x; is fixed by o7.

Since C¢.(s) = GL{(g) x GL5(q), we see

xs(D) = (g +e)g>+1).

Further, since the semisimple classes of G are determined by their eigenvalues and Z (G) is comprised of
scalar matrices, we see that s is not conjugate to sz for any nontrivial z € Z(G). Hence y,|¢ is irreducible,
by the second-to-last paragraph of Section 3A, and is therefore a member of Irry (Bo(G)), since the
principal block of G is the only block covered by the principal block of G. But since Z(G) < Z(G) is
in the kernel of y;, this character is therefore a member of Irry (By(G/Z(G)))° = Irry (Bp(S))?!, again
using [Cabanes and Enguehard 2004, Lemma 17.2]. Note that this character is not Aut(S)-conjugate to
1s, Stg, nor the unipotent character labeled by (2, 2), which completes the proof for § = PSL; (¢) with

n>4.

Types B,, and C,, n > 2. When S is type B,, or C, with n > 2 defined in characteristic different than 3,
Table 4 exhibits at least two distinct unipotent characters in Irry (By(S))°! that are Aut(S)-invariant, with
the exception of the case S = PSp,(2) with a odd. In the latter situation, we may instead consider the
characters indexed by (102) and (0 fla 2

do not consider PSp,(2) = G&¢.) These characters lie in Irr3 (By(S))°" and the latter character extends to

) with degrees £ (g +1) and % (g — 1)?, respectively. (Note that we

Aut(S). (However, we remark that the first character is not Aut(S)-invariant, as in this case it is switched
with (021) under the action of the graph automorphism, by [Malle 2008, Theorem 2.5]).

Type D, and 2D, n > 4. In this case, if S is not Dy (q), Tables 5 and 6 list at least two distinct unipotent
characters that are Aut(S)-invariant members of Irr3 (Bo(S))°'. If S is D4(q) and 3| (¢ — 1), we may
instead take the unipotent characters labeled by symbols ((1) g) and (?) with x (1), = %(q + 1)3(q3 +1)
and (¢2 + 1)?, respectively. When 3 | (g + 1), we may take the characters index by (}) and (° ' > ?), the
latter of which satisfies x (1)y = 3(¢ — 1)3(¢® — 1). O

We next establish Theorem 3.7 for the case that S has cyclic Sylow 3-subgroups, which we recall from
Proposition 3.6 occurs when S = PSL,(q) for 3tg and when S = PSL5(q) for 3| (g +¢€).

Proposition 3.10. Ler S = PSLy(q) with 3tq or PSL5(q) with 3| (q + €). Then there exist nontrivial
X1, X2 € Irry (Bo(S))°" such that x; extends to Aut(S).
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Conditions on ¢, n Symbol | x (1) (possibly excluding factors of 1)
3|(g—1)or
, i 01 @"'+1)(g"+1)
31(g+1ineven;3t(n—Dor | (°) 71
3|(g +1); n odd; 31n
2n_1 n—3_|_1 n—1+1
3| (g —1); 31n (;?—21) (g )(q q4_1)(‘] )
31(g = 1):3f(n—1)or (') (¢"' =1(g"+1)
3| (g +1); neven 0 g—1
Ln-t (@ =D(@*" 2 1)
3 (n—1) ) -1
31(g+1); nodd or °") (" '+ D(g"=1)
31(g —Ds34n ' g-1
3|(g+1);nodd;3|nor
01n @*" " —D(g"=D(@"*+1)
3|(g+1);neven;3|(n—2)or (12) @>—1)?

3[(@—1):3|(n-2)

Table 4. Some unipotent characters in Irrs (By(S))°! for type B,(q) and C,(q) with
n > 2 and 31q.

Proof. First let S = PSLy(g) with 31¢q. In this case, every character of S is either 3-defect zero or has
degree prime to 3. As before, the Steinberg character is a member of Irrs (B (S))°! and extends to Aut(S).
Further, the only two unipotent characters, 1 and Stg, both lie in the principal block of G =GL,(q),
and hence there is a unique unipotent block of G. We may take x; = Stg as before.

Now, let s € G = GL, (q) have eigenvalues ¢, { !, where ¢ € [F;2 has order 3. Then the semisimple
character x; € £(G,s) C &(G, 1) lies in the principal block of G and is trivial on Z(G) since s €
SLy(g) = [G*, G*]. Since sz is not conjugate to s for 1 #£ z € Z(G*), we also see yx, is irreducible on
restriction to G. Further, Lemma 3.1 yields that yx, is fixed by o;. Then the restriction (x;)¢g lies in
By(G) since the principal block of G covers a unique block of G. Finally, in this case x,(1) = ¢ + 1,
where n € {£1} is such that 3 | ¢ — 1. Hence this character may be viewed as a member of Irry (By(S5))°!,
arguing as before.

Now let § = PSL5(q) with 3| (¢ +¢€). Then

S=G=SL5(q) and G*=G =G xZ(G).

Since the unipotent characters of G are 15, Stg, and a character of degree g (g + €), we see that again
By (G) is the only unipotent block of maximal defect (as the other has defect zero). Then every character
of £&3(G, 1) with 3’-degree is a member of By(G). We may again take x; = Stg. Taking s € G* to have
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Conditions on ¢, n Symbol | x (1), (possibly excluding factors of 1)
2n-1) _q
1 q
3 -1 (o) T
12 ("2 =DV —1)
3|n (012) (q2_1)2(q2+1)
3ln=2)or ("3?) (@D =D(g"=D(g"*+ 1)
31(g+1);3|n;n odd 2 (@>=1D2(g>+1)

3|(q—1),3|(n—1) or (ln—l) (qn_l)(qn—Z_1)(qn—1+1)(qn—3+1)
3| (g +1); n odd (g—1)*(g>+1)

3[(@—=1D;3|(n—=2)or

(©ry | @D D@ =D 4]

3| (g +1); 3tn; n even or -1

31(g+1);3|n;n odd
31(g—1);3tn or
Sl@+3le=Dor |, (@ D@2+1)
31(g+1);3|(n—2); neven or q*—1
31(g+1);3|n;n odd

Table 5. Some unipotent characters in Irry (By(S))°! for type D, (q) with n > 5 and 3tq.

eigenvalues {¢, ¢ -1 1}, where ¢ € [F;2 has order 3, the corresponding character of G has degree q3 —€,
and we may again view (x;)¢ as a character of Irrs (By(S))°!. Il

Proposition 3.11. Let S =PSL5(q) with 3| (q —e€). Then there exist nontrivial x1, x2, x3 € Irr3 (Bo(S5))”!
such that x| and x, extend to Aut(S).

Proof. In this case, we see that all three unipotent characters are members of Irrgf(é) and that there
is a unique unipotent block By(G). Further, the unipotent characters are rational-valued, and therefore
are members of Ing/(Bo(G))”‘. Then we may take x; and x» to be the restrictions to G (viewed as a
character of §) of the two nontrivial unipotent characters.

The semisimple element s € G* with eigenvalues {z, ¢!, 1}, where ¢ € [F;2 has order 3, is now
conjugate to sz where z = ¢ - I3 € Z(G™). The corresponding semisimple character has degree x;(1) =
(g + e)(q2 +eqg+1),s0 x5 € Irlr(Bo(G))"1 satisfies 3 || x;(1) and is not irreducible on restriction to G.
Then the constituents of the restriction to G are members of Irry (By(G)), and are trivial on Z(G) since
s € [G*, G*] = G, so it suffices to see that they are also oj-invariant, using the character table available
in CHEVIE. O

Together, Propositions 3.9 through 3.11 yield Theorem 3.7 for the simple groups of Lie type in
nondefining characteristic, completing parts (i) and (ii).
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Conditions on ¢, n Symbol | x(1)4 (possibly excluding factors of )
2n-1)_q
01 q
34— 1) ("1") T
3|(n—1)or
31(@—1);3|nor 1 n—1 (@"+1D(g"*=1)
() b

31(q+1);3|n; neven or

31(g+1);3](n—2); nodd
31(g—1);3t(n—1) or
31(g+1D;3](n—2)or

(272 (@*" V-1 (@"+ D" -1
(g>—12(g>+1)

31(g+1);3|n;neven

(0 1 2n) (qz(”_”—l)(qz(”_z)—l)
(q>—1%(g*+1)

3|n

3[(@—1;31(n—=1)

31 (g +1); 3fn; n odd ("20 @"+D(@" "+ D(@" =D (g" -1

(q>—1)?

3|(g+1);3|n;n even
3[(@—=1);3n

31(g+1);31(n—1;neven | (1771

@"+D@" ' =D(@"*=D(@" >+
(g%>—1)?

31(g+1);3|(rn—2);nodd

Table 6. Some unipotent characters in Irry (Bg(S))°! for type D, (¢) with n > 4 and 31q.

3C2. Lie type in defining characteristic for p = 3. We now consider the case S is as in Section 3A1 with
G of simply connected type defined in characteristic 3. Let (G*, F*) be dual to (G, F). Keep in mind
the notations and considerations of Section 3A, where now ¢ is a power of 3. Note that 1S /S| =1Z(G)|,
and this is 1 unless G is of classical type or G = E7 5.(q).

Since G/G has size prime to 3, it follows that any irreducible character of G lying under Irr3 (G) is
a member of Irry (G). Since |o1| is a power of 3, we further see that for any x € Ir@(@)“' , there is a
member of Irry (G)°! lying under . We also have Irry (By(S)) = Irry (S), so any member of Irry (G)
with Z(G) in its kernel may be viewed as a member of Irr3 (By(S)).

Now, given a semisimple element s € G*, we have |s| is prime to 3, and hence the Lusztig series
£(G, s) is fixed by o] using Lemma 3.1. Then in particular, the unique semisimple character ¥, € Irry (G)
in this series must be fixed by o;. To illustrate three nontrivial characters of Irry (G)?' that are not
Aut(S)-conjugate, it therefore suffices to show that there are semisimple elements 1 # s, 52, 53 € G*

such that
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(1) s; is not G*-conjugate to s}pz fori # j,z € Z(G*), and ¢ any (possibly trivial) graph-field automor-
phism.

In most cases, we further ensure that one of these characters is Aut(S)-invariant, by choosing s; so that
(2) the class of s; is invariant under graph-field automorphisms and
(3) s1 is not é*—conjugate tosiz forany 1 £z € Z(G*).

Property (2) will ensure that x;, is invariant under graph-field automorphisms, using [Navarro et al. 2008,
Corollary 2.4], and property (3) will imply that x;, restricts irreducibly to G, so the resulting character of
G is Aut(S)- and o;-invariant. Finally, we will choose sy, 52, and s3 such that

4) s; € [G*, G*] fori=1,2,3,

so that the y, are trivial on Z (G), ensuring that all three characters of G may be viewed as characters of
Irry (Bp(S))°! from the above discussion.

Proposition 3.12. Let S = G2(q), *Da(q), *G2(q), E{ (q), E7(q), Fi(q) or Es(q) be simple with q a
power of 3. Then there exist nontrivial x1, x2, x3 € Irrs (Bo(S))°! that are pairwise not Aut(S)-conjugate
and such that | is Aut(S)-invariant.

Proof. Note that we may assume S is not one of the groups from Proposition 3.8. The character degrees in
these cases are available at [Liibeck 2007]. If S is G2(q), *D4(q), ’G2(q), Es(q). *Es(q), F4(q) or Es(q),
then G = G = § and there is a nontrivial odd character degree of multiplicity one, which therefore must
be o1- and Aut(S)-invariant. Similarly, E7(g) has a unique character of degree @3 cP7DPgP 1, D14 P 3,
which restricts irreducibly from a character of S = E7(q)aq. Finally, in each case there are at least two
more semisimple characters with different degrees, which must yield members of Irry (By(S))°! by the
above discussion. O

Proposition 3.13. Let S = PSL{ (q) be simple with q a power of 3 and n > 2 and let X < Aut(S) such
that X /S is a Sylow 3-subgroup of Aut(S)/S. Then there exist nontrivial x1, x2, x3 € Irrz (Bo(S))°" that
are pairwise not Aut(S)-conjugate and such that x| is X-invariant. Further, if n > 3, then x| may be

chosen to be Aut(S)-invariant, and if n > 5, then x1, x2, x3 may all be chosen to be Aut(S)-invariant.

Proof. Throughout, let 6 € [F;2 have order 4 and assume § is not isomorphic to one of the groups in
Proposition 3.8. Recall that the conjugacy classes of semisimple elements in G* = GL;,(¢) are determined
by their eigenvalues and that Z(G*) is comprised of scalar matrices.

If n =2, then |S/S| =2 and Aut(S)/S is generated by a field automorphism. The semisimple elements
51, 52, and s3 with eigenvalues {8, 87"}, {¢1, ¢, '}, and (&1, &'} with ¢; € F) and & € F5 \F; and
|&] # 4 # |¢| satisfy properties (1), (2), and (4). Now, since x;, is fixed by field automorphisms, and
hence by X, and since |S/S| is relatively prime to 3, we see that the irreducible constituents of the
restriction (X, )¢ are still fixed by X and by o;. If n =3 or 4, then s1, 52, 53 satisfy (1)—(4) if chosen to
have eigenvalues {8, 8!}, {—1, —1}, and {&, £~!} with remaining eigenvalues 1, where |£| > 2 divides
g+nifd|qg—n.



1976 Noelia Rizo, A. A. Schaeffer Fry and Carolina Vallejo

Now suppose that n > 5. Consider semisimple elements sy, 55, and s3 of G* = GL; (¢) with eigenvalues
8,87, 1,...,1),(=1,=1,1,..., 1),and (6,871, 8,871, 1,..., 1), respectively. If n = 6, instead define
s3 to have eigenvalues (—1, —1, —1, —1, 1, 1). Then these satisfy (1)—(4), and in fact properties (2)
and (3) are held by all three elements. Hence the corresponding semisimple characters yx,, of G are
invariant under graph-field automorphisms and restrict irreducibly to members of Irry (Bo(G))°! that are
trivial on Z(G). Hence these restrictions are members of Irry (By(S))°" invariant under Aut(S). O

Proposition 3.14. Let g be a power of 3. Let S = PSp,,(q), PQ2,+1(q), or PQ; (q) be simple with
n > 2,3, 4 respectively. Then there exist nontrivial x1, x2, x3 € Irry (Bo(S))°! that are pairwise not
Aut(S)-conjugate and such that x| is invariant under Aut(S).

Proof. We may again assume S is not one of the groups in Proposition 3.8. Let § € I]:qx2 with |§| =4, and
we keep the notation from Section 3A. Let ® and A := {«], a2, ..., &} be a system of roots and simple
roots, respectively, for G* with respect to a maximal torus T*, following the standard model described in
[Gorenstein et al. 2002, Remark 1.8.8]. Then @ is type B, C,,, or D, in the case S=PSp,,,(¢), P2,+1(q),
or PQ;EH (g), respectively. Further, ® has no nontrivial graph automorphism unless we are in the case of
D,,, in which case all members of A have the same length and that automorphism has order 2 unless n = 4.

We use the notation as in [Gorenstein et al. 2002] for the Chevalley generators. In particular, given o € @,
let hy denote the corresponding coroot. Let K := [G*, G*], so we have h,(t) € K fort € [l_:; by [loc. cit.,
Theorem 1.10.1(a)] and G* = K.Z(G™). Notice that for s, s" € K (not necessarily distinct), we have s is
G*—conjugate tos'zforzeZ (G*) if and only if z € Z(K) and the conjugating element can be chosen in K.

By [Gorenstein et al. 2002, Theorem 1.12.4] and [Cabanes and Enguehard 2004, 15.1], K is isomorphic
as an abstract group to the simply connected simple algebraic group (G*),. associated to G*, and the
Chevalley relations and generators of (G*)sc and K may be identified. We will make this identification.
In particular, choosing s;, 57, and s3 in K, the properties (1)—(3) may be verified by computation in K
rather than G*.

Let T denote a maximal torus of K under this identification, and note that

T =(he(t)|teF,aec® and Ng(T)=(T,nu(l)|ac®).

Further, note that
W = Ng.(T*)/T* = Ng(T)/T.

By [Digne and Michel 1991, Corollary 0.12], we know that N (T') controls fusion in 7', so two elements
of T are conjugate if and only if there is a conjugating element in W. Further, we have an isomorphism
()" — T given by (11, ..., 1) = [Ti—, ha, (5).

Now using the standard model for ® and A as in [Gorenstein et al. 2002], since @ is type B,, C,,
or D,, we have o; :==¢; —e;4 for 1 <i <n —1, where {ey, ..., e,} is an orthonormal basis for the
n-dimensional Euclidean space. Here W < C>:&,, where the generators of the base subgroup C7 act
via negation on the ¢; and the copy of G,, permutes the e;.
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Using this information and the description of Z(K) in [Gorenstein et al. 2002, Table 1.12.6], compu-
tation with the Chevalley relations yields that the element 5| := /g, () is not G*-conjugate to 51z for any
1 #£z€ Z(G*). If § € F*, we see that s1 is F*-fixed, and we write 51 := s|. Otherwise, let §,, € W induce
the reflection corresponding to «;. Then s; := s;g is F*-fixed, where g € G* satisfies g ' F*(g) = $q.
(Note that such a g exists by the Lang—Steinberg theorem.)

Let F3 denote a generating field automorphism such that F3(h,(t)) = hg () fora e ®andr e I]_:;.
Then s} is G*-conjugate to F3(s}), taking for example $,, as the conjugating element. Hence s; is also
G*-conjugate to F3(s;). Since the Cg+(¢*(s1)) is connected, using [Bonnafé 2005, Corollary 2.8(a)], this
yields that the é*—conjugacy class of s is fixed by field automorphisms, using [Digne and Michel 1991,
(3.25)]. Further, by construction, the G*-conjugacy class of s; is fixed by graph automorphisms unless
® is type Dy. In the latter case, we may make similar considerations using s := hq, (8).

Now, further taking s, := hy, (—1) and s3 € K* " an element of order larger than 4, we obtain properties
(H)-(4). OJ

Theorem 3.7 now follows from Propositions 3.8—3.14, completing the proof of Theorem A.
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