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Galois action on the principal block
and cyclic Sylow subgroups

Noelia Rizo, A. A. Schaeffer Fry and Carolina Vallejo

We characterize finite groups G having a cyclic Sylow p-subgroup in terms of the action of a specific
Galois automorphism on the principal p-block of G, for p = 2, 3. We show that the analog statement for
blocks with arbitrary defect group would follow from the blockwise McKay–Navarro conjecture.

Introduction

One of the most prevalent questions in the representation theory of finite groups is to determine what
relationships hold between the set Irr(G) of irreducible complex characters of a finite group G and its
local structure, such as the structure of a Sylow p-subgroup P of G. There is, of course, the more
sophisticated question of relating the set Irr(B) of irreducible characters belonging to a given Brauer
p-block B of G with the structure of a defect group D of B.

G. Navarro and P. H. Tiep [2019] conjecture that for a prime p, one can determine the exponent of the
abelianization of P in terms of the action of certain Galois automorphisms on Irr(G). To be more precise,
for a fixed prime p and an integer e ≥ 1, let σe ∈ Gal(Qab/Q)= G be such that σe fixes p′-roots of unity
and sends any root of unity of order a power of p to its (pe

+1)-st power. In [Navarro and Tiep 2019] it is
proven that the exponent of P/P ′ is less than or equal to pe whenever all of the irreducible characters of
p′-degree of G are σe-fixed, and the converse is reduced to a question on finite simple groups. (Thanks to
Malle [2019] we know that the converse holds for p = 2.)

In the present work, we show that one can determine whether P is cyclic (for small primes) by just
counting the number of certain σ1-invariant elements of Irr(B0), where B0 is the principal p-block of G.
This is the main result of our paper.
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Theorem A. Let G be a finite group of order divisible by p, where p ∈ {2, 3}. Let P ∈ Sylp(G) and let
B0 be the principal p-block of G. Then

|Irrp′(B0)
σ1 | = p if, and only if, P is cyclic,

where Irrp′(B0)
σ1 is the set of irreducible characters in B0 with degree relatively prime to p that are fixed

under the action of σ1.

With the definition above, σ1 is an element of the subgroup H ≤ G consisting of all σ ∈ G for which
there exists some integer f such that σ(ξ)= ξ p f

whenever ξ is a root of unity of order not divisible by p.
Navarro predicted [2004, Conjecture A] the existence of bijections for the McKay conjecture commuting
with the action of H on characters. This is the celebrated McKay–Navarro conjecture (sometimes also
referred to as the Galois–McKay conjecture), which has been recently reduced to a question on finite
simple groups in [Navarro et al. 2019]. The McKay–Navarro conjecture admits a blockwise version
[Navarro 2004, Conjecture B], which remains unreduced at the present moment and which we will refer
to as the Alperin–McKay–Navarro conjecture, as it can also be seen as a refined version of the celebrated
Alperin–McKay conjecture. In this context, it is natural to wonder the extent to which Theorem A holds
for arbitrary blocks. We propose the following.

Conjecture B. Let p ∈ {2, 3}. Let G be a finite group and let B be a p-block of G with nontrivial defect
group D. Then

|Irr0(B)σ1 | = p if, and only if, D is cyclic,

where Irr0(B)σ1 is the set of height zero irreducible characters in the block B that are fixed under the
action of σ1.

We prove that Conjecture B follows from the Alperin–McKay–Navarro conjecture. In this sense,
Theorem A provides more evidence of the elusive Alperin–McKay–Navarro conjecture. Since the latter
holds whenever D is cyclic, by work of Navarro [2004], it follows that the “if” direction of Conjecture B
(and of Theorem A) holds. For many consequences of the (Alperin–)McKay–Navarro conjecture, the state-
ments take different forms depending on the prime (see, for instance, [Navarro et al. 2007; Schaeffer Fry
2019]). This might well be the case here, however, we are not yet aware of such a statement for p > 3.

To prove Theorem A, we use the classification of finite simple groups. In particular, we contribute to
the problem of understanding Galois action on the characters in blocks of nonabelian simple groups in
the following way.

Theorem C. Let S be a nonabelian simple group of order divisible by p ≤ 3, P ∈ Sylp(S) and X ∈
Sylp(Aut(S)). Let B0 be the principal p-block of S.

(a) If P is cyclic, then p = 3 and Irrp′(B0)
σ1 = {1S, φ1, φ2}, where the φi are nontrivial and not

Aut(S)-conjugate, and some φi is X-invariant.

(b) If P is not cyclic, then Irrp′(B0)
σ1 ⊇ {1S, φ1, . . . , φp}, where the nontrivial φi are pairwise not

Aut(S)-conjugate, and some φi is X-invariant.
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This paper is structured as follows. In Section 1 we prove that Conjecture B follows from the Alperin–
McKay–Navarro conjecture. To do so, we study the action of σ1 on the irreducible characters of blocks
with normal defect group. The rest of the paper is devoted to proving Theorem A. In Section 2, we reduce
Theorem A to statements on finite simple groups, and in Section 3 we prove Theorem C thus completing
the proof of Theorem A.

1. Blocks with normal defect group

The aim of this section is to prove that Conjecture B follows from the Alperin–McKay–Navarro conjecture,
stated below.

For a fixed prime p, consider the set Bl(G) of Brauer (p-)blocks of G as in [Navarro 1998], so that
Bl(G) is a partition of Irr(G)∪ IBr(G) (recall that p-Brauer characters are defined on p-regular elements
of G). Write Irr(B) = B ∩ Irr(G) and IBr(B) = B ∩ IBr(G) for any B ∈ Bl(G). Every block B has
associated a uniquely defined conjugacy class of p-subgroups of G, namely its defect groups. Given a
block B of G with defect group D, we write B ∈ Bl(G | D) and we let b ∈ Bl(NG(D) | D) denote its
Brauer first main correspondent. Finally, χ ∈ Irr(B) has height zero in B if χ(1)p = |G : D|p, and we
write Irr0(B) to denote the subset of height zero characters in Irr(B).

Assuming the notation of the introduction, we have that the group G acts on {Irr(B) | B ∈ Bl(G)}
by [Navarro 1998, Theorem 3.19]. The group H further acts on the set Bl(G) by [Navarro 2004,
Theorem 2.1]. While the action of G on characters is not natural enough in global-local contexts, Navarro
[2004] conjectured the following.

Conjecture (Alperin–McKay–Navarro conjecture). Let B ∈ Bl(G | D) and let b ∈ Bl(NG(D) | D) be its
Brauer first main correspondent. If σ ∈H, then

|Irr0(B)σ | = |Irr0(b)σ |.

Here we are only concerned with the action of a specific element of H, namely σ1. Recall that σ1 ∈H
fixes p′-roots of unity and sends any root of unity of order a power of p to its (p+1)-st power. If G is a
finite group of order dividing some integer n and ξn is a primitive n-th root of unity, then by elementary
number theory, the restriction ω of σ1 to the n-th cyclotomic field Q(ξn) has order a power of p, and ω
acts as σ1 on the ordinary characters of every subgroup of G. Abusing notation, we will also write σ1

for any such restriction. In particular, σ1 fixes the elements of IBr(G), and hence acts trivially on Bl(G).
(Note that in general G does not act on IBr(G), but H does by Theorem 2.1 of [Navarro 2004].)

In order to prove that Conjecture B follows from the Alperin–McKay–Navarro conjecture, we need to
study blocks with a normal defect group. We follow the notation in Chapter 9 of [Navarro 1998]. Let
B ∈ Bl(G | D) and assume that D GG. Write C = CG(D). We will denote by b ∈ Bl(CD | D) a root
of B, and we will let θ ∈ Irr(b) be the canonical character associated with B, which is unique up to
G-conjugacy (see [Navarro 1998, Theorem 9.12] and the subsequent discussion). Recall that D ⊆ ker θ
and θ has p-defect zero when viewed as a character of CD/D (that is, θ(1)p = |CD : D|p), the stabilizer
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of the block b is Gb = Gθ , and the inertial index |Gθ : CD| is not divisible by p. In this situation,
Irr(b)= {θλ | λ∈ Irr(D)}, where the irreducible characters θλ ∈ Irr(CD) are defined for x ∈CD as follows:
θλ(x)= λ(x p)θ(x p′) if x p ∈ D and θλ(x)= 0 otherwise. One can see that

Gθλ = Gθ ∩Gλ.

Let c ∈ Bl(Gb | D) be the Fong–Reynolds correspondent of b and B as in [Navarro 1998, Theorem 9.14].
Then the induction map Irr(c)→ Irr(B) defines a height-preserving bijection. By [loc. cit., Theorems 9.21
and 9.22] c = bGb is the only block of Gb that covers b and

Irr(B)=
⋃

λ∈Irr(D)

Irr(G | θλ). (1)

It is not difficult to see that height zero characters of B further lie over characters parametrized by linear
characters of D, so that

Irr0(B)=
⋃

λ∈Irr(D/D′)

Irr(G | θλ). (2)

In order to explicitly describe the set Irr0(B)σ1 when the defect group of B is normal we will use the
following technical lemma.

Lemma 1.1. Let G be a finite group and let p be a prime. Suppose that B is a block of G with normal
defect group D. Let b be a root of B with canonical character θ . Write A = 〈σ1〉 ≤ Gal(Q(ξ|G|)/Q). If λ
is a linear character of D, then let Gθ A

λ
= {g ∈ G | (θλ)g = (θλ)a for some a ∈ A}. With this definition

Gθ A
λ
= Gθλ = Gθ ∩Gλ.

Proof. Write C = CG(D). Recall that b is a block of CD of defect D and θ ∈ Irr(CD) has defect zero
as a character of CD/D. Note that θ is A-fixed since ba

= b for every a ∈ A. Let g ∈ Gθ A
λ

. We start by
proving that g ∈ Gθ . Since θ is A-fixed, by the definition of θλ we have (θλ)g = (θλ)a = θλa for some
a ∈ A. Evaluating on D we see that

θ(1)λa(x)= θλa (x)= θ g
λ (x)= θ(1)λ

g(x),

for every x ∈ D. Hence λg
= λa . Let x ∈ CD be such that x D ∈ (CD/D)0, the set of p-regular elements

of CD/D, and notice that x p ∈ D. (Otherwise θ(x)= 0.) Then

λg(x p)θ
g(x p′)= θ

g
λ (x)= θ

a
λ (x)= λ

a(x p)θ(x ′p)= λ
g(x p)θ(x ′p).

This implies θ g(x p′)= θ(x p′). Since x D = x p′D, then θ g
= θ and g ∈ Gθ .

Next we prove that g ∈ Gλ. We know that λg
= λa for some a ∈ A, and that g ∈ Gθ . Since Gθ/CD is

a p′-group, then λgm
= λ for some integer m relatively prime to p. In particular, λam

= λ and the order
of a as an element of Gal(Q(λ)/Q) = Gal(Q(ξo(λ))/Q) divides m, which forces a = 1 and λg

= λ, as
wanted. �
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Lemma 1.2. Let G be a finite group and let p be a prime. Suppose that B is a block of G with a normal
defect group D. Let b be a root of B with canonical character θ . Then

Irr0(B)σ1 =

⋃
λ∈Irr(D/8(D))

Irr(G | θλ),

where 8(D) is the Frattini subgroup of D. Moreover, if c ∈ Bl(Gb | D) is the Fong–Reynolds correspon-
dent of B, then

|Irr0(B)σ1 | = |Irr0(c)σ1 |.

Proof. First notice that as a p-group, D has a unique block, the principal one, and Irr0(B0(D)) =
Irrp′(D) = Irr(D/D′). Then Irrp′(D)σ1 = Irr(D/8(D)). Since D/8(D) is p-elementary abelian, one
inclusion is straight-forward. To see that Irrp′(D)σ1 ⊆ Irr(D/8(D)) notice that if λ ∈ Irr(D/D′) is
σ1-fixed, then λσ1 = λp+1

= λ, and hence |D/ ker λ| ≤ p, implying 8(D)⊆ ker λ.
Write A = 〈σ1〉 and let Gθ A

λ
be as in Lemma 1.1. By (2), we know that

Irr0(B)=
⋃

λ∈Irr(D/D′)

Irr(G | θλ).

If χ ∈ Irr0(B)σ1 lies over θλ, then (θλ)σ1 = (θλ)
g, for some g ∈G. In particular, g ∈Gθ A

λ
=Gθλ =Gθ ∩Gλ

by Lemma 1.1. Then λσ1 = λg
= λ. Hence 8(D)⊆ ker λ and λ ∈ Irr(D/8(D)).

Conversely, let χ ∈ Irr(G | θλ), where λ ∈ Irr(D/8(D)). Then λσ1 = λ. As bσ1 = b, we see σ1 fixes θ
too. Then (θλ)σ1 = θλ. Let ψ ∈ Irr(Gθλ) be the Clifford correspondent of χ over θλ. Since Gθλ ⊆ Gθ ,
we know that p does not divide the order of Gθλ/CD. By [Navarro and Tiep 2019, Lemma 5.1], ψ is
σ1-invariant and so is χ .

To prove the last part of the statement, recall that the Fong–Reynolds correspondence states that the
induction map ψ 7→ ψG provides a bijection Irr0(c)→ Irr0(B). In particular, |Irr0(c)σ1 | ≤ |Irr0(B)σ1 |.
Now let χ ∈ Irr0(B)σ1 lie over θλ, for some λ ∈ Irr(D/8(D)) by the first part of this proof. Then
(θλ)

σ1 = (θλ)
g for some g ∈ G. In particular, g ∈ Gθ A

λ
. Since Gθ A

λ
= Gθλ by Lemma 1.1, θλ is σ1-fixed.

Let ξ ∈ Irr(Gθλ | θλ) be the Clifford correspondent of χ . Since both χ and θλ are σ1-fixed then so is ξ .
We have that ξGb is the Fong–Reynolds correspondent of χ by the transitivity of block induction (see
[Navarro 1998, Problem 4.2]), which is σ1-fixed. �

The Alperin–McKay–Navarro conjecture holds for blocks with cyclic defect groups by [Navarro 2004,
Theorem 3.4]. We obtain the following as a consequence of this fact.

Lemma 1.3. Let G be a finite group and let B be a block of G with cyclic defect group D. Then

1≤ |Irr0(B)σ1 | ≤ p.

The set Irr0(B)σ1 has minimal size 1 if , and only if , D is trivial. Furthermore, if p ∈ {2, 3} and D is
nontrivial, then

|Irr0(B)σ1 | = p.
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Proof. By [Navarro 2004, Theorem 3.4], we may assume that D G G. Write C = CG(D) ⊇ D. Let
b ∈ Bl(C | D) be a root of B with canonical character θ . By Lemma 1.2, we may assume that θ is
G-invariant (in particular, G/C is a p′-group) and

Irr0(B)σ1 =

⋃
λ∈Irr(D/8(D))

Irr(G | θλ)⊆ Irr(G/8(D)).

Write G = G/8(D) and use the bar convention. Let F = CG(D), where 8(D) ⊆ F ≤ G. We claim
that F = C . Clearly C ⊆ F . Note that F acts trivially on D and coprimely on D. By [Isaacs 2008,
Theorem 3.29] we have that F acts trivially on D as well. Thus F = C as claimed.

Notice that since D is cyclic and G/C is a p′-group, then G/C is isomorphic to a subgroup of Cp−1.
Say |G/C | = m and let {λi }

t
i=1 be a complete set of representatives of the G/C-orbits on Irr(D) \ {1D},

where here we view Irr(D)⊆ Irr(D), and with this identification Irr(D) are exactly the elements of Irr(D)
with order dividing p. Note that ker λi =8(D) for all 1≤ i ≤ t , hence Gλi =C for every 1≤ i ≤ t , and all
the orbits of the action of G/C on Irr(D)\{1D} have the same size m. In particular, t = (p−1)/m. Since
θ is G-invariant, for every 1≤ i ≤ t we have that Gθλi

= Gλi = C , and by the Clifford correspondence,
|Irr(G | θλi )| = |Irr(C | θλi )| = 1. Also, since G/C is cyclic, θ extends to G and therefore by Gallagher
theory |Irr(G | θ)| = m. Then

|Irr0(B)σ1 | = |Irr(G | θ)| +
t∑

i=1

|Irr(G | θλi )| = m+ t = m+
p− 1

m
≤ p.

Note that if p= 2, 3 then m+ (p−1)/m = p, whenever m divides p−1. Also notice that |Irr0(B)σ1 | = 1
if, and only if, D = 1. �

The upper bound in Lemma 1.3 is not generally attained if p > 3, as shown by the dihedral group D2p,
which satisfies |Irr(B0(D2p))

σ1 |< p. We care to remark that the numerical condition |Irr0(B)σ1 | ≤ p does
not generally imply that a defect group D of B is cyclic. For instance, for p = 11, the semidirect product
H = F2

11 o SL2(5) satisfies |Irr11′(B0(H))σ1 | = |Irr(H)| = 10. (We would like to thank Gabriel Navarro
for providing us with this example.)

We will need the following divisibility result, which we obtain by adapting the proof of [Gow 1979,
Theorem 5.2].

Lemma 1.4. Let G be a finite group, let p ∈ {2, 3}, and let B be a block of G with nontrivial defect
group D. Then p divides |Irr0(B)σ1 |.

Proof. Write

ψ =
∑

χ∈Irr(B)

χ(1)χ, (3)

and notice that ψ is a character of G that vanishes on p-singular elements by the weak block orthogonality
relation (see [Navarro 1998, Corollary 3.7]). In particular, ψP = fρP for some natural number f , where
ρP denotes the regular character of P .
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Let Irr(B) = {χ1, . . . , χt } and write χi (1) = pa−d+hi bi , where |P| = pa , |D| = pd , hi ≥ 0 is the
height of χi and p does not divide bi , for 1≤ i ≤ t . Arrange the elements in Irr(B) in such a way that
Irr0(B)= {χ1, . . . , χk}, so that h j ≥ 1 for all k+ 1≤ j ≤ t . By [Navarro 1998, Theorem 3.28] we have
that ψ(1)= p2a−dc, where c is a nonnegative integer relatively prime to p. Thus, evaluating (3) at 1 ∈ G
we obtain

pdc =
k∑

i=1

b2
i +

t∑
j=k+1

p2h j b2
j .

As d ≥ 1, we get
∑k

i=1 b2
i ≡ 0 mod p. Since p ∈ {2, 3}, we have that b2

i ≡ 1 mod p for every 1≤ i ≤ k,
and hence k is divisible by p.

Recall that the group A = 〈σ1〉 acts on Irr0(B), and as such, we may view A as having order a power
of p. Since |Irr0(B)σ1 | = |Irr0(B)A

|, we obtain that p divides |Irr0(B)σ1 | by the class equation for group
actions. �

The conclusion of the result above does not hold if p > 3, as the dihedral group D2p provides a
counterexample. Indeed, D2p has a unique p-block and every irreducible character has p′-degree and is
σ1-fixed. Hence |Irrp′(B0(D2p))

σ1 | = |Irr(D2p)| = 2+ (p− 1)/2< p.
Finally, we prove the main result of this section.

Theorem 1.5. Let p ∈ {2, 3}. Let G be a finite group and let B be a p-block of G with a nontrivial normal
defect group D. Then

|Irr0(B)σ1 | = p if, and only if, D is cyclic.

In particular, Conjecture B follows from the Alperin–McKay–Navarro conjecture.

Proof. By Lemma 1.3 we know that the “if” implication holds. We now assume that |Irr0(B)σ1 | = p and
we work to show that D is cyclic.

Write C = CG(D) and let θ ∈ Irr(CD) be the canonical character of B. Let {λi }
t
i=1 be a complete

set of representatives of the G/CD-orbits on Irr(D/8(D)) \ {1D}. By Lemma 1.2 we may assume that
Gθ = G and

Irr0(B)σ1 =

t⋃
i=1

Irr(G | θλi )

is a disjoint union. If p = 2, then

2= |Irr0(B)σ1 | = |Irr(G | θ)| +
t∑

i=1

|Irr(G | θλi )|.

Since D is nontrivial by hypothesis, we have that t ≥ 1. Thus t = 1 and the characters θ and θλ1 are fully
ramified with respect to their inertia subgroups. In particular, there are positive integers e and e1 such that
|G : C | = e2 and |Gθλ1

: C | = e2
1. Suppose that |D| = 2n . Since G/CD acts transitively on the nontrivial

elements of D/8(D), we have that 2n
− 1= |G : Gλ1 | = (e/e1)

2
= f 2. The equality f 2

+ 1= 2n forces
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f to be odd, then f 2
≡ 1 mod 8, and so f 2

+ 1≡ 2 mod 8 leaves as the only possibility n = 1= f , that
is, D = C2, as wanted. These techniques do not totally suffice to prove the case where p = 3. We first
need to show that we may assume 8(D)= 1. Indeed, write G = G/8(D), D = D/8(D) and let B be a
block of G contained in B such that D is the defect group of B by [Navarro 1998, Theorem 9.9]. Then
Irr0(B)σ1 ⊆ Irr0(B)σ1 . By Lemma 1.2 we have that Irr0(B)σ1 = Irr(B) is nonempty. Hence by Lemma 1.4,
we have that p divides |Irr0(B)σ1 | ≤ |Irr0(B)σ1 | = p, that forces |Irr0(B)σ1 | = p. If 8(D) 6= 1 we can
apply induction to obtain that D is cyclic, and thus D is cyclic. Hence we may assume that 8(D)= 1.
Since D is p-elementary abelian, then Irr0(B)σ1 = Irr(B) by the description of these sets in (1) and
Lemma 1.2. By [Sambale 2014, Proposition 15.2], if p = 3 then |Irr(B)| = p implies |D| = p and the
proof is finished. �

2. Reducing to simple groups

The aim of this section is to reduce the statement of Theorem A to a problem on simple groups that we
will solve in Section 3.

2A. Preliminaries. We start these preliminaries with results concerning the action of Galois automor-
phisms on characters belonging to principal blocks. Recall that χ ∈ Irr(B0(G)) if, and only if,∑

x∈G0

χ(x) 6= 0,

where G0 is the subset of elements of G of order not divisible by p. Some properties of characters in the
principal block are listed below.

Lemma 2.1. Let G be a finite group, and let N GG.

(a) We have that Irr(B0(G/N ))⊆ Irr(B0(G)), with equality whenever N is a p′-group.

(b) If Hi are finite groups and γi ∈ Irr(B0(Hi )), for i=1, . . . , t , then γ1×· · ·×γt ∈ Irr(B0(H1×· · ·×Ht)).

Proof. The first part of (a) and (b) follow directly from the definition of principal block [Navarro 1998,
Definition 3.1]. The second part of (a) is [loc. cit., Theorem 9.9.(c)]. �

We summarize below some results obtained in Section 1, here stated with respect to the principal block.
The first part was first observed by G. Navarro (in private communication).

Lemma 2.2. Let G be a finite group and let P be a Sylow p-subgroup of G.

(a) If P is normal in G, then Irrp′(B0(G))σ1 = Irr(G/Op′(G)8(P)).

(b) If P is cyclic, then 1≤ |Irrp′(B0(G))σ1 | ≤ p.

(c) If P is nontrivial and p ∈ {2, 3}, then |Irrp′(B0(G))σ1 | 6= 0 is divisible by p.
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Proof. To prove part (a), assume that P GG. Then G is p-solvable and by Fong’s theorem [Navarro 1998,
Theorem 10.20] Irr(B0(G))= Irr(G/Op′(G)). Hence we may assume that Op′(G)= 1 and, in particular,
CG(P)⊆ P . By Lemma 1.2

Irrp′(B0(G))σ1 = Irrp′(G)σ1 =

⋃
λ∈Irr(P/8(P))

Irr(G | λ)= Irr(G/8(P)).

Part (b) is a straightforward application of Lemma 1.3. Part (c) is a direct consequence of Lemma 1.4. �

Next is a classical result by J. L. Alperin and E. C. Dade.

Theorem 2.3. Suppose that N is a normal subgroup of G and G/N is a p′-group. Let P ∈ Sylp(G) and
assume that G = N CG(P). Then restriction of characters defines a bijection Irr(B0(G))→ Irr(B0(N )).
In particular, |Irrp′(B0(G))σ1 | = |Irrp′(B0(N ))σ1 |.

Proof. The case where G/N is solvable was proved in [Alperin 1976, Lemma 1.1]. The general case in
the main result of [Dade 1977]. The latter statement follows since σ1 acts on Irrp′(B0(G)). �

We will also use the following.

Lemma 2.4. Suppose that G is a finite group, P ∈Sylp(G) and PCG(P)≤ H ≤G. If θ ∈ Irrp′(B0(H))σ1 ,
then there exists a some χ ∈ Irrp′(B0(G))σ1 lying over θ .

Proof. Note that B0(H)G = B0(G) by the comments before [Navarro 1998, Theorem 9.24] and Brauer’s
third main theorem [loc. cit., Theorem 6.7]. Write

9 =
∑

χ∈Irr(B0(G))

[θG, χ]χ,

so that9 has p′-degree by [loc. cit., Theorem 6.4]. (Note that9 is exactly (θG)B where B= B0(G) in the
notation of [loc. cit.].) Let A=〈σ1〉, where here we view σ1 as an element of Gal(Q(ξ)/Q) for o(ξ)= |G|.
For every a ∈ A we have that 9a

=9 as A acts on Irr(B0(G)) and fixes θ . By [Navarro and Tiep 2019,
Lemma 2.1(ii)] there is some χ ∈ Irrp′(G)σ1 appearing with p′-multiplicity in 9. The statement now
follows since every irreducible constituent of 9 lies in the principal block and its multiplicity in 9 is
exactly the multiplicity of θ in its restriction to H . �

We end the preliminaries with a technical result.

Lemma 2.5. Let G be a finite group and let N GG be a direct product of t copies of a simple nonabelian
group S transitively permuted by G. Let P ∈ Sylp(G). If some 1S 6= φ ∈ Irrp′(B0(S))σ1 is X-invariant,
where X ∈ Sylp(Aut(S)), then there exists some P-invariant 1N 6= θ ∈ Irrp′(B0(N ))σ1 . In particular, if N
is a minimal normal subgroup of G, then θ extends to a σ1-invariant irreducible character of PN.

Proof. Let 1N 6= θ ∈ Irr(N ) the character of N corresponding to φ × · · · × φ ∈ Irrp′(B0(S)t)σ1 , then
θ ∈ Irrp′(B0(N ))σ1 by Lemma 2.1(b). By [Navarro et al. 2007, Lemma 4.1(ii)], we may assume that θ is
P-invariant.

For the second part of the statement, notice that since PN/N is a p-group and N is perfect, θ has a
canonical extension θ̂ ∈ Irrp′(PN ) by [Isaacs 1976, Corollary 6.28]. In particular, θ̂ is σ1-invariant. �
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2B. The reduction. Here we reduce Theorem A to a problem on simple groups, which is done in
Theorem 2.6 below. Theorem C collects the properties of simple groups that will be key for performing
such reduction. We would like to remark that the conditions in Theorem C related to the conjugation by
group automorphisms are not needed in this context, but may be of independent interest.

Theorem 2.6. Let G be a finite group of order divisible by p where p ∈ {2, 3}. Let P ∈ Sylp(G). Then

|Irrp′(B0(G))σ1 | = p if, and only if, P is cyclic.

Proof. If P is cyclic, then |Irrp′(B0(G))σ1 | = p by Lemma 1.3.
We assume now that |Irrp′(B0(G))σ1 | = p and we work to prove that P is cyclic by induction on the

order of G.
First, notice that we may assume that G is not simple, by Theorem C(a), and NG(P) < G by

Theorem 1.5.

Step 1. We may assume Op′(G)= 1. This follows by Lemma 2.1(a) and induction.

Step 2. We may assume that O p′(G) = G. Otherwise, let M G G with |G/M | not divisible by p and
G/M > 1 simple. Then P ⊆ M and by the Frattini argument M NG(P)= G. Hence MCG(P) GG and
therefore G = CG(P)M or CG(P) ⊆ M . Suppose G = MCG(P), then restriction defines a bijection
Irrp′(B0(G))σ1 → Irrp′(B0(M))σ1 by Theorem 2.3. In this case we are done by induction. Therefore we
may assume that CG(P)⊆ M . We claim that B0(G) is the only block of G covering B0(M). Indeed, let
B be a block of G covering B0(M). By [Navarro 1998, Theorem 9.26], we have that P is a defect group
of B. By [loc. cit., Lemma 9.20], B is regular with respect to M and hence by [loc. cit., Theorem 9.19],
B0(M)G = B. By Brauer’s third main theorem we have that B0(M)G = B0(G) and hence B = B0(G)
and the claim is proven. In particular, Irr(G/M) ⊆ Irrp′(B0(G))σ1 as every character in Irr(G/M) has
p′-degree and is σ1-invariant (for G/M is a p′-group). By hypothesis |Irr(G/M)| ≤ p. As G/M is a
nontrivial p′-group, we immediately get a contradiction if p = 2. If p = 3, then |Irr(G/M)| ≤ 3 forces
G/M = C2. Write Irrp′(B0(G))σ1 = {1, λ, θ} with M ⊆ ker λ, for instance. Let τ ∈ Irrp′(B0(M))σ1 be
nontrivial by Lemma 1.4. Let χ ∈ Irr(B0(G)) be over τ . Since |G/M | is not divisible by p, we have that
χ ∈ Irrp′(B0(G))σ1 by [Navarro and Tiep 2019, Lemma 5.1]. Thus necessarily χ = θ . Since θM has at
most two irreducible constituents, we have that |Irrp′(B0(M))σ1 | = 3 and we are done by induction in
this case.

Step 3. If 1 6= M GG, then every χ ∈ Irrp′(B0(G))σ1 satisfies M ⊆ kerχ and P M/M > 1 is cyclic. By
Step 2, we have that p divides |G/M | and hence |Irrp′(B0(G/M))σ1 | = p follows from Lemma 1.4. The
claim of the step now follows from Lemma 2.1(a) and by induction.

Step 4. If 1 6=M GG and γ ∈ Irrp′(B0(M P))σ1 , then there is some χ ∈ Irrp′(B0(G))σ1 lying over γ . Write
H = M PCG(P), so that M P G H . By Theorem 2.3, restriction defines a bijection Irrp′(B0(H))σ1 →

Irrp′(B0(M P))σ1 , and hence some θ ∈ Irrp′(B0(H))σ1 extends γ . By Lemma 2.4, the claim of the step
follows.
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Step 5. Let N be a minimal normal subgroup of G. We may assume PN < G. Suppose the contrary. By
Step 1 and the fact that NG(P) < G (so G is not a p-group), we have that N is the direct product of t
copies of a nonabelian simple group S of order divisible by p (which are transitively permuted by G). By
Theorem C there exist 1S 6= φ ∈ Irrp′(B0(S))σ1 X -invariant for some X ∈ Sylp(Aut(S)). By Lemma 2.5,
there is some 1N 6= θ ∈ Irrp′(B0(N ))σ1 that extends to a σ1-invariant character χ ∈ Irr(G). Since B0(G)
is the only block covering B0(N ) by [Navarro 1998, Corollary 9.6], we have that χ ∈ Irrp′(B0(G))σ1

contradicting Step 3.

Final Step. Since NP < G by Step 5, if |Irrp′(B0(NP))σ1 | = p, then we are done by induction. Hence
we may assume that |Irrp′(B0(NP))σ1 |> p by Lemma 1.4. By Step 3, we have that PN/N is cyclic, and
hence |Irrp′(B0(PN/N ))σ1 | = p. Therefore there exists some θ ∈ Irrp′(B0(NP))σ1 such that N * ker(θ)
(here we are using that NP/N has just one p-block). By Step 4, some χ ∈ Irrp′(B0(G))σ1 lies over θ . In
particular N * kerχ , a contradiction with Step 3. �

3. Simple groups

In this Section we prove Theorem C, which will complete the proof of Theorem A.

3A. Some generalities on groups of Lie type. Since the groups of Lie type play a large role in what
follows, we begin by recalling some essentials about their blocks and characters.

Let q be a power of a prime. When G = GF is the group of fixed points of a connected reductive
algebraic group G defined over Fq under a Steinberg map F , the set of irreducible characters Irr(G) can be
written as a disjoint union

⊔
E(G, s) of so-called rational Lusztig series corresponding to G∗-conjugacy

classes of semisimple elements s ∈ G∗ (i.e., elements of order relatively prime to q). Here G∗ = (G∗)F∗ ,
where (G∗, F∗) is dual to (G, F).

With this notation, we record the following lemma, proved in [Schaeffer Fry and Taylor 2018,
Lemma 3.4], which describes the action of H on the set of rational Lusztig series and will be useful
throughout this section.

Lemma 3.1. Let p be a prime and let s ∈ G∗ be a semisimple element. Let f and b be integers and let
σ ∈H be such that σ(ξ)= ξ p f

for all p′-roots of unity ξ and σ(ζ )= ζ b for all p-power roots of unity ζ .
If χ ∈ E(G, s), then χσ ∈ E(G, s p f

p′ sb
p).

The characters in the series E(G, 1) are called unipotent characters, and there is a bijection E(G, s)→
E(CG∗(s), 1). Hence, characters of Irr(G) may be indexed by pairs (s, ψ), where s ∈ G∗ is a semisimple
element, up to G∗-conjugacy, and ψ ∈ Irr(CG∗(s)) is a unipotent character of CG∗(s). We remark that
CG∗(s) may fail to be connected, in which case unipotent characters of CG∗(s) are taken to be those lying
over a unipotent character of (CG∗(s)◦)F . In particular, we will denote by χs the character indexed by
(s, 1CG∗ (s)), which are semisimple, and they have degree |G∗ : CG∗(s)|q ′ .

Using [Cabanes and Enguehard 2004, Theorem 9.12], it follows that when p -q, the set Ep(G, 1) :=⋃
E(G, s), where s ranges over elements of p-power order in G∗, is a union of p-blocks (first shown
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in [Broué and Michel 1989]) and that each such block intersects E(G, 1) nontrivially. Such blocks are
called unipotent blocks.

3A1. A general set-up. We will often be interested in the following situation: Let S be a simple group
such that there exist G a simple, simply connected algebraic group over Fq and F a Steinberg morphism
satisfying S = G/Z(G) with G := GF perfect. Let (G∗, F∗) be dual to (G, F).

If Z(G) is trivial, we define G̃ := G. Otherwise, we further let ι : G ↪→ G̃ be a regular embedding as
in [Cabanes and Enguehard 2004, 15.1] and let ι∗ : G̃∗→ G∗ be the corresponding surjection of dual
groups. Write G̃ := G̃F , G∗ := (G∗)F∗ , and G̃∗ := (G̃∗)F∗ . We may then find F-stable maximally split
tori T and T̃ for G and G̃, respectively, such that T ≤ T̃ . Write T := T F and T̃ := T̃ F . Then Z(G̃) is
connected, G G G̃, and Z(G̃)∩G = Z(G). We will write S̃ := G̃/Z(G̃), and note that Aut(S) is generated
by S̃ and the graph-field automorphisms. Further, the (linear) characters of G̃/G are in bijection with
elements of Z(G̃∗), and we have χ̃s ⊗ ẑ = χ̃sz , where z ∈ Z(G̃∗) corresponds to ẑ ∈ Irr(G̃/G) and for
semisimple s ∈ G̃∗, χ̃s denotes the semisimple character of G̃ corresponding to s. (See [Digne and Michel
1991, 13.30].) It will also be useful in what follows to note that if s ∈ [G̃∗, G̃∗] is semisimple, then the
semisimple character of G̃ corresponding to s is trivial on Z(G̃) by [Navarro and Tiep 2013, Lemma 4.4].

When q is a power of p, we note that Irrp′(B0(S))= Irrp′(S), which can be seen using [Cabanes and
Enguehard 2004, 6.14, 6.15, and 6.18] and the facts that p -|Z(G)| and S is a group with a strongly split
BN pair as in [loc. cit., 2.20].

In the case of types An−1 and 2An−1, we have S is PSLεn(q) with ε ∈ {±1}; G = SLεn(q); G̃ =GLεn(q);
and S̃ = PGLεn(q). Here ε = 1 means S = PSLn(q), ε = −1 means S = PSUn(q), and similarly for G
and G̃. We use similar notation for other twisted types. For example, Eε6(q) will denote E6(q) for ε =+
and 2E6(q) for ε =−.

3B. The case p = 2. Here we prove Theorem C in the case p = 2. The following, found in [Navarro
et al. 2018, Lemma 3.1], will be useful in what follows.

Lemma 3.2 (Navarro, Sambale and Tiep). Let G be a finite group. If χ ∈ Irr2′(G) is real-valued, then χ
belongs to B0(G).

In particular, note that an odd character degree of G with multiplicity one must necessarily come from a
character fixed by all automorphisms and G, which is therefore an X -invariant member of Irr2′(B0(G))σ1 .

Lemma 3.3. Let S be a simple sporadic group, alternating group An with n ≥ 5, or one of the simple
groups PSL2(4), PSL3(2), PSL3(4), PSU4(2), PSU4(3), PSLε6(2),

2B2(8), B3(2), B3(3), D4(2), F4(2),
2F4(2)′, E6(2), 2E6(2), G2(2)′, G2(3), or G2(4). Then Theorem C holds for S and the prime p = 2.

Proof. For n ≥ 7, the automorphism group of An is the symmetric group Sn . Recall that every irreducible
character of Sn is rational-valued and that an odd-degree character of Sn must restrict irreducibly to An

since it has index 2. In this case, if n= 2n1+· · ·+2nt with n1 < n2 < · · ·< nt is the 2-adic decomposition
of n, then [Macdonald 1971, Corollary 1.3] yields that there are 2n1+···+nt ≥ 8 odd-degree characters of Sn ,
whose restrictions therefore yield at least 3 nontrivial members of Irr2′(B0(An))

σ1 invariant under Aut(An).
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For the remaining groups listed, the statement can be seen using [GAP 2004] and the GAP character table
library. In fact, we see that for the sporadic groups other than the Janko groups, there exist at least two
nontrivial odd character degrees with multiplicity 1. �

Proposition 3.4. Let S be a simple group of Lie type defined over Fq with q a power of an odd prime `.
Then Theorem C holds for S and the prime p = 2.

Proof. We may assume that S is not isomorphic to any of the groups in Lemma 3.3, so is as in Section 3A1.
In this case, the Steinberg character is rational-valued and Aut(S)-invariant, and therefore it suffices to
show that there is another nontrivial member of Irr2′(B0(S))σ1 . Further, we note that if S is not a Suzuki
or Ree group, then unipotent characters of odd degree are rational-valued (see, e.g., [Schaeffer Fry 2019,
Lemma 4.4]). Hence in these cases, applying Lemma 3.2, it suffices to find another nontrivial unipotent
character of odd degree, when possible. By observing the explicit list of unipotent character degrees in
[Carter 1985, Section 13.9], we see that there is at least one other nontrivial odd-degree unipotent character
for the exceptional groups G2(q), 3D4(q), F4(q), Eε6(q), E7(q), and E8(q). For 2G2(q), we see from the
generic character table in [Geck et al. 1996] that there is another odd degree with multiplicity one.

For the classical groups An−1(q), 2An−1(q), Bn(q), Cn(q), Dn(q), or 2Dn(q), we know by [Malle
and Späth 2016, Proposition 7.4] that all unipotent characters of G with odd degree lie in the principal
series, and hence are in bijection with the odd-degree irreducible characters of the Weyl group W of
G. In these cases, W contains a quotient isomorphic to Sn , which has at least 4 odd-degree characters
for n ≥ 4, again using [Macdonald 1971, Corollary 1.3]. We also see, for example using the GAP, that
there are at least 4 odd-degree characters of W in the case of B2, B3, and C3. Using the well-known
character table for PSL2(q), we see that all four odd-degree characters are fixed by σ1. Further, in this
case, Irr2′(S)= Irr2′(B0(S)). We see from part (iii) of the proof of [Navarro et al. 2018, Theorem 3.3]
that if S = PSLε3(q), then the Weil character ζ (q−ε)/23,q is a member of Irr2′(B0(S)) and is real-valued. �

Proposition 3.5. Let S be a simple group of Lie type defined in characteristic 2. Then Theorem C holds
for S for the prime p = 2.

Proof. Again, we may assume that S is not as in Lemma 3.3. In particular, we may keep the notation as
in Section 3A1 and we have Irr2′(B0(S))= Irr2′(S). If S is 2B2(q) or 2F4(q), then the generic character
tables available in CHEVIE yield the result, since |Out(S)| is odd and there are at least two distinct
degrees of nontrivial odd-degree characters whose values are fixed by σ1.

Otherwise, we may take the Steinberg endomorphism on G to be F = Fq ◦ τ , where Fq is the standard
Frobenius induced by the map x 7→ xq and τ is some graph automorphism. Write q := q |τ | = 22bm with
m odd and let X ≤ Aut(S) such that X/S ∈ Syl2(Out(S)).

Since q is a power of 2, we have Z(G)= 1 and G̃ = G unless S is one of PSLεn(q) or Eε6(q). In the
latter cases, G = [G̃, G̃]. In any case, since G̃/G has odd order, we may view X/S as generated by Fm

2

and graph automorphisms.
Now, if m > 1, then the proof of [Schaeffer Fry and Taylor 2018, Lemma 6.4] (and taking into account

the remark after [loc. cit., Proposition 6.5]) yields a member of Irr2′(S) invariant under X which is the
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restriction to G of a semisimple character of G̃ trivial on Z(G). Since semisimple elements have odd
order and σ1 fixes odd roots of unity, Lemma 3.1 shows that this character is also fixed by σ1. If m= 1, we
may similarly obtain an X -invariant member of Irr2′(S) fixed by σ1 by arguing as in [loc. cit., Lemma 6.4]
and the remark after [loc. cit., Proposition 6.5] but using an element of F×4 of order 3 rather than an
element of F×q of order 5.

For S = G2(q), F4(q), 3D4(q), E7(q), or E8(q), the list of character degrees at [Lübeck 2007] yields
at least one more distinct nontrivial odd character degree, completing the proof in these cases, since by
[Malle 2007, Theorem 6.8], odd-degree characters are semisimple (recall that we may assume q 6= 2
when S = G2(q) or F4(q)), and hence fixed by σ1 using Lemma 3.1.

Now, in the remaining cases, S is a classical group or Eε6(q). Here G̃∗ ∼= G̃. In the case S = PSL2(q)
or PSLε3(q), we see that there is at least one more odd-degree character with a different degree that is
fixed by σ1, using the generic character tables available in [Geck et al. 1996]. If G̃ = GLεn(q),Spn(q),
or �εn(q) with n ≥ 4 and n even in the latter two cases, let s1 and s2 be elements of G̃ with eigenvalues
{δ, δ−1, 1, . . . , 1} and {δ, δ, δ−1, δ−1, 1, . . . , 1}, respectively, where 1 6= δ ∈ F×q .

Then s1 and s2 are not Aut(S)-conjugate, and hence the corresponding semisimple characters of G̃
have odd degree, are not Aut(S)-conjugate, and are fixed by σ1 by Lemma 3.1. Further, if G̃ = GLεn(q),
semisimple classes are determined by the eigenvalues, and Z(G̃) is comprised of scalar matrices, so we
see for i = 1, 2, si is not conjugate to si z for any z ∈ Z(G̃) unless possibly if n = 6. In this case, we may
assume q 6= 2 using Lemma 3.3 and instead take δ ∈ F×q2 to have order at least 5, again yielding si is not
conjugate to si z for any z ∈ Z(G̃). In any case, the corresponding semisimple characters therefore restrict
irreducibly to G and are trivial on Z(G̃) since si ∈ [G̃, G̃] = G. Finally, let S be Eε6(q) with q > 2. Then
we may argue analogously to [Giannelli et al. 2020, Proposition 4.3] to find elements s1 and s2 in G̃ with
|CG̃(s1)|2 6= |CG̃(s2)|2 such that the corresponding semisimple characters (which again must be fixed by
σ1) are irreducible on G and trivial on Z(G̃). (Indeed, we may replace the δ used there with a δ ∈ F×q2

such that 3 -|δ|). In all cases, this yields at least one more nontrivial member of Irr2′(B0(S))σ1 that is not
Aut(S)-conjugate to the X -invariant one from above. �

Theorem C for p = 2 now follows by combining Propositions 3.4 and 3.5 with Lemma 3.3.

3C. The case p= 3. Here we prove Theorem C in the case p = 3. We begin by stating the following
classification of simple groups with cyclic Sylow 3-subgroups.

Proposition 3.6. Let S be a finite nonabelian simple group with order divisible by 3. Then S has a cyclic
Sylow 3-subgroup if and only if S is one of : the alternating group A5; the sporadic simple group J1;
PSL2(q) for 3 -q; or PSLε3(q) for 3 | (q + ε).

Proof. The main result of [Shen and Zhou 2016] yields a classification of simple groups S and primes p
such that S has an abelian Sylow p-subgroup. In particular, if p= 3, then such a simple group must be of
the form An with n < 9, one of a short list of sporadic simple groups, PSL2(q), PSLεn(q) for 3 | (q + ε)
and n = 3, 4, 5, or PSp4(q) with 3 -q .
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Using the atlas [Conway et al. 1985] and since A6 has a noncyclic Sylow 3-subgroup and can be
viewed as a subgroup of An for n ≥ 7, we see that the only simple alternating or sporadic groups with
cyclic Sylow 3-subgroups are A5 and the Janko group J1. The remaining possibilities are of the form
G/Z(G) for G a classical group SLεn(q) with n < 6, or Sp4(q). Further, except in the cases of PSLε3(q)
listed in the statement, |Z(G)| is relatively prime to 3, and hence S has a cyclic Sylow 3-subgroup if and
only if G does. Further, for the cases G = SLεn(q) with n = 3, 4, 5 under consideration, we may view the
Sylow subgroup as a Sylow subgroup of G̃ = GLεn(q), since [G̃ : G] is not divisible by 3.

Now, using the description of the Sylow subgroups of classical groups in [Carter and Fong 1964;
Weir 1955], we see that the Sylow subgroups of GLε4(q),GLε5(q), and Sp4(q) are direct products of
Sylow subgroups of at least two lower-rank groups, and hence the Sylow 3-subgroup of G is not cyclic.
In the case PSLε3(q) with 3 | (q + ε) or PSL2(q) with 3 -q, we may explicitly construct a cyclic Sylow
3-subgroup. Finally, if S = PSL2(q) with 3 | q , the Sylow 3-subgroup can be identified with the unipotent
radical of SL2(q), which is not cyclic unless q = 3, contradicting that S is simple. �

Our goal in the remainder of this section is to prove the following, from which we obtain Theorem C
for p = 3 as a corollary.

Theorem 3.7. Let S be a nonabelian simple group with order divisible by 3.

(i) If S has a cyclic Sylow 3-subgroup, then there exist 1S 6= χ1, χ2 ∈ Irr3′(B0(S))σ1 such that χ1 extends
to Aut(S).

(ii) If S does not have a cyclic Sylow 3-subgroup and is not a group of Lie type defined in characteristic 3,
then there exist nontrivial χ1, χ2, χ3 ∈ Irr3′(B0(S))σ1 such that χ1 and χ2 extend to Aut(S). In this
case, if S is further not one of A6,A7, 2F4(2)′, PSLn(q) with n ≤ 4, or PSp4(2

2m+1), then there exist
nontrivial χ1, χ2, χ3 ∈ Irr3′(B0(S))σ1 such that χi each extend to Aut(S).

(iii) If S is a group of Lie type in characteristic 3, then there exist nontrivial χ1, χ2, χ3 ∈ Irr3′(B0(S))σ1

that are pairwise not Aut(S)-conjugate and such that χ1 is invariant under X , where X/S ∈
Syl3(Aut(S)/S).

We first consider Theorem 3.7 for sporadic and alternating groups, as well as some “small” groups of
Lie type. For two positive integers n and m, we will use n ‖m to mean that n |m and gcd(n,m/n)= 1.

Proposition 3.8. Theorem 3.7 holds for the sporadic simple groups, G2(3), 2F4(2)′, B3(3), G2(2)′ =
PSU3(3), PSU4(3), and the alternating groups An with n ≥ 5.

Proof. Since the result can be seen directly using GAP for the other cases, we may assume S = An with
n > 10. In this case, S does not have a cyclic Sylow 3-subgroup and satisfies Aut(S)=Sn , where Sn

denotes the corresponding symmetric group.
The characters of Sn are rational-valued and parametrized by partitions of n, with their degrees given by

the hook formula. Further, two characters lie in the same 3-block if and only if they have the same 3-core.
We also know that χ ∈ Irr(Sn) corresponding to the partition λ restricts irreducibly to An if and only if
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Condition on n Partition χ(1)

3 | n (1, n− 1) n− 1
3 | n (1, 1, n− 2) (n− 1)(n− 2)/2

3 ‖ n, 32
| (n− 2), or 3 ‖ (n− 1) (3, n− 3) n(n− 1)(n− 5)/6

32
| n, 3 ‖ (n− 2), or 3 ‖ (n− 1) (13, n− 3) (n− 1)(n− 2)(n− 3)/6

3 | (n− 1) (2, n− 2) n(n− 3)/2
32
| (n− 1) (1, 2, n− 3) n(n− 2)(n− 4)/3

32
| (n− 1) (13, 2, n− 5) n(n− 2)(n− 3)(n− 4)(n− 6)/30

3 | (n− 2) (1n−4, 2, 2) n(n− 3)/2
3 | (n− 2) (1n−2, 2) n− 1

Table 1. Some members of Irr3′(B0(Sn)) irreducible on An , n > 10.

the partition is not self-conjugate. Table 1 lists the partitions and character degrees for three characters in
Irr3′(Sn) that restrict irreducibly to An , completing the proof. �

3C1. Lie type in cross-characteristic for p = 3. In this section, we prove Theorem 3.7 for groups of Lie
type in nondefining characteristic. That is, we deal with the case S is of the form G/Z(G) for G a finite
group of Lie type of simply connected type defined over a field Fq with 3 -q . (Given Proposition 3.8, this
will complete the proof of parts (i) and (ii) of Theorem 3.7.)

We will use 8m to denote the m-th cyclotomic polynomial in the variable q. Note that using e.g.,
[Malle 2007, Lemma 5.2], 3 divides 8m if and only if m = 3i d for some i ≥ 0, where d is the order of q
modulo 3, and in this case 3 ‖8m unless m = d .

Proposition 3.9. Let S be a simple group of Lie type defined over Fq with 3 -q and assume S is not one of
the groups PSLεn(q) with n ≤ 3. Then there exist three nontrivial characters χ1, χ2, χ3 ∈ Irr3′(B0(S))σ1

such that χ1 and χ2 extend to Aut(S).
Further, if S is not PSLε4(q) nor PSp4(2

a) with a odd, then χ1, χ2, and χ3 may be chosen to extend to
Aut(S).

Proof. We may assume that S is not isomorphic to one of the groups considered in Proposition 3.8.
Keep the notation and considerations for G, G̃, T̃ , and S̃ from Section 3A. By the work of Lusztig
[1988], the unipotent characters of G̃ are trivial on Z(G̃) and restrict irreducibly to G. Further, when
viewed as characters of S̃, they are extendible to Aut(S), by [Malle 2008, Theorems 2.4 and 2.5], aside
from some specific exceptions. The only unipotent characters which take irrational values occur for
exceptional groups and have values in Q(

√
−1, ζ3, ζ5,

√
q), where ζ3 and ζ5 are third and fifth roots of

unity, respectively, by [Geck 2003, Proposition 5.6 and Table 1]. In any case, the unipotent characters are
σ1-invariant, since

√
q is a sum of roots of unity of order relatively prime to 3.

Let d be the order of q modulo 3. In particular, we have d = 1 or 2. If d = 1, unipotent characters of
degree relatively prime to 3 are constituents of the Harish-Chandra induced character RG̃

T̃
(1) using [Malle
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Type Condition on d
Character

χ(1)(notation from [Carter 1985, 13.9])

G2(q)

d = 1
φ2,2

1
2q82

286

φ1,3′
1
3q8386

d = 2
G2[1] 1

6q82
186

φ1,3′
1
3q8386

3D4(q) d = 1, 2
φ1,3′ q812

φ1,3′′ q7812

F4(q)

d = 1
φ4,1

1
2q82

28
2
688

φ8,3′ q382
488812

d = 2
B2,ε

1
2q1382

18
2
388

B2,1
1
2q82

18
2
388

E6(q) d = 1, 2
φ20,2 q2848588812

φ20,20 q20848588812

2E6(q) d = 1, 2
φ4,1 q28488810812

φ4,13 q208488810812

E7(q) d = 1, 2
φ7,1 q87812814

φ7,46 q4687812814

E8(q) d = 1, 2
φ8,1 q82

488812820824

φ35,2 q28587810814815820830

2B2(q), Note: 3 -|S|
2B2[a] 1

√
2
q(q2
− 1)

q2
= 22m+1 2B2[b] 1

√
2
q(q2
− 1)

2F4(q), Note: 3 | (q2
+ 1)

cusp 1
12q482

18
2
2(8
′

8)
2812(8

′

24)
2

q2
= 22m+1 cusp 1

12q482
18

2
2(8
′′

8)
2812(8

′′

24)
2

Table 2. Some unipotent characters in Irr3′(B0(S))σ1 for exceptional types with 3 -q .

2007, Corollary 6.6]. Further, by [Enguehard 2000, Theorem A], all members of RG̃
T̃
(1) lie in the same

block, namely B0(G̃).
If d = 2, then the centralizer of a Sylow d-torus is a maximal torus, using e.g., [Malle and Späth 2016,

Lemma 3.2]. Unipotent blocks of G̃ are parametrized by certain G̃-conjugacy classes of pairs (L̃, λ)
where L̃ is a d-split Levi subgroup of G̃ and λ is a d-cuspidal unipotent character of L̃ , by [Enguehard
2000, Theorem A]. Further, a unipotent character in the block parametrized by (L̃, λ) can have 3′-degree
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n Additional Condition on n, e Partition χ(1)q ′

n ≥ 6
e = 2 and n even; or (1, n− 1) qn−1

−εn−1

q−εe = 1 and 3 -(n− 1) (1n−2, 2)

n ≥ 6 e | n and 3 -n
(2, n− 2) (qn

−εn)(qn−3
−εn−3)

(q−ε)(q2−1)(1n−4, 2, 2)

n ≥ 6
3 | n; or (1, 1, n− 2) (qn−1

−εn−1)(qn−2
−εn−2)

(q−ε)(q2−1)e = 2 and n odd and 3 | (n− 2) (1n−3, 3)

n ≥ 6 e = 2 and n odd and 3 | (n− 1)
(1, 1, 2, n− 4) (qn

−εn)(qn−2
−εn−2)(qn−3

−εn−3)(qn−5
−εn−5)

(q−ε)2(q2−1)2(q2+1)

(2, n− 2) (qn
−εn)(qn−3

−εn−3)

(q−ε)(q2−1)

n = 5 e = 1
(1, 4)

(q + ε)(q2
+ 1)

(1, 1, 1, 2)

n = 5 e = 2
(2, 3) q5

−ε

q−ε
(1, 1, 3) (q2

+ 1)(q2
+ εq + 1)

n = 4 e = 2
(1, 3)

q2
+ εq + 1

(1, 1, 2)

n = 4 e = 1 (2, 2) q2
+ 1

Table 3. Some unipotent characters in Irr3′(B0(S))σ1 for type Aεn−1(q) with n ≥ 4 and 3 -q .

only when L̃ is the centralizer of a Sylow d-torus, using [Malle 2007, Corollary 6.6]. This yields that
again in the case d = 2, there is a unique block of G̃ containing unipotent characters of 3′-degree.

Hence when 3 -q , every unipotent character in Irr3′(G̃) is a member of Irr3′(B0(G̃))σ1 , and restricts to
a member of Irr3′(B0(G))σ1 trivial on the center. Then this restriction may be viewed as an element of
Irr3′(B0(S))σ1 , using e.g., [Cabanes and Enguehard 2004, Lemma 17.2].

In particular, since the Steinberg character has degree a power of q , it suffices to find two more unipotent
characters of 3′-degree that are not one of the exceptional cases in [Malle 2008, Theorem 2.5]. In what
follows, we will use the notation and degrees for unipotent characters as in [Carter 1985, Sections 13.8
and 13.9].

Exceptional Types. In the case that S is an exceptional group of Lie type defined over Fq with 3 -q , we
list in Table 2 two unipotent characters invariant under Aut(S) that have degree relatively prime to 3,
completing the proof in this case.

Types An−1 and 2An−1, n ≥ 4. In this case, let S be PSLεn(q) with n ≥ 4 and ε ∈ {±1}. Write e ∈ {1, 2}
for the number such that q ≡ εe (mod 3). That is, e is the order of εq modulo 3. Two unipotent characters
are in the same 3-block of G̃ =GLεn(q) if and only if they have the same e-core (see [Fong and Srinivasan
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1982]). For n ≥ 5 or for (n, e)= (4, 2), the unipotent characters described in Table 3 are Aut(S)-invariant
members of Irr3′(B0(S))σ1 .

Now assume n = 4 and e = 1. Then the unipotent character in the last line of Table 3 is an Aut(S)-
invariant member of Irr3′(B0(S))σ1 . In this case, 1S,StS , and the character listed are the only unipotent
characters in Irr3′(S). However, since e = 1, we see that every unipotent character is a member of the
principal block of G̃, which means that E3(G̃, 1) is comprised of only one block. Let ζ ∈ F×q2 with order 3.
Then taking s to be the element diag(ζ, ζ, ζ, 1) of G̃∗ ∼= GLε4(q), the semisimple character χs ∈ E(G̃, s)
lies in the principal block of G̃ and is trivial on Z(G̃) since s ∈ SLε4(q)∼= [G̃

∗, G̃∗]. Further, we see using
Lemma 3.1 that χs is fixed by σ1.

Since CG̃∗(s)∼= GLε1(q)×GLε3(q), we see

χs(1)= (q + ε)(q2
+ 1).

Further, since the semisimple classes of G̃ are determined by their eigenvalues and Z(G̃) is comprised of
scalar matrices, we see that s is not conjugate to sz for any nontrivial z ∈ Z(G̃). Hence χs |G is irreducible,
by the second-to-last paragraph of Section 3A, and is therefore a member of Irr3′(B0(G)), since the
principal block of G is the only block covered by the principal block of G̃. But since Z(G)≤ Z(G̃) is
in the kernel of χs , this character is therefore a member of Irr3′(B0(G/Z(G)))σ1 = Irr3′(B0(S))σ1 , again
using [Cabanes and Enguehard 2004, Lemma 17.2]. Note that this character is not Aut(S)-conjugate to
1S,StS , nor the unipotent character labeled by (2, 2), which completes the proof for S = PSLεn(q) with
n ≥ 4.

Types Bn and Cn, n ≥ 2. When S is type Bn or Cn with n ≥ 2 defined in characteristic different than 3,
Table 4 exhibits at least two distinct unipotent characters in Irr3′(B0(S))σ1 that are Aut(S)-invariant, with
the exception of the case S = PSp4(2

a) with a odd. In the latter situation, we may instead consider the
characters indexed by

( 1 2
0

)
and

(0 1 2
∅
)

with degrees q
2 (q

2
+1) and q

2 (q−1)2, respectively. (Note that we
do not consider PSp4(2)∼=S6.) These characters lie in Irr3′(B0(S))σ1 and the latter character extends to
Aut(S). (However, we remark that the first character is not Aut(S)-invariant, as in this case it is switched
with

( 0 1
2

)
under the action of the graph automorphism, by [Malle 2008, Theorem 2.5]).

Type Dn and 2Dn, n≥ 4. In this case, if S is not D4(q), Tables 5 and 6 list at least two distinct unipotent
characters that are Aut(S)-invariant members of Irr3′(B0(S))σ1 . If S is D4(q) and 3 | (q − 1), we may
instead take the unipotent characters labeled by symbols

( 1
0

3
2

)
and

(3
1

)
with χ(1)q ′ = 1

2(q + 1)3(q3
+ 1)

and (q2
+ 1)2, respectively. When 3 | (q + 1), we may take the characters index by

(3
1

)
and

( 0 1 2 3
∅

)
, the

latter of which satisfies χ(1)q ′ = 1
2(q − 1)3(q3

− 1). �

We next establish Theorem 3.7 for the case that S has cyclic Sylow 3-subgroups, which we recall from
Proposition 3.6 occurs when S = PSL2(q) for 3 -q and when S = PSLε3(q) for 3 | (q + ε).

Proposition 3.10. Let S = PSL2(q) with 3 -q or PSLε3(q) with 3 | (q + ε). Then there exist nontrivial
χ1, χ2 ∈ Irr3′(B0(S))σ1 such that χ1 extends to Aut(S).



1972 Noelia Rizo, A. A. Schaeffer Fry and Carolina Vallejo

Conditions on q, n Symbol χ(1)q ′
(
possibly excluding factors of 1

2

)
3 | (q − 1) or

3 | (q + 1); n even; 3 -(n− 1) or
( 0 1

n

) (qn−1
+1)(qn

+1)
q+1

3 | (q + 1); n odd; 3 -n

3 | (q − 1); 3 -n
( 0 2

n−1

) (q2n
−1)(qn−3

+1)(qn−1
+1)

q4−1

3 | (q − 1); 3 -(n− 1) or ( 1 n
0

) (qn−1
−1)(qn

+1)
q−13 | (q + 1); n even

3 | (n− 1)
( 1 n−1

1

) (q2n
−1)(q2(n−2)

−1)
(q2−1)2

3 | (q + 1); n odd or ( 0 n
1

) (qn−1
+1)(qn

−1)
q−13 | (q − 1); 3 -n

3 | (q + 1); n odd; 3 | n or

3 | (q + 1); n even; 3 | (n− 2) or
( 0 1 n

1 2

) (q2(n−1)
−1)(qn

−1)(qn−2
+1)

(q2−1)2

3 | (q − 1); 3 | (n− 2)

Table 4. Some unipotent characters in Irr3′(B0(S))σ1 for type Bn(q) and Cn(q) with
n ≥ 2 and 3 -q.

Proof. First let S = PSL2(q) with 3 -q. In this case, every character of S is either 3-defect zero or has
degree prime to 3. As before, the Steinberg character is a member of Irr3′(B0(S))σ1 and extends to Aut(S).
Further, the only two unipotent characters, 1G̃ and StG̃ , both lie in the principal block of G̃ = GL2(q),
and hence there is a unique unipotent block of G̃. We may take χ1 = StS as before.

Now, let s ∈ G̃ = GL2(q) have eigenvalues ζ, ζ−1, where ζ ∈ F×q2 has order 3. Then the semisimple
character χs ∈ E(G̃, s) ⊆ E3(G̃, 1) lies in the principal block of G̃ and is trivial on Z(G̃) since s ∈
SL2(q)∼= [G̃∗, G̃∗]. Since sz is not conjugate to s for 1 6= z ∈ Z(G̃∗), we also see χs is irreducible on
restriction to G. Further, Lemma 3.1 yields that χs is fixed by σ1. Then the restriction (χs)G lies in
B0(G) since the principal block of G̃ covers a unique block of G. Finally, in this case χs(1) = q + η,
where η ∈ {±1} is such that 3 | q−η. Hence this character may be viewed as a member of Irr3′(B0(S))σ1 ,
arguing as before.

Now let S = PSLε3(q) with 3 | (q + ε). Then

S = G = SLε3(q) and G̃∗ ∼= G̃ = G× Z(G̃).

Since the unipotent characters of G are 1G,StG , and a character of degree q(q + ε), we see that again
B0(G) is the only unipotent block of maximal defect (as the other has defect zero). Then every character
of E3(G, 1) with 3′-degree is a member of B0(G). We may again take χ1 = StG . Taking s ∈ G̃∗ to have
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Conditions on q, n Symbol χ(1)q ′
(
possibly excluding factors of 1

2

)
3 -(n− 1)

( 1 n
0 1

) q2(n−1)
−1

q2−1

3 | n
( 1 2 n

0 1 2

) (q2(n−2)
−1)(q2(n−1)

−1)
(q2−1)2(q2+1)

3 | (n− 2) or ( n−2
2

) (q2(n−1)
−1)(qn

−1)(qn−4
+1)

(q2−1)2(q2+1)3 | (q + 1); 3 | n; n odd

3 | (q − 1); 3 | (n− 1) or ( 1 n−1
0 2

) (qn
−1)(qn−2

−1)(qn−1
+1)(qn−3

+1)
(q−1)2(q2+1)3 | (q + 1); n odd

3 | (q − 1); 3 | (n− 2) or

3 | (q + 1); 3 -n; n even or
( 0 n−1

1 2

) (qn
−1)(qn−2

+1)(qn−1
−1)(qn−3

+1)
(q2−1)2

3 | (q + 1); 3 | n; n odd
3 | (q − 1); 3 -n or ( n−1

1

) (qn
−1)(qn−2

+1)
q2−1

3 | (q + 1); 3 | (n− 1) or

3 | (q + 1); 3 | (n− 2); n even or

3 | (q + 1); 3 | n; n odd

Table 5. Some unipotent characters in Irr3′(B0(S))σ1 for type Dn(q) with n ≥ 5 and 3 -q .

eigenvalues {ζ, ζ−1, 1}, where ζ ∈ F×q2 has order 3, the corresponding character of G has degree q3
− ε,

and we may again view (χs)G as a character of Irr3′(B0(S))σ1 . �

Proposition 3.11. Let S=PSLε3(q) with 3 | (q−ε). Then there exist nontrivial χ1, χ2, χ3 ∈ Irr3′(B0(S))σ1

such that χ1 and χ2 extend to Aut(S).

Proof. In this case, we see that all three unipotent characters are members of Irr3′(G̃) and that there
is a unique unipotent block B0(G̃). Further, the unipotent characters are rational-valued, and therefore
are members of Irr3′(B0(G̃))σ1 . Then we may take χ1 and χ2 to be the restrictions to G (viewed as a
character of S) of the two nontrivial unipotent characters.

The semisimple element s ∈ G̃∗ with eigenvalues {ζ, ζ−1, 1}, where ζ ∈ F×q2 has order 3, is now
conjugate to sz where z = ζ · I3 ∈ Z(G̃∗). The corresponding semisimple character has degree χs(1)=
(q + ε)(q2

+ εq + 1), so χs ∈ Irr(B0(G̃))σ1 satisfies 3 ‖χs(1) and is not irreducible on restriction to G.
Then the constituents of the restriction to G are members of Irr3′(B0(G)), and are trivial on Z(G) since
s ∈ [G̃∗, G̃∗] ∼= G, so it suffices to see that they are also σ1-invariant, using the character table available
in CHEVIE. �

Together, Propositions 3.9 through 3.11 yield Theorem 3.7 for the simple groups of Lie type in
nondefining characteristic, completing parts (i) and (ii).
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Conditions on q, n Symbol χ(1)q ′
(
possibly excluding factors of 1

2

)
3 -(n− 1)

( 0 1 n
1

) q2(n−1)
−1

q2−1

3 | (n− 1) or ( 1 n−1
∅
) (qn

+1)(qn−2
−1)

q2−1
3 | (q − 1); 3 | n or

3 | (q + 1); 3 | n; n even or

3 | (q + 1); 3 | (n− 2); n odd

3 | (q − 1); 3 -(n− 1) or

3 | (q + 1); 3 | (n− 2) or
( 2 n−2

∅
) (q2(n−1)

−1)(qn
+1)(qn−4

−1)
(q2−1)2(q2+1)

3 | (q + 1); 3 | n; n even

3 | n
( 0 1 2 n

1 2

) (q2(n−1)
−1)(q2(n−2)

−1)
(q2−1)2(q2+1)

3 | (q − 1); 3 | (n− 1)

3 | (q + 1); 3 -n; n odd
( 1 2 n−1

0

) (qn
+1)(qn−1

+1)(qn−2
−1)(qn−3

−1)
(q2−1)2

3 | (q + 1); 3 | n; n even
3 | (q − 1); 3 | n

3 | (q + 1); 3 | (n− 1); n even
( 0 1 n−1

2

) (qn
+1)(qn−1

−1)(qn−2
−1)(qn−3

+1)
(q2−1)2

3 | (q + 1); 3 | (n− 2); n odd

Table 6. Some unipotent characters in Irr3′(B0(S))σ1 for type 2Dn(q) with n ≥ 4 and 3 -q.

3C2. Lie type in defining characteristic for p = 3. We now consider the case S is as in Section 3A1 with
G of simply connected type defined in characteristic 3. Let (G∗, F∗) be dual to (G, F). Keep in mind
the notations and considerations of Section 3A, where now q is a power of 3. Note that |S̃/S| = |Z(G)|,
and this is 1 unless G is of classical type or G = E7,sc(q).

Since G̃/G has size prime to 3, it follows that any irreducible character of G lying under Irr3′(G̃) is
a member of Irr3′(G). Since |σ1| is a power of 3, we further see that for any χ̃ ∈ Irr3′(G̃)σ1 , there is a
member of Irr3′(G)σ1 lying under χ̃ . We also have Irr3′(B0(S)) = Irr3′(S), so any member of Irr3′(G)
with Z(G) in its kernel may be viewed as a member of Irr3′(B0(S)).

Now, given a semisimple element s ∈ G̃∗, we have |s| is prime to 3, and hence the Lusztig series
E(G̃, s) is fixed by σ1 using Lemma 3.1. Then in particular, the unique semisimple character χ̃s ∈ Irr3′(G̃)
in this series must be fixed by σ1. To illustrate three nontrivial characters of Irr3′(G)σ1 that are not
Aut(S)-conjugate, it therefore suffices to show that there are semisimple elements 1 6= s1, s2, s3 ∈ G̃∗

such that
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(1) si is not G̃∗-conjugate to sϕj z for i 6= j , z ∈ Z(G̃∗), and ϕ any (possibly trivial) graph-field automor-
phism.

In most cases, we further ensure that one of these characters is Aut(S)-invariant, by choosing s1 so that

(2) the class of s1 is invariant under graph-field automorphisms and

(3) s1 is not G̃∗-conjugate to s1z for any 1 6= z ∈ Z(G̃∗).

Property (2) will ensure that χ̃s1 is invariant under graph-field automorphisms, using [Navarro et al. 2008,
Corollary 2.4], and property (3) will imply that χ̃s1 restricts irreducibly to G, so the resulting character of
G is Aut(S)- and σ1-invariant. Finally, we will choose s1, s2, and s3 such that

(4) si ∈ [G̃∗, G̃∗] for i = 1, 2, 3,

so that the χ̃si are trivial on Z(G̃), ensuring that all three characters of G may be viewed as characters of
Irr3′(B0(S))σ1 from the above discussion.

Proposition 3.12. Let S = G2(q), 3D4(q), 2G2(q), E±6 (q), E7(q), F4(q) or E8(q) be simple with q a
power of 3. Then there exist nontrivial χ1, χ2, χ3 ∈ Irr3′(B0(S))σ1 that are pairwise not Aut(S)-conjugate
and such that χ1 is Aut(S)-invariant.

Proof. Note that we may assume S is not one of the groups from Proposition 3.8. The character degrees in
these cases are available at [Lübeck 2007]. If S is G2(q), 3D4(q), 2G2(q), E6(q), 2E6(q), F4(q) or E8(q),
then G̃ = G = S and there is a nontrivial odd character degree of multiplicity one, which therefore must
be σ1- and Aut(S)-invariant. Similarly, E7(q) has a unique character of degree 83868789812814818,
which restricts irreducibly from a character of S̃ = E7(q)ad . Finally, in each case there are at least two
more semisimple characters with different degrees, which must yield members of Irr3′(B0(S))σ1 by the
above discussion. �

Proposition 3.13. Let S = PSLεn(q) be simple with q a power of 3 and n ≥ 2 and let X ≤ Aut(S) such
that X/S is a Sylow 3-subgroup of Aut(S)/S. Then there exist nontrivial χ1, χ2, χ3 ∈ Irr3′(B0(S))σ1 that
are pairwise not Aut(S)-conjugate and such that χ1 is X-invariant. Further, if n ≥ 3, then χ1 may be
chosen to be Aut(S)-invariant, and if n ≥ 5, then χ1, χ2, χ3 may all be chosen to be Aut(S)-invariant.

Proof. Throughout, let δ ∈ F×q2 have order 4 and assume S is not isomorphic to one of the groups in
Proposition 3.8. Recall that the conjugacy classes of semisimple elements in G̃∗=GLεn(q) are determined
by their eigenvalues and that Z(G̃∗) is comprised of scalar matrices.

If n = 2, then |S̃/S| = 2 and Aut(S)/S̃ is generated by a field automorphism. The semisimple elements
s1, s2, and s3 with eigenvalues {δ, δ−1

}, {ζ1, ζ
−1
1 }, and {ξ1, ξ

−1
1 } with ζ1 ∈ F×q and ξ1 ∈ F×q2 \ F×q and

|ξ | 6= 4 6= |ζ | satisfy properties (1), (2), and (4). Now, since χ̃s1 is fixed by field automorphisms, and
hence by X , and since |S̃/S| is relatively prime to 3, we see that the irreducible constituents of the
restriction (χ̃s1)G are still fixed by X and by σ1. If n = 3 or 4, then s1, s2, s3 satisfy (1)–(4) if chosen to
have eigenvalues {δ, δ−1

}, {−1,−1}, and {ξ, ξ−1
} with remaining eigenvalues 1, where |ξ |> 2 divides

q + η if 4 | q − η.
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Now suppose that n≥ 5. Consider semisimple elements s1, s2, and s3 of G̃∗=GLεn(q) with eigenvalues
(δ, δ−1, 1, . . . , 1), (−1,−1, 1, . . . , 1), and (δ, δ−1, δ, δ−1, 1, . . . , 1), respectively. If n= 6, instead define
s3 to have eigenvalues (−1,−1,−1,−1, 1, 1). Then these satisfy (1)–(4), and in fact properties (2)
and (3) are held by all three elements. Hence the corresponding semisimple characters χ̃si of G̃ are
invariant under graph-field automorphisms and restrict irreducibly to members of Irr3′(B0(G))σ1 that are
trivial on Z(G). Hence these restrictions are members of Irr3′(B0(S))σ1 invariant under Aut(S). �

Proposition 3.14. Let q be a power of 3. Let S = PSp2n(q), P�2n+1(q), or P�±2n(q) be simple with
n ≥ 2, 3, 4 respectively. Then there exist nontrivial χ1, χ2, χ3 ∈ Irr3′(B0(S))σ1 that are pairwise not
Aut(S)-conjugate and such that χ1 is invariant under Aut(S).

Proof. We may again assume S is not one of the groups in Proposition 3.8. Let δ ∈ F×q2 with |δ| = 4, and
we keep the notation from Section 3A. Let 8 and 1 := {α1, α2, . . . , αn} be a system of roots and simple
roots, respectively, for G̃∗ with respect to a maximal torus T̃∗, following the standard model described in
[Gorenstein et al. 2002, Remark 1.8.8]. Then8 is type Bn , Cn , or Dn in the case S=PSp2n(q), P�2n+1(q),
or P�±2n(q), respectively. Further, 8 has no nontrivial graph automorphism unless we are in the case of
Dn , in which case all members of 1 have the same length and that automorphism has order 2 unless n= 4.

We use the notation as in [Gorenstein et al. 2002] for the Chevalley generators. In particular, given α∈8,
let hα denote the corresponding coroot. Let K := [G̃∗, G̃∗], so we have hα(t) ∈ K for t ∈ F×q by [loc. cit.,
Theorem 1.10.1(a)] and G̃∗ = K .Z(G̃∗). Notice that for s, s ′ ∈ K (not necessarily distinct), we have s is
G̃∗-conjugate to s ′z for z ∈ Z(G̃∗) if and only if z ∈ Z(K ) and the conjugating element can be chosen in K .

By [Gorenstein et al. 2002, Theorem 1.12.4] and [Cabanes and Enguehard 2004, 15.1], K is isomorphic
as an abstract group to the simply connected simple algebraic group (G̃∗)sc associated to G̃∗, and the
Chevalley relations and generators of (G̃∗)sc and K may be identified. We will make this identification.
In particular, choosing s1, s2, and s3 in K , the properties (1)–(3) may be verified by computation in K
rather than G̃∗.

Let T denote a maximal torus of K under this identification, and note that

T = 〈hα(t) | t ∈ F×q , α ∈8〉 and NK (T )= 〈T , nα(1) | α ∈8〉.

Further, note that

W := NG̃∗(T̃
∗)/T̃∗ ∼= NK (T )/T .

By [Digne and Michel 1991, Corollary 0.12], we know that NK (T ) controls fusion in T , so two elements
of T are conjugate if and only if there is a conjugating element in W . Further, we have an isomorphism
(F×q )

n
→ T given by (t1, . . . , tn) 7→

∏n
i=1 hαi (ti ).

Now using the standard model for 8 and 1 as in [Gorenstein et al. 2002], since 8 is type Bn , Cn ,
or Dn , we have αi := ei − ei+1 for 1 ≤ i ≤ n − 1, where {e1, . . . , en} is an orthonormal basis for the
n-dimensional Euclidean space. Here W ≤ C2 oSn where the generators of the base subgroup Cn

2 act
via negation on the ei and the copy of Sn permutes the ei .
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Using this information and the description of Z(K ) in [Gorenstein et al. 2002, Table 1.12.6], compu-
tation with the Chevalley relations yields that the element s ′1 := hα1(δ) is not G̃∗-conjugate to s ′1z for any
1 6= z ∈ Z(G̃∗). If δ ∈ F×q , we see that s ′1 is F∗-fixed, and we write s1 := s ′1. Otherwise, let ṡα1 ∈W induce
the reflection corresponding to α1. Then s1 := s ′g1 is F∗-fixed, where g ∈ G̃∗ satisfies g−1 F∗(g) = ṡα.
(Note that such a g exists by the Lang–Steinberg theorem.)

Let F3 denote a generating field automorphism such that F3(hα(t)) = hα(t3) for α ∈ 8 and t ∈ F×q .
Then s ′1 is G̃∗-conjugate to F3(s ′1), taking for example ṡα1 as the conjugating element. Hence s1 is also
G̃∗-conjugate to F3(s1). Since the CG∗(ι

∗(s1)) is connected, using [Bonnafé 2005, Corollary 2.8(a)], this
yields that the G̃∗-conjugacy class of s1 is fixed by field automorphisms, using [Digne and Michel 1991,
(3.25)]. Further, by construction, the G̃∗-conjugacy class of s1 is fixed by graph automorphisms unless
8 is type D4. In the latter case, we may make similar considerations using s ′1 := hα2(δ).

Now, further taking s2 := hα1(−1) and s3 ∈ K F∗ an element of order larger than 4, we obtain properties
(1)–(4). �

Theorem 3.7 now follows from Propositions 3.8–3.14, completing the proof of Theorem A.
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