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ABSTRACT 
 

Flows past a circular cylinder develop in a variety of practical situations in engineering and in 
nature. One can properly focus on the study of beneficial cases and specifically attempt to harness 
this renewable clean energy resource to generate electrical power to help decrease air pollution 
and global warming. In addition, we need studies on stress and deformation of a circular cylinder 
due to the passing flow vortex in order to reduce the destructive effects, for example, on offshore 
structures. In this paper, we implement a two-dimensional numerical simulation with no-slip walls 
to monitor in detail how vortices are formed around a stationary circular cylinder when a shear 
current flows past a bluff body, namely a fixed circular cylinder. The Computational Fluid 
Dynamics (CFD) part of COMSOL Multiphysics was used to implement the continuity and 
Navier-Stokes equations that are based on the velocity field, pressure, and other preliminary 
variables. In the research reported here, various mathematical techniques such as various selected 
wavelet transforms over the space domain are applied to the exported data. A comprehensive 
wavelet numerical investigation is carried out on the vorticity and pressure field by using 
MATLAB software. Various Daubechies wavelets, Haar, Morlet, Paul and the m-th order 
derivative of Gaussian wavelets were tested to find the best wavelet transform to accurately 
analyze flow past a fixed cylinder. Numerical simulation results are compared with experimental 
data from the literature. An extensive comparative analysis is performed and discussed in detail in 
order to suggest improvements and expansions for the developed model. 
 
KEY WORDS: Circular Cylinder, CFD, COMSOL, Wavelet Analysis, Haar, Daubechies, Paul, DOG, Morlet, 
MATLAB, Flow-Induced Vibration, Vorticity, Pressure Field. 
 

1. INTRODUCTION 
 
We encounter many problems, such as fatigue of offshore structures or the destructive effects of 
wind on skyscrapers, due to the static and dynamic loads on structures caused by fluid 
flow.  Conducting experiments on flow-induced vibrations that correspond to the real physical 
situation is very expensive and time-consuming. However, computational solutions such as 
developing CFD [8] methods are able to simulate this challenging and destructive phenomenon. 
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A wavelet transform (WT) is the decomposition of a signal using a set of basis functions consisting 
of contractions, expansions, and translations of a function ψ(t), called the mother 
wavelet (Daubechies, 1991).[1] Many researchers have used wavelet transforms to analyze 
different characteristics of the fluid in laminar and turbulent flows. Orthonormal wavelet 
transforms are used to decompose velocity signals of turbulence into both space and scale.[2] A 
wavelet multi-resolution technique based on an orthogonal wavelet transform has been applied to 
analyzing the velocity data obtained simultaneously in two orthogonal planes in the turbulent near-
wake of a circular cylinder. Using this technique, the flow is decomposed into a number of wavelet 
components based on their characteristic or central frequencies.[3] In these studies, research 
emphasized the turbulent regime for high Reynolds numbers. In this research, we attempt to use 
different wavelet transforms to find out what wavelets are appropriate to better reconstruct the 
pressure field, velocity and vorticity in both 1 and 2 dimensions. COMSOL Multiphysics single-
phase flow (SPF) is used to simulate flow past a 2D stationary circular cylinder in a laminar, 
incompressible, Newtonian flow. The corresponding Reynold’s number is 700 and Strouhal’s 
number is very small (approximately 0.19).  
 

2. THEORY[4] 
2.1 Continuity and Navier-Stokes Equations 

The governing equations to analyze the flow around a circular cylinder for an incompressible flow 
are the Continuity and Navier-Stokes equations. These equations are partial differential equations 
that characterize the motion of the fluids by considering boundary conditions such as inlet velocity, 
condition of the walls, and outlet pressure. In this paper, these equations will be 
solved numerically.  
Equation (1) gives the most general differential form of the Continuity equation which describes 
the law of conservation of mass 

∂ρ
∂t
+ ∇. (ρu) = 0																										(1) 

where ρ	 is the density (kg/ m3), u is the velocity vector (m/s) and t is the time (s). 
Constant density is a direct result of incompressible flow where the medium is sea-water, so 
equation (1) becomes equation (2), a scalar equation. 

∇. u = o																							(2) 
The Navier Stokes equation, Newton’s second law for fluids is given in Equation (3). It is also 
known as the Transport equation, and shows the transport of linear momentum throughout the 
computational domain.[5] 

(u. ∇)u = −
1
ρ
∇P + ν∇!u																								(3) 

Where u is the velocity vector (m/s) and P is the pressure (Pa). The kinematic viscosity ν  (m2/s) 
can be viewed as viscous diffusivity or diffusivity for momentum[10] and defined as: 

ν =
µ
ρ
																										(4) 

where µ is the dynamic viscosity (Pa.s). A Petrov-Galerkin FEM method is used to discretize and 
solve equation (3) numerically.  
 
2.2 Reynolds and Strouhal Number Analysis 
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The dimensionless Reynolds number describes a flow regime depending mainly on the ratio of the 
inertial forces and viscous forces in the fluid.[6] 
Assuming the circular cylinder in this research 

Re =
Inertial	Forces
Viscous	Forces

=
V"#$	D
ν

=
ρV"#$	D
µ

																										(5) 

where V"#$	is the average flow velocity (m/s) and D is the diameter of the circular cylinder (m). 
Under most practical conditions, the flow in a circular pipeline is laminar at Re ≤ 2300; at 2300≤
Re ≤ 4000, transitional flow is observed; ultimately, at 4000≤ Re, the flow becomes turbulent 
[6]. In monitored laboratory experiments, the laminar flow has been maintained at Reynolds 
numbers up to 100000. [6]. According to the geometry of the model (diameter D, initial velocity 
1.4 m/s) considering the properties of sea-water, the Reynolds number for the current situation is 
about 700, in the laminar regime. 
The vortex shedding frequency for most bluff body cylinders is given by[7] 

f& =
St	V
D
																										(6) 

where f& is the vortex shedding frequency ((
'
&), Hertz). [7].  

The dimensionless Strouhal number (St) represents a measure of the ratio of inertial forces due to 
the unsteadiness of flow to the inertial forces due to changes in velocity.[5] It depends on the 
roughness or smoothness of the surface, as described by Achenbach and Heinecke (1981).[9] Many 
experiments have shown that there is a complicated relationship between the Strouhal number and 
Reynolds number. 
In reference[10], the relationship between Reynolds and Strouhal numbers was demonstrated by 
Roshko[16,17], Kovasznay[18] and Tritton[19] for Re< 2 × 10( [10]. These have been used in the 
current model to specify the Strouhal number based on the given Reynolds number. According to 
reference[10], for the given Reynolds number (700), the corresponding Strouhal number is 
between approximately 0.19 and 0.2. 
An empirical formula has been introduced for estimation of the Strouhal number by using the 
corresponding Reynolds number.[11] 

St = 0.198 K1 −
19.7
Re

M																										(7) 
Substituting our computed Reynolds number into equation (7) gives the Strouhal number as 0.19. 
St numbers from the[10] and from the empirical formula show reasonable agreement. 
 
2.3 Wavelet Transform Theory [12] 
 
Wavelet transforms are a useful and practical tool in many areas. A wavelet is a mathematical 
function used to divide a given function or continuous-time signal into different scale components. 
Usually, one can assign a frequency range to each scale component. Each scale component can 
then be studied with a resolution that matches its scale. A wavelet transform is the representation 
of a function by wavelets.[13] The wavelets are scaled and translated versions of a finite-length or 
fast-decaying oscillating waveform (the mother wavelet). Wavelet transforms have advantages 
over traditional Fourier Transforms for representing functions that have discontinuities and sharp 
peaks, and for accurately deconstructing and reconstructing finite, non-periodic signals.[13] 
By using convolution with the wavelets and a disturbed signal, we are able to construct an 
unknown section of the signal. The forward Wavelet transform of a function N(O) with respect to 
wavelet	P(O) is 
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Q)(R, T) =
1

√T
V N(O)P K

O − R
T

MWO.								(8)
*+

,+
 

P-,/(O) =
1

√T
P K

O − R
T

M																					(9) 

 
Where T ≠ Y is the scale parameter and R is the translation parameter.  
i. Haar Wavelet[12] 

A wavelet is a small wave. In Haar’s case it is a square wave.[12] The Haar wavelet H(t) is defined 
to be the difference of two half-boxes: 

 

Z(O) = [(2O) − [(2O − 1) = \
1																		0 ≤ O ≤

'
!

−1																	
'
! ≤ O ≤ 1		

         (10) 

 
Where [(O) represents a box function and its dilation [(2O − 1)	represents a half-box 
function.[12] 
ii. Daubechies Wavelet 

The Daubechies wavelets were invented by researcher Ingrid Daubechies as a family of orthogonal 
wavelets. If W is a wavelet with p vanishing moment that generates orthonormal basis of ]!(ℝ), 
then it has a support of size larger than or equal to 2p-1. A Daubechies wavelet has a minimum 
size support equal to [-p+1, p].[14] 
The mathematical equation of the Daubechies filter D(t) is: 
 

_(O) = (
1 + `YR O

2
)!aK

b − 1 + c
2

M (
1 − `YR O

2
)0 												(11)

1,'

023
 

iii. Morlet Wavelet[15] 
The complex Morlet wavelet (Gabor wavelet) is a sine function tapered by a complex Gaussian 
window. The width of the Gaussian window has a direct effect on the accuracy of the Morlet 
wavelet transform. The mathematical form of a complex Morlet wavelet W(t) is:  

 

d(O) = e!4567e,
7!
!8!																									(12)				 

 
where f indicates the imaginary unit, N (Hz) is the frequency, g is the width of the Gaussian 
window and t (s) shows the time.  
iv. Paul Wavelet [16] 

The Paul wavelet contains few oscillations but is very localized in time. This will give a very 
accurate time resolution but a reduced frequency resolution.[17] 
The orders of the Paul wavelets start from 4, and the default smallest scale is 2	hO, where hO is the 
sampling period [16]. The mathematical form of the Paul wavelet i(O) is:[17] 
 

																																																i(O) =
!"5"0!
:4(!4)! (1 − jO)

,(0*')	 		        (13) 
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The value of k controls the number of oscillations present in the mother wavelet and, hence, will 
strongly influence the frequency and time resolution of the corresponding wavelet transform.[17] 

v. M-th Order Derivative of Gaussian Wavelet: (DOG)[16] 
The k(O)	DOG wavelet has relatively few oscillations in a much wider time domain. Note that 
both the Morlet and the Paul wavelet are complex-valued, whereas the Derivative of Gaussian 
wavelet is real-valued. [6] 

																																																									χ(t) =
(,')#$%

=>?@*%!A
B#
BC# Ke

,&
!
! M  													(14) 

where Γ indicates the Gamma function. The Derivative of Gaussian wavelet with k = 2 is also 
referred to as the ‘Mexican hat’ wavelet.[17] 

3. Numerical Method 

Figure 1 shows a two-dimensional (2D) scheme of the computational domain for flow past a 
circular cylinder. The diameter of the circular cylinder is D. Based on the diameter of the cylinder, 
the height and width of the rectangular computational domain are defined as 10D and 32D. As 
shown in figure 1, the inlet flow is from the left-hand side of the computational domain. The 
velocity of the inlet flow is defined to be linear at 1.4 m/s. 

 

Figure 1. Scheme of the 2D computational domain 

Figure 2 gives the computational mesh close to the circular cylinder. Finding the most accurate 
mesh is a very crucial and time-consuming step in the simulation process since it is directly related 
to the accuracy of the results. In this computational mesh, the maximum element size is 0.0315D 
and the minimum element size is 0.0014D. For corner refinement and free triangular sections, the 
curvature factor is specified to be 0.3. For sharp corners, trimming is used, in which the minimum 
angle for trimming is 240 degrees and the maximum angle for trimming is 50 degrees. In addition, 
the maximum layer decrements are 2. Ultimately, for a smooth transition to the interior mesh, the 
number of iterations was determined to be 8 and the maximum element depth to process to be 16 
elements. 

 

Figure 2. Scheme of the 2D computational mesh around the circular cylinder 
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4. Computational Results 

The wavelet analyzer of MATLAB was used for wavelet transforms. There are some articles using 
wavelet transforms in different aspects of fluid mechanics. Wang, So and Xie presented wavelet 
analysis of flow-induced forces on two stationary cylinders by considering the Reynolds number 
effect (60 ≤ Re ≤ 200). Their results were compared with experimental measurements and 
theoretical predictions and show good agreement.[18] Zhao, Cheng and An carried out a numerical 
investigation of Vortex-Induced vibration of a circular cylinder in the transverse direction in 
oscillatory flow by using the continuous Morlet wavelet transform in the turbulent regime for 
different KC numbers.[19]  

4.1  Wavelet transform analysis for 2D pressure field, velocity field, and vorticity 
 
In figures 3, 4 and 5, the top row shows the surface and contour plots of the pressure field, velocity 
field and vorticity once the circulation motion is formed close to the bluff body (cylinder). The 
other rows present different wavelet transforms that show reasonable reconstruction in comparison 
to other wavelet transforms. The last rows show the specific wavelet that gives the best 
reconstruction.  To analyze the pressure field, velocity field, and vorticity, Morlet wavelets of order 
(1, 2, …, 10), Paul wavelets of order (4, 5, …, 10) and DOG wavelets of order (2,4, …, 10) were 
used. For each specific wavelet, the wavelets that best reconstructed the signals were chosen and 
given in the figures below. The red solid lines show the original signals and the blue solid 
lines indicate the wavelet reconstructed signals in each figure. Specifically, in figure 3, 
different wavelet transforms in different orders were examined for the pressure field. Among 
different orders of the Paul wavelet, Paul 4 reconstructs the original signal better than the 
others.  In the case of the Morlet wavelet, the reconstruction of the Morlet 5 shows a closer result 
to the original signal than other orders of this wavelet. Finally, DOG 8 illustrates better 
reconstruction than other orders. The Morlet 5, Paul 4, and DOG 8 are the best wavelets to 
reconstruct the original pressure field signal. Between these three wavelets, it is clear that DOG 8 
is the best wavelet for this specific signal. It perfectly reproduced the signal upstream and 
downstream. In figure 4, the results of the various wavelet transforms for the velocity field were 
shown. The Paul 8 shows better results compare to other orders of the Paul wavelet. In the case of 
the DOG wavelet, DOG 8 indicates better reconstruction than other DOG wavelets. 
 Wavelet analysis of the vorticity is shown in figure 5.  The Morlet 5 shows better reconstruction 
than DOG 8 and Paul 8, especially in the wake.  The best wavelet transform reconstruction of the 
vorticity signal is the Paul 10 wavelet.  
Table 1 provides a summary of the wavelets tested and results with respect to the 2D signals of the 
pressure field, velocity and vorticity. 
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Figure 3. 2D wavelet analysis of the pressure field 

Figure 4. 2D wavelet analysis of the velocity field 

Figure 5. 2D wavelet analysis of the vorticity 

 

Table 1. Summary of wavelet analysis of the pressure field, velocity and vorticity 
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4.2  Wavelet transform analysis for 1D pressure field, velocity field, and vorticity at the 
top of the circular cylinder 
 
To analyze the 1-dimensional pressure, velocity and vorticity, a cutline at the top of the cylinder is 
defined as shown in figure 6. In addition to the Morlet, Paul, and DOG wavelets that were 
examined for 2D fluid properties, Haar and Daubechies wavelets (various orders) were also 
tested.  

 

Figure 6. Schematic of a cutline (1D) on top of the circular cylinder  

For figures 7, 8, and 9, as before, the red solid lines show the original signals and the blue indicates 
the reconstruction for specific wavelet transforms. In figure 7, different wavelet transforms were 
applied to the original pressure field signal after the circulation pattern was created around the 
cylinder. The result of the Hear wavelet is acceptable; for different orders of the Daubechies 
wavelet, db5 looks better than others. Morlet 3 shows better signal reconstruction than other orders. 
Although none of the orders of the Paul wavelet indicates reasonable reconstruction for this 
specific signal, Paul 7 was the best. From different orders of the DOG wavelet, DOG 8 was chosen 
as the best reconstruction of the 1D pressure signal.  
Results show in figure 8 that the behavior of the Haar, Morlet 3, DOG 8, and Daubechies wavelets 
are acceptable again, but, similar to the pressure, the Paul wavelet did not reconstruct the 1D 
velocity signal very well. In this case, Db5 was chosen as the best reconstruction wavelet for the 
velocity signal.  
Figure 9 shows that the Haar, Db5, and DOG 8 give good reconstruction for the vorticity signal. 
Unlike, the pressure and velocity, Here the different orders of the Paul wavelet show good results 
for analyzing the vorticity, especially Paul 5. The Morlet 6 was chosen as the best reconstruction 
wavelet for the vorticity signal, especially in the regions of the spikes.  
Table 2 gives a summary of the analyzing wavelets and their effects on the pressure 
field, velocity, and vorticity signals in 1D. 

 

Figure 7. 1D wavelet analysis of the pressure field at the cutline on top of the circular cylinder  
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Figure 8. 1D wavelet analysis of the velocity field at the cutline on top of the circular cylinder  

 

Figure 9. 1D wavelet analysis of the vorticity field at the cutline on top of the circular cylinder  

 

Table 2. Summary of 1D wavelet analysis of the pressure field, velocity and vorticity 

5. Conclusions 
 
In general, the Haar, Db5, DOG 8, and Morlet 3 are the best candidate wavelets for 1D analysis of 
fluid properties.  The results using the Paul wavelet for the pressure and velocity fields were not 
good. It needs future study; one of the difficulties could be different close peaks and asymmetric 
oscillations as this wavelet is not able to reconstruct this kind of signal.  
In the case of 2D fluid analysis of the pressure, velocity, and vorticity, Morlet 5 and DOG 8 show 
acceptable results. These wavelets properly reconstruct various signals in different situations such 
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as upstream, downstream, and around the bluff body (cylinder). Their reconstructions in the peaks 
of the signals are very good.  
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