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Abstract

Semidefinite programs (SDPs) are a fundamental class of optimization problems with im-
portant recent applications in approximation algorithms, quantum complexity, robust learning,
algorithmic rounding, and adversarial deep learning. This paper presents a faster interior point
method to solve generic SDPs with variable size n X n and m constraints in time

O(vn(mn? + m® 4 n*)log(1/¢)),

where w is the exponent of matrix multiplication and e is the relative accuracy. In the predom-
inant case of m > n, our runtime outperforms that of the previous fastest SDP solver, which is
based on the cutting plane method [JLSW20].

Our algorithm’s runtime can be naturally interpreted as follows: O(y/nlog(1/e)) is the num-
ber of iterations needed for our interior point method, mn? is the input size, and m* 4+n is the
time to invert the Hessian and slack matrix in each iteration. These constitute natural barriers
to further improving the runtime of interior point methods for solving generic SDPs.
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1 Introduction

Semidefinite programs (SDPs) constitute a class of convex optimization problems that optimize a
linear objective over the intersection of the cone of positive semidefinite matrices with an affine space.
SDPs generalize linear programs and have a plethora of applications in operations research, control
theory, and theoretical computer science [VB96]. Applications in theoretical computer science in-
clude improved approximation algorithms for fundamental problems (e.g., Max-Cut [GW95], color-
ing 3-colorable graphs [KMS94], and sparsest cut [ARV09]), quantum complexity theory [JJUWI11],
robust learning and estimation [CG18, CDG19, CDGW19], and algorithmic discrepancy and round-
ing [BDG16, BG17, Ban19]. We formally define SDPs with variable size n X n and m constraints:

Definition 1.1 (Semidefinite programming). Given symmetric' matrices C, Ay,--- | Ay, € R™X"
and b; € R for all i € [m], the goal is to solve the convex optimization problem

max(C, X) subject to X > 0,(A4;,X) = b; Vi € [m] (1)

where (A, B) == 3, ; A; jBi j is the trace product.

Cutting plane and interior point methods Two prominent methods for solving SDPs, with
runtimes depending logarithmically on the accuracy parameter €, are the cutting plane method and
the interior point method.

The cutting plane method maintains a convex set containing the optimal solution. In each
iteration, the algorithm queries a separation oracle, which returns a hyperplane that divides the
convex set into two subsets. The convex set is then updated to contain the subset with the optimal
solution. This process is repeated until the volume of the maintained set becomes small enough and
a near-optimal solution can be found. Since Khachiyan proved [Kha80] that the ellipsoid method
solves linear programs in polynomial time, cutting plane methods have played a crucial role in both
discrete and continuous optimization [GLS81, GV02].

In contrast, interior point methods add a barrier function to the objective and, by adjusting the
weight of this barrier function, solve a different optimization problem in each iteration. The solutions
to these successive problems form a well-defined central path. Since Karmarkar proved [Kar84| that
interior point methods can solve linear programs in polynomial time, these methods have become
an active research area. Their number of iterations is usually the square root of the number of
dimensions, as opposed to the linear dependence on dimensions in cutting plane methods.

Since cutting plane methods use less structural information than interior point methods, they
are slower at solving almost all problems where interior point methods are known to apply. However,
SDPs remain one of the most fundamental optimization problems where the state of the art is, in
fact, the opposite: the current fastest cutting plane methods? of [LSW15, JLSW20] solve a general
SDP in time m(mn?+m?+n*), while the fastest SDP solvers based on interior point methods in the
work of [NN92] and [Ans00] achieve runtimes of v/n(m?n?+mn® +m®) and (mn)Y*(m*n?+m?n®),
respectively, which are slower in the most common regime of m € [n,n?] (see Table 1.2). This
apparent paradox raises the following natural question:

How fast can SDPs be solved using interior point methods?

We can assume that C, A1, - - - , A, are symmetric, since given any M € {C, A1, --- , A}, we have Z” M;;j X;; =
Zlg Mi; Xji =325 (M™);;X:;, and therefore we can replace M with (M + M")/2.
[JLSW20] improves upon the runtime of [LSW15] in terms of the dependence on log(n/e€), while the polynomial
factors are the same in both runtimes.



1.1 Our results

We present a faster interior point method for solving SDPs. Our main result is the following theorem,
the formal version of which is given in Theorem 4.1.

Theorem 1.2 (Main result, informal). There is an interior point method that solves a general SDP
with variable size n X n and m constraints in time> O*(y/n(mn? +m* + n%)).

Our runtime can be roughly interpreted as follows:
e /n is the iteration complexity of the interior point method with the log barrier function.
e mn? is the input size.
e m¥ is the cost of inverting the Hessian of the log barrier.
e n¥ is the cost of inverting the slack matrix.

Thus, the terms in the runtime of our algorithm arise as a natural barrier to further speeding up
SDP solvers. See Section 1.2.2, 1.2.3, and 1.2.4 for more detail.

Table 1.1 compares our result with previous SDP solvers. The first takeaway of this table and
Theorem 1.2 is that our interior point method always runs faster than that in [NN92| and is faster
than that in [NN94] and [Ans00] when m > n'/13. A second consequence is that whenever m > v/n,
our interior point method is faster than the current fastest cutting plane method [LSW15, JLSW20].
We note that n < m < n? is satisfied in most SDP applications known to us, such as classical
combinatorial optimization problems over graphs, experiment design problems in statistics and
machine learning, and sum-of-squares problems. An explicit comparison to previous algorithms in

the cases of m = n and m = n? is shown in Table 1.2.
Year | References Method | #Iters | Cost per iter
1979 | [Sho77, YN76, Kha80] | CPM m? mn? 4+ m? + n®
1988 | [KTESS, NN89| CPM m mn? +m3° + n¥
1989 | [Vai89a] CPM m mn? +m* + n*
1992 | [NN92] IPM n m?n? + mn® + m*
1994 | [NN94, Ans00] IPM (mn)/4 | min? + m3n®
2003 | [KMO3] CPM m mn? +m* + n
2015 | [LSW15] CPM m mn? +m? + n®
2020 | [JLSW20] CPM m mn? +m? + n®
2020 | Our result IPM vn mn? +m~ +n*

Table 1.1: Summary of key SDP algorithms. CPM stands for cutting plane method, and IPM, interior point method.
n is the size of the variable matrix, and m < n? is the number of constraints. Runtimes hide n"(l), m°M and
poly log(1/€) factors, where € is the accuracy parameter. [Ans00| simplifies the proofs in [NN94, Section 5.5]. Nei-
ther [Ans00] nor [NN94] explicitly analyzed their runtimes, and their runtimes shown here are our best estimates.

Even in the more general case where the SDP might not be dense, where nnz(A) is the input
size (i.e., the total number of non-zeroes in all matrices A; for i € [m] and C), our interior point
method runs faster than the current fastest cutting plane methods|LSW15, JLSW20], which run in
time O*(m(nnz(A) + m? 4+ n¥)).

3We use O* to hide n°® and log®® (n/e) factors and O to hide log®® (n/e) factors, where € is the accuracy
parameter.



Year | References Method Runtime 5
m=n|m=n
1979 | [Sho77, YN76, Kha80] | CPM n® n8
1988 | [KTESS, NN89 CPM nt> n?
1989 | [Vai89a] CPM n? nb-746
1992 | [NN92]| IPM nt> n®>
1994 | [NN94, Ans00] IPM nb> nlo-7
2003 | [KMO3] CPM n? nb-746
2015 | [LSW15] CPM n? n®
2020 | [JLSW20] CPM n? n®
2020 | Our result IPM n3o n-246

Table 1.2: Total runtimes for the algorithms in Table 1.1 for SDPs when m = n and m = n2, where n is the size of
matrices, and m is the number of constraints. The runtimes shown in the table hide n°®, m°® and poly log(1/¢)
factors, where € is the accuracy parameter and assume w to equal its currently best known upper bound of 2.373.

Theorem 1.3 (Comparison with Cutting Plane Method). When m > n, there is an interior point
method that solves an SDP with n x n matrices, m constraints, and nnz(A) input size, faster than
the current best cutting plane method [LSW15, JLSWZ20], over all regimes of nnz(A).

1.2 Technique overview
1.2.1 Interior point method for solving SDPs

By removing redundant constraints, we can, without loss of generality, assume m < n? in the primal
formulation of the SDP (1). Thereafter, instead of solving the primal SDP, which has variable size
n X n, we solve its dual formulation, which has dimension m < n?:

minb 'y subject to S = Z%’Ai —(C, and S > 0. (2)
1=1

Interior point methods solve (2) by minimizing the penalized objective function:

min f,(y), where f,(y) :==n-b"y + ¢(y), (3)
yeR

where n > 0 is a parameter and ¢ : R™ — R is a barrier function that approaches infinity as y
approaches the boundary of the feasible set {y € R™ : >~ y;A; = C'}. These methods first obtain
an approximate minimizer of f, for some small > 0, which they then use as an initial point to
minimize f(1c),, for some constant ¢ > 0, via the Newton method. This process repeats until the
parameter 7 in (3) becomes sufficiently large, at which point the minimizer of f, is provably close to
the optimal solution of (2). The iterates y generated by this method follow a central path. Different
choices of the barrier function ¢ lead to different run times in solving (3), as we next describe.

The log barrier Nesterov and Nemirovski [NN92] use the log barrier function,

o(y) = g(y) := —logdet (Z yidi — C) : (4)

i=1

in (3) and, in O(y/nlog(n/e)) iterations, obtain a feasible dual solution y that satisfies b’y <
bTy* + €, where y* € R™ is the optimal solution for (2). Within each iteration, the costliest step



is to compute the inverse of the Hessian of the log barrier function for the Newton step. For each
(4, k) € [m] x [m], the (j, k)-th entry of H is given by

Hj = tr[S_lAjS_lAk]. (5)

The analysis of [NN92| first computes S™1/24;571/2 for all j € [m], which takes time O*(mn®),
and then calculates the m? trace products tr[S™1A4;S71Ay] for all (j, k) € [m] x [m], each of
which takes O(n?) time. Inverting the Hessian costs O*(m®), which results in a total runtime of

O*(y/n(m?n? + mn® +m<)).

The volumetric barrier Vaidya [Vai89a] introduced the volumetric barrier for a polyhedral set
{z € R" : Az > c}, where A € R™*" and ¢ € R™. Nesterov and Nemirovski [NN94]| studied the
following extension of the volumetric barrier to the convex subset {y € R™ : >, y;A; = C} of the
polyhedral cone:

V(y) = % log det(V3g(y)),

where ¢(y) is the log barrier function defined in (4). They proved that choosing ¢(y) = /nV (y)
in (3) makes the interior point method converge in O(y/mn!/*) iterations, which is smaller than the
O(y/n) iteration complexity of [NN92] when m < /n. They also studied the combined volumetric-
logarithmic barrier

Voly) =V(y) +p-g(y)

and showed that taking ¢(y) = \/n/m-V,(y) for p = (m —1)/(n —1) yields an iteration complexity
of O((mn)'/*). when m < n, this iteration complexity is lower than O(y/n) of [NN92]. We refer
readers to the much simpler proofs in [Ans00] for these results.

However, the volumetric barrier (and thus the combined volumetric-logarithmic barrier) leads to
complicated expressions for the gradient and Hessian that make each iteration costly. For instance,
the Hessian of the volumetric barrier is

VAV (y) = 2Q(y) + R(y) — 2T(y),
where Q(y), R(y), and T(y) are m x m matrices such that for each (j, k) € [m] x [m],

QQD%k::trL4H‘1AT((S_lAjS_lAkS_1)®S_1ﬂ,
R(y)j = tr [AH AT ((S714;571) 8 (57 457Y)) (6)
T(y)jn = tr [AH‘IAT ((S7'4;87 1) @S AH1AT ((S714,S7) @5—1)} :

Here, A € R™ ™ i5 the n? x m matrix whose ith column is obtained by flattening A; into a vector
of length n?, and ® is the symmetric Kronecker product

ARB := %(A®B+B®A),

where ® is the Kronecker product (see Section 2.1for formal definition). Due to the complicated
formulas in (6), efficient computation of Newton step in each iteration of the interior point method
is difficult; in fact, each iteration runs slower than the Nesterov-Nemirovski interior point method
by a factor of m?. Since most applications of SDPs known to us have the number of constraints m
be at least linear in n, the total runtime of interior point methods based on the volumetric barrier
and the combined volumetric-logarithmic barrier is inevitably slow.



1.2.2 OQOur techniques

Given the inefficiency of implementing the volumetric and volumetric-logarithmic barriers discussed
above, this paper uses the log barrier in (4). We now describe some of our key techniques that
improve the runtime of the Nesterov-Nemirovski interior point method [NN92].

Hessian computation using fast rectangular matrix multiplication As noted in Sec-
tion 1.2.1, the runtime bottleneck in [NN92| is computing the inverse of the Hessian of the log
barrier function, where the Hessian is described in (5). In [NN92|, each of these m? entries is
computed separately, resulting in a runtime of O(m?n?) per iteration.

Instead contrast, we show below how to group these computations using rectangular matrix
multiplication. The expression from (5) can be re-written as

Hjp = tr[S™Y2A,;871/2. 87124, 87172, (7)

We first compute the key quantity S~/ 2Aj5_1/ 2 ¢ R™™ for all j € [m] by stacking all matrices
A; € R™™into a tall matrix of size mnxn, and then compute the product of S—1/2 ¢ R™™ with this
tall matrix. This matrix product can be computed in time Tpa¢(n, mn,n)* using fast rectangular
matrix multiplication. We then flatten each S~/ 2AjS ~1/2 into a row vector of length n? and stack
all m vectors to form a matrix B of size m x n? i.e., the j-th row of B is B; = vec(S~1/24;571/2).
It follows that the Hessian can be computed as

H=BB", (8)

which takes time Tmat(m,n?,m) by applying fast rectangular matrix multiplication. By leveraging
recent developments in this area [GU18], this approach already improves upon the runtime in [NN92].

Thus far, we have reduced the per iteration cost of O*(m?n? + mn*) for Hessian computation
down to

Tmat (n, mn, n) + Tmat (m, ’I’L2, m)

Low rank update on the slack matrix The fast rectangular matrix multiplication approach
noted above, however, is still not very efficient, because the Hessian must be computed from scratch
in each iteration of the interior point method. If there are T iterations in total, it then takes time

T- (Tmat(ny mn, n) + Tmat(ma n27 m))

To further improve the runtime, we need to efficiently update the Hessian for the current iteration
from the Hessian computed in the previous one. Generally, this is not possible, as the slack matrix
S € R™™ in (7) might change arbitrarily in the Nesterov-Nemirovski interior point method.

To overcome this problem, we propose a new interior point method that maintains an approxi-
mate slack matrix S € R™ " which is a spectral approximation of the true slack matrix S € R™*"
such that S admits a low-rank update in each iteration. Where needed, we will now use the subscript
t to denote a matrix in the ¢-th iteration. Our algorithm updates only the directions in which §t
deviates too much from Siy1; the changes to S; for the remaining directions are not propagated in
§t. This process of selective update ensures a low-rank change in §t even when S; suffers from a

4See Section 3 for the definition.



full-rank update; it also guarantees the proximity of the algorithm’s iterates to the central path.
Specifically, for each iteration t € [T], we define the difference matrix

Zy =8, 8,87 1 e R

which intuitively captures how far the approximate slack matrix §t is from the true slack matrix S;.
We maintain the invariant || Z;||op < ¢ for some sufficiently small constant ¢ > 0. In the (¢ + 1)-th
iteration when S; gets updated to S;11, our construction of §t+1 involves a novel approach of zeroing
out some of the largest eigenvalues of | Z;| to bound the rank of the update on the approximate slack
matrix.

We prove that with this approach, the updates on S € R"™" over all T = 6(\/5) iterations
satisfy the following rank inequality (see Theorem 6.1for the formal statement).

Theorem 1.4 (Rank inequality, informal version). Let §1, §2, e ,§T € R™ "™ denote the sequence
of approzimate slack matrices generated in our interior point method. For each t € [T — 1], denote
by ry = rank(Syy1 — S¢) the rank of the update on Sy. Then, the sequence 11,72, ,rp satisfies

T
> V= 0(T).
t=1

The key component to proving Theorem 1.4 is the potential function ® : R™*™ — Rx

~ [A(2)lg
IVARES —
2

where [A\(Z)][q is the (-th in the list of eigenvalues of Z € R"*" sorted in decreasing order of their
absolute values. We show an upper bound on the increase in this potential when S is updated, a
lower bound on its decrease when S is updated, and combine the two with non-negativity of the
potential to obtain Theorem 1.4.

Specifically, first we prove that whenever S is updated in an iteration, the potential function
increases by at most O(1) (see Lemma 6.2). The proof of this statement crucially uses the structural
property of interior point method that slack matrices in consecutive steps are sufficiently close to
each other. Formally, for any iteration ¢ € [T], we show in Theorem 5.1 that the consecutive slack
matrices Sy and Siy1 satisfy

1S, 25,1182 — 1)l r = O(1) 9)

and combine this bound with the Hoffman-Wielandt theorem [HJ12], which relates the ¢5 distance
between the spectrum of two matrices with the Frobenius norm of their difference (see Fact 2.2).
Next, when S gets updated, we prove that our method of zeroing out the r; largest eigenvalues of

|Z], thereby incurring a rank-r; update to S, results in a potential decrease of at least O(,/77) (see
Lemma 6.3).

Maintaining rectangular matrix multiplication for Hessian computation. Given the low-
rank update on S described above, we show how to efficiently update the approzimate Hessian H,

defined as

ﬁ%k = tr[g_lAjg_lAk] (10)



for each entry (j, k) € [m] x [m]. The approximate slack matrix S being a spectral approximation of
the true slack matrix S implies that the approximate Hessian H is also a spectral approximation of
the true Hessian H (see Lemma 5.3). This approximate Hessian therefore suffices for our algorithm
to approximately follow the central path.

To efficiently update the approximate Hessian Hin (10), we notice that a rank-r update on S
implies a rank-r update on S~ via the Woodbury matrix identity (see Fact 2.4). The change in
S~ can be expressed as

ASH=vv] vV, (11)

where V,V_ € R"*". Plugging (11) into (10), we can express A]?I]-Jf as the sum of multiple terms,
among the costliest of which are those of the form tr[g_lAjVVTAk], where V' € R"*" is either
Vi or V_. We compute tr[g_lAjVVTAk] for all (j,k) € [m] x [m] in time Tmat(r, n, mn) by first
computing V' " Ay, for all k € [m] by horizontally concatenating all Ay’s into a wide matrix of size
n x mn. We then compute the product of S~1/2 with A;V for all j € [m], which can be done in time
Tmat (n, n, mr), which equals Tpat(n, mr,n) (see Lemma 3.3). Finally, by flattening each 5_1/214]-‘/
into a vector of length nr and stacking all these vectors to form a matrix B € R™ "™ with j-th row

Bj = vec(S™Y24,V),
the task of computing tr[g_lAjVVTAk] for all (j, k) € [m] x [m] reduces to computing BB, which
costs Tmat(m, nr,m).
In this way, we reduce the runtime of 7" - (Tmat (1, mn, n) + Tmat(m,n?,m)) for computing the
Hessian using fast rectangular matrix multiplication down to

T
Z (Tmat (Tta n, mn) + Tmat (n7 mry, n) + Tmat (m7 nr, m)) ’ (12)
t=1

where r; is the rank of the update on S,. Applying Theorem 1.4 with several properties of fast
rectangular matrix multiplication that we prove in Section 3 , we upper bound the runtime in (12)
by

O* (vn(mn? +m* + n%)),

which implies Theorem 1.2. In Section 1.2.3 and 1.2.4, we discuss bottlenecks to further improving
our runtime.

1.2.3 Bottlenecks of our interior point method

In most cases, the costliest term in our runtime is the per iteration cost of mn?, which corresponds
to reading the entire input in each iteration. Our subsequent discussions therefore focus on the
steps in our algorithm that require at least mn? time per iteration.

Slack matrix computation. When y is updated in each iteration of our interior point method,
we need to compute the true slack matrix S as

S=> A —C.
1€[m]

Computing S is needed to update the approximate slack matrix S so that S remains a spectral
approximation to S. As S might suffer from full-rank changes, it naturally requires mn? time to
compute in each iteration. This is the first appearance of the mn? cost per iteration.



Gradient computation. Recall from (3) that our interior point method follows the central path
defined via the penalized objective function

min f,(y) where f,(y) = by + é(y),

yeR'm
for a parameter n > 0 and ¢(y) = —logdet S. In each iteration, to perform the Newton step, the
gradient of the penalized objective is computed as

gn(y)j =n-bj — tr[ST1A] (13)

for each coordinate j € [m]. Even if we are given S™1, it still requires mn? time to compute (13)

for all j € [m]. This is the second appearance of the per iteration cost of mn?.

Approximate Hessian computation. Recall from Section 1.2.2 that updating the approximate
slack matrix S by rank r means the time needed to update the approximate Hessian is dominated
by computing the term

Ajj=tr[STV2AV - VT A8,

where V' € R™ " is a tall, skinny matrix that comes from the spectral decomposition of ASL.
Computing Ay for all (j,k) € [m] x [m] requires reading at least A; for all j € [m], which takes
time mn?. This is the third bottleneck that leads to the mn? term in the cost per iteration.

1.2.4 LP techniques unlikely to improve SDP runtime

The preceeding discussion of bottlenecks suggests that reading the entire input in each iteration,
which takes mn? time per iteration, stands as a natural barrier to further improving the runtime of
SDP solvers based on interior point methods.

In the context of linear programming (LP), several recent results [CLS19, BLSS20] yield faster
interior point methods that bypass reading the entire input in every iteration. Two techniques crucial
to these results are: (1) showing that the Hessian (projection matrix) admits low-rank updates, and
(2) speeding computation of the Hessian via sampling.

We now describe these techniques in the context of SDP and argue that they are unlikely to
improve our runtime.

Showing that the Hessian admits low-rank updates. We saw in Section 1.2.2 that construct-
ing an approximate slack matrix S that admits low-rank updates in each iterations leveraged the
fact that the true slack matrix S changes “slowly” throughout our interior point method as described
in (9). One natural question that follows is whether a similar upper bound can be obtained for the
Hessian. If such a result could be proved, then one could maintain an approximate Hessian that
admitted low-rank updates, which would speed up the approximate Hessian computation. Indeed,
in the context of LP, such a bound for the Hessian can be proved (e.g., [BLSS20, Lemma 47]).
Unfortunately, it is impossible to prove such a statement for the Hessian in the context of SDP.
To show this, it is convenient to express the Hessian using the Kronecker product (Section 2.1)as

H=A"-(S7'®@S5™1). A4,

where A € R"’*™ is the n? x m matrix whose ith column is obtained by flattening A; into a vector of
length n2. By proper scaling, we can assume without loss of generality that the current slack matrix



is S = I, and the slack matrix in the next iteration is Spew = I + AS, which satisfies |AS|| = ¢
for some tiny constant ¢ > 0. Consider the simple example where A = I (we are assuming here
that m = n? so that A is a square matrix), which implies that the change in the Hessian can be
approximately computed as

HH‘I/QAHH‘mHi ~r[(1-AS)@ (I - AS) ~ T 1)

At [(I®A5+AS®I)Z]
> 2 tr[I%] - tr [(AS)?]
=2 ||AS||3 > 1.

This large change indicates that we are unlikely to obtain an approximation to the Hessian that
admits low-rank updates, which is a key difference between LP and SDP.

Sampling for faster Hessian computation. Recall from (8) that the Hessian can be computed
as

H=B-B",

where the jth row of B € R™"” ig B; = vec(S™1/2A;871/2) for all j € [m]. We might attempt
to approximately compute H faster by sampling a subset of columns of B indexed by L C [n?]
and compute the product for only the sampled columns. This could reduce the dimension of the
matrix multiplication and speed up the Hessian computation. Indeed, sampling techniques have
been successfully used to obtain faster LP solvers [CLS19, BLSS20).

For SDP, however, sampling is unlikely to speed up the Hessian computation. In general, we
must sample at least m columns (i.e. |L| > m) of B to spectrally approximate H or the computed
matrix will not be full rank. However, this requires computing the entries of S~/ 2AjS_1/ 2 that
correspond to L C [n?] for all j € [m], which requires reading all A;’s and thus still takes O(mn?)
time.

1.3 Related work

Linear Programming. Linear Programming is a class of fundamental problems in convex opti-
mization. There is a long list of work focused on fast algorithms for linear programming [Dan47,
Kha80, Kar84, Vai87, Vai89b, LS14, LS15, Sid15, Leel6, CLS19, Bra20, BLSS20].

Cutting Plane Method. Cutting plane method is a class of optimization methods that itera-
tively refine a convex set that contains the optimal solution by querying a separation oracle. Since
its introduction in the 1950s, there has been a long line of work on obtaining fast cutting plane
methods [Sho77, YN76, Kha80, KTES8, NN89, Vai89a, AV95, BV02, LSW15, JLSW20].

First-Order SDP Algorithms. As the focus of this paper, cutting plane methods and interior
point methods solve SDPs in time that depends logarithmically on 1/e, where € is the accuracy
parameter. A third class of algorithms, the first-order methods, solve SDPs at runtimes that depend
polynomially on 1/e. While having worse dependence on 1/e¢ compared to IPM and CPM, these
first-order algorithms usually have better dependence on the dimension. There is a long list of work
on first-order methods for general SDP or special classes of SDP (e.g. Max-Cut SDP [AK07, GH16,
AZ117, CDST19, LP20, YTFT19], positive SDPs [JY11, PT12, ALO16, JLL"20].)
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2 Preliminaries

2.1 Notation

For any integer d, we use [d] to denote the set {1,2,--- ,d}. We use S"*" to denote the set of
symmetric n x n matrices, SL3" for the set of n x n posmve semidefinite matrices, and SZ5" for
the set of n x n positive deﬁmte matrices. For two matrices A, B € S"*™, the notation A = B
means that B — A € SU§". When clear from the context, we use 0 to denote the all-zeroes matrix
(e.g. A = 0). For a vector v € R™, we use diag(v) to denote the diagonal n x n matrix with
diag(v);; = v;. For A, B € S™*", we define the inner product to be the trace product of A and B,
defined as (A, B) := tr[A"B] = > i jefn AijBiyj. For two matrices A € R™" and B € RF>*! the
Kronecker product of A and B, denoted as A ® B, is defined as the mk x nl block matrix whose
(4,7) block is A; ; B, for all (i, j) € [m] x [n].

Throughout this paper, unless otherwise specified, m denotes the number of constraints for the
primal SDP (1), and the variable matrix X is of size n x n. The number of non-zero entries in all

the A; and C of (1) is denoted by nnz(A).

2.2 Useful facts

Linear algebra. Some matrix norms we frequently use in this paper are the Frobenius and op-
erator norms, defined as follows. The Frobenius norm of a matrix A € R™*" is defined to be
|Al|r := \/tr[AT A]. The operator (or spectral) norm [[Allop of A € R™™ is defined to be the
largest singular value of A. In the case of symmetric matrices (which is what we encounter in this
paper), this can be shown to equal the largest absolute eigenvalue of the matrix. A property of trace
we frequently use is the following: given matrices A; € R™*™1 Ay € R™M*"2 A, € R"%-1X" the
trace of their product is invariant under cyclic permutation tr[A;As ... Ag] = tr[A2As ... ApA] =

s =tr[AgAr ... Ap_2Ak_1]. A matrix A € R™*" is called normalif A commutes with its transpose,
ie. AAT = AT A. We note that all symmetric n x n matrices are normal. Two matrices A, B € R"*"
are said to be similar if there exists a nonsingular matrix S € R™*" such that A = S™'BS. In
particular, if matrices A and B are similar, then they have the same set of eigenvalues. We use the
following simple fact involving Loewner ordering: given two invertible matrices A and B satisfying
éB < A < aB for some o > 0, we have éB_l < A~ < aB~!. We further need the following facts.

Fact 2.1 (Generalized Lieb-Thirring Inequality [Eld13, ALO16, JLLT20]). Given a symmetric ma-
triz B, a positive semi-definite matriz A and o € [0, 1], we have
tr[A*BA'"*B] < tr[AB?].

Fact 2.2 (Hoffman-Wielandt Theorem, [HW53, HJ12]). Let A, E € R™™" such that A and A+ E
are both normal matrices. Let \i, Ao, ..., A\, be the eigenvalues of A, and let )\1,)\2,.. )\ be the
eigenvalues of A + E in any order. There is a permutation o of the integers 1,...,n such that

D icn] o) — N2 < ||E||% = tr[E*E)].
Fact 2.3 (Corollary of the Hoffman-Wielandt Theorem, [HJ12]). Let A, E € R™ "™ such that A is

Hermitian and A+ E is normal. Let A1, ..., Ay be the eigenvalues of A arranged in increasing order
A< < A Let Ao, A be the ezgenvalues of A+ E, ordered so that Re()\l) .. < Re(\p).
Then, Zie[n} A = il S ”EHF

Fact 2.4 (Woodbury matrix identity, [Woo49, Woo50]). Given matrices A € R™", U € R"*k,
C e RF*F and Ve RF*" such that A, C, and A+ UCV are invertible, we have

(A+vUcv)t=At—Alyct+vatu)~tva
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3 Matrix Multiplication

The main goal of this section is to derive upper bounds on the time to perform the following two

rectangular matrix multiplication tasks (Lemma 3.9, 3.10, and 3.11):

e Multiplying a matrix of dimensions m x n? with one of dimensions n?

X m,
e Multiplying a matrix of dimensions n X mn with one of dimensions mn x n.

Besides being crucial to the runtime analysis of our interior point method in Section 7, these results
(as well as several intermediate results) might be of independent interest.

3.1 Exponent of matrix multiplication

We need the following definitions to describe the cost of certain fundamental matrix operations we
use.

Definition 3.1. Define Tat(n,r,m) to be the number of operations needed to compute the product
of matrices of dimensions n X r and r X m.

Definition 3.2. We define the function w(k) to be the minimum value such that Tmas(n,n*,n) =
ne®)+o)  We overload notation and use w to denote the cost of multiplying two n x n matrices.
Thus, we have w(1l) = w.

The following is a basic property of T that we frequently use.

Lemma 3.3 ([BCS97, Blal3|). For any three positive integers n,m,r, we have
Tmat(na T, m) = O(Tmat(na m, T)) = O(Tmat (m, n, T))

We refer to Table 3 in [GU18| for the latest upper bounds on w(k) for different values of k. In
particular, we need the following upper bounds in our paper.

Lemma 3.4 ([GU18|). We have:
o w=uw(l) < 2.372027,
o w(1.5) < 2.79654,
o w(1.75) < 3.02159,
o w(2) < 3.251640.

3.2 Technical results for matrix multiplication

In this section, we derive some technical results on 7.t and w that we extensively use for our
runtime analysis. Some of these results can be derived using tensors, and we demonstrate this in
Appendix A. We hope that the use of tensors can yield better runtimes for this problem in future.

Lemma 3.5 (Sub-linearity). For any p > q > 1, we have

wp) <p—q+w(q).

Proof. We assume that n? and n? are integers for notational simplicity. Consider multiplying an
n X nP matrix with an nP x n matrix. One can cut the n x n? matrix into n?~¢ rectangular blocks
of size n x n? and the n? x n matrix into nP~7 rectangular blocks of size n? x n, and compute the
multiplication of the corresponding blocks. This approach takes time pp=atw(@+o)  from which
the desired inequality immediately follows. O
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Key to our analysis is the following lemma, which establishes the convexity of w(k).

Lemma 3.6 (Convexity). The fast rectangular matriz multiplication time exponent w(k) as defined
in Definition 3.2 is convex in k.

Proof. Let k =a-p+ (1 —a)-q for @ € (0,1). For notational simplicity, we assume that nP, n?
and n¥ are all integers. Consider a rectangular matrix of dimensions n x n¥. Since ap < k, we can
tile this rectangular matrix with matrices of dimensions n® x n®. Then, the product of this tiled
matrix with another similarly tiled matrix of dimensions n¥ x n can be obtained by viewing it as
a multiplication of a matrix of dimensions n/n® x n*/n® with one of dimensions n*/n? x n/e
where each “element” of these two matrices is itself a matrix of dimensions n®* x n®?. With this
recursion in tow, we obtain the following upper bound.

Tinat (1,17, 1) <Tiae(n®, 1P, 0%) « Topat (n/n, nF /0, n/n*)
:Tmat (na7 nocp7 na) : Tmat (n(l—a) s n(l—a)q, n(l—a))

<paw®lto(l) | p(1-a)w(@)+o(l)

The final step above follows from denoting m = n® and observing that multiplying matrices of
dimensions n® x n®?® costs, by Definition 3.2, m“®+°() which is exactly n®@®+e)  Applying
Definition 3.2 and comparing exponents, this implies that

w(k) < a-w(p) + (1 - a)-w(g),
which proves the convexity of the function w(k). O

Claim 3.7. w(1.68568) < 2.96370.

Proof. We can upper bound w(1.68568) in the following sense

w(1.68568) = w(0.25728 - 1.5 + (1 — 0.25728) - 1.75)
< 0.25728 - w(1.5) + (1 — 0.25728) - w(1.75)
< 0.25728 - 2.79654 + (1 — 0.25728) - 3.02159
< 2.96370,

where the first step follows from convexity of w (Lemma 3.6), the third step follows from w(1.5) <
2.79654 and w(1.75) < 3.02159 (Lemma 3.4). O
k,

Lemma 3.8. Let Tnat be defined as in Definition 3.1. Then for any positive integers h, £, and
we have

Trnat (B Uk, ) < O(Tmat (b, £, hK)).

Proof. Given any matrices A, BT € R™% by Definition 3.1, the cost of computing the matrix
product AB is Tmat(h, lk, h). We now show how to compute this product in time O(Tmat(hk, £, hk)).
We cut A and BT into k sub-matrices each of size h x ¢, ie. A = (Ay,---,A;) and BT =
(By, -+ ,B]), where each A;, B] € R"* for all i € [k]. By performing matrix multiplication
blockwise, we can write

k
AB = ZAZ-BZ-.
=1
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Next, we stack the k matrices Ay, --- , Ay vertically to form a matrix A’ € R":¢ Similarly, we
stack the k matrices By,--- , By, horizontally to form a matrix B’ = (By,---,B) € RA" . By
Definition 3.1, we can compute A’'B’ € R™:"* in time Toa(hk, ¢, hk). To complete the proof, we
note that we can derive AB from A’'B’ as follows: for each j € [k], the jth diagonal block of A’B’
of size h x h is exactly A;B;, and summing up the k diagonal h x h blocks of A'B’ gives AB. [J

3.3 General upper bound on T,.:(n,mn,n) and Tpa.c(m,n? m)

Lemma 3.9. Let Tyat be defined as in Definition 3.1.
If m > n, then we have

Tmat (’I’L, mn, ’I’L) S O(Tmat (m, n2’ m))
If m <n, then we have
Tmat (m, ’I’L2, m) S O(Tmat (n, mn, n))

Proof. We only prove the case of m > n, as the other case where m < n is similar. This is an
immediate consequence of Lemma 3.8 by taking h = n, £ = n% and k = |m/n], where k is a
positive integer because m > n. ]

In the next lemma, we derive upper bounds on the term Tpai(m,n?,m) when m > n and
Tmat(n, mn,n) when m < n, which is crucial to our runtime analysis.

Lemma 3.10. Let That be defined as in Definition 3.1 and w be defined as in Definition 3.2.
Property 1. We have

Tonat (n, mn,n) < O(mn< o),
Property 1I. We have
T (m,n?,m) < O (it (mn® 4 m®)).

Proof. Property 1.

Recall from Definition 3.1 that Tpat(n, mn,n) is the cost of multiplying a matrix of size n x mn
with one of size mn x n. We can cut each of the matrices into m sub-matrices of size n x n each.
The product in question then can be obtained by multiplying these sub-matrices. Since there are m
of them, and each product of an n x n submatrix with another n x n submatrix costs, by definition,
n@toM) we get Tar(n, mn,n) < O(mneT°M) as claimed.

Property II.

Let m = n®, where a € (0,00). By definition, Tmat(m,n?, m) is the cost of multiplying a matrix
of size m x n? with one of size n? x m. Expressing n? as m?/® then gives, by Definition 3.2, that

Trnat (m, n?, m) = m@@/a)to(l) _ paw(/a)to()

Property II is then an immediate consequence of the following inequality, which we prove next:
w(2/a) < max(1 +2.5/a,w(1) +0.5/a) Va € (0,00). (14)

Define b = 2/a € (0,00). Then the desired inequality in (14) can be expressed in terms of b as

w(b) < max(1 + 5b/4,w(1) +b/d) Vb e (0,00). (15)
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Notice that the RHS of (15) is a maximum of two linear functions of b and these intersect at
b* = w(1) — 1. By the convexity of w( - ) as proved in Lemma 3.6, it suffices to verify (15) at the
endpoints b — 0, b — oo and b = b*. In the case where b = § for any 6 < 1, (15) follows immediately
from the observation that w(d) < w(1). We next argue about the case b — co. By Lemma 3.4 we
have w(2) < 3.252. Using Lemma 3.5, we have w(b) < b — 2 + w(2). Combining these two facts
implies that for any b > 2, we have

wb) <b—24w(2) <1+ 5b/4,
which again satisfies (15). The final case is b = b* = w(1) — 1, for which (15) is equivalent to
w(w(l) — 1) < 5w(1)/4 — 1/4. (16)

By Lemma 3.4, we have that w(1) — 2 € [0,0.372927]. Then to prove (16), it is sufficient to show
that

w(t+1) <5t/4+9/4 Vit e[0,0.372927). (17)

By the convexity of w( - ) as proved in Lemma 3.6, the upper bound of w(2) < 3.251640 in Lemma
3.4, and recalling that w(1) = ¢+ 2 for ¢ € [0,0.372927], we have for k € [1,2],

wk) <w(l)+(k—1)-(3.251640 — (t +2)) =t + 2+ (k — 1) - (1.251640 — ¢t).
In particular, using this inequality for k =t + 1, we have

w(t+1)—5t/4—-9/4 < (t+2)+t-(1.251640 —t) — 5t/4 —9/4

= —t* 4 1.00164t — 1/4,
which is negative on the entire interval [0, 0.372927]. This establishes (17) and finishes the proof. O
3.4 Specific upper bound on Tp..(m,n? m)
Lemma 3.11. For any two positive integers n and m, we have

Tinat(m,n?,m) = o (m* + mn>37) .

Proof. Let m = n® where a € (0,00). Recall that Tpat(m,n?,m) = m@Z/a)+o() = paw(/a)+o(1),
We consider the following two cases according to the range of a.

Case 1: a € [1.18647,00). In this case, we have w(2/a) < w(2/1.18647) < w(1.68568) < 3,
where the last inequality follows from Claim 3.7. This implies that

Tmat(m,n%,m) = o(n®*) = o(m?). (18)
Case 2: a € (0,1.18647]. In this case, we have 2/a € [1.68567,00). Consider the linear function
t
y(t) = 1+2.37- 3. (19)
By Claim 3.7, we have

w(1.68567) < 2.997 < y(1.68567). (20)
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By Lemma 3.4, we have
w(2) < 337 =y(2). (21)
An application of Lemma 3.5 then gives, for any ¢ > 2, the inequality
w(t) <t—2+w(2) <t—24y(2) <y(t), (22)

where the last inequality is by definition of y(¢) from (19). Therefore, combining the convexity of
w(+), as proved in Lemma 3.6, with (20), (21), and (22), we conclude that for any ¢t € [1.68567, c0),
the function w is bounded from above by the affine function y, expressed as follows.

t
w(t) <y(t)=1+2.37- 3
This implies that
Tmat(m,n2,m) _ na-w(2/a)+o(1) _ O(na+2.37) _ 0(mn3‘27). (23)

Combining the results from (18) and (23) finishes the proof of the lemma. O

4 Main Theorem

In this section, we give the formal statement of our main result.

Theorem 4.1 (Main result, formal). Consider a semidefinite program with variable size n x n and
m constraints (assume there are no redundant constraints):

max(C, X) subject to X = 0, (A;, X) = b; for all i € [m]. (24)

Assume that any feasible solution X € SU§" satisfies ||XHOp < R. Then for any error parameter
0 < § < 0.01, there is an interior point method that outputs in time O* (y/n(mn?+m*+n*)log(n/é))
a positive semidefinite matriz X € RLZS"™ such that

(CX) 2 (C.X7) =6 [Cllgy- B and Y [(4iX) b

1€[m)]

<4nd- (R Z [Ailly + 116117,
ic[m]

where w is the exponent of matriz multiplication, X™* is any optimal solution to the semidefinite
program in (24), and ||A;||; is the Schatten 1-norm of matriz A;.

The proof of Theorem 4.1 is given in the subsequent sections.

5 Approximate Central Path via Approximate Hessian
5.1 Main result for approximate central path
Our main result of this section is the following.

Theorem 5.1 (Approximate central path). Consider a semidefinite program as in Definition 1.1
with no redundant constraints. Assume that any feasible solution X € STG" satisfies || X|| op < R

Then for any error parameter 0 < § < 0.01 and Newton step size en satisfying V6 < ex < 0.1,
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Algorithm 1 outputs, in T = %\/ﬁlog(n/d) iterations, a positive semidefinite matriz X € RLg"
that satisfies

(C,X) 2 (C,X*) =6 |Cllop- R and ) (<Az-,ff>—bi <4nd- (R Al + blly), (25)
i€[m] i€[m]

where X* is any optimal solution to the semidefinite program in Definition 1.1, and ||A;||, is the
Schatten 1-norm of matrix A;. Further, in each iteration of Algorithm 1, the following invariant
holds for agp = 1.03:

15728 ewS™V2 — I||p < ap - en. (26)

Proof. At the start of Algorithm 1, Lemma 9.1 is called to modify the semidefinite program to
obtain an initial dual solution y for the modified SDP that is close to the dual central path at
n = 1/(n +2). This ensures that the invariant g, (y) " H(y) 1g,(y) < €3 holds at the start of the
algorithm. Therefore, by Lemma 5.4 and Lemma 5.5, this invariant continues to hold throughout the
run of the algorithm. Therefore, after T' = %\/ﬁlog (%) iterations, the step size n in Algorithm 1

grows to n = (1 + 25%)T/(n +2) > 2n/§2. It then follows from Lemma 5.6 that

by <bly* + % (14 2en) < byt + 6%

Thus when the algorithm stops, the dual solution y has duality gap at most 62 for the modified SDP.
Lemma 9.1 then shows how to obtain an approximate solution to the original SDP that satisfies the
guarantees in (25).

To prove (26), define Ag = Shew — S € R™™™ and dy = Ynew — y € R™. For each i € [n], we use
8y to denote the i-th coordinate of vector §,. We rewrite ||S™/2SpeyS™Y2 — I||% as

187/ 500812 — I = tr|(5712(25)5 ™))
= tr |51 <Z 5y,iAi> ST 654
i=1 j=1

= ) byibytr[STT A ST Ay

i,j=1
= (5y)TH(y)5y
= gn(y)TH(y) " H(y)H(y) gy (y), (27)

where we used the fact that Ag = Y"7" (d,)iA;. It then follows from Lemma 5.4 and the invariant
9n(y) T H(y) " gy(y) < €} that

an()TH(y) " Hy)H(y) gy (y) < o - ek, (28)

where oy = 1.03. Combining Equation (27) with Inequality (28) completes the proof of the
theorem. O
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Table 5.1: Summary of parameters in approxiate central path.

Notation | Choice | Appearance | Meaning

16924 1.03 Lemma 5.4 Spectral approximation factor a;ll -H=<H<Xayg -H

EN 0.1 Lemma 5.5 Upper bound on the Newton step size (g;H_lgn)1 2

€s 0.01 Algorithm 2 | Spectral approximation error (1 —e€g)-S XS < (1+e€g) S

Algorithm 1

1: procedure MAIN(n,m,d,en,C, A, b) > C e S™, {A;}, € S™", vector b € R™, error
parameter 0 < ¢ < 0.1, Newton step size parameter 0 < ey < 0.1

2: Modify the SDP and obtain an initial dual solution y according to Lemma 9.1

3: n<«1/(n+2)

4: T — %\/ﬁlog (%)

5: S+ 5« Zze[m} yZAZ —-C.

6: for iter =1 — T do

T: Thew < 7 (1 + 25%

8: for j=1,---,mdo > Gradient computation
9: Innew (y)] < Thew * bj - tl“[S_l : Aj]
10: end for

11: for j=1,--- ,m do > Hessian computation
12: for k=1,--- ,mdo

13: Hjp(y) < tr[S™1- A - 51 Ay

14: end for

15: end for

16: Oy _ﬁ(y)_lgﬁnew (y) > Update on y
17: Ynew < Y + Oy > Approximate Newton step
18: Snew < zie[m] (ynew)iAi -C

19: §new < APPROXSLACKUPDATE (Shew, S ) > Approximate slack computation
20: Y < Ynews O < Shew S — Spow > Update variables
21 end for
22: Return an approximate solution to the original SDP according to Lemma 9.1

23: end procedure

5.2 Approximate slack update

Lemma 5.2. Given positive definite matrices Snew,§ € SU5™ and any parameter 0 < eg < 0.01,

there is an algorithm (procedure APPROXSLACKUPDATE in Algorithm 2) that takes O(nwtoM) time
to output a positive definite matriz Spew € SL3" such that

1S5/ S e Setl? — Ilop < €. (29)

new new

Proof. The runtime of O(nw+o(1)) is by the spectral decomposition Z = U-A-U, the costliest step
in the algorithm. To prove (29), we notice that Apey are the eigenvalues of Sm_elvﬁSneWSm_elvé2 — 1 and

by the algorithm description (lines 6 - 13), the upper bound (Apew )i < €g holds for each ¢ € [n]. O
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Algorithm 2 Approximate Slack Update

1: procedure APPROXSLACKUPDATE(Syew , §) > Shew, S e SZE™ are positive definite matrices
2 es + 0.01 > Spectral approximation constant
8 Zmid < Saed S Sacd? =1

4: Compute spectral decomposition Zyiq =U -A-UT

5: > A = diag(Aq,- -+, A\p) are the eigenvalues of Z,;q, and U € R™*" is orthogonal
6 Let 7 : [n] — [n] be a sorting permutation such that [Ar| > [Aris)]

7 if ‘)‘w(l)’ < €eg then

. ~ =

9

Shew < S
: else
10: r+—1
11: while |\; )| > €5 or [Aro)] > (1 —1/logn)|[Ar(y| do
12: r—r+1
13: end while
” Crnewr i) 0 ifi = 1', 2,21,
Ar(iy  otherwise.

15: Snew — S+ Si2 U - diag(hnew — A) - UT - Sil2
16: end if
17: return §new

18: end procedure

5.3 Closeness of slack implies closeness of Hessian

Lemma 5.3. Given symmetric matrices Ay, -+, Ay, € S™", and positive definite matrices g, S e
SU5", define matrices H € R™*™ and H € R™™ as

Hjp=tr[STA; 57 4] and  Hjp = tr[ST1A;87 4.
Then both H and H are positive semidefinite. For any accuracy parameter ag > 1, if
ozgl'Sjgjas-S,
then we have that
ag? H=<H<=<a% H.
Proof. For any vector v € R™, we define A(v) = Y7, v;A;. We can rewrite v Hv as follows.
v Hy = i i vvjH; j = i i vtr[STLA;STIAS) = tr[STY2A(w)STTA(v) STV (30)
i=1 j=1 i=1 j=1
Similarly, we have
v Ho = tr[S™V2A(0) S A(v)S~1/2). (31)

As the RHS of (30) and (31) are non-negative, both H and H are positive semidefinite. Since

S < ag- S, we have S™' < ag - S~ (see Section 2.2), which gives the following inequalities
tr[ST2AW)S T A()STY?] < ag - tr[STY2AW)S T A(v) ST
< ad tr[STV2A(w)S T A() STV, (32)
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where the first inequality follows from viewing tr[S™Y2A(v)S~tA(v)S~1/?] as 31, uf S~ u; for
u; = A(U)S_l/ 2¢; and the second inequality follows similarly, after using the cyclic permutation
property of trace. Similarly, using agl -§ =S, we have

tr[STY2A(0)S T AW)STY?] > ag? - tr[STY2A(v) ST A(v) ST (33)
Combining (32) and (33) with (30) and (31) along with the fact that v can be any arbitrary n-
dimensional vector finishes the proof of the lemma. O
5.4 Approximate Hessian maintenance

Lemma 5.4. In each iteration of Algorithm 1, for ap = 1.03, the approximate Hessian I;T(y)
satisfies that

an H(y) = H(y) < am - H(y).

Proof. By Lemma 5.2, given as input two positive definite matrices Spew and S , Algorithm 2 outputs
a matrix Spew such that

||S_1/2§nows_l/2 - IHop < €g,

new new

where eg = 0.01 as in Algorithm 2. By definition of operator norm, this implies that in each iteration
of Algorithm 1, we have, for ag = 1.011,

agl-§<85<as-S.

The statement of this lemma then follows from Lemma 5.3. O

5.5 Invariance of Newton step size
The following lemma is standard in the theory of interior point methods (e.g. see [Ren01]).

Lemma 5.5 (Invariance of Newton step [Ren0l]|). Given any parameters 1 < ag < 1.03 and
0 < ex < 1/10, suppose that g,(y)" H(y) Lg,(y) < €% holds for some feasible dual solution y € R™

nxn

20" satisfies

and parameter > 0, and positive definite matric H € S

anp'H(y) = H < agH(y)

Then nnew = n(1 + 25%) and Ynew =Y — ﬁ_lgrlncw (y) satisfy
gT]ncw (ynOW)TH(ynOW)_lgT]ncw (ynew) é E?V‘
5.6 Approximate optimality

The following lemma is also standard in interior point method.

Lemma 5.6 (Approximate optimality [Ren01]). Suppose 0 < eny < 1/10, dual feasible solution
y € R™, and parameter n > 1 satisfy the following bound on Newton step size:

gn(W) TH(y) gn(y) < -

Let y* be an optimal solution to the dual formulation (2). Then we have

n
bly <bly*+ 0 (1+ 2en).

20



6 Low-rank Update

Crucial to being able to efficiently approximate the Hessian in each iteration is the condition that
the rank of the update be not too large. We formalize this idea in the following theorem, essential
to the runtime analysis in Section 7.

Theorem 6.1 (Rank inequality). Let ro = n and r; be the rank of the update to the approzimate
slack matriz S when calling Algorithm 2 in iteration i of Algorithm 1. Then, over T iterations of
Algorithm 1, the ranks r; satisfy the inequality

T
> Vi < O(Tlog™ n).
i=0
The rest of this section is devoted to proving Theorem 6.1. To this end, we define the “error”
matrix Z € R™" as follows
Z=81258712 (34)
and the potential function ® : R"*" — R
n
IA(Z)]p3
(2) = —, (35)
2
where [A(Z)];;) denotes the i’th entry in the list of absolute eigenvalues of Z sorted in descend-

ing order. The following lemma bounds, from above, the change in the potential described by
Equation (35), when S is updated to Spew-

Lemma 6.2 (Potential change when S changes). Suppose matrices S, Spew and S satisfy the
mequalities

1572882~ I|p <0.02  and  ||STY2SS7V2 — I||,p < 0.01. (36)
Define matrices Z = S-1/288-1/2 _ T and Zmid = (Snew)_1/2‘5:(;5’110‘,‘,)_1/2 — I. Then we have
(I)(Zmid) - (I)(Z) < V lOg n.

Proof. Our goal is to prove

n

> M2 = M Zmia)ig)* < 1072, (37)
i=1
We first show that the lemma statement is implied by (37). We rearrange the order of the eigenvalues
of Zmiq and Z so that A(Zniq); and A(Z); are the ith largest eigenvalues of Zy,q and Z, respectively.
For each i € [n], denote A; = A(Zmid)i—A(Z);. Then (37) is equivalent to [|A]|3 < 1073, Let 7 be the
descending order of the magnitudes of eigenvalues of Ziq, i.e. |AM(Zmia)r(1)l =+ = M Zmid)rm)l-
The potential change ®(Ziq) — ®(Z) can be upper bounded as

®(Zmia) = ) %!A(Zmid)ruﬂ
=1
n 1 1
ZZ:; (\ﬁ ol + =1 )
" 1/2 s 1/2
<@(2)+ (Z ;) (Z \Ai‘2>
=1

i=1

< ®(Z) + /logn,
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where the third line follows from
1 1
Z %P\(Z)T(z)! < Z W’)‘(Z)‘M

and Cauchy-Schwarz inequality. This proves the lemma.

The remaining part of this proof is therefore devoted to proving (37). Define W = Srfelv\PS 1/2,
Then, we can express Zpy;q in terms of Z and W in the following way.

Zmid = (Snow)_l/2§(snew)_1/2 .
= (Snew) /28128 THRGS TGN (8,0 ) T2 —
= WAW WL (38)

Let A(M)(;) denote the i'th (ordered) eigenvalue of a matrix M. We then have

> (A Zmid)ig = AW ZW )i)? < | Zmia — WZW T |7
=1

= ||W'W — 1|, (39)

where the first inequality is by Fact 2.3 (which is applicable here because Z,;q and WZ WT are
both normal matrices) and the second step is by (38). Denote the eigenvalues of S™1/28,q,S~1/2
by {vi}i_;. Then the first assumption in (36) implies that >~ (i — 1)2 <4 x 107 Tt follows
that

IWTW = 1% = [SY2558, 842 — 1) = 37 (/v — 1)2 <5 x 107, (40)

new
1€[n]

where the last inequality is because the first assumption from (36) implies v; > 0.98 for all i € [n].
Plugging (40) into the right hand side of (39), we have

> (A Zmia)ig — MW ZW ))? <5 x 1074 (41)
=1

Let W = UZVT be the singular value decomposition of W, with U and V being n x n unitary
matrices. Because of the invariance of the Frobenius norm under unitary transformation, (40) is
then equivalent to

n
22 = TIlp=> (o7 1) <5x 107" (42)
i=1

Since U and V are unitary, the matrix WZW T = USV T ZVXU T is similar to SV T ZVE, and the
matrix Z' =V ' ZV is similar to Z. Therefore,

S AW ZW ) = A2))? =D _(AEZ'S)y — MZ)y)°
i—1 i=1
<|[£z's - Z'|%, (43)
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where the last inequality is by Fact 2.3. We rewrite the Frobenius norm as

I22'S — 2 = (S~ DZ'(E 1)+ (£~ DZ' + Z/(Z - )]s
<= -DZ(E=Dllr+2I(S = DZ |- (44)

The first term can be bounded as:

12~ DZ'(S =Dl =tl(E - DZ'(S - 1)*Z'(S - 1)]

<tr[(S - 1) (Z')?]
<0.01% - tr[(Z - 1)Y
=) (o;—1)*
i=1
<5x1078, (45)
The first inequality above uses Fact 2.1, the second used the observation that || Z’||op = || Z]|op < 0.01,

and the last inequality follows from (42) and the fact that >0, (0, —1)* < 3" | (02 —1)2. Similarly,
we can bound the second term as

(2= DZ'|% = tl(E - (2 - 1)
< tr[(X - 1)*(Z')?)
<0.012-tr[( —1)% < 1077, (46)

It follows from (43), (44) and (46) that

Zn:()\(WZWT)m — )\(Z)[i])z < 1076, (47)
=1

Combining (41) and (47), we get that 7" (M(Z)) — M Zmia)j))? < 1072 which establishes (37).
This completes the proof of the lemma. O

Lemma 6.3 (Potential change when S changes). Given positive definite matrices SHCW,S € ST,

let Snew and r be generated during the run of Algorithm 2 when the inputs are Shew and S, Define
the matrices Zmiq = (Shew)” 1/2 S(S w) V2 _ T and Zpew = (Shew) ™ 1/25new(5now) Y2 _ . Then
we have

B(Zug) — B(Zoe) > 10
mid new) —Z logn

Jr

Proof. The setup of the lemma considers the eigenvalues of Z when S changes. For the sake of
notational convenience, we define y = |A(Ziq)|, the vector of absolute values of eigenvalues of

Zmid = Sn&,vaSnClV{z — I. Recall from Table 5.1 that eg = 0.01. We consider two cases below.

Case 1. There does not exist an @ < n/2 that satisfies the two conditions Y2 < €s and ypg; <
(1 —-1/10logn)y};). In this case, we have 7 = n/2. We consider two sub-cases.

e Case (a). For all i € [n], we have y;; > €s. In this case, we change all n coordinates of
y, and the change in each coordinate contributes to a potential decrease of at least es/+/n.

Therefore, we have ®(Zyiq) — (Znew) > €sv/n > i?gn\/_
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e Case (b). There exists a minimum index i < n/2 such that Y[2j] < €s holds for all j in the range
i < j <n/2. In this case, for all j in the above range, we have that yj5; > (1—1/10log n)y;-
In particular, picking j =4, 2i,--- gives

Yy > Y - (1= 1/(101og n))losmT > eg/10.

Recalling that our notation yj; denotes the i’th absolute eigenvalue in decreasing order, we
use the above inequality and repeat the argument from the previous sub-case to conclude that

®(Zmia) — D(Znew) > €5/10 /0 > 1o /7.

Case 2. There exists an index 7 for which both the conditions y;) < €5 and yjp;) < (1—1/101og n)y;
are satisfied. By definition, » < n/2 is the smallest such index. Consider the index j such that for
all 7/ < 7, we have y[jn = €s and for all 3" > j, we have y[j) < €s. By the same argument as in Case
1(b), we can prove y[,) > €5/10. Moreover, yp,) < (1 —1/10logn)y,) by definition of 7. Denote by

"V the vector of magmtudes of the eigenvalues of Zj ey . Since yﬁew is set to 0 for each i € [2r], we

have y]ﬁfw = Yli+2r] < Y- Further, ypp, < (1 —1/10log n)y),) implies that for each i € [r], we have

107%eg  107*
logn  logn’

new

Y — Y

> >
~ 10logn I =

where eg = 0.01 by Table 5.1. Therefore, we can bound, from below, the decrease in potential
function as

Y — y“ew 10—4
¢ Zmi new > .
(Zmia) — Z log - VT

This finishes the proof of the lemma. O

Proof of Theorem 6.1. Recall the definition of the potential function in (35) for an error matrix
Z e SMm

L

1=1

Let S and S® be the true and approximate slack matrices in the ith iteration of Algorithm 1. De-
fine Z() = (§0))=1/280)(§@)=1/2 _ [ and z\) = (§(+1)=1/250)(5(+1)=1/2 _ [ By Lemma 6.2,
we have that

o(z9) ) - ®(29) < \/logn.

From Lemma 6.3, we have the following potential decrease:

-4
@(2L)) - (20+0) = 2

~ logn

i
These together imply that
(i+1) 0y < fioan - 20
O(Z") = 0(Z") < logn — @\/T—z (48)
We note that <I>(Z(O)) = 0 as we initialized S = S in the beginning of the algorithm, and that the

potential function ®(7) is always non-negative. The theorem then follows by summing up (48) over
all T" iterations. O
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7 Runtime Analysis

Our main result of this section is the following bound on the runtime of Algorithm 1.

Theorem 7.1 (Runtime bound). The total runtime of Algorithm 1 for solving an SDP with vari-
able size n x n and m constraints is at most O* (\/ﬁ (mn2 + max(m,n)“)), where w 1s the matriz
multiplication exponent as defined in Definition 3.2.

To prove Theorem 7.1, we first upper bound the runtime in terms of fast rectangular matrix
multiplication times. The iteration complexity of Algorithm 1 is "= O(y/n).

Lemma 7.2 (Total cost). The total runtime of Algorithm 1 over T iterations is upper bounded as

T

Trotal < OF (min (n - nnz(A), mn2'5) + vnmax(m,n)” + Z (Tmat (7, mri, ) + Taat (M, n74, m))) )
=0

(49)

where nnz(A) is the total number of non-zero entries in all the constraint matrices, r;, as defined
in Theorem 6.1, is the rank of the update to the approrimation slack matriz S in iteration i, and w
and Tmat are defined in Definitions 3.2 and 3.1, respectively.

Remark 7.3. A more careful analysis can improve the first term in the RHS of (49) to /n -
nnz(A)'=7 - (mn?)Y for v = m For the purpose of this paper, however, we will only need the
stmpler bound given in Lemma 7.2.

Proof. The total runtime of Algorithm 1 consists of two parts:
e Part 1. The time to compute the approximate Hessian H (y) (which we abbreviate as H ) in
Line 11 - 15.
e Part 2. The total cost of operations other than computing the approximate Hessian.

Part 1.

We analyze the cost of computing the approximate Hessian H.

Part la. Initialization. B

We start with computing H in the first iteration of the algorithm. Each entry of H involves the
computation

Hjj, = tr|(S712A;871%) (5712 4,871/

It first costs O* (n:" ) to invert S. Then the cost of computing the key module of the approximate
Hessian, 5_1/2Aj5_1/2 for all j € [m], is obtained by stacking the matrices A; together:

75*1/2143‘5*1/2 for all j€[m] = O(Tmat(n’ mn, n)) (50)

Vectorizing the matrices SV 2Aj§ —1/2 into row vectors of length n?, for each j € [m], and stacking
these rows vertically to form a matrix B of dimensions m x n2, one observes that H = BB'. We
therefore have,

< O(Tmat(m,n?,m)). (51)

computing H from B =
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Combining (50), (51), and the initial cost of inverting S gives the following cost for computing H
for the first iteration:

7;)art la < O*(Tmat (m, ’I’L2, m) + Tmat(na mn, n) =+ nw)‘ (52)

Part 1b. Accumulating low-rank changes over all the iterations

Once the approximate Hessian in the first iteration has been computed, every next iteration has
the approximate Hessian computed using a rank r; update to the approximate slack matrix S (see
Line 15 of Algorithm 2). If the update from S to Spew has rank r;, Fact 2.4 implies that we can

compute, in time O(nw+°(l)), the n x r; matrices V. and V_ satisfying S} = S-1 —|—V+V_:— vV

new

The cost of updating H is then dominated by the computation of tr[g_l/zAjVVTAkg_lp], where
V € R™ " is either Vi or V_. We note that

TA;V for all jefm] < o~ <min (ri -nnz(A), mn27‘;u_2+0(1)>) , (53)

where nnz(A) is the total number of non-zero entries in all the constraint matrices, and the second
term in the minimum is obtained by stacking the matrices A; together and splitting it and V' into
matrices of dimensions r; x r;. Further, pre-multiplying S=1/2 with A;V for all j € [m] essentially
involves computing the matrix product of an n X n matrix and an n X mr; matrix, which, by
Definition 3.1, costs Tt (n, mr;,n). This, together with (53), gives

* . w—2+o0(1
T§*1/2Ajv for all j € [m] <0 <Tmat(n, mr;,n) + min (ri -nnz(A), mn2ri o )>> . (54)

The final step is to vectorize all the matrices SV 2Aj V, for each j € [m], and stack these vertically
to get an m x nr; matrix B, which gives the update to Hessian to be computed as BB'. This
costs, by definition, Tiat(m, nr;, m). Combining this with (54) gives the following run time for one
update to the approximate Hessian:

ﬂank r; Hessian update < o~ (Tmat (’I’L, mrq, ’I’L) + min (’f'i . HDZ(A), mn27‘;'u_2) + Tmat (m, nrg, m) + nw) .
(55)

Using this bound over all T = O(y/n) iterations, and applying ST VTi < O(yv/n) from Theo-

rem 6.1, gives
T
Tpart 15 < OF (min(n -nnz(A),mn*%) + vn - n¥ + Z(’Tmat(n, mri, n) + Tmat (m, nry, m))) . (56)
i=1

Combining Part 1a and 1b.
Combining (52) and (56), we have

7;)art 1 < 7;)art la T 7;)art 1b

T
<O* <min(n -nnz(A), mn*®) + v/n - n¥ + Z(Tmat(namriyn) + Tmat(mynrbm))) , (57)
=0

where we incorporated the bound from (52) into the i = 0 case.
Part 2. B
Observe that there are four operations performed in Algorithm 1 other than computing H:
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Part 2a. computing the gradient g,(y)
e Part 2b. inverting the approximate Hessian H
e Part 2c. updating the dual variables ypew and S(ynew)

e Part 2d. computing the new approximate slack matrix S (Ynew)

Part 2a. The i'th coordinate of the gradient is expressed as g, (y); = nb; — tr[S™14;]. The cost
per iteration of computing this quantity equals O(nnz(A) + nw+°(1)), where the second term comes
from inverting the matrix S.

Part 2b. The cost of inverting the approximate Hessian Ii is O(m“’+°(1)) per iteration.

Part 2c. The cost of updating the dual variable ynew = y—H gy, (v), given H~ and g, (v),
is O(m?) per iteration. The cost of computing the new slack matrix Speyw = Eie[m] (Ynew)iA; — C'is
O(nnz(A)) per iteration.

Part 2d. The per iteration cost of updating the approximate slack matrix Shew 18 O(n“’+°(1))
by Lemma 5.2.

Combining Part 2a, 2b, 2c and 2d. N

The total cost of operations other than computing the Hessian over the T' = O(y/n) iterations
is therefore bounded by

%art 2 < %art 2a + %art 2b + %art 2¢c + 7;)art 2d
< O*(v/n(nnz(A) + max(m,n))). (58)

Combining Part 1 and Part 2.
Combining (57) and (58) and using 79 = n finishes the proof of the lemma.

,Eotal < 7;)art 1+ %art 2

T
<O* <min (n - nnz(A), mn*®) + /nmax(m,n)* + Z (Tmat (1, mri, n) + Tmat (m, nri, m))) .
1=0

O

Lemma 7.4. Let Tpat be as defined in Definition 3.1. Let T = O(y/n) and {ri,--- ,rr} be a

sequence that satisfies

T
> Vi < O(Tlog" n)
=1

Property 1. We have

Tn’lat(ma nry, m) S O*(\/ﬁmax(mwa nw) + Tmat(ma TL2, m))7

T
=1

(2

Property 1I. We have

T
Z Tmat (1, mr;,n) < O*(v/nmax(m®,n*) + Tmat(n, mn, n)).

i=1
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Proof. We give only the proof of Property I, as the proof of Property II is similar. Let m = n®. For
each i € [T], let 7; = n®, where b; € [0,1]. Then

Tt (m’ nr;, m) _ Tmat(na, 7”L1+bi, na) _ naw((1+bi)/a)+o(1)‘ (59)
For each number k € {0,1,--- ,logn}, define the set of iterations
I={ic[T] : 28 <r; <21

Then our assumption on the sequence {rq,---,rp} can be expressed as Zlogn |I,| - 2%/2
O(T log!5 n). This implies that for each k{0, 1,--- ,logn}, we have |I| < O(T log1 o n/2k/2) Next
taking the summation of Eq. (59) over all i € [T] we have

T T
> Tt (m, gy m) = S pel(H40/a)
i=1 i=1

logn

_ ZZ" w((14b;)/a)

k=0 i€l

Tlog"’n 4 o((b)/a)
O(logn) -ml?x Izlg}i( T ok/2 o

IN

~ VU o((146) a)
o(1) - max 2%5712_&;(2“1 iz "
5(1) . max nt/2-bi/2+aw((1+bi)/a)

bi€[0,1] ’

IN

IN

where the fourth step follows from T = 5(\/5) To bound the exponent on n above, we define the
function g,

g(bi) =1/2—b;/24+a-w((1+b;)/a). (60)

This function is convex in b; due to the convexity of the function w (Lemma 3.6). Therefore, over
the interval b; € [0, 1], the maximum of g is attained at one of the end points. We simply evaluate
this function at the end points.

Case 1. Consider the case b; = 0. In this case, we have g(0) = 1/2 4 aw(1/a). We consider the
following two subcases. Case la. If a > 1, then we have

9(0) =1/24+a-w(l/a) <1/2 4+ aw(l) = 1/2 + aw
Case 1b. If a € (0,1), then we define kK = 1/a > 1. It follows from Lemma 3.5 and w > 1, that
60) = 1/2 + a-w(1/a) = 1/2 + w(k)/k < /2 + (k — 1+ w)/k < 1/2 4.
Combining both Case 1a and Case 1b, we have that
n9®) < max(n!/2+® pl/249) </ max(m®, n®).

Case 2 Consider the other case of b; = 1. In this case, g(1) = 1/2 — 1/2 + aw(2/a) = aw(2/a).
We now finish the proof by combining Case 1 and Case 2 as follows.

bm[%xl]nlﬁ bit+a-w((14b;)/a) <\/_max(m n )_’_na-w(2/a)'
S
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Proof of Theorem 7.1. In light of Lemma 7.4, the upper bound on runtime given in Lemma 7.2 can
be written as

Trotal < O (min {n - nnz(A), mn2'5} + vnmax(m,n)” + Tmat (1, mn,n) + Ta(m, n?, m)). (61)

Combining this with 3.10, we have the following upper bound on the total runtime of Algo-
rithm 1:

Trotal < O (min {n - nnz(A),mn*°} + v/nmax(m,n)” + v/n (mn® +m®))
<O (\/ﬁ (mn2 + max(m, n)‘“)) .

This finishes the proof of the theorem. O

8 Comparison with Cutting Plane Method

In this section, we prove Theorem 1.3, restated below.

Theorem 1.3 (Comparison with Cutting Plane Method). When m > n, there is an interior point
method that solves an SDP with n x n matrices, m constraints, and nnz(A) input size, faster than
the current best cutting plane method [LSW15, JLSW20], over all regimes of nnz(A).

Remark 8.1. In the dense case with nnz(A) = ©(mn?), Algorithm 1 is faster than the cutting
plane method whenever m > \/n.

Proof of Theorem 1.3. Recall that the current best runtime of the cutting plane method for solving
an SDP (1) is Top = O*(m - nnz(A) + mn?37927 4 m3) [LSW15, JLSW20], where 2.372927 is the
current best upper bound on the exponent of matrix multiplication w. By Lemma 7.2 and 7.4, we
have the following upper bound on the total runtime of Algorithm 1:

Trotal < O* (min {n - nnz(A), mn*®} + nmax(m,n)* + Tmat(n, mn,n) + Tmat(m,n®,m))
Since m > n by assumption, Lemma 3.9 and 3.9 further simplify the runtime to
TTotal < O (min {n - nnz(A), mn2‘5} + V/m® + Tt (M, n?, m)) (62)

Note that min {n - nnz(A), mn*®} < m-nnz(A) < O(Tcp) and that /nm® = o(m?) < o(Tcp) since
m > n. Furthermore, Lemma 3.11 states that Tpa(m,n?,m) = o(m?® + mn%37) < o(Tcp). Since
each term on the RHS of (62) is upper bounded by Tcp, we make the stated conclusion. O

9 Initialization

Lemma 9.1 (Initialization). Consider a semidefinite program as in Definition 1.1 of dimension
n X n with m constraints, and assume that it has the following properties.

1. Bounded diameter: for any X = 0 with (A;, X) = b; for all i € [m], we have HX||Op <R.

2. Lipschitz objective: ||C|,, < L.
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For any 0 < § <1, the following modified semidefinite program

max (C, X)
X>0
S.t. <ZZ,Y> = EZ,VZ € [m+1],
where
A; 0, 0y,
A; =10, 0 0 , Vi€ [m),
Op 0 & —tr[4]
I 00 On]  ra,q _ [Cf 0n On
Anpi= 100 1 0 ,b:[nil],cz o, 0 0],
00 0 0 o0 0 -1

satisfies the following statements.

1. The following are feasible primal and dual solutions:

0  [L-c-2 0, 0
Xt 7= |7 5=| 0 10
0, 0 1

2. For any feasible primal and dual solutions (X,7,S) with duality gap at most §°, the matriz
X=R- YMXM, where Y[n}x[n} is the top-left n x n block submatriz of X, is an approzimate
solution to the original semidefinite program in the following sense:

(C,X) > (C,X*)— LR -,
X >0,
>[040 X) = bi| < ans- (RS Al + 1bl),

ie[m] i€[m]

where X* is any optimal solution to the original SDP and ||Al|; denotes the Schatten 1-norm

of a matriz A.

Proof. For the first result, straightforward calculations show that (A;, X) = b; for all i € [m + 1],
and that Zie[m+1] 7;,A; — S = C. Now we prove the second result. Denote OPT and OPT the
optimal values of the original and modified SDP respectively. Our first goal is to establish a lower
bound for OPT in terms of OPT. For any optimal solution X € S™*™ of the original SDP, consider

the following matrix X e R(»+2)x(n+2)
rX On O
X=10 n+1-%tr[X] 0
0 0 0

Notice that X is a feasible primal solution to the modified SDP, and that

PT > (C,X) = - . (C, X) = %-OPT,



where the first step follows because the modified SDP is a maximization problem, and the final step
is because X is an optimal solution to the original SDP.
Given a feasible primal solution X e Rt2)x(n+2) of the modified SDP with duality gap 62, we
could assume X = T 0 without loss of generality, where 7,6 > 0. This is because if
OZ 0 0
the entries of X other than the diagonal and the top-left n x n block are not 0, then we could zero
these entries out and the matrix remains feasible and positive semidefinite. We thus immediately
have X > 0. Notice that
1)

T (C, X n)xjn)) — 0 = (C, X) > OPT — 6% >

4]

2
> o7 OPT 6. (63)

Therefore, we can lower bound the objective value for Y[H}X[n} in the original SDP as
(C,X) =R (C,Xpxpm) > OPT — LR -§,

where the last inequality follows from (63). By matrix Holder inequality, we have

5

I (C, Xyxn)) < f 1Clop - tr [X ) x ]
(5 _
2 m 7X
™ (Api1, X)
< (n+1)4,

where in the last step follows from [|C||,, < L and bp+1 = n + 1. We can thus upper bound 6 as

6 < = (C, X nun)) +0° — Li OPT < (2n + 1) + 8% < 4n3, (64)

<9
- L
where the first step follows from (63), the second step follows from OPT > — [|C|| - | X*|; > —nLR
where |[|-||; is the Schatten 1-norm, and the last step follows from 6 < 1 < n. Notice that by the
feasiblity of X for the modified SDP, we have

— 1 1
<Ai7X[n}><[n}> + (E -b; — tr[Ai])H = E - b;.
This implies that
(46, %) = bi| = 10 = R~ 6] < 406 - (RI A, + b)),
where the final step follows from the upper bound of # in (64). Summing the above inequality up
over all i € [m] finishes the proof of the lemma. O
Acknowledgment

We thank Aaron Sidford for many helpful discussions and Deeksha Adil, Sally Dong, Sandy Kaplan,
and Kevin Tian for useful feedback on the writing. We gratefully acknowledge funding from CCF-
1749609, CCF-1740551, DMS-1839116, Microsoft Research Faculty Fellowship, and Sloan Research
Fellowship. Zhao Song is partially supported by Ma Huateng Foundation, Schmidt Foundation,
Simons Foundation, NSF, DARPA /SRC, Google and Amazon.

31



References

[AKO7]

IALO16]

[Ans00]

IARVO09]

|AVO5]

[AZL17]

[Ban19]

[BCS97]

[BDG16]

[BG17|

Bli13]
[BLSS20]

[Bra20]

[BV02]

[CDG19]

Sanjeev Arora and Satyen Kale. A combinatorial, primal-dual approach to semidefinite
programs. In Proceedings of the 39th Annual ACM Symposium on Theory of Computing
(STOC), 2007.

Zeyuan Allen Zhu, Yin Tat Lee, and Lorenzo Orecchia. Using optimization to obtain a
width-independent, parallel, simpler, and faster positive SDP solver. In Proceedings of
the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms(SODA),
2016.

Kurt M Anstreicher. The volumetric barrier for semidefinite programming. Mathematics
of Operations Research, 2000.

Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric embeddings
and graph partitioning. Journal of the ACM (JACM), 2009.

David S Atkinson and Pravin M Vaidya. A cutting plane algorithm for convex pro-
gramming that uses analytic centers. Mathematical Programming, 69(1-3):1-43, 1995.

Zeyuan Allen-Zhu and Yuanzhi Li. Follow the compressed leader: faster online learning
of eigenvectors and faster mmwu. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, 2017.

Nikhil Bansal. On a generalization of iterated and randomized rounding. In Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing (STOC), 2019.

Peter Biirgisser, Michael Clausen, and Mohammad A Shokrollahi. Algebraic complexity
theory, volume 315. Springer Science & Business Media, 1997.

Nikhil Bansal, Daniel Dadush, and Shashwat Garg. An algorithm for komlés conjecture
matching banaszczyk. In 57th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), 2016.

Nikhil Bansal and Shashwat Garg. Algorithmic discrepancy beyond partial coloring.
In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing
(STOC), 2017.

Markus Bléser. Fast matrix multiplication. Theory of Computing, pages 1-60, 2013.

Jan van den Brand, Yin Tat Lee, Aaron Sidford, and Zhao Song. Solving tall dense
linear programs in nearly linear time. In 52nd Annual ACM SIGACT Symposium on
Theory of Computing (STOC), 2020.

Jan van den Brand. A deterministic linear program solver in current matrix multipli-
cation time. In ACM-SIAM Symposium on Discrete Algorithms (SODA ), 2020.

Dimitris Bertsimas and Santosh Vempala. Solving convex programs by random walks.
In Proceedings of the thiry-fourth annual ACM symposium on Theory of computing
(STOC), pages 109-115. ACM, 2002.

Yu Cheng, Ilias Diakonikolas, and Rong Ge. High-dimensional robust mean estimation
in nearly-linear time. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA). SIAM, 2019.

32



[CDGW19] Yu Cheng, Ilias Diakonikolas, Rong Ge, and David Woodruff. Faster algorithms for high-

[CDST19]

[CGQ18]

[CLS19]

[Dand7|

[Eld13]

[GH16]

|GLSS81]

QU1

[GV02]

[GWO5]

[HJ12]

[HW53]

[JJUW11]

[JLL*20|

dimensional robust covariance estimation. In Conference on Learning Theory (COLT),
2019.

Yair Carmon, John C. Duchi, Aaron Sidford, and Kevin Tian. A rank-1 sketch for
matrix multiplicative weights. In Conference on Learning Theory, COLT 2019, 25-28
June 2019, Phoeniz, AZ, USA, pages 589-623, 2019.

Yu Cheng and Rong Ge. Non-convex matrix completion against a semi-random adver-
sary. In Conference On Learning Theory (COLT), 2018.

Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current
matrix multiplication time. In Proceedings of the 51st Annual ACM Symposium on
Theory of Computing (STOC), 2019.

George B Dantzig. Maximization of a linear function of variables subject to linear
inequalities. Activity analysis of production and allocation, 13:339-347, 1947.

Ronen Eldan. Thin shell implies spectral gap up to polylog via a stochastic localization
scheme. Geometric and Functional Analysis, 2013.

Dan Garber and Elad Hazan. Sublinear time algorithms for approximate semidefinite
programming. Mathematical Programming, 158(1-2):329-361, 2016.

Martin Grétschel, Laszlo Lovasz, and Alexander Schrijver. The ellipsoid method and
its consequences in combinatorial optimization. Combinatorica, 1981.

Frangois Le Gall and Florent Urrutia. Improved rectangular matrix multiplication using
powers of the coppersmith-winograd tensor. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’18, 2018.

Jean-Louis Goffin and Jean-Philippe Vial. Convex nondifferentiable optimization: A
survey focused on the analytic center cutting plane method. Optimization methods and
software, 2002.

Michel X Goemans and David P Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. Journal of

the ACM (JACM), 1995.

Roger A. Horn and Charles R. Johnson. Matriz Analysis. Cambridge University Press,
New York, NY, USA, 2nd edition, 2012.

A. J. Hoffman and H. W. Wielandt. The variation of the spectrum of a normal matrix.
Duke Math. J., 20(1):37-39, 03 1953.

Rahul Jain, Zhengfeng Ji, Sarvagya Upadhyay, and John Watrous. QIP = PSPACE.
Journal of the ACM (JACM), 2011.

Arun Jambulapati, Yin Tat Lee, Jerry Li, Swati Padmanabhan, and Kevin Tian. Posi-
tive semidefinite programming: mixed, parallel, and width-independent. In Proccedings
of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020,
Chicago, IL, USA, June 22-26, 2020. ACM, 2020.

33



[JLSW20]

[JY11]

[Kar84]

[Kha80|

[KMO3]

[KMS94]

[KTESS]

[Leel6|

ILP20]

ILS14]

[LS15]

[LSW15]

INNS9]

INN92|

Haotian Jiang, Yin Tat Lee, Zhao Song, and Sam Chiu-wai Wong. An improved cutting
plane method for convex optimization, convex-concave games and its applications. In

STOC, 2020.

Rahul Jain and Penghui Yao. A parallel approximation algorithm for positive semidefi-
nite programming. In Proceedings of the 2011 IEEE 52nd Annual Symposium on Foun-
dations of Computer Science (FOCS), 2011.

Narendra Karmarkar. A new polynomial-time algorithm for linear programming. In
Proceedings of the sizteenth annual ACM symposium on Theory of computing (STOC),
1984.

Leonid G Khachiyan. Polynomial algorithms in linear programming. USSR Computa-
tional Mathematics and Mathematical Physics, 20(1):53-72, 1980.

Kartik Krishnan and John E Mitchell. Properties of a cutting plane method for semidef-
inite programming. submitted for publication, 2003.

David Karger, Rajeev Motwani, and Madhu Sudan. Approximate graph coloring by
semidefinite programming. In Proceedings 35th Annual Symposium on Foundations of

Computer Science (FOCS). IEEE, 1994.

Leonid G Khachiyan, Sergei Pavlovich Tarasov, and I. I. Erlikh. The method of inscribed
ellipsoids. In Soviet Math. Dokl volume 37, pages 226-230, 1988.

Yin Tat Lee. Faster algorithms for convexr and combinatorial optimization. PhD thesis,
Massachusetts Institute of Technology, 2016.

Yin Tat Lee and Swati Padmanabhan. An $\widetilde\mathcalo(m/\varepsilon”3.5)$-
cost algorithm for semidefinite programs with diagonal constraints. In Jacob D. Aber-
nethy and Shivani Agarwal, editors, Conference on Learning Theory, COLT 2020, 9-12
July 2020, Virtual Event [Graz, Austria/, Proceedings of Machine Learning Research.
PMLR, 2020.

Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving
linear programs in O(vrank) iterations and faster algorithms for maximum flow. In
55th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2014.

Yin Tat Lee and Aaron Sidford. Efficient inverse maintenance and faster algorithms for
linear programming. In 56th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), 2015.

Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. A faster cutting plane method
and its implications for combinatorial and convex optimization. In 56th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), 2015.

Yurii Nesterov and Arkadi Nemirovski. Self-concordant functions and polynomial time
methods in convex programming. preprint, central economic & mathematical institute,

ussr acad. Sci. Moscow, USSR, 1989.

Yurii Nesterov and Arkadi Nemirovski. Conic formulation of a convex programming
problem and duality. Optimization Methods and Software, 1(2):95-115, 1992.

34



INN94]

[PT12|

[Ren01]

[Sho77]

[Sid15]

[Stro1]

[Vai87]

[Vai89a]

[Vai89b|

[VB96]

[Woo49]
[Woo50]
[YNT76]

[YTF*19]

Yurii Nesterov and Arkadi Nemirovski. Interior-point polynomial algorithms in convex
programming, volume 13. Siam, 1994.

Richard Peng and Kanat Tangwongsan. Faster and simpler width-independent parallel
algorithms for positive semidefinite programming. In Proceedings of the twenty-fourth
annual ACM symposium on Parallelism in algorithms and architectures (SPAA ), pages
101-108, 2012.

James Renegar. A Mathematical View of Interior-point Methods in Convex Optimiza-
tion. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2001.

Naum Z Shor. Cut-off method with space extension in convex programming problems.
Cybernetics and systems analysis, 13(1):94-96, 1977.

Aaron Daniel Sidford. Iterative methods, combinatorial optimization, and linear pro-
gramming beyond the universal barrier. PhD thesis, Massachusetts Institute of Tech-
nology, 2015.

Volker Strassen. Degeneration and complexity of bilinear maps: some asymptotic spec-
tra. J. reine angew. Math, 413:127-180, 1991.

Pravin M Vaidya. An algorithm for linear programming which requires o(((m + n)n? +
(m+n)t5n)l) arithmetic operations. In 28th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), 1987.

Pravin M Vaidya. A new algorithm for minimizing convex functions over convex sets.
In 30th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
338-343, 1989.

Pravin M Vaidya. Speeding-up linear programming using fast matrix multiplication. In
30th Annual Symposium on Foundations of Computer Science (FOCS), pages 332-337.
IEEE, 1989.

Lieven Vandenberghe and Stephen P. Boyd. Semidefinite programming. SIAM Review,
1996.

Max A Woodbury. The stability of out-input matrices. Chicago, 1L, 9, 1949.
Max A Woodbury. Inverting modified matrices. 1950.

David B Yudin and Arkadi S Nemirovski. Evaluation of the information complexity of
mathematical programming problems. Fkonomika i Matematicheskie Metody, 12:128—
142, 1976.

Alp Yurtsever, Joel A. Tropp, Olivier Fercoq, Madeleine Udell, and Volkan Cevher.
Scalable semidefinite programming, 2019.

35



A Matrix Multiplication: A Tensor Approach

The main goal of this section is to rederive, using tensors, some of the technical results from
Section 3. In particular, we use tensors to derive upper bounds on the time to perform the following
two rectangular matrix multiplication tasks (Lemma A.12 and A.13):

e Multiplying a matrix of dimensions m x n? with one of dimensions n?

X m,
e Multiplying a matrix of dimensions n X mn with one of dimensions mn x n.

Our hope is that these techniques will eventually be useful in further improving the results of this
paper.

A.1 Exponent of matrix multiplication

We recall two definitions to describe the cost of certain fundamental matrix operations, along with
their properties.

Definition A.1. Define Tyat(n,r,m) to be the number of operations needed to compute the product
of matrices of dimensions n X r and r X m.

Definition A.2. We define the function w(k) to be the minimum value such that Tmat(n,n* n) =
n@®+e)  We overload notation and use w to denote the exponent of matriz multiplication (in
other words, the cost of multiplying two n x n matrices is n*), and let o denote the dual exponent
of matriz multiplication. Thus, we have w(l) = w and w(a) = 2.

Lemma A.3 ([GU18|). We have :
o w=w(l) < 2.372027,
o w(1.5) < 2.79654,
o w(1.75) < 3.02159,
o w(2) < 3.251640.

Lemma A.4 ([BCS97, Blal3]). For any three positive integers m, m,r, we have
Tinat(n, 7, m) = O(Tat(n,m, 7)) = O(Tmat(m,n,7)).

A.2 DMatrix multiplication tensor

The rank of a tensor 7', denoted as R(T"), is the minimum number of simple tensors that sum up
to T'. For any two tensors S = (S; jx)ijk and T' = (Typ.c)ap.e, we write S < T if there exist three
matrices A, B and C (of appropriate sizes) such that S; ;1 = Za,b,c A; o BjpCr.cTop,c for all 4,7, k.
For any i, j, k, denote e; ;1 the tensor with 1 in the (4, j, k)-th entry, and 0 elsewhere.

Definition A.5 (Matrix-multiplication tensor). For any three positive integers a,b, c, we define

(a,b,c) := Z Z Z €i(b—1)+7j,j(c—1)+k,k(a—1)+i

i€la) j€[b] kelc]

to be the matriz-multiplication tensor corresponding to multiplying a matriz of size a X b with one
of size b X c.
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It’s not hard to show that for any n; and m; where ¢ = 1,2, 3, we have
(n1,n2,n3) ® (M1, ma, m3) = (1M1, nama, n3ms).

Let (n) = Zie[n} eiii be the identity tensor. For any three tensors S,T7 and Tb, if Ty < T, then
we have

ST <STh.

Lemma A.6 (Monotonicity of tensor rank, [Str91]|). Tensor rank is monotone under the relation
<, te. if T <1T5, then we have

R(Ty) < R(T»).
Lemma A.7 (Sub-multiplicity of tensor rank, [Str91]). For any tensors Ty and Ty, we have
R(T1 ® T») < R(T1) - R(T3).

Lemma A.8. The tensor rank of a matrix multiplication tensor is equal to the cost of multiplying
the two correponding sized matrices up to some constant factor, i.e.,

R({a,b,c)) = O(That(a,b,c)).

A.3 Implication of matrix multiplication technique

Lemma A.9 (Sub-linearity). For any p > q > 1, we have
w(p) <p—q+w(q).
Proof. We have
(n,mP n) = (n,n? ny® (1,nP"91).
Applying tensor rank on both sides

R({(n,n?,n)) = R({n,n?,n) @ (1,nP71 1))
< R((n,nq,n>) : R(<1’np—q’ 1>)7

where the last line follows from Lemma A.7. Applying Lemma A.8, we have
Tmat(”u np7 n) S O(l) : Tmat(n7 nq7 TL) . np_q
Using the definition of w(p), we have

n@P)re) < (1) - pe@+ol) . pp=a

Comparing the exponent on both sides completes the proof. O
The next lemma establishes the convexity of w(k) as a function of k.

Lemma A.10 (Convexity of w(k)). The fast rectangular matriz multiplication time exponent w(k)
as defined in Definition A.2 is convex in k.
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Proof. Let k=a-p+ (1 —«) - q for a € (0,1). We have
(n,n* n) = (n® n®P n®) @ (n'= nl=P pl-ey,
Applying the tensor rank on both sides,

R((n,n*,n)) = R((n,n"?,n%) @ (n'~*,n1=P nl=®))

< R((n®,n®?,n%) - R((n' =, nl =0 nl=e)),
where the last line follows from Lemma A.7. By Lemma A.8, we have
Tnat (1,17, 1) < O(1) - Trnar (%, 0P, %) + Topar (0=, n(170P pl=a)

By definition of w(-), we have

n@®+e) < O(1) . pxw®) . p-aw(l=p)
By comparing the exponent, we know that

wk) < a-wp)+ (1 —a) w(l-p).
O

Lemma A.11. Let Tnat be defined as in Definition A.1. Then for any positive integers a,b,c and
k, we have

Tmat (@, bk, ¢) < O(Tmat(ak, b, ck)).
Proof. Notice that
(L,k, 1) < (k,1,k).
Therefore, we have

{a,bk,c) = (a,b,c) ® (1,k,1)
é <a7 b7 C> ® <k7 17 k>
=(ak, b, ck).

It then follows from Lemma A.6 that
R({a,bk,c)) < R({ak,b,ck)).
Finally, using Lemma A.8 gives
Tmat(a, bk, ¢) < O(Tmat(ak, b, ck)).

Thus we complete the proof. O
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A.4 General bound on Tp..(n,mn,n) and Tpa:(m,n?,m)

Lemma A.12. Let That be defined as in Definition A.1.
If m > n, then we have

Tmat (’I’L, mn, ’I’L) S O(Tmat (m, n27 m))
If m <n, then we have
Tmat(ma TL2, m) S O(Tmat(n7 mn, n))

Proof. We only prove the case of m > n, as the other case where m < n is similar. This is an
immediate consequence of Lemma A.11 by taking a = ¢ = n, b=n?, and k = |m/n], where k is a
positive integer because m > n. ]

In the next lemma, we derive upper bounds on the term Tpai(m,n?,m) when m > n and
Tmat(n, mn,n) when m < n, which is crucial to our runtime analysis.

Lemma A.13. Let That be defined as in Definition A.1 and w be defined as in Definition A.2.
Property 1. We have

Tonat (n, mn,n) < O(mn< o),
Property 1I. We have
Tonaclm, 12, m) < O (Vi (mn? + 1))

Proof. Property 1.
Since

(n,mn,n) = (n,n,n) ®(1,m,1).
Applying the tensor rank on both sides, we have

R({n,mn,n)) = R({(n,n,n) ® (1,m, 1))
R({n,n,n)) - R((1,m,1))

IN

Thus, we complete the proof.
Property II.
Let m = n®, where a € (0,00). We have

(m, n2’ 'm,> = <7”La, (na)2/a’ na>
It implies that
Tmat (m, 77,27 m) — na‘W(Q/a)—i-o(l)

The Property II is then an immediate consequence of the following inequality, which we prove
next:

w(2/a) < max(1 +2.5/a,w(1) +0.5/a) Va € (0,00).
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Define b = 2/a € (0,00). Then the above desired inequality can be expressed in terms of b as
w(b) < max(1+ 5b/4,w(1) + b/4) Vb € (0, 00). (65)

Notice that the RHS of (15) is a maximum of two linear functions of b and these intersect at
b* = w(1) — 1. By the convexity of w( - ) as proved in Lemma A.10, it suffices to verify (15) at the
endpoints b — 0, b — oo and b = b*. In the case where b = § for any 6 < 1, (15) follows immediately
from the observation that w(d) < w(1). For the case b — oo, by Lemma A.3 we have w(2) < 3.252.
It then follows from Lemma A.9 that for any b > 2, we have

wb) <b—24w(2) <1+5b/4.
The final case is where b = b* = w(1) — 1, for which (15) is equivalent to
ww(l) —1) < bw(l)/4—1/4. (66)

By Lemma A.3, we have that w(1) — 2 € [0,0.372927]. Then to prove (66), it is sufficient to show
that

w(t+1) <5t/4+9/4 Vit e[0,0.372927). (67)

By the convexity of w( -) as proved in Lemma A.10 and the upper bound of w(2) < 3.251640 in
Lemma A.3, we have for k € [1,2],

wk) <w(l)+ (k—1)-(3.251640 — (t +2)) =t +2+ (k—1) - (1.251640 — ¢t).
In particular, using this inequality for kK =t + 1, we have

wt+1)—5t/4—9/4 < (t+2) +t-(1.251640 —t) — 5t/4 — 9/4
= —t? +1.00164t — 1/4,

which is negative on the entire interval [0,0.372927]. This establishes (67) and finishes the proof of
the lemma. O
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