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Abstract

We show that the the volume of a convex body in Rn in the general membership oracle model can be computed

with Õ(n3ψ2/ε2) oracle queries, where ψ is the KLS constant1. With the current bound of ψ . n
1
4 , this gives

an Õ(n3.5/ε2) algorithm, the first general improvement on the Lovász-Vempala Õ(n4/ε2) algorithm from 2003.

The main new ingredient is an Õ(n3ψ2) algorithm for isotropic transformation, following which we can apply

the Õ(n3/ε2) volume algorithm of Cousins and Vempala for well-rounded convex bodies. A positive resolution

of the KLS conjecture would imply an Õ(n3/ε2) volume algorithm. We also give an efficient implementation of
the new algorithm for convex polytopes defined by m inequalities in Rn: polytope volume can be estimated in
time Õ(mnc/ε2) where c < 3.7 depends on the current matrix multiplication exponent and improves on the the
previous best bound.

1 Introduction

Computing the volume is a fundamental problem from antiquity, playing a central role in the development of
fields such as integral calculus, thermodynamics and fluid dynamics among others. Over the past several decades,
numerical estimation of the volumes of high-dimensional bodies that arise in applications has been of great interest.
To mention one example from systems biology, volume has been proposed as a promising parameter to distinguish
between the metabolic networks of normal and abnormal individuals [8] where the networks are modeled as very
high dimensional polytopes.

As an algorithmic problem for convex bodies in Rn, volume computation has a 4-decade history. Early results
by Barány and by Barány and Füredi showed that any deterministic algorithm for the task is doomed to have an
exponential complexity, even to approximate the volume to within an exponentially large factor. Then came the
stunning breakthrough of Dyer, Frieze, and Kannan showing that with randomization, the problem can be solved
in full generality (the membership oracle model) to an arbitrary relative error ε in time polynomial in n and 1/ε.
They used the Markov chain Monte Carlo method and reduced the volume problem to sampling uniformly from
a sequence of convex bodies, and showed that the sampling itself can be done in polynomial-time. Subsequent
progress on the complexity of volume computation has been accompanied by the discovery of several techniques
of independent interest, summarized below. The current best complexity of Õ(n4/ε2) for general convex bodies is
achieved by the 2003 algorithm of Lovász and Vempala.

The main subroutine for volume computation is sampling. Sampling is done by random walks, notably the ball
walk and hit-and-run. The rate of convergence of random walks is determined by their conductance. For a Markov
chain with state space Ω, transition function Pu(.) and stationary density Q, the conductance is

φ = min
A⊂Ω:Q(A)≤ 1

2

∫
u∈A Pu(Ω \A) dQ(u)

Q(A)
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1Õ suppresses polylogarithmic terms. O∗suppresses dependence on error parameters as well as polylogarithmic terms.
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Year/Authors New ingredients Steps

1989/Dyer-Frieze-Kannan [6] Everything n23

1990/Lovász-Simonovits [18] Better isoperimetry n16

1990/Lovász [17] Ball walk n10

1991/Applegate-Kannan [2] Logconcave sampling n10

1990/Dyer-Frieze [5] Better error analysis n8

1993/Lovász-Simonovits [19] Localization lemma n7

1997/Kannan-Lov̈ı¿œsz-Simonovits [11] Speedy walk, isotropy n5

2003/Lovász-Vempala [20] Annealing, hit-and-run n4

2015/Cousins-Vempala [3] (well-rounded) Gaussian Cooling n3

Table 1: The complexity of volume estimation. The complexity of all algorithms have an ε−2 factor. Each step uses Õ(n)

bit of randomness and Õ(n2) arithmetic operations. The last algorithm is for well-rounded convex bodies.

i.e., the minimum conditional escape probability with the stationary density (probability of crossing from a set
to its complement starting from the stationary density in the set). The analysis of the ball walk done in [11]
shows that the conductance can be bounded in terms of the isoperimetry of the stationary distribution, a purely
geometric parameter. For an n-dimensional measure ν, its KLS constant (the isoperimetric or Cheeger constant is
the reciprocal) is

1

ψν
= inf
A⊂R:Q(A)≤ 1

2

νn−1(∂A)

ν(A)

where ∂A is the boundary of the set A, and νn−1 is the induced (n− 1)-dimensional measure. The conductance of
the Markov chain reduces to the isoperimetry of its stationary density2:

φ ?
1

ψ · n

with ψ being the KLS constant of the stationary density of the Markov chain. This implies a mixing rate of
O(n2ψ2). Thus bounding the KLS constant becomes critical, and this consideration originally motivated the KLS
conjecture. With many unexpected connections and applications since its formulation, the conjecture has become
a central part of asymptotic convex geometry and functional analysis.

Conjecture 1.1 (KLS Conjecture [10]). The KLS constant of any isotropic logconcave density in any dimension is

bounded by an absolute constant. Equivalently, for a logconcave density q with covariance matrix A, ψq . ‖A‖1/2op .

Another equivalent formulation of the conjecture is that for any logconcave density, a halfspace induced subset
achieves the extremal isoperimetry up to an absolute constant. The paper [10] also showed that

ψq = O
(√

TrA
)

which is O(
√
n) for isotropic logconcave densities. This implies mixing of the ball walk (and hence sampling) in

n3 steps from a warm start in an isotropic convex body K containing a unit ball. But how to find an isotropic
transformation and maintain a warm start? They do this with two essential ingredients: (i) a bound of O(n2R2)

on the mixing time where R2 = EK(‖x− x̄‖2) (ii) interleaving the volume algorithm with isotropic transformation:

the algorithm starts with a simple isotropic body (like a ball) and then goes through a sequence of Õ(n) convex

bodies, maintaining well-roundedness, i.e., R = Õ(
√
n), and computing ratios of volumes of consecutive bodies as

well as isotropic transformation, via sampling; a random sample from the current phase serves as a warm start
for the next phase. As Õ(n) samples are needed to estimate each ratio and for the isotropic transformation, this
implies a volume/rounding algorithm of complexity n3 · n · n = O∗(n5).

The algorithm of [20] improves on this as follows: (a) they separated the isotropic transformation from volume

estimation by giving an Õ(n4) algorithm for isotropic transformation and (b) they replaced the sequence of convex
bodies with a sequence of logconcave densities (“simulated annealing”), specifically exponential densities restricted

to convex bodies; they showed that a sequence of Õ(
√
n) densities suffices, while still maintaining a warm start.

2We use & to denote “LHS greater than a constant factor times RHS”.
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This reduced the overall complexity to n3 ·
√
n ·
√
n = O∗(n4). (Note that by a simple variance analysis, the number

of samples needed per phase grows linearly with the number of phases [5]). The total number of samples used in

the algorithm is Õ(n), so further improvements would require faster sampling. The concluding remark from [20]
says:

“There is one possible further improvement on the horizon. This depends on a difficult open problem in convex
geometry, a variant of the “Slicing Conjecture” [10]. If this conjecture is true... could perhaps lead to an O∗(n3)
volume algorithm. But besides the mixing time, a number of further problems concerning achieving isotropic position
would have to be solved.”

Since then there has been progress on the KLS conjecture.

Theorem 1.2 ([16]). The KLS constant for any logconcave density with covariance A is bounded by O(‖A‖1/2F ). For
isotropic logconcave densities in Rn, ψ . n1/4. The mixing time of the ball walk for isotropic logconcave densities

from a warm start is Õ(n2.5).

Unfortunately, despite these improvements to the KLS constant and the mixing rate of the ball walk, the complexity
of volume computation remained at n4. Even outputting the first random point needs n4 oracle queries, since the
mixing rate improvement is only from a warm start in an isotropic body.

Progress in a different line, without using the KLS conjecture came in 2015. Cousins and Vempala gave a volume
algorithm with complexity O∗(n3) for any well-rounded convex body, i.e., they assume the input body contains the

unit ball and is mostly contained in a ball of radius R = Õ(
√
n). This is a weaker condition than (approximate)

isotropic position, which requires that the covariance matrix of K is (close to) the identity. Their Gaussian Cooling
algorithm uses a sequence of Gaussians restricted to the body, starting with a Gaussian of small variance almost
entirely contained in the body and flattening it to a near-uniform distribution. Notably, they bypass the KLS
conjecture, needing isoperimetry only for the special case of the Gaussian density restricted to a convex body,
for which ψ = O(1). The main open problem from their work is to find a faster algorithm to make the body
well-rounded (or isotropic). An improved rounding algorithm would directly imply a faster volume algorithm.

1.1 Main results

We give a new algorithm for the isotropic transformation of any given convex body. The complexity of the algorithm
is O∗(n3ψ2), directly determined by the best possible KLS constant ψ for isotropic logconcave densities in Rn. This
is the first direct reduction of the complexity of volume computation to the KLS constant. With the current bound
of ψ = O(n1/4), the complexity is O∗(n3.5) and implies volume computation in the same complexity for any convex
body. If the conjecture turns out to be true, then the complexity becomes O∗(n3). No further improvement is in
sight for the general setting.

Theorem 1.3 (Rounding). There is a randomized algorithm that takes as input a convex body K ⊂ Rn given by a
membership oracle with initial point x0 ∈ K, bounds r,R¿0 s.t.,

x0 + rBn ⊆ K ⊆ RBn

and with probability 1 − δ, computes an affine transformation T s.t., TK is in near-isotropic position, i.e., for x
sampled uniform from TK,

I 4 Cov(xx>) 4 2I.

The algorithm takes O(n3ψ2 logc(Rn/r) log(1/δ)) oracle queries and O(n2) time per oracle query.

Corollary 1.4 (Volume). The oracle complexity of computing the volume of a convex body K ⊂ Rn given by a
well-defined membership oracle with probability at least 1− δ to within relative error ε is

O(n3(ψ2/ε2) logO(1)(Rn/rε) log(1/δ)) = O(n3.5/ε2 logO(1)(Rn/rε))

which is Õ(n3.5/ε2) for the current KLS constant bound of ψ = O(n1/4). The time complexity is O(n2) per oracle
query.
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For an explicit convex polytope Ax ≤ b, with A ∈ Rm×n, since each oracle query takes O(mn) time, this immediately
gives a bound ofO∗(mn4.5), matching the current best bound for largem [23] (there is a different approach [14] giving

a time bound of O∗(m2nω−
1
3 ), which is better when the number of facets is close to linear in the dimension). Here

we give an efficient implementation of our new algorithm that improves significantly on the runtime. Let ω(a, b, c)
be the exponent of complexity of multiplying an na×nb matrix with an nb×nc matrix, e.g., ω(1, 1, 1) ≤ 2.3728639
[12].

Theorem 1.5 (Polytope Volume). The volume of a convex polytope {x : Ax ≤ b} ⊂ Rn defined by m inequalities can

be computed with high probability to within relative error ε using fast matrix multiplication in time Õ(mnc/ε2) where

c = ω(1, 1, 3.5) < 3.7. If the KLS conjecture is true, then the running time is Õ(mnω(1,1,3)−1) where ω(1, 1, 3) < 4.2.

Without fast matrix multiplication, polytope volume can be computed in time Õ(mn4/ε2).

1.2 Approach

The algorithm is based on the following ideas. First, if the covariance matrix is skewed (i.e., some eigenvalues are
much larger than others), this can be detected via a small random sample. The roundness can then be improved
by scaling up the subspace of small eigenvalues. But how to sample a highly skewed convex body? To break this
chicken-and-egg problem, we use a sequence of convex bodies obtained by intersecting the original set with balls of
increasingly larger radii:

Kt = K ∩B(0, t),

with t starting at r and doubling till it reaches R. In each outer iteration, we compute a transformation that makes
the set Kt (nearly) isotropic. When Kt is isotropic, we show that K2t is well-rounded (Lemma 3.4). Hence, the
trace of the covariance of K2t is O(n). However, its eigenvalues could be widely varying. To make K2t isotropic, we
will estimate the larger eigenvalues using a small random sample (Lemma A.2). The second idea is that scaling up
the small eigenvalues nearly doubles the size of the ball contained inside (Lemma 3.2), while having a mild effect on
the higher norms of the covariance (Lemma 3.1). The latter concept is where KLS comes in. We show that if the

KLS constant for isotropic logconcave distributions in Rn is bounded by ψ2
n . n

1
p for all n, then for any logconcave

density q with covariance matrix A (not necessarily identity), the KLS constant is bounded as ψ2
q . ‖A‖p log n

(Theorem B.12). As we outline below, this improves the sampling time in each inner iteration.

In the beginning, when the ball contained inside Kt is small, we will use a few samples to get a coarse estimate
of the larger eigenvalue directions and scale up the orthogonal subspace. The sampling time is higher since the

roundness parameter of Kt is higher. The time per sample is roughly n2 ‖A‖p
r2 when r is the radius of the ball inside

and A is the covariance matrix for the uniform density q on Kt. As we increase r, by a constant factor in each step,
the norm of the covariance grows much more slowly, and so the sampling time decreases. Meanwhile, we use more

samples in each step, roughly r2, and this trade-off keeps the overall time at n3+ 1
p ' n3ψ2. During the process we

need a warm start for each phase; we achieve this in Õ(n3) steps using the Gaussian Cooling algorithm. It is known

that ψ2
q . ‖A‖p holds for p = 2 [16], giving the Õ(n3.5) complexity for rounding. Our general reduction establishes

that any future improvement to higher p would imply faster rounding and volume estimation.

2 Preliminaries

For a positive definite matrix n×n matrix A, we will use the operator or spectral norm, ‖A‖op, its Frobenius norm,

‖A‖F
def
= Tr(A2)1/2, and its p′th norm for p ≥ 1,defined as

‖A‖p
def
=

(
n∑
i=1

|λi|p
)1/p

with p = 1 being TrA and p = 2 being ‖A‖F .

Definition 2.1. A function f : Rn → R+ is logconcave if its logarithm is concave along every line, i.e., for any
x, y ∈ Rn and any λ ∈ [0, 1],

f(λx+ (1− λ)y) ≥ f(x)λf(y)1−λ. (2.1)

4



Many common probability distributions have logconcave densities, e.g., Gaussian, exponential, logistic, and gamma
distributions; indicator functions of convex sets are also logconcave. Logconcavity is preserved by product, min and
convolution (in particular marginals of logconcave densities are logconcave).

Definition 2.2. A distribution D is said to be isotropic if

ED(x) = 0 and ED(xx>) = I.

We say a convex body is isotropic if the uniform distribution over it is isotropic. Any distribution with bounded
second moments can be brought to an isotropic position by an affine transformation. We say that a convex body
K is (r,R)-rounded if it contains a ball of radius r, and its covariance matrix A satisfies

TrA = EK(‖x− x̄‖2) = R2.

For an isotropic body we have A = I and hence R2 = n. We will say K is well-rounded if r = 1 and R = Õ(
√
n).

Clearly, any isotropic convex body is also well-rounded, but not vice versa. A distribution is said to be α-isotropic
if I � ED(xx>) � αI.

Random points from isotropic logconcave densities have strong concentration properties. We mention three that
we will use.

Lemma 2.3 ([21, Theorem 5.17]). For any t ≥ 1, and any logconcave density p in Rn with covariance matrix A,

Px∼p
(
‖x− Ex‖2 ≥ t ·

√
TrA

)
≤ exp(−t+ 1).

Lemma 2.4 ([24, Theorem 5.17]). For any t ≥ 1, and any isotropic logconcave density p in Rn, there is a constant
c such that

Px∼p(‖x‖2 ≥ t
√
n) ≤ exp(−c

√
nt).

Lemma 2.5 ([1, 25]). For any isotropic logconcave distribution ν in Rn,with probability at least 1−δ, the empirical
mean and covariance

x = (1/N)

N∑
i=1

xi, and X =
1

N

N∑
i=

(xi − xi)(xi − xi)T

of N = O(n log(1/δ)/ε2) i.i.d. random samples xi ∼ ν satisfy

‖x‖2 ≤ ε, ‖X − I‖op ≤ ε.

The convergence of Markov chains is established by showing the the t-th step distribution Qt approaches the steady
state distribution Q. We will use the total variation distance dTV for this. We also need a notion of a warm start.

Definition 2.6 (Warm start). We say that a starting distribution Q0 is M -warm for a Markov chain with unique
stationary distribution Q if its χ-squared distance is bounded by M :

χ2(Q0, Q) = EQ
(
dQ0(u)

dQ(u)
− 1

)2

≤M.

Note that χ2(Q0, Q) + 1 = EQ
(
dQ0(u)
dQ(u)

)2

= EQ0

dQ0(u)
dQ(u) .

Our algorithms will use the ball walk for sampling. In a convex body K, the ball walk with step-size δ is defined as
follows: At the current point, x ∈ K, pick y uniformly in B(x, δ), the ball of radius δ around x; if y ∈ K, go to y
(else, do nothing).

The next theorem is a fast sampler for distributions with KLS constant ψq given a warm start.

Theorem 2.7 ([11]). Let K be a convex body containing the unit ball. Using the ball walk with step size 1√
n

in

K from an M -warm start Q0, the number of steps to generate a nearly independent point within TV distance or
χ2-distance ε of the uniform stationary density Q in Rn is O(n2ψ2

q logO(1)(nM/ε)).
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The next lemma connects the KLS constant for isotropic distributions to that of general distributions. We give a
proof in Section (B).

Lemma 2.8. Let ψn be a bound on the KLS constant for isotropic logconcave densities and ψq be the bound for a
logconcave density q (not necessarily isotropic) with covariance matrix Aq, both in Rn.. If ψ2

n = Θ
(
n1/p

)
for all n,

then for any logconcave density q with covariance A, we have ψ2
q = O(‖A‖p logO(1) n).

We will also use a fast sampler for well-rounded convex bodies that does not require a warm start.

Theorem 2.9 (Sampling a well-rounded convex body [3, 4]). There is an algorithm that, for any ε > 0, p > 0,
and any convex body K in Rn that contains the unit ball and has EK(‖X‖2) = R2, with probability 1− δ, generates
random points from a density ν that is within total variation distance ε from the uniform distribution on K. In the
membership oracle model, the complexity of each random point, including the first, is,

O

(
(R2n2 + n3) log n log2 n

ε
log

1

δ

)
= Õ(n3 +R2n2).

Finally, we use the algorithm from [4, 3] for computing the volume of a well-rounded convex body.

Theorem 2.10 (Volume of a well-rounded convex body). [3, 4] There is an algorithm that, for any ε > 0, δ > 0
and convex body K in Rn that contains the unit ball and has EK(‖X‖2) = O(n), with probability 1−δ, approximates
the volume of K to within relative error ε and has complexity

O

(
n3

ε2
· log2 n log2 1

ε
log2 n

ε
log

1

δ

)
= Õ(n3ε−2)

in the membership oracle model.

Computational Model. We use the most general membership oracle model for convex bodies, which comes with
bounds r,R guaranteeing that the input convex body K is (r,R)-rounded and allows membership queries to K. As
established in the literature on volume computation, the number of arithmetic operations is bounded by O(n2) per
oracle query, and all arithmetic operations can be done using only a polylogarithmic number of additional bits. We
mention a few familiar technical difficulties whose solution is well-documented in the literature. First, the sampling
algorithms produce points from approximately the correct distribution. Second, samples produced in a sequence
are not completely independent. Third, all our algorithms are randomized (they have to be in the oracle model).
For the first two issues, we refer to [22]; briefly, the approximate distribution is handled by a trick called “divine
intervention”, where one can view the sampled distribution as being the correct one with large probability and
an incorrect one with a small failure probability. Since the complexity dependence on proximity to the target is
logarithmic, this leads to a controllable overall failure probability. The near-independence is handled as follows:
first, we maintain parallel independent threads of samples, which start as completely random points (e.g., from a
Gaussian) and remain independent throughout. For estimates computed in different sequential phases (e.g., ratios
of integrals, or affine transformations), the degree of dependence is explicitly bounded using the tools developed in
[22]. For the failure probability, we note that the overhead for failure probability δ is O(log(1/δ)). In the rest of
the paper, for convenience, we say WHP to mean with probability 1− δ incurring only O(log(1/δ)) overhead in the
complexity.

3 Algorithm and Analysis

The algorithm considers a sequence of balls of doubling radii, and in each iteration makes the intersection of the
current ball with the convex body nearly isotropic.
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Algorithm 1 Iterative Isotropization

1: procedure IterativeIsotropization(K ⊂ Rn, r > 0, R > 0)
2: Assumption: B(0, r) ⊆ K ⊆ B(0, R)
3: Define Kt = K ∩B(0, t)..
4: t← r, x← 0, T ← 1

r I . Current slice t and normalization
5: while t < R do
6: (x, T )← Isotropization(Kt − x, T )
7: t→ 2t
8: end while
9: end procedure

The main subroutine is a procedure to compute an isotropic transformation of a well-rounded body. We address
this in the next section, then come back to the general analysis.

3.1 Inner loop: Isotropic transformation of a well-rounded body

We begin with the algorithm. In each iteration, the inner ball radius grows by a constant factor, while the p-norm
of the covariance grows much more slowly. As a result, we can afford to sample more points with each iteration
and thereby get progressively better approximations to the isotropy: in the first step the number of samples in only
Õ(1) while by the end the number of samples is Õ(n).

Algorithm 2 Isotropize

1: procedure Isotropize(K ⊂ Rn, T0 ∈ Rn×n)
2: Assumption: B(0, 1

4 ) ⊂ T0K and Ex∼T0K‖x‖2 = O(n).
3: Use Gaussian cooling to sample a point x ∈ TK.
4: r ← 1

4 , T ← T0. . We maintain {x : ‖x‖2 ≤ r} ⊆ TK
5: while 210r2 log2 n ≤ n do
6: k ← c · r2 log5 n for a constant c.
7: Sample points x1, · · · , x2k from TK using the ball walk with initial point x.
8: Â← 1

k

∑k
i=1(xi − x̂)(xi − x̂)> where x̂ = 1

k

∑k
i=1 xi+k.

9: M ← In + PÂ where PÂ is the projection to the subspace spanned by eigenvectors of Â with eigenvalue
at most λ = n.

10: T ←MT , r ← 2(1− 1
logn ) · r.

11: end while
12: Sample O(n) points to compute the mean x̂ and empirical covariance matrix Â such that Â−

1
2 (K − x̂) is

2-isotropic.
13: Return (x̂, Â−

1
2 ).

14: end procedure

First, we show that the p-th norm of the covariance matrix ‖A‖p remains bounded. Although we only use an
eigenvalue threshold of λ = n in the algorithm, we will prove a slightly more general statement below, assuming
the eigenvalue threshold is λ = n/rα.

Lemma 3.1. Let Aj be the covariance matrix of TK and rj be the inner radius at the j-th iteration of algorithm
Isotropize. For α ∈ [0, 2/(p− 1)], we have

• the number of iterations is O(log n).
• TrAj = O(r2

jTrA0) for all j.

• ‖Aj‖p ≤ 24nr
( 2+α
p −α)

j log n for all j.

Proof. In each iteration, the algorithm increases rj by a factor of 2(1− 1
logn ). Note that the algorithm starts with

r0 = 1
4 and ends before rj log n ≤

√
n. Hence, it takes less than O(log n) iterations.
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Figure 3.1: (a) Algorithm IterativeIsotropization uses balls of doubling radii (b) Algorithm Isotropize scales up the estimated
“small eigenvalue” subspace in each iteration.

To bound TrAj , we let Mj be the transformation at j-th iteration. We have

Aj = MjAj−1Mj (3.1)

Hence, we have

TrAj = TrA
1
2
j−1M

2
j A

1
2
j−1 ≤ 5TrAj−1.

Hence, TrAj increases by a factor of at most 4. Moreover, since rj increases by a factor of 2(1− 1
logn ) we have that

TrAj
r2
j

increases by a factor of (1− 1
logn )−2 per iteration. Since there are O(log n) iterations, it increases by at most

O(1) in total. Hence, we have TrAj = O(r2
jTrA0) = O(r2

jn) for all j.

To bound ‖Aj‖p, we note that initially ‖A0‖p ≤ TrA0 ≤ 4n. Let Pj be the projection at j-th iteration. By (3.1),
we have

‖Aj‖p = ‖MjAj−1Mj‖p
= ‖A1/2

j−1M
2
j A

1/2
j−1‖p

= ‖A1/2
j−1(I + 3Pj)A

1/2
j−1‖p.

Hence, we have

‖Aj‖p ≤ ‖Aj−1‖p + 3‖A1/2
j−1PjA

1/2
j−1‖p.

Let λ
def
= n

rαj
. Since Pj is the projection of the eigenspace of Â with eigenvalues less than λ, we have that

Pj � 2λ(Â+ λ · I)−1.

(To see this, we note that sides have the same eigenspace and hence it follows from 1x≤λ ≤ 2λ
x+λ .) By Lemma A.2

with ε = 1
2 , we have that 1

2Aj −O(
log3 n·TrAj

k ) · I � Â. Using that TrAj = O(r2
jn) and k = Ω(r2+α

j log3 n) samples,
we have

Aj−1 � 2Â+
n

rαj
· I � 2Â+ λ · I.

8



Hence, we have Pj � 4λ(Aj−1 + λ · I)−1 and

‖Aj‖p ≤ ‖Aj−1‖p + 12λ‖A1/2
j−1(Aj−1 + λ · I)−1A

1/2
j−1‖p

Let λi be the eigenvalues of Aj−1. Then,

‖A1/2
j−1(Aj−1 + λ · I)−1A

1/2
j−1‖

p
p =

n∑
i=1

(
λi

λi + λ

)p
≤ 1

λp

∑
λi≤λ

λpi +
∑
λi≥λ

1.

The first term
∑
λi≤λ λ

p
i is maximized when the small eigenvalues have values exactly λi = λ. In this case, there

are
TrAj−1

λ
≤
O(r2

j−1n)

λ

small eigenvalues, i.e., of value at most λ. Hence, we have

1

λp

∑
λi≤λ

λpi ≤
O(r2

j−1n)

λ
.

For the second term, ∑
λi≥λ

1 ≤ TrAj−1

λ
≤
O(r2

j−1n)

λ
.

Hence, ‖Aj‖p is increased by

O(λ) ·

(
r2
j−1n

λ

)1/p

= O

(
n

rαj

)
·
(
r2
j−1r

α
j

)1/p ≤ O (nr 2+α
p −α

)
.

Since there are at most O(log n) iterations, ‖Aj‖p is at most O(nr( 2+α
p −α) log n).

Next, we show that the inner radius increases by almost a factor of 2 every iteration, again for a general choice of
eigenvalue threshold λ = n/rα.

Lemma 3.2. Algorithm Isotropization maintains the invariant {‖x‖2 ≤ r} ⊆ TK.

Proof. First, we describe the idea of the proof. When the algorithm modifies the covariance matrix A, it estimates
the subspace of directions with variance less than n/rα and doubles them. Lemma A.2 shows that

Â = (1± 1

2
)A± n

2rα
· I,

this means, roughly speaking, that any direction that was not doubled satisfies

λi ≥ σ2 =
n

2rα
.

So the current body contains an ellipsoid whose axis lengths along the non-doubled directions (call this subspace
V ) are at least σ and at least r in all directions (the body contains a ball of radius r). Now the body is stretched
by a factor of

√
2 in the subspace V ⊥. We will argue that the resulting body contains a ball of radius nearly 2r. To

see this, we argue that any point in a ball of this radius is in the convex hull of the ball of radius σ in the subspace
V and a ball of radius

√
2r in the subspace V ⊥.

Now we proceed to the formal proof by induction. Initially, we have {‖x‖2 ≤ r} ⊂ TK by the assumption on
K. It suffices to show this is maintained after each iteration. Let T be the old transformation and T ′ be the new
transformation during one iteration. Let r be the old radius during that iteration. By the invariant, we know that
{‖x‖2 ≤ r} ⊂ TK and hence

{‖M−1x‖2 ≤ r} ⊂ T ′K

9



with M = I +PÂ (this only scales up the body by a factor of 2 in some directions). Let A be the covariance matrix
of TK. Then (I + PÂ)A(I + PÂ) is the covariance matrix of T ′K. Our goal is to show that T ′K contains a ball of
radius 2(1− 1

logn )r. From above, we have

{x>A−1x ≤ 1} ⊂ {x>((I + PÂ)A(I + PÂ))−1x ≤ 1} ⊂ T ′K.

Hence, we know that Conv(Ω1 ∪ Ω2) ⊂ T ′K where

Ω1 = {x>(
1

r2
I − 3

4r2
PÂ)x ≤ 1} and Ω2 = {x>A−1x ≤ 1}.

where for Ω1 we used that (I + P )−2 = I − 3
4P for any projection matrix P .

To prove that T ′K contains a larger ball, we take x and write it as a convex combination of x1 and x2 where
x1 ∈ Ω1 and x2 ∈ Ω2. To do this, we define PA be the projection to the subspace spans by eigenvectors of A with
eigenvalues at most λ/28 log2 n with

λ
def
=

n

rα
.

For any x with ‖x‖2 ≤ 2(1− 1
logn )r, we will show that x ∈ Conv(Ω1 ∪Ω2). To do this, we let t

def
=
‖PAx‖22
‖x‖22

and write

x as the convex combination,

x = t

(
1

t
PAx

)
+ (1− t)

(
1

1− t
(I − PA)x

)
. (3.2)

For the second term in (3.2), we have(
1

1− t
(I − PA)x

)>
A−1

(
1

1− t
(I − PA)x

)
≤ ‖(I − PA)x‖22

(1− t)2λ/(28 log2 n)
=

28‖x‖22 log2 n

λ

Since ‖x‖22 ≤ 4r2 and λ = n
rα , we have

28‖x‖22 log2 n

λ
≤ 210r2 log2 n

n
rα

=
210r2+α log2 n

n
≤ 1.

Hence,
1

1− t
(I − PA)x ∈ Ω2. (3.3)

For the first term in (3.2), we note that for any β > 0, we have

PÂ � βλ(βλ+ Â)−1 − β

1 + β
I (3.4)

(To see this, we note that both sides have the same eigenspace and hence it follows from 1x≤λ ≥ βλ
x+βλ −

β
1+β .)

By Lemma A.2 with ε = 1, we have

Â � 2A+O

(
log3 n · TrA

k

)
· I.

Using TrA = O(r2n) (Lemma 3.1) and k = Ω(r2+α log5 n) (the algorithm description), we have

Â � 2A+
n

27rα log2 n
· I � 2A+

λ

27 log2 n
· I.

Putting this into (3.4), we have

PÂ � βλ(βλ+
λ

27 log2 n
+ 2A)−1 − β

1 + β
I.

10



On the range of PA, we have A � λ
28 log2 n

and hence

(PAx)>PÂ(PAx) ≥

(
βλ

βλ+ λ
26 log2 n

− β

1 + β

)
‖PAx‖22.

Using this, we have

f(x)
def
=

1

t2r2
(PAx)>(I − 3

4
PÂ)(PAx)

≤

(
1− 3

4

βλ

βλ+ λ
26 log2 n

+
3

4

β

1 + β

)
‖x‖22
r2

≤

(
1− 3

4

β

β + 1
64 log2 n

+ β

)
· 4
(

1− 1

log n

)2

where we used ‖x‖2 ≤ 2(1− 1
logn )r at the end. Putting β = 1

8 logn , we have

f(x) ≤
(

1− 3

4
· 8 log n

8 log n+ 1
+

3

4
· 1

1 + 8 log n

)
· 4
(

1− 1

log n

)
=

(
7 + 8 log n

8 log n+ 1

)
·
(

1− 1

log n

)
≤
(

1 +
1

log n

)
·
(

1− 1

log n

)
≤ 1

Hence, from the definition of Ω1,we have
1

t
PAx ∈ Ω1. (3.5)

Combining (3.5) and (3.3), we have
x ∈ Conv(Ω1 ∪ Ω2) ⊂ T ′K.

Hence, T ′K contains a ball of radius 2(1− 1
logn )r. This completes the induction.

With the bound on the inner radius and the p-norm of the covariance matrix, we can apply Theorem 2.7 and Lemma
2.8 to bound the mixing time and the complexity of the algorithm Isotropize.

Theorem 3.3. The algorithm Isotropize applied to a well-rounded input convex body K satisfying B(0, 1) ⊆ K with

EK ‖x‖2 = O(n), with high probability, finds a transformation T using Õ(n3ψ2) oracle calls, s.t. TK is 2-isotropic.

Proof. Theorem 2.9 shows that it takes Õ(n3) to get the first sample from a well-rounded body with Gaussian
Cooling. (Note that a uniform point from Kt would be a very bad warm start for K2t.) This gives a warm start
for all subsequent steps.

Let Aj be the covariance matrix at the j-th iteration of the algorithm. By Lemma 3.1 with α = 0, we have that

‖Aj‖p ≤ O(nr2/p log n).

In the j-th iteration the algorithm samples k = c · r2
j log5 n points. To bound the sampling cost, first note that for

distribution q with KLS constant ψq, the complexity per sample is Õ(n2ψ2
q/r

2
j ) since by Lemma 3.2, the algorithm

maintains a ball of radius rj inside the body. Suppose that the KLS constant for isotropic distributions is ψ. We
choose p so that ψ2 = O(n1/p). By Lemma 2.8 with β = 1/2p, this implies that the KLS constant even for non-
isotropic distributions with covariance A satisfies ψ2

q = O(‖A‖p log n). Lemma 2.7 shows that the total complexity
of the j-th iteration is at most

c · r2
j · Õ

(
n2 · ‖Aj‖p

r2
j

)
≤ Õ

(
n3r

2/p
j

)
= Õ

(
n3+ 1

p

)
.
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since we stop with r2 = O(n). By the definition of p, the complexity is Õ(n3ψ2). For the cost of computing
covariance matrix and the mean, Lemma 2.5 shows that WHP O(n) samples suffice for a constant factor estimate
of the covariance. The total cost is

n · Õ(n2 · ‖A‖p r
−2) = r2 · Õ(n2 · ‖A‖p r

−2) = Õ
(
n3+ 1

p

)
where we used that n = Õ(r2) at the end of the algorithm.

3.2 Outer loop: the general case

For the general case, we first show that the next body is well-rounded after each iteration and hence satisfies the
condition of the algorithm Isotropize. The proof is an adaptation of a proof from [22, Lemma 5.4].

Lemma 3.4. Suppose that for a convex body K, the set K∩B(0, t) is 2-isotropic. Then K∩B(0, 2t) is well-rounded.

Proof. LetKt = K∩B(0, t) andK2t = K∩B(0, 2t). SinceKt is 2-isotropic, Kt has mean 0 with I � Ex∈Ktxx> � 2I.
Hence, Kt contains the unit ball of radius 1. Let tsmall = 2

√
n and Ktsmall

= K ∩ B(0, tsmall). If 2t ≤ 3tsmall then

clearly EK2t
‖x‖2 ≤ (6

√
n)2 = 36n and we are done. Otherwise, t > 3tsmall/2. Let λ such that

t = λtsmall + (1− λ)2t.

Note that λ = 2t−t
2t−tsmall

≤ t
2t = 1

2 . By the Brunn-Minkowski inequality, we have

vol(Kt)
1/n ≥ λvol(Ktsmall

)1/n + (1− λ)vol(K2t)
1/n. (3.6)

Next, by the choice of tsmall, since Kt is 2-isotropic, using Paouris’ inequality (Lemma 2.4), we have

vol(Kt) ≤ vol(Ktsmall
)(1 + exp(−c

√
n))

for some constant c. Using this with (3.6), we have

vol(K2t) ≤
1

1− λ

(
vol(Kt)

1/n − λvol(Ktsmall
)1/n

)n
≤ 1

1− λ

(
vol(Ktsmall

)1/n((1 + exp(−c
√
n))1/n − λvol(Ktsmall

)1/n
)n

≤ vol(Ktsmall
)

1

1− λ

(
1 +

1

n
exp(−c

√
n)− λ

)n
≤ vol(Ktsmall

)

(
1 +

2

n
exp(−c

√
n)

)n
.

≤ vol(Ktsmall
)
(
1 + 4 exp(−c

√
n)
)
.

Thus, the fraction of the volume of K2t that lies outside a ball of radius tsmall is exponentially small. Moreover,
since Kt is 2-isotropic, all of Kt lies in a ball of radius 2

√
n and 0 ∈ Kt. Moreover, 0 ∈ K2t and since K2t =

K ∩B(0, 2t) ⊆ 2(K ∩B(0, t)) = 2Kt, we have K2t lies in a ball of radius 4n.

EK2t
‖x‖2 ≤ t2small + (4n)2 · 4 exp(−c

√
n) = 5n.

Now we are ready to prove the main theorem about rounding.

Proof of Theorem 1.3. The initial body Kr is a ball, and at the end of the first iteration, the body is 2-isotropic. Let
Kt be the convex body in some iteration. Assume that Kt is 2-isotropic. By Lemma 3.4 K2t is well-rounded. Since
(Kt−x) contains a unit ball, so does (K2t−x). Then by Theorem 3.3 the inner loop to make K2t near-isotropic takes
Õ(n3ψ2) oracle queries. Since the number of iterations of the outer loop is only log(R/r), the theorem follows.
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4 Polytope Volume

In this section, we consider the special case of convex polytopes. We assume that a polytope P = {x : Ax ≤ b} is
given explicitly by A ∈ Rm×n, b ∈ Rm. A naive implementation of the our general membership oracle algorithm
would take O(mn) arithmetic operations per oracle call, leading to a time bound of Õ(mn4.5), where the first term
is the time complexity from the oracle queries and the second term is from the additional arithmetic operations
per oracle query. This is now the number of arithmetic operations. This already matches the current best time
complexity for polytopes using earlier volume algorithms and an amortization trick introduced in [23]. Here we give
two significantly faster implementations. The first algorithm is based on a very simple application of fast matrix
multiplication. Since fast matrix multiplication is practical only for very high dimension, we also give a different
implementation extending the ideas of [23].

4.1 An efficient implementation using Fast Matrix Multiplication

We can replace every ball walk sampling step with the following algorithm.

Algorithm 3 Polytope Ball Walk

1: procedure PolytopeBallWalk(A ∈ Rm×n, b ∈ Rm, x0 ∈ Rn, δ > 0, k ∈ N)
2: Assumption: Ax0 ≤ b.
3: Sample points z1, . . . , zk from Bn(0, δ).
4: Z ←

(
z1 z2 · · · zk

)
, Y ← AZ.

5: x← x0, y ← Ax0.
6: for i← 1 : k do
7: if y + Yi ≤ b. then
8: x← x+ zi, y ← y + Yi.
9: end if

10: end for
11: Return (x).
12: end procedure

Next, we show that this algorithm will improve the running time of the ball walk.

Lemma 4.1. Given a polytope {x ∈ Rn : Ax ≤ b} where A ∈ Rm×n, k steps of the ball walk in the polytope can be
implemented in time O(C(m,n, k)) where C(m,n, k) denotes the minimum number of arithmetic operations needed
to multiply an m× n matrix by an n× k matrix.

Proof. We can see that Algorithm 3 does the same computations as the ball walk algorithm with step size δ and run
for k steps. The only difference is that we generate the random vectors from B(0, δ) first and do a preprocessing
step to avoid multiplying Azi at each step. So the resulting point will be the same as the ball walk algorithm and
we reduce the running time of each step.

Let Z, Y, x, y be the same as in Algorithm 3. Generating k random vectors will cost O(nk). For each step, we
compute y + Yi in O(m) time and x+ zi in O(n) time. So the total time taken is

O(nk) + C(m,n, k) +O((m+ n)k) = O(C(m,n, k)).

We will apply this speedup to the polytope volume computation. From Theorem 3.3, in the j-th iteration of
Isotropiztion, we run ball walk for k = Õ(n3+1/p) steps with the same transformation matrix T , and hence we can
use the above algorithm to improve running time.

For getting the first sample, we use the Gaussian Cooling algorithm which in turn runs ball walk in phases with
different ball radii and target distributions. However, the total number of ball walk steps in the Gaussian Cooling
algorithm for a well-rounded body is Õ(n3) and we also know the maximum number of steps needed for each phase.
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Therefore, we can construct the matrix Z in Algorithm 3 with k = Õ(n3). The following lemma gives the current
best matrix bounds from [27], [13], and [12]. For k > 0, define the exponent of the rectangular matrix multiplication
as follows:

ω(1, 1, k) = inf{τ ∈ R | C(n, n, bnkc) = O(nτ )}.

Fact 4.2 ([27],[13],[12]). ω(1, 1, 3.5) = 4.68546, ω(1, 1, 3) = 4.199712.

To prove the first part of Theorem 1.5, use Algorithm 3. For p = 2, the total time is Õ(mnω(1,1,3.5)−1 +

mnω(1,1,3)−1) = Õ(mn3.68546). If the KLS conjecture is true, then the total time is Õ(mnω(1,1,3)−1) = Õ(mn3.199712).

4.2 Implementation with an amortized Ball Walk

We can also speed up the algorithm by using an implementation of the ball walk for polytopes introduced by [23].
For a body in near-isotropic position, it requires only an expected O(m) operations per step from a warm start.

The main idea of the algorithm is when moving from a point x ∈ K to y, instead of checking the distance between
the point y and every constraint (aj , bj) of the polytope at every step, we check the distance from a constraint at
only a fraction of the steps. Firstly, with high probability, the step size along any constraint direction aj is bounded
by O∗( η√

n
) = O∗( 1

n ). This can be used to determine which constraint to check at the current step by maintaining

a probabilistic lower bound on hj(x) = bj − a>j x, the distance between the current point and the j-th constraint.

Then, a constraint is checked at the current step only if the corresponding lower bound is O( 1
n ). The last ingredient

of their analysis is an anti-concentration bound which states that the probability of the distance between a uniform
point from an isotropic convex body and a hyperplane being less than ε is O(ε). This ensures that we need to check
only O(m/n) constraints in expectation at every step for an isotropic polytope.

However, in our algorithm, the intermediate polytopes are not near-isotropic but well-rounded. The aforementioned
probability is inversely proportional to the standard deviation of the body in that direction, which can be as small
as r

n . We extend the anti-concentration bound to convex polytopes containing a ball of radius r, i.e., the probability
that a uniform point from such a polytope is at a distance less than ε from any hyperplane is O(nεr ) which ensures
that we need to check only O

(
m
r

)
constraints in expectation at every step of this modified ball walk. Since the

number of points sampled in the j-th iteration of Isotropize is Õ(r2), this still gives runtime savings because we
sample fewer points for smaller values of r and save asymptotically.

Algorithm 4 Amortized Ball Walk for Polytopes[23]

1: procedure Modified Ball Walk(A ∈ Rm×n, b ∈ Rm, x0 ∈ Rn, ρ > 0, δ > 0, N ∈ N)
2: Assumption: Ax0 ≤ b and ‖x‖2 < ρ.
3: dj = bj − a>j x0 for j ∈ [m].
4: Sort dj ’s in ascending order in an array H.
5: for i← 0 : N do
6: yi+1 ∼ B(xi, δ).
7: if ‖yi+1‖2 > ρ then
8: xi+1 = xi
9: end if

10: Let j∗ be the largest j such that dj∗ ≤ α · η√
n
· i . α = 4 log

(
2mN
ε

)
11: for k = 1→ j∗ do
12: dk = bk − a>k yi+1.
13: if dk < 0 then
14: xi+1 = xi.
15: end if
16: Insert dk + α · η√

n
· i in H in sorted order.

17: end for
18: xi+1 = yi+1.
19: end for
20: Return xN .
21: end procedure
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Before proving the anti-concentration lemma, we need a result relating the radius of a ball inside a convex body K
and the minimum eigenvalue of the covariance matrix of K.

Lemma 4.3. For any convex body in Rn containing a ball of radius r, the minimum eigenvalue of the covariance

matrix is at least r2

(n+1)2 .

Proof. Let Σ = EK [(x− µ)(x− µ)>] and λ1 be the minimum eigenvalue of Σ. Then,

λ1 = min
z 6=0,‖z‖2=1

z>Σz

= min
z 6=0,‖z‖2=1

z>EK [(x− µ)(x− µ)>]z

= min
z 6=0,‖z‖2=1

EK [(z>(x− µ))2]

= EK [(y>(x− µ))2].

Wlog, let µ = 0 and let v be the point in K which maximizes |y>v|. Let φ(u) denote the largest real number t with
v + tu ∈ K. Then we have,

vol(K) =

∫
∂B

∫ φ(u)

0

tn−1dtdu =
1

n

∫
∂B

φ(u)ndu

and

σ2 =
1

vol(K)

∫
K

(yTx)dx

=
1

vol(K)

∫
∂B

∫ φ(u)

0

tn−1(yT (v + tu))2dtdu

=
1

vol(K)

∫
∂B

(
φ(u)n

n
(yT v)2 + 2

φ(u)n+1

n+ 1
(yT v)(yTu) +

φ(u)n+2

n+ 2
(yTu)2

)
du

=
1

vol(K)

∫
∂B

φ(u)n

n(n+ 1)2
(yT v)2 +

φ(u)n

n

(√
n

n+ 2
φ(u)yTu+

√
n(n+ 2

n+ 1
yT v

)2

du

≥ 1

vol(K)

∫
∂B

φ(u)n

n(n+ 1)2
(yT v)2du

σ2 =
1

(n+ 1)2
(yT v)2

Therefore,
r ≤ |yT v| ≤ (n+ 1)σ.

Lemma 4.4 (Anti-concentration). Suppose that the uniform distribution πK on convex body K has covariance
matrix Σ � σ2I and that X ∼ πK is a random vector uniformly distributed on K. Let H be any codimension-1
hyperplane. Then we have

Pr [dist(X,H) ≤ ε] ≤ 2ε

σ
∀ε > 0.

Proof. Let the equation for H be ax = b where a ∈ R1×n, ‖a‖2 = 1 and b ∈ R. Let X ∼ πK is a random
vector uniformly distributed on K. Let the distribution of aX be denoted by πaK . πaK is logconcave with variance
aΣa> = σ2

1 ≥ σ2. Let π̂aK denote the distribution of 1
σ1
aX. Then π̂aK is isotropic and logconcave. If x∗ is the

maximizer of π̂aK , then
π̂aK(x∗) ≤ 1.
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For any ε > 0,

Pr [|aX − b| ≤ ε] = Pr

[
|aX − b|

σ1
≤ ε

σ1

]
=

∫ b+ε
σ

b−ε
σ

π̂aK(x)dx ≤
∫ b+ε

σ

b−ε
σ

π̂aK(x∗)dx

≤
∫ b+ε

σ

b−ε
σ

dx =
2ε

σ1
≤ 2ε

σ
.

Lemma 4.5 (Frequency of constraint checking). For a polytope K with covariance matrix Σ ≥ σ2I and Ball Walk
with step size η and tolerance parameter α, suppose that the initial point X0 is β-warm with respect to the uniform
distribution for some β > 0. Let Nj be the number of steps (excluding the first step) of the modified Ball Walk
Markov chain at which the algorithm checks inequality (Aj , bj) and let N be the number of Markov chain steps. Let

Fj :=
Nj
N . Then,

E[Fj ] = 16
αβη√
nσ

(1 + 2 log(n)) +
βε

N
.

This lemma follows directly from Lemma 4.5 in [23] using the anti-concentration bound from Lemma 4.4.

Lemma 4.6. The algorithm Isotropization applied to a well-rounded input convex polytope K satisfying B(0, 1) ⊆ K
with EK ‖x‖2 = O(n), with high probability, finds a transformation T using Õ(n3ψ2) oracle calls and Õ(mn4)
arithmetic operations, s.t. TK is 2-isotropic.

Proof. It takes Õ(n3) steps of the Gaussian Cooling algorithm to get the first sample from a well-rounded body
where every step can be implemented in O(mn) arithmetic operations. Let Aj and rj be the covariance matrix and
the inner radius at the j-th iteration of the algorithm respectively. From Theorem 3.3, the number of oracle calls

in the j-th iteration of the algorithm is Õ(n3r
2
p

j ). So, the total complexity of j-th iteration is at most

Õ(n3r
2
p

j ) · Õ(mnr−1
j ) ≤ Õ(mn4r

2
p−1).

Since we stop before 210r2 log n = n, the complexity becomes

Õ
(
mn4 +mn3.5+ 1

p

)
which is Õ(mn4) for p = 2.

Given a convex polytope K, use Algorithm 4 to make it near-isotropic and then use the Gaussian Cooling algorithm
[4] to compute volume. The second part of Theorem 1.5 (without fast matrix multiplication) follows.
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A Empirical Covariance Matrix with Sublinear Sample Complexity

To bound the error of the empirical covariance matrix A, we use the following matrix Chernoff bound.

Lemma A.1 (Matrix Bernstein [26, Theorem 6.1]). Consider a finite sequence {Xi} of independent, random, self-
adjoint matrices of dimension n. Assume that EXi = 0 and ‖Xi‖op ≤ R almost surely. The, for all t ≥ 0, we
have

P

(
‖
∑
i

Xi‖op ≥ t

)
≤ 2n exp

(
−t2/2

σ2 +Rt/3

)
where σ2 def

= ‖
∑
i E(X2

i )‖op.

Lemma A.2. Let p be a logconcave density in Rn with covariance A. Let Â ← 1
k

∑k
i=1(xi − x̂)(xi − x̂)> where

x̂ = 1
k

∑k
i=1 xi+k and xi are independent samples from p. With probability 1− 1/nO(1), for any 0 ≤ ε ≤ 1, we have

(1− ε)A−O
(

log3 nTrA

εk

)
· I � Â � (1 + ε)A+O

(
log3 n · TrA

εk

)
· I.

Remark. By a more careful tail analysis, one can get a bound of O( logn·TrA
εk ) · I and we speculate that the tight

bound for the additive term might be O(TrA
εk ) · I.

Proof. Let λ ≥ 0 to some constant to be determined. By shifting the distribution, we can assume p has mean 0.
Let p̃ be the distribution given by p restricted to the ball

{‖x‖(λA+I)−1 ≤ 3s ·
√

Tr(λA+ I)−
1
2A(λA+ I)−

1
2 }

for some s = Θ(log n). Using the fact that p has mean 0 and the fact that (λA+ I)−
1
2A(λA+ I)−

1
2 � A, Lemma

2.3 shows that

Px∼p(‖x‖(λA+I)−1 ≤ 3s ·
√

TrA) ≥ 1− 1

nΘ(1)
.

Let Ai be the random matrices (xi − x̂)(xi − x̂)> with xi is sampled from p and Ãi be the random matrices

(x̃i−x̂)(x̃i−x̂)> with x̃i is sampled from p̃. Note that when k = Ω(n), we have that WHP 1
2A � Â � 2A 2.5. Hence,

we can assume k = O(n). We couple two matrices together such that Ãi = Ai for i = 1, 2, · · · k with probability

1− ke−s = 1− 1
nΘ(1) . Let Xi = 1

k (λA+ I)−
1
2 (Ai − EAi)(λA+ I)−

1
2 and X̃i = 1

k (λA+ I)−
1
2 (Ãi − EÃi)(λA+ I)−

1
2

for some λ to be chosen where the expectation E is conditional on x̂. Note that

P(
∥∥∥(λA+ I)−

1
2 (Â− EÂ)(λA+ I)−

1
2

∥∥∥
op
≥ t) = P(‖

∑
i

Xi‖op ≥ t)

≤ P(‖
∑
i

X̃i‖op ≥ t) +
1

nΘ(1)
. (A.1)

Hence, it suffices to study X̃i.
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We will apply Lemma A.1. For the sup norm bound, note that

‖X̃i‖op ≤
1

k

(
‖(λA+ I)−

1
2 Ãi(λA+ I)−

1
2 ‖op + ‖(λA+ I)−

1
2EÃi(λA+ I)−

1
2 ‖op

)
≤ 1

k

(
‖x̃i − x̂‖2(λA+I)−1 + E‖x̃i − x̂‖2(λA+I)−1

)
≤ 1

k

(
2‖x̃i‖2(λA+I)−1 + 2E‖x̃i‖2(λA+I)−1 + 4‖x̂‖2(λA+I)−1

)
≤ 4

k

(
9s2TrA+ ‖x̂‖2(λA+I)−1

)
≤ R

where the second inequality follows from the fact that non-zero eigenvalues of Y TY and Y Y T are the same for any
rectangular matrix Y , and

R
def
=

36

k

(
s2TrA+ ‖x̂‖2(λA+I)−1

)
(A.2)

For the variance bound, note that (λA+I)−
1
2 Ãi(λA+I)−

1
2 � kR and hence (using again that (a−b)2 ≤ 2(a2 +b2)),

EX̃2
i � E

2

k2
(((λA+ I)−

1
2 Ãi(λA+ I)−

1
2 )2 + (E(λA+ I)−

1
2 Ãi(λA+ I)−

1
2 )2)

� 2kR

k2
E((λA+ I)−

1
2 Ãi(λA+ I)−

1
2 + E((λA+ I)−

1
2 Ãi(λA+ I)−

1
2 )

=
4R

k
E(λA+ I)−

1
2 Ãi(λA+ I)−

1
2

� 8R

k
E(λA+ I)−

1
2Ai(λA+ I)−

1
2

=
8R

k
(

A

λA+ I
+ (λA+ I)−

1
2 x̂x̂>(λA+ I)−

1
2 )

where we used that dp̃
dp ≤ 2 in the last inequality. Hence, we have

σ2 def
= ‖

∑
i

EX̃2
i ‖op ≤ 8R(‖ A

λA+ I
‖op + ‖x̂‖2(λA+I)−1).

Apply Lemma A.1, with probability 1− 1
nΘ(1) , we have

‖
∑
i

X̃i‖op . σ
√

log n+R log n

.

√
(‖ A

λA+ I
‖op + ‖x̂‖2(λA+I)−1)

√
R log n+R log n

Using the value of R from equation A.2, for any c ≥ 1, we get

‖
∑
i

X̃i‖op .
1

c
‖ A

λA+ I
‖op +

1

c
‖x̂‖2(λA+I)−1 +

c

k
(log2 n · TrA+ ‖x̂‖2(λA+I)−1) log n

.
1

cλ
+ (

1

c
+
c log n

k
) · ‖x̂‖2(λA+I)−1 +

c log3 n

k
· TrA

Using this and equation (A.1) , we have∥∥∥(λA+ I)−
1
2 (Â− EÂ)(λA+ I)−

1
2

∥∥∥
op

.
1

cλ
+ (

1

c
+
c log n

k
) · ‖x̂‖2(λA+I)−1 +

c log3 n

k
· TrA.

Finally, we note that x̂ follows a logconcave distribution with mean 0 and covariance matrix 1
kA. By Lemma 2.3,

we have that

‖x̂‖(λA+I)−1 . log n

√
1

k
TrA
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with probability 1− 1/nO(1). This gives∥∥∥(λA+ I)−
1
2 (Â− EÂ)(λA+ I)−

1
2

∥∥∥
op

.
1

cλ
+ (

log2 n

ck
+
c log3 n

k
) · TrA

.
1

cλ
+
c log3 n

k
· TrA

Hence, we have

|Â− EÂ| . 1

c
A+

1

cλ
I +

c log3 n

k
· TrA · (λA+ I).

Taking c = Θ(ε−1), λ = k
c2 log3 nTrA

, we have

|Â− EÂ| � εA+O(
log3 nTrA

εk
) · I.

The result follows using EÂ = A.

B Proof of the anisotropic KLS bound

Consider the following stochastic localization process.

Definition B.1. For a logconcave density p, we define the following stochastic differential equation:

c0 = 0, dct = dWt + µtdt, (B.1)

where the probability density pt, the mean µt and the covariance At are defined by

pt(x) =
ec
>
t x− t2‖x‖

2
2p(x)∫

Rn e
c>t y− t2‖y‖

2
2p(y)dy

, µt = Ex∼ptx, At = Ex∼pt(x− µt)(x− µt)>.

The following lemma shows that one can upper bound the expansion ψp by upper bounding ‖At‖op:

Lemma B.2 ([15, Lemma 31 in ArXiv ver 3]). Given a logconcave density p, let At be as in Definition B.1 using
initial density p. Suppose there is a T > 0 such that

P

(∫ T

0

‖As‖op ds ≤
1

64

)
≥ 3

4

Then, we have ψp = O
(
T−1/2

)
.

To bound ‖At‖op, we need a basic stochastic calculus rule about At.

Lemma B.3 ([15, Lemma 27 in arXiv ver 3]). The covariance At satisfies dAt =
∫
Rn(x−µt)(x−µt)>

(
(x− µt)>dWt

)
pt(x)dx−

A2
tdt.

We bound ‖At‖op using the potential Φt
def
= TrAqt . We will use fractional q and there is no simple formula of dΦt.

The upper bound on dΦt is known (see [7]). For completeness, we give an alternative proof here. Our proof relies
on the following lemma about the smoothness of the trace function.

Lemma B.4 (Prop 3.1 in 0809.0813). Let f be a twice differentiable function on (α, β) such that for some θ±, µ± ∈
R, for all α < a < b < β, we have

θ−
f ′′(a) + f ′′(b)

2
+ µ− ≤

f ′(b)− f ′(a)

b− a
≤ θ+

f ′′(a) + f ′′(b)

2
+ µ+.

Then, for any matrix X with eigenvalues lies between (α, β), we have

θ−Tr(f ′′(X)H2) + µ−TrH2 ≤ ∂2Trf(X)

∂X2

∣∣∣∣
H,H

≤ θ+Tr(f ′′(X)H2) + µ+TrH2.
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Now, we can use this to upper bound the derivative of Φt.

Lemma B.5. For any q > 1, we have that

dΦt ≤qEx∼pt(x− µt)>A
q−1
t (x− µt)(x− µt)>dWt

+ q(q − 1) · Ex,y∼pt((x− µt)>(y − µt))2(x− µt)>Aq−2
t (y − µt)dt.

Proof. By Lemma B.3, we have that

dAt =

∫
Rn

(x− µt)(x− µt)>
(
(x− µt)>dWt

)
pt(x)dx−A2

tdt

=
∑
i

Zi · dWt,i −A2
tdt

with Zi
def
= Ex∼pt(x− µt)(x− µt)>(x− µt)i. By Itô’s formula, we have that

dΦt =
∂TrAqt
∂At

∣∣∣∣
dAt

+
1

2

∑
i

∂2TrAqt
∂A2

t

∣∣∣∣
Zi,Zi

dt.

For the first-order term, we have

∂TrAqt
∂At

∣∣∣∣
dAt

= q · TrAq−1
t dAt

= qEx∼pt(x− µt)>A
q−1
t (x− µt)(x− µt)>dWt − qTrAq+1

t .

For the second-order term, we use Lemma B.4 with f(x) = xq. It is easy to see that f ′(b)−f ′(a)
b−a ≤ f ′′(a) + f ′′(b).

Hence, we can use Lemma B.4 with θ+ = 2 and µ+ = 0 to get

∂2TrAqt
∂A2

t

∣∣∣∣
Zi,Zi

≤ 2q(q − 1)Tr(Aq−2
t Z2

i ).

Combining the first and second-order terms, we have

dΦt ≤qEx∼pt(x− µt)>A
q−1
t (x− µt)(x− µt)>dWt

+ q(q − 1) ·
∑
i

Tr(Aq−2
t Z2

i )dt

=qEx∼pt(x− µt)>A
q−1
t (x− µt)(x− µt)>dWt

+ q(q − 1) · Ex,y∼pt((x− µt)>(y − µt))2(x− µt)>Aq−2
t (y − µt)dt.

To analyze the stochastic inequality for dΦt, we introduce a 3-Tensor.

Definition B.6 (3-Tensor). For an isotropic logconcave distribution p in Rn and symmetric matrices A,B and C,
define

T (A,B,C) = sup
isotropic log-concave p

Ex,y∼p(x>Ay)(x>By)(x>Cy).

Using the definition above, we can simplify the upper bound of Φt as follows:

dΦt ≤ qEx∼pt(x− µt)>A
q−1
t (x− µt)(x− µt)>dWt + q(q − 1) · T (Aq−1

t , At, At). (B.2)

To further bounding dΦt, we need following inequalities about logconcave distributions:

Lemma B.7 ([15, Lemma 32 in arXiv ver 3]). Let p be a logconcave density with mean µ and covariance A. For
any positive semi-definite matrix C, we have that

‖Ex∼p(x− µ)(x− µ)>C(x− µ)‖2 . ‖A‖1/2op Tr(A1/2CA1/2).
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Lemma B.8 ([9, Lemma 41]). For any 0 ≤ α ≤ 1, A � 0, and C � 0, we have T (Aα, A1−α, C) ≤ T (A, I, C).

Lemma B.9 ([9, Lemma 40]). Suppose that ψn ≤ αnβ for all n with some fixed 0 ≤ β ≤ 1
2 and α ≥ 1. For any

two symmetric matrices A and B, we have

T (A,B, I) . α2 log n · ‖A‖1 · ‖B‖1/(2β).

Using the lemmas above, we have the following:

Lemma B.10. Suppose that ψn = O(nβ) for all n with some fixed 0 ≤ β ≤ 1
2 . For any q = 1

2β , we have

dΦt ≤ δtdt+ v>t dWt with δt .
logn
β2 · Φ1+2β

t and ‖vt‖2 . 1
β · Φ

1+β
t .

Proof. From (B.2), we have

δt ≤ q(q − 1) · T (Aq−1
t , At, At)

≤ q(q − 1) · T (Aqt , At, I)

. q(q − 1) · log n · TrAqt · (TrA
1/(2β)
t )2β

.
log n

β2
· Φ1+2β

t

where we used Lemma B.8 in the second inequality and Lemma B.9 at the end. From (B.2) and Lemma B.7, we
have

‖vt‖2
def
= q‖Ex∼pt(x− µt)>A

q−1
t (x− µt)(x− µt)‖2

. q‖At‖1/2op · TrAt .
1

β
· Φ1+β

t .

Finally, we use the following lemma to bound stochastic inequality.

Lemma B.11 ([9, Lemma 35]). Let Φt be a stochastic process such that Φ0 ≤ U
2 and dΦt = δtdt + v>t dWt. Let

T > 0 be some fixed time, U > 0 be some target upper bound, and f and g be some auxiliary functions such that
for all 0 ≤ t ≤ T

1. δt ≤ f(Φt) and ‖vt‖2 ≤ g(Φt),
2. Both f(·) and g(·) are non-negative non-decreasing functions,
3. f(U) · T ≤ U

8 and g(U) ·
√
T ≤ U

8 .

Then, we have that P
[
maxt∈[0,T ] Φt ≥ U

]
≤ 0.01.

Using this lemma, we obtain the following bound.

Theorem B.12. Suppose that ψn = O(nβ) for all n with some fixed 0 ≤ β ≤ 1
2 . Then, for any logconcave

distribution p with covariance matrix A, we have that

ψp .

√
log n

β
‖A‖1/21

2β

.

Proof. Consider the stochastic process starts with p0 = p. Let Φt = TrA
1/2β
t . Lemma B.10 shows that dΦt =

δtdt + v>t dWt with δt ≤ logn
β2 · Φ1+2β

t and ‖vt‖2 ≤ 1
β · Φ1+β

t . Let U = 2TrA1/2β , f(Φ) = c logn
β2 Φ1+2β , and

g(Φ) = c 1
β ·Φ

1+β for some large enough constant c. Take T = c′ β2

U2β logn
with some small enough constant c′. Note

that f(U) · T ≤ U
8 and g(U) ·

√
T ≤ U

8 . This verifies the conditions in Lemma B.11 and hence this shows that

P
[

max
t∈[0,T ]

Φt ≥ U
]
≤ 0.01.
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Hence, we have P
[
maxt∈[0,T ] ‖At‖op ≥ U2β

]
≤ 0.01 and

P

(∫ T

0

‖As‖op ds ≤
1

64

)
≥ 3

4
.

Using this, Lemma B.2 shows that

ψp . T−1/2 .
1

β
Uβ
√

log n .

√
log n

β
‖A‖1/21

2β

.
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