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Abstract

In this paper we provide new randomized algorithms with improved runtimes for solving
linear programs with two-sided constraints. In the special case of the minimum cost flow
problem on n-vertex m-edge graphs with integer polynomially-bounded costs and capacities
we obtain a randomized method which solves the problem in Õ(m+n1.5) time. This improves
upon the previous best runtime of Õ(m

√
n) (Lee-Sidford 2014) and, in the special case of

unit-capacity maximum flow, improves upon the previous best runtimes of m4/3+o(1) (Liu-
Sidford 2020, Kathuria 2020) and Õ(m

√
n) (Lee-Sidford 2014) for sufficiently dense graphs.

For ℓ1-regression in a matrix with n-columns and m-rows we obtain a randomized method
which computes an ǫ-approximate solution in Õ(mn + n2.5) time. This yields a random-
ized method which computes an ǫ-optimal policy of a discounted Markov Decision Process
with S states and A actions per state in time Õ(S2A + S2.5). These methods improve
upon the previous best runtimes of methods which depend polylogarithmically on prob-
lem parameters, which were Õ(mn1.5) (Lee-Sidford 2015) and Õ(S2.5A) (Lee-Sidford 2014,
Sidford-Wang-Wu-Ye 2018).

To obtain this result we introduce two new algorithmic tools of independent interest.
First, we design a new general interior point method for solving linear programs with two
sided constraints which combines techniques from (Lee-Song-Zhang 2019, Brand et al. 2020)
to obtain a robust stochastic method with iteration count nearly the square root of the
smaller dimension. Second, to implement this method we provide dynamic data structures
for efficiently maintaining approximations to variants of Lewis-weights, a fundamental im-
portance measure for matrices which generalize leverage scores and effective resistances.
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1 Introduction

We consider solving linear programs expressed in the following primal/dual form:

(P ) = min
x∈Rm:A⊤x=b
ℓi≤xi≤ui ∀i∈[m]

c⊤x and (D) = max
y∈Rn,s∈Rm

Ay+s=c

b⊤y +
∑

i∈[n]

min(ℓisi, uisi). (1)

where b ∈ R
n, c ∈ R

m, A ∈ R
m×n and each ℓi ≤ ui ∈ R.

Equation (1) naturally encompasses prominent continuous and combinatorial optimization
problems. When ℓi = 0 and ui = ∞, (1) corresponds to the standard primal-dual formulation
of linear program. In the case when A is the incidence matrix of a graph, i.e. b = ~0, and ℓi = 0
for all i ∈ [m], (1) corresponds to the problem of computing a minimum cost circulation in a
directed graph with linear costs c and edge capacities given by u (Section 7). Further, in the
case when each ui = 1, ℓi = −1, and b = 0, (1) corresponds to solving ℓ1 regression (Section 8.3)
and can be used to solve Markov Decision Processes (MDPs) [SWWY18] (Section 8.4).

Recent advances in interior point methods (IPMs), a prominent class of continuous optimiza-
tion methods, and data structures have led to nearly linear runtimes for solving fundamental
classes of (1) to high precision with only a polylogarithmic dependence on problem parameters.
In [BLSS20] an Õ(mn+n2.5) time randomized method was obtained for solving (1) when ℓi = 0
and ui = ∞ for all i ∈ [m], i.e., when the problem is in standard form. Further, in [BLN+20]
a randomized method was obtained for solving minimum cost perfect matching in bipartite
graphs in time Õ(m + n1.5), i.e. when the problem is in standard form and A is the incidence
matrix of a bipartite graph.

Unfortunately, though it is well known that all linear programs can be written in standard
form, naïvely transforming (1) to standard form can increase the dimension of the problem, i.e.
turn n to Ω(m). This issue prevents the application of the recent advances in [BLN+20, BLSS20]
to (1) when both ui and ℓi are bounded. Consequently, despite extensive study, obtaining
nearly linear running times for solving (1), maximum flow, minimum cost flow, ℓ1 regression,
and Markov Decision Processes to high-precision with a polylogarithmic dependence on problem
parameters in nearly linear time in high-dimensional dense instances has been elusive.

The issue of losing density when reformulating (1) in standard form is a known difficulty
in obtaining improved runtimes from continuous optimization methods. It arose in [LS14,
LS19] and was addressed and leveraged to obtain improved randomized runtimes for minimum
cost flow, ℓ1-regression [LS15], and MDPs [LS14, LS15, SWWY18]. These methods provide
IPMs which work directly with (1). The IPMs re-weight constraints based on variations of
Lewis weights [CP15, LS19], a natural notion of row importance for matrices which generalizes
leverages scores, and implement and apply the corresponding methods efficiently.

Lewis weight reweighting schemes were also key to the aforementioned nearly linear time
algorithms for solving linear programs in standard form [BLSS20] and computing minimum-
cost bipartite perfect matchings [BLN+20] on dense instances. Unfortunately, a key technique
applied by these results is that when (1) is in standard form (i.e. ℓi = 0 and ui = ∞ for
all i ∈ [n]) it is possible to leverage the primal-dual structure of the problem to rewrite the
optimality conditions of [LS19] in terms of leverage scores, a simple special case of Lewis weights.
Leveraging this structure, these papers design IPMs and data-structures for efficiently leveraging
and manipulating leverage scores towards achieving their runtimes. Unfortunately, in the case
that both ℓi and ui are bounded, this same technique doesn’t directly apply (see Section 3.1).

In this paper, we show how to overcome this difficulty and directly obtain nearly linear
time algorithms for solving (1), minimum cost flow1, ℓ1-regression [LS15], and MDPs, in on

1Though Lewis weight reweighting was used to achieve state-of-the-art Õ(m+n
1.5) runtimes for minimum-cost

bipartite perfect matching on m-edge n-node graphs in [BLN+20], the same work showed that it was not needed

to obtain Õ(n
√

m) runtimes. Consequently, Õ(n
√

m) runtimes for minimum cost flow on m-edge n-node graphs
may be achievable without the full range of techniques in this paper.
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moderately dense instances. First, we provide a new IPM directly tailored to solving (1) which
directly works with a variant of Lewis weights. Our method applies techniques in robustifying
IPMs [CLS19, LSZ19, Bra20, BLSS20, BLN+20, SY20, JSWZ20] and in particular techniques
from [LSZ19] on robust IPMs for solving empirical risk minimization problems, to a variant
of the Lewis-weight based optimality conditions suggested by [LS19]. Further, the method
applies and generalizes sampling and analysis techniques from [BLN+20]. The combination of
these techniques and interaction with Lewis weights induces a number of technical challenges.
Interestingly, ultimately, our analysis leverages higher order smoothness properties of barriers
for the intervals {x : ℓi ≤ x ≤ ui} (Definition 4.1 and Lemma 4.2).

As with many recent results [CLS19, LSZ19, Bra20, BLSS20, BLN+20, SY20, JSWZ20], this
new IPM reduces the challenge of solving (1) to solving a sequence of data structure problems
and appropriately initializing and rounding the iterates of the IPM. One particularly challenging
aspect is that our IPM requires that regularized ℓp-Lewis weights be maintained efficiently
throughout the algorithm. Though previous work [BLSS20, BLN+20] provided various results
on dynamically maintaining leverage scores, i.e. the special case when p = 2, and there are
known algorithms for computing Lewis weights efficiently using leverage scores, the complexity
of such a naïve approach is unclear. We overcome this issue by providing both a more careful
reduction from Lewis weight maintenance to leverage score maintenance and a direct reduction
from leverage score maintenance to detecting large rows in a dynamically changing matrix, what
we call a heavy hitter data structure [BLN+20, BLSS20].

By considering specialized heavy hitter data structures for the various problems we consider,
providing additional data structure as needed, and carefully applying the resulting IPM we
obtain the main runtime results of this paper. In the special case of solving linear programs in
standard form we provide new sampling data structure for matrices that allow us to improve
upon the runtime of [BLSS20] in certain settings.

1.1 Our Results

Here we provide the main results of this paper, including new nearly linear time algorithms for
solving (1) in different settings.

Linear Programming with Two-sided Constraints Our main contributions are efficient
algorithms for solving primal/dual LPs with two-sided constraints (1) via IPMs. In the general
case, where there is no additional structure on A we obtain the following result.

Theorem 1.1 (Primal solution for general LPs). Let A ∈ R
m×n, c, ℓ, u ∈ R

m, and b ∈ R
n.

Assume that there is a point x satisfying A⊤x = b and ℓi ≤ xi ≤ ui for all i ∈ [m]. Let

W
def= max(‖c‖∞, ‖A‖∞, ‖b‖∞, ‖u‖∞, ‖ℓ‖∞, maxi(ui−ℓi)

mini(ui−ℓi)
). For any δ > 0 there is an algorithm

running in time Õ((mn + n2.5) log(W/δ)) that with high probability (w.h.p.) which computes a
vector x(final) satisfying

‖A⊤x(final) − b‖∞ ≤ δ and ℓi ≤ x(final)
i ≤ ui ∀i and c⊤x(final) ≤ min

A⊤x=b
ℓi≤xi≤ui∀i

c⊤x+ δ.

The prior best result runtimes for achieving guarantees comparable to Theorem 1.1 were
Õ(mmax{ω,2+1/18}) [JSWZ20] (ω ≈ 2.37286 [Wil12, Gal14, AW21] is the exponent of current
matrix multiplication) and Õ((nnz(A) + n2)

√
n) [LS15]. Whenever A is tall and dense, i.e.

m ≥ n1.5 and nnz(A) = Ω(mn), this corresponds to a nearly linear time algorithm for solving
(1) to high precision.

Interestingly, even in the special case when ℓi = 0 and ui = ∞ for all i ∈ [n] this improves
upon the previous best runtimes of Õ(mω) and Õ((nnz(A) +

√
n)
√
n) mentioned above, as well

as Õ(mn + n3) [BLSS20]. In particular, we improve upon [BLSS20] by improving the additive
Õ(n3) term to a Õ(n2.5). This improvement stems from IPM sampling techniques of [BLN+20]
(as refined in this paper) and new data structures introduced in this paper.
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ℓ1-Regression and MDPs Theorem 1.1 immediately yields improved runtimes for additional
prominent optimization problems. For instance, when b = ~0 and ℓi = −1 and ui = 1 for all
i ∈ [n], the dual formulation in (1) encodes to ℓ1-regression. Consequently, we obtain the
following result.

Theorem 1.2 (Dual solution for general LPs, ℓ1-regression). Let A ∈ R
m×n, c ∈ R

m, and δ >

0.There is an algorithm running in time Õ((mn+ n2.5) log(W/δ)) for W
def= max(‖c‖∞, ‖A‖∞)

which w.h.p. computes a vector z ∈ R
n such that

‖Az + c‖1 ≤ min
z∈Rn

‖Az + c‖1 + δ.

As with Theorem 1.1 this runtime is nearly linear whenever A is tall and dense, i.e. nnz(A) =
Ω(mn) and m ≥ n1.5. Further, as with Theorem 1.1, in the regime of high accuracy algorithms,
it improves upon the results of [CLS19, LSZ19, Bra20, SY20, JSWZ20, LS15] mentioned above.

Further, leveraging a reduction from [SWWY18], in certain settings this yields to improved
running times for solving MDPs, a fundamental mathematical model for reasoning about uncer-
tainty. An instance of the discounted Markov Decision Process (DMDP) is specified by a tuple
(S,A, P, r, γ) where S is a the state space, A is the action space, P describes state-action-state
transition probabilities, r describes state-action rewards in range [−M,M ], and γ ∈ (0, 1) is a
discount factor. The goal is to compute a policy that maps each state to an action that that
(approximately) maximizes the reward in a certain sense. (See Section 8.4 for more precise
definition of the problem) We obtain the following result.

Theorem 1.3 (Discounted MDP). Given a DMDP (S,A, P, r, γ), there is an algorithm that,
with high probability, computes a ε-optimal policy π in Õ((|S|2|A|+ |S|2.5) log( M

(1−γ)ǫ )) time.

Since the input size of the state-action-state transition is Ω(|S|2|A|), this algorithms runs in
nearly-linear time whenever |A| ≥

√
|S|. Also, this result directly improves upon the previous

algorithm with running time Õ((|S|2.5|A|) log( M
(1−γ)ǫ )) [LS14, SWWY18].

Minimum Cost Flow In the minimum cost flow problem, we are given a connected directed
graph G = (V,E, u, c) with edges capacities u ∈ R

E
≥0 and costs c ∈ R

E . We call x ∈ R
E an

s-t flow for s, t ∈ V if xe ∈ [0, ue] for all e in E and for each vertex v /∈ {s, t} the amount of
flow entering v, i.e.

∑
e=(a,v)∈E xe equals the amount of flow leaving v, i.e.

∑
e=(v,b)∈E xe. The

value of s-t flow is the amount of flow leaving s (or equivalently, entering t). The maximum
flow problem is to compute an s-t flow of maximum value. In the minimum cost maximum flow
problem, the goal is to compute a maximum s-t flow of minimum cost,

∑
e∈E cexe = c⊤x.

Such problems can be expressed in the form of (1) by taking A as the graph incidence matrix,
letting ℓi and ui denote edge capacities, and choosing b appropriately. Unfortunately, directly
applying Theorem 1.1 would yield a large Õ((mn+n2.5) logW ) runtime which does not improve
upon previous results. However, applying the techniques developed in this paper along with
Laplacian system solvers [ST04, KMP10, KMP11, KOSA13, CKM+14, PS14, LPS15, KLP+16,
KS16] and data structure ideas from [BLN+20] specific to graphs we prove the following theorem.

Theorem 1.4 (Min cost flow). There is an algorithm that, given a n-vertex, m-edge, directed
graph G = (V,E, u, c) integral edge capacities u ∈ Z

E
≥0 and costs c ∈ Z

E, with high probability,

computes a minimum cost maximum flow in Õ(m log(‖u‖∞‖c‖∞)+n1.5 log2(‖u‖∞‖c‖∞)) time.

Efficiently solving the minimum cost flow problem to high accuracy gives an algorithm for
maximum flow in the same runtime on weighted graphs, and we give the reduction formally in
Corollary 7.9 in Section 7.3. Using standard capacity scaling methods [AO91], we can improve
the log2 W dependence to logW on the n1.5 term in this case, where W = max(‖u‖∞). The
previous best runtimes for mincost flow were m4/3+o(1) logW in the case of unit capacity graphs
[AMV20] and Õ(m

√
n logO(1) W ) [LS19]. Our algorithm improves on these for dense graphs,

and in particular runs in nearly linear time for m ≥ n1.5.
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Year Authors References
Time

Sparse Dense

1970 Dinitz [Din70] mn

1997 Goldberg, Rao [GR98] m3/2 logW mn2/3 logW
2013 Madry [Mad13, Mad16] m10/7W 1/7

2013 Lee and Sidford [LS14] m
√
n logO(1) W

2020 Liu and Sidford [LS20b] m11/8W 1/4

2020 Liu and Sidford; Kathuria [LS20a, Kat20] m4/3W 1/3

2020 This paper (m + n1.5) logW

Table 1: The summary of the results for the maximum flow problem. W denotes the maximum
capacity. Subpolynomial (no(1)) terms are hidden. For simplicity, we only list exact algorithms
which yielded polynomial improvements.

Year Authors References
Time

Sparse Dense

1972 Edmonds and Karp [EK72] m2 logW
1987 Goldberg and Tarjan [GT90] mn logW
2008 Daitch and Spielman [DS08] m3/2 log2 W

2013 Lee and Sidford [LS14] m
√
n logO(1) W

2017 * Cohen, Madry, Sankowski,
Vladu

[CMSV17] m10/7 logW

2020 * Axiotis, Madry, Vladu [AMV20] m4/3 logW
2020 This paper m logW + n1.5 log2 W

Table 2: The summary of the results for the minimum-cost flow problem. Subpolynomial
(no(1)) terms are hidden. W denotes the maximum absolute value of capacities and costs.
For simplicity, we only list exact algorithms which yielded polynomial improvements. Results
marked with an asterisk work only on unit-capacity graph.

1.2 Related Work

The problems we consider in this paper, e.g. linear programming, dynamic data structures,
minimum cost flow, ℓ1-regression, MDPs, are all incredibly well-studied. Each has an extensive
history and numerous results. Here, we provide just a brief summary of the results and tools
most directly related to this paper.

Linear Programming IPMs: There has been significant work towards the design of IPMs
for linear programming, starting from [Kar84, Ren88]. More recently, there have been IPM-
based runtime improvements to linear programming by decreasing the number of iterations
[LS14], proving that maintaining approximate primal/dual solutions suffice [CLS19, LSZ19,
Bra20, BLSS20, SY20, JSWZ20, BLN+20], and using data structures to decrease iteration
costs [LS15, CLS19, LSZ19, Bra20, SY20, JSWZ20, BLN+20]. There is a related line of work
on strongly polynomial linear programming [VY96, MT03, MT05, DHNV20, DNV20], where
the goal is to achieve exact solutions with improved parameter dependencies, instead of high
accuracy solutions as we do here. In [LSZ20] it was shown how to implement IPMs in the
semi-streaming model.

ℓ1-Regression: There have been several algorithms for ℓ1-regression in both the low accu-
racy (poly(ε−1) dependence) [Cla05, Nes09, CMMP13, YCRM16, DLS18] and high accuracy
(log(1/ε) dependence) [MM13, LS15, CLS19] regimes. The state of the art results in the
high-accuracy regime are [LS15] which achieves a Õ((nnz(A) + n2)

√
n log(1/ε)) runtime, and

[JSWZ20] which achieves a Õ(nmax{ω,2+1/18}) runtime, improving on Õ(nmax{ω,2+1/6}) [CLS19].
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Minimum Cost Flow: There has been significant work towards combinatorial algorithms for
the minimum cost flow problem [EK72, Tar85, Orl84, GT88, GT90, Orl93] in both the strongly
polynomial and weakly polynomial regimes. Daitch and Spielman [DS08] showed that one can
use a Laplacian system solver to implement steps of an IPM to achieve a more efficient mincost
flow algorithm with logarithmic capacity dependence. Since then, runtime improvements have
been achieved by reducing the number of iterations of a general IPM to Õ(

√
n) [LS14] and to

O(m1/3+o(1)) [AMV20] for graphs with unit-capacity, improving on Õ(m10/7 logW ) [CMSV17].

Markov Decision Process (MDP): We focus on solving discounted MDPs.2 Previous
works in the high precision regime (i.e. logarithmic dependency on error) includes [Tse90,
LDK95, SWWY18] with the best running time of Õ((|S|2|A|+ |S||A|

(1−γ)3 ) log(Mǫ )). Strongly poly-
nomial time exact algorithms are also known [Ye05, Ye11, Sch16].

For algorithms that depend logarithmically on one minus the discount factor γ, the algorithm
by [LS14] implies a Õ((|S|2.5|A|) log( M

(1−γ)ǫ )) running time (shown in [SWWY18]). Our result
in Theorem 1.3 directly improves this algorithm.

There is another line of work focusing on fast algorithms in the low precision regime with
polynomial dependency on the error parameter [KS98, AMK13, Wan17, SWWY18, SWW+18,
Wai19, Wan20, AKY20, LWC+20]. This setting is not directly comparable to our result.

Dynamic Data Structures: IPMs reduce the task of solving linear programs to the task of
solving linear systems. Instead of solving these linear systems from scratch in each iteration,
these iterative algorithms can be sped up by using data structures that efficiently maintain
the matrix inverse corresponding to the linear system [Kar84, Vai89, NN91, LS15, CLS19,
LSZ19, SY20, JSWZ20, BLSS20]. There also exist data structures to efficiently maintain the
solution of the linear system instead of (or in addition to) the corresponding matrix [San04,
BNS19, Bra20, JSWZ20, Bra21]. Recently there have also been data structures developed
that are able to efficiently maintain an approximation of the primal/dual solution [LSZ19,
BLSS20, BLN+20, JSWZ20]. For graph applications these algorithms are based on the dynamic
expander decomposition technique [NSW17, SW19, BBN+20, GRST21]. For general LPs, the
data structure for maintaining approximate primal/dual solutions are based on heavy hitters
and sketching [JL84, KNPW11, Pag13, NN13, KN14, LNNT16, PSW17, CJN18, NS19, NSW19].

1.3 Organization

We give the preliminaries in Section 2. Our overview is in Section 3, split into overview of the
IPM in Section 3.1 and overview of the data structures in Section 3.2. We present our IPM in
Section 4, and show our regularized Lewis weight maintenance data structure in Section 5. We
show how to use data structures in implement our IPM in Section 6. We analyze the runtime
of our IPM in the graphical setting and show applications and mincost flow and maxflow in
Section 7. Finally, we analyze the runtime of our IPM for general linear programs and show
applications to Markov Decision Processes in Section 8.

Several additional pieces are deferred to the appendix. In Appendix A we give omitted
proofs from Section 4. The remaining sections of the appendix give data structures based on
previous methods of [BLN+20]. In Section B we give our HeavyHitter and sampling data
structures, and in Section C we give our leverage score maintenance data structure. We show
how to maintain the primal variable and gradient of the centrality potential in Section D, and
show how to maintain the dual slack variable in Section E. Finally we state the graph specific
data structures based on expander decompositions in Section F.

2Other variants of this problems includes deterministic MDPs (equivlent to the min-mean cycle problem)
[DG98, CTCG+98, Mad02, BLN+20] and average-reward MDPs [Mah96, AO06, JOA10].
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2 Preliminaries

We follow similar notation as in [BLN+20]. We let [n] def= {1, 2, ..., n} and ~ei denote the i-th
standard unit vector. We use Õ(·) notation to hide (log logW )O(1), log ǫ−1, and (log n)O(1)

factors, where W typically denotes the largest absolute value used for specifying any value in
the problem (e.g. demands and edge weights) and n denotes the number of nodes. When we
write with high probability (or w.h.p), we mean with probability 1− nc for any constant c > 0.
We write 1condition for the indicator variable, which is 1 if the condition is true and 0 otherwise.

Diagonal Matrices Given a vector v ∈ R
d for some d, we write Diag(v) for the d×d diagonal

matrix with Diag(v)i,i = vi. For a vector v we also write V for the diagonal matrix Diag(v)
when clear from context.

Matrix and Vector operations Given vectors u, v ∈ R
d for some d, we perform arithmetic

operations ·,+,−, /,√· element-wise. For example (u · v)i = ui · vi or (
√
v)i =

√
vi. For the

inner product we write 〈u, v〉 and u⊤v instead. For a vector v ∈ R
d and a scalar α ∈ R we let

(αv)i = αvi and (v + α)i = vi + α.
For symmetric matrices A,B ∈ R

n×n we write A � B to indicate that x⊤Ax ≤ x⊤Bx for
all x ∈ R

n and define ≻, ≺, and � analogously. We call any matrix (not necessarily symmetric)
non-degenerate if its rows are all non-zero and it has full column rank.

We use u ≈ǫ v to denote that exp(−ǫ)v ≤ u ≤ exp(ǫ)v entrywise and A ≈ǫ B to denote
that exp(−ǫ)B � A � exp(ǫ)B. Note that this notation implies u ≈ǫ v ≈δ w ⇒ u ≈ǫ+δ w, and
u ≈ǫ v ⇒ uα ≈ǫ·|α| v

α for any α ∈ R.
For any matrix A with real entries, let nnz(A) denote the number of non-zero entries in A

and nnz(ai) be the number of non-zero entries in the i-th row of A.
Note that we can express the approximation error of Lemma 7.1 as some spectral approxi-

mation, i.e. there exists some H ≈20ǫ A⊤WA such that Hx = b [BLSS20, Section 8].

Leverage Scores and Lewis-Weights For any non-degenerate matrix A ∈ R
m×n we let

σ(A) ∈ R
m with σ(A)i

def= (A(A⊤A)−1A⊤)i,i denote A’s leverage scores. For p ∈ (0,∞) and
non-degenerate matrix A ∈ R

m×n we define the ℓp Lewis weight as the solution w ∈ R
m
>0 to

the equation w = σ(W
1
2

− 1
p A), where W = diag(w). We use a regularized Lewis weight in our

algorithms, and this is defined in Definition 4.5.

Norms We write ‖ · ‖p for the ℓp-norm, i.e. ‖v‖p := (
∑
i |vi|p)1/p, ‖v‖∞ = maxi |vi| and ‖v‖0

being the number of non-zero entries of v. For a positive definite matrix M we define ‖v‖M =√
v⊤Mv. For a vector τ we define ‖v‖τ := (

∑
i τiv

2
i )

1/2 and ‖v‖τ+∞ := ‖v‖∞ +C log(4m/n)‖v‖τ
for a large constant C, where m ≥ n are the dimensions of the constraint matrix of the linear
program (we define ‖v‖τ+∞ again in Definition 4.9).

3 Overview of Approach

In this section, we give an overview of the major aspects of our algorithm, including the path
following IPMs (Section 3.1), the data structures necessary for its implementation (Section 3.2),
and how to combine them for our applications (Section 3.3).

3.1 IPM

As context and motivation for our method, we start by discussing the IPM of [LS19]. For
matrices A ∈ R

m×n, vectors b ∈ R
n, c ∈ R

m, and lower and upper bounds ℓ, u ∈ R
m, this IPM

solves linear programs of the form
min

A⊤x=b
ℓi≤xi≤ui∀i∈[m]

c⊤x
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to high accuracy. The runtime of this method is dominated by the runtime needed for solving
Õ(
√
n) linear systems of the form A⊤DA for non-negative diagonal matrices D. To achieve

this result, for all i ∈ [n] [LS19] considers 1-self-concordant barriers φi : (ℓi, ui) → R for the
intervals for i, e.g. φi(x) = − log(ui − x)− log(x− ℓi) (Lemma 4.2), and for a path parameter
µ, considers the central path of points

xµ
def= argminA⊤x=b c

⊤x+ µ
m∑

i=1

wiφi(xi), (2)

for a well-chosen weight function w ∈ R
m. For standard IPMs such as that of Renegar [Ren88],

wi = 1 for all i, and in [LS19] and our algorithm w is a function of x (though it is often
convenient to think of w as fixed during a step). Optimality conditions tell us that for fixed
w, (2) holds if A⊤xµ = b and c + Ay + µW∇Φ(x) = 0 for some vector y ∈ R

n, where
W = diag(w) is the diagonal matrix of the weights w. This optimality condition can be
re-written as s+ µW∇Φ(x) = 0 where s = c+ Ay denotes the dual slack variables.

In both [LS19] and this work we allow w to depend on x and define a weight function
w(x) : Rm → R

m
>0. We say that a triple (x, s, µ) is central for weight function w(x) if

A⊤x = b , s = Ay + c , and s+ µW(x)∇Φ(x) = 0. (3)

A choice of W(x) made in [LS19], and which we used a regularized version of in this paper
(Definitions 4.5, 4.6), is a ℓp Lewis weight for p = 1− 1

4 log(4m/n) . The ℓp Lewis weight function
w(x) is defined as the solution to

w(x) = σ(W(x)
1
2

− 1
p (∇2Φ(x))− 1

2 A), (4)

where σ(·) denotes the leverage scores of a matrix. Using this weight function, [LS19] is able to
argue that Õ(

√
n) steps of an IPM suffice to solve the linear program, as opposed to Õ(

√
m)

from Renegar’s method. Carefully implementing methods based on variants of the ℓp-Lewis
weight function solves the maximum flow problem in time Õ(m

√
n) and general LPs in time

Õ(
√
n(nnz(A) + nω)), accounting for the runtime needed to solve linear systems.

To obtain further runtime improvements, there has been significant work towards performing
less work per iteration by speeding up the linear system solve times via inverse maintenance
[LS15], as well as more recent work showing that such methods can in fact be implemented
even with only approximate values for the primal and dual variables x, s [CLS19, LSZ19, Bra20,
BLSS20, SY20, JSWZ20, BLN+20]. To illustrate these robust IPMs, consider the simple case
where ℓi = 0 and ui =∞ for all i, i.e. the condition on x in the linear program is simply x ≥ 0,
and φi(xi) = − log xi. In this case the centrality condition, (3), reduces to xs = w(x)µ and this
motivates the following centrality potential

Ψ(x, s, µ) def=
m∑

i=1

cosh
(
λ

(
xisi

w(x)iµ
− 1

))
(5)

for λ = Θ(logm/ε). Maintaining Ψ(x, s, µ) ≤ poly(m) at all times ensures that xs ≈ε w(x)µ.
Consequently, these robust IPMs take projected Newton steps that induce gradient descent steps
on the potential Ψ to guarantee that it stays small in expectation throughout the algorithm.

The analysis in [BLSS20, BLN+20] critically relied on the fact that only one-sided con-
straints, x ≥ 0, were imposed, instead of a two-sided constraint, ℓ ≤ x ≤ u. These works
leveraged that the centrality condition xs = w(x)µ for ℓp Lewis weights can be written in terms
of leverage scores of a slightly different diagonal weighting. Specifically, if xs = w(x)µ, where
w(x) is the ℓp Lewis weight, then for α = 1 − p we have that xs = σ(S−1/2−αX1/2−αA). The
reliance on this fact impairs extending it to the setting of two-sided constraints.
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We bypass this issue by working directly with ℓp Lewis weights and the centrality condi-
tion (3) for general 1-self-concordant functions φ. Interestingly, our analysis requires a fourth
derivative condition in Definition 4.1, beyond the standard third derivative condition of self-
concordance. Formally, we consider the centrality potential (Definition 4.8)

Ψ(x, s, µ) def=
m∑

i=1

cosh


λ


si + µτ(x)iφ′

i(xi)

µτ(x)i
√
φ′′
i (xi)




 , (6)

where intuitively, the denominator arises from normalizing by the Hessian of the current point x.
To analyze the progress of the Newton steps towards decreasing the potential, analysis is required
to understand and bound derivatives of the ℓp Lewis weights. Additionally, there are several
other technical challenges, including working with a regularized version of the ℓp Lewis weight
to ensure that the Lewis weights are all ≥ n/m, carefully maintaining approximate feasibility
of the primal variable x, and using spectral sparsifiers of A⊤DA instead of the true matrix for
efficient inverse maintenance. This loss of feasibility requires us to use a sampling procedure on
the primal variable, and we build a general theory for valid sampling distributions that allow
our algorithm to work (Definition 4.13). At a high level, we show that any sampling scheme that
satisfies various properties, such as bounded variance, maximum, and mean preservation suffices
to implement our IPM. The goal of showing that these generalized sampling schemes work is to
handle both sampling each coordinate independently and sampling coordinates proportional to
weights, so that we can handle the graphical case (as in [BLN+20]) and linear programs.

Overall, we show that we can takes steps of size Ω(n−1/2) while maintaining that the expected
potential is polynomially bounded, and that all points x we maintain are approximately feasible.
In this way, we can implement an IPM for two-sided linear programs that requires Õ(

√
n) steps

that only approximately maintains the primal variable x and dual slack s.

3.2 Data Structures

As outlined in Section 3.1, in contrast to [BLSS20, BLN+20], our IPM maintains approximate
regularized ℓp Lewis weights for p ∈ [1/2, 2). To efficiently implement the IPM we do not want
to recompute the Lewis weights from scratch in every iteration. Instead we seek a data structure
that maintains approximate Lewis weights. Here we describe how such a data structure can be
obtained by reducing to the HeavyHitter data structure problem defined below:

Definition 3.1 (Heavy hitter). For c ∈ R
m and P,Q ∈ R>0 with nP ≥ ‖c‖1 ≥ P , we call a

data structure with the following procedures a (P, c,Q)-HeavyHitter data structure:

• Initialize(A ∈ R
m×n, g ∈ R

m
>0) Let A be a matrix with ci ≥ nnz(ai)), ∀i ∈ [m] and

P ≥ nnz(A). The data structure initializes in O(P ) time.

• Scale(i ∈ [m], b ∈ R): Sets gi ← b in O(ci) time.

• QueryHeavy(h ∈ R
n, ǫ ∈ (0, 1)): Returns I ⊂ [m] containing exactly those i with

|(GAh)i| ≥ ǫ in O(ǫ−2‖GAh‖2c +Q) time.

A contribution of our work is to show that, if we have such a data structure for a matrix A,
then we are able to efficiently maintain the Lewis weights of VA for a diagonal matrix V that
changes over time (i.e. V = (∇2Φ(x))−1/2 when used inside our IPM, see (4)).

Constructing HeavyHitter-data structures was key to advances in [BLN+20, BLSS20].
For the special case where A is an edge-vertex incidence matrix, [BLN+20] constructed a
HeavyHitter-data structure with complexities P = Õ(m), ci = Õ(1) for all i ∈ [m], and
Q = Õ(n logW ), where W is a bound on the ratio of the largest to smallest non-zero entry in
G. This data structure will be useful for our min-cost flow application. In [BLSS20] a Heavy-
Hitter-data structure was given for general m×n matrices, where P = Õ(nnz(A)), ci = Õ(n)
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for all i ∈ [m], and Q = Õ(n). This data structure can be used for general linear programs. Our
algorithm for solving general LPs use this data structure from [BLSS20] and the algorithms for
graph problems such as min-cost flow use the data structure from [BLN+20].

We now outline how to reduce the task of maintaining the Lewis weights τ(GA) under
updates to G, to the HeavyHitter problem. This reduction is done via the intermediate data
structure problem of maintaining the leverage scores σ(GA) under updates to G. We show
that Lewis weight maintenance can be reduced to leverage score maintenance and show that
leverage score maintenance can be reduced to the HeavyHitter problem.

3.2.1 Regularized Lewis Weights

We are interested in the regularized ℓp-Lewis weight of a matrix M which is defined as the value
τ(M) that satisfies the recursive equation τ = σ(T1/2−1/pM)+z for a given vector z ∈ R

m
>0, and

T = diag(τ). We want a data structure that maintains an approximation τ ≈ǫ τ(VA) for any
p ∈ [1/2, 2) and ǫ > 0 under updates to V. Note that for the IPM we use p = 1−1/(4 log(4m/n));
consequently, p ∈ [1/2, 2) but intuitively, may be thought of as an approximate ℓ1-Lewis weight.

To outline our data structure, we first want to outline the algorithm of Cohen and Peng
[CP15] that can be adapted to compute an approximation the regularized ℓp-Lewis weight τ(M)
in the static setting (i.e. when the input matrix does not change over time). Given some matrix
M we initialize with w = ~1m and repeatedly set

w ← (w2/p−1(σ(W1/2−1/pM) + z))p/2. (7)

One can prove (see Lemma 5.3) that each iteration reduces the approximation error by a
1 − p/2 factor, i.e. if we had w ≈γ σ(W1/2−1/pM) + z before (7), then we have w ≈γ(1−p/2)

σ(W1/2−1/pM) + z after (7). Since ~1m ≈O(log(m)) σ(M) + z (by n/m ≤ z ≤ poly(m)), after
Θ(log((logm)/ε)) iterations of (7) we have w ≈ǫ τ(M).

We provide an efficient extension of this analysis to the dynamic setting. One natural idea
for doing this would be to initialize K = Ω(log((logm)/ε)) data structures D1, . . . ,DK that
maintain the following approximate leverage scores: Let w(1) = ~1m and define recursively

σ(i) ≈ σ((W(i))1/2−1/pVA) + z (8)

w(i+1) ← ((w(i))2/p−1σ(i))p/2 (9)

where σ(i) is maintained a the leverage score data structure Di discussed in Section 3.2.2
If the leverage score data structures are accurate enough (i.e. the approximation in (8) is

good enough), then w(K) for K = Ω(log((logm)/ε)) would be a good approximation of the
Lewis weight. Further, this w(K) can be maintained under updates to V: When V changes, we
update all the leverage score data structures D1, . . . ,DK . Likewise, if some σ(i) changes, then we
update w(i+1) and the data structure Di+1 that maintains σ(i+1) ≈ σ((W(i+1))1/2−1/pVA) + z.

Problems with this approach While one can show that the previously outlined approach
would indeed allow us to maintain approximate regularized Lewis weights (assuming the approx-
imate leverage scores σ(i) are accurate enough), we are not able to analyze the time complexity
of this process. This is because an update to some Di (i.e. when w(i−1) changes) causes the
output σ(i) to change as well, thus changing the input to Di+1. This means an update to Di

might propagate through all other Di′ for i′ > i. The computational cost of this propagation
of the updates is difficult to analyze because updating the j-th entry of the input of some
data structure Di requires time proportional to σ

(i)
j . Now, only for large i do we know that

w(i) ≈ σ(i) and can show that, w(i) is an approximation to the regularized Lewis weights. When
this happens, we have bounds on how w(i) changes from guarantees of the IPM and this implies
a small time complexity for Di. However, for small i, w(i) 6≈ σ(i) and the same bounds and
complexity analysis does not immediately apply.
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One attempt to fix this issue would be to start from a moderately good approximation, i.e.

w(1) ≈γ σ((W(1))1/2−1/pVA) + z (10)

for 0 < γ = O(ǫ). Then after only K = O(1) recursions we have that w(K) is an ǫ-approximation
of the regularized Lewis weights. Since here we only have O(1) data structures Di and each
σ(i) is at least an O(ǫ)-approximation of the regularized Lewis weight, we are able to bound the
time for propagating the updates through all Di.

The assumption (10) on w(1) can be satisfied as follows. Assume the input V changes to
some V′. We know by guarantees of the IPM that V ≈O(ǫ) V′. Let w(K) be the value w(K) we
previously returned as ǫ-approximation of the regularized Lewis weight, then we have

w(K) ≈ǫ σ((W(K))1/2−1/pVA) + z ≈O(ǫ) σ((W(K))1/2−1/pV′A) + z.

Thus we can define w(1) := w(K) as the required moderately good approximation.
The problem with this approach is that the vector w(K) might change in many entries when

switching from V to V′. Thus we might have to perform many updates to the data structure
D1 at the start of each iteration, resulting in a larger than desired complexity.

The final algorithm Our regularized Lewis weight data structure combines these ideas with
one more trick to bound the number of updates to D1; we delay the updates a bit. We know
that we have w(K) ≈ǫ τ where τ is the exact regularized Lewis-weight. We additionally maintain
some w(K) where we set w(K)

j ← w
(K)
j whenever the entry w

(K)
j changes and w

(K)
j 6≈3ǫ w

(K)
j .

This way we know w
(K)
j only changes, whenever τj must have changed by at least an exp(ǫ)

factor. By guarantees of the IPM (Lemma 4.35) we can bound how often entries of τ change
by an exp(ǫ) factor, which then in turn bounds how often entries of w(K) are changed. As we
set w(1) := w(K) whenever the input V changes, we can now bound the number of updates to
D1. Note that here we still satisfy the requirement (10) because w(K) ≈3ǫ w

(K), so we can still
bound the time spent on propagating the updates to D1 through all other Di. This way we
maintain a good approximation of the Lewis-weight with a low overall complexity bound.

3.2.2 Leverage Scores

In Section 3.2.1 we outlined how to maintain approximate Lewis-weights, if we have access to a
data structure that can maintain approximate leverage scores. Here we outline how to efficiently
maintain an approximation σ ≈ǫ σ(GA) + z for G = Diag(g), g ∈ R

m
>0, z ∈ R

m
>0. Here the

vector g is allowed to change over time, while matrix A and vector z are fixed, and our task is
to create a data structure to maintain σ. We obtain such a data structure by reducing to the
HeavyHitter problem (Definition 3.1) for the same matrix A. Since variants of this have been
considered in prior work, we first compare their results and explain why these data structures
are not sufficient for our reduction to maintain regularized Lewis weights. We then describe
how we obtain our data structure for leverage scores, but we do not yet optimize the complexity
to highlight the general idea. At last, we outline how to speed-up the resulting data structure.

Comparison to previous work The general idea of our leverage score data structure is
the same as in [BLSS20] and [BLN+20], the main difference here is how we improve the com-
plexity. Specifically, the leverage score data structures from [BLSS20] and [BLN+20] were able
to maintain an ǫ-approximation of the leverage scores σ ≈ǫ σ(GA), if the input G was an
O(ǫ/ log n)-approximation of some other G̃ that satisfied some stability properties, i.e. the di-

agonal matrix G̃ must change very slowly over time. For previous IPMs G = X
1/2

S
−1/2

, where
x ≈O(ǫ/ logn) x, s ≈O(ǫ/ logn) s, so G was an O(ǫ/ log n)-approximation of G̃ := X1/2S−1/2 where
both x, s are stable (i.e. they change slowly over the runtime of the algorithm) by guarantees
of the IPM. Thus data structures in [BLSS20] and [BLN+20] were able to maintain leverage
scores efficiently.
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Unfortunately, these data structures are not usable for our Lewis-weight reduction. This
is because in order for the recursion in (8) and (9) to yield an ǫ-approximation of the Lewis-
weight, the leverage scores σ(i) must be at least an ǫ-approximation as well. However, for the
old leverage score data structure to return an ǫ-approximation, the input must be O(ǫ/ log n)-
close to some other stable sequence. We use as input G = (W(i))1/2−1/pV (see (9)), which
does not satisfy the required property. This is because, while the exact Lewis-weight τ would
satisfy the required stability properties by guarantees of the IPM, the input vector w(i) is at
best an ǫ-approximation of the exact Lewis-weight τ . In summary, the complexity bounds of
the previous leverage score data structures do not apply when we use them for our Lewis-weight
reduction due to the additional precision we require. So while the idea of our leverage score
data structure is the same as in [BLSS20] and [BLN+20], we must analyze and optimize the
complexity in a different way.

High-level Idea for maintaining Leverage Scores Note that the output size (i.e. dimen-
sion of σ) is m and we want to maintain the leverage scores in o(m) time, so we can not afford
to recompute all entries of σ in each iteration. Instead, the high-level idea is that in each iter-
ation we (i) detect a set I ⊂ [m] of indices i where σi 6≈ǫ σ(VA)i + zi, and (ii) compute a new
approximation of σ(VA)i + zi for all i ∈ I and update σi accordingly. Thus we split the outline
of the data structure into these two parts:

Computing Few Leverage Scores: We start by outlining task (ii) as that one is easier. Com-
puting few leverage scores is standard (see e.g. Spielman-Srivastava [SS11]) and we explain it
briefly as we build on it. For a matrix X let P(X) def= X(X⊤X)−1X⊤ denote an orthogonal
projection matrix. By P(VA) = P(VA)P(VA) we have that P(VA)i,i = ‖~e⊤

i P(VA)‖22, so we
can reformulate maintaining approximate leverage scores as maintaining an approximation of
these norms for i = 1, . . . ,m. Given some set I ⊂ [m] we can compute this norm for i ∈ I by
using a JL-matrix3 J and computing the matrix M := (A⊤V2A)−1AVJ⊤. Next, we obtain an
approximation of the i-th leverage score by computing

‖~e⊤
i VAM‖22 ≈ ‖~e⊤

i VA(A⊤V2A)−1A⊤V‖22 = ‖~e⊤
i P(VA)‖22. (11)

Here the complexity will be dominated by computing M and computing (11) for all i ∈ I. Given
that J needs only some Õ(1) rows to yield a good approximation of the norm, we only need to
solve very few linear systems in A⊤V2A to compute M and M has very few columns, so the
norm (11) can be computed quickly.

Detecting Leverage Score Changes: We now outline how to solve task (i), i.e. how to detect
when σi 6≈ σi(VA) + zi. For that assume that V′ changes to V and we already had σi ≈
σ(V′A)i + zi from the previous iteration. Then we must detect indices i where σ(V′A)i + zi 6≈
σi(VA) + zi, because for those i the previous σi can no longer be a good approximation. As
the vector z is fixed, it suffices to find indices i with |σ(V′A)i − σ(VA)i| > ǫzi for some small
enough ǫ > 0. Using the interpretation of the leverage scores being the norm of the rows of P,
we can find such indices i by searching for indices where

‖~e⊤
i

(
P(V′A)−P(VA)

) ‖2 ≥ ‖~e⊤
i P(V′A)‖2 − ‖~e⊤

i P(VA)‖2 > ǫ
√
zi

If we simply return all i where vi 6= v′
i, then the only remaining i we must detect are those with

‖~e⊤
i VZ−1/2A

(
(A⊤V2A)−1A⊤V− (A⊤V′2A)−1A⊤V′

)
J⊤

︸ ︷︷ ︸
=:M′

‖2 > ǫ

where J is again a JL-matrix and Z = Diag(z). Note that because J⊤ has few columns, it
suffices to look for large entries of the matrix vector products VZ−1/2AM′~ek for k = 1, ..., Õ(1),
which in turn can be solved by the HeavyHitter data structure.

3A JL-matrix J satisfies ‖Jv‖2 ≈ ‖v‖2 for any fixed vector v. For example a random Gaussian matrix with
O(ǫ−2 log n) rows yields w.h.p a (1 ± ǫ)-approximation of the norm.
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So far we only discussed how to detect indices i where the leverage score changed a lot
within a single iteration. However, it could also happen that a leverage score changes only a
little in each iteration such that after many iteration we have σi 6≈ σ(VA)i + zi. To detect
these slowly changing indices, we follow the approach appeared in [BLSS20, BLN+20]. That
is, we perform the same trick used for a single iteration, but instead for each j = 0, ..., log

√
n,

we check whether the leverage score has changed significantly in the past 2j iterations, i.e., the
matrix V′ now refers to the state of V some 2j iterations in the past.

Improving the complexity For the data structure we outlined so far, the main bottleneck
is solving linear systems in A⊤V2A and computing the product A⊤VJ⊤. Both of these require
nnz(A) = Ω(m) time, which is too slow for our purposes.4 To speed this up, we use leverage
score sampling [SS11] to construct a random sparse diagonal matrix R with Õ(n) nonzero
entries and A⊤V2RA ≈ A⊤VA. Careful analysis shows that the algorithm outlined above still
works, when solving systems in A⊤V2RA and when using A⊤VR1/2J⊤ instead of A⊤VJ⊤.
Because of the sparsity of R, the nnz(A) cost decreases to Õ(n ·maxi nnz(ai)).

However, this speed-up yields a new problem. If we use two different random matrix R and
R′ with A⊤V2RA ≈ A⊤VA and A⊤V′2R′A ≈ A⊤V′A, then the runtime of the HeavyHit-
ter data structure can become very large. This is because the HeavyHitter data structures
must find large entries of VZ−1/2AM′~ek and by Definition 3.1 the complexity of that task scales
in ‖VZ−1/2AM′~ek‖22, so the total cost for all k scales in ‖VZ−1/2AM′‖2F . Without random
sampling, this Frobenius-norm can be bounded by stability properties of the IPM. However,
the Frobenius norm is very sensitive to spectral changes which causes the norm to blow-up
when using two different R and R′ (i.e. two different spectral approximations) for A⊤VA and
A⊤V′A. Thus we wish to use a single random R that yields a valid approximation for both.

To see how to construct such R, consider classic leverage score sampling first. If one sets
Ri,i = 1/pi independently for each i ∈ [m] with probability pi (where pi ≥ min(1, σ(VA)i log n/ε2))
and Ri,i = 0 otherwise, then A⊤V2RA ≈ A⊤V2A. To make sure that R also has the prop-
erty A⊤V′2RA, we use pi = 1 for all i where σ(VA)i 6≈1 σ(V′A)i and pi = 2σi otherwise.
The indices i for which we have to set pi = 1 are simply those where we recently had to
change σi. Further, we need pi = 1 for all i with vi 6= v′

i. This is because we can then bound
A⊤V2RA − A⊤V′2RA = A⊤R(V2 − V′2)A more easily. If we did not choose pi = 1, and
Ri,i happens to be non-zero because of the sampling, then Ri,i(V2 −V′2) would blow-up the
difference (vi − v′

i) by an 1/pi factor. So by choosing pi = 1 for all i with vi 6= v′
i, we are able

to prove better complexity bounds.
For comparison, in [BLSS20] the leverage score data structure did not use a single R and

instead they used two different R and R′. They fixed the issue of the Frobenius-norm being
large by carefully updating R to R′ and performing an amortized analysis on the sum of
Frobenius-norms over several iterations. However, this analysis required the random R to be
updated over several iterations, which meant the same randomness had to be re-used in all
those iterations, thus resulting in difficulties with handling adaptive adversaries. We instead
use only one random R per iteration and this random R is resampled in every iteration, thus
no randomness is re-used and adaptive adversaries are not an issue.

3.2.3 Further Data Structures

We now outline all the other data structures used by our algorithms. Some of these data
structures were developed in [BLN+20, BLSS20] though we perform small modifications to
them in Appendix D and Appendix E. Here we give a brief description of these data structures
and how they are used to efficiently implement our IPM. A more detailed overview for how to
implement our IPM can be found in Section 6.1 where we provide the exact statements of the
involved data structures.

4This is true, even if we assume access to some preconditioner of A
⊤

VJ
⊤.
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As mentioned in Section 3.1, our IPM only requires access to approximations x, s of the
iterates x, s. The updates to these vectors are roughly of the following form

s(new) ← s+ AH−1A⊤Φ′′(x)−1/2g (12)

for some gradient-vector g, matrix H ≈ A⊤T
−1Φ′′(x)−1A for diagonal matrix T = Diag(τ)

with the approximate Lewis weight τ on the diagonal. Note that naive computation of (12)
would require O(nnz(A) +nω) time per iteration. This can be sped up via data structures that
efficiently maintain partial solutions of this expression. The task of computing (12) can be split
into three subtasks: (i) Compute A⊤Φ′′(x)−1/2g, solved by a data structure from [BLN+20]
which we modify in Appendix D. (ii) Multiply the result by H−1, solved either via Laplacian
solver (e.g. when considering min-cost flow) or a data structure from [BLSS20] (restated in
Appendix B). We can essentially use the previous data structure, except we sample H (the
spectral sparsifier) by the ℓp Lewis weights that we are already maintaining instead of by
leverage score. (iii) Let v(i) be the vector H−1A⊤Φ′′(x)−1/2g we computed with the previous
data structures during iteration number i of the IPM. Then after the t-th iteration of the IPM
the vector s is given by s(init) +

∑t
i=1 Av(i) according to (12). Maintaining an approximation

of such matrix vector products is done via a data structure from [BLN+20] which we modify
in Appendix E. At last, Section 3.1 mentioned that the update to the primal solution must
be sampled. For graph applications such as max-flow we use a data structure from [BLN+20]
(restated in Appendix F) to perform this sampling efficiently. For general linear programs we
construct a new data structure in Appendix B.

3.3 Putting Everything Together

Given our new IPM for two-sided constraints (Section 3.1) and data structures for implementing
this IPM (Section 3.2), we apply them to obtain our results in a standard way.

First of all, our IPM needs to start with a centered initial point (i.e. an initial point with
small centrality potential (6)). Given an LP instance, we modify the instance by adding an
identity block to the constraints and corresponding variables so that a centered initial point can
be obtained analytically. This allows us to apply the IPM which moves the initial point to a
near optimal point of the modified instance in Õ((mn+n2.5) logW ) time (using data structures
from previous sections). The modified instance also guarantees that, at near-optimal points, the
added variables must have value very close to zero. This allows us to round the near optimal
point of the modified instance to a near optimal point of the original instance by a single linear
system solve which takes Õ((nnz(A) + nω) logW ). This gives an algorithm for solving an LP
with two-sided constraints in Theorem 1.1.

As our IPM maintains not only a primal solution but also a dual slack, by solving a linear
system involving the dual slack at the near-optimal point, this gives a dual solution and solves
the ℓ1-regression problem as stated in Theorem 1.2. Given an ℓ1-regression algorithm, we
immediately obtain an algorithm for discounted MDPs using a known reduction by [SWWY18]
and obtain Theorem 1.3.

For a given min-cost flow instance, we modify the instance with the same purpose as above
by adding a star. Using graph-based data structures, the path following IPM moves the initial
point to a near optimal point of the modified instance in faster Õ(m logW + n1.5 log2 W ) time.
Analogously, by solving a Laplacian system in Õ(m logW ) time, we get a near-optimal flow
of the original instance. Moreover, since the LP for min-cost flow is integral and the optimal
solution can be assumed to be unique (using the isolation lemma as in [DS08, BLN+20]), we
can round the flow on each edge to its nearest integer and obtain an exactly optimal flow. This
takes time Õ(m logW +n1.5 log2W ) as promised in Theorem 1.4. For the easier maximum flow
problem, we can shave a logW factor on n1.5 using a standard scaling technique by [AO91] and
obtain Corollary 7.9.
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4 IPM

Throughout this section we let A ∈ R
m×n denote a non-degenerate matrix, let b ∈ R

n, c ∈ R
m

and consider the following problem

min
x∈R

m:A⊤x=b
ℓi≤xi≤ui∀i∈[m]

c⊤x.

In this paper, we will need for the barrier functions φi : (ℓi, ui)→ R be highly 1-self-concordant
barrier functions on Si, as opposed to only 1-self-concordant. This is due to needing the fourth
derivative in Lemma 4.31 later.

Definition 4.1 (Highly 1-self-concordance). For an interval (ℓ, u) we say that a function f :
(ℓ, u) → R is a highly 1-self-concordant barrier on (ℓ, u) if for all x ∈ (ℓ, u) we have |f ′(x)| ≤
f ′′(x)1/2, |f ′′′(x)| ≤ 2f ′′(x)3/2, |f ′′′′(x)| ≤ 6f ′′(x)2, and limx→a f(x) = limx→b f(x) = +∞.

Lemma 4.2. For all ℓ ≤ u the function φ(x) = − log(x − ℓ) − log(u − x) is highly 1-self-
concordant on the interval (ℓ, u).

We show this in Section A.1. For the remainder of the section, we fix φi(xi) = − log(xi −
ℓi) − log(ui − xi). This function satisfies a simple bound which is useful for getting the initial
and final points.

Fact 4.3. Consider the barrier function φ(x) = − log(x− ℓ)− log(u− x) on the interval [ℓ, u].
We have φ′((ℓ+ u)/2) = 0 and φ′′(x) = 1/(u − x)2 + 1/(x− ℓ)2 ≥ 1/(u− ℓ)2 for all x ∈ [ℓ, u].

During the IPM, we maintain tuples (x, s, µ). Given a current point (x, s, µ), we define a
define a weight function τ : Rm → R

m
>0 that governs the central path. Intuitively, τ(x)i is the

weight on the i-th barrier function φi. The choice of weight function τ we use for this paper
and the central path will be a regularized Lewis weight. It will be convenient to choose the
regularizing vector v to have weight at least n/m on each coordinate, while still having low ℓ1
norm.

Definition 4.4 (Regularized Lewis weights for a matrix). For p = 1− 1
4 log(4m/n) , vector v ∈ R

m
>0

with vi ≥ n/m for all i and ‖v‖1 ≤ 4n, and matrix A define the (v-regularized) ℓp-Lewis weights
w(A) ∈ R

m
>0 as the solution to

w(A) = σ(W
1
2

− 1
p A) + v where W

def= diag(w(A)) .

When the matrix A is clear from context, we suppress the notation of A in w(·).

Definition 4.5 (Regularized Lewis weights for c). For p = 1− 1
4 log(4m/n) , and c, v ∈ R

m
>0 define

the (v-regularized) ℓp-Lewis weights w(c) : Rm>0 → R
m
>0 as w(c) def= w(CA) as in Definition 4.4.

We collect properties of regularized Lewis weights in Section 4.3, e.g. that ‖w(c)‖1 =
n + ‖v‖1. We implicitly suppress the dependence on v, p as they are fixed throughout the
algorithm.

Definition 4.6 (Central path weights). Define the central path weights τ(x) def= w(φ′′(x)− 1
2 ) for

a fixed vector v.

Our algoirthm maintains points (x, s, µ) satisfying the following centrality guarantee.

Definition 4.7 (ε-centered point). We say that (x, s, µ) ∈ R
m × R

m × R
m
>0 is ε-centered for

ε ∈ (0, 1/80] if the following properties hold, where Cnorm = C/(1− p) for a constant C ≥ 100.
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1. (Approximate centrality)

∥∥∥∥
s+µτ(x)φ′(x)

µτ(x)
√
φ′′(x)

∥∥∥∥
∞
≤ ε.

2. (Dual Feasibility) There exists a vector z ∈ R
n with Az + s = c.

3. (Approximate Feasibility) ‖A⊤x− b‖(A⊤(T(x)Φ′′(x))−1A)−1 ≤ εγ/Cnorm.

To maintain approximate centrality in Definition 4.7, we will track a centrality potential.

Definition 4.8 (Centrality potential). We track the following centrality potential.

Ψ(x, s, µ) def=
m∑

i=1

ψ


si + µτ(x)iφ′

i(xi)

µτ(x)i
√
φ′′
i (xi)




for ψ(x) def= cosh(λx), where λ = Θ(log(m)/ε).

At a high level, this potential is derived from noting that s + µτ(x)φ′(x) = 0 for exactly
central points x, s. The denominators are the Hessians of x with respect to the barriers, and
thus capture changes of x, s within a small stable region.

Finally, we need to control both the τ and ∞ norms of the steps in the algorithm, which
leads to the following definition.

Definition 4.9 (τ +∞ norm). Let ‖g‖τ+∞
def= ‖g‖∞ + Cnorm‖g‖τ for Cnorm = C/(1− p) and

g♭(τ) def= argmax‖h‖τ+∞=1 h
⊤g.

Let the dual norm be ‖g‖∗τ+∞
def= g⊤g♭(τ).

As described, our algorithm will not maintain exact points (x, s, µ) ∈ R
m × R

m × R
m
>0 and

weights τ ∈ R
m, instead they will be approximate in the following sense. Precisely, the algorithm

maintains the following condition throughout.

Invariant 4.10. We maintain the following approximations x, τ of x, τ ∈ R
m at the start and

end of each call to ShortStep (Algorithm 1).

• ‖Φ′′(x)
1
2 (x− x)‖∞ ≤ ε.

• ‖T(x)−1(τ − τ(x))‖∞ ≤ ε.

Constants and approximation notation. We will use C to denote a large constant, chosen
later. It is used in the definition of Cnorm and for the parameters ε, γ, λ in Algorithm 1. For
quantities f, g we write f . g or f = O(g) if there is a universal constant Z (independent of
the constant C) such that |f | ≤ Z|g|. We assume that C is chosen large enough in Algorithm 1
so that for any quantity f written in the analysis satisfying f . ε in fact satisfies f ≤ 1/1000.
Also, if f . γ then, because γ = ε/(Cλ), we will assume similarly that in fact f ≤ 1

1000λ .
We are ready to state the IPM. Algorithm 1 takes a single step, and Algorithm 2 takes

a sequence of short steps to solve a linear program. Taking a sequence of short steps using
Algorithm 1 allows us to solve LPs, assuming we have an initial point. The initial point
construction is done formally in Section A.3, and final point is computed in Lemma 4.11,
proven in the appendix in Section A.3.

Lemma 4.11 (Final point). Given an ε-centered point (x, s, µ) where ε ≤ 1/80, we can compute
a point (x(final), s(final)) satisfying

1. A⊤x(final) = b, s(final) = Ay + c for some y.

2. c⊤x(final) −min A⊤x=b
ℓi≤xi≤ui∀i

c⊤x . nµ.
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Algorithm 1: Short Step (Lee Sidford Barrier)

1 procedure ShortStep(x, s, µ, µ(new))
2 Fix τ(x) = w(φ′′(x)− 1

2 ), where v and w are defined in Definition 4.4 and 4.5.

3 Let α = 1
4 log(4m/n) , ε = α

C , λ = C log(Cm/ε2)
ε , γ = ε

Cλ , r = εγ
Cnorm

√
n

.

4 Assume that (x, s, µ) is ε-centered and δµ
def= µ(new) − µ satisfies |δµ| ≤ rµ.

5 Pick (x, τ ) to satisfy Invariant 4.10 with respect to (x, τ(x)).

6 Let y = si+µτ(x)iφ
′
i(xi)

µτ(x)i

√
φ′′

i (xi)
and let ‖y − y‖∞ ≤ γ/20.

7 Let g = −γ∇Ψ(y)♭(τ ), where h♭(τ ) is defined in Definition 4.9.

8 Let H ≈γ A
⊤

A = A⊤T
−1Φ′′(x)−1A, where A = T

− 1
2 Φ′′(x)− 1

2 A.

9 Let δ1 = T
−1

Φ′′(x)− 1
2 AH−1A⊤Φ′′(x)− 1

2 g and δ2 = T
−1

Φ′′(x)− 1
2 AH−1(A⊤x− b).

10 Let δr = δ1 + δ2.
11 Let R ∈ R

m×m be a Cvalid-valid random diagonal matrix for large Cvalid chosen
later. // Definition 4.13

12 δx ← Φ′′(x)− 1
2 (g −Rδr) .

13 δs ← µTΦ′′(x)
1
2 δ1.

14 x(new) ← x+ δx and s(new) ← s+ δs.

15 return (x(new), s(new)).

Algorithm 2: Path Following Meta-Algorithm for solving minA⊤x=b,ℓi≤xi≤ui∀i c
⊤x,

given an initial point ε/Cstart-centered point (x(init), s(init), µ) for large Cstart.

1 procedure PathFollowing(A, ℓ, u, µ, µ(final))
2 Define r as in Algorithm 1.
3 while µ > µ(final) do

4 (x(new), s(new))← ShortStep(x, s, µ, (1 − r)µ).
5 x← x(new), s← s(new), µ← (1− r)µ.
6 Use Lemma 4.11 to return a point (x(final), s(final)).

The algorithm takes O(nnz(A)) time plus the time for solving a linear system on A⊤DA
where D is a diagonal matrix.

The main goal of Sections 4.1 to 4.5 is to show the following, proven formally at the end of
Section 4.5.

Lemma 4.12. Algorithm PathFollowing(A, b, ℓ, u, c, µ, µ(final)) makes Õ(
√
n log(µ/µ(final)))

calls to ShortStep(·), and with probability at least 1 −m−5 satisfies the following conditions
at the start and end of each call to ShortStep (Algorithm 1).

1. (Slack feasibility) s = Az + c for some vector z ∈ R
n

2. (Approximate feasibility) ‖A⊤x− b‖(A⊤(T(x)Φ′′(x))−1A)−1 ≤ εγ/Cnorm.

3. (Potential function) E[Ψ(x, s, µ)] ≤ m2, where the expectation is over the randomness of
x, s.

4. (ε-centered) (x, s, µ) is ε-centered.

For µ(final) ≤ δ/(Cn), we have that Ax(final) = b and c⊤x(final) ≤ min A⊤x=b
ℓi≤xi≤ui∀i

c⊤x+ δ.

We sample a random diagonal scaling R in our algorithm, and will require some properties
of this random matrix to guarantee progress of the IPM. We summarize the necessary properties
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here. This definition captures distributions such as sampling each coordinate independently as
a Bernoulli with probabilities pi, or taking the sum of multiple samples proportional to pi.

Definition 4.13 (Valid sampling distribution). Given vector δr,A, x, τ as in ShortStep (Al-
gorithm 1), we say that a random diagonal matrix R ∈ R

m×m is Cvalid-valid if it satisfies the

following properties, for A = T
− 1

2 Φ′′(x)− 1
2 A. We assume that Cvalid ≥ Cnorm.

• (Expectation) We have that E[R] = I.

• (Variance) For all i ∈ [m], we have that Var[Rii(δr)i] ≤ γ|(δr)i|
C2

valid
. and E[R2

ii] ≤ 2σ(A)−1
i .

• (Covariance) For all i 6= j, we have that E[RiiRjj] ≤ 2.

• (Maximum) With probability at least 1− n−10 we have that ‖Rδr − δr‖∞ ≤ γ
C2

valid
.

• (Matrix approximation) We have that A
⊤

RA ≈γ A
⊤

A with probability at least 1− n−10.

4.1 Overview of Analysis

Our proof will show that the expected value of the potential function in Definition 4.8 is bounded
by poly(m) with high probability throughout the algorithm. This will imply that it is ε-centered
at the start and end of each call to ShortStep (Algorithm 1). The main pieces of the analysis
are as follows.

Potential function analysis. In Section 4.2 we set up the analysis of the change in the
potential function. Specifically, in Lemma 4.15 we show that bounding the change in the
potential function reduces to bounding first and second order changes of the numerator y =
s+µτ(x)φ′(x) and denominator terms µ, τ(x), φ′′(x) in Definition 4.8. These are done in Section
4.5 in Lemmas 4.27 (for µ), 4.31 (for C

def= Φ′′(x)−1/2), 4.35 (for τ), 4.37 (for y).
The analysis of change in τ requires several facts of derivatives of regularized Lewis weights

with respect to diagonal scalings, and these are done in Section 4.3, culminating in Lemmas
4.25, 4.26 which bound the change in τ under small changes in the diagonal scaling, which we
refer to as γ-bounded changes (Definition 4.23).

Feasibility. To guarantee efficiency, our algorithm sparsifies matrices A⊤DA to solve systems,
which results in potentially infeasible points x during the algorithm, i.e. A⊤x = b may fail.
However, our algorithm maintains approximate feasibility as discussed in Definition 4.7. The
analysis is done in Lemma 4.38.

Additional properties. In Section A.3 we first show that computing an ε-centered point
for small path parameter µ guarantees small objective error. We then show how to construct
an initial ε-centered point for a perturbed linear program, and show that the modified linear
program still gives approximate solutions to the original. In Section 4.6 we show that two
sampling schemes are both valid distributions. The one in Lemma 4.41 is used for the graphical
setting, and Lemma 4.42 is used for the general linear program setting. Finally, the data
structures for maintaining approximate solutions for x, s, τ require a stability bound of the
true x, s which may not hold. However, we can show that there are nearby points that satisfy
stronger stability bounds in Lemma 4.44.

Comparison to [BLN+20]. The main difference from the analysis of [BLN+20] is our use of
general self-concordant functions to handle two-sided barrier constraints, while [BLN+20] used
logarithmic barriers. This leads to the following differences in the IPM: the gradient optimality
for our barrier takes the form in Definition 4.7 (Approximate centrality), while in [BLN+20]
they simply use the form xs ≈ wµ. Additionally, we require our weights w to be Lewis weights,
while [BLN+20] was able to use leverage scores due to the structure of the centrality condition
xs ≈ wµ. Finally, our analysis deals more generally with valid distributions in Definition 4.13
which allows us to handle both sampling coordinate independently for the graphical setting,
and proportional to sampling probability for general linear programs.
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4.2 Analysis Tools and Setup

In this section, we set up the analysis of our IPM, and all omitted proofs are given in Section
A.1. First, we collect some basic properties of ψ to help in the analysis.

Lemma 4.14 (Basic properties of ψ). We have for λ ≥ 1 that

• ψ′′(x) = λ2ψ(x).

• ψ(x′) ≤ 2ψ(x) for |x′ − x| ≤ 1
20λ .

• |ψ′(x)| ≤ λ−1ψ′′(x).

We now state a helper lemma that shows that we can analyze the change in the centrality
potential by analyzing second order changes of each contributing piece. This differs from the
corresponding [BLN+20, Lemma 4.34] in that our errors are not strictly multiplicative errors.

Lemma 4.15 (Potential change bound). Define for u
(j)
i ≥ 0 and yi

wi =
∏

j∈[k]

(u(j)
i )cj and w

(new)
i =

∏

j∈[k]

(u(j)
i + δ

(j)
i )cj

and

vi = yiwi and v
(new)
i = (yi + ηi)w

(new)
i

where ‖(U(j))−1δ(j)‖∞ ≤ 1
50(1+‖c‖1) for all j ∈ [k], ‖v‖∞ ≤ 1/50, ‖Wη‖∞ ≤ 1

50λ(1+‖c‖1) , and

‖v‖∞
∑

j∈[k]

|cj |‖(U(j))−1δ(j)‖∞ ≤
1

100λ
.

Then we have that ‖v(new) − v‖∞ ≤ 1
20λ

Ψ(v(new)) ≤ Ψ(v) + ψ′(v)⊤


Wη +

∑

j∈[k]

cjV(U(j))−1δ(j)


 (13)

+ 8‖Wη‖2ψ′′(v) + 8(1 + ‖c‖1)‖v‖2∞
∑

j∈[k]

|cj |‖(U(j))−1δ(j)‖2ψ′′(v) (14)

+ 8‖Wη‖|ψ′(v)|
∑

j∈[k]

|cj |‖(U(j))−1δ(j)‖|ψ′(v)| + 8(1 + ‖c‖1)‖v‖∞
∑

j∈[k]

|cj |‖(U(j))−1δ(j)‖2|ψ′(v)|.

(15)

It is known that the Hessian Φ′′(x) is maintained under small perturbations to x.

Lemma 4.16. ‖Φ′′(x)
1
2 (x− x)‖∞ ≤ ε for ε ∈ [0, 1/100] then Φ′′(x)

1
2 ≈ε+2ε2 Φ′′(x)

1
2 .

Proof. Follows directly from
∣∣∣ d

dxi
φ′′
i (xi)

− 1
2

∣∣∣ ≤ 1.

In order the analyze the potential Ψ under changes, we define the quantities τi
def= τ(x)i,

µi = µ, ci = φ′′
i (xi)

− 1
2 , and yi

def= si + µτ(x)iφ′
i(xi). This allows us to write the potential as

Ψ(x, s, µ) =
m∑

i=1

ψ(yiµ−1
i τ−1

i ci).

Let τ (new), µ(new), c(new), y(new) be the corresponding vectors after a step. We will use Lemma
4.15 to analyze the change in Ψ. Define

δµ
def= µ(new) − µ, δτ def= τ (new) − τ, δc def= c(new) − c, δy def= y(new) − y.

The goal of the remainder of the section will be to analyze the changes δµ, δτ , δc, δy and apply
Lemma 4.15 to analyze the change in the centrality potential. This will complete the correctness
proof of the IPM.
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4.3 Regularized Lewis Weights

Statement Term Comment

Definition 4.17 Wc,Pc,Σc,Λc,Jc Fundamental matrices
Lemma 4.18 w(c), f(w, c) Alternative definition of regularized Lewis weights
Lemma 4.19 Jc Jacobian of Regularized Lewis weight
Lemma 4.20 Dc,Kc Decomposition of Jc
Lemma 4.21 D′

c,K
′
c Alternate decomposition

Lemma 4.22 Wc,T Lewis weight approximation
Definition 4.23 C γ-boundedness
Lemma 4.24 T−1δτt ‖ · ‖∞, ‖ · ‖τ+∞, ‖ · ‖

P
(2)
t

; infinitesimal bound

Lemma 4.25 T−1δτ ‖ · ‖∞, ‖ · ‖τ+∞ norm
Lemma 4.26 T−1(E[δτ ]− JE[δc]) ‖ · ‖τ+∞

Table 3: Summary of Section 4.3

Parameters Definition Range

C Large constant, chosen later [200,∞)
α 1/(4 log(4m/n)) < 1/2
p 1− α [2/3, 1)
ε α/C [0, 1/100]
λ C log(Cm/ε2)/ε ≥ ε−1

γ ε/(Cλ) (0, ε)
Cnorm C/α ≥ 100
Cvalid Constant in Definition 4.13 ≥ Cnorm

r εγ/(Cnorm
√
n) ≤ n−1/2

In this section we collect several facts about the regularized Lewis weights defined in Defi-
nition 4.5, many of which are variations of those in [LS19]. All omitted proofs are provided in
Section A.2. Before starting, we set up notation for important matrices throughout.

Definition 4.17 (Fundamental matrices). We define the matrices

• Wc
def= diag(w(c)).

• For any matrix M, orthogonal projection matrix P(M) def= M(M⊤M)−1M⊤.

• The projection matrix Pc
def= P(W

1
2

− 1
p

c CA).

• σc
def= σ(W

1
2

− 1
p

c CA) and Σc
def= diag(σc).

• Λc
def= Σc −P

(2)
c and Λc = W

− 1
2

c ΛcW
− 1

2
c .

• Jc as the Jacobian of w(c) with respect to c.

We now describe the regularized Lewis weights as the solution to a convex program.

Lemma 4.18 (Alternate definition of regularized Lewis weights). For all non-negative c

w(c) = argminw∈Rm
>0
f(w, c)

where

f(w, c) def= − 1
1− 2

p

log det(A⊤CW
1− 2

p CA) +
m∑

i=1

wi −
m∑

i=1

vi logwi.
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Using the convex program in Lemma 4.18 we can compute the Jacobian of changes in the
ℓp regularized Lewis weights with respect to the diagonal scaling.

Lemma 4.19 (Jacobian of Regularized Lewis weight). For a fixed vector v, we have that

Jc = 2Wc

(
Wc −

(
1− 2

p

)
Λc

)−1

ΛcC
−1.

It will be useful to decompose the matrices relating to Λc into two parts – one of which is
diagonal, and one of which is bounded by P

(2)
c essentially.

Lemma 4.20 (Decomposition of Jc). For any vector c ∈ R
m
>0, there is a diagonal matrix

0 � Dc � I such that for Kc = W−1
c JcC−Dc, we have for all vectors h that

• ‖Kch‖∞ . ‖h‖∞.

• ‖Kch‖w(c) . ‖|h|‖P(2)
c

.

We will need a similar decomposition for a related matrix.

Lemma 4.21 (Alternate decomposition). In the notation of Lemma 4.20, there is a diagonal
matrix D′

c and matrix K′
c such that 0 � D′

c � I,

W
− 1

2
c

(
I−

(
1− 2

p

)
Λc

)−1

W
1
2
c = D′

c + K′
c,

and for all vectors h,

• ‖K′
ch‖w(c) . ‖|h|‖P(2)

c

• ‖K′
ch‖∞ . ‖h‖∞.

We note that small perturbations to the diagonal scaling also have a small effect on our ℓp
Lewis weights. This is useful because our algorithm only maintains approximate x, s, τ .

Lemma 4.22 (Lewis weight approximation). Let p ∈ (0, 4). If C ≈ε C then wp(CA) ≈4ε

wp(CA).

Notation for analysis of δτ . The remainder of the section is devoted to understanding
the changes in the regularized Lewis weights under (random) changes to c. The notation
used is as follows. We will consider the definition δc = c(new) − c and ct = c + tδc, and let
Σt,Pt,Λt,Jt,Λt denote the corresponding fundamental matrices defined in Definition 4.17 for
c := ct. Additionally, we write Tt for Wct , and let Kt,Dt,K

′
t,D

′
t be the matrices resulting in

Lemmas 4.20 and 4.21.
To give good bounds on δτ we will to assume bounds on δc. Our necessary conditions are

summarized as follows.

Definition 4.23 (γ-boundedness). Let c ∈ R
m
>0 be a deterministic vector, and c(new) ∈ R

m
>0

be a stochastic vector. Let δc = c(new) − c. We say that the δc is γ-bounded if the following
conditions hold.

1. With probability 1 we have

‖C−1δc‖∞ . γ. (16)

2.
∥∥∥E[(C−1δc)2]

∥∥∥
τ+∞

. γ2. (17)
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3. For all t ∈ [0, 1], we have

E[‖C−1|δc|‖P(2)
t

] . γ/Cnorm. (18)

Note that if δc is γ-bounded, then for ct = c+ tδc, we have Ct ≈1.1 C for all 0 ≤ t ≤ 1.
Before moving to bounds on δτ , we first show some preliminary bounds on the norms of

derivatives of τ locally.

Lemma 4.24 (δτ infinitesimal bound). Let δc = c(new) − c be a γ-bounded change, ct = c+ tδc,
and τt = wp(ct). Let δτt = d

dtτt. Then

• ‖T−1δτt‖∞ . γ with probability 1.

•
∥∥E[(T−1δτt)

2]
∥∥
τ+∞ . γ2.

• E[‖T−1|δτt |‖P(2)
t

] . γ/Cnorm.

Proof. Before beginning the proof, we note that τt ≈ τ for all t ∈ [0, 1] by Lemma 4.22, and
because δc is a γ-bounded change (Definition 4.23 (16)), so ct ≈0.1 c.

For the first claim we write

‖T−1δτt‖∞ . ‖T−1
t Jtδc‖∞

= ‖T−1
t JtCtC

−1
t δc‖∞

. ‖DtC
−1
t δc‖∞ + ‖KtC

−1
t δc‖∞

≤ (‖Dt‖∞ + ‖Kt‖∞)‖C−1
t δc‖∞ . γ,

where the second step follows from I = CtC
−1
t , the third step follows from triangle inequality

and T−1
t JtCt = Dt + Kt as in Lemma 4.20, the fourth step follows from ‖DtC

−1
t δc‖∞ ≤

‖Dt‖∞ · ‖C−1
t δc‖∞, and the last step follows from ‖Dt‖∞, ‖Kt‖∞ . 1 and ‖C−1

t δc‖∞ . γ
(Definition 4.23 (16)).

Because T−1
t JtCt = Dt + Kt as in Lemma 4.20, we can write

E[(T−1δτt)
2
i ] . E[(T−1

t Jtδc)2
i ]

≤ E[(DtC
−1
t δc + KtC

−1
t δc)2

i ]

. E[(DtC
−1
t δc)2

i ] + E[(KtC
−1
t δc)2

i ].

For the first term, we bound
∥∥∥E[(DtC

−1
t δc)2]

∥∥∥
τ+∞

.
∥∥∥E[(C−1δc)2]

∥∥∥
τ+∞

. γ2

by Lemma 4.20 (Dt is diagonal and . I) and γ-boundedness (Definition 4.23 (17)). For the
second term, we use Lemma 4.20 item 1 and γ-boundedness (Definition 4.23 (16)) to first bound

|(KtC
−1
t δc)i| . ‖C−1

t δc‖∞ . γ.

This handles the ∞-norm part directly. For the τ -norm, we compute
∥∥∥E[(KtC

−1
t δc)2]

∥∥∥
τ
. γE[‖KtC

−1
t δc‖τ ]

. γE[‖C−1
t |δc|‖P(2)

t
]

. γE[‖C−1|δc|‖P(2)
t

] . γ2/Cnorm

where the first step follows from ‖KtC
−1
t δc‖∞ . γ, the second step follows from Lemma 4.20

item 2, the third step follows from c ≈1 ct, the last step follows from γ-boundedness (Definition
4.23 (18)).
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Summing the contributions gives the desired.
For the third claim, we use T−1

t JtCt = Dt + Kt as in Lemma 4.20 to get

E[‖T−1|δτt |‖P(2)
t

] . E[‖|T−1
t JtCtC

−1
t δc|‖P(2)

t

≤ E[‖Dt|C−1
t δc|‖P(2)

t

] + E[‖|KtC
−1
t δc|‖P(2)

t

]

. γ/Cnorm + E[‖KtC
−1
t δc‖τt ]

. γ/Cnorm + E[‖C−1
t |δc|‖P(2)

t
] . γ/Cnorm,

where the first step follows from τ ≈1 τt, the second step follows from the triangle inequality,
the third step follows from Dt . I and γ-boundedness (Definition 4.23 (18)) and P

(2)
t . Tt,

the fourth step follows from Lemma 4.20 item 2, and the last step follows from γ-boundedness
(Definition 4.23 (18)) again.

Finally, we give our full analysis of δτ . We first control the infinity norm and square of the
change, which have shorter analyses.

Lemma 4.25 (Sharper bound on changes in τ part 1). Let δc = c(new) − c be a γ-bounded
change, and let τ (new) = τ1, and δτ = τ (new) − τ . We have

• ‖T−1δτ‖∞ . γ with probability 1.

•
∥∥E[(T−1δτ )2]

∥∥
τ+∞ . γ2.

Proof. To start, we define ct = c+ tδc, τt = wp(ct). Let δτt = d
dtτt.

Bound on ‖T−1δτ‖∞. Follows from γ-boundedness (Definition 4.23 (16)) and Lemma 4.22.

Bound on ‖E[(T−1δτ )2]‖τ+∞. We have

‖E[(T−1δτ )2]‖τ+∞ =

∥∥∥∥∥E
[(∫ 1

0
T−1δτtdt

)2
]∥∥∥∥∥

τ+∞

≤
∫ 1

0
E[(T−1δτt)

2]dt . γ2.

where the first step follows from δτ =
∫ 1

0 δτtdt and Cauchy-Schwarz, the second step follows
from Cauchy-Schwarz, and the last step follows from Lemma 4.24 item 2.

We now analyze the first order change in δτ . We defer the proof to the appendix due to its
length.

Lemma 4.26 (Sharper bound on changes in τ part 2). Let δc = c(new) − c be a γ-bounded
change, and let τ (new) = τ1, and δτ = τ (new) − τ . For J as defined in Lemma 4.19, we have

∥∥∥T−1(E[δτ ]− JE[δc])
∥∥∥
τ+∞

. γ2.

4.4 Bounding δµ, δτ , δc, δy

In this section, we bound δµ, δτ , δc, δy . First we bound δµ. Since the change in µ is a deterministic
change, bounding δµ is straightforward.

Lemma 4.27 (Bounds on δµ). Let δµ = µ(new) − µ. We have that ‖µ−1(µ(new) −µ)‖τ+∞ . εγ.
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Statement Term Comment

Lemma 4.27 δµ Bounds on δµ
Lemma 4.29 δx Bounds on δx
Lemma 4.31 δc Bounds on δc
Lemma 4.35 δτ Bounds on δτ
Lemma 4.37 δy Bounds on δy

Lemma 4.33 δx, δc Bounds on δx and δc with respect to P
(2)
t -norm

Lemma 4.28 Φ′′(x),T,H Matrix norm bounds
Corollary 4.30 δs, δr An application of Lemma 4.29
Lemma 4.32 Rv P(2) norm bound
Lemma 4.36 g Approximation to direction g

Table 4: Summary of Section 4.4

Proof. Note that ‖µ−1(µ(new) − µ)‖∞ ≤ r by definition. Therefore

‖µ−1(µ(new) − µ)‖τ+∞ ≤ r‖~1‖τ+∞

= r(1 + Cnorm(n+ ‖v‖1)1/2)

. Cnormrn
1/2 ≤ εγ

where the first step follows from ‖µ−1(µ(new)−µ)‖∞ ≤ r, the third step follows from Cnorm ≥ 100
and ‖v‖1 .

√
n, and the last step follows from Cnormrn

1/2 ≤ εγ (by the choice of r).

The following bounds allow us to relate changes in x to ‖g‖τ+∞.

Lemma 4.28 (Matrix norm bounds). Let x, τ, x, τ satisfy Invariant 4.10. For any g ∈ R
m we

have that

• ‖Φ′′(x)− 1
2 T

−1
AH−1A⊤Φ′′(x)− 1

2 g‖∞ . ‖g‖τ .
• ‖Φ′′(x)− 1

2 T
−1

AH−1g‖τ . ‖g‖(A⊤T−1Φ′′(x)−1A)−1 .

• ‖Φ′′(x)− 1
2 T

−1
AH−1g‖∞ . ‖g‖(A⊤T−1Φ′′(x)−1A)−1 .

Proof. Define

Q = T
− 1

2 Φ′′(x)− 1
2 AH−1A⊤T

− 1
2 Φ′′(x)− 1

2 .

For the first point, we use the Cauchy-Schwarz inequality to get that

‖Φ′′(x)− 1
2 T

−1
AH−1A⊤Φ′′(x)− 1

2 g‖∞ = max
i∈[m]

∣∣∣e⊤
i Φ′′(x)− 1

2 T
−1

AH−1A⊤Φ′′(x)− 1
2 g
∣∣∣

= max
i∈[m]

∣∣∣∣e
⊤
i T

− 1
2 QT

1
2 g

∣∣∣∣

≤
∣∣∣∣g

⊤T
1
2 QT

1
2 g

∣∣∣∣
1
2

max
i∈[m]

∣∣∣∣e
⊤
i T

− 1
2 QT

− 1
2 ei

∣∣∣∣
1
2

. ‖g‖τ max
i∈[m]

τi
−1σ

(
T

− 1
2 Φ′′(x)

1
2

)

. ‖g‖τ max
i∈[m]

τ(x)−1
i σ

(
τ(x)

1
2

− 1
p Φ′′(x)

1
2

)
. ‖g‖τ ,

where the third step follows from |a⊤b| ≤ ‖a‖2 · ‖b‖2, where the fifth step follows from the
stability of leverage scores and that p = 1− 1

4 log(4m/n) .
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Let H
def= A⊤T

−1Φ′′(x)−1A, so that H ≈ε H and H ≈2ε A⊤T−1Φ′′(x)−1A.

‖Φ′′(x)− 1
2 T

−1
AH−1g‖τ = (g⊤H−1HH−1g)

1
2

. (g⊤H
−1
g)

1
2

= ‖g‖
H

−1 . ‖g‖(A⊤T−1Φ′′(x)−1A)−1 ,

where the second step follows from H ≈ε H, and the last step follows from H ≈2ε A⊤T−1Φ′′(x)−1A.
For the third point, we use the Cauchy-Schwarz inequality to get that

‖Φ′′(x)− 1
2 T

−1
AH−1g‖∞ = max

i∈[m]
|e⊤
i Φ′′(x)− 1

2 T
−1

AH−1g|

≤ max
i∈[m]

|e⊤
i T

− 1
2 QT

−1
ei|

1
2 |g⊤H−1g| 12

= ‖g‖H−1 max
i∈[m]

|e⊤
i T

− 1
2 QT

−1
ei|

1
2

. ‖g‖(A⊤T−1Φ′′(x)−1A)−1 max
i∈[m]

∣∣∣∣e⊤
i T

− 1
2 QT

− 1
2 ei

∣∣∣∣
1
2

. ‖g‖(A⊤T−1Φ′′(x)−1A)−1 ,

where the second step follows from |a⊤b| ≤ ‖a‖2 · ‖b‖2, the fourth step follows from H ≈3ε

A⊤T−1Φ′′(x)−1A, and the last step follows from maxi∈[m] |e⊤
i T

− 1
2 QT

− 1
2 ei|

1
2 . 1.

We now show that the change in x, i.e. δx, is small.

Lemma 4.29 (Bounds on δx). Let x, τ, x, τ satisfy Invariant 4.10. If δx are defined as in
Algorithm 1, then

• ‖Φ′′(x)
1
2E[δx]‖τ+∞ ≤ γ +O((ε + 1/Cnorm)γ).

• ‖Φ′′(x)
1
2 δx‖∞ . γ with probability 1.

• ‖E[Φ′′(x)δ
2
x]‖τ+∞ . γ2.

Proof. We break the proof into the three claims.

Bound on ‖Φ′′(x)
1
2E[δx]‖τ+∞. Because E[R] = I (Expectation) we have that

E[δx] = Φ′′(x)− 1
2 g − Φ′′(x)− 1

2 T
−1Φ′′(x)− 1

2 AH−1A⊤Φ′′(x)− 1
2 g (19)

− Φ′′(x)− 1
2 T

−1Φ′′(x)− 1
2 AH−1(A⊤x− b). (20)

We start by bounding the τ +∞ norm of the expression in (20). We calculate

‖Φ′′(x)
1
2 Φ′′(x)− 1

2 T
−1

Φ′′(x)− 1
2 AH−1(A⊤x− b)‖τ+∞

. Cnorm‖A⊤x− b‖(A⊤T−1Φ′′(x)−1A)−1

≤ εγ

where the first step follows from combining Lemma 4.28 items 2 and 3, and the last step follows
from the fact that (x, s, µ) is ε-centered (Definition 4.7).

Now we bound the τ -norm of the two terms in (19). Define

Q = T
− 1

2 Φ′′(x)− 1
2 AH−1A⊤T

− 1
2 Φ′′(x)− 1

2 ,

and note that Q ≈γ Q̃ for orthogonal projection matrix

Q̃
def= T

− 1
2 Φ′′(x)− 1

2 A(A⊤T
−1

Φ′′(x)−1A)−1A⊤T
− 1

2 Φ′′(x)− 1
2
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by the condition in line 8 of Algorithm 1. Hence all eigenvalues of Q are either 0 or in [1−γ, 1+γ],
so all eigenvalues of I−Q are either 1 or in [−γ, γ], so ‖I −Q‖2 ≤ 1.

Using Lemma 4.16

‖Φ′′(x)
1
2 (Φ′′(x)− 1

2 g − Φ′′(x)− 1
2 T

−1
Φ′′(x)− 1

2 AH−1A⊤Φ′′(x)− 1
2 g)‖τ

≤ eO(ε)‖g −T
−1

Φ′′(x)− 1
2 AH−1A⊤Φ′′(x)− 1

2 g‖τ
= eO(ε)‖(I−Q)T

1
2 g‖2

≤ eO(ε)‖T
1
2 g‖2 = eO(ε)‖g‖τ ≤ eO(ε)‖g‖τ ≤ (1 +O(ε))‖g‖τ (21)

where the first step follows from Φ′′(x)
1
2 ≈O(ε) Φ′′(x)

1
2 by Invariant 4.10 and Lemma 4.16, the

second step follows from the definition of Q, the third step follows from ‖I−Q‖2 ≤ 1, and the
last step follows from eO(ǫ) ≤ 1 +O(ǫ), ∀ǫ ∈ (0, 1).

Now we bound the∞ norm. To handle the first term of (19), we can use Lemma 4.16 to get

‖Φ′′(x)
1
2 Φ′′(x)− 1

2 g‖∞ ≤ eO(ε)‖g‖∞ ≤ (1 +O(ε))‖g‖∞,

where the last step follows from eO(ǫ) ≤ 1 +O(ǫ), ∀ǫ ∈ (0, 1).
For the second term, we have

‖Φ′′(x)
1
2 Φ′′(x)−1T

−1
AH−1A⊤Φ′′(x)− 1

2 g‖∞ . ‖Φ′′(x)− 1
2 T

−1
AH−1A⊤Φ′′(x)− 1

2 g‖∞
. ‖g‖τ .

where the first step follows from Lemma 4.16, and the last step follows from Part 1 of Lemma
4.28.

Finally

‖Φ′′(x)
1
2E[δx]‖τ+∞ ≤ (1 +O(ε))‖g‖∞ +O(‖g‖τ ) + Cnorm(1 +O(ε))‖g‖τ +O(εγ)

≤ (1 +O(ε+ 1/Cnorm))‖g‖τ+∞ +O(εγ)

≤ γ +O(ε+ 1/Cnorm)γ

where we have used that ‖g‖τ+∞ ≤ γ.

Bound on ‖Φ′′(x)
1
2 δx‖∞. First, by Lemma 4.16 we have

‖Φ′′(x)
1
2 δx‖∞ = ‖Φ′′(x)

1
2 Φ′′(x)− 1

2 (g −Rδr)‖∞ . ‖g −Rδr‖∞ ≤ ‖g‖∞ + ‖Rδr‖∞.

Note that ‖g‖∞ ≤ ‖g‖τ+∞ ≤ γ, and ‖Rδr‖∞ . γ by the (Maximum) condition. Therefore,
‖g −Rδr‖∞ . γ as desired.

Bound on ‖E[Φ′′(x)δ
2
x]‖τ+∞. First we use Lemma 4.16 to get

‖E[Φ′′(x)δ
2
x]‖τ+∞ . ‖Φ′′(x)E[δ

2
x]‖τ+∞

. ‖E[(g −Rδr)]2‖τ+∞

. ‖g2‖τ+∞ + ‖E[R2δ2
r ]‖τ+∞

. γ2 + ‖E[R2δ2
r ]‖τ+∞.

We bound E[(Rii(δr)i)2] by the (Variance) condition of Definition 4.13. This gives

‖E[R2δ2
r ]‖τ+∞ ≤ ‖δ2

r‖τ+∞ +
γ

C2
valid

‖δr‖τ+∞ . γ2

as ‖δr‖τ . γ by the above, and Cvalid ≥ Cnorm ≥ 1. Summing these gives the result.

25



We show a corollary which is straightforward application of Part 1 of Lemma 4.29.

Corollary 4.30. Let x, τ, x, τ satisfy Invariant 4.10. If δx are defined as in Algorithm 1, then

• µ−1‖T−1Φ′′(x)− 1
2 δs‖τ+∞ . γ.

• ‖δr‖τ+∞ ≤ γ +O((ε+ 1/Cnorm)γ).

Proof. Recall the proof of Part 1 of Lemma 4.29. The bounds on µ−1‖T−1Φ′′(x)− 1
2 δs‖τ+∞ and

‖δr‖τ+∞ follow analogously, by replacing I−Q with Q in (21).

We can use highly 1-self-concordance to bound δc in terms of δx.

Lemma 4.31 (Bounds on δc). Let x, τ, x, τ satisfy Invariant 4.10, and ‖g‖τ+∞ ≤ γ. Let

c(new) = Φ′′(x(new))− 1
2 and δc = c(new) − c. Then

• ‖C−1δc‖∞ . γ with probability 1.

• ‖C−1
E[δc]‖τ+∞ ≤ γ +O((ε + 1/Cnorm)γ).

• ‖E[C−2δ2
c ]‖τ+∞ . γ2.

Proof. For the first point, simply note that C−1 = Φ′′(x)
1
2 and |δc| = |c(new) − c| ≤ |δx|

coordinate-wise by 1-self-concordance. Therefore, the result follows from Lemma 4.29. Now,
we get that c(new) ≈O(γ) c by Lemma 4.16.

For the second point, we integrate and use highly 1-self-concordance. Specifically, define
xt = x+ tδx and ct = Φ′′(xt)− 1

2 . Then

d
dt
ct = −1

2
Φ′′′(xt)

Φ′′(xt)
3
2

δx and
d2

dt2
ct =

(
−1

2
Φ′′′′(xt)

Φ′′(xt)
3
2

+
3
4

Φ′′′(xt)2

Φ′′(xt)
5
2

)
δ

2
x.

Now, we have by second order expansion, highly 1-self-concordance, and Lemma 4.29

‖C−1
E[δc]‖τ+∞ ≤

∥∥∥∥∥Φ
′′(x)

1
2 · −1

2
Φ′′′(x)

Φ′′(x)
3
2

E[δx]

∥∥∥∥∥
τ+∞

+
1
2

∫ 1

0

∥∥∥∥∥E
[
Φ′′(x)

1
2

(
−1

2
Φ′′′′(xt)

Φ′′(xt)
3
2

+
3
4

Φ′′′(xt)2

Φ′′(xt)
5
2

)
δ

2
x

]∥∥∥∥∥
τ+∞

dt

≤
∥∥∥Φ′′(x)

1
2E[δx]

∥∥∥
τ+∞

+O

(∫ 1

0

∥∥∥E
[
Φ′′(x)δ

2
x

]∥∥∥
τ+∞

dt
)

≤ γ +O(ε+ 1/Cnorm)γ +O(γ2)

≤ γ +O(ε+ 1/Cnorm)γ,

where the last step follows from γ ∈ (0, 1).
For the final point, use again that |δc| ≤ |δx| pointwise, so by Lemma 4.29

‖E[C−2δ2
c ]‖τ+∞ ≤ ‖E[Φ′′(x)δ

2
x]‖τ+∞ . γ2.

The next few lemmas show that δc is γ-bounded, as in Definition 4.23. We need a variant
of [BLSS20, Lemma 48].

Lemma 4.32 (P(2) norm bound). If R is valid (Definition 4.13) then for any vector v ∈ R
m

we have that

E[‖|Rv|‖2
P(2) ] . ‖E[|v|]‖2τ and E[‖|Rv|‖P(2) ] . ‖E[|v|]‖τ .
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Proof. The second claim follows from the first and Cauchy-Schwarz. For the first claim, we
compute using (Variance) and (Covariance) of Definition 4.13 that

E[‖|Rv|‖2
P(2) ] =

∑

i,j

E[RiiRjj ]|vi||vj |P2
ij

≤ 2
∑

i∈[m]

v2
i σ

−1
i P2

ii + 2
∑

i6=j
|vi||vj |P2

ij

≤ 2
∑

i∈[m]

v2
i σi + 2‖|v|‖2

P(2) . ‖|v|‖2τ .

We need the following fact to handle terms involving P(2).

Lemma 4.33 (Bounds on δx and δc with respect to P
(2)
t norm). We have that E[‖C−1|δx|‖P(2)

t

] .

γ/Cnorm and E[‖C−1|δc|‖P(2)
t

] . γ/Cnorm.

Proof. Note that

C−1|δx| = |g −Rδr| ≤ |g|+ |Rδr|.

Note that T
1/2−1/p
t Ct ≈2 T1/2−1/pC. Therefore, we can use P

(2)
t � Σt, Σt ≈2 Σ, Lemma 4.29,

[BLN+20, Lemma 4.23], and Lemma 4.32 to get

E[‖C−1|δx|‖P(2)
t

] ≤ ‖g‖
P

(2)
t

+ E[‖|Rδr |‖P(2)
t

]

. γ/Cnorm + E[‖|Rδr |‖P(2) ]

≤ γ/Cnorm + ‖δr‖τ . γ/Cnorm,

where the second step follows from ‖g‖
P

(2)
t

. γ/Cnorm, the third step follows from E[‖|Rδr |‖P(2) ] ≤
‖δr‖τ .

The second claim follows directly from 1-self-concordance and the first claim.

Lemma 4.34 (γ-boundedness of δc). For c(new) = Φ′′(x(new))−1/2 and δc = c(new) − c, we have
that δc is γ-bounded.

Proof. To show Definition 4.23 (16) and (17), use Lemma 4.31. Definition 4.23 (18) follows
from Lemma 4.33.

By Lemmas 4.25 and 4.26, γ-boundedness of δc allows us to control the change to τ .

Lemma 4.35 (Bounds on δτ ). Let τ (new) = τ(x(new)), and δτ = τ (new) − τ . Then we have that

• ‖T−1δτ‖∞ . γ with probability 1.

•
∥∥E[(T−1δτ )2]

∥∥
τ+∞ . γ2.

•
∥∥T−1(E[δτ ]− JE[δc])

∥∥
τ+∞ . γ2.

Proof. Follows directly from the fact that δc is γ-bounded (Lemma 4.34), along with Lemmas
4.25 and 4.26.

Now, we show that despite the approximations to x, s, τ , the algorithm still take a step in a
direction very close to the desired direction g.
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Lemma 4.36 (Approximation to direction g). Let x, τ, x, τ be as in Algorithm 1. Then

‖µ−1Φ′′(x)− 1
2 T−1(δs + µτφ′′(x)E[δx])− g‖τ+∞ . εγ.

Proof. At a high level, our proof will gradually change x to x and τ to τ and track the incurred
error. Here, τ = τ(x) and τ satisfies Invariant 4.10. We let δx = E[δx]. First, we write

δs + µτφ′′(x)E[δx] = δs + µτφ′′(x)δx + µ(τ − τ)φ′′(x)δx

= δs + µτφ′′(x)δx + µ(τ − τ)φ′′(x)δx + µτ(φ′′(x)− φ′′(x))δx

= µTΦ′′(x)
1
2 (g − δ2) + µ(τ − τ)φ′′(x)δx + µτ(φ′′(x)− φ′′(x))δx.

Therefore, we have that

µ−1Φ′′(x)− 1
2 T−1(δs + µτφ′′(x)δx)− g

= (Φ′′(x)− 1
2 T−1Φ′′(x)

1
2 T− I)g + Φ′′(x)− 1

2 T−1(τ − τ)φ′′(x)δx

+ Φ′′(x)− 1
2 T−1τ(φ′′(x)− φ′′(x))δx − Φ′′(x)− 1

2 T−1Φ′′(x)
1
2 Tδ2.

We now bound the terms in the above sum. For the second term, we use the approximation
condition of Invariant 4.10 and Lemma 4.22 to get that

‖Φ′′(x)− 1
2 T−1(τ − τ)φ′′(x)δx‖τ+∞ . ε‖Φ′′(x)

1
2 δx‖τ+∞ . ε‖g‖τ+∞ . εγ

by Lemma 4.29. For the third term, we use the approximation condition of Invariant 4.10,
Lemma 4.16 to get that

‖Φ′′(x)−1(φ′′(x)− φ′′(x))‖∞ . ε.

Applying this and ‖T−1τ‖∞ . 1 using Lemma 4.22, we get that

‖Φ′′(x)− 1
2 T−1τ(φ′′(x)− φ′′(x))δx‖τ+∞ . ε‖Φ′′(x)

1
2 δx‖τ+∞ . ε‖g‖τ+∞ . εγ

by Lemma 4.29. For the fourth/last term, we use Lemma 4.28 to get

‖Φ′′(x)− 1
2 T−1Φ′′(x)

1
2 Tδ2‖τ+∞ . ‖δ2‖τ+∞ . Cnorm‖A⊤x− b‖(A⊤T−1Φ′′(x)−1A)−1 . εγ,

where we have used that our point is ε-centered.
For the first term, we write

(I− Φ′′(x)− 1
2 T−1Φ′′(x)

1
2 T)g

= (I− Φ′′(x)− 1
2 Φ′′(x)

1
2 + Φ′′(x)− 1

2 T−1Φ′′(x)
1
2 (T−T))g

= (Φ′′(x)− 1
2 (Φ′′(x)

1
2 − Φ′′(x)

1
2 ) + Φ′′(x)− 1

2 T−1Φ′′(x)
1
2 (T −T))g.

For the first term in the previous expression, we can use the approximation condition of Invariant
4.10, and Lemma 4.16 to get

‖Φ′′(x)− 1
2 (Φ′′(x)

1
2 − Φ′′(x)

1
2 )g‖τ+∞ . ε‖g‖τ+∞ ≤ εγ.

For the second term, we can use the approximation condition of Invariant 4.10, Lemma 4.16,
and Lemma 4.22 to get

‖Φ′′(x)− 1
2 T−1Φ′′(x)

1
2 (T −T))g‖τ+∞ . ε‖g‖τ+∞ ≤ εγ.

Summing over these bounds gives the desired result.
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Combining the above analyses allows us to analyze δy.

Lemma 4.37 (Bounds on δy). Let x, τ, x, τ be as in Algorithm 1, and let

y(new) = s(new) + µ(new)τ(x(new))φ′(x(new)).

Then we have that

‖µ−1Φ′′(x)− 1
2 T−1

E[δy]− g‖τ+∞ ≤ pγ +O((ε+ 1/Cnorm)γ)

and

‖E[(µ−1Φ′′(x)− 1
2 T−1δy)2]‖τ+∞ . γ2.

Proof. We start with the first claim. Let δφ′ = Φ′(x(new))− Φ′(x).

y(new) = s(new) + µ(new)τ (new)φ′(x(new))

= s+ δs + µ(new)τφ′(x(new)) + µ(new)δτφ
′(x(new))

= s+ δs + µτφ′(x(new)) + µ(new)δτφ
′(x(new)) + δµτφ

′(x(new))

= s+ δs + µτφ′(x) + µ(new)δτφ
′(x(new)) + δµτφ

′(x(new)) + µτδφ′

= y + (δs + µτδφ′) + µ(new)δτφ
′(x(new)) + δµτφ

′(x(new)),

where for simplicity of notation we have defined vector multiplication coordinate-wise. Also for
xt = x+ tδx we have that

δφ′ = φ′′(x)δx +
∫ 1

0
(1− t)φ′′′(xt)δ

2
xdt.

Therefore, we have that

δy = (δs + µτφ′′(x)δx) + µ(new)δτφ
′(x(new)) + δµτφ

′(x(new)) + µτ

∫ 1

0
(1− t)φ′′′(xt)δ

2
xdt.

We analyze the four terms in the above term one by one. The first term can be handled by
using Lemma 4.36. Precisely, we have that

‖µ−1Φ′′(x)− 1
2 T−1(δs + µτφ′′(x)E[δx])− g‖τ+∞ . εγ.

For the second term, we first rewrite

‖µ−1Φ′′(x)− 1
2E[φ′(x(new))T−1µ(new)δτ ]‖τ+∞

≤ (1 + r)‖Φ′′(x)− 1
2E[φ′(x(new))T−1δτ ]‖τ+∞

≤ (1 + r)(‖Φ′′(x)− 1
2 Φ′(x)E[T−1δτ ]‖τ+∞ + ‖E[Φ′′(x)− 1

2 δφ′T−1δτ ]‖τ+∞).

For the first of these, we can write

(1 + r)‖Φ′′(x)− 1
2 Φ′(x)E[T−1δτ ]‖τ+∞ ≤ (1 + r)‖E[T−1δτ ]‖τ+∞

≤ (1 + r)(‖E[T−1Jδc]‖τ+∞ + ‖E[T−1δτ ]− E[T−1Jδc]‖τ+∞)

≤ (1 + r)(‖E[T−1Jδc]‖τ+∞ +O(γ2))

= (1 + r)(‖T−1JCC−1
E[δc]‖τ+∞ +O(γ2))

≤ (1 +O(r + 1/Cnorm))p‖C−1
E[δc]‖τ+∞ +O(γ2)

≤ (1 +O(r + ε+ 1/Cnorm))pγ +O(γ2)
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≤ pγ +O(ε+ 1/Cnorm)γ,

where the first step follows from 1-self-concordance (Definition 4.1), the second step follows
from triangle inequality, the third step follows from Part 3 of Lemma 4.35, the fifth step follows
from Lemma A.2 Part 3, the sixth step follows from Part 2 of Lemma 4.31, and the last step
follows from the choice of parameters.

For the second, we can write

‖E[Φ′′(x)− 1
2 δφ′T−1δτ ]‖τ+∞ . ‖E[(T−1δτ )2]‖τ+∞ + ‖E[Φ′′(x)−1δ2

φ′ ]‖τ+∞ (22)

. γ2 + ‖E[Φ′′(x)−1δ2
φ′ ]‖τ+∞

= γ2 +

∥∥∥∥∥E
[
Φ′′(x)−1

(∫ 1

0
Φ′′(xt)δxdt

)2
]∥∥∥∥∥

τ+∞

. γ2 +
∫ 1

0

∥∥∥E[Φ′′(x)−1Φ′′(xt)2δ
2
x]
∥∥∥
τ+∞

dt

. γ2 + ‖E[Φ′′(x)δ
2
x]‖τ+∞ . γ2, (23)

where the first step follows from AM-GM and the triangle inequality, the second step follows
from Lemma 4.35 Part 2, the fourth step follows by Cauchy-Schwarz, the fifth step follows from
Φ′′(x) ≈1 Φ′′(xt), and the final step follows from Lemma 4.29 Part 3.

Therefore, the total for the second term is at most pγ +O(ε+ 1/Cnorm)γ, as γ ≤ ε.
For the third term, we can bound

‖µ−1Φ′′(x)− 1
2 T−1δµτφ

′(x(new))‖τ+∞ = µ−1δµ‖Φ′′(x(new))− 1
2φ′(x(new))‖τ+∞

. r‖~1‖τ+∞

. rCnormn
1
2 . εγ.

where the second step uses 1-self-concordance (Definition 4.1), the third step uses |µ−1δµ| . r

by the choice of r, and the final step uses ‖~1‖τ+∞ = 1 +Cnorm

√
‖v‖1 . Cnormn

1
2 by the choice

of parameters.
For the fourth term, we have
∥∥∥∥µ−1Φ′′(x)− 1

2 T−1µτ

∫ 1

0
(1− t)E[φ′′′(xt)δ

2
x]dt

∥∥∥∥
τ+∞

.

∫ 1

0
‖E[Φ′′(xt)− 1

2 |Φ′′′(xt)|δ2
x]‖τ+∞

.

∫ 1

0
‖E[Φ′′(xt)δ

2
x]‖τ+∞ . γ2

where the first step follows from Φ′′(xt) ≈1 Φ′′(x) and the triangle inequality, the second step
follows from 1-self-concordance (Definition 4.1) and the final step follows from Lemma 4.29 Part
3.

Combining everything gives us that

‖µ−1Φ′′(x)− 1
2 T−1δy − g‖τ+∞ − pγ . (ε+ 1/Cnorm)γ.

Now, we move on to the second claim. Once again, we write

δy = δs + µτδφ′ + µ(new)δτφ
′(x(new)) + δµτφ

′(x(new))

and note that

δ2
y . δ

2
s + (µτδφ′)2 + (µ(new)δτφ

′(x(new)))2 + (δµτφ′(x(new)))2.
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We analyze it term by term. Lemma 4.29 we have

‖(µ−1Φ′′(x)− 1
2 T−1δs)2‖τ+∞ ≤ ‖µ−1Φ′′(x)− 1

2 T−1δ
2
s‖2τ+∞ . γ2.

By (22) and (23) above we have

‖E(µ−1Φ′′(x)− 1
2 T−1µτδφ′)2‖τ+∞ ≤ ‖E[Φ′′(x)−1δ2

φ′ ]‖τ+∞ . γ2.

By Lemma 4.31, 1-self-concordance, and Lemma 4.35 we have

‖E(µ−1Φ′′(x)− 1
2 T−1µ(new)δτφ

′(x(new)))2‖τ+∞ . ‖E(T−1δτ )2‖τ+∞ . γ2.

By Lemma 4.27, 1-self-concordance, and Lemma 4.31 we have

‖E(µ−1Φ′′(x)− 1
2 T−1δµτφ

′(x(new)))2‖τ+∞ . r2‖~1‖τ+∞ . r2Cnormn
1
2 = rεγ . γ2

by the choice of r. Combining these gives the desired result.

4.5 Feasibility and potential function analysis

Section Statement Comment

Section 4.5 Lemma 4.38 Feasibility bound
Section 4.5 Lemma 4.39 First potential drop
Section 4.5 Corollary 4.40 Final potential drop

Section 4.6 Lemma 4.41 Independent sampling
Section 4.6 Lemma 4.42 Proportional sampling
Section 4.6 Corollary 4.43 Sampling by a mixture of ℓ2 and uniform.

Section 4.7 Lemma 4.44 Nearby stability of x
Section 4.7 Lemma 4.45 Nearby stability of φ′′ and τ

Section 4.7 Lemma 4.46 Parameter changes along the central path

Table 5: Summary of Section 4.5, 4.6, 4.7.

In this section, we analyze the change in feasibility and centrality potential. We start with
the feasibility.

Lemma 4.38 (Feasibility bound). For sufficiently large constants C in Algorithm 1 we have
the following. Let x(new), s(new), µ be as in Algorithm 1, where ‖g‖τ+∞ ≤ γ and (x, s, µ) is
ε-centered. Then with probability at least 1−m−10 we have

‖A⊤x(new) − b‖(A⊤(T(x(new))Φ′′(x(new)))−1A)−1 ≤ .5εγ/Cnorm.

Proof. Define A = T
− 1

2 Φ′′(x)− 1
2 A, and note that

A⊤(T(x(new))Φ′′(x(new)))−1A ≈2 A
⊤

A

by Lemma 4.31, Lemma 4.35, and H ≈γ A
⊤

A by definition. Define the vector v = A⊤Φ′′(x)− 1
2 g+

(A⊤x− b). A direct calculation shows that

A⊤x(new) − b = (I−A⊤Φ′′(x)− 1
2 T

− 1
2 RT

− 1
2 Φ′′(x)− 1

2 AH−1)v = (I−A
⊤

RAH−1)v.

Therefore, we have by Lemma 4.28 that

‖A⊤x(new) − b‖(A⊤(T(x(new))Φ′′(x(new)))−1A)−1 . ‖H− 1
2 (I−A

⊤
RAH−1)H

1
2 (H− 1

2 v)‖2
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≤ ‖H− 1
2 (H−A

⊤
RA)H− 1

2‖2‖H− 1
2 v‖2.

We have that A
⊤

RA ≈γ A
⊤

A ≈γ H with probability 1−m−10 by the (Matrix approximation)
condition of Definition 4.13 and line 8 of Algorithm 1. Therefore, by [BLN+20, Lemma 4.30]
we have that

‖H− 1
2 (H−A

⊤
RA)H− 1

2‖2 . γ.

Also

‖H− 1
2 v‖2 ≤ ‖H− 1

2 A⊤Φ′′(x)− 1
2 g‖2 + ‖H− 1

2 (A⊤x− b)‖2
. ‖g‖τ + εγ/Cnorm . γ/Cnorm.

Therefore with probability 1−m−10 we have

‖A⊤x(new) − b‖(A⊤(T(x(new))Φ′′(x(new)))−1A)−1 . γ · γ/Cnorm ≤ γ2/Cnorm.

Let C2 be the universal constant such that

‖A⊤x(new) − b‖(A⊤(T(x(new))Φ′′(x(new)))−1A)−1 ≤ C2γ
2/Cnorm.

Now, we can choose C ≥ 2C2, so that γ ≤ ε/C ≤ ε/(2C2). Then

‖A⊤x(new) − b‖(A⊤(T(x(new))Φ′′(x(new)))−1A)−1 ≤ C2γ
2/Cnorm ≤ .5εγ/Cnorm

as desired.

We first bound the effect of the step in Algorithm 1 on the centrality potential.

Lemma 4.39 (First potential drop). Let x(new), s(new), µ be as in Algorithm 1. For sufficiently

large choice of C, we have that for v = si+µτ(x)iφ
′
i(xi)

µτ(x)i

√
φ′′

i (xi)
and α = 1− p we have

E[Ψ(x(new), s(new), µ(new))] ≤ Ψ(x, s, µ) + ψ′(v)⊤g

+ (1− α/4)‖ψ′(v)‖∗τ+∞γ +O(‖ψ′′(v)‖∗τ+∞γ
2).

Proof. We carefully apply Lemma 4.15 for the choices u(j) = µ, τ, p respectively and y as itself.
Note that

‖C−1
E[δc]‖τ+∞ . γ and ‖T−1

E[δτ ]‖τ+∞ . γ

by Lemma 4.31 and Lemma 4.35 respectively. Also, by Lemma 4.27

‖µ−1δµ‖τ+∞ . εγ.

We now bound each term in the conclusion of Lemma 4.15. We start with (13). For the
ψ′(v)⊤Wη term we bound

E[ψ′(v)⊤µ−1Φ′′(x)− 1
2 T−1δy] = ψ′(v)⊤g + ψ′(v)⊤

(
µ−1Φ′′(x)− 1

2 T−1
E[δy]− g

)

≤ ψ′(v)⊤g + ‖ψ′(v)‖∗τ+∞‖µ−1Φ′′(x)− 1
2 T−1

E[δy]− g‖τ+∞

≤ ψ′(v)⊤g + ‖ψ′(v)‖∗τ+∞ (pγ +O(ε+ 1/Cnorm)γ) (24)

≤ ψ′(v)⊤g + (1− α/2)‖ψ′(v)‖∗τ+∞γ

for sufficiently large C. Indeed, let C3 be the universal constant such that the bound in (24) is

ψ′(v)⊤g + ‖ψ′(v)‖∗τ+∞ (pγ + C3(ε+ 1/Cnorm)γ) .
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We can then choose C ≥ 10C3 so that ε = α/C = 1/Cnorm.
For the terms ψ′(v)⊤V(U(j))−1δ(j) we can bound them as for example

∣∣∣ψ′(v)⊤VT−1
E[δτ ]

∣∣∣ . ‖Vψ′(v)‖∗τ+∞‖T−1
E[δτ ]‖τ+∞

. ε‖ψ′(v)‖∗τ+∞γ

≤ α

12
‖ψ′(v)‖∗τ+∞γ

because ‖v‖∞ ≤ ε, and that ε = α/C for a sufficiently large constant C. Similar bounds hold
for the contributions from δc and δµ.

Now we bound (14). First, the contribution of the 16‖Wη‖2ψ′′(v) term is at most

16E
[
‖µ−1Φ′′(x)− 1

2 T−1δy‖2ψ′′(v)

]
. ‖ψ′′(v)‖∗τ+∞‖E[(µ−1Φ′′(x)− 1

2 T−1δy)2]‖τ+∞

. ‖ψ′′(v)‖∗τ+∞γ
2

by Lemma 4.37. In (14) we know that 1 + ‖c‖1 = 4. For the second term in (14) we have

E[‖T−1δτ‖2ψ′′(v)] ≤ ‖ψ′′(v)‖∗τ+∞‖E[(T−1δτ )2]‖τ+∞ . ‖ψ′′(v)‖∗τ+∞γ
2

by Lemma 4.35, and achieve bounds of

E[‖C−1δc‖2ψ′′(v)] ≤ ‖ψ′′(v)‖∗τ+∞‖E[(C−1δc)2]‖τ+∞ . ‖ψ′′(v)‖∗τ+∞γ
2

and

E[‖M−1δµ‖2ψ′′(v)] . ‖ψ′′(v)‖∗τ+∞γ
2

similarly, using Lemma 4.31 and Lemma 4.27. Therefore, the total contribution from (14) and
(15) is . ‖ψ′′(v)‖∗τ+∞γ

2, where we have used that |ψ′(v)| ≤ ψ′′(v) on all coordinates. Summing
all the previous bounds gives the desired result.

Applying Lemma 4.39 allows us to show that the potential is bounded in expectation.

Corollary 4.40. In the notation of Lemma 4.39 we have for sufficiently large C that

E[Ψ(x(new), s(new), µ(new))] ≤
(

1− α2λγ

32C
√
n

)
Ψ(x, s, µ) +m.

Proof. We use [BLN+20, Lemma 4.36] and verify that the guarantees of Lemma 4.39 satisfy
the hypotheses. In that notation, we have that (1− c1) = α/4, δ = γ/10, and c2 as the implicit
constant in the O(‖ψ′′(v)‖∗τ+∞γ

2) of Lemma 4.39. Note that γ = ε
Cλ = α

C2γ . Therefore, for
sufficiently large C we have

2λδ + c2λγ ≤ α/8 = .5(1 − c1).

Now, u = 1
4Cnorm

√
n

= α
4C

√
n

, as ‖~1‖τ+∞ ≤ 2Cnorm(n+ ‖v‖1)
1
2 ≤ 4Cnorm

√
n. Therefore,

.5(1 − c1)λγu =
α2λγ

32C
√
n
.

as desired.

We have the necessary lemmas to show Lemma 4.12.
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Proof of Lemma 4.12. The iteration complexity is clear by the definition of r in Algorithm 1.
The conditions on x(final) follow from Lemma 4.11.

We proceed by induction. (Slack feasibility) follows by the fact that A⊤ds = 0 in Algorithm
1. (Approximate feasibility) follows by induction and Lemma 4.38 with probability at least
1 − m−10 per step. To show the (Potential function) bound, we first verify the base case.
Indeed, because (x(init), s(init), µ) is ε/Cstart-centered, we know that

Ψ(x, s, µ) ≤ m exp(λε/Cstart) ≤ m2

for sufficiently large Cstart compared to C. The inductive step follows from Corollary 4.40,
and that 32Cm

√
n

α2λγ
≤ m2 for sufficiently large m,n. Therefore, by Markov’s inequality, with

probability 1−m−7 we have that E[Ψ(x, s, µ)] ≤ m10 for all steps. Now, as exp(λε) > m10, we
know that (x, s, µ) will be ε-centered.

4.6 Sampling Schemes

In this section, we analyze two sampling schemes. All proofs are deferred to Appendix A.4. The
first samples each coordinate independently, and is efficiently implementable in the graphical
setting.

Lemma 4.41 (Independent sampling). Let vector q ∈ R
m
≥0 satisfy

qi ≥ C2
validγ

−1|(δr)i|+ Csampleσ(T
− 1

2 Φ′′(x)− 1
2 A)i log(m)γ−2

for sufficiently large Csample. Then picking Rii = 1/min(qi, 1) with probability min(qi, 1) and 0
otherwise is a Cvalid-valid (Definition 4.13).

A different sampling scheme is sampling proportional to weights qi – this is useful for general
linear programs, and is implemented in Appendix B.

Lemma 4.42 (Proportional sampling). Let vector q ∈ R
m
≥0 satisfy

qi ≥ |(δr)i|+ σ(T− 1
2 Φ′′(x)− 1

2 A)i.

Let S ≥ ∑
i qi. Let X be a random variable which equals q−1

i ei (ei is the standard basis
vector) with probability qi/S for all i, and ~0 otherwise. For C0 = 100C4

validγ
−2 log(m) let

R = C−1
0

∑C0S
j=1 Xj , where Xj are i.i.d. copies of X. Then R is a Cvalid-valid distribution

(Definition 4.13).

It is convenient for our sampling data structures to sample by the ℓ2 norm in δr, instead
of the ℓ1 norm as described in Lemma 4.41 and 4.42. We can achieve this by the following
observation.

Corollary 4.43 (Sampling by a mixture of ℓ2 and uniform). Let C1, C2, C3 be constants such
that C3 ≥ 4Csample and C1C2 ≥ C4

validγ
−2 and

pi = C1

√
n(δr)2

i + C2/
√
n+ C3τiγ

−2 logm.

Then pi ≥ qi in each of Lemma 4.41 and 4.42. Hence replacing qi with pi in Lemma 4.41 and
4.42 and sampling acoordingly gives a valid distribution (Definition 4.13). Additionally

∑

i∈[m]

pi ≤
(

(C1 + C2)
m√
n

+ C3nγ
−2 logm

)
. (25)
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4.7 Additional Properties of the IPM

Even though random sampling may make the sequence of points x and weights τ change more
rapidly, we can still argue that there is a nearby sequence of points x̂, τ̂ that is more stable. We
start with the stability of x̂. The proofs of the following lemmas are given in Appendix A.5.

Lemma 4.44 (Nearby stability of x). Suppose that R is sampled from a Cvalid-valid distribution
for Cvalid ≥ β−2 log(mT ) where β ∈ (0, γ). Let (x(k), s(k)) for k ∈ [T ] be the sequence of points
found by Algorithm 1. With probability 1 − m−10, there is a sequence of points x̂(k) from
1 ≤ k ≤ T such that

• ‖Φ′′(x(k))
1
2 (x̂(k) − x(k))‖∞ ≤ β/2.

• ‖Φ′′(x̂(k))
1
2 (x̂(k) − x(k))‖∞ ≤ β.

• ‖Φ′′(x(k))
1
2 (x̂(k+1) − x̂(k))‖τ(x̂(k))+∞ ≤ 2γ.

The stable sequence x̂ induces corresponding stable sequences for φ′′ and τ .

Lemma 4.45 (Nearby stability of φ′′ and τ). In the setup of Lemma 4.44, and ŵ(k) =

Φ′′(x̂(k))− 1
2 τ(x̂(k))

1
2

− 1
p , we have the following.

• ‖Φ′′(x̂(k))
1
2 (φ′′(x̂(k))− 1

2 − φ′′(x(k))− 1
2 )‖∞ ≤ β.

• ‖Φ′′(x̂(k))
1
2 (φ′′(x̂(k+1))− 1

2 − φ′′(x̂(k))− 1
2 )‖τ(x̂(k))+∞ . γ.

• ‖T(x̂(k))−1(τ(x̂(k+1))− τ(x̂(k)))‖τ(x̂(k))+∞ . γ.

• ‖(Ŵ(k))−1(ŵ(k+1) − ŵ(k))‖τ(x̂(k))+∞ . γ.

To bound the bit complexity that our algorithms must maintain throughout, we show that
the Hessian of points x encountered along the central path is bounded by polynomial factors in
n,m, and µ(final)/µ(init).

Lemma 4.46 (Parameter changes along central path). For A ∈ R
m×n, b ∈ R

n, c ∈ R
m and

ℓ, u ∈ R
m assume that the point x(init) = (ℓ+ u)/2 is feasible, i.e. A⊤x(init) = b. Let W be the

ratio of the largest to smallest entry of φ′′(x(init))1/2, and let W ′ be the ratio of the largest to
smallest entry of φ′′(x)1/2 encountered in Algorithm 2. Then

logW ′ = Õ
(
logW + log(1/µ(final)) + log ‖c‖∞

)
.

5 Maintaining Regularized Lewis-Weights

In this section we show how to efficiently maintain an approximation of the regularized ℓp-Lewis
weight of GA under updates to G = Diag(g) for p ∈ [1/2, 2). Lewis weights are a generalization
of leverage scores, i.e. for p = 2 the two concepts are identical. Correspondingly, we obtain
our regularized Lewis weight data structure by reducing to a regularized leverage score data
structure presented in Appendix C. Our exact result for maintaining regularized Lewis weights
is as follows.

Theorem 5.1. Assume there exists a (P, c,Q)-HeavyHitter data structure (Definition 3.1)
and let z ≥ n ·c/‖c‖1 +n/m. Let τ(GA) ∈ R

m such that τ(GA) = σ(τ(GA)1/2−1/pGA)+z for
p ∈ (0, 2], i.e. τ(GA) are regularized Lewis weights of GA. There exists a Monte-Carlo data-
structure (Algorithm 3), that works against an adaptive adversary, with the following procedures:

• Initialize(A ∈ R
m×n, g ∈ R

m
≥0, z ∈ R

m
>0, p ∈ [1/2, 2), δ > 1, ǫ ∈ (0, 1

210δ·logn ]): The

data structure initializes for the given matrix A ∈ R
m×n, scaling g ∈ R

m
≥0, regularization

parameter z ∈ R
m, Lewis weight parameter p ∈ (0, 2], and target accuracy ǫ ∈ (0, 1

210δ·logn ].
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The parameter δ is a bound on how much the vector g is allowed to change per iteration:
Let g(t) be the vector g during the t-th call to Query (with g(0) during Initialization),
then we assume that g(t) ≈δǫ g(t−1) for all t.

• Scale(i ∈ [m], b ∈ R≥0): Sets gi ← b.

• Query(): W.h.p. in n the data structure outputs a vector τ ∈ R
m with the property

τ ≈ǫ σ(τ 1/2−1/pGA) + z and therefore τ ≈ǫ τ(GA). The vector τ is returned as a pointer
and the data structure also returns a set I ⊂ [m] of indices i where τ i has changed compared
to the last call to Query.

The amortized complexities of this data structure depends on the parameters P, c,Q of
the HeavyHitter data structure. Further, they require that some additional properties are
satisfied. These properties and the resulting amortized complexities are stated in Theorem 5.2.

Theorem 5.2. Consider the data structure of Theorem 5.1 (Algorithm 3) and let P, c,Q be the
parameters of the HeavyHitter data structure (Definition 3.1). Let g(t) be the vectors g in
Theorem 5.1 during the t-th call to query (and t = 0 during the initialization) and let τ (t) be
the returned vector. Further, assume the following:

1. For any given W ∈ R
m
≥0 we can solve linear systems in (A⊤WA)−1 with ǫ/(64n) accuracy

(i.e. for input b we can output Hb for some H ≈ǫ/(64n) (A⊤WA)−1) in Õ(P + Ψ +
nnz(WA)) time. Further, if

A⊤WA ≈1/ logn A⊤(T
(t−1)

)1−2/p(G(t))2A

for some t, then the required time is only Õ(Ψ + nnz(WA)).

2. There exists a sequence g̃(t) such that for all t

g(t) ∈ (1± 1/(105 log n)) g̃(t) (26)

‖(w̃(t))−1(w̃(t) − w̃(t+1))‖
τ(G̃(t)A)

= O(1) (27)

where we define w̃(t) := τ(G̃(t)A)1/2−1/pg̃(t).

Then the following time complexities hold:

• Initialize takes Õ(P + ǫ−2(Ψ + nnz(A))) time.

• Scale(i, ·) takes Õ( ‖c‖1

nǫO(log δ) τ(GA)i) amortized time.

• Query takes Õ(Ψǫ−2 log3 δ + ǫ−4n(maxi nnz(ai)) log5 δ + ǫ−6
√
P‖c‖1/n log4 δ + Q log δ)

amortized time.

The idea of the data structure (i.e. the reduction to leverage scores) is as follows. It is known
that the map w 7→ (w2/p−1σ(W1/2−1/pA))p/2 moves w closer to the Lewis weight τ(A) [CP15].
We show in Lemma 5.3 that the same is true for the regularized Lewis weight, even when using
only an approximation σ ≈ σ(W1/2−1/pA) + z. The proof follows directly from the techniques
in [CP15], and we state the proof in Section 5.1 for completeness sake.

Lemma 5.3. Let w, z, σ ∈ R
m
>0, ǫ, γ > 0 and p ∈ (0, 2) with w ≈ǫ σ(W1/2−1/pA) + z and

σ ≈γ σ(W1/2−1/pA) + z. Define w′ = (w2/p−1σ)p/2, then w′ ≈(ǫ+γ)|1−p/2|+γ σ(W′1/2−1/pA)
and w ≈(ǫ+γ)p/2 w

′.

We leverage Lemma 5.3 critically in our data structure. To illustrate this, consider a call to
Query, et g be the current state of vector g , and let g′ be the state of g during the previous call
to Query. Further, assume that the previous call to Query returned w ≈ǫ σ(W1/2−1/pG′A)+
z. The assumption g ≈δǫ g′ (see Theorem 5.1) then implies then w ≈5δǫ σ(W1/2−1/pGA) + z.
Consequently, our task is simply to counter-act this decrease in approximation quality.
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For v(1) := w, σ(i) ≈ σ((V(i))1/2−1/pGA) + z, and v(i+1) = ((v(i))2/p−1σ(i))p/2, we have

v(L) ≈ǫ σ((V
(L)

)1/2−1/pGA) for some L = O(log δ). Thus we can maintain an (1 ± ǫ)-
approximation of the regularized Lewis weight by maintaining L many leverage scores via the
data structure of Theorem C.1. A formal specification of this algorithm is given in Algorithm 3,
a proof of correctness is given in Lemma 5.4, and the complexity analysis is given in Section 5.2.

Algorithm 3: Algorithm of Theorem 5.1

1 members
2 Dj for j = 1, ..., O(1/p) // Data structure of Theorem C.1

3 v(j) ∈ R
m for j = 1, ..., O(1/p)

4 g ∈ R
m, p ∈ [1/2, 2), L ∈ N, ǫ > 0

5 procedure
Initialize(A ∈ R

m×n, g ∈ R
m, z ∈ R

m, p ∈ [1/2, 2), δ > 1, ǫ ∈ (0, 1/(210δ log n)])

6 Compute v(1) with v(1) ≈ǫ σ((V(1))1/2−1/pGA) + z
7 L← ⌈(log4/3(200δ) + 1⌉
8 for j = 1, ..., L do

9 Dj.Initialize(A, (V(j))1/2−1/pg, z, ǫ/(40L))
10 v(j+1) ← ((v(j))2/p−1Dj .Query())p/2

11 g ← g, p← p, ǫ← ǫ

12 procedure Scale(i, b)
13 gi ← b

14 Dj .Scale(i, (v(j)
i )1/2−1/pb) for j = 1, ..., L

15 procedure Query()
// Maintain v(j+1) = ((v(j))2/p−1σ(j))p/2 for j = 1, ..., L − 1

16 for j = 1, ..., L − 1 do

17 I
(j)
σ , σ(j) ← Dj .Query()

18 v
(j+1)
i ← ((v(j)

i )2/p−1σ
(j)
i )p/2 for i ∈ I(j)

σ

19 Dj+1.Scale(i, (v(j+1)
i )1/2−1/pgi) for i ∈ I(j)

σ

// Maintain v
(1)
i ≈ǫ τ(GA)i for all i ∈ [m],

// but update only if τ(GA)i changed sufficiently.

20 for i ∈ I(L−1)
σ with v

(L)
i 6≈ǫ/10 v

(1)
i do

21 v
(1)
i ← v

(L)
i

22 D1.Scale(i, (v(1)
i )1/2−1/pgi)

23 return I
(L)
σ , v(1)

5.1 Correctness

We start by proving Lemma 5.3. We then show in Lemma 5.4 that Algorithm 3 indeed maintains
an exp(±ǫ)-approximation of the regularized Lewis weight.

Proof of Lemma 5.3. We first show that w and w′ are close to each other. By the definition of
w′

w′

w
=

(w2/p−1σ)p/2

w
=
(
σ

w

)p/2

.

Thus by w ≈ǫ σ(W1/2−1/pA) + z ≈γ σ we have

w′ ≈(ǫ+γ)p/2 w. (28)
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Fix any i ∈ [m]. By definition of leverage score we have that

σ(W1/2−1/pA)i + zi = w
1−2/p
i (A(A⊤W1−2/pA)−1A⊤)i,i + zi

This allows us to transform w′ as follows

[w′
i]

2/p = w
2/p−1
i σi

≈γ w2/p−1
i (σ(W1/2−1/pA)i + zi)

= (A(A⊤W1−2/pA)−1A⊤)i,i + w
2/p−1
i zi (29)

At last, we analyze the approximation ratio of w′ to its leverage score

σ(W′1/2−1/pA)i + zi
w′
i

=
w

′1−2/p
i (A(A⊤W′1−2/pA)−1A⊤)i,i + zi

w′
i

≈γ
(A(A⊤W′1−2/pA)−1A⊤)i,i + w

′2/p−1
i zi

(A(A⊤W1−2/pA)−1A⊤)i,i + w
2/p−1
i zi

≈(ǫ+γ)(p/2)|2/p−1|
(A(A⊤W′1−2/pA)−1A⊤)i,i + w

′2/p−1
i zi

(A(A⊤W′1−2/pA)−1A⊤)i,i + w
′2/p−1
i zi

= 1

where in step 2 we used (29) and in step 3 we used (28). Thus

w′
i ≈(ǫ+γ)|1−p/2|+γ σ(W′1/2−1/pA)i + zi.

Next we show that our sequence of contractions v(1), v(2), ..., improve the approximation
quality sufficiently to counter-act the impact of changing g.

Lemma 5.4. Let γ = ǫ/(40L) be the accuracy used for the leverage score data structures in
Line 9 of Algorithm 3. After each call to Query we have

v(i) ≈5δǫ(3/4)i−1+γi σ((V(i))1/2−1/pGA) + z

for i > 1 and v(1) ≈ǫ σ((V
(1)

)1/2−1/pGA) + z.

Proof. We start the proof by induction over the number of calls to Query. Directly af-
ter the initialization (i.e. zero calls to Query) we have v(1) ≈ǫ σ((V(1))1/2−1/pGA) + z by
Line 6. Further, each v(j+1) for j ≥ 1 is defined via v(j+1) = ((v(j))2/p−1σ(j))p/2 where

σ(j) ≈γ σ((V
(j)

)1/2−1/pGA) + z is the output of the leverage score data structure Dj . Thus by

Lemma 5.3 we have v(j) ≈
ǫ(1−p/2)j−1+γ

∑j−1

i=0
(1−p/2)i σ((V

(j)
)1/2−1/pGA)+z. We can bound this

approximation quality via ǫ(1− p/2)j−1 + γ
∑j−1
i=0 (1− p/2)i ≤ ǫ(3/4)j−1jγ since p ∈ [1/2, 2).

Next, we consider a call to Query. Note that at the start of executing Query, we have
v(1) ≈5δǫ σ((V(1))1/2−1/pGA)+z, by induction hypothesis and because g can change by at most
a exp(±δǫ) factor (see Initialize in Theorem 5.1).

By the recursive definition of the v(j) we then have

v(j) ≈5δǫ(3/4)j−1+γj σ((V(j))1/2−1/pGA)

for j > 1 at the end of Query. For L = ⌈(log4/3(200δ) + 1⌉ and γ ≤ ǫ/(40L) we have

5δǫ(4/3)L−1 + γL ≤ 5δǫ
200δ

+ ǫ/40 ≤ ǫ/20.
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Thus v(L) ≈ǫ/20 σ((V(L))1/2−1/pGA) + z.
The vector v(1) is modified again at the end of Query in Line 21. This update to v(1) is

only performed, if v(L)
i and v(1) differ by at least an exp(±ǫ/10) factor (see Line 20). Thus

v(1) ≈ǫ/10 v
(L) ≈ǫ/20 σ((V

(L)
)1/2−1/pGA) + z ≈6ǫ/10 σ((V

(1)
)1/2−1/pGA) + z (30)

where we used p ≤ 1/2. In summary, v(1) ≈ǫ σ((V
(1)

)1/2−1/pGA) + z.

As the data structure returns v := v(1) we have v ≈ǫ τ(V1/2−1/p
GA) + z, which concludes

the proof of Theorem 5.1. Next, we analyze the complexity of the data structure in Section 5.2.

5.2 Complexity

The main difficulty in analyzing the complexity of our data structure is to bound the complexity
impact of all the calls to Dj .Scale that occur during a call to Query. To bound this complexity
we the following partial results:

First, we use that σ(L) is a good approximation of the exact regularized Lewis weight τ(GA).
Thus Line 22 is only executed for i, where τ(GA)i changed by a sufficiently large amount,
because of the condition in Line 20. Thus we can bound the total complexity impact of all calls
to D1.Scale(i, ·) for some i via the stability property (27).

Second, to bound how often Dj+1.Scale(i, ·) is called for j > 0, note that we perform such

a call whenever the output σ(j)
i of the leverage score data structure Dj (Theorem C.1) changes.

Such a bound on how often the output changes is given by Lemma C.12 which bounds the
number of changes to the output σ(j) relative to the number of changes to the input, i.e. how
often Dj .Scale was called. By propagating, we are able to bound the number of calls to any
Dj+1.Scale relative to the number of calls to D1.Scale.

At last, we require complexity bounds for the data structure Dj that maintain leverage
scores. The complexities are given in Theorem C.2.

We start the formal proof of the complexity analysis by showing in Lemma 5.5 that an ap-
proximate regularized Lewis weight w ≈ǫ σ(W1/2−1/pA)+z is also close to the exact regularized
Lewis weight w ≈ǫ τ(A). The following Lemma 5.5 follows directly from techniques in [CP15].

Lemma 5.5. For any w, z ∈ R
m
>0, ǫ > 0 and p ∈ (0, 2] with w ≈ǫ σ(W1/2−1/pA) + z we have

w ≈ǫ τ(A).

Proof. Define w(0) := w and w(k+1) = ((w(k))2/p−1(σ((W(k))1/2−1/pA) + z))p/2. By Lemma 5.3
we have limk→∞w(k) = τ(A). Further we have w(k+1) ≈ǫ|1−p/2|kp/2 w

(k). Thus

τ(A) = lim
k→∞

w(k) ≈ǫ(p/2)
∑

i≥0
|1−p/2|i w

(0),

where ǫ(p/2)
∑
i≥0 |1− p/2|i = ǫ(p/2)/(1 − |1− p/2|) = ǫ for p ≤ 2.

The input to the leverage score data structures Dj is the matrix (V
(j)

)1/2−1/pGA, and the
complexity bounds of the leverage score data structure as stated in Theorem C.2 only hold,
if Condition 1 and 2 (as stated in Theorem C.2) are satisfied. Lemma 5.6 shows that these
requirements hold, if Condition 1 and 2 of Theorem 5.2 are satisfied.

Lemma 5.6. Let (v(j))(t) be the vector v(j) when performing the t + 1-th call to Dj .Query()
(i.e. during the t-th call to Query of Algorithm 3). Let g(t) be the vector g during the t-th call
to Query. Let g̃(t) be the vector assumed by (26) and let w̃(t) := τ(G̃(t)A)g̃(t). Then we have

((V
(j)

)(t))1/2−1/pg(t) ∈ (1± 1/(64 log n))W̃(t),
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i.e. Condition 2 of Theorem C.2 is satisfied.
Further, if Condition 1 of Theorem 5.1 holds true, then Condition 1 of Theorem C.2 holds

true for all instances D1, ...,DL of Theorem C.1.

Proof. We start by analyzing the sequence w̃(0), w̃(1), ....

Sequence By Lemma 5.4 we have that

(v(j))(t) ≈6δǫ σ(((V(j))(t))1/2−1/pG(t)A) + z

for all j = 1, ..., L. Thus by Lemma 5.5, p ∈ [1/2, 2], and assumption ǫ ≤ 1/(210δ log n) (see
Theorem 5.1) we have

((v(j))(t))1/2−1/p ≈1/(96 logn) (τ(G(t)A))1/2−1/p.

Via (26) and 1/2 − 1/p ≤ 1/4 we have τ(G(t)A)1/2−1/p ≈1/(105 logn) τ(G̃(t)A)1/2−1/p which
results in

((V
(j)

)(t))1/2−1/pg(t) ∈ (1 ± 1/(64 log n))w̃(t).

Solvers During the t-th call to Query, when the algorithms calls Dj .Query() in Line 17, it

uses (V
(j)

)1/2−1/pg(t) as scale-vector. Here v(1) is exactly the vector returned by the previous
call to Query. Thus if we have a solver as assumed in Condition 1 of Theorem 5.1, then we
also have a solver as assumed in Condition 1 of Theorem C.2 for instance D1 of Theorem C.1.

For the other instances D2, ...,DL consider the following. By Lemma 5.4 we have for j > 1
that

v(j) ≈6δǫ σ((V
(j)

)1/2−1/pG(t)A) + z.

As g changes by at most an exp(±ǫδ)-factor, we have

v(j) ≈6δǫ τ(G(t)A) ≈4δǫ τ(G(t−1)A) ≈ǫ v(1).

Thus each v(j) ≈11δǫ v
(1), and by p ∈ [1/2, 2] we have

A⊤(V
(j)

)1−2/p(G(t))2A ≈33δǫ A⊤(V
(j)

)1−2/p(G(t))2A.

Note that by the upper bound on ǫ in Theorem 5.1, we have 33δǫ + 1/(64 log n) < 1/ log n, so
if we have a solver that satisfies Condition 1 of Theorem 5.1, then we also have a solver that
satisfies Condition 1 of Theorem C.2 for instance Dj of Theorem C.1.

We can now analyze the amortized complexity of Theorem 5.1, i.e. prove Theorem 5.2. This
is done by analyzing how often Dj .Scale and Dj .Query (instances of Theorem C.1) are called.

Proof of Theorem 5.2. To bound the complexity of our regularized Lewis weight data structure
Algorithm 3 we first bound the total time complexity after T iterations and then charge some
of the terms to Scale and Query.

For that we will first state the complexities for the internal data structures Dj used by
Algorithm 3.
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Complexity of Leverage-Score Data Structures Our regularized Lewis weight data
structure (Algorithm 3) uses L instances D1, ...,DL of Theorem C.1. The complexity bounds
of Theorem C.1 hold, if condition (89) and (90) are satisfied. These conditions are satisfied by
Lemma 5.6 and assumption (27).

Since the conditions are satisfied, a call to Dj .Scale(i, ·) has amortized cost (by Theo-
rem C.1)

Õ

(
‖c‖1 log4 δ

nǫ4
σ((V(j))1/2−1/pGA)i +

ci log2 δ

ǫ2

)
= Õ

(
‖c‖1 log4 δ

nǫ4
τ(GA)i

)

because we use an accuracy parameter of ǫ/(40L) = Ω(ǫ/ log δ) in the initialization of each Dj,

and since τ(GA) ≈ v(j) ≈ σ((V
(j)

)1/2−1/pGA) + z by Lemma 5.4 and Lemma 5.5, and because
z ≥ n · c/‖c‖1. Similarly, a call to Dj.Query() has amortized cost

Õ

(
Ψǫ−2 log2 δ + ǫ−4n(max

i
nnz(ai)) log4 δ + ǫ−2

√
P‖c‖1/n log2 δ +Q

)
.

Total time complexity We now bound the total time spent after T iterations. We will then
later charge some of the cost as amortized cost to Scale and Query.

When calling Scale(i, ·), the data structure calls Dj.Scale(i, ·) for j = 1, ..., L with L =
O(log δ). Thus we incur the total cost

Õ




T∑

t=1

∑

i∈[m]

(
‖c‖1 log5 δ

nǫ4
τ(G(t−1)A)i

)
1
g

(t)
i 6=g(t−1)

i


 . (31)

When calling Query, the function Dj.Query() is called for every j = 1, ..., L with L =
O(log δ). Thus we must add

Õ

(
T ·
(

Ψǫ−2 log3 δ + ǫ−4n(max
i

nnz(ai)) log5 δ + ǫ−2
√
P‖c‖1/n log3 δ +Q log δ

))
(32)

to the total time complexity.
Further, the data structure calls D1.Scale(i, ·) in Line 22. To bound that complexity

impact, we observe that D1.Scale(i, ·) is only called whenever v(L) changed by at least an
exp(ǫ/10)-factor (see Line 20). Since

v
(L)
i ≈ǫ/20 τ(G)i,

this means that v(1)
i is only updated if τ(G)i changed at least an exp(ǫ/10)-factor. By (26) this

means τ(G̃)i must have changed by at least an exp(ǫ/2000)-factor. Using the fact that τ(G̃)
changes slowly (27) we can thus bound

T∑

t=1

∑

i∈[m]

τ(G(t)A)i1(v
(1)
i )(t) 6=(v

(1)
i )(t−1) = O

(
T 2/ǫ2

)
.

The time complexity incurred by calling D1.Scale(i, ·) in Line 22 is thus bounded by

Õ




T∑

t=1

∑

i∈[m]

(
‖c‖1 log4 δ

nǫ4
τ(G(t−1)A)i

)
1

(v
(1)
i )(t) 6=(v

(1)
i )(t−1)


 ≤ Õ

(
‖c‖1 log4 δ

nǫ6
T 2

)
. (33)

At last, we are left with bounding the impact of calling Dj .Scale for j > 1 in Line 19. Note

that Dj .Scale(i, ·) is called whenever v(j−1)
i changed. By Lemma C.12 we can bound for every

j how often often any entry of v(j) changes as follows

T∑

t=1

∑

i∈[m]

τ(G(t)A)i1(v
(j)
i )(t) 6=(v

(j)
i )(t−1)
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≤ O


ǫ−1

T∑

t=1

∑

i∈[m]

τ(G(t)A)i(1((v
(j−1)
i )(t) 6=(v

(j−1)
i )(t−1) + 1

g
(t)
i 6=g(t−1)

i

)




≤ O




j∑

i=1

ǫ−i
T∑

t=1

∑

i∈[m]

τ(G(t)A)i1g(t)
i 6=g(t−1)

i




≤ O


ǫ−j

T∑

t=1

∑

i∈[m]

τ(G(t)A)i1g(t)
i 6=g(t−1)

i




where the second step comes from repeatedly applying the first step. Finally, with j ≤ L =
O(log δ) this leads to a complexity cost of

Õ


 ‖c‖1
nǫO(log δ)

·



T∑

t=1

∑

i∈[m]

τ(G(t)A)i1g(t)
i 6=g(t−1)

i




 . (34)

In summary, the total cost after T iterations is bounded by

Õ
(
T ·
(

Ψǫ−2 log3 δ + ǫ−4n(max
i

nnz(ai)) log5 δ + ǫ−2
√
P‖c‖1/n log3 δ +Q log δ

)

︸ ︷︷ ︸
(32)

+
‖c‖1 log4 δ

nǫ6
T 2

︸ ︷︷ ︸
(33)

+
‖c‖1

nǫO(log δ)
·



T∑

t=1

∑

i∈[m]

τ(G(t)A)i1g(t)
i 6=g(t−1)

i




︸ ︷︷ ︸
(31),(34)

)

Amortized Cost We previously bounded the total time spent after T iterations, we now
charge some of the terms as amortized cost to Scale and Query.

The amortized cost of Scale is

Õ(
‖c‖1

nǫO(log δ)
τ(GA)i)

which covers the terms depending on 1
g

(t)
i 6=g(t−1)

i

in (31) and (34). The amortized cost of Query

is

Õ(
‖c‖1 log4 δ

nǫ6
T + Ψǫ−2 log3 δ + ǫ−4n(max

i
nnz(ai)) log5 δ + ǫ−2

√
P‖c‖1/n log3 δ +Q log δ)

= Õ(Ψǫ−2 log3 δ + ǫ−4n(max
i

nnz(ai)) log5 δ + ǫ−6
√
P‖c‖1/n log4 δ +Q log δ)

which covers the remaining terms in (32), and (33), when we bound T ≤
√
Pn/‖c‖1 by restarting

the data structure after
√
Pn/‖c‖1 calls to Query. (The reinitialization cost every T iterations

is subsumed by the terms above.)

Initialization The initialization requires us to compute v(1). This is done by performing the
contraction w ← (w2/p−1(σ(WGA) + z)2/p a total of O(log|1−p/2| ǫ

−1) = O(log ǫ−1) = Õ(1)

times. So one could compute this contraction by just initializing Õ(1) instances of the leverage
score data structure (Theorem C.1) to compute the leverage scores required for the contraction,
and then immediately discarding these instances again. The cost for computing this initial
regularized Lewis weight v(1) is subsumed by initializing the data structures Dj for j = 1, ..., L.
Initializing these data structures requires Õ(P log δ + (Ψ + nnz(A))ǫ−2 log3 δ) time.
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6 Path Following

In this section we show how to efficiently implement our IPM which was given by Algorithms 1
and 2 in Section 4. Note that Algorithms 1 and 2 only specify which steps must be performed,
but not how they must be implemented. For example Line 5 of Algorithm 1 specifies that
one should pick an approximation x of the primal solution x, but it is not specified how this
approximation must be obtained. Here we show how all the steps of Algorithm 2 can be
performed efficiently, if we assume the existence of certain data structures.

These data structure may differ depending on the application, for example the HeavyHit-
ter-problem (Definition 3.1) can be solved more efficiently if the LP is a min-cost flow instance
(Lemma F.1) than when the problem is a general LP (Lemma B.1). However, while these data
structures have different complexities, they implement the same interfaces (e.g. Definition 3.1).
Thus the correctness proof, i.e. showing that Algorithm 2 can be implemented by using these
data structures, is the same for min-cost flow and for general LPs. This is why we perform this
proof in a generalized way. More accurately, we can show the following theorem.

Theorem 6.1. Assume there exists a (P, c,Q)-HeavyHitter (Definition 3.1), a (P, c,Q)-
InverseMaintenance (Definition 6.2), and a (P, c,Q)-HeavySampler (Definition 6.3). Then
we can implement the IPM given by Algorithm 4 (PathFollowing, Lemma 4.12) such that
the total time of PathFollowing can be bounded by

Õ

((√
P‖c‖1 +

√
n

(
Q+ n ·max

i
nnz(ai)

))
log

µ(init)

µ(end)

)
.

The implementation is given by Algorithm 4 and Algorithm 5.

In Section 7 we state the resulting complexity when we use data structures optimized for
the min-cost flow problem. Data structures for general LPs are a bit slower and the resulting
LP solver and their complexity is stated in Section 8.

We start proving Theorem 6.1 by giving a general outline of our implementation in Sec-
tion 6.1 and listing the assumed data structures that we require. In Section 6.2 we then show
that Algorithm 4 and Algorithm 5 do indeed implement the IPM given by Algorithm 4. In
Section 6.3 we analyze the resulting complexity, which concludes the proof of Theorem 6.1.

6.1 Outline

Recall that our IPM consists of Algorithm 2 which is esssentially a while-loop that repeatedly
calls Algorithm 1. Consequently, we focus on the implementation of Algorithm 1. In order to
implement Algorithm 1 (Line 5) we must maintain approximations x and τ that satisfy Invariant
4.10. Here τ is an approximation of the regularized Lewis weight τ(x) and will be maintained
via the data structure of Theorem 5.1 presented in Section 5. When D(τ) is an instance of
the Lewis weight data structure (Theorem 5.1), then all we have to do is call D(τ).Scale(i, xi)
whenever some entry xi changes, and then D(τ).Query() will return the desired approximation
τ .

We now explain how to obtain the approximation x via the following data structure:

Theorem D.1 (Primal/Gradient Maintenance). There exists a deterministic data-structure
that supports the following operations

• Initialize (A ∈ R
m×n, x(init) ∈ R

m, g ∈ R
m, τ̃ ∈ R

m, z ∈ R
m, w ∈ [0, 1]m, ǫ > 0): The

data-structure preprocesses the given matrix A ∈ R
m×n, vectors x(init), g, τ̃ , z ∈ R

m, and
the accuracy parameters w ∈ [0, 1]m and ǫ > 0 in Õ(nnz(A)) time. We denote G the
diagonal matrix Diag(g). The data-structure assumes 0.5 ≤ z ≤ 2 and n/m ≤ τ̃ ≤ 2.

• Update(i ∈ [m], a ∈ R, b ∈ R, c ∈ R): Sets gi ← a, τ̃i ← b and zi ← c in O(nnz(ai)+log n)
time. The data-structure assumes 0.5 ≤ b ≤ 2 and n/m ≤ c ≤ 2.
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• SetAccuracy(i, δ) Sets wi ← δ in O(log n) time.

• QueryProduct(): Returns A⊤G∇Ψ(z)♭(τ ) ∈ R
n for some τ ∈ R

m, z ∈ R
m with τ ≈ǫ τ̃

and ‖z − z‖∞ ≤ ǫ, where

x♭(τ ) := argmax‖w‖τ+∞≤1〈x,w〉.

Every call to QueryProduct must be followed by a call to QuerySum, and we bound
their complexity together (see QuerySum).

• QuerySum(h ∈ R
m): Let v(ℓ) be the vector G∇Ψ(z)♭(τ ) used for the result of the ℓ-th call

to QueryProduct. Let h(ℓ) be the input vector h given to the ℓ-th call to QuerySum.
We define

x(t) := x(init) +
t∑

ℓ=1

(
v(ℓ) + h(ℓ)

)
.

Then the t-th call to QuerySum returns a vector x ∈ R
m with

‖w−1(x− x(t))‖∞ ≤ ǫ.

Assuming the input vector h is given in a sparse representation (e.g. a list of non-zero
entries), then after T calls to QuerySum and QueryProduct the total time for all calls
together is bounded by

O

(
Tnǫ−2 log n+ log n ·

T∑

ℓ=0

‖h(ℓ)‖0 + T log n ·
T∑

ℓ=1

‖v(ℓ)/w(ℓ−1)‖22/ǫ2
)

The output x ∈ R
m is returned in a compact representation to reduce the size. In particular,

the data-structure returns a pointer to x and a set J ⊂ [m] of indices which specifies which
entries of x have changed between the current and previous call to QuerySum.

• ComputeExactSum(): Returns the exact x(t) in O(m log n) time.

• Potential(): Returns Ψ(z) =
∑
i cosh(λzi) in O(1) time for some z with ‖z − z‖∞ ≤ ǫ.

A variant of this data structure was proven in [BLN+20] to obtain an element-wise x ≈ǫ x
approximation. Here we instead need to obtain ‖Φ′′(x)1/2(x−x)‖∞ ≤ ǫ. We show in Appendix D
how Theorem D.1 is obtained via a small modification to data structure of [BLN+20].

We now explain how Theorem D.1 can be used to maintain the approximate x. Note that
by Line 12 of the IPM (Algorithm 1) the vector x changes via

x(new) ← x+ Φ′′(x)−1/2(γ∇Ψ(y)♭(τ ) −Rδr).

Here Rδr can be written as some vector h and Φ′′(x)−1/2γ∇Ψ(y)♭(τ ) can be written as v :=
G∇Ψ(y)♭(τ ) for G := γΦ′′(x)−1/2, so the update to x becomes

x(new) ← x+ v + h.

Note that an approximation of such x satisfying Invariant 4.10 is returned by QuerySum of
Theorem D.1 when also calling SetAccuracy appropriately.

Line 6 of the IPM (Algorithm 1) requires an approximation y of

y =
s+ µτφ′(x)
µτ
√
φ′′(x)

.

Such an approximation can be obtained by having a vector s with small enough ‖(µτ
√
φ′′(x))−1(s−

s)‖∞ and then replacing all τ, s, x in the definition of y by the approximate τ , y, x. This is proven
in Lemma 6.6. The required approximation s can be obtained via the following data structure:
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Theorem E.1 (Dual Maintenance). Assuming a (P, z,Q)-HeavyHitter data structure as in
Definition 3.1, there exists a data-structure (Algorithm 9) that supports the following operations.
Note in the bounds we use Õ to hide polynomials in log(nP/‖z‖1) in addition to log n factors,
and in our instantiations of the data structure the former factor will be bounded by log n.

• Initialize(A ∈ R
m×n, v(init) ∈ R

m, w(init) ∈ [0, 1]m, ǫ ∈ [0, 1]) The data-structure pre-
processes the given matrix A ∈ R

m×n, the vector v(init) ∈ R
m and accuracy vector 0 <

w(init) ≤ 1 in Õ(P ) time.

• SetAccuracy(i, δ): Sets wi ← δ in Õ(zi) amortized time.

• Add(h ∈ R
n): Suppose this is the t-th time the Add operations is called, and let h(k) be

the vector h given when the Add operation is called for the kth time. Define v(t) ∈ R
m to

be the vector

v(t) = v(init) + A
t∑

k=1

h(k).

Then the data structure returns a vector v(t) ∈ Rm such that ‖w−1(v(t) − v(t))‖∞ ≤ ǫ.
The output will be in a compact representation to reduce the size. In particular, the data-

structure returns a pointer to v and a set I ⊂ [m] of indices i where v
(t)
i is changed compared

to v
(t−1)
i , i.e., the result of the previous call to Add. The amortized time for the t-th call

to Add is

Õ

(
Q+

√
nP/‖z‖1 · ‖(v(t) − v(t−1))/w(t)‖2zǫ−2 +

√
‖z‖1P/n

)
.

• ComputeExact(): Returns v(t) ∈ R
m in O(nnz(A)) time, where t is the number of times

Add is called so far (i.e., v(t) is the state of the exact vector v after the most recent call
to Add).

A variant of Theorem E.1 was proven in [BLN+20] where s ≈ǫ s was maintained. Since
we need a slightly different type of approximation for s, we added the SetAccuracy method.
This is only small modification and the correctness is proven in Appendix E.

By Line 13 the exact s is defined via

s(new) ← s+ µTΦ′′(x)1/2δ1 = s+ Ah

for some vector h. This vector h is exactly the input given to Add of Theorem E.1, so we can
use the data structure to maintain an approximation s of s.

Line 7 of the IPM (Algorithm 1) requires g = −γ∇Ψ(y)♭(τ ) which in the next line is multi-
plied by AΦ′′(x)−1/2. This product is can be obtained by QueryProduct of Theorem D.1.

Line 8 asks us to approximately solve a linear system in A⊤TΦ′′(x)−1A which can be done
via the following data structure:

Definition 6.2. We call a data structure a (P, c,Ψ)-InverseMaintenance, if it supports the
following operations:

• Initialize(A, v, σ) Initializes in O(P ) time for σ ≥ 1
2σ(V1/2A) and ‖σ‖1 = O(n).

• Update(i, a, b) Set vi ← a and σi ← b in O(ci) amortized time.

• Solve(v, b, ǫ) Assume σ ≥ 1/2σ(V1/2A) and the given v satisfies A⊤VA ≈1/2 A⊤VA.

Then Solve returns H−1b for H ≈ǫ A⊤VA in O(Q + nnz(V,A) log ǫ−1) time. Further-
more, for the same v and ǫ, the algorithm uses the same H.

For the complexity bounds one may further assume the following stability assumption: Let
v(1), v(2), . . . be the sequence of inputs given to Solve, then there exists a sequence ṽ(1), ṽ(2), . . .
such that for all t > 0

v(t) ∈ (1± 1/(100 log n)) ṽ(t) and ‖(ṽ(t))−1(ṽ(t) − ṽ(t+1))‖σ = O(1)
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At last, we are only left with implementing Line 11 of the IPM (Algorithm 1), because all
further lines (which update x and s) were already covered when we discussed how to maintain x
and s. Line 11 wants us to sample a random diagonal matrix R according to some distribution
that satisfied Definition 4.13. This can be done by assuming the existence of the following data
structure:

Definition 6.3. We call a data structure a (P, c,Q)-HeavySampler data structure if it sup-
ports the following operations:

• Initialize(A ∈ R
m×n, g ∈ R

m
>0, τ ∈ R

m
>0) Let A be a matrix with ci ≥ nnz(ai). The data

structure initializes in O(P ) time.

• Scale(i, a, b): Sets gi ← a and τ i ← b in O(ci) amortized time.

• Sample(h ∈ R
m): Returns a random diagonal matrix R ∈ R

m×m that satisfies Defini-
tion 4.13 for δr = GAh with ‖δr‖2 ≤ m/n and τ ≈1/2 σ(A) in O(Q) expected time.
Further we have E[nnz(RA)] = O(Q).

In summary, we can implement all steps of IPM (Algorithm 1) efficiently via the assumed
data structures. While so far we only outlined how to use these data structures, Section 6.2
proves in Lemma 6.4 the correctness of these claims in detail. At last, Section 6.3 analyses
the resulting complexity in Lemma 6.7. Lemma 6.4 and Lemma 6.7 together form the proof of
Theorem 6.1.

6.2 Correctness

We now proceed with the correctness proof of Theorem 6.1 by proving in Lemma 6.4 that
Algorithm 4 and Algorithm 5 do indeed implement our IPM.

Lemma 6.4. Algorithm 5 (ShortStep) and Algorithm 4 (PathFollowing) implement Al-
gorithm 1 (ShortStep) and Algorithm 2 (PathFollowing) respectively.

Proof. As Algorithm 5 uses many different data structures we will use the notation D.var to
refer to variable var of data structure D. For example D(τ).g refers to variable g of data
structure D(τ) (which is an instance of Lewis weight data structure Theorem 5.1).

Algorithm 2 consists only of a while loop that calls ShortStep (Algorithm 1). This while
loop is also present in Algorithm 4, which calls ShortStep (Algorithm 5). Thus we need to
prove that Algorithm 5 implements Algorithm 1.

In addition to the while loop Algorithm 4 initializes data structure such that the following
assumptions hold during the first call to ShortStep (Algorithm 5).

Definition 6.5 (Parameter assumptions). We assume that the following assumptions hold true
at the start of the first call to ShortStep (Algorithm 5).

‖Φ′′(x)1/2(x− x)‖∞ ≤ γ/29, ‖µ−1τ−1Φ′′(x)−1/2(s− s)‖∞ ≤ γ/29, (35)

µ ≈γ/29 µ, τ ≈γ/29 τ(x) (36)

∆ = A⊤x− b (37)

D(x,∇).g = −γφ′′(x)−1/2, D(x,∇).z =
s+ µτφ′(x)
µτ
√
φ′′(x)

, D(x,∇).w = φ′′(x)−1/2 (38)

D(sample).g = τ−1φ′′(x)−1/2, D(s).w = µτφ′′(x)1/2, D(τ).v = φ′′(x)−1/2 (39)

D(−1).v = τ−1φ′′(x)−1, D(−1).σ = τ (40)

We show by induction that these assumptions then also holds true for all subsequent calls
to ShortStep.

Before we prove that these assumptions hold true for all subsequent calls to ShortStep
(Algorithm 5) we will first prove that Algorithm 5 performs the computations required by the
IPM of Algorithm 1, i.e. we show that Algorithm 5 does indeed implement Algorithm 1.
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Algorithm 4: Implementation of Algorithm 2

1 global variables

2 D(x,∇) instance of primal/gradient maintenance (Theorem D.1) using γ/212

accuracy
3 D(s) instance of dual maintenance (Theorem E.1) using γ/212 accuracy
4 D(τ) instance of Lewis weight data structure (Theorem 5.1) with accuracy γ/212

5 D(sample) instance of HeavySampler (Definition 6.3)
6 D(−1) instance of InverseMaintenance (Definition 6.2)
7 τ ∈ R

m element-wise approximation of τ(x) (multiplicative error)
8 x ∈ R

m element-wise approximation of x (error relative to Φ′′(x))
9 s ∈ R

m element-wise approximation of s (multiplicative error)
10 ∆ ∈ R

n (Infeasibility ∆ = A⊤x− b)
11 µ ∈ R approximation of µ

/* Parameters where C is a sufficiently large constant */

12 α← 1
4 log(4m/n) , ε← α

C , λ←
C log(Cm/ε2)

ε , γ ← ε
Cλ , r ←

εγ
Cnorm

√
n

13 procedure PathFollowing(A, x(init), s(init), µ(init), µ(end))
14 x← x(init), s← s(init), µ← µ(init), µ← µ(init), ∆← 0
15 Let c be the parameter assumed in Definition 6.2, Definition 3.1, and Definition 6.3,

then define z ← n/m+ nc/‖c‖1.
16 τ ← D(τ).Initialize(A, φ′′(x)−1/2, z, 1 − 1/(4 log(4m/n)), 212C4.31, γ/216) // C4.31

is the constant suppressed by the first item of Lemma 4.31

17 D(x,∇).Initialize(A, x(init),−γφ(x)′′−1/2, τ , s+µτφ
′(x)

µτ
√
φ′′(x)

, φ′′(x)−1/2, γ/216)

18 D(s).Initialize(A, s(init), µτφ′′(x)1/2, γ/216)
19 D(sample).Initialize(A, τ−1φ′′(x)−1/2, τ)
20 D(−1).Initialize(A, τ−1φ′′(x)−1, τ )
21 while µ > µ(end) do
22 ShortStep(µ) (Algorithm 5)
23 µ← (1− r)µ
24 return D(x,∇).ComputeExact(), D(s).ComputeExact()

Algorithm 5 implements Algorithm 1 We argue the correctness line by line of Algo-
rithm 1. Line 5 (Algorithm 1) requires that we satisfy Invariant 4.10. This is given by the
assumption on x in (35) and τ in (36).

Line 6 (Algorithm 1) requires to find a y with ‖y − y‖∞ ≤ γ/20 for

y =
s+ µτφ′(x)
µτ
√
φ′′(x)

.

We have this y implicitly by replacing x, s, µ, and τ in the definition of y by x, s, µ, and τ .
We now prove that this y satisfies the slightly stronger guarantee ‖y − y‖∞ ≤ γ/40.

Lemma 6.6 (Approximation of y). Under the assumptions in Definition 6.5 for y
def= s+µτφ′(x)

µτ
√
φ′′(x)

we have that ‖y − y‖∞ ≤ γ/40.

Proof. Using the approximations above, we get that
∥∥∥∥∥
s+ µτφ′(x)
µτ
√
φ′′(x)

− s+ µτφ′(x)
µτ
√
φ′′(x)

∥∥∥∥∥
∞
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Algorithm 5: Implementation of Algorithm 1

1 global variables
2 Same variables as in Algorithm 4.
3 procedure ShortStep(µ(new) > 0)
4 if µ 6≈γ/212 µ(new) then

5 µ← µ(new)

6 for i ∈ [m] do

7 D(x,∇).Update(i,−γφ′′
i (xi)

−1/2, τ i, (si + µτ iφ
′
i(xi))/(µτ i

√
φ′′
i (xi)))

8 D(s).SetAccuracy(i, µτ iφ′′(xi)1/2)
9 h′ ← D(x,∇).QueryProduct() // h′ = −γA⊤Φ′′(x)−1/2∇Φ(y)♭(τ )

/* Leverage score sampling gives H
def= A⊤VA ≈γ/2 A⊤T

−1Φ′′(x)−1A */

10 vi ←




1
min(1,100τ log(n)/γ2) with probability min(1, 100τ log(n)/γ2)

0 otherwise
.

/* h′′ = H−1(h′ + (A⊤x− b)), δr = T
−1Φ′′(x)−1/2Ah′′ */

11 h′′ ← D(−1).Solve(v, h′ + ∆, γ/2)
12 R ← D(sample).Sample(h′′)

13 x(tmp), Ix ← D(x,∇).QuerySum(−RT
−1

Φ′′(x)−1Ah′′)

14 ∆← ∆ + h′ −A⊤RT
−1

Φ′′(x)−1Ah′′ // Maintain ∆ = A⊤x− b
15 for i ∈ Ix do

16 if |
√
φ′′
i (x

(tmp)
i )(x(tmp)

i − xi)| > γ/212 then

17 xi ← x
(tmp)
i

18 D(x,∇).Update(i,−γφ′′
i (xi)

−1/2, τ i, (si + µτ iφ
′
i(xi))/(µτ i

√
φ′′
i (xi)))

19 D(x,∇).SetAccuracy(i, φ′′(xi)−1/2)
20 D(τ).Scale(i, φ′′(xi)−1/2)
21 D(sample).Scale(i, τ−1

i φ′′(xi)−1/2)
22 D(−1).Update(i, τ−1

i φ′′(xi)−1, τ i)
23 D(s).SetAccuracy(i, µτ iφ′′(xi)1/2)
24 τ (tmp), Iτ ← D(τ).Query()
25 for i ∈ Iτ do

26 if τ
(tmp)
i 6≈γ/210 τ i then

27 τ i ← τ
(tmp)
i

28 D(x,∇).Update(i,−γφ′′
i (xi)

−1/2, τ i, (si + µτ iφ
′
i(xi))/(µτ i

√
φ′′
i (xi)))

29 D(sample).Scale(i, τ−1
i φ′′(xi)−1/2)

30 D(−1).Update(i, τ−1
i φ′′(xi)−1, τ i)

31 D(s).SetAccuracy(i, µτ iφ′′(xi)1/2)
32 s(tmp), Is ← D(s).Add(µD(−1).Solve(v, h′, γ/2))
33 for i ∈ Is do

34 if |µ−1τ−1Φ′′(x)−1/2(s(tmp)
i − si)| > γ/210 then

35 si ← s
(tmp)
i

36 D(x,∇).Update(i,−γφ′′
i (xi)

−1/2, (si + µτ iφ
′
i(xi))/(µτ i

√
φ′′
i (xi)))
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≤
∥∥∥∥∥

s− s
µτ
√
φ′′(x)

∥∥∥∥∥
∞

+

∥∥∥∥∥
s+ µτφ′(x)
µτ
√
φ′′(x)

− s+ µτφ′(x)
µτ
√
φ′′(x)

∥∥∥∥∥
∞

≤ γ/29 +

∥∥∥∥∥
s+ µτφ′(x)
µτ
√
φ′′(x)

− s+ µτφ′(x)
µτ
√
φ′′(x)

∥∥∥∥∥
∞

+

∥∥∥∥∥
(µ− µ)φ′(x)
µ
√
φ′′(x)

∥∥∥∥∥

≤ γ/28 +

∥∥∥∥∥
s+ µτφ′(x)
µτ
√
φ′′(x)

− s+ µτφ′(x)
µτ
√
φ′′(x)

∥∥∥∥∥
∞
,

where we used 1-self-concordance, specifically that |φ′(x)| ≤
√
φ′′(x) in the last step. Now, we

calculate the errors resulting from τ and φ′(x), which gives that
∥∥∥∥∥
s+ µτφ′(x)
µτ
√
φ′′(x)

− s+ µτφ′(x)
µτ
√
φ′′(x)

∥∥∥∥∥
∞
≤
∥∥∥∥∥
s+ µτφ′(x)
µτ
√
φ′′(x)

− s+ µτφ′(x)
µτ
√
φ′′(x)

∥∥∥∥∥
∞

+

∥∥∥∥∥
µ(τ − τ)φ′(x)
µτ
√
φ′′(x)

∥∥∥∥∥
∞

≤ 1.1γ/29 +

∥∥∥∥∥
s+ µτφ′(x)
µτ
√
φ′′(x)

− s+ µτφ′(x)
µτ
√
φ′′(x)

∥∥∥∥∥
∞

+

∥∥∥∥∥
µτ(φ′(x)− φ′(x))

µτ
√
φ′′(x)

∥∥∥∥∥
∞

≤ 2.2γ/29 +

∥∥∥∥∥
s+ µτφ′(x)
µτ
√
φ′′(x)

− s+ µτφ′(x)
µτ
√
φ′′(x)

∥∥∥∥∥
∞

where we used 1-self-concordance in the last step. Note that φ′′(x)1/2 ≈1.1γ/29 φ′′(x)1/2 by
self-concordance (Lemma 4.16), hence µτ

√
φ′′(x) ≈γ/27 µτ

√
φ′′(x). This gives us

∥∥∥∥∥
s+ µτφ′(x)
µτ
√
φ′′(x)

− s+ µτφ′(x)
µτ
√
φ′′(x)

∥∥∥∥∥
∞
≤
∥∥∥∥∥
s+ µτφ′(x)
µτ
√
φ′′(x)

∥∥∥∥∥
∞

∥∥∥∥∥1−
µτ
√
φ′′(x)

µτ
√
φ′′(x)

∥∥∥∥∥
∞
≤ εγ/26 ≤ γ/29

because (x, s, µ) is ε-centered. Combining everything, we have that the total error is γ/28 +
2.2γ/29 + γ/29 ≤ γ/40.

Line 7 (Algorithm 1) asks us to compute

g ← −γ∇Φ(z)♭(τ )

for ‖z−y‖∞ ≤ γ/20. While we do not compute g, our implementation does compute A⊤Φ′′(x)−1/2g
as follows: Line 9 of Algorithm 5 computes

h′ = −γA⊤Φ′′(x)−1/2∇Φ(z)♭(τ ) = A⊤Φ′′(x)−1/2g

for some z ≈γ/210 D(x,∇).z = y ≈γ/40 y by the guarantees of the primal/gradient data structure
Theorem D.1 and assumption (38).

By Line 8 of Algorithm 1 we must obtain a matrix H ≈ǫ A⊤T
−1

Φ′′(x)−1A which is
done in Line 10 of Algorithm 5 with higher accuracy H ≈γ/2 A⊤T

−1
Φ′′(x)−1A. Next, since

D(−1).v = τ−1φ′′(x)−1 and D(−1).σ = τ by (40) we have σ ≥ 1
2σ((T−1Φ′′(x)−1)1/2A) and a call

to D(−1).Solve(·, ·, γ/2) (e.g. in Line 11) is equivalent to multiplying by some matrix H−1 with

H−1 ≈γ (A⊤T
−1

Φ′′(x)−1A)−1

which with γ ≤ ǫ is accurate enough.
Line 10 of Algorithm 1 wants us to compute

δr = T
−1Φ′′(x)−1/2AH−1A⊤(Φ′′(x)−1/2g + A⊤x− b)

This is done implicitly in Line 11 of our implementation Algorithm 5. By assumption (37) we
have ∆ = A⊤x− b, thus Line 11 computes h′′ with

h′′ = H−1(h′ + A⊤x− b).
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The vector δr can be represented via h′′ by

δr = T
−1Φ′′(x)−1/2AH−1(h′ + A⊤x− b) = T

−1Φ′′(x)−1/2Ah′′

because of h′ = A⊤Φ′′(x)−1g.
Line 11 of Algorithm 1 wants us to compute a random diagonal matrix R that satisfies the

conditions of Definition 4.13. By Definition 6.3 (HeavySampler), assumption (39) on D(sample),
and assumption (36) on τ , such a random matrix can be obtained via D(sample).Sample(h′′).
Note that for δr := D(sample).GAh′′ we have by Corollary 4.30 (item 2, the bound on δr) and
τ ≥ n/m that

‖δr‖22 ≤
m

n
‖δr‖2τ ≤

m

n
.

So the requirements for the Sample procedure stated in Definition 6.3 are satisfied.
Line 12 and Line 14 of Algorithm 1 want us to compute

x(new) ← x+ Φ′′(x)−1/2(g −Rδr).

By guarantees of the primal/gradient maintenance (Theorem D.1) and assumption (38), Line 13
of our implementation Algorithm 5 computes x(tmp) with

‖Φ′′(x)1/2(x(new) − x(tmp))‖∞ ≤ γ/212 (41)

Our implementation also computes an τ (tmp) in Line 24. By Line 20 our implementation
makes sure that D(τ).g = φ′′(x)−1/2. Thus the vector τ (tmp) in Line 24 satisfies τ (tmp) ≈γ/210

τ(x) for the new x and after Line 25 we have

τ ≈γ/210 τ(x) (42)

for the new x.
Line 13 and Line 14 of Algorithm 1 asks us to compute

s(new) ← s+ µAH−1A⊤Φ′′(x)−1/2g

By dual maintenance Theorem E.1 and D(s).w = µτΦ′′(x)−1/2 by (39), Line 32 of our imple-
mentation Algorithm 5 computes s(tmp) with

‖µ−1τ−1Φ′′(x)−1/2(s(new) − s(tmp))‖∞ ≤ γ/212 (43)

Note that x and τ in (43) refer to the new values of x and τ as they were changed in Line 15
and Line 25.

Assumptions on x, s: To argue assumption (35) on x, define x to be the value of x at
the start of ShortStep and x(new) to be the new value at the end of ShortStep. We
have ‖Φ′′(x)1/2(x(new) − x(tmp))‖∞ ≤ γ/210 by (41). If xi = x

(new)
i , then by Line 15 we have

|φ′′(xi)1/2(x(tmp)
i − xi)| ≤ γ/212. Thus

|φ′′(x(new)
i )1/2(x(new)

i − x(new)
i )| = |φ′′(xi)1/2(x(new)

i − xi)|
≤ |φ′′(xi)1/2(x(tmp)

i − xi)|+ |φ′′(xi)1/2(x(new) − x(tmp)
i )| ≤ γ/210 + γ/212 ≤ γ/29.

On the other hand, if xi 6= x
(new)
i , then x

(new)
i = x

(tmp)
i , so

|φ′′(x(new)
i )1/2(x(new)

i − x(new)
i )| ≤ 1.1|φ′′(xi)1/2(x(new)

i − x(tmp)
i )| ≤ γ/29

by self-concordance (Lemma 4.16) and x(new)
i ≈γ xi. In summary, we have ‖Φ(x(new))1/2(x(new)−

x)‖∞ ≤ γ/29, so at the start of the next call of ShortStep we satisfy the assumption on x in
(35) again.
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For the assumption in (35) on s, note that we have

‖µ−1(τ (new))−1Φ′′(x(new))−1/2(s(tmp) − s)‖∞ ≤ γ/212

by (43). So if s(new)
i = s

(tmp)
i then

|µ−1(τ (new)
i )−1φ′′(x(new)

i )−1/2(s(new)
i − s(new)

i )| ≤ γ/212.

Alternatively, if s(new)
i 6= s

(tmp)
i , then s

(new)
i = si and by the condition in Line 33 we have

|µ−1(τ (new)
i )−1φ′′(x(new)

i )−1/2(s(new)
i − s(new)

i )|
≤ |µ−1(τ (new)

i )−1φ′′(x(new)
i )−1/2(s(new)

i − s(tmp)
i )|+ |µ−1(τ (new)

i )−1φ′′(x(new)
i )−1/2(s(tmp)

i − s(new)
i )|

≤ γ/212 + γ/210 ≤ γ/29

Since µ changes by at most an exp(γ/212) factor at the start of ShortStep, assumption (35)
will be satisfied during the next call to ShortStep.

Assumptions on τ and µ We already argued in (42) that τ ≈γ/210 τ(x). Further µ ≈γ/212 µ
is verified at the start of each call to ShortStep in Line 4. Thus the assumptions of (36) are
satisfied.

Assumption on D−1, D(τ), D(sample), and D(x,∇): All data structures that depend on µ, x,
s, or τ are updated, whenever µ or an entry of x, s, or τ changes (see Line 4, Line 15, Line 25,
and Line 33). So the assumptions in (38), (39), and (40) are always satisfied.

Assumption ∆ = A⊤x− b: ∆ = A⊤x− b initially because the input x is feasible. Then after
Line 14 we have ∆ = A⊤x(new) − b for x(new) = x + Φ′′(x)−1/2g −RT

−1Φ′′(x)−1/2Ah′′. Thus
we always maintain A⊤x− b, whenever x changes.

6.3 Complexity

We now analyze in Lemma 6.7 the complexity of Algorithm 4 which together with Lemma 6.4
concludes the proof of Theorem 6.1.

Lemma 6.7. Assume (P, c,Q) heavy hitter, (P, c,Q) inverse maintenance, and (P, c,Q) heavy
sampler. Then the total time of PathFollowing can be bounded by

Õ

((√
P‖c‖1 +

√
n

(
Q+ n ·max

i
nnz(ai)

))
log

µ(init)

µ(end)

)

Proof. We analyze the complexity of PathFollowing in multiple parts: First we analyze the
initialization of all data structures, i.e. the time spent until the first call of ShortStep. Then
we analyze the total time spent on all calls to ShortStep.

Initialization Initializing D(x,∇) takes Õ(nnz(A)) = Õ(P ) time by Theorem D.1 and nnz(A) ≤
P (Definition 3.1). The initialization of D(s), D(sample), and D(−1) take Õ(P ) time each by The-
orem E.1, Definition 6.3 and Definition 6.2.

The initialization ofD(τ) takes Õ(P+Q+n(maxi nnz(ai))+
√
P‖c‖1/n) time by Theorem 5.2,

because we can solve any linear system of the form A⊤VAx = b by initializing an instance of
Definition 6.2 for that w and then solving the system via D.Solve.
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ShortStep Let T be the number of calls to ShortStep (Algorithm 5). We start by bounding
how often µ, x, s, and τ are modified. Let µ(t), x(t), s(t), τ (t) refer to the respective variables
during iteration number t. We will prove the following bounds.

T∑

t=2

1µ(t) 6=µ(t−1) ≤ Õ(T/
√
n) (44)

T∑

t=2

m∑

i=1

τ(x(t))i1x(t)
i 6=x(t−1)

i

≤ Õ(T 2) (45)

T∑

t=2

m∑

i=1

τ(x(t))i1s(t)
i 6=s(t−1)

i

≤ Õ(T 2) (46)

T∑

t=2

m∑

i=1

τ(x(t))i1τ (t)
i 6=τ (t−1)

i

≤ Õ(T 2) (47)

The bound on µ follows because µ changes by an (1 − r) factor for r = Õ(1/
√
n) in each

iteration, and we update µ whenever µ 6≈γ/212 µ. Thus is takes Ω̃(
√
n) iterations until we have

to change µ which results in the Õ(T/
√
n) bound.

For the bound on x note that we update xi ← x
(tmp)
i whenever |φ′′(x(tmp)

i )1/2(x(tmp)
i −xi)| >

γ/212. Let t1, t2 be two iterations where we update xi, and let x̂(1), x̂(2), . . . be the sequence
from Lemma 4.44 for β = γ/215. Then we have

|φ′′((x(tmp))(t2)
i )1/2(x̂(t1) − x̂(t2))i| ≥ |φ′′((x(tmp))(t2)

i )1/2(x(t1) − x(t2))i| − γ/214

≥ |φ′′((x(tmp))(t2)
i )1/2((x(tmp))(t1) − (x(tmp))(t2))i| − γ/213

≥ γ/212

where we used ‖Φ′′(x̂)1/2(x̂−x)‖∞ ≤ γ/215, ‖Φ′′(x(tmp))1/2(x(tmp)−x)‖∞ ≤ γ/216, and the fact
that we only update when x(tmp)

i changed by at least γ/212.
Thus we can bound

T∑

t=2

m∑

i=1

τ(x(t))i1x(t)
i 6=x(t−1)

i

= Õ

(
T∑

t=2

m∑

i=1

τ(x(t))i
(
φ′′(x̂(t−1)

i )1/2|x̂(t)
i − x̂

(t−1)
i |

)2
)

= Õ



(

T∑

t=2

‖Φ′′(x̂(t))1/2(x̂(t) − x̂(t−1))‖τ(x̂(t−1))

)2

 = Õ

(
T 2
)
.

In a similar way we can bound

T∑

t=2

m∑

i=1

τ(x(t))i1s(t)
i 6=s(t−1)

i

= Õ

(
T∑

t=2

m∑

i=1

τ(x(t))i
(
(µ−1τ(x(t))iφ′′(x(t)

i )1/2)−1|s(t)
i − s

(t−1)
i |

)2
)

= Õ



(

T∑

t=2

‖(µ−1τ(x(t))Φ′′(x(t))1/2)−1(s(t) − s(t−1))‖τ(x(t−1))

)2



= Õ
(
T 2
)

by using s(t) − s(t−1) = δs and Corollary 4.30 Part 1. At last, consider the bound on τ , where
we have

T∑

t=2

m∑

i=1

τ(x(t))i1τ (t)
i 6=τ (t−1)

i

= Õ

(
T∑

t=2

m∑

i=1

τ(x̂(t))i
(
τ(x̂(t))−1

i |τ(x̂(t))i − τ(x̂(t−1))i|
)2
)
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= Õ



(

T∑

t=2

‖τ(x̂(t))−1(τ(x̂(t))− τ(x̂(t−1)))‖τ(x̂(t−1))

)2

 = Õ

(
T 2
)

by Lemma 4.45.

Cost of D(x,∇), D(s), D(sample) The time spent per call toD(s).Scale(i, ·), D(s).SetAccuracy(i, ·),
D(x,∇).Update(i, ·), and D(sample).Scale(i, ·) is bounded by Õ(ci) = Õ(τi · ‖c‖1/n), because
of τ ≥ nc/‖c‖1. These functions are called whenever τ i, xi, si, or µ are changed, so by the
previous bounds on (44)-(47) we can bound the total time spent on calling these functions by
Õ(T 2‖c‖1/n+ ‖c‖1T/

√
n).

In each iteration we call D(s).Add and the total time for these calls is bounded by

Õ(TQ+ T
√
nP/‖c‖1‖δs/(µτφ′′(x)1/2)‖2c + T

√
‖c‖1P/n)

= Õ(TQ+ T
√
nP/‖c‖1(‖c‖1/n)‖δs/(µτφ′′(x)1/2)‖2τ + T

√
‖c‖1P/n)

= Õ(T (Q+
√
P‖c‖1/n))

by Theorem E.1, Corollary 4.30 Part 1, and τ ≥ nc/‖c‖1.
Likewise, we can bound the time spent on all calls toD(x,∇).QueryProduct andD(x,∇).QuerySum

by

Õ(Tn+ T (max
i

nnz(ai)) + E[‖RAh′′‖0] + T
T∑

t=1

‖φ′′(x(t))−1/2g(t)/φ′′(x(t))−1/2‖22)

= Õ(Tn+ T (max
i

nnz(ai)) + E[nnz(RA)] + (Tm/n)
T∑

t=1

‖g(t)‖τ(x(t)))

= Õ(T (n+ (max
i

nnz(ai)) + E[nnz(RA)]) + T 2m/n)

where E[nnz(RA)] is the expected number of entries returned by Definition 6.3 and we used
that g by definition has ‖g‖τ+∞ ≤ 1 and that τ ≥ n/m.

We can bound the expected time of a call to D(sample).Sample and the expected size of
E[nnz(RA)] by Q using Definition 6.3.

Cost of D(τ) The complexity bounds of D(τ) stated in Theorem 5.1 only holds, if Condition 1
and Condition 2 are satisfied. The first condition requires us to be able to solve linear systems
in (A⊤VA)−1 for A⊤VA ≈ A⊤T

1−2/p
Φ′′(x)−1A in Õ(Q + nnz(VA)) time. Such a solver by

D−1 (Definition 6.2).
Next, we require the existence of a sequence x̂(1), x̂(2), ... where for all t ∈ [T ] we have

φ′′(x(t))−1/2 ∈ (1± 1/(105 log n))φ′′(x̂(t))−1/2

‖τ(x̂(t))
1
p

− 1
2φ′′(x̂(t))− 1

2 (τ(x̂(t))
1
2

− 1
pφ′′(x̂(t))− 1

2 − τ(x̂(t+1))
1
2

− 1
pφ′′(x̂(t+1))− 1

2 )‖τ(x̂(t)) = O(1).

for p = 1− 1/(4 log(4m/n)). This sequence is given by Lemma 4.44 and Lemma 4.45. Thus in
summary, the complexity bounds stated in Theorem 5.1 apply.

We can now bound the total cost of all calls to D(τ).Scale(i, ·) by Õ(T 2‖c‖1/n). This is
because on such function call has amortized cost Õ(‖c‖1

n τi) and the function is called whenever
xi changes. By the bound on (45) we then obtain the total cost over T iterations of ShortStep.

At last, the time requires for all calls to D(τ).Query is bounded by

Õ

(
T (Q+ n(max

i
nnz(ai)) +

√
P‖c‖1/n)

)
.
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Cost of D(−1) The stability assumption stated in Definition 6.2 is given by Lemma 4.44 and
Lemma 4.45, so we can use the complexities stated in Definition 6.2.

A call to D(−1).Update(i, ·) takes O(ci) amortized time and occurs whenever τ i or xi
changes. By (47) and (45) we can thus bound the cost by Õ(T 2‖c‖1/n).

Performing the calls to D(−1).Solve(v, h′+∆, γ/2) and D(−1).Solve(v, h′, γ/2) takes O(Q+
n(maxi nnz(ai))) time, which is subsumed by the cost of D(τ).Query.

Total Cost When calling ShortStep a total of T times, the total cost is

Õ

(
(T (Q+ n(max

i
nnz(ai)) +

√
P‖c‖1/n+ ‖c‖1/

√
n) + T 2‖c‖1/n+ T 2m/n

)

=Õ
(

(T (Q+ n(max
i

nnz(ai)) +
√
P‖c‖1/n+ ‖c‖1/

√
n) + T 2‖c‖1/n

)

where we used ‖c‖1 ≥ m.

In general the algorithm will call ShortStep a total of T = Õ(
√
n log µ(init)

µ(end) ) times. How-

ever, we can speed-up the algorithm by stopping the loop after T ′ = Θ((Pn/‖c‖1)1/2) itera-
tions and then calling PathFollowing again for the obtained solution x, s, the current value
of µ, and the desired target value µ(end). This way we call PathFollowing for a total of
Õ((‖c‖1/P )1/2 log µ(init)

µ(end) ) times. Hence, the term T 2‖c‖1/n becomes Õ(
√
P‖c‖1 log µ(init)

µ(end) )
Note that by assumption P ≤ ‖c‖1, we can perform this reset before ever changing µ in

Line 4. Thus we can remove the Õ(‖c‖1/
√
n) term from our cost and we obtain the total cost

Õ

((√
P‖c‖1 +

√
nQ+ n3/2(max

i
nnz(ai))

)
log

µ(init)

µ(end)

)
.

7 Minimum Cost Flow and Applications

In this section, we prove Theorem 1.4. Mincost flow with general demands can be reduced to
single source / sink mincost flow by adding a super-source and super-sink to collect positive
/ negative demands respectively and assigning edges outwards with the proper capacities. We
assume that we know the maximum flow value F as well, as we can perform a binary search on
F , and add a s-t edge of sufficiently large demand and capacity. Therefore, the minimum cost
flow problem we consider can be precisely formulated as

min
A⊤x=Fes,t

0≤xe≤ue∀e∈E

c⊤x (48)

where A ∈ {−1, 0, 1}E×V is an incidence matrix of G where Ae,u = −1,Ae,v = 1 for every edge
e = (u, v) ∈ E. We denote the optimal value of the above LP by OPT(G).

To prove Theorem 1.4, there are two main parts. For the first part, we show that, given
an initial point (x(init), s(init)) where x(init) is an initial primal feasible solution and s(init) is
an initial dual slack of (48), the path following algorithm (Algorithm 5) returns (x(end), s(end))
where x(end) is a near-optimal and near-feasible flow in Õ(m + n1.5) time. This is proved in
Section 7.1 by putting together the tools developed in previous sections.

For the second part, we describe how to obtain an initial point (x(init), s(init)) and how to
obtain an exactly optimal and feasible flow instead of a near-optimal and near-feasible flow,
which gives Theorem 1.4. This part follows using standard techniques and, for completeness,
we show how to do these tasks in Section 7.2.

Our algorithms in this section will use the following linear system solver.
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Lemma 7.1 (See e.g. [ST04, KS16]). There is an algorithm that, given a matrix A ∈ R
m×n

with at most two non-zero entries per row, a diagonal non-negative weight matrix D ∈ R
m×m

and a vector b ∈ R
n such that A⊤DA is a symmetric diagonally dominant (SDD) matrix5

and there exists a vector x ∈ R
n where (A⊤DA)x = b, w.h.p. returns a vector x such that

‖x− x‖A⊤DA ≤ ε‖x‖A⊤DA in Õ(nnz(A) log ε−1) time.

7.1 Path Following for Graph Problems

In Appendix F we show that HeavyHitter, InverseMaintenance, and HeavySampler
data structures exist for graphical problems, and leverage these to show the following.

Lemma 7.2. Consider a linear program

Π : min
A⊤x=b

ℓi≤xi≤ui∀i

c⊤x

where A is obtained by removing one column (corresponding to one vertex) from an inci-
dence matrix of a graph with n vertices and m edges. Let ε = 1/(4C log(m/n)) for a large
enough constant C. Given an ε-centered initial point (x(init), s(init), µ(init)) for Π and a tar-
get µ(end), Algorithm 5 (when using graph-based data structures) returns an ε-centered point
(x(end), s(end), µ(end)) in time

Õ
(
(m + n1.5 · (logW ′′ + | log µ(init)/µ(end)|)) · | log µ(init)/µ(end)|

)

where W ′′ is the ratio of largest to smallest entry in the vector φ′′(x(init)) = 1
(u−x(init))2 +

1
(x(init)−ℓ)2 .

Proof. We use Algorithm 4, which is an implementation of Algorithm 2. By Lemma 4.12 the
algorithm returns an ǫ-centered (x(end), s(end), µ(end)). For the complexity, note that we have
a (P, c,Q)-HeavyHitter, (P, c,Q)-HeavySampler, and (P, c,Q)-InverseMaintenance for
P = Õ(m), ci = Õ(1) for i ∈ [m], Q = Õ(m/

√
n + n logW ′) according to Lemma F.1, Corol-

lary F.4, and Lemma F.2. Here W ′ is the ratio of the largest to smallest entry of any Φ′′(x)
maintained in Algorithm 4. By Lemma 4.46 this is bounded by Õ(logW ′′ + | log µ(init)/µ(end)|).
Thus by using Lemma 6.7 the time complexity of Algorithm 4 is bounded by

Õ
(
(m + n1.5 · (logW ′′ + | log µ(init)/µ(end)|)) · | log µ(init)/µ(end)|

)
.

7.2 Initial and Final Points

In this section we discuss how to construct an initial flow which is on the central path. To do
this, we augment the graph with a star which allows us to route a feasible flow. This corresponds
to adding an identity block in the case of linear programs. Then we discuss how to extract a
final point from our central path flow for sufficiently small path parameter µ.

Throughout this subsection, let ε = 1/(4C log(m/n)) for a large enough constant C. We
assume that ue and ce are integral and let W be the maximum absolute value of ue and ce over
all edges e.

5A SDD matrix A ∈ R
n×n is a matrix that is symmetric, and for all i ∈ [n] satisfies Aii ≥

∑
j∈[n]

|Aij |.
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Defining Modified Graph and Linear Program with Trivial Initial Points. Recall
that our path following algorithm (Algorithm 5) requires an initial point (x(init), s(init), µ(init))
which is ε-centered (as defined in Definition 4.7). However, it is not clear how to quickly obtain
such ε-centered point for an arbitrary graph G. Therefore, we will modify the graph G to
another graph G̃ where an ε-centered initial point can be easily defined.

Given G = (V,E), let G̃ = (V ∪ {z}, E ∪ Ẽ) where Ẽ = {(v, z), (z, v) | v ∈ V }. That is,

we add a bi-directional star rooted at z into G. We let

[
x(init)

x̃(init)

]
denote an initial flow in G̃

where x(init) and x̃(init) specify the flow values on E and Ẽ, respectively. For each e ∈ E, we set
x

(init)
e

def= ue/2. For all star-edges e ∈ Ẽ, we first set x̃(init)
e = 1 (just to prevent them from having

flow value too close to zero). Then, we additionally route the excess at each vertex induced by
x(init) using the star-edges from Ẽ. More formally, for each v ∈ V , if the flow excess at v is
[A⊤x(init)−Fes,t]v > 0, then we set x̃(init)

(v,z)
def= 1 + [A⊤x(init)−Fes,t]v and x̃(init)

(z,v) = 1. Otherwise,

the flow deficit at v is [Fes,t − A⊤x(init)]v ≥ 0 and we set x̃(init)
(z,v) = 1 + [Fes,t − A⊤x(init)]v

and x̃
(init)
(v,z)

def= 1. The capacity ue and cost ce of each original edge e ∈ E stay the same. For

each star-edge e ∈ Ẽ, we set the capacity ũe = 2x̃(init)
e and c̃e

def= 50m‖u‖∞‖c‖∞. Consider the
modified linear program for minimum cost flow on G̃

min
Ã⊤

[
x

x̃

]
=Fes,t

0≤xe≤ue∀e∈E
0≤x̃e≤ũe∀e∈Ẽ

c⊤x+ c̃⊤x̃. (49)

where Ã is an incidence matrix of G̃. We denote the optimal value of the above LP by OPT(G̃).
As G̃ is obtained from G by adding some edges, we obtain this simple fact:

Fact 7.3. OPT(G̃) ≤ OPT(G).

For a small technical reason, we need to further modify the linear program since an incidence
matrix is degenerate and our path following algorithm only works on a full rank matrix. Let
Ãz be obtained from Ã by removing a single column corresponds to the vertex z.6

Fact 7.4. We have the following:

1. Ãz has full rank, and

2. For any

[
x

x̃

]
, Ã⊤

z

[
x

x̃

]
= Fes,t if and only if Ã⊤

[
x

x̃

]
= Fes,t.

Proof. (1) This is well-known and straightforward to verify, (2) Let
[

x

x̃

]
satisfy Ã⊤

z

[
x

x̃

]
= Fes,t

which is the same as Ã⊤
[

x

x̃

]
= Fes,t except that we do not require that the excess flow at z is

zero. However, once we fix the excess at every vertex except at z, when we can determine the
excess at z. In our case, the excesses are all zero except at s and t. This implies that the excess

at z is zero. So Ã⊤
[

x

x̃

]
= Fes,t. Proving the claim in the reverse direction is trivial.

By Fact 7.4(2), the following linear program is equivalent to (49).

min
Ã⊤

z

[
x

x̃

]
=Fes,t

0≤xe≤ue∀e∈E
0≤x̃e≤ũe∀e∈Ẽ

c⊤x+ c̃⊤x̃. (50)

6The modification will actually work if we remove an arbitrary vertex. We choose the vertex z for convenience.
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Lemma 7.5 (Initial point for the modified min cost flow). Let

[
s(init)

s̃(init)

]
=

[
c
c̃

]
and µ(init) =

100m2W 3ε−1. Then, the point

([
x(init)

x̃(init)

]
,

[
s(init)

s̃(init)

]
, µ(init)

)
is ε-centered w.r.t. the linear pro-

gram in (49) and (50).

Proof. As x̃ is defined such that all excess induced by x is canceled except at the source s and

the sink t, we have that Ã⊤
[
x
x̃

]
= Fes,t. That is, the flow is exactly feasible in G̃. Also, the

vector

[
c
c̃

]
is clearly dual feasible for z = 0 in Definition 4.7.

Now we bound the centrality.
By the choices of x(init) and x̃(init) and Fact 4.3, we have the following. For each original

edge e ∈ E, we have φ′(x(init)
e ) = 0 and φ′′(x(init)

e ) ≥ 1/u2
e . For each star-edge e ∈ Ẽ, we have

φ′(x̃(init)
e ) = 0 and φ′′(x̃(init)

e ) ≥ 1/ũ2
e = 1/(2x̃(init)

e )2 ≥ 1/(2‖u‖∞n)2 because x̃(init)
e ≤ ‖u‖∞n.

Therefore, for x =

[
x(init)

x̃(init)

]
and s =

[
c
c̃

]
, because τ(x) ≥ n

m , we can bound

∥∥∥∥∥
s+ µ(init)τ(x)φ′(x)
µ(init)τ(x)

√
φ′′(x)

∥∥∥∥∥
∞
≤
∥∥∥∥

50m‖u‖∞‖c‖∞
µ(init)(n/m)/(2‖u‖∞n)

∥∥∥∥
∞
≤ 100m2W 3

µ(init)
= ε.

Following the Path: Near-optimal Near-Feasible Flow for the Modified Graph.
Given an initial point from Lemma 7.5, we can run the path following algorithm and obtain a
near optimal point as formalized below:

Lemma 7.6. Consider an ε-centered initial point

([
x(init)

x̃(init)

]
,

[
s(init)

s̃(init)

]
, µ(init)

)

of (50) obtained from Lemma 7.5. Let µ(end) = 1/poly(mW ) where poly(mW ) is an arbitrarily
large polynomial on mW . By invoking Lemma 7.2, we obtain an ε-centered point

([
x(end)

x̃(end)

]
,

[
s(end)

s̃(end)

]
, µ(end)

)

of (50) in Õ(m logW + n1.5 log2W ) time.

Proof. Note that we can invoke Lemma 7.2 because the constraint matrix Ãz of (50) is exactly
an incidence matrix with one column removed.

Now, we only need to analyze the running time. This follows because Ãz corresponds to the
graph G̃ with O(n) vertices and O(m) edges. Also, µ(init)/µ(end) = poly(mW ). It remains to

bound the ratio of largest to smallest entry in φ′′(

[
x(init)

x̃(init)

]
) denoted by W . It suffices to show

that W ′′ = poly(W ).
By definition of x(init) and x̃(init) and Fact 4.3, we have φ′′(x(init)

e ) = 2
(ue/2)2 for each e ∈ E

and φ′′(x̃(init)
e ) = 2

(x̃
(init)
e )2

where 1 ≤ x̃
(init)
e ≤ n‖u‖∞ by definition of x̃(init)

e . Therefore, we have

that the ratio W ′′ is at most poly(n‖u‖∞) = poly(mW ) as desired.
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Near-optimal Feasible Flow for the Modified Graph. As the point from Lemma 7.6 may
not be even feasible. In particular, there might exist a vertex u where total flow value entering
u may not equal the one leaving u. Now, we show how to obtain a near-optimal feasible flow on
the modified graph G̃. Moreover, we additionally guarantee the flow value on every star-edge
incident to the dummy vertex z is small. Intuitively, this is because the cost of every star-edge
is very large. This is formalized in the following lemma:

Lemma 7.7. Given an ε-centered point

([
x
x̃

]
,

[
s
s̃

]
, µ

)
of (50) where µ < 1/n, there exists

[
x(final)

x̃(final)

]
which is a feasible flow for G̃ where c⊤x(final)+c̃⊤x̃(final) ≤ OPT(G̃)+µn in Õ(m logW )

time. Moreover, if there exists a feasible solution to the original LP (48), then ‖x̃(final)‖∞ < 0.1.

We can compute in Õ(m logW ) time

[
x(apx-final)

x̃(apx-final)

]
whose each entry differs from

[
x(final)

x̃(final)

]

by at most 1/(mW )10.

Proof. Lemma 4.11 implies the existence of

[
x(final)

x̃(final)

]
which is also an exactly feasible solution

of (50). By Fact 7.4(2), it is exactly feasible for (49) and so it is a feasible flow for G̃.
For the “moreover” part. If there exists a feasible solution to (48), then OPT(G) ≤

m‖u‖∞‖c‖∞. By Fact 7.3, we also have OPT(G̃) ≤ m‖u‖∞‖c‖∞. However, if ‖x̃(final)‖∞ ≥ 0.1,
then c̃⊤x̃(final) ≥ 0.1 ·min

e∈Ẽ c̃e ≥ 5m‖u‖∞‖c‖∞. This contradicts the fact that

c̃⊤x̃(final) ≤ OPT(G̃) + µn− c⊤x(final) ≤ 2m‖u‖∞‖c‖∞ + 1.

Finally, as Lemma 4.11 says that

[
x(final)

x̃(final)

]
can be obtained in time O(m) plus the time for

solving a Laplacian system exactly. We can use the approximate solver from Lemma 7.1 to

obtain the desired

[
x(apx-final)

x̃(apx-final)

]
in Õ(m logW ) time.

Optimal Feasible Flow for the Original Graph. Lemma 7.7 only gives us a near-optimal
flow for G̃, but our goal is to obtain an exactly optimal flow for G. To achieve this goal, we will
use a convenient lemma based on the Isolation Lemma below.

Lemma 7.8 ([DS08], or Lemma 8.10 of [BLN+20]). Let Π = (G, b, c) be an instance for
minimum-cost flow problem where G is a directed graph with m edges, the demand vector b ∈
{−W, . . . ,W}V , the cost vector c ∈ {−W, . . . ,W}E and the capacity vector u ∈ {0, . . . ,W}E.

Let the perturbed instance Π′ = (G, b, c′) be such that c′
e = ce + ze where ze is a random

number from the set
{

1
4m2W 2 , . . . ,

2mW
4m2W 2

}
. Let x′ be a feasible flow for Π′ whose cost is at most

OPT(Π′) + 1
12m2W 3 where OPT(Π′) is the optimal cost for problem Π′. With probability at least

1/2, there exists an optimal feasible and integral flow x for Π such that ‖x− x′‖∞ ≤ 1/3.

Combining these pieces allows us to prove Theorem 1.4.

Proof of Theorem 1.4. Given the input graph G = (V,E, u, c), we first perturb the edge costs
c to c′ according Lemma 7.8. Let G′ = (V,E, u, c′) denote the perturbed graph. Then, we
construct the modified graph G̃′ and the initial point for G̃′ according to Lemma 7.5 (in-
stead of the initial point for G̃ as we did before). Then, we again invoke the path follow-
ing algorithm in Õ(m logW + n1.5 log2 W ) time using Lemma 7.6 with µ(end) = 1

12m2W 3n ,

and then invoke Lemma 7.7 for G̃′ in Õ(m logW ) time. This process gives us

[
(x′)(apx-final)

(x̃′)(apx-final)

]
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whose each entry differs by at most 1/(mW )10 from a feasible flow

[
(x′)(final)

(x̃′)(final)

]
for G̃′ where

c⊤(x′)(final) + c̃⊤(x̃′)(final) ≤ OPT(G̃′)+µ(end)n ≤ OPT(G̃′)+ 1
12m2W 3 . Moreover, ‖(x̃′)(final)‖∞ <

0.1 (otherwise, we declare that, with this specific choice of flow value F , there is no feasible
solution for G′ and hence for G).

Now, let

[
x(final)

x̃(final)

]
be obtained from

[
(x′)(apx-final)

(x̃′)(apx-final)

]
by rounding the flow on each edge to

the nearest integer. Lemma 7.8 guarantees that, with probability at least 1/2, there exists

an integral optimal flow

[
xOPT

x̃OPT

]
that entry-wise differs from

[
x′(final)

x̃′(final)

]
by at most 1/3. So

[
xOPT

x̃OPT

]
differs from

[
x′(apx-final)

x̃′(apx-final)

]
entry-wise by less than 1/2. So, with probability at least 1/2,

[
x(final)

x̃(final)

]
=

[
xOPT

x̃OPT

]
is indeed optimal solution for G̃. Moreover, as ‖(x̃′)(final)‖∞ < 0.1, we have

that x̃(final) = 0. Therefore, x(final) is also a feasible flow for G with cost c⊤x(final) = c⊤x(final) +
c̃⊤x̃(final) = OPT(G̃). As OPT(G̃) ≤ OPT(G) by Fact 7.3, we conclude that x(final) is an optimal
feasible flow for G. Finally, we can boost the success probability to hold with high probability
by repeating the algorithm O(log n) times. This concludes the proof of Theorem 1.4.

7.3 Application: Maximum Flow

In this section, we provide our main results regarding computing a maximum flow. In particular
we prove the following corollary.

Corollary 7.9 (Maximum flow). There is an algorithm that, given a directed graph G =
(V,E, u, c) with n vertices and m edges that have integral capacities u ∈ Z

E
≥0, with high proba-

bility, computes a maximum flow in Õ((m+ n1.5) log ‖u‖∞) time.

Corollary 7.9 is an immediate corollary of our min-cost flow algorithm from Theorem 1.4
with modifications to decrease the log2 ‖u‖∞ to log ‖u‖∞. This is done using a standard scaling
technique (e.g. Section 6 of [AO91] and Chapter 2.6 of [Wil19]) and we provide the following
proof of Corollary 7.9 only for completeness.

Proof of Theorem 7.9. For any graph G and flow f in G, let Gf be the residual graph of
G w.r.t. f . Moreover, let Gf (∆) denote the graph obtained Gf by removing all edges with
capacity in Gf less than ∆. Now, consider the following algorithm.

• ∆ = 2⌊log2 ‖u‖∞⌋

• While ∆ ≥ 1,

– find a maximum flow f ′ in Gf (∆).
– set f ← f + f ′ and ∆← ∆/2.

• Return f .

Clearly, this algorithm correctly computes a maximum flow because, after the last iteration
when ∆ = 1, there is no augmenting path left in Gf . Observe the following:

Proposition 7.10. In the beginning of each iteration in the while loop, the value of a maximum
flow in Gf is at most 2m∆.

Proof. This is trivially true in the first iteration. For other iterations, we know from the previous
iteration that the value of a maximum flow in Gf (2∆) is zero. As Gf can be obtained from
Gf (2∆) by adding at most m edges each of which has capacity less than 2∆, the value of a
maximum flow in Gf is at most 2m∆.

59



The above observation implies that, to compute a maximum flow in Gf (∆), we can safely
cap the capacity each edge to be at most 2m∆. (That is, if the capacity of e in Gf is more than
2m∆, set it to be 2m∆.) As the ratio between the maximum and minimum capacity is at most
2m, we can compute the maximum flow in Gf (∆) in Õ(m + n1.5) using Theorem 1.4. Since
there are ⌊log2 ‖u‖∞⌋ iterations, the total running time of algorithm is Õ((m+n1.5) log ‖u‖∞).
This completes the proof of Corollary 7.9.

8 General Linear Programs

In this section, we prove Theorem 1.1 and Theorem 1.2. There are two main parts. For the
first part, we show that, given an initial point (x(init), s(init)), the path following algorithm
(Algorithm 5) returns (x(end), s(end)) where x(end) is a near-optimal point in Õ(mn+n2.5) time.
This is proved in Section 7.1 by putting together the tools developed in previous sections.

For the second part, we describe how to obtain an initial point (x(init), s(init)) and how to
obtain a near optimal primal solution in Section 8.2 hence proving Theorem 1.1. In Section 8.3,
we then show how to extract a near optimal dual solution hence proving Theorem 1.2. This
part uses standard techniques and we show how to do these tasks for completeness.

Our algorithms in this section will use the following linear system solver.

Lemma 8.1 ([NN13, LMP13, CLM+15]). There is an algorithm that, given a matrix A ∈
R
m×n, a diagonal non-negative weight matrix D ∈ R

m×m, and a vector b ∈ R
n such that there

exists a vector x ∈ R
n where (A⊤DA)x = b, w.h.p. returns a vector x such that ‖x−x‖A⊤DA ≤

ε‖x‖A⊤DA in Õ((nnz(A) + nω) log ε−1) time.

8.1 Path Following for General LPs

In Appendix B we give efficient HeavyHitter, InverseMaintenance, and HeavySampler
data structures for general linear programs, and use these to show the following.

Lemma 8.2. Consider a linear program

Π : min
A⊤x=b

ℓi≤xi≤ui∀i

c⊤x

where A ∈ R
m×n. Let ε = 1/(4C log(m/n)) for a large enough constant C. Given an ε-

centered initial point (x(init), s(init), µ(init)) for Π and a target µ(end), Algorithm 5 (when using
matrix-based data structures) returns an ε-centered point (x(end), s(end), µ(end)) in time

Õ
(
(mn+ n2.5) · | log µ(init)/µ(end)|

)
.

Proof. We use Algorithm 4, which is an implementation of Algorithm 2. By Lemma 4.12 the
algorithm returns an ǫ-centered (x(end), s(end), µ(end)). For the complexity, note that we have
a (P, c,Q)-HeavyHitter, (P, c,Q)-HeavySampler, and (P, c,Q)-InverseMaintenance for
P = Õ(nnz(A) + nω), ci = Õ(n) for i ∈ [m], Q = Õ(n2 + m

√
n) according to Lemma B.1,

Corollary B.6, and Lemma B.2. By using Lemma 6.7 the time complexity of Algorithm 4 is
bounded by

Õ
(
(mn+ n2.5) · | log µ(init)/µ(end)|

)
.
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8.2 Initial and Final Primal Solutions

In this section, we prove Theorem 1.1 using Lemma 8.2. Throughout this section, let δ′ = δ
10mW 2

and let ε = 1/(4C log(m/n)) for a large enough constant C. The path following algorithm, and
therefore Lemma 8.2, requires an initial point which is ε-centered. However, it is not clear how
to obtain such point efficiently. We first show how to modify the linear program so that it is
easy to compute an ε-centered initial point similar to how we did in Section 7.2. As described
in Section 7, we construct initial point by adding an identity block to the constraint matrix A.
Interestingly, this is simpler than in previous work [BLSS20, BLN+20] because we are able to
handle two-sided constraints.

Given matrix A ∈ R
m×n, vector b ∈ R

n, vector c ∈ R
m, an accuracy parameter δ, and the

linear program

min
A⊤x=b

ℓi≤xi≤ui∀i

c⊤x, (51)

define matrix Ã
def=

[
A
βIn

]
, β = ‖b −A⊤x(init)‖∞/Ξ, Ξ def= maxi |ui − ℓi|, x(init)

i
def= (ℓi + ui)/2,

x̃(init) def= 1
β (b − A⊤x(init)). By flipping the signs of columns of A, we can assume x̃(init) ≥ 0.

If x̃(init)
i = 0, enforce that coordinate to be 0 always by removing the variable x̃(init)

i (as it is

unnecessary for constructing the initial point), and otherwise define ℓ̃i = −Ξ and ũi = 2x̃(init)
i +Ξ

(the terms −Ξ and +Ξ are just to ensure that ũi > ℓ̃i). We define c̃ def= 2‖c‖1/δ′. We overload
notation and let c̃ be the vector in R

n with value c̃ in all coordinates.
Consider the modified linear program

min
Ã⊤

[
x

x̃

]
=b

ℓi≤xi≤ui∀i
ℓ̃i≤x̃i≤ũi∀i

c⊤x+ c̃⊤x̃. (52)

Lemma 8.3 (Initial point for the modified LP). For the linear program in (52), the point
([
x(init)

x̃(init)

]
,

[
c
c̃

]
, µ

)

is ε-centered for µ = 8m‖c‖1Ξ
εδ′ .

Proof. By the definition of x̃(init) = β−1(b −A⊤x(init)) it is clear that Ã

[
x
x̃

]
= b, so the point

is exactly feasible. Also, the vector

[
c
c̃

]
is clearly dual feasible as in Definition 4.7 by taking

z = 0.
Now we bound the centrality. Recall that the barrier function φ(x) on the interval [ℓ, u] is

given by φ(x) = − log(x− ℓ)− log(u−x). Therefore, φ′((ℓ+u)/2) = 0, and φ′′(x) ≥ 1/(u− ℓ)2.
In particular, this is lower bounded by 1/Ξ2 for all original constraints. For the new constraints,
similarly, we have that |ũi− ℓ̃i| ≤ ‖ 1

β (b−A⊤x(init))‖∞ ≤ 4Ξ. Hence, the Hessian φ′′(xi) is lower
bounded by 1/(16Ξ2) for all constraints.

Therefore, for x =

[
x(init)

x̃(init)

]
and s =

[
c
c̃

]
, because τ(x) ≥ n

m , we can bound

∥∥∥∥∥
s+ µτ(x)φ′(x)
µτ(x)

√
φ′′(x)

∥∥∥∥∥
∞
≤ 4mn−1µ−1Ξ‖s‖∞ ≤ ε
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by the choice of µ.

Next, we show that a solution to the modified LP can be used to round to nearly feasible
and optimal solutions to the original LP.

Lemma 8.4 (Final Point for the Original LP). Assume that the the linear program in (51) has
a feasible solution. Given an ε-centered point for the modified LP in (52) for µ = δ′‖c‖1Ξ/Cn
for some large enough constant C and some δ ≤ 1, we can in Õ((nnz(A) + nω) log(W/δ)) time
compute a point x(final) that satisfies

c⊤x(final) ≤ min
A⊤x=b

ℓi≤xi≤ui∀i

c⊤x+ δ and ‖A⊤x(final) − b‖∞ ≤ δ

and ℓi ≤ x(final)
i ≤ ui for all i.

Proof. By Lemma 4.11 we can compute an exactly feasible point

[
x(final)

x̃(final)

]
, and error . nµ ≤

δ′‖c‖1Ξ ≤ δ off optimal with a single solve to A⊤DA. We discuss at the end how to deal with
inexact solvers. We claim that x(final) satisfies the necessary conditions. Note that the optimum
for (51) is at least that of (52) as long as (51) is feasible. Therefore, we have that

c⊤x(final) ≤ min
A⊤x=b

ℓi≤xi≤ui∀i

c⊤x− c̃⊤x̃(final) + δ ≤ min
A⊤x=b

ℓi≤xi≤ui∀i

c⊤x+ δ.

Finally, we show that ‖A⊤x(final) − b‖∞ ≤ δ′‖A⊤x(init) − b‖∞, this suffices for the first claim.
Because x(final) is feasible, note that ‖A⊤x(final)− b‖∞ = β‖x̃(final)‖∞. Assume ‖A⊤x(final)−

b‖∞ ≤ δ′‖A⊤x(init)− b‖∞ is false, using β = ‖A⊤x(init)− b‖∞/Ξ, then there is some i such that
x̃

(final)
i > δ′Ξ. In this case, we get that

c⊤x(final) =
(
c⊤x(final) + c̃⊤x̃(final)

)
− c̃⊤x̃(final) ≤ min

A⊤x=b
ℓi≤xi≤ui∀i

c⊤x+ δ′‖c‖1Ξ− c̃⊤x̃(final)

<
∑

i

min(ciℓi, ciui) + 2‖c‖1Ξ− c̃δ′Ξ =
∑

i

min(ciℓi, ciui)

This is clearly a contradiction, as c⊤x(final) ≥∑i min(ciℓi, ciui) because x(final) is feasible. There-
fore, we have

‖A⊤x(final) − b‖∞ ≤ δ′‖A⊤x(init) − b‖∞ ≤ δ
because ‖A⊤x(init) − b‖∞ ≤ m‖A‖∞ max{‖u‖∞, ‖ℓ‖∞}+ ‖b‖∞} ≤ 2mW 2.

Finally, we have an approximate instead of exact solver for

[
x(final)

x̃(final)

]
. However, we can

compute the vector where each entry differs from

[
x(final)

x̃(final)

]
at most δinexact in time Õ((nnz(A)+

nω) log(W/δinexact)) using Lemma 8.1. As long as we can guarantee that δinexact ≤ 1/poly(mWλmin(Ã⊤DÃ)),
all entries will differ by an arbitrarily small polynomial, so this approximate vector satisfies all
the conditions of Lemma 8.4 as well. Recall that in Lemma 4.11 that D = T

−1Φ′′(x)−1, and
log Φ′′(x)−1 ≥ −Õ(logW + log µ(final) + log ‖c‖∞) by Lemma 4.46. Hence

log λmin(A⊤DA) ≥ −Õ(logW + log(1/µ(final)) + log ‖c‖∞) + log λmin(Ã⊤Ã)

≥ −Õ(log(W/δ))

where we used that λmin(Ã⊤Ã) ≥ β2 ≥ poly(1/(mW )) and µ(final) ≥ δ poly(1/(mW )).
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Now, we are ready to prove Theorem 1.1 by combining the two lemmas above.

Proof of Theorem 1.1. Using Lemma 8.3, we can obtain an ε-centered initial point
([
x(init)

x̃(init)

]
,

[
c
c̃

]
, µ(init)

)

for the modified linear program (52) in O(nnz(A)) time where µ(init) = 4m‖c‖1Ξ/εδ′.
Let µ(end) = δ′‖c‖1Ξ/Cn where C is a large enough constant. We invoke Lemma 8.2 which

returns

([
x(end)

x̃(end)

]
,

[
s(end)

s̃(end)

]
, µ(end)

)
in time Õ((mn+ n2.5) · log2 W ). This running time follows

because µ(init)/µ(end) = poly(mW/δ). It remains to bound the ratio W ′′ of largest to smallest

entry in φ′′(

[
x(init)

x̃(init)

]
). For each entry in x̃(init), we have φ′′(x̃(init)

i ) = 2/(x̃(init)
i + Ξ)2. Note

that Ξ ≤ x̃
(init)
i + Ξ ≤ 2Ξ . W , where Ξ = maxi |ui − ℓi| was set previously For each entry in

x(init), we have φ′′(x(init)
i ) = Θ(1/(ui − ℓi)2). As W ≥ maxi(ui−ℓi)

mini(ui−ℓi)
, we have that indeed the ratio

W ′′ ≤ poly(mW ) as desired.

As the last step, we give

([
x(end)

x̃(end)

]
,

[
s(end)

s̃(end)

]
, µ(end)

)
as an input to Lemma 8.4 and obtain a

final point x(final) which satisfies all condition of Theorem 1.1 in time Õ((nnz(A)+nω) log(W/δ)).
In total, the running time of the algorithm is Õ((mn+ n2.5) log(W/δ)).

8.3 Final Dual Solutions

In this section, we prove Theorem 1.2. Before proving it, we show the key subroutine for
extracting a dual solution from the primal LP as formalized below. By scaling x and A, we can
focus on the ℓ = −1, u = 1 case. Additionally, this formulation suffices for our application of
solving MDPs in Theorem 1.3.

Lemma 8.5 (Dual solution bound). Given an ε-centered point (x, s, µ) where ε ≤ 1/(C log(m/n))
and µ ≤ δ/Cn for sufficiently large C to the LP

min
A⊤x=0

−1≤xi≤1∀i

c⊤x, (53)

we can compute in time Õ((nnz(A) + nω) log(W/δ)) a vector z ∈ R
n satisfying

‖Az + c‖1 ≤ min
z∈Rn

‖Az + c‖1 + δ.

Proof. Define
OPT = min

A⊤x=0
−1≤xi≤1∀i

c⊤x.

By Sion’s minimax theorem, we have that

min
A⊤x=0

−1≤xi≤1∀i

c⊤x = min
‖x‖∞≤1

max
z∈Rn

c⊤x+ z⊤A⊤x

= max
z∈Rn

min
‖x‖∞≤1

(Az + c)⊤x = max
z∈Rn

−‖Az + c‖1 = − min
z∈Rn

‖Az + c‖1.

Hence, we have that minz∈Rn ‖Az+c‖1 = −OPT.Now, find x(final) and s(final) = Az+c satisfying
the conclusions of Lemma 4.11. Specifically, z may be computed as z = (A⊤A)−1A⊤(s(final)−c)
in time Õ((nnz(A) + nω) log δ−1) by Lemma 8.1.
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We now prove that this z satisfies the conclusions of this lemma: ‖Az+c‖1 ≤ minz∈Rn ‖Az+
c‖1 + δ. To simplify notation, we will write x for x(final) and s for s(final). Note that because
A⊤x = 0,

‖Az + c‖1 = (Az)⊤x+ ‖s‖1 = −c⊤x+ x⊤s+ ‖s‖1 ≤ −OPT + x⊤s+ ‖s‖1,

as c⊤x ≥ OPT by definition. Therefore, it suffices to bound x⊤s + ‖s‖1. We will show that
xisi + |si| . µτi. This suffices, as then

x⊤s+ ‖s‖1 .
∑

i

µτi . nµ ≤ δ

for sufficiently large choice of C in the definition of µ.
To show this, define y = s+µτφ′(x)

µτ
√
φ′′(x)

, so that ‖y‖∞ ≤ 1
10 by Claim A.6, which shows approxi-

mate centrality of the final point returned. We have that

yi

√
φ′′
i (xi)− φ′

i(xi) = µ−1τ−1
i si. (54)

If |xi| ≤ 1
2 , then both φ′′

i (xi) and |φ′
i(xi)| are O(1). Hence, eq. (54) shows that xisi + |si| .

|si| . µτi. If |xi| ≥ 1
2 , we have

yi

√
φ′′
i (xi) = yi

√
1

(1− xi)2
+

1
(1 + xi)2

≤ 2yi
1− |xi|

≤ 1
5(1− |xi|)

≤ |φ′
i(xi)|.

Hence, eq. (54) shows that 0 ≥ µ−1τ−1
i si ≥ − 1

1−xi
and

xisi + |si| = −(1− xi)si ≤ µτi.

The proof for xi ≤ −1
2 is similar. Therefore, we proved the claim xisi + |si| . µτi in all the

cases. Handling the inexactness of solvers may be done as in the proof of Lemma 8.4.

With the above lemma at hand, we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. First, observe that we can easily define an initial solution

(x(init), s(init), µ(init)) def= (0, c, ε−1‖c‖∞m/n)

of (53). Note that (x(init), s(init), µ(init)) is ε-centered because x(init) = 0 and s(init) = c are exactly
feasible. It remains to bound the centrality. As the barrier function is defined on [−1, 1], we
have φ′(0) = 0, and φ′′(0) = 2 by Fact 4.3. As τ(x(init)) ≥ n

m , we have
∥∥∥∥∥∥
s(init) + µ(init)τ(x(init))φ′(x(init))

µ(init)τ(x(init))
√
φ′′(x(init))

∥∥∥∥∥∥
∞

≤ m‖c‖∞
µn

≤ ε

as desired.
Then, we invoke Lemma 8.2 to obtain an ε-centered point (x(end), s(end), µ(end)) of (53)

where µ(end) = δ/Cn. Lemma 8.2 takes time Õ
(
(mn+ n2.5) · log(W/δ)

)
because µ(init)/µ(end) =

poly(mW/δ).
Lastly, we invoke Lemma 8.5 to obtain a vector z which satisfies the guarantee of Theorem 1.2

in time Õ((nnz(A) + nω) log(W/δ)) by using Lemma 8.1. Therefore, the total running time is
Õ
(
(mn+ n2.5) log(W/δ)

)
.
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Year Authors Refs Algorithm Running Time up to Õ(·)
1990 Tseng, Littman, Dean, Kaelbling [Tse90, LDK95] Value Iteration |S|2|A| 1

1−γ

2014 Lee, Sidford [LS14, LS15, SWWY18] IPM |S|2.5|A|
2018 Sidford, Wang, Wu, Yang [SWWY18] High Precision RVI |S|2|A| +

|S||A|

(1−γ)3

2020 This paper Robust IPM S|2|A| + |S|2.5

Table 6: High-precision algorithms for discounted MDPs. This table gives only the fastest
high precision results, i.e. those that depend polylogarithmically on ǫ. We ignore the Õ in
the running time, and suppress factors of log

(
max(|S|, |A|, ε−1, (1 − γ)−1,M)

)
. RVI denotes

Randomized Value Iteration. [SWWY18] showed that discounted MDPs could be solved via
linear programming, so previous results towards faster linear programming immediately gave
results for discounted MDPs.

8.4 Application: Discounted Markov Decision Process

In this section, we show an algorithm (Theorem 1.3) for solving the discounted Markov Decision
Process problem in time Õ((|S|2|A| + |S|2.5) log( M

(1−γ)ǫ )) (these parameters are defined below).
See Table 6 for the comparison with previous results. Below, we formally define the problem
and prove this bound.

Problem Definition. A discounted Markov Decision Process (DMDP) is specified by a tuple
(S,A, P, r, γ) where S is a the finite state space, A is the finite action space, P = {pa}a∈A is
the collection of state-action-state transition probabilities where pa(i, j) denote the probability
of going to state j from state i when taking action a, r is the collection of state-action rewards
where ra(i) ∈ [−M,M ] is the collected reward when we are currently in state i and take action
a, and γ ∈ (0, 1) is a discount factor.

Given a DMDP (S,A, P, r, γ), the value operator T : RS → R
S is defined for all u ∈ R

S and
i ∈ S by

T (u)i = max
a∈A

[ra(i) + γ · pa(i)⊤u]

where pa(i) ∈ R
S with (pa(i))j = pa(i, j). It is known that there is a unique vector v∗ such that

T (v∗) = v∗.
A vector π ∈ AS that tells the actor which action to take from any state is called a policy

and πi denotes the action prescribed by π to be taken at state i ∈ S. The value operator
associated Tπ with π is defined for all u ∈ R

S and i ∈ S by

Tπ(u)i = rπi(i) + γ · pπi(i)
⊤u.

Note that Tπ can be viewed as the value operator for the modified DMDP where the only
available action from each state is given by the policy π. Let vπ denote the unique vector such
that Tπ(vπ) = vπ.

We says that values u ∈ R
S are ε-optimal if ‖v∗−u‖∞ ≤ ε and we say that a policy π ∈ AS

is ε-optimal if ‖v∗ − vπ‖∞ ≤ ε, i.e. the values of the policy π are ε-optimal. Our goal is to find
an ε-optimal policy π.

Reductions to Solving LP and ℓ1 Regression. In Section B of [SWWY18], the authors
show how to reduce the problem of finding an ε-optimal policy to finding ǫ-approximate solution
of the following LP. We leverage this reduction along with Theorem 1.2 (ℓ1 regression) to prove
our main result Theorem 1.3.

Definition 8.6 (DMDP linear program). We call the following linear program the DMDP LP

min
Av≥r

v⊤~1. (55)

where r ∈ R
(S×A) is the vector of rewards, i.e. ri,a = ra(i) for all i ∈ S and a ∈ A and

A = E − γP where E ∈ R
(S×A)×S is the matrix where for all i, j ∈ S and a ∈ A we have that
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the j-th entry of row (i, a) of E is 1 if i = j and 0 otherwise, and P ∈ R
(S×A)×S is a matrix

where for all i ∈ S and a ∈ A we have that row (i, a) of P is pa(i). We call a vector v ∈ R
S

an ǫ-approximate DMDP LP solution if Av ≥ r − ǫ~1 and v⊤~1 ≤ OPT + ǫ where OPT is the
optimal value of the DMDP LP, Equation (55).

The reduction is stated as follows:

Lemma 8.7 (Lemma B.3 of [SWWY18]). If v is an ǫ-approximate DMDP LP solution and if
π ∈ AS is defined with πi = argmaxa∈A ra+γ ·p(i, a)⊤v for all i ∈ S then π is an 8ǫ|S|(1−γ)−2-
optimal policy.

[SWWY18] further reduces the problem of finding an ǫ-approximate DMDP LP solution to
finding a ǫ-optimal solution of the following instance of the ℓ1 regression problem.

Definition 8.8 (DMDP ℓ1-regression). For a given DMDP (S,A, P, r, γ) and a parameter α
we call the following ℓ1 regression problem the DMDP ℓ1 problem

min
v
f(v) =

∣∣∣∣α
( |S|M

1− γ +~1⊤v
)∣∣∣∣+

∥∥∥S−1Av − S−1b−~1
∥∥∥

1
+
∥∥∥S−1Av − S−1b+~1

∥∥∥
1

(56)

where s = 1
2( 2M

1−γ
~1 − r) and b = 1

2( 2M
1−γ

~1 + r), and S = diag(s). We let v∗
f denote the optimal

solution to this ℓ1 regression problem and we call v an ǫ-optimal solution to f if f(v) ≤ f(v∗
f )+ǫ.

Observe that (56) is indeed an instance of the ℓ1 regression problem from Theorem 1.2 where
the input matrix and the input vector c are defined as




S−1A
S−1A

α~1⊤


 ∈ R

(2|S×A|+1)×|S| and c =




S−1b+~1
S−1b−~1
α |S|M

1−γ


 ∈ R

(2|S×A|+1).

The next reduction is stated as follows:

Lemma 8.9 (Lemma B.7 of [SWWY18]). Suppose that v is an ǫ-approximate solution to the
DMDP ℓ1 problem then v is an ǫ′-approximate DMDP LP solution for

ǫ′ ≤ max

{
ǫ

α
,

2α|S|M2

(1− γ)2
+

ǫM

(1− γ)

}
.

By combining the above two reductions and the ℓ1-regression algorithm from Theorem 1.2,
we obtain the new algorithm for solving DMDP, proving Theorem 1.3.

Proof of Theorem 1.3. To obtain an ǫ-optimal policy π, by Lemma 8.7, it suffices to compute
an ε2-approximate DMDP LP solution v where ε2 = ǫ(1−γ)2

8|S| . Let v be a ε3-approximate solution

to the DMDP ℓ1-regression instance in (56) where α = ε2(1−γ)2

4|S|M2 and ε3 = min{αε2,
ε2(1−γ)

2M }. By
Lemma 8.9, v is ε′-approximate DMDP LP solution where

ε′ ≤ max

{
ǫ3
α
,

2α|S|M2

(1− γ)2
+

ǫ3M

(1− γ)

}
≤ max {ε2 , ε2/2 + ε2/2} = ε2

as desired. To solve the ℓ1-regression instance in (56), we invoke the algorithm from Theorem 1.2.
As ε3 ≥ poly(ε·(1−γ)

M |S| ) and the input matrix has size (2|S×A|+1)×|S| and the input vector has

size (2|S×A|+1), with high probability, we obtain v in time Õ((|S|2|A|+|S|2.5) log( M
(1−γ)ǫ )).

Note that the running time above is nearly linear time because the size of the input is
Ω(|S|2|A|). Note that Theorem 1.3 gives the first nearly linear time algorithm for which depen-
dencies on M, 1

ε ,
1

(1−γ) are all logarithmic.
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A IPM Proofs

A.1 Basic Analysis Tools

Lemma 4.2. For all ℓ ≤ u the function φ(x) = − log(x − ℓ) − log(u − x) is highly 1-self-
concordant on the interval (ℓ, u).

Proof. Note that φ′′(x) = (u − x)−2 + (x − ℓ)−2. For odd n, note that φ(n)(x) = (n −
1)! ((u− x)−n − (x− ℓ)−n), so

|φ(n)(x)| ≤ (n− 1)! min(u− x, x− ℓ)−n ≤ (n− 1)!φ′′(x)n/2.

This shows the first two items. For even n ≥ 2, we have φ(n)(x) = (n−1)! ((u− x)−n + (x− ℓ)−n),
and

(n− 1)!
(
(u− x)−n + (x− ℓ)−n) ≤ (n− 1)!

(
(u− x)−2 + (x− ℓ)−2

)n/2
≤ (n− 1)!φ′′(x)n/2.

This shows the last item.

Lemma 4.15 (Potential change bound). Define for u
(j)
i ≥ 0 and yi

wi =
∏

j∈[k]

(u(j)
i )cj and w

(new)
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j∈[k]
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i + δ

(j)
i )cj

and

vi = yiwi and v
(new)
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i
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50(1+‖c‖1) for all j ∈ [k], ‖v‖∞ ≤ 1/50, ‖Wη‖∞ ≤ 1
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‖v‖∞
∑

j∈[k]
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100λ
.

Then we have that ‖v(new) − v‖∞ ≤ 1
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Proof. For 0 ≤ t ≤ 1 define

w
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i =
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i )cj and v
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We first calculate

d
dt
w

(t)
i = w

(t)
i

∑

j∈[k]

cjδ
(j)
i

u
(j)
i + t · δ(j)

i

(57)

and

d
dt
v

(t)
i = yi

d
dt
w

(t)
i + ηiw

(t)
i = w

(t)
i


ηi + yi

∑

j∈[k]

cjδ
(j)
i

u
(j)
i + t · δ(j)

i


 . (58)

Applying (57) gives that

| log(w(new)
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i )−1 d

dt
w
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cjδ
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dt
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1
25
. (59)

Therefore, ‖W−1(w(new) −w)‖∞ ≤ exp(| log(w(new)
i )− log(wi)|)− 1 ≤ 2| log(w(new)

i )− log(wi)|.
Now we can use v = Wy and (59) to get that

‖v(new) − v‖∞ =
∥∥∥(W(new) −W)(y + η) + Wη

∥∥∥
∞
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as desired. We now proceed to controlling the potential Ψ. To this end, define f(t) = ψ(v(t)
i ).

By Taylor’s theorem we know that there is a ζ ∈ [0, 1] so that f(1) = f(0) + f ′(0) + 1
2f

′′(ζ).
Now compute using (58) that
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= ψ′′(v(t)
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We now bound (60), (61), (62). We will heavily use Lemma 4.14 and the fact that |w(t)
i yi| ≤

2|wiyi| = 2|vi| ≤ 2‖v‖∞ ≤ 1/10. To bound (60) use Cauchy-Schwarz to get that
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To bound (61) we compute that
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To bound (62) we compute that
∣∣∣∣∣∣
ψ′(v(t)

i )w(t)
i yi

∑

j∈[k]

cj(δ
(j)
i )2

(u(j)
i + t · δ(j)

i )2

∣∣∣∣∣∣
≤ 2|ψ′(vi)||w(t)

i yi|
∑

j∈[k]

|cj |(δ(j)
i )2

(u(j)
i + t · δ(j)

i )2

≤ 4|ψ′(vi)|‖v‖∞
∑

j∈[k]

|cj |((u(j)
i )−1δ

(j)
i )2.

Note that

f ′(0) = ψ′(vi)wiηi + ψ′(vi)vi
∑

j∈[k]

cj(u
(j)
i )−1δ

(j)
i .

Summing the previous bounds over all i and using that f(1) ≤ f(0) + f ′(0) + 1
2 maxζ∈[0,1] f

′′(ζ)
gives us that

Ψ(v(new)) ≤ Ψ(v(new)) + ψ′(v)⊤


Wη + V

∑

j∈[k]

cj(U(j))−1δ(j)




+ 8
m∑

i=1

ψ′′(vi)(wiηi)2 + 8‖c‖1‖v‖2∞
m∑

i=1

ψ′′(vi)
∑

j∈[k]

|cj |((u(j)
i )−1δ

(j)
i )2
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+ 8
m∑

i=1

ψ′′(vi)wi|ηi|
∑

j∈[k]

|cj ||(u(j)
i )−1δ

(j)
i |+ 8(1 + ‖c‖1)‖v‖∞

m∑

i=1

|ψ′(vi)|
∑

j∈[k]

|cj |((u(j)
i )−1δ

(j)
i )2

= Ψ(v(new)) + ψ′(v)⊤


Wη + V

∑

j∈[k]

cj(U(j))−1δ(j)




+ 8‖Wη‖2ψ′′(v) + 8‖c‖1‖v‖2∞
∑

j∈[k]

|cj |‖(U(j))−1δ(j)‖2ψ′′(v)

+ 8

〈
W|η|,

∑

j∈[k]

|cj ||(U(j))−1||δ(j)|
〉

|ψ′(v)|

+ 8(1 + ‖c‖1)‖v‖∞
∑

j

|cj |‖(U(j))−1δ(j)‖|ψ′(v)|

≤ Ψ(v(new)) + ψ′(v)⊤


Wη + V

∑

j∈[k]

cj(U(j))−1δ(j)




+ 8‖Wη‖2ψ′′(v) + 8(1 + ‖c‖1)‖v‖2∞
∑

j∈[k]

|cj |‖(U(j))−1δ(j)‖2ψ′′(v)

+ 8‖Wη‖|ψ′(v)|
∑

j

|cj |‖(U(j))−1δ(j)‖|ψ′(v)| + 8(1 + ‖c‖1)‖v‖∞
∑

j∈[k]

|cj |‖(U(j))−1δ(j)‖2|ψ′(v)|

by the Cauchy-Schwarz inequality as desired.

A.2 Leverage Scores and Fundamental Matrix Proofs

The analysis and notation throughout this section is broadly based on that of [LS14].

Lemma 4.18 (Alternate definition of regularized Lewis weights). For all non-negative c

w(c) = argminw∈Rm
>0
f(w, c)

where

f(w, c) def= − 1
1− 2

p

log det(A⊤CW1− 2
p CA) +

m∑

i=1

wi −
m∑

i=1

vi logwi.

Proof. By [LS19, Lemma 23] we can compute that

∇wf(w, c) = −W−1σ(W
1
2

− 1
p CA) +~1−W−1v.

Therefore, we have that

−W−1
c σ(W

1
2

− 1
p

c CA) +~1−W−1
c v = 0,

which is equivalent to the desired bound of w(c) = σ(W
1
2

− 1
p

c CA) + v.

Lemma 4.19 (Jacobian of Regularized Lewis weight). For a fixed vector v, we have that

Jc = 2Wc

(
Wc −

(
1− 2

p

)
Λc

)−1

ΛcC
−1.

Proof. By Lemma 4.18 we have that

∇wf(w(c), c) = 0.

Differentiating with respect to c gives us

∇2
wcf(w(c), c) +∇2

wwf(w(c), c)Jc = 0.
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As in the proof of [LS19, Lemma 24] we have that

∇2
wcf(w, c) = −2W−1ΛcC

−1

and

∇2
wwf(w, c) = W−1

(
Σc −

(
1− 2

p

)
Λc

)
W−1 + W−1VW−1

= W−1
(

Σc + V−
(

1− 2
p

)
Λc

)
W−1.

Now we can solve to get

Jc = 2Wc

(
Σc + V−

(
1− 2

p

)
Λc

)−1

ΛcC
−1

= 2Wc

(
Wc −

(
1− 2

p

)
Λc

)−1

ΛcC
−1

where we have used that Wc = Σc + V by definition.

Before continuing, we collect various properties of projection matrices, proven in [LS19,
Lemma 47].

Lemma A.1 (Facts related to T−1P(2)). We have the following for a vector h ∈ R
m, where P

is an orthogonal projection matrix and T is a diagonal matrix with the same diagonal as P.

1. P(2) � T.

2. ‖T−1P(2)‖∞ ≤ 1.

3. ‖T−1P(2)h‖τ ≤ ‖h‖P(2) ≤ ‖h‖τ .

4. ‖T−1P(2)h‖∞ ≤ ‖h‖τ .

We now show that the operator W−1
c JcC is bounded in the τ +∞ norm.

Lemma A.2 (Facts related to W−1
c JcC). Define ‖g‖w(c)+∞

def= ‖g‖∞ + Cnorm‖g‖w(c). If p ∈
[2/3, 1] then for all vectors h we have

• ‖W−1
c JcCh‖w(c) ≤ p‖h‖w(c).

• ‖W−1
c JcCh‖∞ ≤ p‖h‖∞ + 2‖h‖w(c).

• ‖W−1
c JcCh‖w(c)+∞ ≤ p(1 + 3/Cnorm)‖h‖w(c)+∞.

Proof. Define Λc = W
− 1

2
c ΛcW

− 1
2

c . Compute that

W
− 1

2
c JcC = 2W

1
2
c

(
Wc −

(
1− 2

p

)
Λc

)−1

Λc

= 2
(

I−
(

1− 2
p

)
Λc

)−1

W
− 1

2
c Λc

= 2
(

I−
(

1− 2
p

)
Λc

)−1

ΛcW
1
2
c .

Recall that Λc � Σc � Wc, so 0 � Λc � I. Therefore
(
I−

(
1− 2

p

)
Λc

)−1
Λc is a positive

semidefinite matrix with eigenvalues at most

max
0≤λ≤1

λ

1−
(
1− 2

p

)
λ

=
p

2
.
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Thus, we have

‖W−1
c JcCh‖w(c) = ‖W− 1

2
c JcCh‖2

≤ 2

∥∥∥∥∥

(
I−

(
1− 2

p

)
Λc

)−1

Λc

∥∥∥∥∥
2

‖W
1
2
c h‖2 ≤ p‖h‖w(c).

Define Sc = W
− 1

2
c ΣcW

− 1
2

c . Note that Sc is diagonal and 0 � Sc � I. Define Qc = W
− 1

2
c P

(2)
c W

− 1
2

c .
By definition, Λc = Sc − Qc. Define Dc = 2Sc

I+
(

2
p

−1
)

Sc
, and note that Dc is diagonal and

0 � Dc � pI. Note from the above formula that

W−1
c JcCh−Dch = 2W

− 1
2

c Λc

(
I−

(
1− 2

p

)
Λc

)−1

W
1
2
c h−W

− 1
2

c DcW
1
2
c h (63)

= W
− 1

2
c

(
2Λc −Dc

(
I−

(
1− 2

p

)
Λc

))(
I−

(
1− 2

p

)
Λc

)−1

W
1
2
c h

= W
− 1

2
c


2Sc − 2Qc −

2Sc

I +
(

2
p − 1

)
Sc

(
I−

(
1− 2

p

)
(Sc −Qc)

)

(

I−
(

1− 2
p

)
Λc

)−1

W
1
2
c h

= −2W
− 1

2
c

(
I−

(
1− 2

p

)
Sc

)−1

Qc

(
I

(
1− 2

p

)
Λc

)−1

W
1
2
c h

= −2W
− 1

2
c

(
I−

(
1− 2

p

)
Sc

)−1

W
− 1

2
c P(2)

c W
− 1

2
c

(
I−

(
1− 2

p

)
Λc

)−1

W
1
2
c h. (64)

By Lemma A.1 and Σc �Wc and both are diagonal matrices, we have that

‖W−1
c P(2)

c x‖∞ ≤ ‖x‖Σc ≤ ‖x‖w(c).

Also, Sc is non-negative and diagonal. Therefore,

‖W−1
c JcCh‖∞

≤ ‖Dch‖∞ + ‖2W
− 1

2
c

(
I−

(
1− 2

p

)
Sc

)−1

W
− 1

2
c P(2)

c W
− 1

2
c

(
I−

(
1− 2

p

)
Λc

)−1

W
1
2
c h‖∞

≤ ‖Dch‖∞ + ‖2W−1
c P(2)

c W
− 1

2
c

(
I−

(
1− 2

p

)
Λc

)−1

W
1
2
c h‖∞

≤ p‖h‖∞ + 2‖W− 1
2

c

(
I−

(
1− 2

p

)
Λc

)−1

W
1
2
c h‖w(c)

≤ p‖h‖∞ + 2

∥∥∥∥∥

(
I−

(
1− 2

p

)
Λc

)−1
∥∥∥∥∥

2

‖W
1
2
c h‖2

≤ p‖h‖∞ + 2‖h‖w(c).

At the end we have used that Λc is a positive semidefinite matrix so
(
I +

(
2
p − 1

)
Λc

)
has all

eigenvalues at least 1, hence 0 �
(
I +

(
2
p − 1

)
Λc

)−1
� I.

Finally, note that

‖W−1
c JcCh‖w(c)+∞ ≤ p‖h‖∞ + 2‖h‖w(c) + Cnormp‖h‖w(c)

≤ p (1 + 2/(Cnormp)) ‖h‖w(c)+∞

≤ p(1 + 3/Cnorm)‖h‖w(c)+∞

as p ≥ 2/3.
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We will need one additional bound on the∞ norm of a matrix that appears in the expression
for the Jacobian in Lemma 4.19.

Lemma A.3 (Matrix ∞-norm bound). In the notation of Lemma A.2 we have that for any
vector h that

∥∥∥∥∥W
− 1

2
c

(
I−

(
1− 2

p

)
Λc

)−1

W
1
2
c h

∥∥∥∥∥
∞
≤ 3‖h‖∞.

Proof. By Lemma A.1 we know ‖Σ−1
c P

(2)
c ‖∞ ≤ 1. Define Mc = p

2

(
Wc + (2

p − 1)Σc

)
� Σc. Let

ℓ = p
2

(
2
p − 1

)
. We calculate

∥∥∥∥∥W
− 1

2
c

(
I−

(
1− 2

p

)
Λc

)−1

W
1
2
c

∥∥∥∥∥
∞

=

∥∥∥∥∥

(
Wc −

(
1− 2

p

)
Λc

)−1

Wc

∥∥∥∥∥
∞

=

∥∥∥∥∥

(
2
p

Mc −
(

2
p
− 1

)
P(2)
c

)−1

Wc

∥∥∥∥∥
∞

=
p

2

∥∥∥∥∥M
− 1

2
c

(
I− ℓM− 1

2
c P(2)

c M
1
2
c

)−1

M
− 1

2
c Wc

∥∥∥∥∥
∞

=
p

2

∥∥∥∥∥∥
M

− 1
2

c

∑

i≥0

ℓi(M
− 1

2
c P(2)

c M
− 1

2
c )iM

− 1
2

c Wc

∥∥∥∥∥∥
∞

=
p

2

∥∥∥∥∥∥
∑

i≥0

ℓi(M−1
c P(2)

c )iM−1
c Wc

∥∥∥∥∥∥
∞

≤ p

2

∑

i≥0

ℓi
∥∥∥Σ−1

c P(2)
c

∥∥∥
i

∞

∥∥∥M−1Wc

∥∥∥
∞

≤
∥∥∥M−1

c Wc

∥∥∥
∞
≤ 2
p
≤ 3

where we have used that if X is a symmetric matrix with ‖X‖2 < 1 then (I−X)−1 =
∑
i≥0 Xi,

and Mc � p
2Wc as diagonal matrices.

Lemma 4.20 (Decomposition of Jc). For any vector c ∈ R
m
>0, there is a diagonal matrix

0 � Dc � I such that for Kc = W−1
c JcC−Dc, we have for all vectors h that

• ‖Kch‖∞ . ‖h‖∞.

• ‖Kch‖w(c) . ‖|h|‖P(2)
c

.

Proof. We follow the notation of the proof of Lemma A.2. We then have by (63) and (64) that

Kc = W−1
c JcC−Dc = 2W

− 1
2

c

(
I−

(
1− 2

p

)
Sc

)−1

W
− 1

2
c P(2)

c W
− 1

2
c

(
I−

(
1− 2

p

)
Λc

)−1

W
1
2
c .

We first bound the ∞-norm of Kc. By Lemma A.1 and Lemma A.3 we get

2

∥∥∥∥∥W
− 1

2
c

(
I−

(
1− 2

p

)
Sc

)−1

W
− 1

2
c P(2)

c W
− 1

2
c

(
I−

(
1− 2

p

)
Λc

)−1

W
1
2
c

∥∥∥∥∥
∞

≤ 2‖W−1
c P(2)

c W
− 1

2
c

(
I−

(
1− 2

p

)
Λc

)−1

W
1
2
c ‖∞ . 1.
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For the τ -norm, we use that Wc � P
(2)
c and bound

2

∥∥∥∥∥W
− 1

2
c

(
I−

(
1− 2

p

)
Sc

)−1

W
− 1

2
c P(2)

c W
− 1

2
c

(
I−

(
1− 2

p

)
Λc

)−1

W
1
2
c h

∥∥∥∥∥
τ

= 2

∥∥∥∥∥W
− 1

2
c

(
I−

(
1− 2

p

)
Λc

)−1

W
− 1

2
c P(2)

c W
− 1

2
c

(
I−

(
1− 2

p

)
Sc

)−1

W
1
2
c h

∥∥∥∥∥
τ

≤ 2

∥∥∥∥∥

(
I−

(
1− 2

p

)
Λc

)−1

W
− 1

2
c P(2)

c W
− 1

2
c

(
I−

(
1− 2

p

)
Sc

)−1

W
1
2
c h

∥∥∥∥∥
2

≤ 2

∥∥∥∥∥

(
I−

(
1− 2

p

)
Sc

)−1

h

∥∥∥∥∥
P

(2)
c W

−1
c P

(2)
c

≤ 2

∥∥∥∥∥

(
I−

(
1− 2

p

)
Sc

)−1

h

∥∥∥∥∥
P

(2)
c

≤ 2 ‖|h|‖
P

(2)
c
.

In the third line (the equality) we have used that W
1
2
c KcW

− 1
2

c is a symmetric matrix, as both

W
− 1

2
c JcCW

− 1
2

c and Dc are, so it equals its transpose.

Lemma 4.21 (Alternate decomposition). In the notation of Lemma 4.20, there is a diagonal
matrix D′

c and matrix K′
c such that 0 � D′

c � I,

W
− 1

2
c

(
I−

(
1− 2

p

)
Λc

)−1

W
1
2
c = D′

c + K′
c,

and for all vectors h,

• ‖K′
ch‖w(c) . ‖|h|‖P(2)

c

• ‖K′
ch‖∞ . ‖h‖∞.

Proof. By Lemma 4.20 we can write

W
− 1

2
c

(
I−

(
1− 2

p

)
Λc

)−1

W
1
2
c = I +

(
1− 2

p

)
W

− 1
2

c

(
I−

(
1− 2

p

)
Λc

)−1

ΛcW
1
2
c

= I +
(

1
2
− 1
p

)
W−1

c JcC

= I +
(

1
2
− 1
p

)
Dc +

(
1
2
− 1
p

)
Kc.

We set D′
c = I +

(
1− 2

p

)
Dc and K′

c =
(

1
2 − 1

p

)
Kc. This immediately implies the two claims

about the τ and ∞ norms of K′
ch. Finally, as in the proof of Lemma A.2 we know that

I +
(

1
2
− 1
p

)
Dc = I +

(
1− 2

p

)
Sc

I +
(

2
p − 1

)
Sc

=
(

I +
(

2
p
− 1

)
Sc

)−1

.

Therefore, D′
c is diagonal and 0 � D′

c � I as desired.

Lemma 4.22 (Lewis weight approximation). Let p ∈ (0, 4). If C ≈ε C then wp(CA) ≈4ε

wp(CA).

Proof. Define w0 = wp(CA), and

wi+1 = Iter(wi,C) for Iter(u,C)k
def=
(
c2
ka

⊤
k (A⊤CU

1− 2
p CA)−1ak + u

2
p

−1

k vk

) p
2

.
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Note that if C ≈ε C then Iter(u,C) ≈2pε Iter(u,C) for all vectors u. Also, if u ≈ε u′ then
Iter(u,C) ≈(1− p

2 )ε Iter(u′,C) for all diagonal matrices C. Now

w0 = Iter(w0,C) ≈2pε Iter(w0,C) = w1.

If wi ≈δ wi+1 then

wi+1 = Iter(wi,C) ≈(1− p
2 )δ Iter(wi+1,C) = wi+2.

Therefore

w0 ≈∑
i≥0

2(1− p
2 )i

pε
lim
k→∞

wk = wp(CA)

and

2
∑

i≥0

(
1− p

2

)i
pε = 4ε

as desired.

Matrices such as P◦(PXP) appears in the derivative of P(2), and can be bounded as follows.

Lemma A.4 (Projection matrix facts). Let P be a projection matrix with diagonal given by T.
For all vectors x, v and X = diag(x),V = diag(v) we have that

|P ◦ (PXP)v| ≤ 1
2

P(2)(x2) +
1
2

P(2)(v2)

as vectors coordinate-wise. In particular, we also have that

•
∥∥T−1P ◦ (PXP)v

∥∥
∞ ≤ 1

2(‖x‖2∞ + ‖v‖2∞).

•
∥∥T−1P ◦ (PXP)v

∥∥
τ ≤ 1

2(‖x2‖P(2) + ‖v2‖P(2) ) ≤ 1
2(‖x2‖τ + ‖v2‖τ ).

Proof. By the inequality |a⊤b| ≤ 1
2a

⊤a+ 1
2b

⊤b we have

|e⊤
i P ◦ (PXP)v| =

∣∣∣e⊤
i PXPVPei

∣∣∣

≤ 1
2
e⊤
i PXPXPei +

1
2
e⊤
i PVPVPei

≤ 1
2
e⊤
i PX2Pei +

1
2
e⊤
i PV2Pei

=
1
2
e⊤
i P(2)(x2) +

1
2
e⊤
i P(2)(v2).

Also, we then can use Lemma A.1 that ‖T−1P(2)‖∞ ≤ 1 to get
∥∥∥T−1P ◦ (PXP)v

∥∥∥
∞
≤ 1

2
‖T−1P(2)(x2)‖∞ +

1
2
‖T−1P(2)(v2)‖∞ ≤

1
2

(‖x‖2∞ + ‖v‖2∞).

Finally, we have that
∥∥∥T−1P ◦ (PXP)v

∥∥∥
τ
≤ 1

2
‖T−1P(2)(x2)‖τ +

1
2
‖T−1P(2)(v2)‖τ

=
1
2

(‖x2‖P(2)T−1P(2) + ‖v2‖P(2)T−1P(2))

≤ 1
2

(‖x2‖P(2) + ‖v2‖P(2) )

as P(2) � T, so T−1 � (P(2))−1.
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Lemma 4.26 (Sharper bound on changes in τ part 2). Let δc = c(new) − c be a γ-bounded
change, and let τ (new) = τ1, and δτ = τ (new) − τ . For J as defined in Lemma 4.19, we have

∥∥∥T−1(E[δτ ]− JE[δc])
∥∥∥
τ+∞

. γ2.

Proof. We adopt the same notation as Lemma 4.24, and also define

Nt = 2
(
I−

(
1− 2

p

)
Λt

)−1
Λt. We have

T−1(E[δτ ]− JE[δc]) =
∫ 1

0
(1− t)T−1

E

[
d
dt

Jtδc

]
. (65)

Recall that Jt = T
1
2
t NtT

1
2
t C−1

t , so

d
dt

Jt =
(

d
dt

T
1
2
t

)
NtT

1
2
t C−1

t + T
1
2
t

(
d
dt

Nt

)
T

1
2
t C−1

t

+ T
1
2
t Nt

(
d
dt

T
1
2
t

)
C−1
t + T

1
2
t NtT

1
2
t

(
d
dt

C−1
t

)
.

We will bound all four terms separately. Define ∆τt = diag(δτt), and note that d
dtTt = ∆τt .

Therefore, we may use Lemma 4.24 to bound the first term with
∥∥∥∥ET−1

(
d
dt

T
1
2
t

)
NtT

1
2
t C−1

t δc

∥∥∥∥
τ+∞

=
1
2

∥∥∥∥ET−1T−1
t ∆τtT

1
2
t NtT

1
2
t C−1

t δc

∥∥∥∥
τ+∞

= .5
∥∥∥E[T−1T−1

t ∆τtJtδc]
∥∥∥
τ+∞

.
∥∥∥E[(T−1δτt)

2]
∥∥∥
τ+∞

. γ2.

For the third term we first define vt = T−1
t ∆τtC

−1
t δc and use Lemma 4.20 to get

∥∥∥∥ET−1T
1
2
t Nt

(
d
dt

T
1
2
t

)
C−1
t δc

∥∥∥∥
τ+∞

.

∥∥∥∥ET−1TtT
−1
t T

1
2
t NtT

1
2
t T−1

t ∆τtC
−1
t δc

∥∥∥∥
τ+∞

=
∥∥∥ET−1TtT

−1
t JtCtvt

∥∥∥
τ+∞

≤ ‖ET−1TtDtvt‖τ+∞ + ‖ET−1TtKtvt‖τ+∞.

Note that

|vt| . (T−1
t δτt)

2 + (C−1
t δc)2.

Therefore, we use Lemma 4.24 and γ-boundedness (Definition 4.23 (17)) to bound

‖ET−1TtDtvt‖τ+∞ . ‖E(T−1
t δτt)

2‖τ+∞ + ‖E(C−1
t δc)2‖τ+∞ . γ2.

For the term with Kt, we use Lemma 4.20 to first bound

‖T−1TtKtvt‖∞ . ‖Ktvt‖∞ . ‖T−1
t δτt‖∞‖C−1

t δc‖∞ . γ2.

Also, we can use Lemma 4.20, Lemma 4.24, and γ-boundedness (Definition 4.23 (18)) to get

E‖T−1TtKtvt‖τ . E‖Ktvt‖τ
≤ E‖|T−1

t ∆τtC
−1
t δc|‖P(2)

t

. γE‖C−1|δc|‖P(2)
t

. γ2/Cnorm.

83



Therefore, the total contribution from the third term is O(γ2). For the fourth term, we use
Lemma 4.20 to write
∥∥∥∥ET−1T

1
2
t NtT

1
2
t

(
d
dt

C−1
t

)
δc

∥∥∥∥
τ+∞

=
∥∥∥ET−1TtT

−1
t JtCt(C−1

t δc)2
∥∥∥
τ+∞

≤ ‖ET−1TtDt(C−1
t δc)2‖τ+∞ + ‖ET−1TtKt(C−1

t δc)2‖τ+∞.

For the first piece, use γ-boundedness (Definition 4.23 (17)) to bound

‖ET−1TtDt(C−1
t δc)2‖τ+∞ . ‖E(C−1

t δc)2‖τ+∞ . γ2.

For the second piece, we use Lemma 4.20 and γ-boundedness (Definition 4.23 (17)) to first
bound

‖ET−1TtKt(C−1
t δc)2‖∞ . ‖(C−1

t δc)2‖∞ . γ2.

For the τ -norm we can use Lemma 4.20, γ-boundedness (Definition 4.23 (17) and (18)) to bound

E‖T−1TtKt(C
−1
t δc)2‖τ . E‖(C−1

t δc)2‖
P

(2)
t

. γ2/Cnorm.

Therefore, the total contribution from this case is at most O(γ2).
Now we bound the contribution from the d

dtNt term.

Analysis of d
dtNt. By the chain rule, we have that

d
dt

Nt = 2
(

I−
(

1− 2
p

)
Λt

)−1 d
dt

Λt

+ 2
(

1− 2
p

)(
I−

(
1− 2

p

)
Λt

)−1 d
dt

Λt

(
I−

(
1− 2

p

)
Λt

)−1

Λt

= 2
(

I−
(

1− 2
p

)
Λt

)−1 d
dt

Λt

(
I−

(
1− 2

p

)
Λt

)−1

.

Recall that Λt = T−1
t Σt − T

− 1
2

t P
(2)
t T

− 1
2

t . Define the vectors zt = T−1
t σt, ℓt = T

1
2

− 1
p

t ct, and

the diagonal matrices Zt = diag(zt) = T−1
t Σt, Lt = T

1
2

− 1
p

t Ct, so that Pt = P(LtA) =

A⊤Lt(A⊤L2
tA)−1LtA. In this way, Λt = Zt −T

− 1
2

t P(LtA)(2)T
− 1

2
t .

Define δzt = d
dtzt, δℓt = d

dtℓt, and ∆zt = diag(δzt), ∆ℓt = diag(δℓt). We have

∆zt = −T−2
t Σt∆τt + T−1

t ∆τt = T−1
t ∆τt(I−T−1

t Σt).

and

∆ℓt =
(

1
2
− 1
p

)
T

− 1
2

− 1
p

t Ct∆τt + T
1
2

− 1
p

t δc

so

L−1
t ∆ℓt =

(
1
2
− 1
p

)
T−1
t ∆τt + C−1

t δc.

Therefore, using Lemma 4.24, γ-boundedness (Definition 4.23 (16), (17), (18)) we get that

‖δzt‖∞ . γ and ‖E[δ2
zt

]‖τ+∞ . γ2 and E‖|δzt |‖P(2)
t

. γ/Cnorm (66)

and

‖L−1
t δℓt‖∞ . γ and ‖E[(L−1

t δℓt)
2]‖τ+∞ . γ2 and E‖L−1

t |δℓt |‖P(2)
t

. γ/Cnorm. (67)
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A direct calculation gives that

d
dt

Λt = ∆zt +
1
2

T
− 3

2
t ∆τtP

(2)
t T

− 1
2

t +
1
2

T
− 1

2
t P

(2)
t T

− 3
2

t ∆τt − 2T
− 1

2
t P(LtA) ◦

(
d
dt

P(LtA)
)

T
− 1

2
t

= ∆zt +
1
2

T
− 3

2
t ∆τtP

(2)
t T

− 1
2

t +
1
2

T
− 1

2
t P

(2)
t T

− 3
2

t ∆τt (68)

− 2T
− 1

2
t P

(2)
t L−1

t ∆ℓtT
− 1

2
t − 2T

− 1
2

t L−1
t ∆ℓtP

(2)
t T

− 1
2

t + 4T
− 1

2
t (Pt ◦ (PtL

−1
t ∆ℓtPt))T

− 1
2

t .
(69)

There are six terms here and we analyze them one by one. At a high level, for each of the six

terms, we will use Lemma 4.21 to handle the
(
I−

(
1− 2

p

)
Λt

)−1
terms in d

dtNt. For simplicity,
we will omit the factor of 2. For the ∆zt term in (68) we get

T−1T
1
2
t

(
I−

(
1− 2

p

)
Λt

)−1

∆zt

(
I−

(
1− 2

p

)
Λt

)−1

T
1
2
t C−1

t δc

= T−1Tt(D′
t + K′

t)∆zt(D
′
t + K′

t)C
−1
t δc

= T−1TtD
′
t∆ztD

′
tC

−1
t δc + T−1TtK

′
t∆ztD

′
tC

−1
t δc (70)

+ T−1TtD
′
t∆ztK

′
tC

−1
t δc + T−1TtK

′
t∆ztK

′
tC

−1
t δc. (71)

We know by (66) and γ-boundedness (Definition 4.23 (16))
∥∥∥∥∥T

−1T
1
2
t

(
I−

(
1− 2

p

)
Λt

)−1

∆zt

(
I−

(
1− 2

p

)
Λt

)−1

T
1
2
t C−1

t δc

∥∥∥∥∥
∞

. γ2,

so we focus on the τ -norm. First we use (66) and γ-boundedness (Definition 4.23 (17)) to get

‖E[T−1TtD
′
t∆ztD

′
tC

−1
t δc]‖τ ≤ ‖E[δ2

zt
]‖τ + ‖E[(C−1

t δc)2]‖τ . γ2/Cnorm.

For the remaining three terms in (70), (71) we can use Lemma 4.21 to bound

‖E[T−1TtK
′
t∆ztD

′
tC

−1
t δc]‖τ . ‖δzt‖∞E‖C−1

t |δc|‖P(2)
t

. γ2/Cnorm

and similar for the other two terms. Therefore, the total contribution from (70), (71) in τ +∞
norm is O(γ2).

For the 1
2T

− 3
2

t ∆τtP
(2)
t T

− 1
2

t term in (68) we can use Lemma 4.21 to write (omitting the 1
2)

T−1T
1
2
t

(
I−

(
1− 2

p

)
Λt

)−1

T
− 3

2
t ∆τtP

(2)
t T

− 1
2

t

(
I−

(
1− 2

p

)
Λt

)−1

T
1
2
t C−1

t δc

= T−1Tt(D′
t + K′

t)T
−2
t ∆τtP

(2)
t (D′

t + K′
t)C

−1
t δc

= T−1TtD
′
tT

−2
t ∆τtP

(2)
t D′

tC
−1
t δc + T−1TtK

′
tT

−2
t ∆τtP

(2)
t D′

tC
−1
t δc (72)

+ T−1TtD
′
tT

−2
t ∆τtP

(2)
t K′

tC
−1
t δc + T−1TtK

′
tT

−2
t ∆τtP

(2)
t K′

tC
−1
t δc. (73)

We can bound using ‖T−1
t P

(2)
t ‖∞ ≤ 1 (Lemma A.1)

∥∥∥∥∥T
−1T

1
2
t

(
I−

(
1− 2

p

)
Λt

)−1

T
− 3

2
t ∆τtP

(2)
t T

− 1
2

t

(
I−

(
1− 2

p

)
Λt

)−1

T
1
2
t C−1

t δc

∥∥∥∥∥
∞

. γ2.

To bound the τ -norm we can bound the first term in (72) with

‖E[T−1TtD
′
tT

−2
t ∆τtP

(2)
t D′

tC
−1
t δc]‖τ . ‖T−1

t δτt‖∞E‖C−1
t |δc|‖P(2)

t

. γ2/Cnorm.
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The other terms in (72), (73) follow similarly, e.g. using ‖T−1
t P

(2)
t ‖τ ≤ 1

E[‖T−1TtD
′
tT

−2
t ∆τtP

(2)
t K′

tC
−1
t δc‖τ ] . E[‖T−1

t ∆τtT
−1
t P

(2)
t K′

tC
−1
t δc‖τ ]

. ‖T−1
t δτt‖∞E[‖K′

tC
−1
t δc‖τ ]

. γE[‖C−1
t |δc|‖P(2)

t
]

. γ2/Cnorm.

Therefore, the total contribution from (72), (73) in τ +∞ norm is O(γ2). The 1
2T

− 1
2

t P
(2)
t T

− 3
2

t ∆τt

term in (68) can be handled equivalently.

We turn to the 2T
− 1

2
t P

(2)
t L−1

t ∆ℓtT
− 1

2
t in (69), which can be handled similarly to previous

bounds. We can use Lemma 4.21 to write (omitting the 2)

T−1T
1
2
t

(
I−

(
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p

)
Λt

)−1

T
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2
t P

(2)
t L−1
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2
t

(
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(
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p

)
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)−1

T
1
2
t C−1

t δc

= T−1Tt(D′
t + K′

t)T
−1
t P

(2)
t L−1

t ∆ℓt(D
′
t + K′

t)C
−1
t δc

= T−1TtD
′
tT

−1
t P
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t L−1
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′
tC

−1
t δc + T−1TtK

′
tT

−1
t P

(2)
t L−1

t ∆ℓtD
′
tC

−1
t δc (74)

+ T−1TtD
′
tT

−1
t P

(2)
t L−1

t ∆ℓtK
′
tC

−1
t δc + T−1TtK

′
tT

−1
t P

(2)
t L−1

t ∆ℓtK
′
tC

−1
t δc. (75)

We can bound using ‖T−1
t P

(2)
t ‖∞ ≤ 1 (Lemma A.1)
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1
2
t
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(
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)
Λt

)−1

T
− 1

2
t P
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2
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(
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(
1− 2

p

)
Λt

)−1

T
1
2
t C−1

t δc

∥∥∥∥∥
∞

. γ2.

To bound the τ -norm we can bound the first term in (74) with

‖E[T−1TtD
′
tT

−1
t P

(2)
t L−1

t ∆ℓtD
′
tC

−1
t δc]‖τ . ‖L−1

t δℓt‖∞E‖C−1
t |δc|‖P(2)

t
. γ2/Cnorm.

The other terms in (72), (73) follow similarly, e.g. using ‖T−1
t P

(2)
t ‖τ ≤ 1

E‖T−1TtD
′
tT

−1
t P

(2)
t L−1

t ∆ℓtK
′
tC

−1
t δc‖τ . E‖T−1

t P
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t δc‖τ

. E‖L−1
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. ‖L−1
t δℓt‖∞E‖K′
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t |δc|‖P(2)

t
. γ2/Cnorm.

Therefore, the total contribution from the 2T
− 1

2
t P

(2)
t L−1

t ∆ℓtT
− 1

2
t term in (69) O(γ2). The

2T
− 1

2
t L−1

t ∆ℓtP
(2)
t T

− 1
2

t term in (69) can be handled equivalently.

Finally we bound the 4T
− 1

2
t (Pt◦(PtL

−1
t ∆ℓtPt))T

− 1
2

t term in (69). We start by using Lemma
4.21 to write (omitting the factor of 4)
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2
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2
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)−1

T
1
2
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t δc

= T−1TtD
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+ T−1TtD
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t (Pt ◦ (PtL
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t ∆ℓtPt))K′
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t δc + T−1TtK
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Using Lemma A.3 and A.4 we get that
∥∥∥∥∥T
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2
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p

)
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)−1

T
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2
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(
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(
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p

)
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T
1
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t C−1

t δc
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∞

.
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2
t C−1
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2
t C−1

t δc
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2

∞
. γ2

by (67) and γ-boundedness (Definition 4.23 (16)). We now bound the τ -norm of all four terms
in (76) and (77). For the first term in (76) we bound using Lemma A.4 and (67)

E‖T−1TtD
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t (Pt ◦ (PtL
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t ∆ℓtPt))D′
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−1
t δc‖τ

. E‖T−1
t (Pt ◦ (PtL

−1
t ∆ℓtPt))D′

tC
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t δc‖τ (78)

. E‖(L−1
t δℓt)

2‖
P

(2)
t

+ E‖(D′
tC
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t δc)2‖

P
(2)
t

. ‖L−1
t δℓt‖∞E‖L−1

t |δℓt |‖P(2)
t

+ ‖C−1
t δc‖∞E‖C−1

t |δc|‖P(2)
t

. γ2/Cnorm (79)

For the second term in (76) we also get
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tC
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t δc‖τ ]
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t (Pt ◦ (PtL

−1
t ∆ℓtPt))D′

tC
−1
t δc‖τ ] . γ2/Cnorm

exactly as from (78) to (79). For the first term in (77) we use Lemma A.4 and (67) to bound
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t (Pt ◦ (PtL
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. E‖(L−1
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(2)
t

+ E‖(K′
tC
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t δc)2‖

P
(2)
t

≤ ‖L−1
t δℓt‖∞E‖L−1

t δℓt‖P(2)
t

+ E‖(K′
tC

−1
t δc)2‖τ

≤ γ2/Cnorm + ‖K′
tC

−1
t δc‖∞E‖K′

tC
−1
t δc‖τ

≤ γ2/Cnorm + γ · E‖C−1
t |δc|‖P(2)

t
. γ2/Cnorm (81)

where we have used ‖K′
t‖∞ . 1 and Lemma 4.25. For the second term in (77), we exactly

follow (80) and (81) to bound

E[‖T−1TtK
′
tT

−1
t (Pt ◦ (PtL

−1
t ∆ℓtPt))K′

tC
−1
t δc‖τ ]

. E[‖T−1
t (Pt ◦ (PtL

−1
t ∆ℓtPt))K′

tC
−1
t δc‖τ ] . γ2/Cnorm.

Therefore, the total contribution from the τ +∞-norm from the 4T
− 1

2
t (Pt ◦(PtL

−1
t ∆ℓtPt))T

− 1
2

t

term in (69) is at most O(γ2). Therefore, the d
dtNt term has total contribution of O(γ2).

Combining everything, this gives our desired bound.

A.3 Initial and Final Point

We will require some basic properties of self-concordant functions.

Lemma A.5 (Theorem 4.1.7, Lemma 4.2.4 in [Nes98]). Let φ be a ν-self-concordant function
on the domain X . Then for any x, y ∈ X we have that
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• φ(x)⊤(y − x) ≤ ν.

• (∇φ(y)−∇φ(x))⊤(y − x) ≥
‖y−x‖2

∇2φ(x)

1+‖y−x‖∇2φ(x)
.

Lemma 4.11 (Final point). Given an ε-centered point (x, s, µ) where ε ≤ 1/80, we can compute
a point (x(final), s(final)) satisfying

1. A⊤x(final) = b, s(final) = Ay + c for some y.

2. c⊤x(final) −min A⊤x=b
ℓi≤xi≤ui∀i

c⊤x . nµ.

The algorithm takes O(nnz(A)) time plus the time for solving a linear system on A⊤DA
where D is a diagonal matrix.

Proof. Set s(final) = s and x(final) = x − T
−1Φ′′(x)−1A(A⊤T

−1Φ′′(x)−1A)−1(b − A⊤x). This
obviously satisfies the first point. For the second point, there are two steps: We first prove the
claim below, and then use the claim to prove the second point.

Claim A.6. ‖Φ′′(x)
1
2 (x(final) − x)‖∞ . ε and

∥∥∥∥
s(final)+µτ(x)φ′(x(final))

µτ(x)
√
φ′′(x(final))

∥∥∥∥
∞

. ε.

Proof. We start by using Lemma 4.28 to get that

‖Φ′′(x)
1
2 (x(final) − x)‖∞ ≤ ‖T−1

Φ′′(x)− 1
2 A(A⊤T

−1
Φ′′(x)−1A)−1(b−A⊤x)‖∞

. ‖A⊤x− b‖(A⊤T−1Φ′′(x)−1A)−1

≤ εγ/Cnorm ≤ ε.

1-self-concordance gives us that
∥∥∥Φ′′(x)− 1

2

(
φ′(x(final))− φ′(x)

)∥∥∥
∞

. ‖Φ′′(x)− 1
2 Φ′′(x)(x(final) − x)‖∞ . ε.

Also, we know that φ′′(x) ≈2 φ
′′(x(final)), hence

∥∥∥∥∥∥
s(final) + µτ(x)φ′(x(final))

µτ(x)
√
φ′′(x(final))

∥∥∥∥∥∥
∞

.

∥∥∥∥∥
s(final) + µτ(x)φ′(x(final))

µτ(x)
√
φ′′(x)

∥∥∥∥∥
∞

. ε.

Now, we are ready to prove the second point. Define x∗ def= argmin A⊤x=b
ℓi≤xi≤ui∀i

c⊤x, and

xt = tx(final) + (1 − t)x∗ for t ∈ [0, 1]. Let v = s(final)+µτ(x)φ′(x(final))

µτ(x)
√
φ′′(x(final))

, so that ‖v‖∞ . ε. We will

use that ‖v‖∞ ≤ 1. This gives us

c⊤(x(final) − x∗) = (s(final) −Ay)⊤(x(final) − x∗)

= (s(final))⊤(x(final) − x∗)

= µ(
√
φ′′(x(final))v − φ′(x(final)))⊤T(x)(x(final) − x∗)

≤ µ
∑

i∈[m]

τ(x)i

∣∣∣∣
√
φ′′
i (x

(final)
i )(x(final)

i − x∗
i )
∣∣∣∣ − µφ′(x(final))⊤T(x)(x(final) − x∗).

(82)

By Lemma A.5 above coordinate-wise on the 1-self-concordant functions φi, we can bound

φ′(x(final))⊤T(x)(x(final) − x∗)
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= 2φ′(x(final))⊤T(x)(x(final) − x1/2)

= 2(φ′(x(final))− φ′(x1/2))⊤T(x)(x(final) − x1/2) + 2φ′(x1/2)⊤T(x)(x(final) − x1/2)

= 2(φ′(x(final))− φ′(x1/2))⊤T(x)(x(final) − x1/2) + 2φ′(x1/2)⊤T(x)(x1/2 − x∗)

≥ 2
∑

i∈[m]

τ(x)i

∣∣∣∣
√
φ′′
i (x

(final)
i )(x(final)

i − (x1/2)i)
∣∣∣∣
2

1 +
∣∣∣∣
√
φ′′
i (x

(final)
i )(x(final)

i − (x1/2)i)
∣∣∣∣
− 2

∑

i∈[m]

τ(x)i

=
∑

i∈[m]

τ(x)i

∣∣∣∣
√
φ′′
i (x

(final)
i )(x(final)

i − x∗
i )
∣∣∣∣
2

2 +
∣∣∣∣
√
φ′′
i (x

(final)
i )(x(final)

i − x∗
i )
∣∣∣∣
− 2

∑

i∈[m]

τ(x)i

Applying this to the expression in (82) we get that

c⊤(x(final) − x∗) ≤ (82)

≤ µ



∑

i∈[m]

τ(x)i

∣∣∣∣
√
φ′′
i (x

(final)
i )(x(final)

i − x∗
i )
∣∣∣∣ −

∑

i

τ(x)i

∣∣∣∣
√
φ′′
i (x

(final)
i )(x(final)

i − x∗
i )
∣∣∣∣
2

2 +
∣∣∣∣
√
φ′′
i (x

(final)
i )(x(final)

i − x∗
i )
∣∣∣∣

+ 2
∑

i∈[m]

τ(x)i




= µ



∑

i∈[m]

τ(x)i
2
∣∣∣∣
√
φ′′
i (x

(final)
i )(x(final)

i − x∗
i )
∣∣∣∣

2 +
∣∣∣∣
√
φ′′
i (x

(final)
i )(x(final)

i − x∗
i )
∣∣∣∣

+ 2
∑

i∈[m]

τ(x)i


 ≤ 4µ

∑

i∈[m]

τ(x)i . nµ.

A.4 Sampling Schemes

Lemma 4.41 (Independent sampling). Let vector q ∈ R
m
≥0 satisfy

qi ≥ C2
validγ

−1|(δr)i|+ Csampleσ(T− 1
2 Φ′′(x)− 1

2 A)i log(m)γ−2

for sufficiently large Csample. Then picking Rii = 1/min(qi, 1) with probability min(qi, 1) and 0
otherwise is a Cvalid-valid (Definition 4.13).

Proof. The (Expectation) condition is clear by definition, and (Covariance) follows by inde-
pendence. The (Matrix approximation) condition follows by [CLM+15, Lemma 4] and that
qi ≥ Csample log(m)γ−2σ(A).

For the (Variance) condition, note that the variance is 0 if qi = 1. Otherwise, qi ≥
C2

validγ
−1|(δr)i| so we have

Var[Rii(δr)i] ≤
(δr)2

i

qi
≤ γ|(δr)i|

C2
valid

Also, qi ≥ Csampleσ(T
− 1

2 Φ′′(x)− 1
2 A)i log(m)γ−2 so E[R2

ii] ≤ 2σ(A)−1.
For the (Maximum) condition, we perform cases on qi. It is trivial for qi = 1. Otherwise,

qi ≥ C2
validγ

−1|(δr)i|, so |q−1
i (δr)i| ≤ γ

C2
valid

.

Lemma 4.42 (Proportional sampling). Let vector q ∈ R
m
≥0 satisfy

qi ≥ |(δr)i|+ σ(T
− 1

2 Φ′′(x)− 1
2 A)i.
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Let S ≥ ∑
i qi. Let X be a random variable which equals q−1

i ei (ei is the standard basis
vector) with probability qi/S for all i, and ~0 otherwise. For C0 = 100C4

validγ
−2 log(m) let

R = C−1
0

∑C0S
j=1 Xj , where Xj are i.i.d. copies of X. Then R is a Cvalid-valid distribution

(Definition 4.13).

Proof. The (Expectation) condition follows directly. For the (Covariance) condition, note that

E[RiiRjj] =
∑

1≤t1,t2≤C0S

1
C2

0qiqj
Pr[Xt1 picks i] Pr[Xt2 picks j] ≤ C2

0S
2 1
C2

0qiqj

qiqj
S2

= 1.

Because variance is additive over independent samples, we use that qi ≥ |(δr)i| to get

Var[Rii(δr)i] ≤
(δr)2

i

C2
validγ

−2qi
≤ γ2|(δr)i|

C2
valid

≤ γ|(δr)i|
C2

valid

.

Also, qi ≥ σ(A)i, so we get that

E[R2
ii] ≤ 1 + Var[Rii] ≤ 1 + q−1

i ≤ 2σ(A)−1.

To show the (Maximum) condition, we recall that R =
∑C0S
j=1 C

−1
0 Xj, and use Bernstein’s

inequality. Note that the maximum possible value of C−1
0 Xj is (C0qi)−1, and that Var[Rii] ≤

(C0qi)−1. Therefore, by Bernstein’s inequality we know that

Pr[|Rii − 1| ≥ t] ≤ exp

(
− t2/2

1
C0qi

+ t
3C0qi

)
.

For t = γ
C2

valid
|(δr)i| we have that

exp

(
− t2/2

1
C0qi

+ t
3C0qi

)
≤ exp


− 1

(δr)2
i

50qi log(m) + |(δr)i|γ
150C2

valid
qi log(m)


 .

Now, because qi ≥ |(δr)i|, we have that

(δr)2
i

50qi log(m)
≤ |(δr)i|

50 log(m)
≤ 1

50 log(m)

as ‖δr‖∞ . γ by Lemma 4.29. From the definition of qi, we also calculate that

|(δr)i|γ
150C2

validqi log(m)
≤ 1

150C2
valid log(m)

.

Therefore, we have that

exp


− 1

(δr)2
i

50qi log(m) + (δr)iγ
150CnormCvalidqi log(m)




≤ exp


 1

1
50 log(m) + 1

150C2
valid

log(m)




≤ exp(−25 log(m)) ≤ m−10.

Finally, to show the (Matrix concentration) result, we will use the matrix Freedman Inequality
[Tro11]. Let ai be the rows of the matrix A, so we have that

(A
⊤

A)−1/2A
⊤

RA(A
⊤

A)−1/2 =
C0S∑

j=1

(A
⊤

A)−1/2C−1
0 q−1

ij
aija

⊤
ij (A

⊤
A)−1/2,
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where ij is the i-th selected nonzero entry for R. We now bound the maximum and the variance.
For the maximum, we know that

∥∥∥(A⊤
A)−1/2C−1

0 q−1
ij
aija

⊤
ij (A

⊤
A)−1/2

∥∥∥
2
≤ C−1

0 q−1
ij
σ(A)ij ≤ C−1

0 ,

as qi ≥ σ(A)i for all i ∈ [m]. For the variance, by the above calculation using qi ≥ σ(A)i for
all i, we know that

Eij

[(
(A⊤

A)−1/2C−1
0 q−1

ij
aija

⊤
ij (A⊤

A)−1/2
)]

=
∑

j

C−2
0 q−2

i · qi/S ·
(
(A

⊤
A)−1/2aja

⊤
j (A

⊤
A)−1/2

)2

� C−2
0 S−1

∑

j

(A⊤
A)−1/2aja

⊤
j (A⊤

A)−1/2 = C−2
0 S−1I.

As there are C0S total terms, the variance is bounded by C−1
0 I. Hence, the matrix Freedman

inequality tells us that

Pr
[
A

⊤
RA 6≈γ A

⊤
A
]
≤ m · exp

(
− γ2/2
C−1

0 + γC0/3

)
≤ m · exp(−25 log(m)) ≤ m−10

as desired, by the choice of C0.

Corollary 4.43 (Sampling by a mixture of ℓ2 and uniform). Let C1, C2, C3 be constants such
that C3 ≥ 4Csample and C1C2 ≥ C4

validγ
−2 and

pi = C1

√
n(δr)2

i + C2/
√
n+ C3τiγ

−2 logm.

Then pi ≥ qi in each of Lemma 4.41 and 4.42. Hence replacing qi with pi in Lemma 4.41 and
4.42 and sampling acoordingly gives a valid distribution (Definition 4.13). Additionally

∑

i∈[m]

pi ≤
(

(C1 + C2)
m√
n

+ C3nγ
−2 logm

)
. (25)

Proof. Note that by the choice of α = 1
4 log(4m/n) we have that

σ(T
− 1

2 Φ′′(x)− 1
2 A)i ≈1 σ(T

− 1
2

− 1
1−α Φ′′(x)− 1

2 A)i = τ(x)i,

which gives the bound for the part with τi. For the other piece, note by the AM-GM inequality

C1

√
n(δr)2

i + C2/
√
n ≥ 2

√
C1C2|δr|i ≥ C2

validγ
−1|δr|i.

Now we bound
∑
i pi. By Lemma 4.29 we have that

‖δr‖22 ≤
m

n
‖δr‖2τ ≤ 2mγ2/n ≤ m/n

because γ ≤ 1/2. Therefore, we have that
∑

i∈[m]

pi =
∑

i∈[m]

C1

√
n(δr)2

i + C2/
√
n+ C3τiγ

−2 logm

= C1

√
n‖δr‖22 +C2

m√
n

+ C3nγ
−2 logm

≤ (C1 + C2)
m√
n

+ C3nγ
−2 logm.
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A.5 Additional IPM Properties

Lemma 4.44 (Nearby stability of x). Suppose that R is sampled from a Cvalid-valid distribution
for Cvalid ≥ β−2 log(mT ) where β ∈ (0, γ). Let (x(k), s(k)) for k ∈ [T ] be the sequence of points
found by Algorithm 1. With probability 1 − m−10, there is a sequence of points x̂(k) from
1 ≤ k ≤ T such that

• ‖Φ′′(x(k))
1
2 (x̂(k) − x(k))‖∞ ≤ β/2.

• ‖Φ′′(x̂(k))
1
2 (x̂(k) − x(k))‖∞ ≤ β.

• ‖Φ′′(x(k))
1
2 (x̂(k+1) − x̂(k))‖τ(x̂(k))+∞ ≤ 2γ.

Proof. Define x̂(1) = x(1). Define the stability potential, analogous to the centrality potential in
Definition 4.8, as

Ψstab(x, x̂) def=
∑

i∈[m]

cosh
(
λstabφ

′′(x̂(k)
i )

1
2
i (x̂(k)

i − x
(k)
i )

)

for λstab = C log(mT )/β for sufficiently large constant C. We will choose x̂(k+1) using gradient
descent against the potential, and will analyze the procedure using Lemma 4.15. Precisely, fix
εstab = 1

Cλstab
for C as the same constant as in Algorithm 1. Chosen this way, we can see

that γβ ≤ εstab because εstab = β
C2 log(mT )

and γ = ε/(λC) ≤ 1/(C3 logm) by the choice of
parameters in Algorithm 1.

Define δx̂ = εstab∇x̂Ψ(x(k), x̂(k))♭(τ(x̂(k))) and

x̂(k+1) = x̂(k) − E[x(k+1) − x(k)]−Φ′′(x(k))− 1
2 δx̂ = x̂(k) − E[δx]− Φ′′(x(k))− 1

2 δx̂

where δx is defined in Algorithm 1 line 12. We will now verify the conditions of Lemma 4.15 and
apply it. Here, we will choose y = x̂(k) − x(k) and u(1) = Φ′′(x(k))

1
2 . In the notation of Lemma

4.15, for simplicity we will just write c = u(1), and δc = δ(1), as in the notation of Section 4.4.
By Lemma 4.31 we know that ‖C−1δc‖∞ ≤ 2γ ≤ 1/100.

Throughout the proof, we will use that τ(x̂(k)) ≈O(β) τ(x(k)) because Φ′′(x̂(k)) ≈O(β) Φ′′(x(k))
by induction and Lemma 4.22. In particular, for any vector h we have that ‖h‖τ(x̂(k))+∞ ≈0.1

‖h‖τ+∞.
By induction, we know that ‖Φ′′(x(k))

1
2 (x̂(k) − x(k))‖∞ ≤ β/2 ≤ 1/50, and thus

‖C−1δc‖∞‖Φ′′(x(k))
1
2 (x̂(k) − x(k))‖∞ ≤ βγ ≤

1
100λstab

by the choice of γ. Also, we know that

η = x̂(k+1) − x̂(k) − (x(k+1) − x(k))− Φ′′(x(k))− 1
2 δx̂ = Φ′′(x(k))− 1

2
(
Rδr − δr − δx̂

)
.

Therefore, by the (Maximum) condition of Definition 4.13 and ‖δx̂‖τ(x̂(k))+∞ ≤ εstab we know
that

‖Wη‖∞ ≤ ‖Φ′′(x(k))
1
2 (x̂(k+1) − x̂(k))‖∞ ≤

γ

C2
valid

+ εstab ≤ γβ + εstab ≤
1

100λstab
,

so all the conditions of Lemma 4.15 are satisfied. Now we bound the terms of (13), (14), (15)
in expectation over R. To bound (13), note that

E[ψ′(v)⊤Wη] = ψ′(v)⊤δx̂ = −εstab‖ψ′(v)‖∗
τ(x̂(k))+∞

and by Lemma 4.31

E[ψ′(v)⊤VC−1δc] ≤ ‖v‖∞‖ψ′(v)‖∗
τ(x̂(k))+∞‖C

−1
E[δc]‖τ(x̂(k))+∞
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≤ βγ‖ψ′(v)‖∗
τ(x̂(k))+∞ ≤

1
4
εstab‖ψ′(v)‖∗

τ(x̂(k))+∞.

For (14) we have that

E[8‖Wη‖2ψ′′(v)] . ‖Var(δr)1/2‖2ψ′′(v) + ‖δx̂‖2ψ′′(v)

≤ γβ2‖δr‖τ(x̂(k))+∞‖ψ′′(v)‖∗
τ(x̂(k))+∞ + ‖δ2

x̂
‖τ(x̂(k))+∞‖ψ′′(v)‖∗

τ(x̂(k))+∞

. (γ2β2 + ε2
stab)‖ψ′′(v)‖∗

τ(x̂(k))+∞

. ε2
stab‖ψ′′(v)‖∗

τ(x̂(k))+∞.

where the first step is via the triangle inequality and the definition of η, the second step is by
the (Variance) condition of Definition 4.13 for Cvalid ≥ β−2 and the definition of ‖ · ‖∗τ+∞, the
third step is from Lemma 4.30 Part 2 and ‖δx̂‖τ(x̂(k))+∞ ≤ εstab by Definition, and the final step
is by γβ ≤ εstab.

Also, we can bound that

E[8(1 + ‖c‖1)‖v‖2∞
∑

j∈[k]

|cj |‖(U(j))−1δ(j)‖2ψ′′(v)]

. β2
E[‖C−1δc‖2ψ′′(v)]

= β2‖E[C−2δ2
c ]

1/2‖2ψ′′(v)

≤ β2‖E[C−2δ2
c ]‖τ(x̂(k))+∞‖ψ′′(v)‖∗

τ(x̂(k))+∞

. β2γ2‖ψ′′(v)‖∗
τ(x̂(k))+∞

≤ ε2
stab‖ψ′′(v)‖∗

τ(x̂(k))+∞.

where the first step follows from ‖v‖∞ ≤ β by induction, |cj | = O(1) for all j, and the definition
of δ(j), the third step follows from the definition of the dual norm ‖ · ‖∗τ+∞, the fourth step
follows from Lemma 4.31 Part 3, and the final step follows from βγ ≤ εstab.

For (15) we can bound using the Cauchy-Schwarz inequality and the above computations
that

E[8‖Wη‖|ψ′(v)|
∑

j∈[k]

|cj |‖(U(j))−1δ(j)‖|ψ′(v)|]

. E[‖Wη‖2|ψ′(v)|]
1/2

E





∑

j∈[k]

|cj |‖(U(j))−1δ(j)‖|ψ′(v)|




2



1/2

. (ε2
stabβγ

2)1/2‖ψ′(v)‖∗
τ(x̂(k))+∞. (83)

Also, we have that

E


8(1 + ‖c‖1)‖v‖∞

∑

j∈[k]

|cj |‖(U(j))−1δ(j)‖2|ψ′(v)|




. β‖E[C−2δ2
c ]1/2‖|ψ′(v)|2

≤ β‖E[C−2δ2
c ]‖τ(x̂(k))+∞‖ψ′(v)‖∗

τ(x̂(k))+∞

. βγ2‖ψ′(v)‖∗
τ(x̂(k))+∞. (84)

For sufficiently small choice of γ, we have that even with the suppressed constants in (83), (84)
that

O
(
βγ2 + (ε2

stabβγ
2)1/2

)
≤ 1

4
εstab.
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Therefore combining everything, we get that

E[Ψ(x(k+1), x̂(k+1))] ≤ Ψ(x(k), x̂(k))− 1
4
εstab‖ψ′(v)‖∗

τ(x̂(k))+∞ +O(ε2
stab)‖ψ′′(v)‖∗

τ(x̂(k))+∞.

As in the proof of Lemma 4.40, by [BLN+20, Lemma 4.36], and the fact that ‖1‖τ(x̂(k))+∞ ≤
4Cnorm

√
n, we get that

E[Ψ(x(k+1), x̂(k+1))] ≤
(

1− λstabεstab

4Cnorm
√
n

)
Ψ(x(k), x̂(k)) +m

≤
(

1− 1
4CnormC

√
n

)
Ψ(x(k), x̂(k)) +m.

As Ψ(x(1), x̂(1)) = m, we have by induction that E[Ψ(x(k), x̂(k))] ≤ 4CnormCm
√
n ≤ m2 by

induction for all k. Therefore, with probability 1 −m−12 we have that Ψ(x(k), x̂(k)) ≤ m14 for
all k. By the choice of λstab this implies that ‖Φ′′(x(k))

1
2 (x̂(k) − x(k))‖∞ ≤ β/2 as desired.

To finish we must verify the other two conditions. The second item follows from self-
concordance and the first. To check the third condition, we have that

‖Φ′′(x(k))
1
2 (x̂(k+1) − x̂(k))‖τ(x̂(k))+∞ =

∥∥∥Φ′′(x(k))
1
2E[δx]− δx̂

∥∥∥
τ(x̂(k))+∞

≤ 1.1γ + εstab ≤ γ

where the first inequality follows by the triangle inequality and Lemma 4.29 Part 1. as ε ≤
β

C log(mT ) ≤ 0.1γ as β ≤ γ.

Lemma 4.45 (Nearby stability of φ′′ and τ). In the setup of Lemma 4.44, and ŵ(k) =

Φ′′(x̂(k))− 1
2 τ(x̂(k))

1
2

− 1
p , we have the following.

• ‖Φ′′(x̂(k))
1
2 (φ′′(x̂(k))− 1

2 − φ′′(x(k))− 1
2 )‖∞ ≤ β.

• ‖Φ′′(x̂(k))
1
2 (φ′′(x̂(k+1))− 1

2 − φ′′(x̂(k))− 1
2 )‖τ(x̂(k))+∞ . γ.

• ‖T(x̂(k))−1(τ(x̂(k+1))− τ(x̂(k)))‖τ(x̂(k))+∞ . γ.

• ‖(Ŵ(k))−1(ŵ(k+1) − ŵ(k))‖τ(x̂(k))+∞ . γ.

Proof. The first two items directly follow from 1-self-concordance, specifically that

|φ′′(x̂(k))− 1
2 − φ′′(x(k))− 1

2 | ≤ |x̂(k) − x(k)|

and Lemma 4.44.
For the third item, define p0 = φ′′(x(k))− 1

2 , p1 = φ′′(x(k+1))− 1
2 , and δp = p1 − p0. Define

pt = p0 + t · δp and τt = w(pt). Note that τt ≈0.04 τ0 = τ(x̂(k)) for all t ∈ [0, 1] as pt ≈0.01 p0 by
the second item of this lemma (Lemma 4.45), and Lemma 4.22. Therefore we can compute

‖T(x̂(k))−1(τ(x̂(k+1))− τ(x̂(k)))‖τ(x̂(k)) =
∥∥∥∥
∫ 1

0
T(x̂(k))−1Jw(pt)δp

∥∥∥∥
τ(x̂(k))+∞

.

∫ 1

0

∥∥∥T−1
t Jw(pt)δp

∥∥∥
τt+∞

. ‖P−1
t δp‖τt+∞

. ‖P−1δp‖τ(x̂(k))+∞ . γ

where we have used Lemma A.2.
For the fourth item, we once again use that τ1 ≈0.04 τ0 and pt ≈0.01 p0. This gives us

‖(Ŵ(k))−1(ŵ(k+1) − ŵ(k))‖τ(x̂(k))+∞
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= ‖Φ′′(x̂(k))
1
2 T(x̂(k))

1
p

− 1
2

(
φ′′(x̂(k+1))− 1

2 τ(x̂(k+1))
1
2

− 1
p − φ′′(x̂(k))− 1

2 τ(x̂(k))
1
2

− 1
p

)
‖τ(x̂(k))+∞

≤ ‖Φ′′(x̂(k))
1
2 T(x̂(k))

1
p

− 1
2

(
φ′′(x̂(k+1))− 1

2 − φ′′(x̂(k))− 1
2

)
τ(x̂(k+1))

1
2

− 1
p ‖τ(x̂(k))+∞

+ ‖Φ′′(x̂(k))
1
2 T(x̂(k))

1
p

− 1
2φ′′(x̂(k))− 1

2

(
τ(x̂(k+1))

1
2

− 1
p − τ(x̂(k))

1
2

− 1
p

)
‖τ(x̂(k))+∞

. ‖Φ′′(x̂(k))
1
2

(
φ′′(x̂(k+1))− 1

2 − φ′′(x̂(k))− 1
2

)
‖τ(x̂(k))+∞

+ ‖T(x̂(k))
1
p

− 1
2

(
τ(x̂(k+1))

1
2

− 1
p − τ(x̂(k))

1
2

− 1
p

)
‖τ(x̂(k))+∞

. γ + ‖(τ(x̂(k+1))/τ(x̂(k)))
1
2

− 1
p − 1‖τ(x̂(k))+∞

≤ γ + ‖(τ(x̂(k+1))/τ(x̂(k)))− 1‖τ(x̂(k))+∞

= γ + ‖T(x̂(k))−1(τ(x̂(k+1))− τ(x̂(k)))‖τ(x̂(k))+∞ . γ.

Here we have used that |x
1
2

− 1
p − 1| ≤ |x − 1| for all x ∈ [0.9, 1.1], and items two and three of

this lemma (Lemma 4.45).

Lemma 4.46 (Parameter changes along central path). For A ∈ R
m×n, b ∈ R

n, c ∈ R
m and

ℓ, u ∈ R
m assume that the point x(init) = (ℓ+ u)/2 is feasible, i.e. A⊤x(init) = b. Let W be the

ratio of the largest to smallest entry of φ′′(x(init))1/2, and let W ′ be the ratio of the largest to
smallest entry of φ′′(x)1/2 encountered in Algorithm 2. Then

logW ′ = Õ
(
logW + log(1/µ(final)) + log ‖c‖∞

)
.

Proof. Note that the smallest possible entry of W and W ′ is at least mini(ui − ℓi)−1, as
φ′′
i (x) ≥ 1

(ui−ℓi)2 for all x ∈ (ℓi, ui). By Lemma 4.11 and Claim A.6, for any ε-centered

(x, s, µ) encountered in the algorithm, we can find a point x(final) such that (x(final), s, µ) is
also ε-centered, Φ′′(x(final)) ≈1 Φ′′(x), and A⊤x(final) = b, i.e. x(final) is exactly feasible. Thus,
it suffices to control the largest entry of Φ′′(x(final)) to bound logW ′.

Let v = s+µτφ′(x(final))

µτφ′′(x(final))1/2 , so that ‖v‖∞ . ε. We will use that ‖v‖∞ ≤ 1/100 say. Also, we
know that s = Az + c for some z ∈ R

n. This gives us that

Az + c+ µτφ′(x(final))− vµτφ′′(x(final))1/2 = 0.

Computing an inner product with (x(final) − x(init)) gives that

0 = (x(final) − x(init))⊤Az + c⊤(x(final) − x(init)) (85)

+ µ
∑

i

τi
(
φ′
i(x

(final)
i )− viφ′′

i (x
(final)
i )1/2

)
(x(final)
i − x(init)

i )

= c⊤(x(final) − x(init)) + µ
∑

i

τi
(
φ′
i(x

(final)
i )− viφ′′

i (x
(final)
i )1/2

)
(x(final)
i − x(init)

i ). (86)

We claim that
(
φ′
i(x

(final)
i )− viφ′′

i (x
(final)
i )1/2

)
(x(final)
i − x(init)

i ) ≥ −1 for all i. To show this, we

without loss of genearlity assume that x(final)
i ≥ x(init)

i . Note that φ′
i(x

(final)
i )(x(final)

i − x(init)
i ) by

our choice of φi(x) = − log(ui−x)−log(x−ℓi) and x(init) = (ℓ+u)/2. If x(final)
i ≥ (x(init)

i +ui)/2,
then note that

φ′
i(x

(final)
i )− viφ′′

i (x
(final)
i )1/2 ≥ 1

2(ui − x(final)
i )

− vi
√

2

(ui − x(final)
i )2

≥ 1

4(ui − x(final)
i )

> 0,

so the claim is trivially true. So the remaining case if x(init)
i ≤ x(final)

i ≤ (x(init)
i + ui)/2. In this

case, we have that
(
φ′
i(x

(final)
i )− viφ′′

i (x
(final)
i )1/2

)
(x(final)
i − x(init)

i ) ≥ − 1
100
|φ′′
i (x

(final)
i )1/2(x(final)

i − x(init)
i )|
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≥ − 1
10

√
1

(ui − ℓi)2
(ui − ℓi) ≥ −1.

Going back to (86), we have for all j ∈ [m] that

µτj
(
φ′
j(x

(final)
j )− vjφ′′

j (x
(final)
j )1/2

)
(x(final)
j − x(init)

j ) (87)

= −c⊤(x(final) − x(init))− µ
∑

i∈[m]\{i}
τi
(
φ′
i(x

(final)
i )− viφ′′

i (x
(final)
i )1/2

)
(x(final)
i − x(init)

i )

≤ m‖c‖∞‖u− ℓ‖∞ + µ
∑

j

τj ≤ m‖c‖∞‖u− ℓ‖∞ + µn.

We now will bound φ′′
j (x

(final)
j ). We will assume without loss of generality that x(final)

j ≥ x
(init)
j .

If x(final)
j ≤ (x(init)

j + uj)/2, then we know that φ′′
j (x

(final)
j ) . (ui − ℓi)−2, as desired. Otherwise,

the above arguments give that
(
φ′
j(x

(final)
j )− vjφ′′

j (x
(final)
j )1/2

)
≥ 1

4(uj − x(final)
j )

.

Therefore, we get that

(uj − x(final)
j )−1 . µ−1τ−1

j (x(final)
j − x(init)

j )−1(m‖c‖∞‖u− ℓ‖∞ + µn)

≤ µ−1m

n
(uj − ℓj)−1(m‖c‖∞‖u− ℓ‖∞ + µn).

Using that φ′′(x(final)
j ) . (uj − x(final)

j )−2 completes the proof.

B Matrix Data Structures

In this section we provide the existence of the required data structure for solving general lin-
ear programs. We start by citing the HeavyHitter- (Definition 3.1) and InverseMainte-
nance-data structure (Definition 6.2) proven in [BLSS20]. We then prove the existence of a
HeavySampler-data structure (Definition 6.3).

Lemma B.1 ([BLSS20, Section 6.1]). There exists a (P, c,Q)-HeavyHitter data structure
(Definition 3.1) with P = Õ(nnz(A)), ci = Õ(n) for all i ∈ [m], and Q = Õ(n).

Lemma B.2 ([BLSS20, Theorem 9]). There exists a (P, c,Q)-InverseMaintenance data
structure (Definition 6.2) with P = Õ(nnz(A) + nω), ci = O(1) for all i ∈ [m], and Q =
Õ(n2 + nω−1/2).

We now construct a data structure for the HeavySampler-problem (Definition 6.3). We
first provide the data structure Algorithm 6 with guarantees given by the following, Lemma B.3.
We then show in Corollary B.6 how the data structure of Lemma B.3 can be used to solve the
HeavySampler-problem.

Lemma B.3. There exists a data structure (Algorithm 6) that supports the following operations.

• Initialize(A ∈ R
m×n, v ∈ R

m
≥0, g ∈ R

m): The data structure is given a matrix A ∈ R
m×n,

additive vector v ∈ R
m
≥0, and a scaling vector g ∈ R

m. It initializes in Õ(nnz(A)) time.

• Scale(i ∈ [m], s ≥ 0, b ≥ 0): Update gi ← s and vi ← b in Õ(nnz(ai)) time.

• Sample(h ∈ R
n, U ∈ R>0): If U ≥ e4‖GAh‖22 then, with high probability, in Õ(n) time,

the data structure returns a random i ∈ [m] with P[i = j] = (GAh)2
j/U , and with proba-

bility 1− ‖GAh‖22/U , returns nothing. Each random index returned by a call to Sample
is independent from the previous call.
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Algorithm 6: Sampler data structure.

// [M]l,j denotes the matrix formed by rows (j − 1)m/2l + 1, · · · , jm/2l of M.

members
1 A ∈ R

m×n, g ∈ R
m // Assume m is a power of 2 for code simplicity

2 c = 1/ log(4m), k = O(c−2 logm)
3 for l ∈ {0, 1, · · · , logm} do
4 for j ∈ [2l] do

5 Jl,j ∈ R
k×m/2l

// Jl,j = JL(c,m/2l) in Lemma B.4

6 Ql,j ∈ R
k×d // Ql,j = Jl,j · [GA]l,j

7 procedure Initialize(A ∈ R
m×n, g ∈ R

m)
8 A← A, g ← g, v ← v
9 for l ∈ {0, 1, · · · , logm} do

10 for j ∈ [2l] do
11 Jl,j ← JL(c,m/2l) // See Lemma B.4

12 Ql,j ← Jl,j · [GA]l,j

13 procedure Scale(i ∈ [m], s ≥ 0)
14 for l ∈ {0, 1, · · · , logm} do
15 j = ⌈i · 2l/m⌉
16 Ql,j ← Ql,j + (s− gi)Jl,j · [1i1⊤

i A]l,j

17 gi ← s

18 procedure Sample(h ∈ R
n, U ∈ R>0)

19 return SampleInternal(h, 1, 1, 0, U)
20 procedure SampleInternal(h ∈ R

n, Z ≥ 0, j, ℓ, U ∈ R>0)
21 if ℓ = logm then

22 With probability Z−1 · (GA·h)2
j

U return j, otherwise return ∅
23 else
24 r1 ← ‖Ql+1,2j−1h‖22, r2 ← ‖Ql+1,2jh‖22
25 With probability r1/(r1 + r2),
26 return SampleInternal(h,Zr1/(r1 + r2), 2j − 1, ℓ+ 1)
27 otherwise
28 return SampleInternal(h,Zr2/(r1 + r2), 2j, ℓ + 1)

First, we state a lemma used in the proof of Lemma B.3.

Lemma B.4 (Johnson–Lindenstrauss (JL) [JL84]). There exists a function JL(ǫ,m) that given
ǫ > 0 returns a matrix J ∈ R

k×m with k = O(ǫ−2 logm) in O(km) time. For any v ∈ R
m this

matrix J satisfies with high probability in m that ‖Jv‖2 ≈ǫ ‖v‖2.

Using Lemma B.4 allows us to give an algorithm for sampling coordinates proportional to
their ℓ2 weight (Lemma B.5). First, we show how to use this to prove Lemma B.3 by analyzing
the runtime costs and showing how to apply a Scale operation. Then we show Lemma B.5,
where the high-level approach is to build a binary tree and walk down the tree using the JL
lemma to sample a node proportional to the ℓ2 norm of its coordinates.

Lemma B.5. A call to SampleInternal(h, 1, 1, 0, U) for e4‖GAh‖22 ≤ U randomly returns
a single index i ∈ [m], or no index at all. Index i ∈ [m] is returned with probability

pi =
(GAh)2

i

U
.

Proof of Lemma B.3. The implementation of our data structure is given in Algorithm 6. We
now analyze the correctness and efficiency of the operations.
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Initialize. We bound the running time of Initialize. For each l ∈ 0, 1, · · · logm and
j ∈ [2l] we instantiate a matrix Jl,j = JL(ǫ,m/2l) with ǫ = 1/ logm, so each matrix Jl,j has
k = O(c−2 logm) rows. Creating a k×m/2l sized JL matrix takes O(km/2l) time (Lemma B.4),
so in total creating the JL matrices takes

logm∑

l=0

2l ·O(km/2l) = O(km log3m) = Õ(m).

We use [GA]l,j to denote the submatrix of GA consisting of the {(j − 1)m/2l + 1, · · · , j ·
m/2l}-th rows of GA. We also use V l,j to denote the sum of vi for i ∈ {(j − 1)m/2l +
1, · · · , j ·m/2l} which can be computed in Õ(m) time. For any fixed l, computing the matrices
Ql,j = Jl,j · [GA]l,j ∈ R

k×n for all j ∈ [m/2l] takes O(k · nnz(A)) time since Jl,j ∈ R
k×m/2l

and
the [GA]l,j ∈ R

m/2l×n are just a decomposition of the matrix GA. Since we create Ql,j for
every l ∈ {0, · · · , logm} and j ∈ [2l], in total constructing all the Q matrices takes time

logm∑

l=0

O(k · nnz(A)) = O(k nnz(A) · log3 m) = Õ(nnz(A)).

Thus initialization can be done in Õ(nnz(A)) time.
Scale. We first prove Ql,j = Jl,j · [GA]l,j is still satisfied after updating gi to be s. For any

l ∈ {0, · · · , logm}, we only need to update the Ql,j with j = ⌈ i
m/2l ⌉ (since [GA]l,j has rows of

GA in set {(j − 1)m/2l + 1, · · · , j ·m/2l}. We have

Ql,j = Jl,j · [GA]l,j + (s − gi)Jl,j · [1i1⊤
i A]l,j

= Jl,j · [(G + (s− gi)1i1⊤
i )A]l,j ,

where the first step follows from how we update Ql,j (Line 16 of Algorithm 6), the second
step follows from merging terms. And (G + (s− gi)1i1⊤

i ) is indeed the updated scaling vector
whose i-th coordinate is s. Note that we also update V l,j to be the partial sum of the vi for
i ∈ {(j − 1)m/2l + 1, · · · , j ·m/2l}.

Next we bound the running time of Scale. We need to compute Jl,j · [1i1⊤
i A]l,j for l ∈

{0, · · · , logm} and one j that depends on l, i. Since Jl,j ∈ R
k×m/2l

and [1i1⊤
i A]l,j ∈ R

m/2l×n

only has one non-zero row, consisting of nnz(ai) non-zero entries, this multiplication takes
O(k nnz(ai)) time. Thus in total computing the multiplication for all l takes time

O(log n) ·O(k nnz(ai)) = Õ(nnz(ai)),

which follows from k = O(c−2 logm).
Sample. By Line 19 and Lemma B.5 we return a randomly sampled index j according to

the distribution P[j = i] = (GAh)2
i /U for all i ∈ [m].

A call to SampleInternal requires Õ(n) time, because we compute O(logm) norms which
each require a matrix-vector-product with an Õ(1) × n matrix in Line 24.

Proof of Lemma B.5. Consider the binarytree where nodes are labeled by sub-intervalls of [m].
The root is labeled by [m]. For each node labeled by some [L,R], the left child is labeled by
[L, ⌊(L+R)/2⌋] and the right node is labeled by [⌈(L+R+ 1)/2⌉, R]. We also identify the j-th
node on level l via the tuple (l, j).

Note that the execution of SampleInternal can be seen as a path from the root of this
tree to one of its leaves. For each node (i, j) it picks the left child with probability r1/(r1 + r2)
and otherwise the right child.
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We arrive at the index j ∈ [m] on level ℓ = log(m) (i.e. a leaf) with probability as follows,
note that we are basically looking at the binary representation of j and multiplying together
the probabilities that the half containing j is selected in each level.

p =
logm∏

l=1

‖Ql,⌈j/(m/2l)⌉ · h‖22
‖Ql,2⌈j/(m/2l−1)⌉ · h‖22 + ‖Ql,2⌈j/(m/2l−1)⌉−1 · h‖22

=
logm∏

l=1

e±4c ‖[GAh]l,⌈j/(m/2l)⌉‖22
‖[GAh]l,2⌈j/(m/2l−1)⌉‖22 + ‖[GAh]l,2⌈j/(m/2l−1)⌉−1‖22

= e±4c·logm
logm∏

l=1

‖[GAh]l,⌈j/(m/2l)⌉‖22
‖[GAh]l−1,⌈j/(m/2l−1)⌉‖22

= e±4 · ‖[GAh]logm,j‖22
‖[GAh]0,1‖22 + V 0,1

= e±4
(GAh)2

j + vj

‖GAh‖22
where the second step follows from the JL matrices guarantee that ∀l, ∀j, with high probability

e−2c‖[GA]l,jh‖22 ≤ ‖Ql,j · h‖22 = ‖Jl,j · [GA]l,jh‖22 ≤ e2c‖[GA]l,jh‖22,

and the fourth step follows from c = 1/ log(4m). The other steps simply follow the definition of
[GAh]l,j . Note that the variable Z tracks exactly this probability so in Line 22 we have Z = p.
This also means (GAh)2

j/U ≤ e−4 · (GAh)2
j/‖GAh‖22 ≤ Z so the rejection sampling defined

in Line 22 is well defined. For any j, the probability of it being returned by SampleInter-
nal(h, 1, 1, 0) is thus (GAh)2

j/U

We now show how to combine the data structure of Lemma B.3 with an additional sampling
step to obtain a HeavySampler data structure.

Corollary B.6. There exists a (P, c,Q)-HeavySampler data structure for matrices A ∈ R
m×n

with P = Õ(nnz(A)), ci = Õ(n) for all i ∈ [m], and Q = Õ(n2 +m
√
n).

Proof. By Lemma 4.42 and Corollary 4.43 we need to be able to efficiently construct the fol-
lowing distribution: For some constants C1, C2, C3 as in Corollary 4.43, let q ∈ R

m, S ∈ R such
that

qi ≥ C1

√
n(GAh)2

i + C2/
√
n+ C3τiγ

2 logm (88)

and S ≥ ∑m
i=1 qi. Let X be a random variable with X = q−1

i ~ei with probability qi/S for all i,
and 0 otherwise.

Generating X We now describe how to efficiently generate this random X. Let v ∈ R
m
≥0

with

vi =
1
4

(
1

m+ n1.5
+ 1.5

τ i
m√
n

+ n

)

where τ is the current approximation of the Lewis weights. Further define U = m/n+
√
n and

note that ‖GAh‖22 ≤ m/n < U by guarantee of Definition 6.3 (the definition of HeavySam-
pler).

Flip a balanced coin and then either sample an index j with P [i = j] = (GAh)2
i /U via

Lemma B.3, or sample the index by P [i = j] = vi. We then return

X = ~ei · (C(
√
n(GAh)2

i +
1

4
√
n

+ 1.5τ i/4))−1

for C := max{C1, C2, C3γ
2 logm}. Note that we might sample no index at all, in which case

we return X = 0. This procedure can be implemented to take Õ(n) time by Lemma B.3.
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Correctness We now prove that the X generated in the paragraph above satisfies that X =
q−1
i ~ei with probability qi/S. For that we define the following

qi := C(
√
n(GAh)2

i +
1

4
√
n

+ 1.5τ i/4)

S := 2CU
√
n.

Here we clearly have (88) by definition of C := max{C1, C2, C3γ
2 logm}. We also have S ≥∑i qi

by

m∑

i=1

qi =
m∑

i=1

C(
√
n(GAh)2

i +
1

4
√
n

+ 1.5τ i/4) = C(
√
n‖GAh‖22 +

m

4
√
n

+ n/2) ≤ 2C(
m√
n

+ n) ≤ S.

Note that the random X we generated in the previous paragraph is X = q−1
i ~ei with proba-

bility 1/2 · ((GAh)2
i /U + vi). We now show that this probability is qi/S:

qi/S = S−1 · C(
√
n(GAh)2

i +
1

4
√
n

+ 1.5τ i/4)

= 1/2 · ((GAh)2
i /U +

1
4Un

+ 1.5
τ i

4U
√
n

)

= 1/2 · ((GAh)2
i /U +

1
4(m + n1.5)

+ 1.5
τ i

4( m√
n

+ n)
)

= 1/2 · ((GAh)2
i /U + vi),

where the first step uses the definition of qi, the second step uses the definition of S, the third
step uses the definition of U and the last step uses the definition of vi. Thus we indeed have
X = q−1

i ~ei with probability qi/S.

Final Complexity The complexity parameters P := Õ(nnz(A)) and ci := Õ(n) stem from
Lemma B.3. Generating one random X takes Õ(n) time and we must generate Õ(S) =
Õ(m/

√
n+n) many independent copies of X by Lemma 4.42, which results in a total sampling

complexity of Q := Õ(m
√
n+ n2).

C Leverage Score

In this section we show how to efficiently maintain an approximation of the leverage scores
σ(VA) under updates to V = Diag(v). The data structure is obtained via reduction to a
HeavyHitter-data structure.

Theorem C.1. Assume there exists a (P, c,Q)-HeavyHitter data structure (Definition 3.1).
Then there exists a Monte-Carlo data-structure (Algorithm 7), that works against an adaptive
adversary, with the following procedures:

• Initialize(A ∈ R
m×n, v ∈ R

m, z ∈ R
m, ǫ ∈ (0, 1)): The data structure initializes on a

matrix A ∈ R
m×n, scaling v ∈ R

m, target accuracy ǫ > 0, and regularization parameter
z ∈ Rm with z ≥ n/m+nc/‖c‖1 (where c is the parameter of the heavy hitter data structure)
and returns a vector σ ∈ R

m with σ ≈ǫ σ(VA) + z.

• Scale(i ∈ [m], c ∈ R≥0): For given c ≈0.25 vi, set vi ← c.

• Query(): W.h.p. in n the data-structure outputs a vector σ ∈ R
m such that σ ≈ǫ σ(VA)+

z. The vector σ is returned as a pointer and the data structure also returns a set I ⊂ [m]
of indices i where σi has changed compared to the last call to Query.
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The amortized complexities of our data structure depends on the parameters P, c,Q of the
HeavyHitter data structure. Further, our complexity bounds require that some additional
properties are satisfied. These properties and the resulting amortized complexities are stated
in Theorem C.2.

Theorem C.2. Consider the data structure of Theorem C.1 (Algorithm 7) and let P, c,Q be
the parameters of the HeavyHitter data structure (Definition 3.1). Let v(t) be the vector v in
Theorem 5.1 during the t-th call to Query (and v(0) during the initialization). Further, assume
the following:

1. For any given V ∈ R
m
≥0 we can solve linear systems in (A⊤VA)−1 with ǫ/(64n) accuracy

(i.e. for input b we can output Hb for some H ≈ǫ/(64n) (A⊤VA)−1) in Õ(P+Ψ+nnz(VA))
time. If

A⊤VA ≈1/(64 logn) A⊤(V(t))2A

for some t, then the required time is only Õ(Ψ + nnz(VA)).

2. There exists a sequence ṽ(t) such that for all t

v(t) ∈ (1± 1/(64 log n))ṽ(t) (89)

‖(ṽ(t))−1(ṽ(t) − ṽ(t+1))‖
σ(Ṽ(t)A)

= O(1) (90)

for all t.

Then the following time complexities hold:

• Initialize takes Õ(P + ǫ−2(Ψ + nnz(A))) time.

• Scale(i, ·) takes Õ(‖c‖1

nǫ4 σ(VA)i + ci
ǫ2 ) amortized time.

• Query takes Õ(Ψǫ−2 + ǫ−4n(maxi nnz(ai)) + ǫ−2
√

P‖c‖1

n +Q). amortized time.

The high-level idea of Algorithm 7 (Theorem C.1) is as follows: For a set I ⊂ [m], the method
UpdateIndices(I) computes for all i ∈ I an approximation σ′

i ≈ σ(VA)i + zi. If σi 6≈ σ′
i, then

we set σi ← σ′
i. So for all i ∈ I we have σi ≈ σ(VA)i + zi after a call to UpdateIndices(I),

as proven in Lemma C.7. Thus if the set I contains all indices where σi 6≈ σ(VA)i + zi, then σ
will be a valid approximation after the execution of UpdateIndices(I).

The set I is constructed in method FindIndices as follows: Fix some T ∈ N. For j =
0, ..., log T , the data structure checks every 2j calls to Query, if σ(VA)i + zi changed a lot
compared to its value 2j calls to Query in the past. This claim is proven in Lemma C.6 and we
prove in Lemma C.9 that such a set I suffices to maintain σ ≈ σ(VA)+z for up to T iterations.
After T iterations the data structure restarts.

C.1 Correctness

As the vector v for which we want to maintain σ(VA) changes over time, we use the following
notation during the proof of Theorem C.1 to specify which instance of v we refer to:

Definition C.3. Write v(t) for the vector v during the t-th call to Query and v(0) for the
vector v as given during the initialization. Likewise write σ(t) for the vector σ returned by the
t-th call to Query.

So we want to prove that σ(t) ≈ǫ σ(V(t)A) + z. We will prove this via induction, so let the
following Proposition C.4 be the induction hypothesis. Note that for t = 0 the claim is true as
seen by the initialization procedure (Line 5).

Proposition C.4. During the t-th call to Query we have σ(t−1) ≈ǫ σ(V(t−1)A) + z, i.e. the
result of the previous call to Query was correct.
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Algorithm 7: Data structure for maintaining leverage scores

1 members

2 t, T, r ∈ N, v ∈ R
m, ∆(j) ∈ R

m and Sj, Cj ⊂ [m] for j = 1, ..., 0.5 log n.
3 procedure Initialize(A, v(init), z, ǫ)
4 t← 0, v ← v(init), z ← z, T ← ⌈ǫ2

√
Pn/‖c‖1⌉

5 Compute σ ≈ǫ σ(VA) + z
6 Let r = O(log n) be such that a r ×m JL-matrix yields a 1/2-approximation.
7 for j = 0, ..., T do

8 Dj.Initialize(A, v · z−1/2)
9 Sj ← ∅

10 Cj ← ∅
11 ∆(j) ← ~0m
12 return σ

13 procedure FindIndices(h ∈ R
n)

14 I ← ∅
15 for j = log T, ..., 0 do
16 if 2j |t then
17 Si,i = 1 for i ∈ Sj ∪ Cj, and for other i we set Si,i = 1/pi with probability

pi = min(1, cσiǫ−2 log n log log n) for some large constant c > 0, and
Si,i = 0 otherwise.

18 R ← m× r JL-matrix
19 Let M ≈1/(64n) (A⊤(V−∆(j))2S2A)−1 and M ≈1/(64n) (A⊤V2S2A)−1

20 H← (M′A⊤(V−∆(j))SR −MA⊤VSR
21 I ← I ∪Dj .HeavyQuery(H~ek, ǫ/(48r log n)) for all k ∈ [r]
22 ∆(j) ← ~0m
23 Dj .Scale(i, viz

−1/2
i ) for i ∈ Sj

24 I ← I ∪ Sj, Sj ← ∅, Cj ← ∅
25 return I

26 procedure UpdateIndices(I)
27 Si,i = 1/

√
pi with probability pi = min(1, cǫ−2σi log n) for some large enough

constant c > 0, and Si,i = 0 otherwise.
28 R ← exp(±ǫ/16)-accurate JL-matrix
29 H←MA⊤VSR for any M ≈ǫ/(64 logn) (A⊤V2S2A)−1

30 I ′ ← ∅
31 for i ∈ I do
32 if σi 6≈3ǫ/8 ‖e⊤

i VAH‖22 + zi then

33 σi ← ‖e⊤
i VAH‖22 + zi

34 Cj ← Cj ∪ {i} for j = 0, ..., log n
35 I ′ ← I ′ ∪ {i}
36 return I ′

37 procedure Scale(i, c)
38 for j = 0, ..., log T do
39 Sj ← Sj ∪ {i}
40 Dj.Scale(i, 0)
41 ∆(j) ← ∆(j) + c− vi // Maintain v(t) = v(tj ) + ∆(j)

42 vi ← c

43 procedure Query()
44 if t = T then return [m], Initialize(A, v, w, ǫ);
45 t← t+ 1
46 I ← FindIndices()
47 I ← UpdateIndices(I)
48 return I, σ 102



During the t-th call to Query, the algorithm needs access to past v(k) for k < t. In order to
not process an m-dimensional vector in every iteration, these vectors are maintained implicitly
by the data structure as stated in Lemma C.5.

Lemma C.5. When executing Line 20 we have v(t) = v(t−2j ) + ∆(j).

Proof. Let tj be the last time we set ∆(j) ← ~0m. We set ∆(j) ← ~0m either during initialization
(so tj = 0) or in Line 22 (FindIndices) when 2j |t, so right after executing Line 22 we have
tj = t− 2j .

Further, whenever vi is increased by some δ ∈ R, we add δ also to ∆(j)
i for all j in Line 41,

so we always have v(t)
i = v(tj ) + ∆(j).

Thus in Line 20 we have v(t)
i = v(t−2j ) + ∆(j).

Next, we prove the previous claim of the data structure’s outline regarding FindIndices.
We claimed that every 2j calls to FindIndices for any j = 1, ..., log T , the function returns a
set I ⊂ [m] of indices i where σ(V(t)A)i + zi changed a lot compared to σ(V(t−2j )A)i + zi.

Lemma C.6. Let I ⊂ [m] be the set returned by FindIndices(h ∈ R
n). Then w.h.p set I

contains all indices i where for any 0 ≤ j ≤ log T we have 2j |t and

σ(V(t)A)i + zi 6≈ǫ/(4 logn) σ(V(t−2j ))i + zi. (91)

Proof. Note that for j with wj |t the set I contains all indices i ∈ Sj by Line 24. So we only need
to consider the remaining indices i /∈ Sj. Let Z = Diag(z) and let F be diagonal with Fi,i = 1 for
i /∈ Sj . I contains all indices i where for some k we have (FZ−1/2V(t−2j)AH~ek)i > ǫ/(48r log n).
(because we called Dj .Scale(i, 0) whenever i was added to Sj Line 40, and otherwise we call
Dj .Scale(i, vi/

√
zi) for i ∈ Sj in Line 23).

When R in Line 18 has r = O(log n) columns (and thus H has r columns), then if
‖~e⊤
i FZ−1/2V(t−2j )AH‖22 > ǫ2/(482 log2 n), then |~e⊤

i FZ−1/2V(t−2j )AH~ek| > ǫ/(48r log n) for
some k, so i is added to set I in Line 21. So we must show that if (91) is satisfied, then
‖~e⊤
i FZ−1/2V(t−2j )AH‖22 > ǫ2/(482 log2 n).

By Line 20 we have

‖~e⊤
i FZ−1/2V(t−2j)AH‖2 = ‖~e⊤

i FZ−1/2V(t−2j )A
(
M′A⊤V(t−2j )S−MA⊤V(t)S

)
R‖2

≥ 0.5‖~e⊤
i FZ−1/2V(t−2j)A

(
M′A⊤V(t−2j )S−MA⊤V(t)S

)
‖2

≥ 0.5z−1/2
i

∣∣∣ (‖~e⊤
i V(t−2j )AM′A⊤V(t−2j )S‖22 + zi)0.5

− (‖~e⊤
i V(t)AMA⊤V(t)S‖22 + zi)0.5

∣∣∣

For the second step we used that R is a JL-matrix such that for any w ∈ R
m we have w.h.p

‖w⊤R‖2 ≥ 0.5‖w‖2. The third step uses triangle inequality and that we only consider i /∈ Sj,
so v(t)

i = v
(t−2j )
i .

Note that set Cj contains all indices for which the leverage score has changed by Line 34.
Thus for all k /∈ Cj we have that σk is a constant factor approximation of σ(V(t−1)A)k +zk and
σ(V(t−2j )A)k + zk. Further, since v(t) ≈1 v

(t−1) by assumption on Scale (see Theorem C.1)
we have that σk is also a constant factor approximation of σ(V(t)A)k + zk. Hence we have that
Sk,k = 1/

√
pk with probability pk and 0 otherwise, where

pk ≥ min{1,max{σ(V(t)A)k, σ(V(t−2j )A)k}cǫ−2 log n log log n}

for some large enough constant c > 0. Thus with high probability we have

M ≈1/(64 logn) (A⊤(V(t))2S2A)−1 ≈ǫ/(64 logn) (A⊤(V(t))2A)−1
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and likewise M′ ≈1/(32 logn) (A⊤(V(t−2j ))2A)−1, because S is a valid leverage score sample for
both matrices. Finally, this means that

σ(V(t)A)i = ‖~e⊤
i V(t)A(A⊤(V(t))2A)−1A⊤V(t)‖22

≈ǫ/(16 logn) ‖~e⊤
i V(t)AMA⊤V(t)S‖22

and likewise for t− 2j . By zi ≥ n/m we thus have

σ(V(t)A)i + zi 6≈ǫ/(4 logn) σ(V(t−2j )A)i + zi

⇒ ‖~e⊤
i V(t)A(A⊤(V(t))2A)−1A⊤V(t)‖22 + zi

6≈ǫ/(4 logn) ‖~e⊤
i V(t−2j )A(A⊤(V(t−2j ))2A)−1A⊤V(t−2j )‖22 + zi

⇒ ‖~e⊤
i V(t)AMA⊤V(t)S‖22 + zi

6≈ǫ/(8 logn) ‖~e⊤
i V(t−2j )AM′A⊤V(t−2j )S‖22 + zi

⇒ (‖~e⊤
i V(t)AMA⊤V(t)S‖22 + zi)0.5

6≈ǫ/(16 logn) (‖~e⊤
i V(t−2j )AM′A⊤V(t−2j )S‖22 + zi)0.5

⇒ | (‖~e⊤
i V(t−2j)AM′A⊤V(t−2j)S‖22 + zi)0.5

− (‖~e⊤
i V(t)AMA⊤V(t)S‖22 + zi)0.5 | ≥ ǫ√zi/(48 log n)

so the index i is returned by FindIndices.

Next, we prove the claim that calling UpdateIndices(I) indeed guarantees that σi ≈ǫ/2

σ(V(t)A)i + zi for all i ∈ I.

Lemma C.7. For I ⊂ [m] after a call to UpdateIndices(I) we have σi ≈ǫ/2 σ(V(t)A)i + zi
for all i ∈ I w.h.p in n.

Proof. For i ∈ I the method UpdateIndices computes

‖~e⊤
i V(t)AH‖22

= ‖~e⊤
i V(t)AMA⊤V(t)SR‖22

≈ǫ/8 ‖~e⊤
i V(t)AMA⊤V(t)‖22

= σ(V(t)A)i

where we used that R is a JL-matrix that yields an exp(±ǫ/16)-factor approximation of the
norm and that σi ≈ǫ σ(V(t−1)A) ≈4 σ(V(t)A), so S2 is a leverage score sample and satisfies
with high probability A⊤(V(t))2S2A ≈ǫ/32 A⊤(V(t))2A Thus M ≈ǫ/16 (A⊤(V(t))2A)−1.

So if σi ≈3ǫ/8 ‖~e⊤
i V(t)AH‖22 + zi, then σi ≈ǫ/2 σ(V(t)A)i + zi. On the other hand, if

the difference is larger, then UpdateIndices sets σi ← ‖~e⊤
i V(t)AH‖22 + zi, so then σi ≈ǫ/8

σ(V(t)A)i + zi.

At last, we combine the guarantees of FindIndices and UpdateIndices to show that we
always maintain the desired approximation. For that we will use the following natural lemma
about decomposing an interval into powers of two from [BLN+20].

Lemma C.8 ([BLN+20]). Given any t < t, there exists a sequence

t = t0 > t1 > ... > tk = t

such that k ≤ 2 log t and tz+1 = tz − 2ℓz where ℓz satisfies 2ℓz |tz for all z = 0, . . . , k − 1.
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Lemma C.9. After the t-th call to Query we have σi ≈ǫ σ(VA)i + zi w.h.p. in n.

Proof. Fix some i. We want to prove that σi ≈ǫ σ(V(t)A)i + zi.
Assume index i was last contained in set I when calling UpdateIndices(I) during the t-th

call to Query (t = 0 if i was never in set I). By Lemma C.7 we have σi ≈ǫ/2 σ(VtA)i + zi. If
t = t, then we are done, so let us focus on the case t < t instead. In that case we are left with
showing σ(VtA)i + zi ≈ǫ/2 σ(V(t)A)i + zi.

By Lemma C.8 there exists a sequence t = t0 > t1 > ... > tk = t with k ≤ 2 log t and
tz+1 = tz − 2ℓz where ℓz satisfies 2ℓz |tz for all z = 0, ..., k − 1.

If during the tz-th call to Query we had σ(V(tz )A)i + zi 6≈ǫ/(4 logn) σ(V(tz+1))i + zi, then by
Lemma C.6 the index i would have been added to set I in FindIndices. Since by assumption
i was not added to I since t, we thus know σ(V(tz)A)i + zi ≈ǫ/(4 logn) σ(V(tz+1))i + zi. As the
sequence of tz has length 2 log t and t ≤ √n (by restarting the data structure after

√
n calls to

Query) we have σ(V(t)A)i + zi = σ(V(tk)A)i + zi ≈ǫ2 log t/(4 logn) σ(V(t0))i + zi = σ(V(t))i + zi,

so σ(V(t)A)i ≈ǫ/2 σ(V(t))i + zi.

C.2 Complexity

In this subsection we prove the amortized complexity guarantees of Theorem C.1. Remember
that the idea of our algorithm was to detect whenever a leverage score changes a lot, and to then
recompute the detected scores. Thus to bound the complexity, we must bound how many i are
detected for which σi might have changed a lot. For that we will use the following Lemma C.15,
which is proven in Appendix C.3.

Lemma C.15. Let A ∈ R
m×n. Let v(0), v(1), · · · , v(T ) ∈ R

m
+ be a sequence of vectors with

v(j) ≈1/4 v(j−1) for j = 1, 2, · · · , T . Let F and S be diagonal matrices on R
m×m such that

‖F‖2 ≤ 1,

• FV(j) = FV(j−1) for j ∈ {1, 2, · · · , T},
• (V(j) −V(j−1))S = V(j) −V(j−1) for j ∈ {1, 2, · · · , T},
• A⊤S2V(j)2A ≈1/2 A⊤V(j)2A for j ∈ {0, 1, 2, · · · , T}.

Suppose that there is a sequence v(0), v(1), · · · , v(T ) ∈ R
m
+ such that

v(j) ≈1/6 v
(j) (95)

‖(Ṽ(j−1))−1(v(j) − v(j−1))‖
σ(Ṽ(j−1)A)+∞ ≤

1
6
. (96)

for j = 1, 2, · · · , T . Then, for P(j) def= V(j)A(A⊤V(j)2S2A)−1AV(j), we have

‖F(P(T ) −P(0))S‖2F . T 2 +
T∑

j=1

∑

v
(j)
i 6=v(j−1)

i

σ(V(j)A)i.

As the complexity of UpdateIndices(I) depends on the size of set I, we first require a
bound on the size of these sets. The following lemma bounds the total size of all sets I, when
weighting each element i ∈ I by zi. This weighting is required because the runtime cost due to
one i ∈ I in UpdateIndices scales in ci.

Lemma C.10. Let I(t) be the set I returned by FindIndices during the t-th call to Query.
Then

T∑

t=1

∑

i∈I(t)

ci ≤ Õ


T 2 ‖c‖1

nǫ2
+
T−1∑

t=0

∑

v
(t)
i 6=v(t+1)

i

(
ci +

‖c‖1
nǫ2

σ(V(t)A)i

)

 (92)
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Proof. An index i is added to I, if it is contained in set Sj for some j = 0, ..., log n. Thus one
call to Scale(i, ·) results in i being in log n many I. This is the

∑T−1
t=0

∑
v

(t)
i 6=v(t+1)

i

ci term in

(92).
Next, an index i is added to I, if it was returned by Dj .HeavyQuery in Line 21. The

number of returned indices (weighted by ci) is bounded by
∑

k∈[r]

∑

i∈[m]

ci · 1|(FZ−1/2V(t−2j )AH~ek)i|>ǫ/(48r logn)

= Õ


∑

k∈[r]

‖FZ−1/2V(t−2j)AH~ek‖2cǫ−2




= Õ

(‖c‖1
n
‖FV(t−2j )A

(
M′A⊤V(t−2j)S−MA⊤V(t)S

)
R‖2F ǫ−2

)

≤ Õ



‖c‖1
n


22j +

t∑

j=t−2j

∑

v
(j)
i 6=v(j+1)

i

σ(V(j)A)i


 ǫ−2


 , (93)

where the first step uses n · c/‖c‖1 ≤ z and the last step uses that R is a JL-matrix, that
M ≈1/(64n) (A⊤V(t)S2A)−1 and M′ ≈1/(64n) (A⊤V(t−2j )S2A)−1, and Lemma C.15. Note
that we can apply Lemma C.15, because (95) is satisfied by (89), (96) is satisfied by (90), the
conditions on F are satisfied by definition, and the conditions on S are satisfied by S being a
leverage score sample where we used probability pi = 1 for i ∈ Sj ∪Cj. As Dj .HeavyQuery is
performed once every j iterations for j = 0, ..., T , we obtain (92).

Using Lemma C.10 we can now bound the total runtime of all calls to UpdateIndices.

Lemma C.11. The amortized cost of the t-th call to UpdateIndices is

Õ


Ψǫ−2 + ǫ−4n(max

i
nnz(ai)) + T

‖c‖1
nǫ4

+
∑

v
(t)
i 6=v(t−1)

i

(
ci
ǫ2

+
‖c‖1
nǫ4

σ(V(t−1)A)i

)

 .

Proof. The matrix S has O(ǫ−2n log n) non-zero entries and the matrix R has O(ǫ−2 log n)
columns. Thus we can compute H in Line 29 in Õ(Ψǫ−2 + ǫ−4nmaxi nnz(ai)) time.

Next, we compute ‖~e⊤
i VAH‖22 for all i ∈ I. The time required for that is

O

(∑

i∈I
nnz(ai)ǫ−2 log n

)
= Õ

(
ǫ−2

∑

i∈I
ci

)

which according to Lemma C.10 is an amortized cost of

Õ(T
‖c‖1
nǫ4

+
∑

v
(t)
i 6=v(t−1)

i

(
ci
ǫ2

+
‖c‖1
nǫ4

σ(V(t−1)A)i))

for the t-th call to UpdateIndices.

Next, we want to analyze the amortized cost of a call to FindIndices. Note that the
complexity will depend on the size of the sets Cj, because for each i ∈ Cj the matrix S in
Line 17 will be more dense. An index i is added to Cj in Line 34, if we changed σi. Thus
before bounding the complexity of FindIndices, we will first bound how often σi is changed.
We show that we can bound the number of times we change any entry of σ with respect to how
often the function Scale is called.
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Lemma C.12. Let σ(t) be the output after the t-th call to Query and v(t) be the vector v during
the t-th call to Query. Then

m∑

i=1

T∑

t=1

(σ(V(t)A)i + zi)1σ(t)
i 6=σ(t−1)

i

≤ O
(

m∑

i=1

T∑

t=1

σ(V(t)A)i1v(t)
i 6=v(t−1)

i

ǫ−1

)
.

Proof. Note that when we update σi in Line 33, then we have σi ≈ǫ/8 σ(VA) + zi, because
‖~e⊤
i VAH‖22 ≈ǫ/8 σ(VA) (see proof of Lemma C.7). Further note that the ith entry of the

output vector σ can only change, whenever σi 6≈3ǫ/8 ‖~e⊤
i VAH‖22 + zi because of Line 32. Thus

in order for σi to change, σ(VA)i + zi must have changed by at least a exp(±ǫ/8)-factor, so we
can bound

m∑

i=1

T∑

t=1

(σ(V(t)A)i + zi)1σ(t)
i 6=σ(t−1)

i

= O

(
m∑

i=1

T∑

t=1

(σ(V(t)A)i + zi) ·
|(σ(V(t)A)i + zi)− (σ(V(t−1)A)i + zi)|

(σ(V(t)A)i + zi)ǫ

)

= O

(
m∑

i=1

T∑

t=1

|σ(V(t)A)i − σ(V(t−1)A)i|ǫ−1

)
.

Here the difference of the two leverage scores can be bounded as follows

|σ(V(t)A)i − σ(V(t−1)A)i|
= |(V(t)

i )2(A(A⊤(V(t))2A)−1A⊤)i,i − (V(t−1)
i )2(A(A⊤(V(t−1))2A)−1A⊤)i,i|

≤ |
(
(V(t)

i )2 − (V(t−1)
i )2

)
(A(A⊤(V(t))2A)−1A⊤)i,i|

+ |(V(t−1)
i )2(A

(
(A⊤(V(t))2A)−1A)−1 − (A⊤(V(t−1))2A)−1

)
A⊤)i,i|

Here the first term can be bounded by

|
(
(V(t)

i )2 − (V(t−1)
i )2

)
(A(A⊤(V(t))2A)−1A⊤)i,i|

= |
(
1− (V(t−1)

i /V
(t)
i )2

)
(V(t)

i )2(A(A⊤(V(t))2A)−1A⊤)i,i|
= 3σ(V(t)A)

by using v(t) ≈1/2 v
(t−1). The second term can be bounded as follows. For

Hx := A⊤((1− x)(V(t−1))2 + x(V(t))2)A

we have

(A⊤(V(t))2A)−1A)−1 − (A⊤(V(t−1))2A)−1 =
∫ 1

0
H−1
x A⊤((V(t))2 − (V(t−1))2)AH−1

x dx

so

|(V(t−1)
i )2(A

(
(A⊤(V(t))2A)−1A)−1 − (A⊤(V(t−1))2A)−1

)
A⊤)i,i|

= |
∫ 1

0
(V(t−1)

i )2(AH−1
x A⊤((V(t))2 − (V(t−1))2)AH−1

x A⊤)i,i dx|

≤ 2
∫ 1

0
|(V(t)AH−1

x A⊤V(t)(1− (V(t−1)V−1)2)V(t)AH−1
x A⊤V(t))i,i| dx

= 2
∫ 1

0
‖(1− (V(t−1)V−1)2)1/2V(t)AH−1

x A⊤V(t)~ei‖22 dx
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Note that when taking the sum over all i ∈ [m] this can be bounded by

∑

i∈[m]

∫ 1

0
‖(1− (V(t−1)V−1)2)1/2V(t)AH−1

x A⊤V(t)~ei‖22 dx

=
∫ 1

0
‖(1 − (V(t−1)V−1)2)1/2V(t)AH−1

x A⊤V(t)‖2F dx

≤ ‖(1− (V(t−1)V−1)2)1/2P‖2F dx

where P := V(t)A(A⊤(V(t))2A)−1A⊤V(t). This can be written as

‖(1− (V(t−1)/V(t))2)1/2P‖2F =
∑

i∈[m]

(1− (v(t−1)
i /v

(t)
i )2)1/2

∑

j∈[m]

P2
i,j

=
∑

i∈[m]

(1− (v(t−1)
i /v

(t)
i )2)1/2σ(V(t)A)i

≤
∑

i∈[m]

1
v

(t)
i 6=v(t−1)

i

σ(V(t)A)i

By combining we obtain

m∑

i=1

T∑

t=1

(σ(V(t)A)i + zi)1σ(t)
i 6=σ(t−1)

i

≤ O(
m∑

i=1

T∑

t=1

σ(V(t)A)i1v(t)
i 6=v(t−1)

i

· ǫ−1).

Lemma C.13. The amortized cost of the t-th call to FindIndices is

Õ


Ψ + nǫ−2(max

i
nnz(ai)) +

‖c‖1
nǫ2
· T +Q+

∑

v
(t)
i 6=v(t−1)

i

(
‖c‖1
nǫ2

σ(V(t−1)A)i + ci)


 .

Proof. The cost of FindIndices is dominated by Dj .HeavyQuery(w) for w = H~ek, k =
1, ..., r, and the computation of H.

Cost from QueryHeavy The cost of Dj .QueryHeavy is bounded by

Õ(
∑

k∈[r]

(
‖FZ−1/2V(t−2j)AH~ek‖2cǫ−2 +Q

)
)

= Õ(
‖c‖1
nǫ2
· ‖FV(t−2j )AH‖2F +Q)

= Õ(
‖c‖1
nǫ2
·


22j +

t∑

j=t−2j

∑

v
(j)
i 6=v(j+1)

i

σ(V(j)A)i


+Q)

where the last step bounds the frobenius-norm via (93). Note that this cost is paid every 2j ≤ T
iterations, so we can interpret this as amortized cost for the t-th call

Õ



‖c‖1
nǫ2
·


T +

∑

v
(t)
i 6=v(t−1)

i

σ(V(t−1)A)i


+Q


 .
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Cost from matrix H Fix some j for which we have to compute H in Line 20. Here the
matrix R has O(log n) columns, so we must compute O(log n) products with A := SVA and
A

′
:= S(V−∆(j))A, and further solve O(log n) linear systems in A

⊤
A and A

′⊤
A.

Note that both A and A
′

have the same number of non-zero entries, so the time for com-
puting H is bounded by Õ(Ψ + nnz(A)). By definition of S, the number of non-zero entries in
both matrices is bounded by

nnz(A) = Õ


nǫ−2(max

i
nnz(ai)) +

∑

i∈Sj

nnz(ai) +
∑

i∈Cj

nnz(ai)




= Õ


nǫ−2(max

i
nnz(ai)) +

t∑

k=t−2j

∑

v
(t)
i 6=v(t−1)

i

nnz(ai) +
t∑

k=t−2j

∑

σ
(t−1)
i 6=σ(t−2)

i

nnz(ai)


 .

As the cost for computing H is paid once every 2j calls to FindIndices, the total cost over all
T calls to FindIndices is bounded by

Õ


T ·Ψ + Tnǫ−2(max

i
nnz(ai)) +




T∑

t=1

∑

v
(t)
i 6=v(t−1)

i

nnz(ai)


+




T∑

t=1

∑

σ
(t−1)
i 6=σ(t−2)

i

nnz(ai)







= Õ


T ·Ψ + Tnǫ−2(max

i
nnz(ai)) +




T∑

t=1

∑

v
(t)
i 6=v(t−1)

i

ci


+



‖c‖1
n

T∑

t=1

∑

σ
(t−1)
i 6=σ(t−2)

i

(σ(V(t−2)A)i + zi)







= Õ


T ·Ψ + Tnǫ−2(max

i
nnz(ai)) +

T∑

t=1

∑

v
(t)
i 6=v(t−1)

i

(
‖c‖1
nǫ

σ(V(t−1)A)i + ci)




by ‖c‖1zi/n ≥ ci ≥ nnz(ai) and Lemma C.12.

Amortized Cost The amortized cost for the t-th call to FindIndices is thus

Õ


Ψ + nǫ−2(max

i
nnz(ai)) +

‖c‖1
nǫ2
· T +Q+

∑

v
(t)
i 6=v(t−1)

i

‖c‖1
nǫ2

(σ(V(t−1)A)i + ci)


 .

We now charge the terms in the complexities of FindIndices and UpdateIndices as amor-
tized cost to Scale and Query to obtain the complexities as stated in Theorem C.2.

Proof of Theorem C.2. We now charge each term of the amortized cost of FindIndices and
UpdateIndices to Scale and Query.

We charge the amortized cost of UpdateIndices (Lemma C.11) as follows

Õ




Ψǫ−2 + ǫ−4n(max
i

nnz(ai)) + T
‖c‖1
nǫ4︸ ︷︷ ︸

Query

+
∑

v
(t)
i 6=v(t−1)

i

ci
ǫ2

+
‖c‖1
nǫ4

σ(V(t−1)A)i

︸ ︷︷ ︸
Scale



.

And for FindIndices (Lemma C.13) we charge

Õ




Ψ + nǫ−2(max
i

nnz(ai)) +
‖c‖1
nǫ2
· T +Q

︸ ︷︷ ︸
Query

+
∑

v
(t)
i 6=v(t−1)

i

‖c‖1
nǫ2

σ(V(t−1)A)i + ci

︸ ︷︷ ︸
Scale



.
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Note that we reinitialize the data structure after T iterations. Thus the amortized complexity
of Query also depends on the cost of initializing the data structure, which we analyze next.

Initialization During initialization we have to compute exp(±ǫ)-approximate leverage scores.
It is known that this can be done in time Õ(nnz(A) + S), where S is the time required to
solve a linear system in a matrix of the form A⊤WA by using the Johnson-Lindenstrauss
lemma [JL84, SS08]. By Condition 1 of Theorem C.2 computing the leverage score thus takes
Õ(P + Ψ + nnz(A)) time. We further initialize Õ(1) instances of the assumed HeavyHitter
data structure, which takes Õ(P ) time.

Note that re-initializing the data structure every T iterations adds Õ((Ψ + nnz(A) + P ) /T )
amortized cost to Query.

Query By collecting all the terms that we charge to Query, we obtain the following amortized
cost per call to Query:

Õ

(
Ψǫ−2 + ǫ−4n(max

i
nnz(ai)) + T

‖c‖1
nǫ4

+Q+ P/T

)

= Õ


Ψǫ−2 + ǫ−4n(max

i
nnz(ai)) + ǫ−2

√
P‖c‖1
n

+Q




by choice of T = ǫ2
√
Pn/‖c‖1.

Scale When calling Scale(i, ·), the data structure calls Dj.Scale(i, ·) for j = 1, ..., log n
which takes Õ(ci) time. Together with the amortized complexity terms that we charged to
Scale we obtain an amortized complexity per call to Scale of

Õ

(‖c‖1
nǫ4

σ(V(t)A)i +
ci
ǫ2

)
.

Here we used that the sum
∑
v

(t)
i 6=v(t−1)

i

σ(V(t−1)A)i + ci has one term for each call to Scale.

C.3 Stabilizer

In this section we want to prove Lemma C.15. To prove the main lemma, we will first prove a
weaker variant that involves only one step on P.

Lemma C.14. Let A ∈ R
m×n. Given v, v′ ∈ R

m
+ with v ≈1/2 v′. Let F and S be di-

agonal matrices on R
m×m such that FV = FV′, (V − V′)S = V − V′, ‖F‖2 ≤ 1 and

A⊤S2V2A ≈1/2 A⊤V2A and A⊤S2V′2A ≈1/2 A⊤V′2A. Let P = VA(A⊤V2S2A)−1AV

and P′ = V′A(A⊤V′2S2A)−1AV′, we have

‖F(P′ −P)S‖F . ‖V−1(v′ − v)‖σ(VA).

Proof. Let ∆ = diag(v
′−v
v ). Then, we have

P′ =∆VA(A⊤V′2S2A)−1AV′ + VA(A⊤V′2S2A)−1AV∆ + VA(A⊤V′2S2A)−1AV (94)

By Woodbury matrix identity, we have

(A⊤V′2S2A)−1 = (A⊤VS(I + ∆)2SVA)−1

= (A⊤V2S2A)−1 − (A⊤V2S2A)−1A⊤VS((2∆ + ∆2)−1 + P)−1SVA(A⊤V2S2A)−1.

Applying this into (94), we have

P′ −P =∆VA(A⊤V′2S2A)−1AV′ + VA(A⊤V′2S2A)−1AV∆ + PS((2∆ + ∆2)−1 + P)−1SP
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Since FV = FV′ and (V − V′)S = V − V′, we have F∆ = 0 and ∆S = ∆. Together with
‖F‖2 ≤ 1, we have

‖F(P′ −P)S‖F ≤‖FVA(A⊤V′2S2A)−1AV∆‖F + ‖FPS((2∆ + ∆2)−1 + P)−1SPS‖F
≤‖VA(A⊤V′2S2A)−1AV∆‖F + ‖PS((2∆ + ∆2)−1 + P)−1SPS‖F .

For the first term, we have

‖VA(A⊤V′2S2A)−1AV∆‖2F = Tr ∆VA(A⊤V′2S2A)−1AV2A(A⊤V′2S2A)−1AV∆

. Tr ∆VA(A⊤V′2S2A)−1AV∆

. Tr ∆VA(A⊤V2S2A)−1AV∆

= ‖V−1(v′ − v)‖2σ(VA)

where we used A⊤V′2S2A ≈ A⊤V′2A ≈ A⊤V2A at the first and second inequality.
For the second term, we have

PS2P = VA(A⊤V2S2A)−1A⊤S2V2A(A⊤V2S2A)−1A⊤V = P.

Hence, we have

‖PS((2∆ + ∆2)−1 + P)−1SPS‖2F . ‖PS((2∆ + ∆2)−1 + P)−1SP‖2F
≤ Tr PS((2∆ + ∆2)−1 + P)−2SP

≤ Tr PS(2∆ + ∆2)2SP

≤ 9 Tr PS∆2SP

where we used ∆ � I at the last inequality. Finally, using S∆2S = ∆2, we have that the last
term bounded by O(‖V−1(v′ − v)‖2σ(VA)). Combining both terms give the result.

Now, we can prove the main statement.

Lemma C.15. Let A ∈ R
m×n. Let v(0), v(1), · · · , v(T ) ∈ R

m
+ be a sequence of vectors with

v(j) ≈1/4 v(j−1) for j = 1, 2, · · · , T . Let F and S be diagonal matrices on R
m×m such that

‖F‖2 ≤ 1,

• FV(j) = FV(j−1) for j ∈ {1, 2, · · · , T},
• (V(j) −V(j−1))S = V(j) −V(j−1) for j ∈ {1, 2, · · · , T},
• A⊤S2V(j)2A ≈1/2 A⊤V(j)2A for j ∈ {0, 1, 2, · · · , T}.

Suppose that there is a sequence v(0), v(1), · · · , v(T ) ∈ R
m
+ such that

v(j) ≈1/6 v
(j) (95)

‖(Ṽ(j−1))−1(v(j) − v(j−1))‖
σ(Ṽ(j−1)A)+∞ ≤

1
6
. (96)

for j = 1, 2, · · · , T . Then, for P(j) def= V(j)A(A⊤V(j)2S2A)−1AV(j), we have

‖F(P(T ) −P(0))S‖2F . T 2 +
T∑

j=1

∑

v
(j)
i 6=v(j−1)

i

σ(V(j)A)i.

Proof. Let I be the set of indices i such that v(j)
i changed during the j ∈ {0, 1, · · · , T}. The

proof involves defining a new weight sequence

w
(j)
i =




v

(t)
i v

(0)
i /v

(0)
i if i ∈ I

v
(0)
i elses
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and w
(T+1)
i = v

(t)
i . We define

P̃(j) = W(j)A(A⊤W(j)2S2A)−1AW(j).

Since w(0)
i = v

(0)
i and w

(T+1)
i = v

(T )
i , we have

‖F(P(T ) −P(0))S‖F ≤ ‖F(P̃(T+1) − P̃(0))S‖F ≤
T+1∑

j=1

‖F(P̃(j) − P̃(j−1))S‖F .

Now we check the conditions of Lemma C.14. Since v(j) ≈1/6 v(j) and ‖(Ṽ(j−1))−1(v(j) −
v(j−1))‖∞ ≤ 1

6 , we have w(j) ≈1/2 w
(j−1) for all j. For any i ∈ I, we have Fii = 0 and Sii = 1

(due to the condition FV(j) = FV(j−1) and (V(j) − V(j−1))S = V(j) − V(j−1)). For i /∈ I,
w

(j)
i is a constant. Hence, this verifies the conditions of Lemma C.14: FW(j) = FW(j−1),

(W(j) −W(j−1))S = W(j) −W(j−1) and A⊤(S(j−1))2(V(j−1))2A ≈1/2 A⊤(V(j−1))2A.
For j ≤ T , Lemma C.14 shows that

‖F(P̃(j) − P̃(j−1))S‖F . ‖(W(j−1))−1(w(j) − w(j−1))‖σ(W(j−1)A)

= ‖(Ṽ(j−1))−1(v(j) − v(j−1))‖σ(W(j−1)A)

. ‖(Ṽ(j−1))−1(v(j) − v(j−1))‖
σ(Ṽ(j−1)A)

. 1

where we used the formula of w(j) and w(j−1) in the first equality, w(j−1) ≈1/6 v
(j−1) and the

assumption on v at the last line.
For j = T + 1, Lemma C.14 shows that

‖F(P̃(T+1) − P̃(T ))S‖2F . ‖(W(T ))−1(w(T+1) − w(T ))‖2σ(W(T )A)

.
∑

w
(j)
i 6=w(j−1)

i

σi(W(T )A) .
∑

i∈I
σi(Ṽ(T )A)

where we used ‖(W(j−1))−1(w(j) − w(j−1))‖∞ . 1 in the second inequality, we used v(T ) ≈1/6

w(T ) and I contains all changing indices at the end.
Combining both cases, we have

‖F(P(T ) −P(0))S‖2F . T 2 +
∑

i∈I
σi(Ṽ(T )A).

Hence, it suffices to prove that
∑

i∈I
σi(Ṽ(T )A) .

∑

i∈I
σi(Ṽ(ti)A) + T 2.

where ti be the time such that v(ti)
i 6= v

(ti−1)
i . To prove this, we define σ(ti)

i = σi(Ṽ(ti)A) and
for all j ≥ ti, we define

σ
(j+1)
i =





σi(Ṽ(j+1)A)

σi(Ṽ(j)A)
· σ(j)

i

∣∣∣∣
σi(Ṽ(j+1)A)−σi(Ṽ(j)A)

σi(Ṽ(j)A)

∣∣∣∣ ≥ 1
T

σ
(j)
i elses

.

Intuitively, σ(j)
i is essentially the same as σi(Ṽ(j)A) except we ignore all smaller than 1

T relative

movement. Since there are only T steps, we have σ
(j)
i ≈2 σi(Ṽ(j)A). By the assumption

‖(Ṽ(j−1))−1(v(j) − v(j−1))‖
σ(Ṽ(j−1)A)+∞ ≤

1
6 and [LS15, Lemma 14], we have that

‖σ(Ṽ(j−1)A)−1(σ(Ṽ(j)A)− σ(Ṽ(j−1)A))‖
σ(Ṽ(j−1)A)

. 1.
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Using the definition of σ(j)
i , we have a similar bound for σ(j)

i :

‖(σ(j−1))−1(σ(j) − σ(j−1))‖σ(j−1) . 1.

Since σ(j) only makes relative movement at least 1
T , this implies

∑
i |σ(j)

i − σ
(j−1)
i | . T . Hence,

we have ∑

i∈I
σi(Ṽ(T )A) .

∑

i∈I
σ

(T )
i .

∑

i∈I
σ

(ti)
i + T 2 .

∑

i∈I
σi(Ṽ(ti)A) + T 2.

D Primal and Gradient Maintenance

Theorem D.1 (Primal/Gradient Maintenance). There exists a deterministic data-structure
that supports the following operations

• Initialize (A ∈ R
m×n, x(init) ∈ R

m, g ∈ R
m, τ̃ ∈ R

m, z ∈ R
m, w ∈ [0, 1]m, ǫ > 0): The

data-structure preprocesses the given matrix A ∈ R
m×n, vectors x(init), g, τ̃ , z ∈ R

m, and
the accuracy parameters w ∈ [0, 1]m and ǫ > 0 in Õ(nnz(A)) time. We denote G the
diagonal matrix Diag(g). The data-structure assumes 0.5 ≤ z ≤ 2 and n/m ≤ τ̃ ≤ 2.

• Update(i ∈ [m], a ∈ R, b ∈ R, c ∈ R): Sets gi ← a, τ̃i ← b and zi ← c in O(nnz(ai)+log n)
time. The data-structure assumes 0.5 ≤ b ≤ 2 and n/m ≤ c ≤ 2.

• SetAccuracy(i, δ) Sets wi ← δ in O(log n) time.

• QueryProduct(): Returns A⊤G∇Ψ(z)♭(τ ) ∈ R
n for some τ ∈ R

m, z ∈ R
m with τ ≈ǫ τ̃

and ‖z − z‖∞ ≤ ǫ, where

x♭(τ ) := argmax‖w‖τ+∞≤1〈x,w〉.

Every call to QueryProduct must be followed by a call to QuerySum, and we bound
their complexity together (see QuerySum).

• QuerySum(h ∈ R
m): Let v(ℓ) be the vector G∇Ψ(z)♭(τ ) used for the result of the ℓ-th call

to QueryProduct. Let h(ℓ) be the input vector h given to the ℓ-th call to QuerySum.
We define

x(t) := x(init) +
t∑

ℓ=1

(
v(ℓ) + h(ℓ)

)
.

Then the t-th call to QuerySum returns a vector x ∈ R
m with

‖w−1(x− x(t))‖∞ ≤ ǫ.

Assuming the input vector h is given in a sparse representation (e.g. a list of non-zero
entries), then after T calls to QuerySum and QueryProduct the total time for all calls
together is bounded by

O

(
Tnǫ−2 log n+ log n ·

T∑

ℓ=0

‖h(ℓ)‖0 + T log n ·
T∑

ℓ=1

‖v(ℓ)/w(ℓ−1)‖22/ǫ2
)

The output x ∈ R
m is returned in a compact representation to reduce the size. In particular,

the data-structure returns a pointer to x and a set J ⊂ [m] of indices which specifies which
entries of x have changed between the current and previous call to QuerySum.

• ComputeExactSum(): Returns the exact x(t) in O(m log n) time.

• Potential(): Returns Ψ(z) =
∑
i cosh(λzi) in O(1) time for some z with ‖z − z‖∞ ≤ ǫ.
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This is almost exactly Theorem 7.1 in [BLN+20] except here we include an additional per-
coordinate accuracy parameter w, and in QuerySum the guarantee becomes ‖w−1(x−x(t))‖∞ ≤
ǫ instead of ‖x−1(x − x(t))‖∞ ≤ ǫ. The implementation and analysis of the data strucutre
largely follows from [BLN+20], and we include it for completeness. The main idea is to main-
tain a O(ǫ−2 log n)-dimensional approximation ∇Ψ(z)♭(τ ) of the m-dimensional exact gradient
∇Ψ(z)♭(τ̃ ) ∈ R

m by slightly perturbing τ̃ and z. The approximation ∇Ψ(z)♭(τ ) is formally still
m-dimensional, but we say O(ǫ−2 log n) dimension in the sense that its m entries can be put
into O(ǫ−2 log n) buckets, and entries in the same bucket share a common value. The proof
of the theorem follows from two sub data structures which we specify below. The first lemma
addresses the construction and maintenance of the low dimensional approximation of the exact
gradient, and we use the corresponding result from [BLN+20] without modification.

Lemma D.2 ([BLN+20, Lemma 7.2]). There exists a deterministic data-structure that supports
the following operations

• Initialize (A ∈ R
m×n, g ∈ R

m, τ̃ ∈ R
m, z ∈ R

m, ǫ > 0): The data-structure preprocesses
the given matrix A ∈ R

m×n, vectors g, τ̃ , z ∈ R
m, and accuracy parameter ǫ > 0 in

O(nnz(A)) time. The data-structure assumes 0.5 ≤ z ≤ 2 and n/m ≤ τ̃ ≤ 2. The output
is a partition

⋃K
k=1 Ik = [m] with K = O(ǫ−2 log n).

• Update(i ∈ [m], a ∈ R, b ∈ R, c ∈ R): Sets gi = a, τ̃i = b and zi = c in O(nnz(ai)) time.
The data-structure assumes 0.5 ≤ z ≤ 2 and n/m ≤ τ̃ ≤ 2. The index i might be moved to
a different set, so the data-structure returns k such that i ∈ Ik.

• Query(): Returns A⊤G∇Ψ(z)♭(τ ) ∈ R
n for some τ ∈ R

m, z ∈ R
m with τ ≈ǫ τ̃ and

‖z − z‖∞ ≤ ǫ, where x♭(τ) := argmax‖w‖τ+∞≤1〈x,w〉. The data-structure further returns

the low dimensional representation s ∈ R
K such that

K∑

k=1

sk1i∈Ik
=
(
∇Ψ(z)♭(τ )

)
i

for all i ∈ [m], in O(nǫ−2 log n) time.

• Potential() Returns Ψ(z) in O(1) time.

The next lemma maintains the desired sum for QuerySum, which we need to slightly modify
the corresponding result (Lemma 7.6 in [BLN+20]) to accomodate our per-coordinate accuracy
requirement. The implementation of the data structure for the lemma is given in Algorithm 8.
The input to the data structure is the O(ǫ−2 log n) dimensional representations of the gradients
of each iteration, which is computed by the data structure of the previous lemma. Here for a
set I ⊂ [m] we also use I as 0/1-vector with Ii = 1 when i ∈ I and Ii = 0 otherwise.

Lemma D.3. There exists a deterministic data-structure that supports the following operations

• Initialize (x(init) ∈ R
m, g ∈ R

m, (Ik)1≤k≤K , ǫ ∈ (0, 1]m): The data-structure initialized on
the given vectors x(init), g ∈ R

m, the partition
⋃K
k=1 Ik = [m] where K = O(ǫ−2 log n), and

the per-coordinate accuracy parameter ǫ ∈ (0, 1]m in O(m) time.

• Scale(i ∈ [m], a ∈ R): Sets gi ← a in O(log n) amortized time.

• Move(i ∈ [m], k ∈ [1,K]): Moves index i to set Ik in O(log n) amortized time.

• SetAccuracy(i ∈ [m], δ ∈ (0, 1]): Sets ǫi ← δ in O(log n) amortized time.

• Query(s ∈ R
K , h ∈ R

m): Let g(ℓ) and ǫ(ℓ) be the state of vector g and ǫ respectively during
the ℓ-th call to Query and let s(ℓ) and h(ℓ) be the input arguments of the respective call.
The vector h will always be provided as a sparse vector so that we know where are the non-

zeros in the vector. Define y(ℓ) = G(ℓ)∑K
k=1 I

(ℓ)
k s

(ℓ)
k and x(t) = x(init) +

∑t
ℓ=1 h

(ℓ) + y(ℓ),
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then the t-th call to Query returns a vector x satisfying |xi − x(t)
i | ≤ ǫ

(t)
i for all i ∈ [m].

After T calls to Query, the total time of all T calls is bounded by

O

(
TK + log n ·

T∑

ℓ=0

‖h(ℓ)‖0 + T log n ·
T∑

ℓ=1

‖y(ℓ)/ǫ(ℓ−1)‖22
)
.

The vector x ∈ R
m is returned as a pointer and additionally a set J ⊂ [m] is returned that

contains the indices where x changed compared to the result of the previous Query call.

• ComputeExactSum(): Returns the current exact vector x(t) in O(m log n) time.

The proof follows a trivial adaptation of the proof for Lemma 7.6 in [BLN+20] and we
reproduce it below for completeness.

Proof of Lemma D.3. We start by analyzing the correctness.

Invariant Let s(t), h(t), g(t), I
(t)
k , ǫ(t) be the state of s, h, g, Ik , ǫ during the t-th call to Query

and by definition of x(t) we have for any index i that

x
(t)
i = x

(init)
i +

t∑

ℓ=1

g
(ℓ)
i

(
K∑

k=1

s
(ℓ)
k 1

i∈I(ℓ)
k

)
+ h

(ℓ)
i .

It is easy to check that ℓ̂i always store the most recent iteration when xi is updated by Com-
puteX(i, hi). We first prove by induction that this update is always calculated correct, that is,

the data-structure maintains the invariant xi = x
(ℓ̂i)
i .

We see from Line 32 that the data-structure maintains f (t) =
∑t
k=1 s

(k). Further note that
ComputeX(i, hi) is called whenever hi is non-zero (Line 34), gi or ǫi is changed, or i is moved to
a different Ik. Thus if ℓ̂i < t, we know none of these events happened during iteration ℓ ∈ (ℓ̂i, t]

and the only moving part is the s(ℓ)’s over these iterations, which is exactly f (t) − f (ℓ̂i). Thus,
if k is the set Ik where i belongs to over iterations (ℓ̂i, t], the execution of Line 11 gives

gi · (f (t)
k − f

(ℓ̂i)
k ) + h

(t)
i = gi

t∑

ℓ=ℓ̂i+1

s
(ℓ)
k + h

(t)
i = h

(t)
i +

t∑

ℓ=ℓ̂i+1

g
(ℓ)
i s

(ℓ)
k

= h
(t)
i +

t∑

ℓ=ℓ̂i+1

g
(ℓ)
i

(
K∑

k=1

s
(ℓ)
k 1

i∈I(ℓ)
k

)
=

t∑

ℓ=ℓ̂i+1

(
g

(ℓ)
i

(
K∑

k=1

s
(ℓ)
k 1

i∈I(ℓ)
k

)
+ h

(ℓ)
i

)

where the first equality uses f (t) =
∑t
ℓ=1 s

(ℓ) and the second equality uses g(ℓ)
i = g

(t)
i for all

ℓ̂i < ℓ ≤ t, because ComputeX(i, hi) is called whenever gi is changed. The third equality is
because ComputeX(i, hi) is called whenever i is moved to a different set, so i ∈ I(ℓ)

k for the same

k for all ℓ̂i < ℓ ≤ t. The last equality uses h(ℓ)
i = 0 for ℓ̂i < ℓ < t, because ComputeX(i, hi) is

called whenever hi is non-zero. Thus by induction over the number of calls to ComputeX(i, hi),
when ℓ̂i is increased to t we have

xi = x
(t)
i = x

(init)
i +

t∑

ℓ=1

(
g

(ℓ)
i

(
K∑

k=1

s
(ℓ)
k 1

i∈I(ℓ)
k

)
+ h

(ℓ)
i

)
= x

(t)
i ,

so the invariant is always maintained.
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Algorithm 8: Algorithm for accumulating G∇Ψ(v)♭ (Lemma D.3)

1 members
2 I1, ..., IK ; // Partition

⋃
k Ik = [m]

3 t ∈ N, x ∈ R
m ; // Query counter and approximation of x(t)

4 ℓ̂ ∈ N
m ; // ℓ̂i is value of t when we last update xi ← xi

5 f (t) ∈ R
K ; // Maintain f (t) =

∑t
k=1 s

(k)

6 ∆(high),∆(low) ∈ R
m ; // Maintain ∆i = f

(ℓ̂i)
k ± |ǫi/(10gi)| if i ∈ Ik

7 procedure Initialize(x(init) ∈ R
m, g ∈ R

m, (Ik)1≤k≤K , ǫ ∈ (0, 1]m)
8 x← x(init), (Ik)1≤k≤K ← (Ik)1≤k≤K , t← 0, f (0) ← ~0K , g ← g, ǫ← ǫ
9 private procedure ComputeX(i, hi)

10 Let k be such that i ∈ Ik
11 xi ← xi + gi · (f (t)

k − f
(ℓ̂i)
k ) + hi

12 ℓ̂i ← t
13 J ← J ∪ {i}
14 private procedure UpdateDelta(i)
15 Let k be such that i ∈ Ik.
16 ∆(high)

i ← f
(ℓ̂i)
k + |ǫi/(10gi)|

17 ∆(low)
i ← f

(ℓ̂i)
k − |ǫi/(10gi)|

18 procedure Move(i ∈ [m], k)
19 ComputeX(i, 0)
20 Move index i to set Ik
21 UpdateDelta(i)
22 private procedure Scale(i, a)
23 ComputeX(i, 0)
24 gi ← a
25 UpdateDelta(i)
26 private procedure SetAccuracy(i, δ)
27 ComputeX(i, 0)
28 ǫi ← δ
29 UpdateDelta(i)
30 procedure Query(s ∈ R

K , h ∈ R
m)

31 t← t+ 1, J ← ∅ ; // Collect all entries that have changed since the

last call to Query

32 f (t) ← f (t−1) + s
33 for i such that hi 6= 0 do
34 ComputeX(i, hi), UpdateDelta(i)
35 for k = 1, . . . ,K do

36 for i ∈ Ik with f
(t)
k > ∆(high)

i or f
(t)
k < ∆(low)

i do
37 ComputeX(i, 0), UpdateDelta(i)
38 return x, J
39 procedure ComputeExactSum()
40 for i ∈ [m] and ℓ̂i < t do
41 ComputeX(i, 0), UpdateDelta(i)
42 return x
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Correctness of Query. We claim that the function Query returns a vector x such that for
all i

xi ∈ [x(t)
i ± ǫ

(t)
i ] :=

[
x

(init)
i +

t∑

ℓ=1

(
g

(ℓ)
i

(
K∑

k=1

s
(ℓ)
k 1

i∈I(ℓ)
k

)
+ h

(ℓ)
i

)
± ǫ(t)i

]
.

Given the invariant discussed above, we only need to guarantee ComputeExact(i, hi) is called
whenever the approximation guarantee is violated for some i. Moreover, same as when we
proved the invariant above, we only need to guarantee this in the case that since iteration ℓ̂i,
hi is always 0, gi, ǫi remain constant and i remains in the same Ik for some k. Thus, the task
is equivalent to detect whenever

∣∣∣∣∣∣∣

t∑

ℓ=ℓ̂i+1

g
(ℓ)
i s

(ℓ)
k

∣∣∣∣∣∣∣
= |gi · (f (t)

k − f
(ℓ̂i)
k )| > ǫ

(t)
i

10
.

which is the same as

f
(t)
k /∈ [f (ℓ̂i)

k − |ǫi/(10gi)|, f (ℓ̂i)
k + |ǫi/(10gi)|]

Note that the lower and upper limits in the above range are exactly ∆(high)
i and ∆(low)

i as
maintained by UpdateDelta(i), which will be called whenever any of the terms involved in
the calculation of these limits changes. Thus Line 37 makes sure that we indeed maintain

|xi − x(t)
i | ≤ ǫi ∀i.

Also it is easy to check the returned set J contains all i’s such that xi changed since last Query.

Complexity The call to Initialize takes O(m+K) as we initialize a constant number of K
and m dimensional vectors, and this reduces to O(m) since there can be at most m non-empty
Ik’s. A call to ComputeX takes O(1) time.

To implement Line 37 efficiently without enumerating all m indices, we maintain for each
k ∈ [K] two sorted lists of the i’s in Ik, sorted by ∆(high)

i and ∆(low)
i respectively. Maintaining

these sorted lists results in O(log n) time per call for UpdateDelta. Hence Move, Scale
and SetAccuracy also run in O(log n) time. To implement the loop for Line 37 we can go
through the two sorted lists in order, but stop as soon as the check condition no longer holds.
This bounds the cost of the loop by O(K) plus O(log n) times the number of indices i satisfying

f
(t)
k > ∆(high)

i or f (t) < ∆(low)
i , i.e. |f (t)

k − f
(ℓ̂i)
k | > Θ(ǫ(ℓ̂i)

i /g
(ℓ̂i)
i ). Note if a ComputeX and

UpdateDelta is triggered by this condition for any i, hi must be 0 during (ℓ̂i, t] iterations.

Thus, let z(t) := x(init) +
∑t
ℓ=1 G(ℓ)∑

k I
(ℓ)
k s

(ℓ)
k , we can rewrite that condition as |z(t)

i − z
(ℓ̂i)
i | >

Θ(|ǫ(ℓ̂i)
i |). Throughout T calls to Query, we can bound the total number of times where i

satisfies |z(t)
i − z

(ℓ̂i)
i | > Θ(|ǫ(ℓ̂i)

i |) by

O

(
T

T∑

ℓ=1

‖G(ℓ)(
∑

k

I
(ℓ)
k s

(ℓ)
k )/ǫ(ℓ−1)‖22

)
.

The number of times ComputeX and UpdateDelta are triggered due to h(t)
i 6= 0 is ‖h(t)‖0

each iteration, and updating f (t) takes O(K) time. So the total time for T calls to Query can
be bounded by

O(TK + log(n) ·
T∑

ℓ=0

‖h(ℓ)‖0 + log(n) · T
T∑

ℓ=1

‖G(ℓ)(
∑

k

s
(ℓ)
k I

(ℓ)
k )/ǫ(ℓ−1)‖22/ǫ2).

The time for ComputeExactSum is O(m log n) since it just calls ComputeX and Updat-
eDelta on all m indices.
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Proof of Theorem D.1. The data-structure for Theorem D.1 follows directly by combining Lemma D.2
and Lemma D.3. The result for QueryProduct is obtained from Lemma D.2, and the result
for QuerySum is obtained from Lemma D.3 using the vector s ∈ R

K returned by Lemma D.2
as input to Lemma D.3 and ǫi being wiǫ. Note we charge the cost incurred by calling the data
structure of Lemma D.3 to the QuerySum complexity.
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E Dual Slack Maintenance

Theorem E.1 (Dual Maintenance). Assuming a (P, z,Q)-HeavyHitter data structure as in
Definition 3.1, there exists a data-structure (Algorithm 9) that supports the following operations.
Note in the bounds we use Õ to hide polynomials in log(nP/‖z‖1) in addition to log n factors,
and in our instantiations of the data structure the former factor will be bounded by log n.

• Initialize(A ∈ R
m×n, v(init) ∈ R

m, w(init) ∈ [0, 1]m, ǫ ∈ [0, 1]) The data-structure pre-
processes the given matrix A ∈ R

m×n, the vector v(init) ∈ R
m and accuracy vector 0 <

w(init) ≤ 1 in Õ(P ) time.

• SetAccuracy(i, δ): Sets wi ← δ in Õ(zi) amortized time.

• Add(h ∈ R
n): Suppose this is the t-th time the Add operations is called, and let h(k) be

the vector h given when the Add operation is called for the kth time. Define v(t) ∈ R
m to

be the vector

v(t) = v(init) + A
t∑

k=1

h(k).

Then the data structure returns a vector v(t) ∈ R
m such that ‖w−1(v(t) − v(t))‖∞ ≤ ǫ.

The output will be in a compact representation to reduce the size. In particular, the data-

structure returns a pointer to v and a set I ⊂ [m] of indices i where v
(t)
i is changed compared

to v
(t−1)
i , i.e., the result of the previous call to Add. The amortized time for the t-th call

to Add is

Õ

(
Q+

√
nP/‖z‖1 · ‖(v(t) − v(t−1))/w(t)‖2zǫ−2 +

√
‖z‖1P/n

)
.

• ComputeExact(): Returns v(t) ∈ R
m in O(nnz(A)) time, where t is the number of times

Add is called so far (i.e., v(t) is the state of the exact vector v after the most recent call
to Add).

The data structure for the theorem above is given in Algorithm 9. Both the implementation
and analysis follow straightforward adaptations of Algorithm 4 and Theorem 6.1 in [BLN+20],
and we reproduce the analysis below for completeness. Our new version makes the formal
reduction to HeavyHitters (Definition 3.1) more clear and adds the SetAccuracy method.
Throughout this section we denote h(t) the input vector h of the t-th call to Add (or equivalently
referred to as the t-th iteration), and let v(t) = v(init) + A

∑t
k=1 h

(k) be the state of the exact
solution v (as defined in Theorem E.1) for the t-th call to Add.

In our algorithm (see Algorithm 9) we maintain a vector f̂ which is the sum of all past input
vectors h, so we can retrieve the exact value of v(t)

i = v
(init)
i + (Af̂)i for any i efficiently. This

value is computed and assigned to vi whenever the approximation v that we maintain no longer
satisfies the error guarantee for some coordinate i. As to how we detect when this may happen,
we know the difference between v(t) and the state of v at an earlier t′-th Add call is

v(t) − v(t′) = A




t∑

k=t′+1

h(t)


 ,

and thus we can detect all coordinates i that changes above certain threshold from t′ to t-th
Add call using the (P, z,Q)-HeavyHitter data structure of Definition 3.1 (by querying it with∑t
k=t′+1 h

(t) as the parameter h). Note since the error guarantee we want is multiplicative in w

(i.e., v(t)
i ∈ v

(t)
i ± ǫwi for all i), while the threshold ǫ in Definition 3.1 is absolute and uniform,

we give w−1 as the scaling vector to the HeavyHitter data structure to accommodate this.
Since the most recent updates on vi for different indices i’s happen at different iterations,

we need to track accumulated changes to vi’s over different intervals to detect the next time
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Algorithm 9: Algorithm for Theorem E.1

1 members

2 f̂ , v ∈ R
m, w ∈ R

m, t ∈ N

3 Dj , T =
√
nP/‖z‖1 // Dj are (P, z,Q)-HeavyHitter (Definition 3.1)

4 f (j) ∈ R
n and Fj ⊂ [m] for 0 ≤ j ≤ log T

5 procedure Initialize(A, v(init), w(init), ǫ)

6 v ← v(init), f̂ ← ~0n, w ← w(init), t← 0
7 for j = 0, . . . , log T do
8 Dj.Initialize(A, w−1) (Definition 3.1)
9 f (j) ← ~0n, Fj ← ∅

10 return Av(init)

11 private procedure FindIndices(h ∈ R
n)

12 I ← ∅
13 for j = log T, ..., 0 do

14 f (j) ← f (j) + h // When 2j |t, then f (j) =
∑t
k=t−2j+1 h

(k)

15 if 2j |t then

16 I ← I ∪Dj .HeavyQuery(f (j), 0.2ǫ/ log n)
17 f (j) ← ~0n
18 return I

19 procedure SetAccuracy(i, δ)
20 wi ← δ
21 for j = 0, ..., log T do Fj ← Fj ∪ {i}, Dj .Scale(i, 0) ;
22 private procedure VerifyIndex(i)
23 if |vi − (v(init) + Af̂)i| ≥ 0.2wiǫ/ log n then

24 vi ← (v(init) + Af̂)i
25 for j = 0, ..., log T do
26 Fj ← Fj ∪ {i} // Notify other Dj’s to stop tracking i.
27 Dj .Scale(i, 0)
28 return True
29 return False
30 procedure Add(h ∈ R

n)
31 if t = T then return Initialize(A,A(f̂ + h), w, ǫ);
32 t← t+ 1, f̂ ← f̂ + h, I ← FindIndices(h)
33 I ← {i|i ∈ I and VerifyIndex(i) = True}
34 for j : 2j |t do I ← I ∪ {i|i ∈ Fj and VerifyIndex(i) = True} ;
35 for j : 2j |t do
36 for i ∈ I ∪ Fj do
37 Dj .Scale(i, 1/wi)
38 Fj ← ∅
39 return I, v
40 procedure ComputeExact()
41 return v(init) + Af̂
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an update is necessary for each i. Thus, it is not sufficient to just have one copy of the
HeavyHitter. On the other hand, keeping one individual copy of the HeavyHitter for
each 0 ≤ t′ < t will be too costly in terms of running time. We handle this by instantiating
log T copies of the HeavyHitter data structure Dj for j = 0, ..., log T where T =

√
nP/‖z‖1,

and each copy takes charge of batches with increasing number of iterations. In particular, the
purpose of Dj is to detect all coordinates i in v with large accumulated change over batches of 2j

iterations (see how we update and reset f (j) in FindIndices in Algorithm 9). Each Dj has its
local copy of a scaling vector, which is initialized to be w−1, we refer to it as ĝ(j), and the cost to
query Dj is proportional to ‖Ĝ(j)Af (j)‖2z+Q. Note f (j) accumulates updates over 2j iterations,
and ‖∑2j

k=1 h
(k)‖2z can be as large as 2j

∑2j

k=1 ‖h(k)‖2z . Since we want to bound the cost of our
data structure by the sum of the squares of updates (which can in turn be bounded by our
IPM method) instead of the square of the sum of updates, querying Dj incurs an additional 2j

factor overhead. Thus for efficiency purposes, if vi would take much less than 2j iterations to
accumulate a large enough change, we can safely let Dj stop tracking i during its current batch
since vi’s change would have been detected by a Dj′ of appropriate (and much smaller) j′ so
that vi would have been updated to be the exact value (see implementation of VerifyIndex).
Technically, we keep a set Fj to store all indices i that Dj stops tracking for its current batch

of iterations and set ĝ(j)
i to 0 so we don’t pay for coordinate i when we query Dj . Also note

that whenever the accuracy requirement wi for coordinate i changes, we add i to all Fj ’s (see
implementation of SetAccuracy), and this will make sure we explicitly check whether vi is
within the approximation requirement when Add is called since we will call VerifyIndex on
i (see Line 33). At the start of a new batch of 2j iterations for Dj , we add back all indices in
Fj to Dj (Line 37) and reset Fj . As a result, only those i’s that indeed would take (close to) 2j

iterations to accumulate a large enough change are necessary to be tracked by Dj, so we can
query Dj less often for large j to offset its large cost. In particular, we query each Dj every 2j

iterations (see Line 16).
We start our formal analysis with the following lemma, which adapts Lemma 6.2 in [BLN+20].

Lemma E.2. Suppose we perform the t-th call to Add. Then the call to FindIndices in
Line 32 returns a set I ⊂ [m] containing all i ∈ [m] such that there exists some j with 2j |t
satisfying both i /∈ Fj and |v(t−2j )

i − v(t)
i | ≥ 0.2w(t)

i ǫ/ log n.

Proof. Pick any j with 2j |t, if |v(t−2j )
i − v(t)

i | ≥ 0.2w(t)
i ǫ/ log n, then

∣∣∣∣∣∣
e⊤
i A

t∑

k=t−2j+1

h(k)

∣∣∣∣∣∣
≥ 0.2w(t)

i ǫ/ log n.

We will argue why FindIndices detect all i’s satisfying this condition.
Note that we have f (j) =

∑t
k=t−2j+1 h

(k), and thus by guarantee of Definition 3.1 when
we call Dj .HeavyQuery(f (j), 0.2ǫ/ log n) (in Line 16), we obtain for every j with 2j |t and all
i ∈ [m] with ∣∣∣∣∣∣

ĝ
(j)
i e⊤

i A
t∑

k=t−2j+1

h(k)

∣∣∣∣∣∣
≥ 0.2ǫ/ log n.

Here ĝ(j)
i = 0 if i ∈ Fj due to change of wi in SetAccuracy or in Line 27, which happens

whenever vi is changed in Line 24. Thus by Line 37 we have ĝ
(j)
i = 1/w(t)

i for all i /∈ Fj .
Equivalently, we obtain all indices i /∈ Fj satisfying the following condition, which proves the
lemma.

∣∣∣∣∣∣
e⊤
i A




t∑

k=t−2j+1

h(k)



∣∣∣∣∣∣
≥ 0.2w(t)

i ǫ/ log n
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To guarantee that the approximation v we maintain is within the required ǫ error bound of
the exact vector v, we need to argue that the Dj ’s altogether are sufficient to detect all potential
events that would cause vi to become outside of v ± ǫw. It is easy to see that if an index i
is included in the returned set I of FindIndices (Line 32), then our algorithm will follow up
with a call to VerifyIndex(i), which will guarantee that vi is close to the exact value vi (or
vi will be updated to be vi). Thus, if we are in iteration t, and t is the most recent time

VerifyIndex(i) is called, we know vi satisfies the approximation guarantee for v(t)
i , the value

of vi remains the same since iteration t, and the index i is not in the result of FindIndices
for any of the iterations after t. We will demonstrate the last condition is sufficient to show

v
(t)
i ≈ v

(t)
i , which in turn will prove vi ≈ v

(t)
i . To start, we first need to argue that for any two

iterations t < t, the interval can be partitioned into a small number of batches such that each
batch is exactly one of the batches tracked by some Dj . We cite without proof the following
lemma from [BLN+20].

Lemma E.3 ([BLN+20, Lemma 6.3]). Given any t < t, there exists a sequence

t = t0 > t1 > ... > tk = t

such that k ≤ 2 log t and tx+1 = tx − 2ℓx where ℓx satisfies 2ℓx |tx for all x = 0, . . . , k − 1.

Now we can argue v stays in the desired approximation range around v with the same
argument (with slight adaptation) of Lemma 6.4 in [BLN+20].

Lemma E.4 (Correctness of Theorem E.1). Assume we perform the t-th call to Add, the

returned vector v satisfies |v(t)
i − vi| ≤ ǫw

(t)
i for all i ∈ [m], and I contains all indices that have

changed since the (t− 1)-th Add call.

Proof. By f̂ =
∑t
j=1 h

(j) we have v(init)+Af̂ = v(t) in Line 23. So after a call to VerifyIndex(i)

we know that |vi − v(t)
i | < 0.2ǫw(t)

i / log n, either because the comparison |vi − (v(init) + Af̂)i| ≥
0.2ǫwi/ log n in Line 23 returned false, or because we set vi ← (v(init)+Af̂)i in Line 24. Note this
is also the only place we may change vi. So consider some time t ≤ t when VerifyIndex(i) was
called for the last time (alternatively t = 0). Then vi has not changed during the past t− t calls

to Add, and we know |vi−v(t)
i | ≤ 0.2ǫwi/ log n. We now want to argue that |v(t)−v(t)| ≤ 0.2ǫwi,

which via triangle inequality would then imply |vi − v(t)
i | ≤ ǫwi. Note here we can omit the

superscript of wi since it has not changed during the past t − t calls to Add, since otherwise
i would have been added to all Dj ’s (particularly D0), which would have triggered a call to
VerifyIndex in Line 34.

For t = t this is obvious, so consider t < t. We know from Lemma E.3 the existence of a
sequence

t = t0 > t1 > ... > tk = t

with 2ℓx |tx and tx+1 = tx−2ℓx . In particular, this means that the interval between iteration tx+1

and tx correspond to exactly a batch tracked by Dℓx . Thus, at iteration tx when FindIndices

is called, Dℓx .HeavyQuery is executed in Line 16. This gives us |v(tx)
i −v(tx+1)

i | < 0.2ǫwi/ log n
for all x, because by Lemma E.2 the set I ∪ (

⋃
j Fj) contains all indices i which might have

changed by 0.2wiǫ/ log n over the past 2ℓ iterations for any 2ℓ|t, and because VerifyIndex(i)
is called for all i ∈ I ∪ (

⋃
j Fj) in Line 33 and Line 34.

Note we can assume log t ≤ log T since we reset the data-structure every T =
√
nP/‖z‖1

iterations, and this bounds the length of the sequence k ≤ 2 log T . This then yields the bound

|v(t)
i − v

(t)
i | = |v

(tk)
i − v(t0)

i | ≤
k∑

x=1

|v(tx)
i − v(tx−1)

i | ≤ k · 0.2ǫwi/ log T ≤ 0.4ǫwi
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Thus we have |vi − v(t)
i | ≤ (0.4ǫ + 0.2ǫ/ log n)wi, which satisfies our approximation guarantee.

It is also straightforward to check that when we return the set I at the end of Add, I contains
all the i’s where VerifyIndex(i) is called and returned true in this iteration, which are exactly
all the i’s where vi’s are changed in Line 24.

Now we proceed to the complexity of our data structure. We start with the cost of Find-
Indices, which is mainly on the cost of querying Dj’s. As we discussed at the beginning, there
can be a large overhead for large j, but this is compensated by querying large j less frequently.
The following is a straightforward adaptation of Lemma 6.5 in [BLN+20]. Note that SetAc-
curacy also triggers VerifyIndex (indirectly in Add since we add i to all Fj ’s whenever we
change wi). We attribute the cost of these VerifyIndex calls to the amortized running time
of SetAccuracy instead of counting it in the time spent in VerifyIndex.

Lemma E.5. After T calls to Add, the total time spent in FindIndices and VerifyIndex
is bounded by

Õ

(
Tǫ−2

T∑

t=1

‖(v(t) − v(t−1))/w(t)‖2z + TQ

)

Proof. We start with the cost of FindIndices. Every call to Add invokes a call to FindIndices,
so we denote the t-th call to FindIndices as the one associated with the t-th Add. Fix any
j and consider the cost for Dj . We update f (j) once in each call, which takes O(n) = O(Q)
(Q ≥ n because the Heavy Hitter data structure needs to read the input which costs O(n) time).
Every 2j calls would incur the cost to Dj .HeavyQuery(f (j)). Without loss of generality we
consider the cost of the first time this happens (at iteration 2j) since the other batches follow
the same calculation. We denote ĝ(j) as the scaling vector in Dj when the query happens. We

know ĝ
(j)
i = 0 if i ∈ Fj , and ĝ

(j)
i = 1/wi otherwise. Note here we can skip the superscript

indicating the iteration number, since if i /∈ Fj it must be that vi and wi have not changed over
the 2j iterations. The cost to query Dj in Line 16 can then be bounded by.

Õ(‖Ĝ(j)Af (j)‖2zǫ−2 +Q) ≤ Õ(‖
2j∑

t=1

Diag(1/w(t))Ah(t)‖2zǫ−2 +Q)

≤ Õ







2j∑

t=1

‖Diag(1/w(t))Ah(t)‖z




2

ǫ−2 +Q




≤ Õ


2j ·

2j∑

t=1

‖Diag(1/w(t))Ah(t)‖2zǫ−2 +Q




The first line is by Definition 3.1, and note we use 0.2ǫ/ log n as the error parameter in the
call. The first inequality is by looking at ĝ(j)

i for each index i separately. The value is either

0 so replacing it by 1/w(t)
i only increase the norm, or we know i /∈ Fj , so ĝ

(j)
i = 1/w(t)

i for
all t ∈ [1, 2j ]. The second inequality uses the triangle inequality, and the third inequality uses
Cauchy-Schwarz. The cost of all subsequent queries to Dj follows similar calculation, and as
this query is only performed once every 2j iterations, the total time after T iterations is

Õ

(
Tǫ−2

T∑

t=1

‖Diag(1/w(t))Ah(t)‖2z + T2−jQ

)
= Õ

(
Tǫ−2

T∑

t=1

‖(v(t) − v(t−1))/w(t)‖2z + T2−jQ

)

Note that the equality follows the definition of v(t) in Theorem E.1. We can then sum over the
total cost for all Dj ’s as well as updating f (j) for j = 1, . . . , log T to get the final running time
bound in the lemma statement.
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As to the cost of VerifyIndex(i), each call computes (v(init)+Af̂)i which takes O(nnz(ai)) ≤
zi time as each row of A has nnz(ai) non-zero entries. Further, the updates to Fj ’s and calls to
Dj .Scale for all j’s take O(zi log T ) time. Now we need to bound the total number of times
we call VerifyIndex for some i, which can only happen in two cases. The first case (Line 33)
is when i is returned by FindIndices in Line 32, and the total time we spent in VerifyIn-
dex is bounded by O(

∑
i∈I zi log T ). By the guarantee of

∑
i∈I zi given in Definition 3.1 for

the QueryHeavy calls, we know the total cost over T iterations of such VerifyIndex calls
is bounded by the toal running time of FindIndices (up to a log T factor). The second case
(Line 34) is when i is in some Fj because vi was updated due to vi changing by more than
0.2ǫwi/ log n (or wi is updated, but we count such cost separately in SetAccuracy), and the
total cost can be bounded by

Õ

(
Tǫ−2

T∑

t=1

‖(v(t) − v(t−1))/w(t)‖2z
)
.

Adding up the total cost of VerifyIndex and FindIndices proves the lemma.

We proceed to prove the complexity bounds in Theorem E.1. We will set T to be
√
nP/‖z‖1

and re-initialize the data structure every T Add calls.

Initialize. The main work is to initialize the data structures Dj for j = 1, ..., log T , which
takes Õ(P ) time in total by Definition 3.1.

SetAccuracy. The main work is to call Dj .Scale for all j’s, and this takes Õ(zi) time. Recall
we also add i to all Fj ’s, which triggers VerifyIndex later when we call Add. Technically for
i’s that are added to all Fj ’s due to SetAccuracy we can flag them and skip the inner for loop
in VerifyIndex since the loop does nothing to these i’s. Thus, the total time to just update
vi is O(nnz(ai)) which is bounded by O(zi). We have another Dj .Scale cost incurred in Add
when we restart Dj every 2j iterations (see line Line 37), and such cost is bounded by Õ(zi).

Add. The cost not associated with any FindIndices and VerifyIndex is O(n). Together
with Lemma E.5 gives the bound of total time of T calls to Add

Õ

(
Tǫ−2

T∑

t=1

‖(v(t) − v(t−1))/w(t)‖22 + TQ

)

Moreover, the cost to reinitialize the data structure (once every T iterations) is Õ(P ). Together
with the bound above we get the amortized time specified in the theorem statement.

ComputeExact. This just takes O(nnz(A)) to compute the matrix-vector product.

F Graph Data Structures

In this section we formally state the data structure results we need to efficient implement our
interior point method to show Theorem 1.4 in Section 7.

Lemma F.1 ([BLN+20, Lemma 5.1]). There exists a (P, c,Q)-HeavyHitter data structure
(Definition 3.1) for matrices A, where A is obtained by removing one column from an incidence
matrix of a directed graph with n+1 vertices and m edges, P = Õ(m), ci = Õ(1) for all i ∈ [m],
and Q = Õ(n logW ) where W is the ratio of the largest to smallest non-zero entry in g.

Proof. If A is an incidence matrix, then [BLN+20, Lemma 5.1] yields a (P, c,Q)-HeavyHitter
with P, c,Q as stated in Lemma F.1. If we remove one column from A, then the remaining
matrix can be considered an incidence matrix with at most n additional rows that contain
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only a single non-zero entry (i.e +1 or −1). For the rows that form an incidence matrix we
use [BLN+20, Lemma 5.1], while for the remaining n rows we compute (GAh)i explicitly and
return the index i if |(GAh)i| > ǫ. This additional explicit computation requires only O(n)
time which is subsumed by Q.

Lemma F.2. There exists a (P, c,Q)-InverseMaintenance data structure for matrices A ∈
R
m×n, where A is obtained by removing one column from an incidence matrix of a directed

graph with n+ 1 vertices and m edges, P = Õ(m), ci = 1 for all i ∈ [m], and Q = n.

Proof. For any diagonal matrix V ∈ R
m×m
≥0 we have that A⊤VA is a symmetric diagonally

dominant matrix. For such matrices there exist nearly-linear time solvers, e.g. Lemma 7.1.
Thus Initialize consists of reading the matrix. During Update no operation is performed and
for Solve we use Lemma 7.1.

We use the following lemma which follows from directly from Lemma 5.1 and 8.2 in [BLN+20].

Lemma F.3 ([BLN+20, Lemma 5.1 and 8.2]). There exists the following data structure

• Initialize(A ∈ R
m×n, g ∈ R

m
>0, τ) Initializes the data structure on the given matrix A in

Õ(m) time, where A is obtained by removing one column from an incidence matrix of a
directed graph with n+ 1 vertices and m edges.

• Scale(i, a, b) Sets gi ← a and τ i ← i in Õ(1) time.

• Sample(h ∈ R
n, C1, C2, C3) Returns a random diagonal matrix R ∈ R

m×m where inde-
pendently for all i we have Ri,i = 1/pi with probability pi and Ri,i = 0 otherwise for

pi ≥ min

{
1, C1

m√
n
· (GAh)2

i

‖GAh‖22
+ C2

1√
n

+C3τ i

}
.

With high probability the time (and thus also the output size of R) is bounded by Õ((C1 +
C2)m/

√
n+C3n logW ) where W is a bound on the ratio of largest to smallest entry in g.

Note that by Corollary 4.43 the data structure of Lemma F.3 yields the following (P, c,Q)-
HeavySampler.

Corollary F.4. There exists a (P, c,Q)-HeavySampler data structure for edge-vertex incience
matrices A ∈ R

m×n with P = Õ(m), ci = Õ(1) for all i ∈ [m], and Q = Õ(m/
√
n + n logW ),

where W is the ratio of the largest to smallest non-zero entry in g.
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