Minimum Cost Flows, MDPs, and #1-Regression
in Nearly Linear Time for Dense Instances

Jan van den Brand* Yin Tat Lee' Yang P. Liut Thatchaphol Saranurak$
Aaron Sidford? Zhao Song! Di Wang™*

January 15, 2021

Abstract

In this paper we provide new randomized algorithms with improved runtimes for solving
linear programs with two-sided constraints. In the special case of the minimum cost flow
problem on n-vertex m-edge graphs with integer polynomially-bounded costs and capacities
we obtain a randomized method which solves the problem in O(m+n!-®) time. This improves
upon the previous best runtime of 5(m\/ﬁ) (Lee-Sidford 2014) and, in the special case of
unit-capacity maximum flow, improves upon the previous best runtimes of m?*/3+o(1) (Liu-
Sidford 2020, Kathuria 2020) and O(m+/n) (Lee-Sidford 2014) for sufficiently dense graphs.

For £1-regression in a matrix with n-columns and m-rows we obtain a randomized method
which computes an e-approximate solution in O(mn + n?%) time. This yields a random-
ized method which computes an e-optimal policy of a discounted Markov Decision Process
with S states and A actions per state in time O(S?A + S$2:5). These methods improve
upon the previous best runtimes of methods which depend polylogarithmically on prob-
lem parameters, which were O(mn'®) (Lee-Sidford 2015) and O(S5%®°A) (Lee-Sidford 2014,
Sidford-Wang-Wu-Ye 2018).

To obtain this result we introduce two new algorithmic tools of independent interest.
First, we design a new general interior point method for solving linear programs with two
sided constraints which combines techniques from (Lee-Song-Zhang 2019, Brand et al. 2020)
to obtain a robust stochastic method with iteration count nearly the square root of the
smaller dimension. Second, to implement this method we provide dynamic data structures
for efficiently maintaining approximations to variants of Lewis-weights, a fundamental im-
portance measure for matrices which generalize leverage scores and effective resistances.

arXiv:2101.05719v1 [cs.DS] 14 Jan 2021

*janvdb@kth.se. KTH Royal Institute of Technology, Sweden.

fyintat@uw.edu. University of Washington and Microsoft Research Redmond, USA.
‘yangpliu@stanford.edu. Stanford University, USA.

Ssaranurak@ttic.edu. Toyota Technological Institute at Chicago, USA.
Ysidford@stanford.edu. Stanford University, USA.

lzhaos@ias.edu. Institute for Advanced Study, USA.

*wadi@google.com. Google Research, USA.

*

http://arxiv.org/abs/2101.05719v1

Contents

1 Introduction 1
1.1 OurResults 2
1.2 Related Work 4
1.3 Organization L 5
2 Preliminaries 6
3 Overview of Approach 6
3.1 IPM .. e 6
3.2 Data Structures 8
3.3 Putting Everything Together 13
4 IPM 14
4.1 Overview of Analysis 17
4.2 Analysis Tools and Setup 18
4.3 Regularized Lewis Weights 0oL 19
4.4 Bounding 6,,07,0c,0y . - 22
4.5 Feasibility and potential function analysis 31
4.6 Sampling Schemes L 34
4.7 Additional Properties of the IPM 35
5 Maintaining Regularized Lewis-Weights 35
5.1 Correctness e 37
5.2 Complexity e 39
6 Path Following 43
6.1 Outline e 43
6.2 Correctness e 46
6.3 Complexity e 51
7 Minimum Cost Flow and Applications 54
7.1 Path Following for Graph Problems 55
7.2 Initial and Final Points oo oo 55
7.3 Application: Maximum Flow 59
8 General Linear Programs 60
8.1 Path Following for General LPs 60
8.2 Initial and Final Primal Solutions 61
8.3 Final Dual Solutions 63
8.4 Application: Discounted Markov Decision Process 65
A TPM Proofs 74
A.1 Basic Analysis Tools 74
A.2 Leverage Scores and Fundamental Matrix Proofs 7
A.3 Imitial and Final Point 87
A.4 Sampling Schemes L 89
A.5 Additional IPM Properties. o 92
B Matrix Data Structures 96
C Leverage Score 100
C.1 Correctness« . v v i e 101
C.2 Complexity e 105
C.3 Stabilizer e 110
D Primal and Gradient Maintenance 113
E Dual Slack Maintenance 119
Graph Data Structures 124

ii

1 Introduction

We consider solving linear programs expressed in the following primal/dual form:

P) = min ¢’z and (D)= max b'y+ min(4;8;, u;S;). 1
(P)= i (D)= _max by Z (Lisiy uisi) (1)
£ <z;<u; Vi€[m)] Ay+s=c i€[n]

where b € R", c € R™, A € R™*" and each ¢; < u; € R.

Equation (1) naturally encompasses prominent continuous and combinatorial optimization
problems. When ¢; = 0 and u; = oo, (1) corresponds to the standard primal-dual formulation
of linear program. In the case when A is the incidence matrix of a graph, i.e. b =0, and ¢; = 0
for all i € [m], (1) corresponds to the problem of computing a minimum cost circulation in a
directed graph with linear costs ¢ and edge capacities given by u (Section 7). Further, in the
case when each u; = 1, ¢; = —1, and b = 0, (1) corresponds to solving ¢; regression (Section 8.3)
and can be used to solve Markov Decision Processes (MDPs) [SWWY 18] (Section 8.4).

Recent advances in interior point methods (IPMs), a prominent class of continuous optimiza-
tion methods, and data structures have led to nearly linear runtimes for solving fundamental
classes of (1) to high precision with only a polylogarithmic dependence on problem parameters.
In [BLSS20] an O(mn +n25) time randomized method was obtained for solving (1) when £; = 0
and u; = oo for all ¢ € [m], i.e., when the problem is in standard form. Further, in [BLNT20]
a randomized method was obtained for solving minimum cost perfect matching in bipartite
graphs in time 6(m + n'9), i.e. when the problem is in standard form and A is the incidence
matrix of a bipartite graph.

Unfortunately, though it is well known that all linear programs can be written in standard
form, naively transforming (1) to standard form can increase the dimension of the problem, i.e.
turn n to Q(m). This issue prevents the application of the recent advances in [BLN 20, BLSS20)
to (1) when both w; and ¢; are bounded. Consequently, despite extensive study, obtaining
nearly linear running times for solving (1), maximum flow, minimum cost flow, ¢; regression,
and Markov Decision Processes to high-precision with a polylogarithmic dependence on problem
parameters in nearly linear time in high-dimensional dense instances has been elusive.

The issue of losing density when reformulating (1) in standard form is a known difficulty
in obtaining improved runtimes from continuous optimization methods. It arose in [LS14,
LS19] and was addressed and leveraged to obtain improved randomized runtimes for minimum
cost flow, ¢1-regression [LS15], and MDPs [LS14, LS15, SWWY18]. These methods provide
IPMs which work directly with (1). The IPMs re-weight constraints based on variations of
Lewis weights [CP15, LS19], a natural notion of row importance for matrices which generalizes
leverages scores, and implement and apply the corresponding methods efficiently.

Lewis weight reweighting schemes were also key to the aforementioned nearly linear time
algorithms for solving linear programs in standard form [BLSS20] and computing minimum-
cost bipartite perfect matchings [BLNT20] on dense instances. Unfortunately, a key technique
applied by these results is that when (1) is in standard form (i.e. ¢; = 0 and u; = oo for
all ¢ € [n]) it is possible to leverage the primal-dual structure of the problem to rewrite the
optimality conditions of [L.S19] in terms of leverage scores, a simple special case of Lewis weights.
Leveraging this structure, these papers design IPMs and data-structures for efficiently leveraging
and manipulating leverage scores towards achieving their runtimes. Unfortunately, in the case
that both ¢; and u; are bounded, this same technique doesn’t directly apply (see Section 3.1).

In this paper, we show how to overcome this difficulty and directly obtain nearly linear
time algorithms for solving (1), minimum cost flow!, ¢1-regression [LS15], and MDPs, in on

!Though Lewis weight reweighting was used to achieve state-of-the-art 19} (m+n'®) runtimes for minimum-cost
bipartite perfect matching on m-edge n-node graphs in [BLN"20], the same work showed that it was not needed
to obtain 6(11\/%) runtimes. Consequently, 5(n\/ﬁ) runtimes for minimum cost flow on m-edge n-node graphs
may be achievable without the full range of techniques in this paper.

moderately dense instances. First, we provide a new IPM directly tailored to solving (1) which
directly works with a variant of Lewis weights. Our method applies techniques in robustifying
IPMs [CLS19, LSZ19, Bra20, BLSS20, BLN 20, SY20, JSWZ20] and in particular techniques
from [LSZ19] on robust IPMs for solving empirical risk minimization problems, to a variant
of the Lewis-weight based optimality conditions suggested by [L.S19]. Further, the method
applies and generalizes sampling and analysis techniques from [BLN*20]. The combination of
these techniques and interaction with Lewis weights induces a number of technical challenges.
Interestingly, ultimately, our analysis leverages higher order smoothness properties of barriers
for the intervals {z : ¢; <z < u;} (Definition 4.1 and Lemma 4.2).

As with many recent results [CLS19, LSZ19, Bra20, BLSS20, BLN*20, SY20, JSWZ20], this
new IPM reduces the challenge of solving (1) to solving a sequence of data structure problems
and appropriately initializing and rounding the iterates of the IPM. One particularly challenging
aspect is that our IPM requires that regularized /,-Lewis weights be maintained efficiently
throughout the algorithm. Though previous work [BLSS20, BLN'20] provided various results
on dynamically maintaining leverage scores, i.e. the special case when p = 2, and there are
known algorithms for computing Lewis weights efficiently using leverage scores, the complexity
of such a naive approach is unclear. We overcome this issue by providing both a more careful
reduction from Lewis weight maintenance to leverage score maintenance and a direct reduction
from leverage score maintenance to detecting large rows in a dynamically changing matrix, what
we call a heavy hitter data structure [BLNT20, BLSS20].

By considering specialized heavy hitter data structures for the various problems we consider,
providing additional data structure as needed, and carefully applying the resulting IPM we
obtain the main runtime results of this paper. In the special case of solving linear programs in
standard form we provide new sampling data structure for matrices that allow us to improve
upon the runtime of [BLSS20] in certain settings.

1.1 Our Results

Here we provide the main results of this paper, including new nearly linear time algorithms for
solving (1) in different settings.

Linear Programming with Two-sided Constraints Our main contributions are efficient
algorithms for solving primal/dual LPs with two-sided constraints (1) via IPMs. In the general
case, where there is no additional structure on A we obtain the following result.

Theorem 1.1 (Primal solution for general LPs). Let A € R™*" ¢, l,u € R™, and b € R™.
Assume that there is a point x satisfying ATz = b and ¢; < x; < u; for all i € [m]. Let

W= max(lelloo, | Alos [blloos [ellos [1€loo; TRE=7)- For any § > O there is an algorithm

running in time O((mn + n%%)log(W/8)) that with high probability (w.h.p.) which computes a

vector) sqtisfying
AT 08D _p|| <6 and € < xz(ﬁnal) <u Vi and ¢ 208D < min c'z+90.
=b
Zigxiéuiw

The prior best result runtimes for achieving guarantees comparable to Theorem 1.1 were
O (mmax{w2+1/18}) [J9W720] (w ~ 2.37286 [Will2, Gall4, AW21] is the exponent of current
matrix multiplication) and O((nnz(A) + n2?)/n) [LS15]. Whenever A is tall and dense, i.e.
m > nl'® and nnz(A) = Q(mn), this corresponds to a nearly linear time algorithm for solving
(1) to high precision.

Interestingly, even in the special case when ¢; = 0 and u; = oo for all ¢ € [n] this improves
upon the previous best runtimes of O(m®) and O((nnz(A) 4 v/n)\/n) mentioned above, as well
as O(mn + n3) [BLSS20]. In particular, we improve upon [BLSS20] by improving the additive
O(n?) term to a O(n%5). This improvement stems from IPM sampling techniques of [BLN*20]
(as refined in this paper) and new data structures introduced in this paper.

/1-Regression and MDPs Theorem 1.1 immediately yields improved runtimes for additional
prominent optimization problems. For instance, when b = 0 and ¢; = —1 and u; = 1 for all
i € [n], the dual formulation in (1) encodes to ¢;-regression. Consequently, we obtain the
following result.

Theorem 1.2 (Dual solution for general LPs, ¢1-regression). Let A € R™*" ¢ € R™, and § >

def

0.There is an algorithm running in time O((mn + n®*®)log(W/8)) for W = max(]|¢/lo, || Alloe)
which w.h.p. computes a vector z € R™ such that

|Az + clly < min ||Az + ¢|j; + 6.
z€R™

As with Theorem 1.1 this runtime is nearly linear whenever A is tall and dense, i.e. nnz(A) =
Q(mn) and m > n!®. Further, as with Theorem 1.1, in the regime of high accuracy algorithms,
it improves upon the results of [CLS19, LSZ19, Bra20, SY20, JSWZ20, LS15] mentioned above.

Further, leveraging a reduction from [SWWY18], in certain settings this yields to improved
running times for solving MDPs, a fundamental mathematical model for reasoning about uncer-
tainty. An instance of the discounted Markov Decision Process (DMDP) is specified by a tuple
(S, A, P,r,~) where S is a the state space, A is the action space, P describes state-action-state
transition probabilities, r describes state-action rewards in range [—M, M], and v € (0,1) is a
discount factor. The goal is to compute a policy that maps each state to an action that that
(approximately) maximizes the reward in a certain sense. (See Section 8.4 for more precise
definition of the problem) We obtain the following result.

Theorem 1.3 (Discounted MDP). Given a DMDP (S, A, P,r,7), there is an algorithm that,

with high probability, computes a -optimal policy 7 in O((|S)2|A| + |S|*5) log(#)) time.

Since the input size of the state-action-state transition is €(|S|?|A|), this algorithms runs in
nearly-linear time whenever |A| > \/|S|. Also, this result directly improves upon the previous
algorithm with running time O((|S|?®|A]) log(ﬁ)) [LS14, SWWY18].

Minimum Cost Flow In the minimum cost flow problem, we are given a connected directed
graph G = (V, E,u,c) with edges capacities u € REO and costs ¢ € RF. We call z € RF an
s-t flow for s,t € V if 2, € [0,uc] for all e in E and for each vertex v ¢ {s,t} the amount of
flow entering v, i.e. Ze:(a,v)eE T equals the amount of flow leaving v, i.e. Ze:(v,b)eE ZTe. The
value of s-t flow is the amount of flow leaving s (or equivalently, entering ¢). The maximum
flow problem is to compute an s-t flow of maximum value. In the minimum cost maximum flow
problem, the goal is to compute a maximum s-¢ flow of minimum cost, > . cp ceTe = clx.
Such problems can be expressed in the form of (1) by taking A as the graph incidence matrix,
letting ¢; and u; denote edge capacities, and choosing b appropriately. Unfortunately, directly
applying Theorem 1.1 would yield a large 6((mn+n2'5) log W) runtime which does not improve
upon previous results. However, applying the techniques developed in this paper along with
Laplacian system solvers [ST04, KMP10, KMP11, KOSA13, CKM*14, PS14, LPS15, KLP 16,

KS16] and data structure ideas from [BLN*20] specific to graphs we prove the following theorem.

Theorem 1.4 (Min cost flow). There is an algorithm that, given a n-vertex, m-edge, directed
graph G = (V, E,u, c) integral edge capacities u € Zgo and costs ¢ € ZF, with high probability,

computes a minimum cost mazimum flow in O(mlog(||ulss ||cllso) +nt? log?([lullso|lcllo)) time.

Efficiently solving the minimum cost flow problem to high accuracy gives an algorithm for
maximum flow in the same runtime on weighted graphs, and we give the reduction formally in
Corollary 7.9 in Section 7.3. Using standard capacity scaling methods [AO91], we can improve
the log? W dependence to log W on the n'® term in this case, where W = max(||ul|o). The
previous best runtimes for mincost flow were m?*/3+°() log W in the case of unit capacity graphs
[AMV20] and O(my/nlog®® W) [LS19]. Our algorithm improves on these for dense graphs,
and in particular runs in nearly linear time for m > n'?.

Year Authors References Time

Sparse | Dense
1970 Dinitz [Din70] mn
1997 Goldberg, Rao [GR98| m3/?log W mn?/3log W
2013 Madry [Mad13, Mad16] mO WY
2013 Lee and Sidford [LS14] ma/nlog®® W
2020 Liu and Sidford [LS20b] mU/8wi/4
2020 | Liu and Sidford; Kathuria | [LS20a, Kat20] m*/3W1/3
2020 This paper (m +n'5)log W

Table 1: The summary of the results for the maximum flow problem. W denotes the maximum
capacity. Subpolynomial (no(l)) terms are hidden. For simplicity, we only list exact algorithms
which yielded polynomial improvements.

Year | Authors References Time
Sparse | Dense

1972 | Edmonds and Karp [EKT2] m?log W
1987 | Goldberg and Tarjan [GT90 mnlog W
2008 | Daitch and Spielman [DSO08] m?/2log® W
2013 | Lee and Sidford [LS14] my/nlog®M W
2017 | * Cohen, Madry, Sankowski, | [CMSV17] mt0/ " log W

Vladu
2020 | * Axiotis, Madry, Vladu [AMV20] m*/3log W
2020 This paper mlog W + n'?log? W

Table 2: The summary of the results for the minimum-cost flow problem. Subpolynomial
(n°M) terms are hidden. W denotes the maximum absolute value of capacities and costs.
For simplicity, we only list exact algorithms which yielded polynomial improvements. Results
marked with an asterisk work only on unit-capacity graph.

1.2 Related Work

The problems we consider in this paper, e.g. linear programming, dynamic data structures,
minimum cost flow, ¢1-regression, MDPs, are all incredibly well-studied. Each has an extensive
history and numerous results. Here, we provide just a brief summary of the results and tools
most directly related to this paper.

Linear Programming IPMs: There has been significant work towards the design of IPMs
for linear programming, starting from [Kar84, Ren88]. More recently, there have been IPM-
based runtime improvements to linear programming by decreasing the number of iterations
[LS14], proving that maintaining approximate primal/dual solutions suffice [CLS19, LSZ19,
Bra20, BLSS20, SY20, JSWZ20, BLN*20], and using data structures to decrease iteration
costs [LS15, CLS19, LSZ19, Bra20, SY20, JSWZ20, BLN"20]. There is a related line of work
on strongly polynomial linear programming [VY96, MT03, MT05, DHNV20, DNV20], where
the goal is to achieve exact solutions with improved parameter dependencies, instead of high
accuracy solutions as we do here. In [LSZ20] it was shown how to implement IPMs in the
semi-streaming model.

¢1-Regression: There have been several algorithms for ¢;-regression in both the low accu-
racy (poly(e~!) dependence) [Cla05, Nes09, CMMP13, YCRM16, DLS18] and high accuracy
(log(1/e) dependence) [MM13, LS15, CLS19] regimes. The state of the art results in the
high-accuracy regime are [LS15] which achieves a O((nnz(A) + n2)y/nlog(1/¢)) runtime, and
[JSWZ20] which achieves a O(n™ax{«:2+1/18}) runtime, improving on O (n™@{w:2+1/6}) [CL,S19].

Minimum Cost Flow: There has been significant work towards combinatorial algorithms for
the minimum cost flow problem [EK72, Tar85, Orl84, GT88, GT90, Orl93] in both the strongly
polynomial and weakly polynomial regimes. Daitch and Spielman [DS08] showed that one can
use a Laplacian system solver to implement steps of an IPM to achieve a more efficient mincost
flow algorithm with logarithmic capacity dependence. Since then, runtime improvements have
been achieved by reducing the number of iterations of a general IPM to O(y/n) [LS14] and to
O(m/3+()) [AMV20] for graphs with unit-capacity, improving on O(m!%/7log W) [CMSV17].

Markov Decision Process (MDP): We focus on solving discounted MDPs.?2 Previous
works in the high precision regime (i.e. logarithmic dependency on error) includes [Tse90,
LDK95, SWWY 18] with the best running time of O((|S|2|A| + %) log(%)). Strongly poly-
nomial time exact algorithms are also known [Ye05, Yell, Sch16].

For algorithms that depend logarithmically on one minus the discount factor -, the algorithm
by [LS14] implies a 6((|S|2'5|A|)10g(ﬁ)) running time (shown in [SWWY18]). Our result
in Theorem 1.3 directly improves this algorithm.

There is another line of work focusing on fast algorithms in the low precision regime with
polynomial dependency on the error parameter [KS98, AMK13, Wan17, SWWY18, SWW 18,

Wail9, Wan20, AKY20, LWC*20]. This setting is not directly comparable to our result.

Dynamic Data Structures: IPMs reduce the task of solving linear programs to the task of
solving linear systems. Instead of solving these linear systems from scratch in each iteration,
these iterative algorithms can be sped up by using data structures that efficiently maintain
the matrix inverse corresponding to the linear system [Kar84, Vai89, NN91, LS15, CLS19,
LSZ19, SY20, JSWZ20, BLSS20]. There also exist data structures to efficiently maintain the
solution of the linear system instead of (or in addition to) the corresponding matrix [San04,
BNS19, Bra20, JSWZ20, Bra2l]. Recently there have also been data structures developed
that are able to efficiently maintain an approximation of the primal/dual solution [L.SZ19,
BLSS20, BLN 20, JSWZ20]. For graph applications these algorithms are based on the dynamic
expander decomposition technique [NSW17, SW19, BBN"20, GRST21]. For general LPs, the
data structure for maintaining approximate primal/dual solutions are based on heavy hitters
and sketching [JL84, KNPW11, Pagl3, NN13, KN14, LNNT16, PSW17, CJN18, NS19, NSW19].

1.3 Organization

We give the preliminaries in Section 2. Our overview is in Section 3, split into overview of the
IPM in Section 3.1 and overview of the data structures in Section 3.2. We present our IPM in
Section 4, and show our regularized Lewis weight maintenance data structure in Section 5. We
show how to use data structures in implement our IPM in Section 6. We analyze the runtime
of our IPM in the graphical setting and show applications and mincost flow and maxflow in
Section 7. Finally, we analyze the runtime of our IPM for general linear programs and show
applications to Markov Decision Processes in Section 8.

Several additional pieces are deferred to the appendix. In Appendix A we give omitted
proofs from Section 4. The remaining sections of the appendix give data structures based on
previous methods of [BLNT20]. In Section B we give our HEAVYHITTER and sampling data
structures, and in Section C we give our leverage score maintenance data structure. We show
how to maintain the primal variable and gradient of the centrality potential in Section D, and
show how to maintain the dual slack variable in Section E. Finally we state the graph specific
data structures based on expander decompositions in Section F.

2QOther variants of this problems includes deterministic MDPs (equivlent to the min-mean cycle problem)
[DGY8, CTCGT98, Mad02, BLN'20] and average-reward MDPs [Mah96, AO06, JOA10].

2 Preliminaries

def

We follow similar notation as in [BLNT20]. We let [n] = {1,2,...,n} and €; denote the i-th
standard unit vector. We use O(-) notation to hide (loglog W)°M loge~!, and (logn)°M
factors, where W typically denotes the largest absolute value used for specifying any value in
the problem (e.g. demands and edge weights) and n denotes the number of nodes. When we
write with high probability (or w.h.p), we mean with probability 1 — n¢ for any constant ¢ > 0.
We write 1condition for the indicator variable, which is 1 if the condition is true and 0 otherwise.

Diagonal Matrices Given a vector v € R? for some d, we write Diag(v) for the d x d diagonal
matrix with Diag(v);; = v;. For a vector v we also write V for the diagonal matrix Diag(v)
when clear from context.

Matrix and Vector operations Given vectors u,v € R? for some d, we perform arithmetic
operations -, +, —, /,+/- element-wise. For example (u - v); = u; - v; or (y/v); = /v;. For the
inner product we write (u,v) and u' v instead. For a vector v € R? and a scalar o € R we let
(aw); = av; and (v + a); = v; + a.

For symmetric matrices A, B € R™*"™ we write A < B to indicate that z Az < 2Bz for
all x € R™ and define >, <, and > analogously. We call any matrix (not necessarily symmetric)
non-degenerate if its rows are all non-zero and it has full column rank.

We use u =~ v to denote that exp(—e)v < u < exp(€)v entrywise and A ~. B to denote
that exp(—e)B =< A =< exp(e)B. Note that this notation implies u &~ v ~5 w = u ~15 w, and
U R U = U R o v for any a € R.

For any matrix A with real entries, let nnz(A) denote the number of non-zero entries in A
and nnz(a;) be the number of non-zero entries in the i-th row of A.

Note that we can express the approximation error of Lemma 7.1 as some spectral approxi-
mation, i.e. there exists some H ~gp. AT WA such that HZ = b [BLSS20, Section 8].

Leverage Scores and Lewis-Weights For any non-degenerate matrix A € R™*™ we let

o(A) € R™ with o(A); & (A(ATA)'AT);; denote A’s leverage scores. For p € (0,00) and
non-degenerate matrix A € R™*" we define the ¢, Lewis weight as the solution w € RZ; to

1 1
the equation w = o(W2"7»A), where W = diag(w). We use a regularized Lewis weight in our
algorithms, and this is defined in Definition 4.5.

Norms We write || - ||, for the £,-norm, i.e. ||v]l, := (3, [vi[P)YP, |[v]|oo = max; [vs] and ||v]|o
being the number of non-zero entries of v. For a positive definite matrix M we define ||v||m =
VuTMu. For a vector 7 we define ||v|, := (3, 707)Y? and [|v||r 400 := ||V]loo +C log(4m/n)||v]|,
for a large constant C, where m > n are the dimensions of the constraint matrix of the linear
program (we define ||v||;400 again in Definition 4.9).

3 Overview of Approach

In this section, we give an overview of the major aspects of our algorithm, including the path
following IPMs (Section 3.1), the data structures necessary for its implementation (Section 3.2),
and how to combine them for our applications (Section 3.3).

3.1 IPM

As context and motivation for our method, we start by discussing the IPM of [LS19]. For
matrices A € R™*", vectors b € R"™, ¢ € R™, and lower and upper bounds ¢,u € R™, this IPM

solves linear programs of the form

min ch

ATz=b
li<z;<u;Vie [m}

to high accuracy. The runtime of this method is dominated by the runtime needed for solving
O(y/n) linear systems of the form ATDA for non-negative diagonal matrices D. To achieve
this result, for all ¢ € [n] [LS19] considers 1l-self-concordant barriers ¢; : (¢;,u;) — R for the
intervals for 7, e.g. ¢;(z) = —log(u; —) — log(x — ¢;) (Lemma 4.2), and for a path parameter
1, considers the central path of points

m
x, o argmina T, 'z + Mzwigbi(xi)’ (2)
i=1

for a well-chosen weight function w € R™. For standard IPMs such as that of Renegar [Ren8§],
w; = 1 for all ¢, and in [LS19] and our algorithm w is a function of z (though it is often
convenient to think of w as fixed during a step). Optimality conditions tell us that for fixed
w, (2) holds if ATz, = b and ¢ + Ay + uWV®(z) = 0 for some vector y € R", where
W = diag(w) is the diagonal matrix of the weights w. This optimality condition can be
re-written as s + yWV®(z) = 0 where s = ¢ + Ay denotes the dual slack variables.

In both [LS19] and this work we allow w to depend on z and define a weight function
w(x) : R™ — RZ,. We say that a triple (z, s, u) is central for weight function w(z) if

ATz=b |, s=Ay+c,and s+ puW(z)Vd(z) =0. (3)

A choice of W(x) made in [LS19], and which we used a regularized version of in this paper
(Definitions 4.5, 4.6), is a £, Lewis weight for p =1 . The ¢, Lewis weight function

w(z) is defined as the solution to

-1
4log(4m/n)

w(z) = o(W(x)2 7 (V2B(x)) 2 A), (4)

where o(-) denotes the leverage scores of a matrix. Using this weight function, [LS19] is able to
argue that 6(\/5) steps of an IPM suffice to solve the linear program, as opposed to 6(%)
from Renegar’s method. Carefully implementing methods based on variants of the ¢,-Lewis
weight function solves the maximum flow problem in time 6(m\/ﬁ) and general LPs in time
O(y/n(nnz(A) + n®)), accounting for the runtime needed to solve linear systems.

To obtain further runtime improvements, there has been significant work towards performing
less work per iteration by speeding up the linear system solve times via inverse maintenance
[LS15], as well as more recent work showing that such methods can in fact be implemented
even with only approximate values for the primal and dual variables z, s [CLS19, LSZ19, Bra20,
BLSS20, SY20, JSWZ20, BLN'20]. To illustrate these robust IPMs, consider the simple case
where ¢; = 0 and u; = oo for all 4, i.e. the condition on x in the linear program is simply x > 0,
and ¢;(z;) = —logx;. In this case the centrality condition, (3), reduces to zs = w(x)u and this
motivates the following centrality potential

U(z, s, 1) Zi:;cosh ()\ (Yiti 1)) (5)

w(x)ip

for A = O(logm/e). Maintaining ¥(z, s, u) < poly(m) at all times ensures that zs ~. w(x)u.
Consequently, these robust IPMs take projected Newton steps that induce gradient descent steps
on the potential ¥ to guarantee that it stays small in expectation throughout the algorithm.

The analysis in [BLSS20, BLNT20] critically relied on the fact that only one-sided con-
straints, x > 0, were imposed, instead of a two-sided constraint, { < z < u. These works
leveraged that the centrality condition xs = w(x)u for ¢, Lewis weights can be written in terms
of leverage scores of a slightly different diagonal weighting. Specifically, if zs = w(z)u, where
w(z) is the £, Lewis weight, then for o = 1 — p we have that zs = ¢(S™1/27X1/2=@A). The
reliance on this fact impairs extending it to the setting of two-sided constraints.

We bypass this issue by working directly with ¢, Lewis weights and the centrality condi-
tion (3) for general 1-self-concordant functions ¢. Interestingly, our analysis requires a fourth
derivative condition in Definition 4.1, beyond the standard third derivative condition of self-
concordance. Formally, we consider the centrality potential (Definition 4.8)

def si + pt ()i) ()
U(x,s,pu) = cosh [\ c ; (6)
n= 2 ((()i ()))

where intuitively, the denominator arises from normalizing by the Hessian of the current point z.
To analyze the progress of the Newton steps towards decreasing the potential, analysis is required
to understand and bound derivatives of the ¢, Lewis weights. Additionally, there are several
other technical challenges, including working with a regularized version of the ¢, Lewis weight
to ensure that the Lewis weights are all > n/m, carefully maintaining approximate feasibility
of the primal variable z, and using spectral sparsifiers of ATDA instead of the true matrix for
efficient inverse maintenance. This loss of feasibility requires us to use a sampling procedure on
the primal variable, and we build a general theory for valid sampling distributions that allow
our algorithm to work (Definition 4.13). At a high level, we show that any sampling scheme that
satisfies various properties, such as bounded variance, maximum, and mean preservation suffices
to implement our IPM. The goal of showing that these generalized sampling schemes work is to
handle both sampling each coordinate independently and sampling coordinates proportional to
weights, so that we can handle the graphical case (as in [BLN'20]) and linear programs.

Overall, we show that we can takes steps of size Q(nil/ 2) while maintaining that the expected
potential is polynomially bounded, and that all points x we maintain are approximately feasible.
In this way, we can implement an IPM for two-sided linear programs that requires 6(\/5) steps
that only approximately maintains the primal variable z and dual slack s.

3.2 Data Structures

As outlined in Section 3.1, in contrast to [BLSS20, BLNT20], our IPM maintains approximate
regularized ¢, Lewis weights for p € [1/2,2). To efficiently implement the IPM we do not want
to recompute the Lewis weights from scratch in every iteration. Instead we seek a data structure
that maintains approximate Lewis weights. Here we describe how such a data structure can be
obtained by reducing to the HEAVYHITTER data structure problem defined below:

Definition 3.1 (Heavy hitter). For ¢ € R™ and P,Q € Rso with nP > ||c|i > P, we call a
data structure with the following procedures a (P, c,Q)-HEAVYHITTER data structure:

o INITIALIZE(A € R™ ", g € RZ,) Let A be a matriz with ¢; > nnz(a;)), Vi € [m] and
P >nnz(A). The data structure initializes in O(P) time.

o ScALE(i € [m],b € R): Sets g; < b in O(c¢;) time.

o QUERYHEAVY(h € R" e € (0,1)): Returns I C [m] containing exactly those i with
|(GAR);| > € in O(e2|GAR|? + Q) time.

A contribution of our work is to show that, if we have such a data structure for a matrix A,
then we are able to efficiently maintain the Lewis weights of VA for a diagonal matrix V that
changes over time (i.e. V = (V2®(z))~ /2 when used inside our IPM, see (4)).

Constructing HEAVYHITTER-data structures was key to advances in [BLNT20, BLSS20].
For the special case where A is an edge-vertex incidence matrix, [BLNT20] constructed a
HEAVYHITTER-data structure with complexities P = O(m), ¢; = O(1) for all i € [m], and
Q= 6(n log W), where W is a bound on the ratio of the largest to smallest non-zero entry in
G. This data structure will be useful for our min-cost flow application. In [BLSS20] a HEAVY-
HITTER-data structure was given for general m x n matrices, where P = O(nnz(A)), ¢; = O(n)

for all i € [m], and Q = O(n). This data structure can be used for general linear programs. Our
algorithm for solving general LPs use this data structure from [BLSS20] and the algorithms for
graph problems such as min-cost flow use the data structure from [BLNT20].

We now outline how to reduce the task of maintaining the Lewis weights 7(GA) under
updates to G, to the HEAVYHITTER problem. This reduction is done via the intermediate data
structure problem of maintaining the leverage scores o(GA) under updates to G. We show
that Lewis weight maintenance can be reduced to leverage score maintenance and show that
leverage score maintenance can be reduced to the HEAVYHITTER problem.

3.2.1 Regularized Lewis Weights

We are interested in the regularized £)-Lewis weight of a matrix M which is defined as the value
7(M) that satisfies the recursive equation 7 = o(T271/PM)+ 2 for a given vector z € R7,, and
T = diag(7). We want a data structure that maintains an approximation 7 ~. 7(VA) for any
p € [1/2,2) and € > 0 under updates to V. Note that for the IPM we use p = 1—1/(4log(4m/n));
consequently, p € [1/2,2) but intuitively, may be thought of as an approximate ¢1-Lewis weight.

To outline our data structure, we first want to outline the algorithm of Cohen and Peng
[CP15] that can be adapted to compute an approximation the regularized ¢,-Lewis weight 7(IM)
in the static setting (i.e. when the input matrix does not change over time). Given some matrix
M we initialize with w = I,,, and repeatedly set

w 4+ (WP (o (W21/PM) 4 2))P/2, (7)

One can prove (see Lemma 5.3) that each iteration reduces the approximation error by a
1 — p/2 factor, i.e. if we had w =, o(W27/PM) 4 2 before (7), then we have w R (1-p/2)
o(W/2-1/PM) + z after (7). Since I, ~0(log(m)) (M) + z (by n/m < z < poly(m)), after
©(log((logm)/e)) iterations of (7) we have w =, 7(M).

We provide an efficient extension of this analysis to the dynamic setting. One natural idea
for doing this would be to initialize K = Q(log((logm)/e)) data structures D, ..., Dg that
maintain the following approximate leverage scores: Let w!) = 1, and define recursively

70 & o (WOH/2ZUPYA) 4 2 (8)
wtD ((w(i))Z/Jﬂ—lg(i))10/2 (9)

where %) is maintained a the leverage score data structure D; discussed in Section 3.2.2

If the leverage score data structures are accurate enough (i.e. the approximation in (8) is
good enough), then wX) for K = Q(log((logm)/e)) would be a good approximation of the
Lewis weight. Further, this w®) can be maintained under updates to V: When V changes, we
update all the leverage score data structures Dy, ..., Dg. Likewise, if some @® changes, then we
update w1 and the data structure Dy, that maintains 70t ~ o(WEFD)/2-1/PVA) + 2.

Problems with this approach While one can show that the previously outlined approach
would indeed allow us to maintain approximate regularized Lewis weights (assuming the approx-
imate leverage scores (¥ are accurate enough), we are not able to analyze the time complexity
of this process. This is because an update to some D; (i.e. when wt—b changes) causes the
output 7% to change as well, thus changing the input to D;;;. This means an update to D;
might propagate through all other D; for ¢/ > i. The computational cost of this propagation
of the updates is difficult to analyze because upc}e;ting the j-th entry of the input of some
1

data structure D); requires time proportional to ;. Now, only for large i do we know that

w® ~ 7" and can show that, w(® is an approximation to the regularized Lewis weights. When
this happens, we have bounds on how w(changes from guarantees of the IPM and this implies
a small time complexity for D;. However, for small i, w? 3 7@ and the same bounds and
complexity analysis does not immediately apply.

One attempt to fix this issue would be to start from a moderately good approximation, i.e.
wV) =, o(WIH)YZLPVA) 4 2 (10)

for 0 < v = O(e). Then after only K = O(1) recursions we have that w®) is an e-approximation
of the regularized Lewis weights. Since here we only have O(1) data structures D; and each
7 is at least an O(e)-approximation of the regularized Lewis weight, we are able to bound the
time for propagating the updates through all D;.

The assumption (10) on w can be satisfied as follows. Assume the input V changes to
some V’. We know by guarantees of the IPM that V ~O(e) V'. Let w5 be the value w) we
previously returned as e-approximation of the regularized Lewis weight, then we have

T~ o(WIENYZUPVA) + 2 mp (o o(WEN)YZTHPVIA) + 2.

Thus we can define w®) := wHE) as the required moderately good approximation.

The problem with this approach is that the vector w*) might change in many entries when
switching from V to V’. Thus we might have to perform many updates to the data structure
D1 at the start of each iteration, resulting in a larger than desired complexity.

The final algorithm Our regularized Lewis weight data structure combines these ideas with
one more trick to bound the number of updates to D;; we delay the updates a bit. We know
that we have wX) ~, 7 where 7 is the exact regularized Lewis-weight. We additionally maintain
some @) where we set @t « w!f) J(-K) changes and o) #3e wﬁ»K).

J J J
This way we know w§K) only changes, whenever 7; must have changed by at least an exp(e)

factor. By guarantees of the IPM (Lemma 4.35) we can bound how often entries of 7 change
by an exp(e) factor, which then in turn bounds how often entries of wW5) are changed. As we
set w® := wK) whenever the input V changes, we can now bound the number of updates to
D;. Note that here we still satisfy the requirement (10) because W) g wE) | s0 we can still
bound the time spent on propagating the updates to Dq through all other D;. This way we
maintain a good approximation of the Lewis-weight with a low overall complexity bound.

whenever the entry w

3.2.2 Leverage Scores

In Section 3.2.1 we outlined how to maintain approximate Lewis-weights, if we have access to a
data structure that can maintain approximate leverage scores. Here we outline how to efficiently
maintain an approximation & ~. 0(GA) + z for G = Diag(g), g € RZ;, z € RZ,. Here the
vector ¢ is allowed to change over time, while matrix A and vector z are fixed, and our task is
to create a data structure to maintain . We obtain such a data structure by reducing to the
HEAVYHITTER problem (Definition 3.1) for the same matrix A. Since variants of this have been
considered in prior work, we first compare their results and explain why these data structures
are not sufficient for our reduction to maintain regularized Lewis weights. We then describe
how we obtain our data structure for leverage scores, but we do not yet optimize the complexity
to highlight the general idea. At last, we outline how to speed-up the resulting data structure.

Comparison to previous work The general idea of our leverage score data structure is
the same as in [BLSS20] and [BLNT20], the main difference here is how we improve the com-
plexity. Specifically, the leverage score data structures from [BLSS20] and [BLNT20] were able
to maintain an e-approximation of the leverage scores & ~, o(GA), if the input G was an
O(e/log n)-approximation of some other G that satisfied some stability properties, i.e. the di-
agonal matrix G must change very slowly over time. For previous IPMs G = xX'/*57Y 2, where
T R0(e/logn) Ts 8 RO(e/logn) 5> 50 G was an O(e/ log n)-approximation of G := X!/2871/2 where
both z, s are stable (i.e. they change slowly over the runtime of the algorithm) by guarantees
of the IPM. Thus data structures in [BLSS20] and [BLNT20] were able to maintain leverage

scores efficiently.

10

Unfortunately, these data structures are not usable for our Lewis-weight reduction. This
is because in order for the recursion in (8) and (9) to yield an e-approximation of the Lewis-
weight, the leverage scores @ must be at least an e-approximation as well. However, for the
old leverage score data structure to return an e-approximation, the input must be O(e/logn)-
close to some other stable sequence. We use as input G = (W@)1/2-1/PV (see (9)), which
does not satisfy the required property. This is because, while the exact Lewis-weight 7 would
satisfy the required stability properties by guarantees of the IPM, the input vector w(® is at
best an e-approximation of the exact Lewis-weight 7. In summary, the complexity bounds of
the previous leverage score data structures do not apply when we use them for our Lewis-weight
reduction due to the additional precision we require. So while the idea of our leverage score
data structure is the same as in [BLSS20] and [BLN20], we must analyze and optimize the
complexity in a different way.

High-level Idea for maintaining Leverage Scores Note that the output size (i.e. dimen-
sion of @) is m and we want to maintain the leverage scores in o(m) time, so we can not afford
to recompute all entries of @ in each iteration. Instead, the high-level idea is that in each iter-
ation we (i) detect a set I C [m] of indices i where 7; %, 0(VA); + z;, and (ii) compute a new
approximation of o(VA); + z; for all i € I and update @; accordingly. Thus we split the outline
of the data structure into these two parts:

Computing Few Leverage Scores: We start by outlining task (ii) as that one is easier. Com-
puting few leverage scores is standard (see e.g. Spielman-Srivastava [SS11]) and we explain it
briefly as we build on it. For a matrix X let P(X) & X(X"X) !XT denote an orthogonal
projection matrix. By P(VA) = P(VA)P(VA) we have that P(VA);; = ||/ P(VA)||2, so we
can reformulate maintaining approximate leverage scores as maintaining an approximation of
these norms for ¢ = 1,...,m. Given some set I C [m]| we can compute this norm for i € I by
using a JL-matrix® J and computing the matrix M := (AT V2A)~'AVJT. Next, we obtain an
approximation of the i-th leverage score by computing

l&f VAMI3 ~ [|l&f VA(ATVZA)TTATVS = ||&] P(VA)]]3. (11)
Here the complexity will be dominated by computing M and computing (11) for all i € I. Given
that J needs only some 5(1) rows to yield a good approximation of the norm, we only need to
solve very few linear systems in AT VZA to compute M and M has very few columns, so the
norm (11) can be computed quickly.

Detecting Leverage Score Changes: We now outline how to solve task (i), i.e. how to detect
when 7; % 0;(VA) + z;. For that assume that V' changes to V and we already had 7; =~
o(V'A); + z; from the previous iteration. Then we must detect indices i where o(V'A); + z; %
0i(VA) + z;, because for those i the previous 7; can no longer be a good approximation. As
the vector z is fixed, it suffices to find indices ¢ with |o(V'A); — o(VA);| > €z; for some small
enough € > 0. Using the interpretation of the leverage scores being the norm of the rows of P,
we can find such indices ¢ by searching for indices where

&7 (P(V'A) = P(VA)) [l2 > &/ P(V'A) |2 — [|E] P(VA) |2 > ey/Z
If we simply return all ¢ where v; # v}, then the only remaining ¢ we must detect are those with

e VZ= 2 A (ATVZA) ATV — (ATV2A)TATV) 3T || > e

=M’

where J is again a JL-matrix and Z = Diag(z). Note that because J' has few columns, it
suffices to look for large entries of the matrix vector products VZ=/2AM'g, for k = 1, ..., 0(1),
which in turn can be solved by the HeavyHitter data structure.

3A JL-matrix J satisfies ||Jv|2 ~ ||v||2 for any fixed vector v. For example a random Gaussian matrix with
O(e™?logn) rows yields w.h.p a (1 % ¢)-approximation of the norm.

11

So far we only discussed how to detect indices ¢ where the leverage score changed a lot
within a single iteration. However, it could also happen that a leverage score changes only a
little in each iteration such that after many iteration we have 7; % o(VA); + z;. To detect
these slowly changing indices, we follow the approach appeared in [BLSS20, BLN"20]. That
is, we perform the same trick used for a single iteration, but instead for each j =0, ...,log \/n,
we check whether the leverage score has changed significantly in the past 27 iterations, i.e., the
matrix V’ now refers to the state of V some 27 iterations in the past.

Improving the complexity For the data structure we outlined so far, the main bottleneck
is solving linear systems in AT V2A and computing the product ATVJIT. Both of these require
nnz(A) = Q(m) time, which is too slow for our purposes. To speed this up, we use leverage
score sampling [SS11] to construct a random sparse diagonal matrix R with O(n) nonzero
entries and ATVZRA ~ ATVA. Careful analysis shows that the algorithm outlined above still
works, when solving systems in ATVZRA and when using ATVRY2J7T instead of ATVJT.
Because of the sparsity of R, the nnz(A) cost decreases to O(n - max; nnz(a;)).

However, this speed-up yields a new problem. If we use two different random matrix R and
R’ with ATVZRA ~ ATVA and ATV2R/A ~ ATV’A, then the runtime of the HEAVYHIT-
TER data structure can become very large. This is because the HEAVYHITTER data structures
must find large entries of VZ~Y2AM’é), and by Definition 3.1 the complexity of that task scales
in |[VZ~Y2AM'é,|3, so the total cost for all k scales in |[VZ~Y/2AM’||%. Without random
sampling, this Frobenius-norm can be bounded by stability properties of the IPM. However,
the Frobenius norm is very sensitive to spectral changes which causes the norm to blow-up
when using two different R and R’ (i.e. two different spectral approximations) for AT VA and
ATV’A. Thus we wish to use a single random R that yields a valid approximation for both.

To see how to construct such R, consider classic leverage score sampling first. If one sets
R;; = 1/p; independently for each i € [m] with probability p; (where p; > min(1,0(VA); logn/e?))
and R;; = 0 otherwise, then ATV2RA ~ ATV2A. To make sure that R also has the prop-
erty ATV2RA, we use p; = 1 for all i where o(VA); %1 o(V'A); and p; = 27; otherwise.
The indices 7 for which we have to set p; = 1 are simply those where we recently had to
change 7;. Further, we need p; = 1 for all ¢ with v; # v]. This is because we can then bound
ATVZRA — ATV?RA = ATR(V? — V2)A more easily. If we did not choose p; = 1, and
R;; happens to be non-zero because of the sampling, then RM(V2 — V'2) would blow-up the
difference (v; — v}) by an 1/p; factor. So by choosing p; = 1 for all ¢ with v; # v}, we are able
to prove better complexity bounds.

For comparison, in [BLSS20] the leverage score data structure did not use a single R and
instead they used two different R and R’/. They fixed the issue of the Frobenius-norm being
large by carefully updating R to R’ and performing an amortized analysis on the sum of
Frobenius-norms over several iterations. However, this analysis required the random R to be
updated over several iterations, which meant the same randomness had to be re-used in all
those iterations, thus resulting in difficulties with handling adaptive adversaries. We instead
use only one random R per iteration and this random R is resampled in every iteration, thus
no randomness is re-used and adaptive adversaries are not an issue.

3.2.3 Further Data Structures

We now outline all the other data structures used by our algorithms. Some of these data
structures were developed in [BLNT20, BLSS20] though we perform small modifications to
them in Appendix D and Appendix E. Here we give a brief description of these data structures
and how they are used to efficiently implement our IPM. A more detailed overview for how to
implement our IPM can be found in Section 6.1 where we provide the exact statements of the
involved data structures.

4This is true, even if we assume access to some preconditioner of ATVJIT,

12

As mentioned in Section 3.1, our IPM only requires access to approximations T,s of the
iterates x, s. The updates to these vectors are roughly of the following form

sew) s+ AHTTAT®" ()72 (12)

for some gradient-vector g, matrix H ~ ATT 'o” (7)"'A for diagonal matrix T = Diag(7)
with the approximate Lewis weight 7 on the diagonal. Note that naive computation of (12)
would require O(nnz(A) + n*) time per iteration. This can be sped up via data structures that
efficiently maintain partial solutions of this expression. The task of computing (12) can be split
into three subtasks: (i) Compute AT®"(Z)~1/2g, solved by a data structure from [BLN*20]
which we modify in Appendix D. (ii) Multiply the result by H™!, solved either via Laplacian
solver (e.g. when considering min-cost flow) or a data structure from [BLSS20] (restated in
Appendix B). We can essentially use the previous data structure, except we sample H (the
spectral sparsifier) by the £, Lewis weights that we are already maintaining instead of by
leverage score. (iii) Let v(® be the vector H-'AT®"(z)~/2g we computed with the previous
data structures during iteration number ¢ of the IPM. Then after the ¢t-th iteration of the IPM
the vector s is given by s(nit) 4 Zle Av® according to (12). Maintaining an approximation
of such matrix vector products is done via a data structure from [BLNT20] which we modify
in Appendix E. At last, Section 3.1 mentioned that the update to the primal solution must
be sampled. For graph applications such as max-flow we use a data structure from [BLNT20]
(restated in Appendix F) to perform this sampling efficiently. For general linear programs we
construct a new data structure in Appendix B.

3.3 Putting Everything Together

Given our new IPM for two-sided constraints (Section 3.1) and data structures for implementing
this IPM (Section 3.2), we apply them to obtain our results in a standard way.

First of all, our IPM needs to start with a centered initial point (i.e. an initial point with
small centrality potential (6)). Given an LP instance, we modify the instance by adding an
identity block to the constraints and corresponding variables so that a centered initial point can
be obtained analytically. This allows us to apply the IPM which moves the initial point to a
near optimal point of the modified instance in O((mn+n25)log W) time (using data structures
from previous sections). The modified instance also guarantees that, at near-optimal points, the
added variables must have value very close to zero. This allows us to round the near optimal
point of the modified instance to a near optimal point of the original instance by a single linear
system solve which takes O((nnz(A) + n)log W). This gives an algorithm for solving an LP
with two-sided constraints in Theorem 1.1.

As our IPM maintains not only a primal solution but also a dual slack, by solving a linear
system involving the dual slack at the near-optimal point, this gives a dual solution and solves
the ¢q-regression problem as stated in Theorem 1.2. Given an {i-regression algorithm, we
immediately obtain an algorithm for discounted MDPs using a known reduction by [SWWY 18]
and obtain Theorem 1.3.

For a given min-cost flow instance, we modify the instance with the same purpose as above
by adding a star. Using graph-based data structures, the path following IPM moves the initial
point to a near optimal point of the modified instance in faster 5(m log W 4 n'® log? W) time.
Analogously, by solving a Laplacian system in 6(m log W) time, we get a near-optimal flow
of the original instance. Moreover, since the LP for min-cost flow is integral and the optimal
solution can be assumed to be unique (using the isolation lemma as in [DS08, BLN"20]), we
can round the flow on each edge to its nearest integer and obtain an exactly optimal flow. This
takes time 6(m log W 4+ n'°1og? W) as promised in Theorem 1.4. For the easier maximum flow
problem, we can shave a log W factor on n'® using a standard scaling technique by [AO91] and
obtain Corollary 7.9.

13

4 IPM

Throughout this section we let A € R™*™ denote a non-degenerate matrix, let b € R™, ¢ € R™
and consider the following problem
min el
z€R™:ATz=b
ZZSIZSUZVZE[WL]
In this paper, we will need for the barrier functions ¢; : (¢;,u;) — R be highly 1-self-concordant

barrier functions on .S;, as opposed to only 1-self-concordant. This is due to needing the fourth
derivative in Lemma 4.31 later.

Definition 4.1 (Highly 1-self-concordance). For an interval (¢,u) we say that a function f :
(L,u) — R is a highly 1-self-concordant barrier on (¢,u) if for all x € (¢,u) we have |f'(z)| <
Fr@) 21 @) < 2f" (@), |f7 (@) < 6f(2)?, and limg_yq f (@) = lim, . f(2) = +oo.

Lemma 4.2. For all { < u the function ¢(x) = —log(x — ¢) — log(u — x) is highly 1-self-
concordant on the interval (¢,u).

We show this in Section A.1. For the remainder of the section, we fix ¢;(x;) = —log(x; —
¢;) — log(u; — x;). This function satisfies a simple bound which is useful for getting the initial
and final points.

Fact 4.3. Consider the barrier function ¢(x) = —log(x — €) —log(u — x) on the interval [¢,u].
We have ¢'((€ +u)/2) =0 and ¢"(x) = 1/(u — x)2 + 1/(x — £)2 > 1/(u — £)? for all z € [¢,u].

During the IPM, we maintain tuples (x, s,). Given a current point (z,s,), we define a
define a weight function T : R™ — RY, that governs the central path. Intuitively, 7(x); is the
weight on the i-th barrier function ¢;. The choice of weight function 7 we use for this paper
and the central path will be a regularized Lewis weight. It will be convenient to choose the
regularizing vector v to have weight at least n/m on each coordinate, while still having low ¢;
norm.

Definition 4.4 (Regularized Lewis weights for a matrix). Forp = 1— Wlm/n), vector v € RZ,

with v; > n/m for alli and ||v||; < 4n, and matriz A define the (v-regularized) ¢,-Lewis weights
w(A) € Ry as the solution to

w(A) = U(W%_%A) + v where W £ diag(w(A)) .
When the matrix A is clear from context, we suppress the notation of A in w(-).

Definition 4.5 (Regularized Lewis weights for ¢). Forp=1— and c,v € RZ, define

1
4log(4m/n)’
the (v-regularized) £,-Lewis weights w(c) : R7) — R, as w(c) = w(CA) as in Definition 4.4.

We collect properties of regularized Lewis weights in Section 4.3, e.g. that |w(c)|1 =
n + ||lv|1. We implicitly suppress the dependence on v,p as they are fixed throughout the
algorithm.

Definition 4.6 (Central path weights). Define the central path weights T(x) < w(qﬁ”(m)_%) for
a fized vector v.

Our algoirthm maintains points (x, s,) satisfying the following centrality guarantee.

Definition 4.7 (e-centered point). We say that (z,s,pu) € R™ x R™ x R is e-centered for
e € (0,1/80] if the following properties hold, where Cyorm = C/(1 — p) for a constant C > 100.

14

str@e @ || <
@) || o =

2. (Dual Feasibility) There exists a vector z € R™ with Az + s = c.

1. (Approximate centrality)

3. (Approzimate Feasibility) |AT 2 — bllAT (T(z)0" (@))-14)-1 < €Y/Chorm-
To maintain approximate centrality in Definition 4.7, we will track a centrality potential.

Definition 4.8 (Centrality potential). We track the following centrality potential.

U(z,s,p1) =D 1 (Si +M($)i¢§($i))

i=1 pr(x)iy/ &7 (24)

Jor ¥(z) ¥ cosh(\z), where X = O(log(m)/e).

At a high level, this potential is derived from noting that s + ur(z)¢’(x) = 0 for exactly
central points z,s. The denominators are the Hessians of x with respect to the barriers, and
thus capture changes of z, s within a small stable region.

Finally, we need to control both the 7 and oo norms of the steps in the algorithm, which
leads to the following definition.

def

Definition 4.9 (7 + oo norm). Let ||g]/r100 = [|9]lco + Cnorml| 9|+ for Chorm = C/(1 —p) and

def T
g7 = argmaxyy 1 h'g.

Let the dual norm be || g%, o LTy,

As described, our algorithm will not maintain exact points (z,s,) € R™ x R™ x RZ; and
weights 7 € R™, instead they will be approximate in the following sense. Precisely, the algorithm
maintains the following condition throughout.

Invariant 4.10. We maintain the following approximations T,7T of x,7 € R™ at the start and
end of each call to SHORTSTEP (Algorithm 1).

o [97(2)7(F - 7)o < e
e IT@) 7 —7(@) < e

Constants and approximation notation. We will use C' to denote a large constant, chosen
later. It is used in the definition of Cpgyy and for the parameters ,7, A in Algorithm 1. For
quantities f, g we write f < g or f = O(g) if there is a universal constant Z (independent of
the constant C') such that |f| < Z|g|. We assume that C is chosen large enough in Algorithm 1
so that for any quantity f written in the analysis satisfying f < e in fact satisfies f < 1/1000.
Also, if f < v then, because v = ¢/(C)), we will assume similarly that in fact f < m.

We are ready to state the IPM. Algorithm 1 takes a single step, and Algorithm 2 takes
a sequence of short steps to solve a linear program. Taking a sequence of short steps using
Algorithm 1 allows us to solve LPs, assuming we have an initial point. The initial point
construction is done formally in Section A.3, and final point is computed in Lemma 4.11,
proven in the appendix in Section A.3.

Lemma 4.11 (Final point). Given an e-centered point (x, s, 1) where ¢ < 1/80, we can compute
a point (z(a) s 2Dy sotisfying
1. ATg(final) — g g(final) — Ay 4 ¢ for some y.

2. ¢l gfimal) _ iy AToep C TSN
i<z <u;Vi

15

Algorithm 1: Short Step (Lee Sidford Barrier)

1 procedure SHORTSTEP(x, s, {1, ,u,(new))

2 Fix 7(x) = w(qﬁ”(:ﬂ)*%), where v and w are defined in Definition 4.4 and 4.5.
— 1 _ cl (C / 2)

3 Let a = Tlog(dm/n)> € = A= SRS =T Cnofzn/ﬁ‘

(new)

4 Assume that (x, s, p) is e-centered and o p satisfies |6, < rp.
Pick (z,7) to satisfy Invariant 4.10 with respect to (z,7(x)).

Let y = ST @) 404 Jet |7 — ylloo < 7/20.
6 Y= ooy et 17—yl < 7/20
7 Let g = VV\I’(™), where h”(7) is defined in Deﬁnltlon 4.9.

8 | Let Hw, A A=ATT '0"(z)"'A, where A=T 2<1>”()ZA.

o | Letd =T '&"(7) 2AH 'ATd"(F) 2gand 6o =T " (7) 2AH Y(ATz - b).
10 Let 6, = 51 + 9.

11 Let R € R™*™ be a Cyaig-valid random diagonal matrix for large Cyaiiq chosen

later. // Definition 4.13

12 | 0, + ®"(T)"2 (—Ro,).

13 | 3y« pTd"(T)26,.

14 W) « 24§ and sV 54+ 75,.

15 return (z(e%) smew)),

Algorithm 2: Path Following Meta-Algorithm for solving min,_ s, <z, <u,vi c'x,
given an initial point &/Cstart-centered point (x(init), s(init),u) for large Csiart-

1 procedure PATHFOLLOWING(A, (,u, p, u(finaD)

2 Define r as in Algorithm 1.

3 while p > p(firal) do

4 (2(0eW) | seW)y < SHORTSTEP(z, 5, 11, (1 — 7))
5 x4 2V g ¢ seW) o (1 —r)p

6 Use Lemma 4.11 to return a point (x(ﬁnal), s(ﬁnal)),

The algorithm takes O(nnz(A)) time plus the time for solving a linear system on ATDA
where D is a diagonal matriz.

The main goal of Sections 4.1 to 4.5 is to show the following, proven formally at the end of
Section 4.5.

Lemma 4.12. Algorithm PATHFOLLOWING(A, b, €, u, ¢, i, 1)) makes O(v/nlog(p/piaD))
calls to SHORTSTEP(-), and with probability at least 1 — m™> satisfies the following conditions
at the start and end of each call to SHORTSTEP (Algorithm 1).

1. (Slack feasibility) s = Az + ¢ for some vector z € R"

2. (Approzimate feasibility) |ATz — bllAT(r(2)0" (@) -14)-1 < €Y/Chorm-

3. (Potential function) E[¥(z,s,u)] < m?2, where the expectation is over the randomness of
x,s.

4. (e-centered) (x,s,u) is e-centered.

For pfinal) < §5/(Cn), we have that Az =p and cT2 ™) <min 4+ _, cTz+4.
;i <xz;<u;Vi

We sample a random diagonal scaling R in our algorithm, and will require some properties
of this random matrix to guarantee progress of the IPM. We summarize the necessary properties

16

here. This definition captures distributions such as sampling each coordinate independently as
a Bernoulli with probabilities p;, or taking the sum of multiple samples proportional to p;.

Definition 4.13 (Valid sampling distribution). Given vector d,, A,Z,T as in SHORTSTEP (Al-
gorithm 1), we say that a random diagonal matriz R € R™*™ is Cyana-valid if it satisfies the

1
following properties, for A =T 2@”(5)7%A. We assume that Cyatid > Chorm-
o (Ezpectation) We have that E[R] = 1.
(Variance) For all i € [m], we have that Var[R;;(0,);] < w. and E[RZ] < 20(A); .
valid
(Covariance) For all i # j, we have that E[R;Rj;] < 2.
(Mazimum) With probability at least 1 —n=10 we have that |RS, — 6,00 <

b
CQ

valid

(Matriz approzimation) We have that A'RA Ry A'A with probability at least 1 —n~19.

4.1 Overview of Analysis

Our proof will show that the expected value of the potential function in Definition 4.8 is bounded
by poly(m) with high probability throughout the algorithm. This will imply that it is e-centered
at the start and end of each call to SHORTSTEP (Algorithm 1). The main pieces of the analysis
are as follows.

Potential function analysis. In Section 4.2 we set up the analysis of the change in the
potential function. Specifically, in Lemma 4.15 we show that bounding the change in the
potential function reduces to bounding first and second order changes of the numerator y =
s+put(z)¢ (x) and denominator terms u, 7(x), ¢” (z) in Definition 4.8. These are done in Section
4.5 in Lemmas 4.27 (for p), 4.31 (for C < &"(x)~1/2), 4.35 (for), 4.37 (for y).

The analysis of change in T requires several facts of derivatives of regularized Lewis weights
with respect to diagonal scalings, and these are done in Section 4.3, culminating in Lemmas
4.25, 4.26 which bound the change in 7 under small changes in the diagonal scaling, which we
refer to as v-bounded changes (Definition 4.23).

Feasibility. To guarantee efficiency, our algorithm sparsifies matrices A TDA to solve systems,
which results in potentially infeasible points = during the algorithm, i.e. AT2 = b may fail.
However, our algorithm maintains approximate feasibility as discussed in Definition 4.7. The
analysis is done in Lemma 4.38.

Additional properties. In Section A.3 we first show that computing an e-centered point
for small path parameter u guarantees small objective error. We then show how to construct
an initial e-centered point for a perturbed linear program, and show that the modified linear
program still gives approximate solutions to the original. In Section 4.6 we show that two
sampling schemes are both valid distributions. The one in Lemma 4.41 is used for the graphical
setting, and Lemma 4.42 is used for the general linear program setting. Finally, the data
structures for maintaining approximate solutions for x,s,T require a stability bound of the
true z, s which may not hold. However, we can show that there are nearby points that satisfy
stronger stability bounds in Lemma 4.44.

Comparison to [BLN"20]. The main difference from the analysis of [BLN20] is our use of
general self-concordant functions to handle two-sided barrier constraints, while [BLN'20] used
logarithmic barriers. This leads to the following differences in the IPM: the gradient optimality
for our barrier takes the form in Definition 4.7 (Approximate centrality), while in [BLNT20]
they simply use the form zs ~ wu. Additionally, we require our weights w to be Lewis weights,
while [BLNT20] was able to use leverage scores due to the structure of the centrality condition
xs ~ wy. Finally, our analysis deals more generally with valid distributions in Definition 4.13
which allows us to handle both sampling coordinate independently for the graphical setting,
and proportional to sampling probability for general linear programs.

17

4.2 Analysis Tools and Setup

In this section, we set up the analysis of our IPM, and all omitted proofs are given in Section
A.1. First, we collect some basic properties of ¥ to help in the analysis.

Lemma 4.14 (Basic properties of ¢). We have for A > 1 that
o P(x) = N(2).
o (') < 2¢(x) for |2’ — x| < 20%.
o [¢(2)] < ATH(2).
We now state a helper lemma that shows that we can analyze the change in the centrality

potential by analyzing second order changes of each contributing piece. This differs from the
corresponding [BLN 20, Lemma 4.34] in that our errors are not strictly multiplicative errors.

Lemma 4.15 (Potential change bound). Define for uz(j) >0 and y;
w; = H (u(j))cj- and w(new) — H (uz(]) +5§j))cj

i

JElk] JElk]
and

) = (i + i)
where H(U(j))*l(S(j)Hoo < m for all j € [k], [|[v]leo < 1/50, [[Wn]leo < m, and

N 1
lelloo 3 1ei U)o < o
JEk]

new
v = y;w; and v)

Then we have that ||v™Y) — v||s < s

W(00)) < (o) + ' (0)T (Wn + 2 ch<U<”>16<”) (13)
JEK]

+ 8IWn 15y + 81+ llell)[vl1Z D e 11T 1695, (14)
JEk]

+8IWall gy D 1 I1TD) 09 gy + 8L+ llell) olloe D leslI(TD) 1D -
J€[k] J€lk]
(15)

It is known that the Hessian ®”(x) is maintained under small perturbations to z.
Lemma 4.16. |0 (2)2 (T — #)||se < £ for £ € [0,1/100] then ®"(2)% ~ o2 "(T)%.

Proof. Follows directly from ‘%qﬁg’ (5'3@)_%

<1 O

In order the analyze the potential ¥ under changes, we define the quantities 7; & 7(z)i,
Wi = b, C; = ¢§I($i)_%, and y; & s; + pt(x);p(x;). This allows us to write the potential as

m
U(x,s,p1) =D (yip; 77 es).
=1

Let, 7(new) j(new) o(new) - (new) 1o the corresponding vectors after a step. We will use Lemma
4.15 to analyze the change in W. Define

5ﬂ def M(new) _ Ma6T def 7_(nevv) — 7,6 def C(new) —c, 6y def y(new) — .

The goal of the remainder of the section will be to analyze the changes d,,0-,d.,d, and apply
Lemma 4.15 to analyze the change in the centrality potential. This will complete the correctness
proof of the IPM.

18

4.3 Regularized Lewis Weights

Statement Term Comment

Definition 4.17 | W, P, 3¢, A, J. Fundamental matrices

Lemma 4.18 w(c), f(w,c) Alternative definition of regularized Lewis weights
Lemma 4.19 J. Jacobian of Regularized Lewis weight
Lemma 4.20 D. K, Decomposition of J.

Lemma 4.21 D, K. Alternate decomposition

Lemma 4.22 W.T Lewis weight approximation

Definition 4.23 | C ~v-boundedness

Lemma 4.24 1, |- lloos I+ 400y |l - HPEQ); infinitesimal bound
Lemma 4.25 T, Il “ lloos ||+ l++o0 nOrm

Lemma 4.26 T YE[6,] — JE[S)) | || - lrso0

Table 3: Summary of Section 4.3

Parameters | Definition Range
C Large constant, chosen later | [200, c0)
e 1/(4log(4m/n)) <1/2

D l-«a [2/3,1)

€ a/C [0,1/100]
A Clog(Cm/e?)/e >e !

3 =0V 0,9
Crorm Cla > 100
Clalid Constant in Definition 4.13 | > Chorm
r 5'7/(C’n01rm\/ﬁ) < n~1/2

In this section we collect several facts about the regularized Lewis weights defined in Defi-
nition 4.5, many of which are variations of those in [LS19]. All omitted proofs are provided in
Section A.2. Before starting, we set up notation for important matrices throughout.

Definition 4.17 (Fundamental matrices). We define the matrices
« W, ¥ diag(w(c)).
o For any matriz M, orthogonal projection matriz P (M) o MM M)"'M'.
e The projection matriz P, <= P(W(;%i%CA).
. 0. Y a(W§ ’%CA) and 3, ¥ diag(o,).

def) ~ _ w3 -3
e A =3.— P and A, = W.2A W, 2.

o J. as the Jacobian of w(c) with respect to c.
We now describe the regularized Lewis weights as the solution to a convex program.
Lemma 4.18 (Alternate definition of regularized Lewis weights). For all non-negative c
w(c) = argmin,,egm f(w, c)

where

. 1 P m m
f(w,e) = 12 log det(ATCW1 I%CA) + Zwi - Zvi log w;.
p i=1 i=1

19

Using the convex program in Lemma 4.18 we can compute the Jacobian of changes in the
¢, regularized Lewis weights with respect to the diagonal scaling.

Lemma 4.19 (Jacobian of Regularized Lewis weight). For a fized vector v, we have that
9 —1
J.=2W, <Wc - (1 - —) Ac) A.CTL
p

It will be useful to decompose the matrices relating to A, into two parts — one of which is

)

diagonal, and one of which is bounded by Pg essentially.

Lemma 4.20 (Decomposition of J.). For any vector ¢ € RY,, there is a diagonal matric
0 < D. =< I such that for K. = W_1J.C — D, we have for all vectors h that
* [Kehlloo S NIlloo-

o [Kehllwe S MPHpe -

We will need a similar decomposition for a related matrix.

Lemma 4.21 (Alternate decomposition). In the notation of Lemma 4.20, there is a diagonal
matriz D, and matriz K/, such that 0 < D/ <1,

1 2\ —_\~1 1
Wc2<1—<1__)Ac) WCQZDIC+KIC’
p
and for all vectors h,
o [Khllwe < MR
o [IKchlloo S []loo-

p

We note that small perturbations to the diagonal scaling also have a small effect on our £,
Lewis weights. This is useful because our algorithm only maintains approximate x, s, 7.

Lemma 4.22 (Lewis weight approximation). Let p € (0,4). If C ~. C then wy(CA) =y,
wy(CA).

Notation for analysis of §.. The remainder of the section is devoted to understanding
the changes in the regularized Lewis weights under (random) changes to ¢. The notation
used is as follows. We will consider the definition 6, = ") — ¢ and ¢, = ¢ + té., and let
>, P, Ay, Ji, Ay denote the corresponding fundamental matrices defined in Definition 4.17 for
¢ := ¢;. Additionally, we write Ty for W,,, and let K;, D;, K}, D} be the matrices resulting in
Lemmas 4.20 and 4.21.

To give good bounds on §, we will to assume bounds on .. Our necessary conditions are
summarized as follows.

Definition 4.23 (y-boundedness). Let ¢ € R, be a deterministic vector, and ¢"") € R7,
be a stochastic vector. Let 6. = ¢™%) — ¢. We say that the 6, is y-bounded if the following
conditions hold.

1. With probability 1 we have

IC™ bcloc S - (16)

[Elc507, s+ (17)

20

3. For allt € [0,1], we have
E[HC_1|5¢|HPE2)] S V/Cnorm- (18)

Note that if §. is y-bounded, then for ¢; = ¢ + ., we have C; ~11 C for all 0 <t < 1.

Before moving to bounds on §,, we first show some preliminary bounds on the norms of
derivatives of 7 locally.
Lemma 4.24 (0, infinitesimal bound). Let 6. = W) _ ¢ be q y-bounded change, ¢; = ¢+ o,
and 1 = wp(ct). Let §;, = %Tt. Then

o T,]loo <y with probability 1.

® HE[(T_léTt)Q]H7+oo S 72‘

* E[||T_1|5Tt|”P£2)] < v/Chorm-

Proof. Before beginning the proof, we note that 7, ~ 7 for all ¢ € [0,1] by Lemma 4.22, and
because . is a y-bounded change (Definition 4.23 (16)), so ¢; ~g.1 c.
For the first claim we write
1T 65 oo S 1T7 T 1de]|oo
= | T;'3:CCi " oc oo
5 ||Dtc;léc||oo + HKtC;lécHoo
< (IIDtlloo + 1Klloo)[I1C7 oelloo <,
where the second step follows from I = C,C, ! the third step follows from triangle inequality
and Tt_lJtCt = D; + K; as in Lemma 4.20, the fourth step follows from ||D25Ct_15¢\|Oo <
ID¢lloo - IC; ¢c]|oo, and the last step follows from || D¢|lso, [|[Killoo < 1 and ||C;loclloe < v
(Definition 4.23 (16)).
Because T;lJtCt = D; + K; as in Lemma 4.20, we can write
E[(T™'0-,)7] < E[(T; ' J:0.)7]
< E[(D:C; 1o, + K C; 16,)7
g E[(Dtct_l(sc)?] + E[(Ktct_l(sc)zz]

For the first term, we bound

|EID.C; "5 S92

~Y
T+400

by Lemma 4.20 (D, is diagonal and < I) and 7-boundedness (Definition 4.23 (17)). For the
second term, we use Lemma 4.20 item 1 and ~-boundedness (Definition 4.23 (16)) to first bound

S ||ElC0)7

T+400

(KeCito)il S 17 0cllee S v
This handles the co-norm part directly. For the 7-norm, we compute
|E(KC;160)?)| S VENIKCy ']
S VEIC 0 lpe]

S WE[||071|5c|HP£2)] 5 72/Cnorm

where the first step follows from ||K;C;'0c||ec < 7, the second step follows from Lemma 4.20
item 2, the third step follows from ¢ & ¢, the last step follows from 7-boundedness (Definition
4.23 (18)).

21

Summing the contributions gives the desired.
For the third claim, we use Tt_lJtCt = D; + K; as in Lemma 4.20 to get
E[IT0x @] S BT 3eCiCy el llpe
< E[IIDtICJI&IHPg)] +E[\|IKtC{15cIIIP§z>]
S 7/ Chorm + E[HKtCt_lfsCHn]
S 7/ Chorm + E[cht_l‘50’|’p§2)] < 7/ Crorm
where the first step follows from 7 =1 7¢, the second step follows from the triangle inequality,
the third step follows from D; < I and y-boundedness (Definition 4.23 (18)) and P?) S Ty,

the fourth step follows from Lemma 4.20 item 2, and the last step follows from y-boundedness
(Definition 4.23 (18)) again. O

Finally, we give our full analysis of .. We first control the infinity norm and square of the
change, which have shorter analyses.

Lemma 4.25 (Sharper bound on changes in 7 part 1). Let 6. = %) _ ¢ be a vy-bounded
change, and let r@ew) — = and 5, = 7% — . We have

o |T7, |00 < v with probability 1.
o [E(T10:)%] 400 S 7%

T+o00 v

Proof. To start, we define ¢; = ¢+ td., 7w = wp(ct). Let 0, = %Tt.
Bound on |[T7!6,|«. Follows from y-boundedness (Definition 4.23 (16)) and Lemma 4.22.
Bound on |[|[E[(T716,)?]|l;400- We have

IE[(T6,)%]]lrs 00 = HE [(/01 Tléndt) 21

1
< [BT, S 2
0

T-+00

where the first step follows from 9, = fol 07, dt and Cauchy-Schwarz, the second step follows
from Cauchy-Schwarz, and the last step follows from Lemma 4.24 item 2. O

We now analyze the first order change in §.. We defer the proof to the appendix due to its
length.

Lemma 4.26 (Sharper bound on changes in 7 part 2). Let §. = W) _ ¢ be a y-bounded
change, and let 7*Y) = 71, and 6, = 7)) — 7 For J as defined in Lemma 4.19, we have

T (B[] - IERD)|| S

~

T+00

4.4 Bounding 0,,9,,0.,9,

In this section, we bound d,,, 0+, d., 6. First we bound ¢,,. Since the change in p is a deterministic
change, bounding J,, is straightforward.

Lemma 4.27 (Bounds on 8,,). Let 8, = p™") — 1. We have that || (1) — 1) || 7400 S €7

22

Statement ‘ Term ‘ Comment

Lemma 4.27 oy Bounds on ¢,

Lemma 4.29 Oy Bounds on 4,

Lemma 4.31 O Bounds on d.

Lemma 4.35 O Bounds on 4,

Lemma 4.37 0y Bounds on ¢,

Lemma 4.33 Oz, 0c Bounds on 4, and §, with respect to PiQ)—norm
Lemma 4.28 ®"(z), T,H | Matrix norm bounds

Corollary 4.30 | g, 0, An application of Lemma 4.29
Lemma 4.32 Ro P® norm bound
Lemma 4.36 g Approximation to direction g

Table 4: Summary of Section 4.4

Proof. Note that ||~ (1(™") — 11)||es < r by definition. Therefore

™ (0 = @)oo < Pl Tl o0

= (1 + Chorm(n + HUH1)1/2)

1/2

S Chormrn /2 < ey

where the first step follows from ||z~ (™) — 1) || < 7, the third step follows from Chopm > 100

and ||[v||; < /n, and the last step follows from Cyommrn'/? < e (by the choice of r).
U

The following bounds allow us to relate changes in z to ||g]|4o0-

Lemma 4.28 (Matrix norm bounds). Let z,7,%,T satisfy Invariant 4.10. For any g € R™ we

have that
1

1 1

o ||@"@)2T AH AT (T) 2g/l0 < 9]l
N 1l/=—1 _

o [@"(@) 2T AH 'gll- Sll9lamr-107(2)-14)-1-
N Ll=s—1 _

o [@"(@) 72T AH 'glloo S llgllaTT-107(2)-14)-1-

Proof. Define
—_ 1 1 1. Tr—2 1
Q=T 20"(z) 2AH 'A'T 29"(z) 2.

For the first point, we use the Cauchy-Schwarz inequality to get that

|8"(z) 2T 'AH 'AT®"(7) 2g|lo = max e] ¥'(z) 2T 'AH AT (7) 3g
RSN R |
= max|e; T 2QT?3g
1€[m]
1 1
Tl 1|3 Tl 1 |2
< lg T?2QT2g| maxl|e;, T 2QT Z2e;
1€[m)|
< |lgll7 max 7 U(T 2@”(?)%)
—1

where the third step follows from |a"b| < |lalls - ||b]l2, where the fifth step follows from the
stability of leverage scores and that p =1 — Wlm/n)'

23

Let HL ATTAEH(:U)_lA, so that H ~, H and H ~y. ATT1®"(z)1A.

N

o 1—="1 _ v e —
|®”(Z) 2T AH 'g|, = (¢ H 'HH 'g)
=1 1
<(g'H g)2

= llgllg- < l9llaTT107@)-14)-1,

where the second step follows from H ~, H, and the last step follows from H =, ATT_1<1>”(3:)_1A.
For the third point, we use the Cauchy-Schwarz inequality to get that

|9(z) 3T AH gl = max e/ @(x) TT " AH Yyl
c|m

— 1
< max|e] T 2QT '¢;|Z[g H g|2
i€[m]

=1 =1 |1
= llglla— max |ef T 2QT ey
1€[m]
1
TT3QT 2e|
S llgllarr-1am(z)-1a)-1 fgf}ff] e; T 2QT Ze¢;
S HgH(ATT*1<I>”(m)*1A)*17
where the second step follows from |a'b| < |lal2 - ||b]|2, the fourth step follows from H =3,

1 1
ATT1®"(2)"'A, and the last step follows from MAX;e) e/, T 2QT 26¢|% <1 O

We now show that the change in z, i.e. d,, is small.

Lemma 4.29 (Bounds on §,). Let x,7,%,7 satisfy Invariant 4.10. If 0, are defined as in
Algorithm 1, then

o 119" (@) BB r+o0 <7+ O((e +1/Crorm)7)-
. ||(I)”($)%Sx||oo < v with probability 1.
o B[(@)3 e S 72
Proof. We break the proof into the three claims.
Bound on || 0" (2)2E[3,]|r+00. Because E[R] = I (Expectation) we have that

E[5,] = ®"(z) 29— ®"(z) 2T '®"(z) *AH'ATd"(z) 24 (19)
—®"(z) 2T '®"(x) AH '(ATz —b). (20)
We start by bounding the 7 + oo norm of the expression in (20). We calculate
[#"(x)29" (@) 2T '@"(@) 2 AH (A 2 —b)] o0
S Cooml|A T2 = bl|(ATT-107(2)-14)1
< ey

where the first step follows from combining Lemma 4.28 items 2 and 3, and the last step follows
from the fact that (z,s, u) is e-centered (Definition 4.7).
Now we bound the 7-norm of the two terms in (19). Define

s = —1 LA T3 g (=)~ 4
Q=T 0" :AH AT 20"(z) 2,

and note that Q ~, Q for orthogonal projection matrix
~ def —_ L — —_1
QYT 20"z 2AATT '¢"(z) 'A)'ATT 2¢/(7) 2

24

by the condition in line 8 of Algorithm 1. Hence all eigenvalues of Q are either 0 or in [1—, 1+7],
so all eigenvalues of I — Q are either 1 or in [—v,7], so [T — Q|2 < 1.
Using Lemma 4.16

" (@)% (@ (@) 29 — "(x) T 0" (x) * AH 'AT®" (@) %g)]|;

< POy - T 'o"(z) 2 AH AT 0" (z) 7yl
1
= 2| (1 - Q)T
1
< PO Tyl = 9O |gllz < 2@ g]l- < (1+ O())gll- (21)

where the first step follows from @”(x)% ~O(e) @”(E)% by Invariant 4.10 and Lemma 4.16, the
second step follows from the definition of Q, the third step follows from ||I — QJ|2 < 1, and the
last step follows from e9(©) < 1+ O(e), Ve € (0,1).

Now we bound the oo norm. To handle the first term of (19), we can use Lemma 4.16 to get

1oy —1
19" (2)2 " ()2 glloo < ¢ llglloc < (1+0())Iglloc
where the last step follows from e?(€) < 1+ O(e), Ve € (0, 1).
For the second term, we have

9" (x)29" (@) ' T "AH'AT®"(Z) 2g|lo < [|0"(@) 2T AH'AT®"(Z) 2|0

S llgll-

where the first step follows from Lemma 4.16, and the last step follows from Part 1 of Lemma
4.28.
Finally

19" (2) 2EB,]llr+00 < (1+O())llglloc + Ollgllr) + Crorm (1 + O())lgll + O(ev)
< (1+O(e + 1/Crorm))[1gll7+00 + O(e7)
< v+ 0(e +1/Chorm)7

where we have used that ||g||;+c0 < 7.

Bound on \\@"(m)%gw\\o@. First, by Lemma 4.16 we have
15 1
197 (2) 28,100 = |8 ()2 8" (@) "2 (g = RS oo S [l — R loo < [lglloo + IR [|oo-

Note that [|gllec < [[gllrtoo < 7, and RO [|o
lg — Roy|loc S v as desired.

< v by the (Maximum) condition. Therefore,

~

Bound on \|E[¢”($)3i]||T+OO. First we use Lemma 4.16 to get

IE[®" (2)82 |00 S 19" (Z)EB] 500
< E[(g — R oo
< lg?llrso0 + IER28] |40
<92+ |ER?62) |74 .

We bound E[(R;;(6,);)?] by the (Variance) condition of Definition 4.13. This gives

IER?67]||r 400 < 1167|7400 + C e [FP S
valid
as [|0;||r < v by the above, and Cyalig > Chorm > 1. Summing these gives the result. O

25

We show a corollary which is straightforward application of Part 1 of Lemma 4.29.

Corollary 4.30. Let x,7,%,7 satisfy Invariant 4.10. If 6, are defined as in Algorithm 1, then
1—
o TR (@) 7204 o0 S -
° ||6r||7—+oo <~v+ O((€ + 1/Cnorm)7)'

Proof. Recall the proof of Part 1 of Lemma 4.29. The bounds on p_lHT_LI)”(x)*%(SSHTJFOO and
|07]| 7400 follow analogously, by replacing I — Q with Q in (21). O

We can use highly 1-self-concordance to bound d, in terms of §,.

Lemma 4.31 (Bounds on d.). Let z,7,%,7 satisfy Invariant 4.10, and ||g|lr+00 < 7. Let
clvew) — @”(x(new))fé and 5. = c"*%) — ¢. Then

o [|C 160 < v with probability 1.

e [CTE[dc][lr+o0 <7+ O((e + 1/Chom)7)-

o [E[CT20 400 S

Proof. For the first point, simply note that C—! = ®”(2)2 and [6,| = |cm™) — ¢| < [3,]
coordinate-wise by 1-self-concordance. Therefore, the result follows from Lemma 4.29. Now,
we get that c(mew) ~O(y) ¢ by Lemma 4.16.

For the second point, we integrate and use highly 1-self-concordance. Specifically, define
2y =+t and ¢; = @”(mt)_%. Then

1 CI)”/(xt) < 42 B (1‘1)””(3615) 3 @///(xt)2> 52

— and —c¢ =|— .
2‘1)”(5615)% * a2 2‘1)”(5615)% 4‘1>'/(33t)% v

4. _
dr

Now, we have by second order expansion, highly 1-self-concordance, and Lemma 4.29

1 (b/// _
ICEB 40 < || @"(2)F - —2 2 5,
2 " (z)2 .
1 1 1@//// (I>I” 2 .
+ —/ E [@”(gg)% <__ (mtz 43 (mt)s) 54 dt
2Jo 207(zy)z AP (my)2 oo

IN

2" (@) 7B,

to0 (/0 1 [[e" @3], dt)

<7+ 0(e +1/Chorm)y + 0(72)
<7+ O(E + 1/Cnorm)77

where the last step follows from v € (0,1).
For the final point, use again that |d.| < |0,| pointwise, so by Lemma 4.29

_ <2
IE[CT26]lr+o0 < IE[®"(2)05] 400 S 7*.

O

The next few lemmas show that J. is y-bounded, as in Definition 4.23. We need a variant
of [BLSS20, Lemma 48].

Lemma 4.32 (P® norm bound). If R is valid (Definition 4.13) then for any vector v € R™
we have that

E[[[[Rv]5e)] S IE[0]IZ and Ell|Rolllpe] < IE[j0]]l--

26

Proof. The second claim follows from the first and Cauchy-Schwarz. For the first claim, we
compute using (Variance) and (Covariance) of Definition 4.13 that

E[|Rv[|[B)]

ZE [RiiR;j][vil [vj | P

<2 Z vio; P2 —|—22|v2||vj|P »

i€[m] i#j
<2) vioi+2lvllpe < N2
1€[m]

We need the following fact to handle terms involving P(?).

Lemma 4.33 (Bounds on 4, and §. with respect to P?) norm). We have that E[||C1|5, \HP(z)]
7/Crorm and Eﬂlc_ll&lllpgw] S 7/ Chorm-

Proof. Note that
CH0z| = lg — RS, | < |g| + RO, .

Note that Ti/Qfl/pCt ~y TY/2-1/PC. Therefore, we can use PEQ) =< X4, 3¢ &9 3, Lemma 4.29,
[BLN 20, Lemma 4.23], and Lemma 4.32 to get
E[HC*I\MHP@] < lgllpe +Efl[RSl|pe)]

S 7/ Crorm + E[[|| RO [pe]
< W/Cnorm + ||5r||7— 5 W/Cnorm,

where the second step follows from ||g| ¢ @S < v/Chorm, the third step follows from E[|||Rd,|||pe] <
16|

The second claim follows directly from 1-self-concordance and the first claim. O

Lemma 4.34 (y-boundedness of 8,). For ¢(®%) = &"(x("eW))=1/2 gnd 5, = %) — ¢, we have
that o is y-bounded.

Proof. To show Definition 4.23 (16) and (17), use Lemma 4.31. Definition 4.23 (18) follows
from Lemma 4.33. U

By Lemmas 4.25 and 4.26, v-boundedness of . allows us to control the change to 7.

Lemma 4.35 (Bounds on d,). Let 70°%) = 7(z(®%)) and §, = 7("V) — 7. Then we have that
[i S ,S v with probabilz’ty 1.
IE(T16)2I] o0 S

HTﬁl(5] JE HT+OO ~ fy

Proof. Follows directly from the fact that d. is y-bounded (Lemma 4.34), along with Lemmas
4.25 and 4.26. O

Now, we show that despite the approximations to x, s, 7, the algorithm still take a step in a
direction very close to the desired direction g.

27

Lemma 4.36 (Approximation to direction g). Let x,7,T,T be as in Algorithm 1. Then

_ 1l 1,5 N
1" ()2 T (05 + p7¢" (2)E[dz]) = gllr+oo S €7-

Proof. At a high level, our proof will gradually change = to T and T to T and track the incurred
error. Here, 7 = 7(x) and T satisfies Invariant 4.10. We let ¢, = E[d,]. First, we write

0 4 pr¢" (@)E[05] = 05 + p7¢" (x)0 + (T — T)¢" ()6,
= 8, + 170" (T)85 + p(r —7)¢" (@), + (9" (2) — ¢"(T))5,
= WTV"(2) (g — 63) + ulr — 7)¢" ()0 + p7 (" (&) — ¢ (T))ds.
Therefore, we have that
p710" (@) T TN(@, + pre(2)0,) — g
= (®"(2) 2 T7'¢"(@)5T — I)g + " () 2T~ (r — 7)¢ (x)0s
+ (@) 2T (@) — ¢ (7))0, — @(2) 2T (7)1 0.

We now bound the terms in the above sum. For the second term, we use the approximation
condition of Invariant 4.10 and Lemma 4.22 to get that

JR S _ l
19" (2)"2 T 7 = T)¢" ()0l 400 S el (2)28ullrto0 S Ellgllrioe S 7

by Lemma 4.29. For the third term, we use the approximation condition of Invariant 4.10,
Lemma 4.16 to get that

12”(2) 71 (¢" () = ¢" (@)oo S €

< 1 using Lemma 4.22, we get that

Applying this and | T7'7||s <
19" ()2 T 17 (0" (@) — ¢ (@)0x 00 S €l (2) 20017100 S ellgllrion S 27
by Lemma 4.29. For the fourth/last term, we use Lemma 4.28 to get
[#"(2) 2T 79" (@) T 400 S 12400 S Cuorma| AT = bllaTm1000)14) 1 S 27,

where we have used that our point is e-centered.
For the first term, we write

(I— @"(z) 2T 10" (7)3T)g
()29 (2)2 +¢"(2) 2T @"(7)3(T ~ T))g
= (@"(x) 3(@"(2)? — @"(2)}) + ¥ (x) 3T 2" (@)} (T ~ T))yg.

For the first term in the previous expression, we can use the approximation condition of Invariant
4.10, and Lemma 4.16 to get

1 _\1 1
12" (2) "2 (2"(@)2 — ®"(2)2)gllr+o00 < Ellgllroo < 7.

For the second term, we can use the approximation condition of Invariant 4.10, Lemma 4.16,
and Lemma 4.22 to get

J S 1
127 (2) "2 T71®"(@) (T ~ T))gllr+o0 S ellgllroc < 7.

Summing over these bounds gives the desired result. U

28

Combining the above analyses allows us to analyze d,.
Lemma 4.37 (Bounds on 0,). Let z,7,Z,T be as in Algorithm 1, and let

y(new) _ S(new) + M(new)T(x(new))(ﬁ/(x(new)).
Then we have that

|l " ()2 TE[8,] — gllr+o0 < py + O((e +1/Criorm))

and
Bl @ ()3 T8, 00 £ 57
Proof. We start with the first claim. Let 65 = ®'(2("")) — /().
y(new) _ S(new) + M(new)T(new) ¢l(x(new))
_ 8—|—S +M(new)7'(b((new)) _i_u(new 5 ¢((new)
:S+5 +MT¢(neW)+Mnew5¢((new)‘i'(g;ﬂ'(ls(neW)

=5+ 0, + purd(x)+MneW)5 ¢ (x new))+5 ¢ (z (HeW)+M76¢/
=y + (Js +u75¢/)+unew)5 ¢ (z (new)+5u7'¢ (x new)),

where for simplicity of notation we have defined vector multiplication coordinate-wise. Also for
zy = x + td, we have that

O 5+/ "' (6dt

Therefore, we have that

1
8, = (o e (@)8,) + 10,9/ @0) 48,70/ (@0) + pr [(1= 0" (@)t

We analyze the four terms in the above term one by one. The first term can be handled by
using Lemma 4.36. Precisely, we have that

14— —
”Nilq)”(m)iyr 1(55 + NT¢I/(x)E[5x]) — Gllrtoo S €7-
For the second term, we first rewrite

™" (2) T E[¢ (2)T 6| o
< (14 7)[|@"(2) 2 E[¢ ()T 16, |00
< (1 +7)(|9"(2) 28 (@)E[T 6,100 + [E[B" () 265 T 6] [l7100)-

For the first of these, we can write

(14 7)[@ (2) 2@’ (2)E[T~6,]|| 00 IE[T™ 87400

1+) (IE[T™1 6] 1400 + [EIT16,] — E[TI6][l7+00)
1+) (|E[T ™30l r+00 + O(F%))
|

(
(
1+7)(IT7 ICCTE[8c] |00 + O(7?))
(
(

1+7r

INIA A

AAA,_\A,_\
~—_ — ~— —

1+0(r+ 1/Cnorm))pH071E[5C]HT-i-oo + 0(72)

<
< (14 0(r+ € +1/Chom))Py + O(4?)

29

< py+O(e +1/Crorm)7,

where the first step follows from 1-self-concordance (Definition 4.1), the second step follows
from triangle inequality, the third step follows from Part 3 of Lemma 4.35, the fifth step follows
from Lemma A.2 Part 3, the sixth step follows from Part 2 of Lemma 4.31, and the last step
follows from the choice of parameters.

For the second, we can write

_1 _ _ _
IE[®" () 209 T~ 87 400 S IE[(T™07)%] 7400 + IE[R"(2) T 85] 400 (22)
<7+ IE[@" () 7165]Il oo

= +|| l@” (/ " (24)6 dtﬂ

S [B eS|

=2
<72+ B[R ()3,]llr00 S 7% (23)

T+400

where the first step follows from AM-GM and the triangle inequality, the second step follows
from Lemma 4.35 Part 2, the fourth step follows by Cauchy-Schwarz, the fifth step follows from
" (z) ~1 ®"(x), and the final step follows from Lemma 4.29 Part 3.

Therefore, the total for the second term is at most py + O(e + 1/Chorm)7, as v < e.

For the third term, we can bound

1 1 n

" (2) 2 T 16,70 (2 | rhoo = 1 0|2 () "2 ¢ ()| 7400
N 7°HTHT—1—C>O
< TC’normn% < e&7.

where the second step uses 1-self-concordance (Definition 4.1), the third step uses [p=18,| < r

by the choice of r, and the final step uses ||1]|r400 = 1 + Cuorm /][0T S Chormn? by the choice
of parameters.
For the fourth term, we have

1 1 _2
Hu1<1>"(x)5T1uT | @ - B @)iar

L 1 <2
S [IE@") (0" (@) B o
7400 0
1
)
S [1B @) <77
where the first step follows from ®”(z;) ~1 ®”(z) and the triangle inequality, the second step
follows from 1-self-concordance (Definition 4.1) and the final step follows from Lemma 4.29 Part

3.
Combining everything gives us that

I @"(2) 5T 18, = gllrtoe = PV S (£ + 1/ Crom)7.
Now, we move on to the second claim. Once again, we write
8y = Bs + urdgr + u®6, ¢ (@) + 5,7/ (@)
and note that

b S0+ (urdy) + (W05 (@) 4 (8,7¢ (2))2.

30

We analyze it term by term. Lemma 4.29 we have

1 1% _ 1
(0" (2) T T8 oo < 0 0" (2) BTS2 0 S 92
By (22) and (23) above we have
_ 1l _
IE(u™®" ()72 T~ 70 ? [lrro0 < IE[®"(2) 7163] llrr00 S 7°.
By Lemma 4.31, 1-self-concordance, and Lemma 4.35 we have

IE(p 1" (2) =2 T~)5, 6! () 2o S JE(TT167)2 o0 S 92

By Lemma 4.27, 1-self-concordance, and Lemma 4.31 we have
IE(a 10" (@) 3T 18,7 ()2 s S 72Tl 00 S 72 Crommnd = 727 S 72

by the choice of r. Combining these gives the desired result. O

4.5 Feasibility and potential function analysis

Section Statement Comment
Section 4.5 | Lemma 4.38 Feasibility bound
Section 4.5 | Lemma 4.39 First potential drop

Section 4.5 | Corollary 4.40 | Final potential drop

Section 4.6 | Lemma 4.41 Independent sampling

Section 4.6 | Lemma 4.42 Proportional sampling

Section 4.6 | Corollary 4.43 | Sampling by a mixture of /5 and uniform.
Section 4.7 | Lemma 4.44 Nearby stability of x

Section 4.7 | Lemma 4.45 Nearby stability of ¢” and 7

Section 4.7 | Lemma 4.46 Parameter changes along the central path

Table 5: Summary of Section 4.5, 4.6, 4.7.

In this section, we analyze the change in feasibility and centrality potential. We start with
the feasibility.

Lemma 4.38 (Feasibility bound). For sufficiently large constants C in Algorithm 1 we have
the following. Let z(%) sew) 4\ be as in Algomthm 1, where ||g|lr+00 < v and (z,s,) is
e-centered. Then with pmbabzlzty at least 1 — m™10 we have

HAT.YJ(HGW) — bH(AT (T(z(new))P (g(new)))~1 A)~1 < -557/Cnorm-
— —_ 1
Proof. Define A =T 2 @”(f)*%A, and note that
AT(T(x(new))q)l/(x(new)))71A ~o KTK

by Lemma 4.31, Lemma 4.35, and H ~,, A'A by definition. Define the vector v = AT<I>”(E)_%9+
(ATz —b). A direct calculation shows that

1 1 T
ATz _p = (1 - AT®"(7) 2T 2RT 20"(z) 2AH Y)o = (I1—- A RAH)o.
Therefore, we have by Lemma 4.28 that

o _1 1,1
AT 20 — bl 7 (p(anen) g tmewry) -1 ay1 S |[H J(1-A RAH)Hz(H v)|,

31

< |[H2(H - A RA)H 7||[[H 2v]s.

We have that A RA Ry A'A ~., H with probability 1 —m !0 by the (Matrix approximation)
condition of Definition 4.13 and line 8 of Algorithm 1. Therefore, by [BLN'20, Lemma 4.30]
we have that

IH2(H - A RAH 3||, < 7.
Also

[H 2oy < [H ZAT®"(T) 2g|s + [H 2 (ATz - b)|2
5 HgHT + 6r)//C’IIOI‘In 5 W/Cnorm-

Therefore with probability 1 — m ™19 we have
HATCE(HGW) - bH(AT(T(a:(ne“/))@”(x(HEW)))*lA)*l S 7+ ¥/ Cuorm < 7%/Chorm.-
Let Cy be the universal constant such that
|ATzmew) bll (AT (T(atmew))7 (znew))) -1 A) -1 < C27*/Chorm.-
Now, we can choose C' > 2C5, so that v < ¢/C < ¢/(2C3). Then
IAT 2P — bl AT (p(atmen))@ (arewr)14y -1 < C2Y*/Crorm < 567/Chorm
as desired. O

We first bound the effect of the step in Algorithm 1 on the centrality potential.

Lemma 4.39 (First potential drop). Let x(0ew) smew)) be as in Algorithm 1. For sufficiently

. _ situT(x)ip () 1
large choice of C, we have that for v = @) and a =1 — p we have

B[(20, s, 1) < W(a, s, 1) + 4 (0) T g
+ (1= /99")7 1007+ OUY" ()l 17

Proof. We carefully apply Lemma 4.15 for the choices u9) = p, 7, p respectively and y as itself.
Note that

ICTEL] 400 S 7 and [TTE[0][lr400 S 7
by Lemma 4.31 and Lemma 4.35 respectively. Also, by Lemma 4.27

”:U_l(su”T—i—oo Sey.

We now bound each term in the conclusion of Lemma 4.15. We start with (13). For the
Y (v) TWn term we bound

B[y (v) T u~ " (@) ET 10, = ¢/ () g + ¢/ (0) T (119" (2) T TE[S,] — g)
< ' ()T g+ ¢ (W) ool @" (2) 2T E[6,] — gllr-oc
< ' (0) g+ 1 ()2 400 (7 + Ol + 1/Chorm)) (24)
< (0) g+ (1= a/2) |9 (0) |40

for sufficiently large C. Indeed, let C'3 be the universal constant such that the bound in (24) is

V' (0) g+ 19/ (0) 3400 (07 + C3(e + 1/ Crorm)) -

32

We can then choose C' > 10C5 so that € = a/C = 1/Chiorm-
For the terms ¢/ (v)T V(UU))~1§0) we can bound them as for example

Y (0) "VIER])| S VY ()l oo I T ESr] 7400
S el)7 400

« *
< T @) o

because ||v|lo < €, and that e = a/C for a sufficiently large constant C'. Similar bounds hold
for the contributions from d. and ¢,,.
Now we bound (14). First, the contribution of the 16HW77H12p,, (v) term is at most

_ S . _ S
16E [[l 1" (@) "2 T 710, 30| S 107 (0) [poo B~ 0" (2) 2T 716,)2) o
S 19")17 4007

by Lemma 4.37. In (14) we know that 1 + ||c[|; = 4. For the second term in (14) we have

BT 0)] < 119" ()17 400 BT 87) 00 S 14" ()17 1007
by Lemma 4.35, and achieve bounds of

E[lC™ bl w)) < 14" (@)1 10 IBIC™60) 400 S 19" (0) 17 4007
and

E[IM ™ 050] S 11" ()17 1007

similarly, using Lemma 4.31 and Lemma 4.27. Therefore, the total contribution from (14) and
(15) is < [|[¢" (v) %4007, Where we have used that [¢(v)| < ”(v) on all coordinates. Summing
all the previous bounds gives the desired result. O

Applying Lemma 4.39 allows us to show that the potential is bounded in expectation.

Corollary 4.40. In the notation of Lemma 4.39 we have for sufficiently large C that

(new) (new) (new)y] _

Proof. We use [BLN'20, Lemma 4.36] and verify that the guarantees of Lemma 4.39 satisfy
the hypotheses. In that notation, we have that (1 —¢;) = a/4, 6 = v/10, and ¢, as the implicit
constant in the O(||¢” (v)|%,47?) of Lemma 4.39. Note that v = & = g2+ Therefore, for
sufficiently large C we have

200 + oAy < /8 = 5(1 —).

- 1
NOWa U= 4Cn03m\/ﬁ = 400\{/57 as H1”T+OO S 2C’norm(n + ”0”1)2 S 4Cnorm\/ﬁ' Therefore,
2
a‘\y
D1 —) yu = .
(1= ex)dqu 320/n
as desired. 0

We have the necessary lemmas to show Lemma 4.12.

33

Proof of Lemma 4.12. The iteration complexity is clear by the definition of r in Algorithm 1.
The conditions on 2D follow from Lemma 4.11.

We proceed by induction. (Slack feasibility) follows by the fact that A Tdy = 0 in Algorithm
1. (Approximate feasibility) follows by induction and Lemma 4.38 with probability at least
1 — m™19 per step. To show the (Potential function) bound, we first verify the base case.
Indeed, because (m(in“), g(init)) is €/Cgart-centered, we know that

\I}(I', S, ,u) S mexp()\E/CStart) S m2

for sufficiently large Cgiart compared to C'. The inductive step follows from Corollary 4.40,

and that ?’QCQM
a?y

probability 1 —m ™7 we have that E[W(z, s,)] < m!© for all steps. Now, as exp(\e) > m!'?, we
know that (x, s, u) will be e-centered. O

< m? for sufficiently large m,n. Therefore, by Markov’s inequality, with

4.6 Sampling Schemes

In this section, we analyze two sampling schemes. All proofs are deferred to Appendix A.4. The
first samples each coordinate independently, and is efficiently implementable in the graphical
setting.

Lemma 4.41 (Independent sampling). Let vector g € RT, satisfy

—_1
qi = Cgalid771|(67“)i| + CsampleU(T Qq)/l(j)i%A)i log(m)'y*2

for sufficiently large Csample- Then picking Ry = 1/ min(g;, 1) with probability min(g;,1) and 0
otherwise is a Cyaq-valid (Definition 4.13).

A different sampling scheme is sampling proportional to weights ¢; — this is useful for general
linear programs, and is implemented in Appendix B.

Lemma 4.42 (Proportional sampling). Let vector ¢ € RYy satisfy
—_1
4 > |6, + o (T 22" (@) 2 A):.

Let S > >7,q;. Let X be a random variable which equals gq; le, (e; is the standard basis
vector) with probability q;/S for all i, and O otherwise. For Cy = 100C4 11472 log(m) let
R = Cal chif X, where X; are i.i.d. copies of X. Then R is a Cyaiq-valid distribution
(Definition 4.13).

It is convenient for our sampling data structures to sample by the £5 norm in J,, instead
of the ¢; norm as described in Lemma 4.41 and 4.42. We can achieve this by the following
observation.

Corollary 4.43 (Sampling by a mixture of ¢ and uniform). Let Cy,Cq,Cs be constants such
that C3 > 4Csample and C1Cy > Céath_Q and

pi = C1v/n(8,); + Co/v/n + Cymy 2 logm.

Then p; > q; in each of Lemma 4.41 and 4.42. Hence replacing q; with p; in Lemma 4.41 and
4.42 and sampling acoordingly gives a valid distribution (Definition 4.13). Additionally

m _
ie%ﬂ pi < ((Cl + 02)% + C3ny 2 log m> : (25)

34

4.7 Additional Properties of the IPM

Even though random sampling may make the sequence of points z and weights 7 change more
rapidly, we can still argue that there is a nearby sequence of points T, 7 that is more stable. We
start with the stability of Z. The proofs of the following lemmas are given in Appendix A.5.

Lemma 4.44 (Nearby stability of). Suppose that R is sampled from a C\yajiq-valid distribution
for Cuatia > B2 log(mT) where B € (0,7). Let (zF),s®) for k € [T] be the sequence of points
found by Algorithm 1. With probability 1 — m™0, there is a sequence of points Z*) from
1 <k <T such that

o [197(@®)2 @M — 2)]l < 5/2.

o [197(@E®)2 @Y — 2|l < .

1, ~
o 0" (x®)z (kD — gc(k))HT@(k))+C>O < 27.

The stable sequence Z induces corresponding stable sequences for ¢” and 7.

Lemma 4.45 (Nearby stability of ¢” and 7). In the setup of Lemma 4.44, and @) =
1 1
@'/(f(k))_%T(f(k))ﬁ_R we have the following.

o [[@"@®)2(¢" (@) — ¢ (M) 2)]|o < B.

o 12" @M)3 (" @FD) 73 — ¢ (@))| p0) e S
o ITE®)T(r@EED) = @)oo S V-

o [[(WE)=L(gtk+D) - @(k))HT(E(k))Jroo S -

To bound the bit complexity that our algorithms must maintain throughout, we show that
the Hessian of points encountered along the central path is bounded by polynomial factors in
n,m, and Iu(ﬁnal) /,U,(init).

Lemma 4.46 (Parameter changes along central path). For A € R™" b € R" ¢ € R™ and
{,u € R™ assume that the point £ = (£ 4 u)/2 is feasible, i.e. ATz =b. Let W be the
ratio of the largest to smallest entry of gb”(x(mit))l/Q, and let W' be the ratio of the largest to
smallest entry of ¢”(x)1/2 encountered in Algorithm 2. Then

log W' = O (log W + log(1/p™) + log [el|oc) -

5 Maintaining Regularized Lewis-Weights

In this section we show how to efficiently maintain an approximation of the regularized ¢)-Lewis
weight of GA under updates to G = Diag(g) for p € [1/2,2). Lewis weights are a generalization
of leverage scores, i.e. for p = 2 the two concepts are identical. Correspondingly, we obtain
our regularized Lewis weight data structure by reducing to a regularized leverage score data
structure presented in Appendix C. Our exact result for maintaining regularized Lewis weights
is as follows.

Theorem 5.1. Assume there exists a (P, c,Q)-HEAVYHITTER data structure (Definition 3.1)
and let z > n-c/||c|y +n/m. Let 7(GA) € R™ such that 7(GA) = o(7(GA)/>"VPGA)+ 2 for
p € (0,2], i.e. T(GA) are regularized Lewis weights of GA. There exists a Monte-Carlo data-
structure (Algorithm 3), that works against an adaptive adversary, with the following procedures:
o INITIALIZE(A € R™" g € RY),z € R7,p € [1/2,2),6 > le € (0, m]): The
data structure initializes for the given matrizx A € R™*", scaling g € RY,, regularization
parameter z € R™, Lewis weight parameter p € (0,2], and target accuracy € € (0, m].

35

The parameter 6 is a bound on how much the vector g is allowed to change per iteration:
Let g9 be the vector g during the t-th call to QUERY (with ¢©) during INITIALIZATION),
then we assume that ¢®) ~5. ¢V for all t.

o SCALE(i € [m],b € Rx>(): Sets g; < b.

e QUERY(): W.h.p. in n the data structure outputs a vector T € R™ with the property
T~ o(TY/? " YPGA) + 2 and therefore T ~. T(GA). The vector T is returned as a pointer
and the data structure also returns a set I C [m] of indices i where T; has changed compared
to the last call to QUERY.

The amortized complexities of this data structure depends on the parameters P,c,Q of
the HEAVYHITTER data structure. Further, they require that some additional properties are
satisfied. These properties and the resulting amortized complexities are stated in Theorem 5.2.

Theorem 5.2. Consider the data structure of Theorem 5.1 (Algorithm 3) and let P, c,Q be the
parameters of the HEAVYHITTER data structure (Definition 3.1). Let g be the vectors g in
Theorem 5.1 during the t-th call to query (and t = 0 during the initialization) and let 7 pe
the returned vector. Further, assume the following:

1. For any given W € RZ, we can solve linear systems in (ATWA)™! with €/(64n) accuracy
(i.e. for input b we can output Hb for some H =) gan) (ATWA)™) in O(P + ¥ +
nnz(WA)) time. Further, if

ATWA zl/logn AT(T(t_l))172/p(G(t))2A

for some t, then the required time is only O(¥ 4+ nnz(WA)).

2. There exists a sequence g such that for all t

g e (1+1/(10°logn)) g¥ (26)

1@ @ —)] qa) = OM) (27)

where we define @ = 7(G® A)L/2-1/pg(®)
Then the following time complexities hold:
o INITIALIZE takes O(P 4 e 2(¥ + nnz(A))) time.
o SCALE(i,-) takes 6(neﬂflL1g5)T(GA)i) amortized time.

e QUERY takes O(We 2log®§ + ¢ *n(max; nnz(a;))log® § + € 6/Pcfi /nlog* s + Qlogd)

amortized time.

The idea of the data structure (i.e. the reduction to leverage scores) is as follows. It is known
that the map w — (w??~1a(W2-1/7 A))?/2 moves w closer to the Lewis weight 7(A) [CP15].
We show in Lemma 5.3 that the same is true for the regularized Lewis weight, even when using
only an approximation & ~ O’(Wl/ 2-1/ PA) + z. The proof follows directly from the techniques
in [CP15], and we state the proof in Section 5.1 for completeness sake.

Lemma 5.3. Let w,2,5 € R7, ¢,7 > 0 and p € (0,2) with w ~, o(WY27VPA) 4 2 and
T Ry J(Wl/z_l/pA) + 2. Define w' = (wz/p_lﬁ)p/z’ then w' R e)[1—p/2| 47 J(W’l/Q—l/pA)
and w %(ﬁL’Y)p/Q w’.

We leverage Lemma 5.3 critically in our data structure. To illustrate this, consider a call to
QUERY, et g be the current state of vector g , and let ¢’ be the state of g during the previous call
to QUERY. Further, assume that the previous call to QUERY returned w = U(WI/Q*I/pG’A) +
z. The assumption g ~s. ¢’ (see Theorem 5.1) then implies then w ~55. o(W'/2-1/PGA) + 2.
Consequently, our task is simply to counter-act this decrease in approximation quality.

36

For 71 == w, 7% ~ a((v(i))l/zfl/pGA) + 2z, and D = ((T")2/P-150)P/2 e have
)~ a((V(L))l/Q*I/pGA) for some L = O(logd). Thus we can maintain an (1 £ €)-
approximation of the regularized Lewis weight by maintaining L many leverage scores via the
data structure of Theorem C.1. A formal specification of this algorithm is given in Algorithm 3,
a proof of correctness is given in Lemma 5.4, and the complexity analysis is given in Section 5.2.

Algorithm 3: Algorithm of Theorem 5.1
1 members
Dj for j =1,...,0(1/p) // Data structure of Theorem C.1
W) € R™ for j = 1,...,0(1/p)
geR™ pe[l1/2,2), LeN,e>0
procedure
INITIALIZE(A € R™*" g € R™ 2 € R™,p € [1/2,2),d > 1,e € (0,1/(29% logn)])

Compute 7V with 7() =, a((v(l))l/zfl/pGA) +z

< [(logs/3(2006) + 1
for j=1,..,L do
Dj INiTIALIZE(A, (VI)/2=1rg 2 ¢/(40L))

10 U « ((@9))2/P~1D; . QUERy())P/?
11 g g, pp, €€
12 procedure SCALE(i, b)
13 gi < b
14 | D;.ScALE(i, (09 /21/Pp) for j=1,..,L
15 procedure QUERY()
// Maintain 7UHD) = ((W))2/P-150NP/2 for j=1,..,L—1
16 for j=1,....L —1do

SNV V)

© w0 N o

17 1,50 « D;. QuEry()
18 6§j+1) <_ ((—(J‘))2/p71—(j>)p/2 for i € [(2
1o | | DysrScate(i, @0 HV)1/2Veg,) for i € 19

// Maintain z()"‘e 7(GA); for all i€ [m],
// but update only if 7(GA); changed sufficiently.

20 for i € I(L_l) with WZ(L) Fe/10 61(1) do
(1) (L)

21 — T
22 Dl.SCALE(i, (@) L/2-1/p g,
23 | return IéL),ﬂ(l)

5.1 Correctness

We start by proving Lemma 5.3. We then show in Lemma 5.4 that Algorithm 3 indeed maintains
an exp(=e)-approximation of the regularized Lewis weight.

Proof of Lemma 5.3. We first show that w and w’ are close to each other. By the definition of

’U),

w w

w' (w2/p_16)p/2 o p/2
&)
Thus by w =~ o(WY2"Y/PA) + 2 ~, 7 we have
U), %(54-’7)17/2 w. (28)

37

Fix any i € [m]. By definition of leverage score we have that
O_(Wl/271/pA)i 4oz = wi172/p(A(ATW172/pA)71AT)i7i + 2
This allows us to transform w’ as follows

2/p—1_
(Wil = w}" e

Ry w?/pil(a(wl/Q_l/pA)i + 2;)
_ (A(ATW1_2/pA)_1AT)Z'7Z’ + w?/p_lzi (29)

At last, we analyze the approximation ratio of w’ to its leverage score

(WP A) 42w PP(A(ATWI 2P A)TAT), 4 2
w’ - w;
! 5

(A(ATWH_Q/I)A)_lAT)i,i + w?/p*lzi

(A(ATWI=2/PA)=1AT), ; +w?/P™ 'z
(A(ATwl172/pA)71AT)i7i + w{Q/P—lzi

Ry

SN AT 2) TATY;, +w22/p712i =1
where in step 2 we used (29) and in step 3 we used (28). Thus
W} Reri—p/oity O(WHETHPA), 4 2
O
Next we show that our sequence of contractions o), 5(® | ..., improve the approximation

quality sufficiently to counter-act the impact of changing g.

Lemma 5.4. Let v = €¢/(40L) be the accuracy used for the leverage score data structures in
Line 9 of Algorithm 3. After each call to QUERY we have

70 Rgse(ajayp-14 o(V)V2VPGA) + 2
fori>1 and 7M ~, J((V(l))l/zfl/pGA) + z.

Proof. We start the proof by induction over the number of calls to QUERY. Directly af-
ter the initialization (i.e. zero calls to QUERY) we have 7(1) ~, U((V(l))l/%l/pGA) + 2z by
Line 6. Further, each 5U*D for j > 1 is defined via 5UTD = ((511))2/P~150)\P/2 where
) a2, 0((V(j))1/2_1/pGA) + z is the output of the leverage score data structure D;. Thus by
Lemma 5.3 we have o) N (1=p/2)i~1 4~ S 1-p/2)i U((V(J))l/Qfl/pGA) + z. We can bound this
approximation quality via (1 — p/2)7~1 + yzg;é(l —p/2)t < e(3/4)7 15y since p € [1/2,2).

Next, we consider a call to QUERY. Note that at the start of executing QUERY, we have
7 g, a((v(l))l/Q*I/pGA) + z, by induction hypothesis and because g can change by at most
a exp(+de) factor (see INITIALIZE in Theorem 5.1).

By the recursive definition of the 7U) we then have

for j > 1 at the end of QUERY. For L = [(logs/3(2006) + 1] and v < €/(40L) we have

58¢(4/3)7 4 4L < So¢.

< .
< Soog T €/40 < ¢/20

38

Thus 7" R /20 a((V(L))l/Q*I/pGA) + 2.
The vector v!) is modified again at the end of QUERY in Line 21. This update to V) is
only performed, if WZ(L) and 7(1) differ by at least an exp(=e/10) factor (see Line 20). Thus

_ _ —(L _ —(1 _
0 &1 B & mg (V)2 1PGA) + 2 g o o(VU) 27 1PGAY +2 - (30)

where we used p < 1/2. In summary, 7)) ~, J((V(l))l/Q_l/pGA) + z. O
As the data structure returns 7 := 7(!) we have 7 =, T(Vl/ 2-1/p GA) + z, which concludes
the proof of Theorem 5.1. Next, we analyze the complexity of the data structure in Section 5.2.

5.2 Complexity

The main difficulty in analyzing the complexity of our data structure is to bound the complexity
impact of all the calls to D;.SCALE that occur during a call to QUERY. To bound this complexity
we the following partial results:

First, we use that 72 is a good approximation of the exact regularized Lewis weight 7(GA).
Thus Line 22 is only executed for i, where 7(GA); changed by a sufficiently large amount,
because of the condition in Line 20. Thus we can bound the total complexity impact of all calls
to D1.SCALE(t, -) for some ¢ via the stability property (27).

Second, to bound how often D;1.SCALE(¢, -) is called for j > 0, note that we perform such
a call whenever the output EZ(]) of the leverage score data structure D; (Theorem C.1) changes.
Such a bound on how often the output changes is given by Lemma C.12 which bounds the
number of changes to the output 7 relative to the number of changes to the input, i.e. how
often D;.SCALE was called. By propagating, we are able to bound the number of calls to any
D;11.SCALE relative to the number of calls to D;.SCALE.

At last, we require complexity bounds for the data structure D; that maintain leverage
scores. The complexities are given in Theorem C.2.

We start the formal proof of the complexity analysis by showing in Lemma 5.5 that an ap-
proximate regularized Lewis weight w ~, o(W/271/P A)+ 2 is also close to the exact regularized
Lewis weight w ~, 7(A). The following Lemma 5.5 follows directly from techniques in [CP15].

Lemma 5.5. For any w,z € R, e > 0 and p € (0,2] with w =, o(WY2"YPA) + 2 we have
w =~ T(A).

Proof. Define w(® := w and w**t) = ((w®)2/P=1(g(WHE))1/2=1/PA) 4 2))P/2. By Lemma 5.3
we have limy,_, oo w*) = 7(A). Further we have w(**1) R el1—p/2|Fp/2 w®). Thus

1 k) ~ 0
T(A) = Jim w® x5 e w,

where €(p/2) Y50 [1 —p/2[" = e(p/2)/(1 = |1 = p/2|) = € for p < 2. m

The input to the leverage score data structures D; is the matrix (V(]))l/ 2-1/PGA, and the
complexity bounds of the leverage score data structure as stated in Theorem C.2 only hold,
if Condition 1 and 2 (as stated in Theorem C.2) are satisfied. Lemma 5.6 shows that these
requirements hold, if Condition 1 and 2 of Theorem 5.2 are satisfied.

Lemma 5.6. Let (39)®) be the vector ©\9) when performing the t + 1-th call to D;.QUERY()
(i.e. during the t-th call to QUERY of Algorithm 3). Let g be the vector g during the t-th call
to QUERY. Let g be the vector assumed by (26) and let @ = 7(G®A)G®). Then we have

(VIYO)2=1/p g0 ¢ (1 4 1/(6410g n)) W),

39

i.e. Condition 2 of Theorem C.2 is satisfied.
Further, if Condition 1 of Theorem 5.1 holds true, then Condition 1 of Theorem C.2 holds
true for all instances D1, ..., Dy of Theorem C.1.

Proof. We start by analyzing the sequence @@, @™, ...

Sequence By Lemma 5.4 we have that
@O x5 (VIOYO)/2-1pGOA)

for all j = 1,...,L. Thus by Lemma 5.5, p € [1/2,2], and assumption ¢ < 1/(2%logn) (see
Theorem 5.1) we have

(@DYNV2TP 0610 my (T(G A))/ZHP.
Via (26) and 1/2 — 1/p < 1/4 we have 7(G® A)1/2-1/p ~1/(10° log n) 7(GWA)Y/2-1/P which

results in

(VY21 g ¢ (1 £ 1/(6410g n))a®.

Solvers During the t-th call to QUERY, when the algorithms calls D;.QUERY() in Line 17, it

uses (V(]))l/ 2-1/p4(®) as scale-vector. Here 1) is exactly the vector returned by the previous
call to QUERY. Thus if we have a solver as assumed in Condition 1 of Theorem 5.1, then we
also have a solver as assumed in Condition 1 of Theorem C.2 for instance D; of Theorem C.1.
For the other instances Do, ..., D, consider the following. By Lemma 5.4 we have for j > 1
that ‘
70 ~gse o (VIY/21PGOA) 4 .

As g changes by at most an exp(4ed)-factor, we have
7Y ~gse T(GOA) g5 7(GEVA) 50,
Thus each 7Y ~;15. 7)), and by p € [1/2,2] we have
AT(V(j))172/p(G(t))2A ~gase AT(V(j))172/p(G(t))2A‘

Note that by the upper bound on € in Theorem 5.1, we have 330e + 1/(64logn) < 1/logn, so
if we have a solver that satisfies Condition 1 of Theorem 5.1, then we also have a solver that

satisfies Condition 1 of Theorem C.2 for instance D; of Theorem C.1.
O

We can now analyze the amortized complexity of Theorem 5.1, i.e. prove Theorem 5.2. This
is done by analyzing how often D;.SCALE and D;.QUERY (instances of Theorem C.1) are called.

Proof of Theorem 5.2. To bound the complexity of our regularized Lewis weight data structure
Algorithm 3 we first bound the total time complexity after T iterations and then charge some
of the terms to SCALE and QUERY.

For that we will first state the complexities for the internal data structures D; used by
Algorithm 3.

40

Complexity of Leverage-Score Data Structures Our regularized Lewis weight data
structure (Algorithm 3) uses L instances Dy, ..., Dj, of Theorem C.1. The complexity bounds
of Theorem C.1 hold, if condition (89) and (90) are satisfied. These conditions are satisfied by
Lemma 5.6 and assumption (27).

Since the conditions are satisfied, a call to D;.SCALE(i,) has amortized cost (by Theo-
rem C.1)

_ log ~ log? 5 log’
5 (llll 1086 yyp/o-ting), + L§f5> _5 <MT(GA%>
€

ne net

because we use an accuracy parameter of €/(40L) = (e/log) in the initialization of each Dj;,

and since 7(GA) ~ 51 ~ J((V(j))l/Q_l/pGA) + 2z by Lemma 5.4 and Lemma 5.5, and because
z >mn-cfl|cl1. Similarly, a call to D;.QUERY() has amortized cost

0] <\I’e2 log? 6 4+ ¢ *n(max nnz(a;))log 6 + € 2y/P||c|1 /nlog? 5 + Q> .

Total time complexity We now bound the total time spent after T iterations. We will then
later charge some of the cost as amortized cost to SCALE and QUERY.

When calling SCALE(Z, -), the data structure calls D;.SCALE(%,-) for j = 1,..., L with L =
O(logd). Thus we incur the total cost

t=1ic[m

When calling QUERY, the function D;.QUERY() is called for every j = 1,...,L with L =
O(logd). Thus we must add

0] <T : <\Ife_2 log? § + e *n(max nnz(a;)) log® d + € 21/ P||c||1 /nlog® 6 + Q log 5>> (32)

to the total time complexity.

Further, the data structure calls D;.SCALE(Z,-) in Line 22. To bound that complexity
impact, we observe that D;.SCALE(4,-) is only called whenever L) changed by at least an
exp(e/10)-factor (see Line 20). Since

L
o ~es20 T(G)iy

this means that vi(l) is only updated if 7(G); changed at least an exp(e/10)-factor. By (26) this
means 7(G); must have changed by at least an exp(e/2000)-factor. Using the fact that 7(G)
changes slowly (27) we can thus bound

Z Z (1))(07&(1))(t 1) = (T2/€2).

t=1ic[m]

The time complexity incurred by calling D;.SCALE(4,) in Line 22 is thus bounded by

c 110g) _ |1 log™ d
(Z 2 (H H m(G" DA)Z‘) 1(v£”><t>¢(v§”)<t—n> <0 <HHT -39
t=1ie[m

At last, we are left with bounding the impact of calling D;.SCALE for j > 1 in Line 19. Note

that D;.SCALE(Y, -) is called whenever U(J 2 changed. By Lemma C.12 we can bound for every
4 how often often any entry of 7 changes as follows

Z Z (J))(t)?e(—(f))(t 1)

t=1i€[m]

41

<0 712 Z G(t ((—J 1))(0#(—1 1))(t 1) +1 (t)¢ (t— 1)))

=1 ze[m]

J
co[TE oA 1g§t>¢gy_l))

i=1 t=1i€[m)]

T
<O E_jz 7()A l(t)#(t 1))

t=1i€[m)]

where the second step comes from repeatedly applying the first step. Finally, with j < L =
O(log 0) this leads to a complexity cost of

5 (el
0 (O(logo) - tz; E;] 1g§t>¢g£t71> : (34)

In summary, the total cost after T iterations is bounded by

O(T- <\Ife_2 log? § + € *n(max nnz(a;)) log® 6 + € 21/ P||c||1 /nlog § + Qlog 5>

(32)
lell1log* 8,5 lells
T g ;GZ] T(GYA)L w0 |)
— ?
(33)
(31),(34)

Amortized Cost We previously bounded the total time spent after T iterations, we now
charge some of the terms as amortized cost to SCALE and QUERY.
The amortized cost of SCALE is

5 lells

O(WT(GA)D

which covers the terms depending on L) -1 in (31) and (34). The amortized cost of QUERY
is 7 K2

~ HCH1108§45 —27 3 —4 5 -2 3
0(77%6 T+ Ve “log”d+e¢ n(mlaxnnz(ai))log 04 € %1/ P||c|l1/nlog” § + Qlog)

= O(Ve2log® § + € *n(maxnnz(a;))log® 8 + ¢ 51/ Pllc|1 /nlog 6 + Qlog)

which covers the remaining terms in (32), and (33), when we bound 7' < \/Pn/||c||1 by restarting
the data structure after v/Pn/||c||1 calls to QUERY. (The reinitialization cost every T iterations
is subsumed by the terms above.)

Initialization The initialization requires us to compute 7(!). This is done by performing the
contraction w + (w??~1(c(WGA) + 2)?/? a total of O(log‘l —p/2) e1) = O(loge™!) = O()
times. So one could compute this contraction by just initializing O() instances of the leverage
score data structure (Theorem C.1) to compute the leverage scores required for the contraction,
and then immediately discarding these instances again. The cost for computing this initial
regularized Lewis weight 71 is subsumed by initializing the data structures Djforj=1,.. L.
Initializing these data structures requires O(Plogd 4 (¥ + nnz(A))e 2 log? §) time.

O

42

6 Path Following

In this section we show how to efficiently implement our IPM which was given by Algorithms 1
and 2 in Section 4. Note that Algorithms 1 and 2 only specify which steps must be performed,
but not how they must be implemented. For example Line 5 of Algorithm 1 specifies that
one should pick an approximation T of the primal solution z, but it is not specified how this
approximation must be obtained. Here we show how all the steps of Algorithm 2 can be
performed efficiently, if we assume the existence of certain data structures.

These data structure may differ depending on the application, for example the HEAVYHIT-
TER-problem (Definition 3.1) can be solved more efficiently if the LP is a min-cost flow instance
(Lemma F.1) than when the problem is a general LP (Lemma B.1). However, while these data
structures have different complexities, they implement the same interfaces (e.g. Definition 3.1).
Thus the correctness proof, i.e. showing that Algorithm 2 can be implemented by using these
data structures, is the same for min-cost flow and for general LPs. This is why we perform this
proof in a generalized way. More accurately, we can show the following theorem.

Theorem 6.1. Assume there exists a (P,c,Q)-HEAVYHITTER (Definition 3.1), a (P, ¢,Q)-
INVERSEMAINTENANCE (Definition 6.2), and a (P, ¢, Q)-HEAVYSAMPLER (Definition 6.3). Then
we can implement the IPM given by Algorithm J (PATHFOLLOWING, Lemma 4.12) such that
the total time of PATHFOLLOWING can be bounded by

~ (init)
0 <<\/P||c||1 ++v/n (Q +n - max nnz(ai))> log %) .

The implementation is given by Algorithm 4 and Algorithm 5.

In Section 7 we state the resulting complexity when we use data structures optimized for
the min-cost flow problem. Data structures for general LPs are a bit slower and the resulting
LP solver and their complexity is stated in Section 8.

We start proving Theorem 6.1 by giving a general outline of our implementation in Sec-
tion 6.1 and listing the assumed data structures that we require. In Section 6.2 we then show
that Algorithm 4 and Algorithm 5 do indeed implement the IPM given by Algorithm 4. In
Section 6.3 we analyze the resulting complexity, which concludes the proof of Theorem 6.1.

6.1 Outline

Recall that our IPM consists of Algorithm 2 which is esssentially a WHILE-loop that repeatedly
calls Algorithm 1. Consequently, we focus on the implementation of Algorithm 1. In order to
implement Algorithm 1 (Line 5) we must maintain approximations T and 7 that satisfy Invariant
4.10. Here 7 is an approximation of the regularized Lewis weight 7(Z) and will be maintained
via the data structure of Theorem 5.1 presented in Section 5. When D() is an instance of
the Lewis weight data structure (Theorem 5.1), then all we have to do is call D(").SCALE(i, %;)
whenever some entry ¥; changes, and then D(T).QUERY() will return the desired approximation
T.
We now explain how to obtain the approximation T via the following data structure:

Theorem D.1 (Primal/Gradient Maintenance). There exists a deterministic data-structure
that supports the following operations
o INITIALIZE (A € R™*7 z(®it) ¢ R™ g ¢ R™ 7 € R™, 2z € R™ w € [0,1]™,e > 0): The
data-structure preprocesses the given matriz A € R™*™, wvectors i) ¢ 7 2 € R™, and
the accuracy parameters w € [0,1]™ and € > 0 in O(nnz(A)) time. We denote G the
diagonal matriz Diag(g). The data-structure assumes 0.5 < z < 2 and n/m <7 < 2.
o UPDATE(i € [m]|,a € R,b € R,c € R): Sets g; < a, T; < b and z; < ¢ in O(nnz(a;)+logn)
time. The data-structure assumes 0.5 <b <2 and n/m < c¢ < 2.

43

o SETACCURACY(i,0d) Sets w; < d in O(logn) time.
QUERYPRODUCT(): Returns ATGVY(Z)°T) € R™ for some T € R™, Z € R™ with 7 ~. 7

and ||Z — z||co < €, where

b(T) ._
2’7 = argmax |, <1(z,w).

Every call to QUERYPRODUCT must be followed by a call to QUERYSUM, and we bound
their complezity together (see QUERYSUM).

o QUERYSUM(h € R™): Let v¥) be the vector GV (2)’T) used for the result of the (-th call
to QUERYPRODUCT. Let h\©) be the input vector h given to the {-th call to QUERYSUM.
We define

(— (init) +Z(+h(€)

Then the t-th call to QUERYSUM returns a vector T € R™ with
o™ (@ —29)[|oo <e.

Assuming the input vector h is given in a sparse representation (e.g. a list of non-zero
entries), then after T calls to QUERYSUM and QUERYPRODUCT the total time for all calls
together is bounded by

T T
0 <Tne2 logn + logn - Z 1h9]jo + Tlogn - Z [0 fwED) ||§/e2>

The output T € R™ is returned in a compact representation to reduce the size. In particular,
the data-structure returns a pointer to T and a set J C [m] of indices which specifies which
entries of T have changed between the current and previous call to QUERYSUM.

« CoMPUTEExXACTSUM(): Returns the exact) in O(mlogn) time.

o POTENTIAL(): Returns W(z) = 3, cosh(\z;) in O(1) time for some Z with ||Z — z||cc < €.

A variant of this data structure was proven in [BLN'20] to obtain an element-wise T ~, x
approximation. Here we instead need to obtain ||®”(2)"/?(Z—z)| s < €. We show in Appendix D
how Theorem D.1 is obtained via a small modification to data structure of [BLNT20].

We now explain how Theorem D.1 can be used to maintain the approximate Z. Note that
by Line 12 of the IPM (Algorithm 1) the vector = changes via

) g 4 " (2) V2 (VU (7)) — R4,).

Here R6, can be written as some vector h and ®(Z)~'/24V¥(7)"™) can be written as v :=
GVU(y)"(T) for G := " (7))~ 1/2 56 the update to = becomes

%) oyt h.

Note that an approximation of such x satisfying Invariant 4.10 is returned by QUERYSUM of
Theorem D.1 when also calling SETACCURACY appropriately.
Line 6 of the IPM (Algorithm 1) requires an approximation g of

_ s+purg/(a)
o)
Such an approximation can be obtained by having a vector 3 with small enough || (u7+/¢" (x)) ! (3—

5)||co and then replacing all 7, s, z in the definition of y by the approximate 7,7, Z. This is proven
in Lemma 6.6. The required approximation 5 can be obtained via the following data structure:

44

Theorem E.1 (Dual Maintenance). Assuming a (P, z,Q)-HeavyHitter data structure as in
Definition 3.1, there exists a data-structure (Algorithm 9) that supports the following operations.
Note in the bounds we use O to hide polynomials in log(nP/|z||1) in addition to logn factors,
and in our instantiations of the data structure the former factor will be bounded by logn.

o INITIALIZE(A € R™*" y(@it) ¢ Rm 4,(it) ¢ [0,1]™ ¢ € [0,1]) The data-structure pre-
processes the given matriz A € R™ ™ the vector v € R™ and accuracy vector 0 <
w™) < 1 4n O(P) time.

e SETACCURACY(i,8): Sets w; < & in O(z;) amortized time.

o ADD(h € R™): Suppose this is the t-th time the ADD operations is called, and let %) e
the vector h given when the ADD operation is called for the k'™ time. Define v® e R™ to
be the vector

t
(O = pinit) 4 A Z hk)
k=1

Then the data structure returns a vector T € R™ such that |w=(@" — v®)| < e
The output will be in a compact representation to reduce the size. In particular, the data-

®)

structure returns a pointer tov and a set I C [m] of indices i where T

to Egtfl), i.e., the result of the previous call to ADD. The amortized time for the t-th call

to ADD 1is
O (Q+ y/nP/lall - 6 = o) w2 4 el P/)

o CoMPUTEEXACT(): Returns v € R™ in O(nnz(A)) time, where t is the number of times
ADD is called so far (i.e., v® s the state of the exact vector v after the most recent call
to ADD).

s changed compared

A variant of Theorem E.1 was proven in [BLNT20] where 5 =, s was maintained. Since
we need a slightly different type of approximation for 3, we added the SETACCURACY method.
This is only small modification and the correctness is proven in Appendix E.

By Line 13 the exact s is defined via

seW) g4 T (T)Y/%6, = s+ Ah

for some vector h. This vector h is exactly the input given to ADD of Theorem E.1, so we can
use the data structure to maintain an approximation s of s.
Line 7 of the IPM (Algorithm 1) requires g = —yV ¥ (7)™ which in the next line is multi-
plied by A®”(%)~/2. This product is can be obtained by QUERYPRODUCT of Theorem D.1.
Line 8 asks us to approximately solve a linear system in ATT®"(Z)"' A which can be done
via the following data structure:

Definition 6.2. We call a data structure a (P,c, V)-INVERSEMAINTENANCE, if it supports the
following operations:
o INITIALIZE(A,v,T) Initializes in O(P) time for & > a(VY/2A) and |5||; = O(n).
o UPDATE(i,a,b) Set v; < a and 7; < b in O(c;) amortized time.
o SOLVE(T,b,€) Assume & > 1/20(VY/2A) and the given T satisfies AT VA ~15 ATVA.
Then SOLVE returns H™'b for H ~. ATVA in O(Q + nnz(V, A)loge™!) time. Further-
more, for the same T and €, the algorithm uses the same H.

For the complexity bounds one may further assume the following stability assumption: Let
oM 5@ be the sequence of inputs given to SOLVE, then there exists a sequence TG
such that for all t > 0

o™ € (1+1/(100logn)) 3® and (@) 1@ — 5Dz = O(1)

45

At last, we are only left with implementing Line 11 of the IPM (Algorithm 1), because all
further lines (which update x and s) were already covered when we discussed how to maintain T
and 5. Line 11 wants us to sample a random diagonal matrix R according to some distribution
that satisfied Definition 4.13. This can be done by assuming the existence of the following data
structure:

Definition 6.3. We call a data structure a (P, c,Q)-HEAVYSAMPLER data structure if it sup-
ports the following operations:

o INITIALIZE(A € R™*" g € RY,, 7 € RY) Let A be a matriz with ¢; > nnz(a;). The data
structure initializes in O(P) time.

o SCALE(i,a,b): Sets g; <— a and T; < b in O(c;) amortized time.

o SAMPLE(h € R™): Returns a random diagonal matriz R € R™*™ that satisfies Defini-
tion 4.13 for 6, = GAh with ||6,]]2 < m/n and T =~y o(A) in O(Q) expected time.
Further we have E[nnz(RA)] = O(Q).

In summary, we can implement all steps of IPM (Algorithm 1) efficiently via the assumed
data structures. While so far we only outlined how to use these data structures, Section 6.2
proves in Lemma 6.4 the correctness of these claims in detail. At last, Section 6.3 analyses
the resulting complexity in Lemma 6.7. Lemma 6.4 and Lemma 6.7 together form the proof of
Theorem 6.1.

6.2 Correctness

We now proceed with the correctness proof of Theorem 6.1 by proving in Lemma 6.4 that
Algorithm 4 and Algorithm 5 do indeed implement our IPM.

Lemma 6.4. Algorithm 5 (SHORTSTEP) and Algorithm 4 (PATHFOLLOWING) implement Al-
gorithm 1 (SHORTSTEP) and Algorithm 2 (PATHFOLLOWING) respectively.

Proof. As Algorithm 5 uses many different data structures we will use the notation D.var to
refer to variable var of data structure D. For example D(7).g refers to variable ¢ of data
structure D7) (which is an instance of Lewis weight data structure Theorem 5.1).

Algorithm 2 consists only of a while loop that calls SHORTSTEP (Algorithm 1). This while
loop is also present in Algorithm 4, which calls SHORTSTEP (Algorithm 5). Thus we need to
prove that Algorithm 5 implements Algorithm 1.

In addition to the while loop Algorithm 4 initializes data structure such that the following
assumptions hold during the first call to SHORTSTEP (Algorithm 5).

Definition 6.5 (Parameter assumptions). We assume that the following assumptions hold true
at the start of the first call to SHORTSTEP (Algorithm 5).

18"(@) (@ — @)oo < /2%, 570" @) (5 - 8)]lee <7/2°, (35)

B Ry 20 [T R0 T(T) (36)
A=ATz—b (37)
- 5+ 179 (7) -
D($’v).g _ —’)’(ﬁ”(.%’) 1/2’ D(x,V).Z _ 877 D(x,V).w _ ¢”(3€) 1/2 (38)
/8" (T)
D(sample).g _ ?—1(?//(?)—1/2’ D(s)w _ W(b”(f)l/Qa D(T).,U _ (bl/(f)—l/Q (39)
DYy =71¢"=z)"!, DV s =7 (40)

We show by induction that these assumptions then also holds true for all subsequent calls
to SHORTSTEP.

Before we prove that these assumptions hold true for all subsequent calls to SHORTSTEP
(Algorithm 5) we will first prove that Algorithm 5 performs the computations required by the
IPM of Algorithm 1, i.e. we show that Algorithm 5 does indeed implement Algorithm 1.

46

Algorithm 4: Implementation of Algorithm 2

1 global variables
2 D®V) instance of primal/gradient maintenance (Theorem D.1) using /22
accuracy

D) instance of dual maintenance (Theorem E.1) using /22

accuracy
D) instance of Lewis weight data structure (Theorem 5.1) with accuracy /22
D(sample) instance of HEAVYSAMPLER (Definition 6.3)

DY instance of INVERSEMAINTENANCE (Definition 6.2)

7 € R™ element-wise approximation of 7(Z) (multiplicative error)

T € R™ element-wise approximation of z (error relative to ®”(T))

5 € R™ element-wise approximation of s (multiplicative error)

10 A € R" (Infeasibility A = ATz —b)

11 7t € R approximation of u

© 0w N o s W

/* Parameters where C is a sufficiently large constant */
1 a Clog(Cm/e?) £ ey
12 O Togtmymy € A —=———L 7+ o " G

13 procedure PATHFOLLOWING(A , z(t) | 5(init) -, (init) © (end)y

14 T x(init), . S(init)’ T M(init)’ [,U,(init), A0

15 Let ¢ be the parameter assumed in Definition 6.2, Definition 3.1, and Definition 6.3,
then define z <— n/m + nc/||c||1.

16 | 7+ DU INmIALIZE(A, ¢ () V2, 2,1 — 1/(41log(4m/n)), 212 Cy31,7/2'%) // Cum
is the constant suppressed by the first item of Lemma 4.31

17 DY) INITIALIZE(A .%' (init) ’Y(b()l/ 1/2 T, 8+MT¢ (b”() 1/27,Y/216)

7@

18 | D) INITIALIZE(A, s(MiY) ,Wd’(f)l/z, 7/216)

19 | DGample) IniriaLZE(A, 7 19" (F) 712, 7)

20 | DEDINmTIALIZE(A, 716" (T) 7, T)

21 while p > pd) do

22 SHORTSTEP () (Algorithm 5)

23 e (IL—r)u

24 | return DY) .CompuTEEXACT(), D®).COMPUTEEXACT()

Algorithm 5 implements Algorithm 1 We argue the correctness line by line of Algo-
rithm 1. Line 5 (Algorithm 1) requires that we satisfy Invariant 4.10. This is given by the
assumption on 7 in (35) and 7 in (36).
Line 6 (Algorithm 1) requires to find a ¥ with |7 — y|lcc < /20 for
_ s+urg/(a)
¢(x)

We have this 7 implicitly by replacing x, s, 4, and 7 in the definition of y by T, 5, &, and T.
We now prove that this 7 satisfies the slightly stronger guarantee |7 — y|loo < v/40.

Lemma 6.6 (Approximation of Under the assumptions in Definition 6.5 fory 7 L ST (@)
(App Y)- P fi []

we have that ||y — Ylleo < 7v/40.

Proof. Using the approximations above, we get that

’ o

47

s+urd(a) 547 (@)

ur (@) /e (@)

Algorithm 5: Implementation of Algorithm 1

1

2
3
4
5
6
7

8
9

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

36

global variables
‘ Same variables as in Algorithm 4.

procedure SHORTSTEP(p("*Y) > 0)
if 937/212 M(new) then
i < plne)
for i € [m] do
DY) UPDATE(i, =@ (T:) V2,74, (5i + it () /(T 97 (Fi)))
D) SETACCURACY (i, imi ¢ (T;)/?)
B« D@V) QueryProDUCT() // W = —yAT®"(Z)" 12V (7))
/* Leverage score sampling gives H LATVA Ry /2 ATT_l@”(E)*lA */

_— mmu,m;bg(n) 772y with probability min(1, 1007 log(r) /72).
0 otherwise
/x W' =HYW + ATz —b), 6, =T & (z) Y2AH %/

B < DY SowvE(w, b 4+ A,v/2)

R « DGample) SAnvpLE(R)

2(tmP) 1« D@EY) QuERYSUM(—RT ' (%) 1AL")

A+ A+H —ATRT '9"(z)"LAh" // Maintain A=ATz —b
for i € I, do

if ‘ /¢I/ (tmp tmp) ‘ > ,.Y/212 then

CEZ(—CE

D@Y) UPDATE(i, —yo] (T;) /%, 74, (Si + IFi¢ (X)) | (BTir/ Y (X))
D@Y) SETACCURACY (i, ¢ (T;)~1/?)

D) ScaLE(i, ¢ (z;)~1/?)

D(sample) oAy (4, 7; Lo (7;)71/?)

DY UppaTE(i, 7; Yo" (7)1, 71)

D) SETAcCURACY (i, i7" (T;)V/?)

(tmp) 7+ D) QUERY()

or i € I do

\]

)

if T 937/210 T; then

T e 7_(tmp)

D(:BV) UPDATE(i, —y@! (Z:) Y2, T4, (3; + 07 0L(Ts)) | (FTir /B (7))
DEample) Searr(i, 7; e (T;)71/?)

DY UppatE(i, 7; Lo (7)1, 7i)

D), SETACCURACY(Z i (7;)V?)

stmp) 1« D) App(uDY .SoLVE(T, I, v/2))
for : € I, do
if g7 flq)//(f)flﬂ((tmp) _ 5:)| > 7/210 then
5 slmP)

DY) UPDATE(i, —y¢f (z:) /2, (5: + i} (z:)) /(T3 /] (1))

48

s—73 s+urd'(x) s+ pTe(T)
el W e ot ol N
<y 4 |FEEE@ st T @) (1~ E)¢'(_)|
N e || e
s ||sturd(x) s+ uTe!(T)
S’Y/Q + T Qﬁ”(:ﬂ) 7/ () oo7

where we used 1-self-concordance, specifically that |¢'(T)| < /¢ (T) in the last step. Now, we
calculate the errors resulting from 7 and ¢/(T), which gives that

s+urd'(x) s+ urd'(T)

pr/d'(x) /9 (T) L
pr(¢(@) — ¢/ (= H

s+purd'(x) s+ uTd'(T) |
pT/o" (@) BTV (T) |
s+purg'(z) s+ prd'(z)
pT/@"(x) BTV ¢"(T)
s+purg'(z) s+ prd'(z)
pT/@"(x) BT ¢"(T)
where we used I-self-concordance in the last step. Note that ¢”(z)/? Ry1y/20 @ (T)'/? by
self-concordance (Lemma 4.16), hence ut+/@"(x) Ry o7 17\/¢"(Z). This gives us

s+urd/(x) s+ prd () ’ Hl pr/@' (@) H < ey/26 < /2

w(r = 7)¢'(T)
/9" (T)

‘ o

< 1.14/2° +

5]

[e.9]

<2.2v/29 +

B s+ urd/ ()
I T |y, | e || @

because (z,s,) is e-centered. Combining everything, we have that the total error is /2% +
2.27/2% + ~/2% < v/40. O

‘ o

Line 7 (Algorithm 1) asks us to compute

g — V()0
for |[Z—yl|eo < 7/20. While we do not compute g, our implementation does compute AT ®”(Z)~1/2¢g
as follows: Line 9 of Algorithm 5 computes
h/ — —’}/AT@”(E)_l/qu)(E)b(?) — AT(PH(E)_l/Qg
for some z &, /910 DEV) 2 =7 ~. /40 Y Dy the guarantees of the primal/gradient data structure
Theorem D.1 and assumption (38).

By Line 8 of Algorithm 1 we must obtain a matrix H =, ATT ‘o (T)"'A which is
done in Line 10 of Algorithm 5 with higher accuracy H ~, ATT_1<1>”(E)_1A. Next, since
DYy =771¢"(Z)~' and DD.G =7 by (40) we have & > %J((TA@”(E)A)UQA) and a call
to DD .SOLVE(-, -,7/2) (e.g. in Line 11) is equivalent to multiplying by some matrix H~! with

H™ 1o (ATT (I)/I() 1A)71

which with v < e is accurate enough.
Line 10 of Algorithm 1 wants us to compute

5, =T '@"(z) 2PAH AT (®"(z) Y29+ ATz —b)

This is done implicitly in Line 11 of our implementation Algorithm 5. By assumption (37) we
have A = ATz — b, thus Line 11 computes h” with

W =H1HW+ATz-b).

49

The vector J, can be represented via h” by
5, =T '®" @) V2AH'(W + ATz —b) =T '&"(z) /2An"

because of b’ = AT®"(z)~!

Line 11 of Algorithm 1 wants us to compute a random diagonal matrix R that satisfies the
conditions of Definition 4.13. By Definition 6.3 (HeavySampler), assumption (39) on D(sample),
and assumption (36) on 7, such a random matrix can be obtained via D*™Ple) SAMPLE(R”).
Note that for 6, := D®™Ple) GAL/ we have by Corollary 4.30 (item 2, the bound on §,) and

T > n/m that
m m
63 < — 16,12 < —.
16,18 < 20,1 < 2
So the requirements for the SAMPLE procedure stated in Definition 6.3 are satisfied.
Line 12 and Line 14 of Algorithm 1 want us to compute

2V 4+ &"(T)"/%(g — RS,).

By guarantees of the primal/gradient maintenance (Theorem D.1) and assumption (38), Line 13
of our implementation Algorithm 5 computes z(t™P) with

7 (@)/2 () — 2P| < /212 (41)

Our implementation also computes an 7(""P) in Line 24. By Line 20 our implementation
makes sure that D(7).g = ¢"(Z)~1/2. Thus the vector 7(""P) in Line 24 satisfies 7(tP) Ry /210
7(T) for the new T and after Line 25 we have

T Ry /210 T(T) (42)

for the new 7.
Line 13 and Line 14 of Algorithm 1 asks us to compute

s(new) . S—i—MAH_lAT(I)”(T)_l/Qg

By dual maintenance Theorem E.1 and D®).w = @7®"(z)~ /2 by (39), Line 32 of our imple-
mentation Algorithm 5 computes s(t™P) with

718 () () — () | < 22 (43)

Note that T and 7 in (43) refer to the new values of T and 7 as they were changed in Line 15
and Line 25.

Assumptions on 7, 5: To argue assumption (35) on Z, define T to be the value of T at
the start of SHORTSTEP and Z(*%) to be the new value at the end of SHORTSTEP. We
have [|®"(z)"/2(z(W) — z(mP))|| o < ~/210 by (41). If T; = ﬂ:(new) then by Line 15 we have
6" (@) /2 (™) — F)| < 7/2'%. Thus
‘(b”(new))1/2((new . _(new)‘ ‘(b”(fi)l/Q(l'(new) . Tz)’

<197 @) A @™ =)| 4 16 @) A @) — 2] < /200 421 <2,

On the other hand, if T; # Egnew), then Egnew) = :cl(-tmp), SO
" (T (neW))l/2((new) _ HeW))‘ < 1.1)¢"(T)1/2(EHGW) _ xl(tmp))’ < 7/29

by self-concordance (Lemma 4.16) and x(new) ~., T;. In summary, we have ||®(z™%))1/2(FMnew) —

7)||oo < /2%, s0 at the start of the next call of SHORTSTEP we satisfy the assumption on 7 in
(35) again.

50

For the assumption in (35) on s, note that we have
[() 71 () V26) < /02
by (43). So if Egnew) = sgtmp) then
) @) T 5 < /2

Alternatively, if s(new) =+ sgtmp), then Egnew) =3; and by the condition in Line 33 we have

|——1(Enew) gb (Enew)) 1/2 (Sgnew) —E(HGW)N
(ne (ne

< [aEre) ez
< /2P 4y 210 < /20

) 1/2 (S(new) . Sz(tmp))‘ + ‘ﬁfl (F(Anew))fl(b//(fz(new))71/2(s(tmp) . g(nevv))’

K3 K3 7 7

Since 1 changes by at most an exp(y/2'2) factor at the start of SHORTSTEP, assumption (35)
will be satisfied during the next call to SHORTSTEP.

Assumptions on 7 and i We already argued in (42) that 7 ~, jo10 7(T). Further p ~, 012 1
is verified at the start of each call to SHORTSTEP in Line 4. Thus the assumptions of (36) are
satisfied.

Assumption on D!, D(7), pample) " and DEV): All data structures that depend on o, T,
S, or T are updated, whenever 71 or an entry of T, 3, or 7 changes (see Line 4, Line 15, Line 25,
and Line 33). So the assumptions in (38), (39), and (40) are always satisfied.

Assumption A = ATz —b: A = ATz — b initially because the input z is feasible. Then after
Line 14 we have A = ATzeW) _p for z0%) = 4 &"(7)"1/2g — RTA(I)”(E)_l/QAh”. Thus
we always maintain A2 — b, whenever = changes.

O

6.3 Complexity

We now analyze in Lemma 6.7 the complexity of Algorithm 4 which together with Lemma 6.4
concludes the proof of Theorem 6.1.

Lemma 6.7. Assume (P,c,Q) heavy hitter, (P, c, Q) inverse maintenance, and (P,c, Q) heavy
sampler. Then the total time of PATHFOLLOWING can be bounded by

0] <(\/M +v/n (Q +n - max nnz(ai))) log ME:;;)

Proof. We analyze the complexity of PATHFOLLOWING in multiple parts: First we analyze the
initialization of all data structures, i.e. the time spent until the first call of SHORTSTEP. Then
we analyze the total time spent on all calls to SHORTSTEP.

Initialization Initializing D*Y) takes O(nnz(A)) = O(P) time by Theorem D.1 and nnz(A) <
P (Definition 3.1). The initialization of D(), DGamPle) and D=1 take O(P) time each by The-
orem E.1, Definition 6.3 and Definition 6.2.

The initialization of D) takes O(P+Q+n(max; nnz(a;))++/P|c[[1/n) time by Theorem 5.2,
because we can solve any linear system of the form ATVAz = b by initializing an instance of
Definition 6.2 for that w and then solving the system via D.SOLVE.

51

ShortStep Let T be the number of calls to SHORTSTEP (Algorithm 5). We start by bounding
how often T, T, 5, and T are modified. Let 7, (), 5 7 refer to the respective variables
during iteration number t. We will prove the following bounds.

T
2 Lo ge-n < O(T/v/n) (44)
T m "
Z Z T(E(t))ilf('t)#i(.tfl) < O(Tz) (45)
t=2 i=1 ! !
T m _
22 T@ il re-n < O(T?) (46)
t=2i=1 v
T m _
Z ZT(T(t))ilF(t)#F(t—l) < O(Tz) (47)

T
[N}
S
i
I

The bound on 7z follows because y changes by an (1 — r) factor for r = O(1/y/n) in each
iteration, and we update i whenever u 2., /912 7. Thus is takes Q(y/n) iterations until we have
to change 7 which results in the O(T/+/n) bound.

(tmp)

For the bound on 7 note that we update T; < z; whenever |¢" (z
v/2'2. Let t1,ts be two iterations where we update Z;, and let M 723 be the sequence
from Lemma 4.44 for 3 = +/2'. Then we have

(tmp))1/2((tmp) _)| >

| (((mP)) 2N 2((0) — 3(2)) | > | (2 mw))(2))1/2 ((00) _ plt2)),| oy jo14
> | (P2 12 ((pbme)y(01) (g (tmp))(t2)y,)y 213
> /212

where we used || ®"(Z)/2(Z — z)||oe < /22, ||®" (z(tmP))1/2(5(tmP) _)|, < v/2'6, and the fact

that we only update when x(P) changed by at least v/2!2.
Thus we can bound

T m T m
> > 7@ il v =0 (ZZT@“’% (@0 @) sl sEt‘”\)2>

by using s — s¢~1) = §, and Corollary 4.30 Part 1. At last, consider the bound on 7, where
we have

m T m
ZT Lo e = (ZZTA@ ((@), ! |T(§(t))i—7(fﬂ\(t1))i|)2>

t=21

52

. 2
_5 ((Z Ir @) (@) - T@“‘”””T@“”)>) -o(r)
t=2

by Lemma 4.45.

Cost of D@V), D) plsample) The time spent per call to D(S);SCALE(Z'L-), D) SETACCURACY(i, -),
D@V) UpPDATE(:, -), and D®™Ple) SCALE(4, -) is bounded by O(c;) = O(7; - ||¢||l1/n), because

of 7 > ne/||c|l;. These functions are called whenever 7;, T;, S;, or & are changed, so by the
previous bounds on (44)-(47) we can bound the total time spent on calling these functions by

O(T?|[e]l1 /n+ el T/v/n)-
In each iteration we call D®). ADD and the total time for these calls is bounded by

O(TQ + Tv/nP/ el [|6s/(ure" () /)2 + T/ |lelli P/n)
= O(TQ +T/nP/ el (llell /m)l|6s/ (ure" (@) 212 + T/l el P/n)
= O(T(Q + \/Plcll1/n))

by Theorem E.1, Corollary 4.30 Part 1, and 7 > nc/||¢||:.
Likewise, we can bound the time spent on all calls to D**V).QuEryPrRoDUCT and D®V) QUERYSUM
by

T
O(Tn + T(maxnnz(a;)) + E[[RAR o] + T ||¢" @) "1/2g0) /" (@) ~H2|13)
¢ t=1

T
= O(Tn + T(m?x nnz(a;)) + Ennz(RA)] + (T'm/n) Z gt HT(E(t)))
t=1

O(T(n+ (m?x nnz(a;)) + Ennz(RA)]) + T%m/n)

where E[nnz(RA)] is the expected number of entries returned by Definition 6.3 and we used
that g by definition has ||g||;+c0 < 1 and that 7 > n/m.

We can bound the expected time of a call to D2™Ple) SAMPLE and the expected size of
E[nnz(RA)] by @ using Definition 6.3.

Cost of D™ The complexity bounds of D(™) stated in Theorem 5.1 only holds, if Condition 1
and Condition 2 are satisfied. The first condition requires us to be able to solve linear systems
in (ATVA)™! for ATVA =~ ATTIQ/I)CI)”(E)*IA in O(Q 4+ nnz(VA)) time. Such a solver by
D! (Definition 6.2).

Next, we require the existence of a sequence 2, 22, ... where for all ¢t € [T] we have

¢"(@") 712 € (1£1/(10°logn))¢” (2") /2
I (@D)5 2" (@) "3 (r(@0)2 ¢ (@D) 73 — 7(@D)2 T @))|,) = O(L).
for p=1—1/(4log(4m/n)). This sequence is given by Lemma 4.44 and Lemma 4.45. Thus in
summary, the complexity bounds stated in Theorem 5.1 apply. N
We can now bound the total cost of all calls to D(™).SCALE(i,) by O(T?||c||;/n). This is

because on such function call has amortized cost 6(@7’2) and the function is called whenever
T; changes. By the bound on (45) we then obtain the total cost over T iterations of SHORTSTEP.

At last, the time requires for all calls to D(").QUERY is bounded by

O (T(Q + n(max nng(a;)) + 1/Pucul/n)) .

93

Cost of D=1 The stability assumption stated in Definition 6.2 is given by Lemma 4.44 and
Lemma 4.45, so we can use the complexities stated in Definition 6.2.

A call to DY . UPDATE(:,-) takes O(c;) amortized time and occurs whenever 7; or T
changes. By (47) and (45) we can thus bound the cost by O(T2||c||1/n).

Performing the calls to D"V .SoLvE(T, b/ +A,v/2) and DY . SoLvE(w, A, v/2) takes O(Q+
n(max; nnz(a;))) time, which is subsumed by the cost of D(").QUERY.

Total Cost When calling SHORTSTEP a total of T" times, the total cost is
0 ((7(@ -+ ntmgcnma(a)) + /Pllels/n-+ el /) + T2l fn + Tm/n
—0 ((7(@ + n(mxnna(a:)) + /Pllels/n -+ el /i) + Tl /n)

where we used ||c|[; > m.

In general the algorithm will call SHORTSTEP a total of T = O(y/nlog %) times. How-
ever, we can speed-up the algorithm by stopping the loop after 7/ = ©((Pn/|c|1)Y/?) itera-
tions and then calling PATHFOLLOWING again for the obtained solution x, s, the current value
of u, and the desired target value p(®?). This way we call PATHFOLLOWING for a total of

pu(imit)

O((llell/P)Y? 1og 5((;:;))) times. Hence, the term T2|¢|; /n becomes O(1/PJlc]; log METOL,

Note that by assumption P < ||c||1, we can perform this reset before ever changing i in
Line 4. Thus we can remove the O(]|c||1/v/n) term from our cost and we obtain the total cost

~ (init)
O ((\/PHcHl +vnQ + n3/2(m?xnnz(ai))) log %) .

7 Minimum Cost Flow and Applications

In this section, we prove Theorem 1.4. Mincost flow with general demands can be reduced to
single source / sink mincost flow by adding a super-source and super-sink to collect positive
/ negative demands respectively and assigning edges outwards with the proper capacities. We
assume that we know the maximum flow value F' as well, as we can perform a binary search on
F', and add a s-t edge of sufficiently large demand and capacity. Therefore, the minimum cost
flow problem we consider can be precisely formulated as

min ¢z (48)
ATx=Fes;
0<ze<u.VecE
where A € {—1,0,1}¥* is an incidence matrix of G where A, = —1, A, = 1 for every edge

e = (u,v) € E. We denote the optimal value of the above LP by OPT(G).

To prove Theorem 1.4, there are two main parts. For the first part, we show that, given
an initial point (z(™*) s("%)) where (%) is an initial primal feasible solution and s is
an initial dual slack of (48), the path following algorithm (Algorithm 5) returns (29 s(end))
where 2(°?) is a near-optimal and near-feasible flow in 6(m + n'%) time. This is proved in
Section 7.1 by putting together the tools developed in previous sections.

For the second part, we describe how to obtain an initial point (m(in“), s(imt)) and how to
obtain an exactly optimal and feasible flow instead of a near-optimal and near-feasible flow,
which gives Theorem 1.4. This part follows using standard techniques and, for completeness,
we show how to do these tasks in Section 7.2.

Our algorithms in this section will use the following linear system solver.

o4

Lemma 7.1 (See e.g. [ST04, KS16]). There is an algorithm that, given a matriz A € R™*"
with at most two non-zero entries per row, a diagonal non-negative weight matriz D € R™*™
and a vector b € R™ such that ATDA is a symmetric diagonally dominant (SDD) matriaz®
and there exists a vector x € R™ where (ATDA)x = b, w.h.p. returns a vector T such that
|17 — 2| ampa < ellzl|aTpa in O(nnz(A)loge™!) time.

7.1 Path Following for Graph Problems

In Appendix F we show that HEAVYHITTER, INVERSEMAINTENANCE, and HEAVYSAMPLER
data structures exist for graphical problems, and leverage these to show the following.

Lemma 7.2. Consider a linear program

II: min c'z
ATz=b
;i <x;<u;Vi

where A is obtained by removing one column (corresponding to one vertex) from an inci-
dence matriz of a graph with n vertices and m edges. Let ¢ = 1/(4Clog(m/n)) for a large
enough constant C'. Given an e-centered initial point (x(init),s(in“),,u(imt)) for 11 and a tar-

get 1D Algorithm 5 (when using graph-based data structures) returns an e-centered point
(x(end)’ S(end)’u(end)) in time

6 ((m + nld. (log w” + “Ogu(init)/u(end)’)) . \10g ﬂ(init)/ﬂ(end)‘)

where W' is the ratio of largest to smallest entry in the vector ¢"(x() = m +

1
(x(init) _g)2 :

Proof. We use Algorithm 4, which is an implementation of Algorithm 2. By Lemma 4.12 the
algorithm returns an e-centered (x(end), glend) ,u(end)). For the complexity, note that we have
a (P, c,Q)-HEAVYHITTER, (P, c,Q)-HEAVYSAMPLER, and (P, ¢, Q)-INVERSEMAINTENANCE for
P = O(m), ¢; = O(1) for i € [m], Q = O(m//n + nlogW’) according to Lemma F.1, Corol-
lary F.4, and Lemma F.2. Here W' is the ratio of the largest to smallest entry of any ®" (%)
maintained in Algorithm 4. By Lemma 4.46 this is bounded by O(log W” + | log 4(0it) /,(end)).
Thus by using Lemma 6.7 the time complexity of Algorithm 4 is bounded by

19) ((m + n1.5 . (log W// + “Ogu(init)/u(end)’)) . \10g ﬂ(init)/ﬂ(end)‘))

7.2 Initial and Final Points

In this section we discuss how to construct an initial flow which is on the central path. To do
this, we augment the graph with a star which allows us to route a feasible flow. This corresponds
to adding an identity block in the case of linear programs. Then we discuss how to extract a
final point from our central path flow for sufficiently small path parameter u.

Throughout this subsection, let ¢ = 1/(4C log(m/n)) for a large enough constant C. We
assume that ue and ¢, are integral and let W be the maximum absolute value of u. and c. over
all edges e.

®A SDD matrix A € R™*" is a matrix that is symmetric, and for all i € [n] satisfies A;; > zje[n] |Aj].

95

Defining Modified Graph and Linear Program with Trivial Initial Points. Recall
that our path following algorithm (Algorithm 5) requires an initial point (x(init), 5(init) ,u(init))
which is e-centered (as defined in Definition 4.7). However, it is not clear how to quickly obtain
such e-centered point for an arbitrary graph G. Therefore, we will modify the graph G to
another graph G where an e-centered initial point can be easily defined.
Given G = (V,E), let G = (VU {z},E UE) where E = {(v,2),(z,v) | v € V}. That is,
(init)
f(init)

we add a bi-directional star rooted at z into G. We let denote an initial flow in G

(init) ghecify the flow values on E and E , respectively. For each e € E, we set
~(init)

where 2" and z

(lmt) o ue/2. For all star-edges e € E, we first set Ze"" =1 (just to prevent them from having
ﬂow value too close to zero). Then, we additionally route the excess at each vertex induced by
) yging the star-edges from E. More formally, for each v € V, if the flow excess at v is

[ATz) — Fe 4], > 0, then we set xgml;)) 14 [ATz0) — Fe,], and Elmt)) = 1. Otherwise,

the flow deficit at v is [Fes; — ATx(lmt)]v > (0 and we set igiznzi}t)) =1+ [Fes; — ATx(lmt)]U

~(init) def

and T Ty = 1. The capacity u. and cost c. of each original edge e € F stay the same. For
each star-edge e € E, we set the capacity G, = 23:Smt) and ¢, < 50m||ul|os || c]loo. Consider the

modified linear program for minimum cost flow on G

min ¢ z+¢ 7. (49)
KT £:| =F657t

X

0<ze<u.VecFE

0<z.<u.VecE

where A is an incidence matrix of G. We denote the optimal value of the above LP by OPT(G).
As @ is obtained from G by adding some edges, we obtain this simple fact:

Fact 7.3. OPT(G) < OPT(G).

For a small technical reason, we need to further modify the linear program since an incidence
matrix is degenerate and our path following algorithm only works on a full rank matrix. Let
A, be obtained from A by removing a single column corresponds to the vertex 2.5

Fact 7.4. We have the following:
1. A, has full rank, and
, AZT ; = Feg; if and only if AT %

2. For any [% = Feg;.

Proof. (1) This is well-known and straightforward to verify, (2) Let [;i] satisfy A ;i = Feg,

which is the same as AT ; = Fe,; except that we do not require that the excess flow at z is

zero. However, once we fix the excess at every vertex except at z, when we can determine the
excess at z. In our case, the excesses are all zero except at s and ¢. This implies that the excess

= Fe, ;. Proving the claim in the reverse direction is trivial. O

. e X
at z is zero. So AT =

By Fact 7.4(2), the following linear program is equivalent to (49).

min ¢ z+¢ 7. (50)
KT |:§.:| =Fesyt

z

0<ze<u.VecFE
0<Zc<ucVecE

5The modification will actually work if we remove an arbitrary vertex. We choose the vertex z for convenience.

o6

5 (init) C

Lemma 7.5 (Initial point for the modified min cost flow). Let | ;)| = . and pMiY) =
s

S

(init) (init)
100m2W3e=1. Then, the point QE N I i ;
x(mlt) (init)

,,u(init)> is e-centered w.r.t. the linear pro-
gram in (49) and (50).

Proof. As ¥ is defined such that all excess induced by x is canceled except at the source s and

the sink ¢, we have that AT B,] = Feg;. That is, the flow is exactly feasible in G. Also, the

vector g is clearly dual feasible for z = 0 in Definition 4.7.

Now we bound the centrality.

By the choices of (%) and and Fact 4.3, we have the following. For each original
edge e € E, we have gb’(xgmt)) =0 and qS”(:cgnit)) > 1/u2. For each star-edge e € E, we have
¢/ () = 0 and ¢”(@EMY) > 1/22 = 1/(228M)2 > 1/(2||uf|on)? because 78 < [|uf|con.

(init)

x(init) c
Therefore, for x = | ..,| and s = |_|, because 7(z) > 2, we can bound
7 (init) v m
s 4+ pO(2) ¢/ (2) 100m*w?

H 50m | ulloo €]l oo .

e e M

| e e}

pni 7 (2)\ /67 ()

O

Following the Path: Near-optimal Near-Feasible Flow for the Modified Graph.
Given an initial point from Lemma 7.5, we can run the path following algorithm and obtain a
Lemma 7.6. Consider an e-centered initial point

near optimal point as formalized below:
x(%n%t) 3(@3) i)
&I,'(lnlt) ’ g(lnlt) ’

of (50) obtained from Lemma 7.5. Let u®*Y) = 1/ poly(mW) where poly(mW) is an arbitrarily
large polynomial on mW . By invoking Lemma 7.2, we obtain an e-centered point

x(end) s(end) (end)
(lf(end) ’ g(end) K

of (50) in O(mlog W +n'5log? W) time.

Proof. Note that we can invoke Lemma 7.2 because the constraint matrix A, of (50) is exactly
an incidence matrix with one column removed. N

Now, we only need to analyze the running time. This follows because A, corresponds to the
graph G with O(n) vertices and O(m) edges. Also, p%) /(20 = poly(mW). It remains to
(init)
(init)

bound the ratio of largest to smallest entry in ¢”(l; 1) denoted by W. It suffices to show

that W = poly(W).

By definition of 2" and Z("*) and Fact 4.3, we have ¢’ (xgnit)) = ﬁ for each e € £

and ¢” (ng“it)) = —ma where 1 < Fomiv) < n|lul|s by definition of #0MY Therefore, we have
1’6

that the ratio W” is at most poly(n||ul/«) = poly(mW) as desired. O

o7

Near-optimal Feasible Flow for the Modified Graph. As the point from Lemma 7.6 may
not be even feasible. In particular, there might exist a vertex u where total flow value entering
u may not equal the one leaving u. Now, we show how to obtain a near-optimal feasible flow on
the modified graph G. Moreover, we additionally guarantee the flow value on every star-edge
incident to the dummy vertex z is small. Intuitively, this is because the cost of every star-edge
is very large. This is formalized in the following lemma:

Lemma 7.7. Given an e-centered point (l;l ,

(final) - _ "
l;(ﬁnal)] which is a feasible flow for G where ¢ z(0a) 12T z(0al) < OPT(G) 4 pn in O(mlog W)

g ,,u) of (50) where p < 1/n, there exists

time. Moreover, if there exists a feasible solution to the original LP (48), then |z(fa)|| < 0.1.

x(ﬁnal)]

(apx-final)
whose each entry differs from ~(final)

We can compute in O(mlog W) time [~(apx-ﬁnal)
T

by at most 1/(mW)10,

(final)
Proof. Lemma 4.11 implies the existence of |j'(ﬁ1131{| which is also an exactly feasible solution
T

of (50). By Fact 7.4(2), it is exactly feasible for (49) and so it is a feasible flow for G.

For the “moreover” part. If there exists a feasible solution to (48), then OPT(G) <
m||u]|ooll¢lloo- By Fact 7.3, we also have OPT(G) < m|u|oo || ¢|los. However, if |zEaD || o > 0.1,
then &' z(fal) > 0.1 . min,__zCe > 5ml|ull||c/[oo. This contradicts the fact that

¢z < OPT(G) + pun — ¢ 2™ < 2m)|ul|so|l¢l| oo + 1.

(final)
Finally, as Lemma 4.11 says that [;(ﬁnal)l can be obtained in time O(m) plus the time for

solving a Laplacian system exactly. We can use the approximate solver from Lemma 7.1 to

x(apx—ﬁnal) -
obtain the desired = in O(mlog W) time. O

(apx-final)

Optimal Feasible Flow for the Original Graph. Lemma 7.7 only gives us a near-optimal
flow for G, but our goal is to obtain an exactly optimal flow for G. To achieve this goal, we will
use a convenient lemma based on the Isolation Lemma below.

Lemma 7.8 ([DS08], or Lemma 8.10 of [BLN"20]). Let II = (G,b,c) be an instance for

minimum-cost flow problem where G is a directed graph with m edges, the demand vector b €

{=W,...,W}V | the cost vector c € {—W,...,W}¥ and the capacity vector u € {0,..., W}¥.
Let the perturbed instance II' = (G,b,d) be such that ¢, = ce + 2. where z. is a random

1 2mW ! . ! .
Tz 4m"2LW2 } Let x’ be a feasible flow for II" whose cost is at most

OPT(II') + Wéwg where OPT(II') is the optimal cost for problem 1I'. With probability at least
1/2, there exists an optimal feasible and integral flow = for 11 such that ||z — 2'||oc < 1/3.

number from the set {

Combining these pieces allows us to prove Theorem 1.4.

Proof of Theorem 1.4. Given the input graph G = (V, E, u,c), we first perturb the edge costs
¢ to ¢ according Lemma 7.8. Let G’ = (V,E,u,c) denote the perturbed graph. Then, we
construct the modified graph G’ and the initial point for G according to Lemma 7.5 (in-
stead of the initial point for G as we did before). Then, we again invoke the path follow-
ing algorithm in 6(mlogW + n'2log? W) time using Lemma 7.6 with p(e) = m,
! (apx—ﬁnal)‘|

and then invoke Lemma 7.7 for G’ in O(mlog W) time. This process gives us [(7 apxfna)

o8

7\ (final)
(EE'/)(ﬁnal)
¢! (z)final) 4 &T (7 (final) < OPT(G) 4 plendy < OPT(@')%—WlQWS. Moreover, ||(&)@ral)]|| <
0.1 (otherwise, we declare that, with this specific choice of flow value F', there is no feasible

solution for G’ and hence for G).
x(ﬁnal)
final) | D€ Obtained from

whose each entry differs by at most 1/(mW)!0 from a feasible flow l 1 for G’ where

(xl) (apx-final)

Now, let [(%/)(apx—ﬁnal)

~(] by rounding the flow on each edge to
the nearest integer. Lemma 7.8 guarantees that, with probability at least 1/2, there exists

LOPT x/(ﬁnal)
an integral optimal flow ~OPT that entry-wise differs from ~i(final) by at most 1/3. So

:UOPT) x/(apx—ﬁnal)
FOPT differs from

x(ﬁnal) xOPT
E(ﬁnal) = EOPT
that z(final) — . Therefore, x(ﬁrial) is also a feasible flow for G with cost ¢ z(final) — (T (final)
¢Tz(final) — OPT(G). As OPT(G) < OPT(G) by Fact 7.3, we conclude that 2" is an optimal

feasible flow for G. Finally, we can boost the success probability to hold with high probability
by repeating the algorithm O(logn) times. This concludes the proof of Theorem 1.4. O

f,(apx_ﬁnal)l entry-wise by less than 1/2. So, with probability at least 1/2,

is indeed optimal solution for G. Moreover, as ||(#)") |, < 0.1, we have

7.3 Application: Maximum Flow

In this section, we provide our main results regarding computing a maximum flow. In particular
we prove the following corollary.

Corollary 7.9 (Maximum flow). There is an algorithm that, given a directed graph G =
(V, E,u,c) with n vertices and m edges that have integral capacities u € Zgo; with high proba-

bility, computes a mazimum flow in O((m + n'®)log ||ullso) time.

Corollary 7.9 is an immediate corollary of our min-cost flow algorithm from Theorem 1.4
with modifications to decrease the log? ||u||so to log ||t|eo. This is done using a standard scaling
technique (e.g. Section 6 of [AO91] and Chapter 2.6 of [Will9]) and we provide the following
proof of Corollary 7.9 only for completeness.

Proof of Theorem 7.9. For any graph G and flow f in G, let Gy be the residual graph of
G w.r.t. f. Moreover, let Gf(A) denote the graph obtained G by removing all edges with
capacity in Gy less than A. Now, consider the following algorithm.

o A = gllog llufle]
e While A > 1,
— find a maximum flow f"in G¢(A).
—set f+ f+ fand A + A/2.
e Return f.
Clearly, this algorithm correctly computes a maximum flow because, after the last iteration

when A = 1, there is no augmenting path left in G . Observe the following:

Proposition 7.10. In the beginning of each iteration in the while loop, the value of a mazimum
flow in Gy is at most 2mA.

Proof. This is trivially true in the first iteration. For other iterations, we know from the previous
iteration that the value of a maximum flow in G(2A) is zero. As Gy can be obtained from
Gf(2A) by adding at most m edges each of which has capacity less than 2A, the value of a
maximum flow in G is at most 2mA. U

99

The above observation implies that, to compute a maximum flow in G¢(A), we can safely
cap the capacity each edge to be at most 2mA. (That is, if the capacity of e in G is more than
2mA, set it to be 2mA.) As the ratio between the maximum and minimum capacity is at most
2m, we can compute the maximum flow in G¢(A) in O(m + n'?) using Theorem 1.4. Since
there are |[logy ||ulls] iterations, the total running time of algorithm is O((m +n15)log ||ul|so)-
This completes the proof of Corollary 7.9. U

8 General Linear Programs

In this section, we prove Theorem 1.1 and Theorem 1.2. There are two main parts. For the
first part, we show that, given an initial point (x(init),s(init)), the path following algorithm
(Algorithm 5) returns (z(ed, snd)) where (" is a near-optimal point in O(mn +n25) time.
This is proved in Section 7.1 by putting together the tools developed in previous sections.

For the second part, we describe how to obtain an initial point (m(in“), s(imt)) and how to
obtain a near optimal primal solution in Section 8.2 hence proving Theorem 1.1. In Section 8.3,
we then show how to extract a near optimal dual solution hence proving Theorem 1.2. This
part uses standard techniques and we show how to do these tasks for completeness.

Our algorithms in this section will use the following linear system solver.

Lemma 8.1 ([NN13, LMP13, CLM"15]). There is an algorithm that, given a matrizx A €
R™*" " q diagonal non-negative weight matrix D € R™*™ and a vector b € R™ such that there
exists a vector x € R™ where (ATDA)x = b, w.h.p. returns a vector T such that |T — x| stpa <
ellz| aTpa i O((nnz(A) +n®)loge™t) time.

8.1 Path Following for General LPs

In Appendix B we give efficient HEAVYHITTER, INVERSEMAINTENANCE, and HEAVYSAMPLER
data structures for general linear programs, and use these to show the following.

Lemma 8.2. Consider a linear program

I: min c'x
ATz=b
i<z <u;Vi

where A € R™". Let ¢ = 1/(4Clog(m/n)) for a large enough constant C. Given an e-

centered initial point (x(init),s(imt), ,u(init)) for I and a target p®Y Algorithm 5 (when using
matriz-based data structures) returns an e-centered point ("D s(erd) (e0d)) ypn time

6 ((mn + n2.5) . \10g M(init)/u(end)’)]

Proof. We use Algorithm 4, which is an implementation of Algorithm 2. By Lemma 4.12 the
algorithm returns an e-centered (x(end), slend) ,u(end)). For the complexity, note that we have
a (P, c,Q)-HEAVYHITTER, (P, c,Q)-HEAVYSAMPLER, and (P, ¢, Q)-INVERSEMAINTENANCE for
P = O(mnz(A) + n¥), ¢; = O(n) for i € [m], Q = O(n? + m+/n) according to Lemma B.1,
Corollary B.6, and Lemma B.2. By using Lemma 6.7 the time complexity of Algorithm 4 is
bounded by

O ((mn +n>3) - [log u® /(b))

60

8.2 Initial and Final Primal Solutions

In this section, we prove Theorem 1.1 using Lemma 8.2. Throughout this section, let §' = W
and let ¢ = 1/(4C log(m/n)) for a large enough constant C. The path following algorithm, and
therefore Lemma 8.2, requires an initial point which is e-centered. However, it is not clear how
to obtain such point efficiently. We first show how to modify the linear program so that it is
easy to compute an e-centered initial point similar to how we did in Section 7.2. As described
in Section 7, we construct initial point by adding an identity block to the constraint matrix A.
Interestingly, this is simpler than in previous work [BLSS20, BLN"20] because we are able to
handle two-sided constraints.

Given matrix A € R™*" vector b € R", vector ¢ € R™, an accuracy parameter §, and the
linear program

min ¢z, (51)

ATz=b
li<x;<u;Vi

ALy, ‘

g (init) &= %(b — AT:c(init)). By flipping the signs of columns of A, we can assume zZ(> 0

define matrix A & l A], B=b—AT2Y| /2, = = max; |u; — 4, i) (4 +ui)/2,

If fz(init) = 0, enforce that coordinate to be 0 always by removing the variable :Eginit) (as it is
unnecessary for constructing the initial point), and otherwise define (i =—-Zand @; = 2@(1“) +E=

the terms —= and += are just to ensure that ul>~l e define ¢ = cll1/o". e overloa
h = and +Z are j hat @; > £;). We define ¢ < 2 5. Wi load

notation and let ¢ be the vector in R™ with value ¢ in all coordinates.
Consider the modified linear program

min ¢ z+¢ 7. (52)

AT m —p
xr

;i <x;<u;Vi

0;<z;<u;Vi

Lemma 8.3 (Initial point for the modified LP). For the linear program in (52), the point
i) T
%(init) e K

Proof. By the definition of (™) = g=1(h — ATz it is clear that A [;] = b, so the point

is e-centered for pu = %.

is exactly feasible. Also, the vector lg} is clearly dual feasible as in Definition 4.7 by taking

z=0.

Now we bound the centrality. Recall that the barrier function ¢(z) on the interval [¢,u] is
given by ¢(z) = — log(x — £) — log(u — x). Therefore, ¢'(({ +u)/2) = 0, and ¢" (x) > 1/(u—).
In particular, this is lower bounded by 1/Z? for all original constraints. For the new constraints,
similarly, we have that |4; — £;] < || %(b — ATzi))|| < 4=, Hence, the Hessian ¢”(z;) is lower
bounded by 1/(16=2) for all constraints.

init
Therefore, for x = ;Einit; and s = [g] , because 7(x) > =, we can bound

s + pr(2)' ()

pr(x)y/¢" ()

<dmn = ||s|le < €

| [e o]

61

by the choice of pu. O

Next, we show that a solution to the modified LP can be used to round to nearly feasible
and optimal solutions to the original LP.

Lemma 8.4 (Final Point for the Original LP). Assume that the the linear program in (51) has
a feasible solution. Given an e-centered point for the modified LP in (52) for p = ¢|c|LiZ/Cn
for some large enough constant C' and some § < 1, we can in O((nnz(A) +n®)log(W/8)) time
compute a point 1) that satisfies

Tzl < min cTo 46 and ||AT2) — || <6
ATz=b
i<z <u;Vi

(final)

and l; < x; < wu; for alli.

(final)

Proof. By Lemma 4.11 we can compute an exactly feasible point Li(ﬁnal)]’ and error < nu <
§'||e|[1E < & off optimal with a single solve to ATDA. We discuss at the end how to deal with
inexact solvers. We claim that 2(fi"a) satisfies the necessary conditions. Note that the optimum

for (51) is at least that of (52) as long as (51) is feasible. Therefore, we have that

clpmal) < i Tp—glzfinal L s < min cTa 44
ATz=b Ta=b
£;<x;<u;Vi 4;<w;<u;Vi
Finally, we show that ||ATzfa) —p|| o < §||AT 2 — p||,, this suffices for the first claim.
Because (") is feasible, note that ||ATz@al) —p|| = g||z("aD || . Assume ||A T z(firal) —
blloo < 0'||A T2 —p|| is false, using B = ||A T2 —p||.,/Z, then there is some i such that
fl(ﬁnal) > ¢'Z. In this case, we get that

CTx(ﬁnal) _ (ch(ﬁnal) + 5Tf(ﬁnal)) _ 5Tf(ﬁnal) < rgin 'z + 5’”6”15 _ 5Tf(ﬁnal)
A'z=b

0;<z;<u;Vi

< Z min(cil;, ciu;) + 2||c|1 2 — ¢'E = Z min(c¢;l;, ciu;)
; 7

(2

This is clearly a contradiction, as ¢! g(final) > > min(c;l;, cju;) because z(final) i¢ feasible. There-
fore, we have o
HATx(ﬁnal) _ bHoo < 5I||AT$(lmt) _ b”oo <6

because ||A Tz — bl < m|| Ao max{||w]lso, [[€lloo } + |blloc} < 2mW?2.
(final)
T

Finally, we have an approximate instead of exact solver for ﬁnal)]. However, we can

7
x(ﬁnal) _

compute the vector where each entry differs from ~(final) | &t most Jinexact 10 time O((nnz(A) +

T

n%) 10g(W /binexact) using Lemma 8.1. As long as we can guarantee that dipexact < 1/ poly (mW Amin(ATDA)),
all entries will differ by an arbitrarily small polynomial, so this approximate vector satisfies all

the conditions of Lemma 8.4 as well. Recall that in Lemma 4.11 that D = T " (z)~1, and

log @ (x)~! > —O(log W + log p{) 4 log ||¢||oe) by Lemma 4.46. Hence

108 Amin(A TDA) > —O(log W + log(1/4%2)) 4+ log ||¢/|oc) 4 108 Amin(A T A)

> —O(log(W/d))

where we used that Apin(ATA) > 52 > poly(1/(mW)) and pia) > § poly(1/(mW)). O

62

Now, we are ready to prove Theorem 1.1 by combining the two lemmas above.

Proof of Theorem 1.1. Using Lemma 8.3, we can obtain an e-centered initial point

£mit)] T, o
(init)
([f(init) el H

for the modified linear program (52) in O(nnz(A)) time where p(%) = 4m||c||;Z/ed’.
Let p(") = §'||c||;Z/Cn where C is a large enough constant. We invoke Lemma 8.2 which
(end) [(end) ~
returns ([g(end)]) ;(end)] ,H(end)> in time O((mn +n?5%) -log? W). This running time follows
because (i) / u(end-) = poly(mW/§). It remains to bound the ratio W” of largest to smallest
(init)
x

entry in ¢”(—(init)). For each entry in Z(") we have (b”(fz(imt)) = 2/(%§init) + =Z)2. Note

that = < Egmlt) + =2 < 22 < W, where Z = max; |u; — ¢;| was set previously For each entry in

() we have ¢”(xl(~init)) =0(1/(u; — £;)%). As W > %, we have that indeed the ratio
W"” < poly(mW) as desired.

(end) (end)
As the last step, we give (lx 1 , [S

, ,u(end)> as an input to Lemma 8.4 and obtain a

7(end) 5(end)
final point (") which satisfies all condition of Theorem 1.1 in time O((nnz(A)+n®)log(W/5)).
In total, the running time of the algorithm is O((mn + n??)log(W/4)). O

8.3 Final Dual Solutions

In this section, we prove Theorem 1.2. Before proving it, we show the key subroutine for
extracting a dual solution from the primal LP as formalized below. By scaling x and A, we can
focus on the £ = —1,u = 1 case. Additionally, this formulation suffices for our application of
solving MDPs in Theorem 1.3.

Lemma 8.5 (Dual solution bound). Given an e-centered point (x, s, i) wheree < 1/(C'log(m/n))
and pp < 6/Cn for sufficiently large C' to the LP

min ¢z, (53)
ATz=0
—1<z;<1Vi

we can compute in time O((nnz(A) + n®)log(W/6)) a vector z € R™ satisfying

|Az + clly < min ||Az +c|j; + 6.
z€R™

Proof. Define
OPT= min ¢z
ATz=0
A<a; <1Vi

By Sion’s minimax theorem, we have that

min ¢ z= min maxc z+z2 Az
ATz=0 [|[z]]oo <1 z€R™
—1<a;<1Vi
=max min (Az+c¢) 2z =max—||Az+¢||; = — min ||[Az + ¢||;.
2€R™ ||z]| 00 <1 zER™ z€R™

Hence, we have that min,cgn [|Az+c||; = —OPT. Now, find z("2) and s(ival) — A ¢ satisfying
the conclusions of Lemma 4.11. Specifically, z may be computed as z = (ATA) TAT (s(fimal) _)
in time O((nnz(A) + n“)logé~!) by Lemma 8.1.

63

We now prove that this z satisfies the conclusions of this lemma: ||Az+c||; < min,egn ||Az+
c||1 + 6. To simplify notation, we will write 2 for z(i"2) and s for s, Note that because
ATz =0,

|Az + ¢l = (Az)T:c + |Isllh = —c'z+aTs+ IIs|l1 < —OPT +2"s+ IIsll1,

as ¢'x > OPT by definition. Therefore, it suffices to bound z's 4 ||s|;. We will show that
x;8; + |si| < pr. This suffices, as then

wls+ sl Y pm Snp <o
i

for sufficiently large choice of C in the definition of u.
. _ stutd’(z) < 1 i i i-
To show this, define y ST so that [|ylcc < 75 by Claim A.6, which shows approxi

mate centrality of the final point returned. We have that

yirn) 81 () — dilws) = p~ ' s (54)

If |2;] < &, then both ¢}(z;) and |¢}(z;)| are O(1). Hence, eq. (54) shows that x;s; + |s;| <

Isi| S prie If |5 > %, we have

o o) = yor | —2 ! 2y, 1 .
Yiy/ 9 (i) = ?/z\/(l — ;)2 + (1+ ;)2 < 1— |z < 5(1— |23]) S ACHIE

Hence, eq. (54) shows that 0 > p~ 17, ts; > ——L and

Ty

xis; + |sil = — (1 — x;)s; < .
The proof for z; < —% is similar. Therefore, we proved the claim z;s; + |s;| < pr; in all the
cases. Handling the inexactness of solvers may be done as in the proof of Lemma 8.4. U

With the above lemma at hand, we are ready to prove Theorem 1.2.
Proof of Theorem 1.2. First, observe that we can easily define an initial solution
(cmi0) mit)) nit)) 98 (g =Lyt)
of (53). Note that () s(init) /(i) j5 o_centered because z(") = 0 and st = ¢ are exactly

feasible. It remains to bound the centrality. As the barrier function is defined on [—1, 1], we
have ¢/(0) = 0, and ¢"(0) = 2 by Fact 4.3. As 7(z("")) > we have

g(init) + M(init),r(x(init))¢,($(init))
fu(init) 7 (g (init)) /g (- (init))

ml|cflog

=" m

<e

[e.e]

as desired.

Then, we invoke Lemma 8.2 to obtain an e-centered point (x(end),s(end),u(end)) of (53)
where p(9) = §/Cn. Lemma 8.2 takes time O ((mn +n?°) -log(W/6)) because i) /g (end) —
poly(mW/J).

Lastly, we invoke Lemma 8.5 to obtain a vector z which satisfies the guarantee of Theorem 1.2
in time O((nnz(A) + n®)log(W/d)) by using Lemma 8.1. Therefore, the total running time is
O ((mn + n%5)log(W/6)). 0

64

| Year | Authors | Refs | Algorithm | Running Time up to O(-) |

1990 | Tseng, Littman, Dean, Kaelbling [Tse90, LDK95] Value Iteration |S\2\A|ﬁ
2014 Lee, Sidford [LS14, LS15, SWWY18] TPM [STZO1A]
2018 Sidford, Wang, Wu, Yang [SWWY18§] High Precision RVI |51214] + L2k
2020 This paper Robust IPM SI?JA] + |S[?°

Table 6: High-precision algorithms for discounted MDPs. This table gives only the fastest
high precision results, i.e. those that depend polylogarithmically on e. We ignore the O in
the running time, and suppress factors of log (max(|S|,|Al,e~%, (1 —~)~1, M)). RVI denotes
Randomized Value Iteration. [SWWY18] showed that discounted MDPs could be solved via
linear programming, so previous results towards faster linear programming immediately gave
results for discounted MDPs.

8.4 Application: Discounted Markov Decision Process

In this section, we show an algorithm (Theorem 1.3) for solving the discounted Markov Decision
Process problem in time O((|S[2|A4] + |S]%5) log((l_—My)e)) (these parameters are defined below).
See Table 6 for the comparison with previous results. Below, we formally define the problem
and prove this bound.

Problem Definition. A discounted Markov Decision Process (DMDP) is specified by a tuple
(S, A, P,r,7v) where S is a the finite state space, A is the finite action space, P = {p,}aca is
the collection of state-action-state transition probabilities where p,(i,j) denote the probability
of going to state j from state ¢ when taking action a, r is the collection of state-action rewards
where r4(i) € [-M, M] is the collected reward when we are currently in state ¢ and take action
a, and v € (0,1) is a discount factor.

Given a DMDP (S, A, P,r,v), the value operator T : RS — R® is defined for all u € R® and
i €S by

T(u); = rcrbleaj([ra(i) + - pa(i) "]

where p,(i) € R® with (p,(7)); = pa(i, 7). It is known that there is a unique vector v* such that
T(v*) = v*.

A vector m € A® that tells the actor which action to take from any state is called a policy
and 7; denotes the action prescribed by 7 to be taken at state ¢ € S. The value operator
associated T, with 7 is defined for all w € RS and i € S by

Tr(u)i = rr,(i) +7 - Pm; (Z)Tu

Note that T, can be viewed as the value operator for the modified DMDP where the only
available action from each state is given by the policy . Let v, denote the unique vector such
that Ty (vr) = vg.

We says that values u € RS are e-optimal if ||[v* — ul|oc < € and we say that a policy 7 € A
is e-optimal if |[v* — v;]|eo < €, i.e. the values of the policy m are e-optimal. Our goal is to find
an e-optimal policy .

Reductions to Solving LP and ¢; Regression. In Section B of [SWWY18], the authors
show how to reduce the problem of finding an e-optimal policy to finding e-approximate solution
of the following LP. We leverage this reduction along with Theorem 1.2 (¢; regression) to prove
our main result Theorem 1.3.

Definition 8.6 (DMDP linear program). We call the following linear program the DMDP LP

min v' 1. (55)
Av>r

where v € RO*A) 45 the vector of rewards, i.e. Tia = ra(i) for alli € S and a € A and
A = E — AP where E € REXAXS js the matriz where for all i,j € S and a € A we have that

65

the j-th entry of row (i,a) of E is 1 if i = j and 0 otherwise, and P € REXAXS s 4 matriz
where for all i € S and a € A we have that row (i,a) of P is p,(i). We call a vector v € RS
an e-approximate DMDP LP solution if Av > r — el and v'1 < OPT + ¢ where OPT s the
optimal value of the DMDP LP, Equation (55).

The reduction is stated as follows:

Lemma 8.7 (Lemma B.3 of [SWWY18]). If v is an e-approzimate DMDP LP solution and if
7 € AS is defined with T; = argmax e 4 7o +7-p(i,a) v for alli € S then 7 is an 8¢|S|(1—~)2-
optimal policy.

[SWWY18] further reduces the problem of finding an e-approximate DMDP LP solution to
finding a e-optimal solution of the following instance of the ¢; regression problem.

Definition 8.8 (DMDP /¢;-regression). For a given DMDP (S, A, P,r,v) and a parameter o
we call the following 01 regression problem the DMDP ¢ problem
|[S|M

min f(v) = }a <: + T%)} + s tav—sT—1|| +|sTTAv—8Tb+T| (56)

where s = %(%f— r) and b = %(%f—i— r), and S = diag(s). We let v} denote the optimal
solution to this {1 regression problem and we call v an e-optimal solution to f if f(v) < f(v;‘:)%—e.

Observe that (56) is indeed an instance of the ¢; regression problem from Theorem 1.2 where
the input matrix and the input vector ¢ are defined as

ST1A S 1p+T
STIA | e RAS¥AFDXISI gpq e = | STIo—1 | ¢ R@ISXARHD,
al’ a\fﬂ

-

The next reduction is stated as follows:

Lemma 8.9 (Lemma B.7 of [SWWY18]). Suppose that v is an e-approximate solution to the
DMDP ¢y problem then v is an € -approrimate DMDP LP solution for

¢ < max < 2a|S|M2 + M .
N a’ (1-72 (1-7)

By combining the above two reductions and the £;-regression algorithm from Theorem 1.2,
we obtain the new algorithm for solving DMDP, proving Theorem 1.3.

Proof of Theorem 1.3. To obtain an e-optimal policy 7, by Lemma 8.7, it suffices to compute
2
an eg-approximate DMDP LP solution v where g9 = E%Tsﬂ") . Let v be a e3-approximate solution

to the DMDP /;-regression instance in (56) where a = % and €3 = min{aes, %} By

Lemma 8.9, v is ¢/-approximate DMDP LP solution where

20&‘5‘M2 €3M
¢/ < max 6—3, + <max{ey, €2/2 +¢e9/2} =9
{a T - o2 2tz

as desired. To solve the ¢1-regression instance in (56), we invoke the algorithm from Theorem 1.2.
Aseg > poly(e'(Mll_ST)) and the input matrix has size (2|S x A|+1) x |S| and the input vector has

size (2|S x A|+1), with high probability, we obtain v in time O((]S|?|A|+]5]%7) log((1K)e)). O

Note that the running time above is nearly linear time because the size of the input is
Q(|S|?|A]). Note that Theorem 1.3 gives the first nearly linear time algorithm for which depen-

dencies on M, %, (1L,) are all logarithmic.

66

Acknowledgment

This project has received funding from the European Research Council (ERC) under the Eu-
ropean Unions Horizon 2020 research and innovation programme under grant agreement No
715672. Jan van den Brand is partially supported by the Google PhD Fellowship Program.
Aaron Sidford is supported by a Microsoft Research Faculty Fellowship, NSF CAREER, Award
CCF-1844855, NSF Grant CCF-1955039, a PayPal research award, and a Sloan Research Fel-
lowship. Yin Tat Lee is supported by NSF awards CCF-1749609, CCF-1740551, DMS-1839116,
DMS-2023166, Microsoft Research Faculty Fellowship, Sloan Research Fellowship, Packard Fel-
lowships. Di Wang did part of this work while at Georgia Tech, and was partially supported
by NSF grant CCF-1718533. Yang P. Liu was supported by the Department of Defense (DoD)
through the National Defense Science and Engineering Graduate Fellowship (NDSEG) Pro-
gram. We sincerely thank Danupon Nanongkai and Richard Peng for helpful discussions on
this project. Also, we thank Danupon Nanongkai for his help on improving the quality in this

paper.

67

References

[AKY?20]

[AMK13]

[AMV20]

[A091]

[AO06]

[AW?21]

[BBN*20]

[BLN+20]

[BLSS20]

[BNS19]

[Bra20]
[Bra21]

[CIN18]

[CKM*14]

Alekh Agarwal, Sham M. Kakade, and Lin F. Yang. Model-based reinforcement
learning with a generative model is minimax optimal. In Conference on Learning
Theory, COLT 2020, 9-12 July 2020, Virtual Event [Graz, Austria], pages 67—83,
2020.

Mohammad Gheshlaghi Azar, Rémi Munos, and Hilbert J Kappen. Minimax
pac bounds on the sample complexity of reinforcement learning with a generative
model. Machine learning, 91(3):325-349, 2013.

Kyriakos Axiotis, Aleksander Madry, and Adrian Vladu. Circulation con-
trol for faster minimum cost flow in unit-capacity graphs. In FOCS.
https//arxiv.org/pdf/2003.04863.pdf, 2020.

Ravindra K Ahuja and James B Orlin. Distance-directed augmenting path algo-
rithms for maximum flow and parametric maximum flow problems. Naval Research
Logistics (NRL), 38(3):413-430, 1991.

Peter Auer and Ronald Ortner. Logarithmic online regret bounds for undiscounted
reinforcement learning. In Bernhard Schoélkopf, John C. Platt, and Thomas Hof-
mann, editors, Advances in Neural Information Processing Systems 19, Proceedings
of the Twentieth Annual Conference on Neural Information Processing Systems,
Vancouver, British Columbia, Canada, December 4-7, 2006, pages 49-56. MIT
Press, 2006.

Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster
matrix multiplication. In SODA. https://arxiv.org/pdf/2010.05846.pdf,
2021.

Aaron Bernstein, Jan van den Brand, Danupon Nanongkai, Maximilian
Probst, Thatchaphol Saranurak, Aaron Sidford, and He Sun. Fully-
dynamic graph sparsifiers against an adaptive adversary. In manuscript.
https://arxiv.org/pdf/2004.08432, 2020.

Jan van den Brand, Yin-Tat Lee, Danupon Nanongkai, Richard Peng, Thatchaphol
Saranurak, Aaron Sidford, Zhao Song, and Di Wang. Bipartite matching in nearly-
linear time on moderately dense graphs. In FOCS, 2020.

Jan van den Brand, Yin Tat Lee, Aaron Sidford, and Zhao Song.
Solving tall dense linear programs in mnearly linear time. In STOC.
https://arxiv.org/pdf/2002.02304.pdf, 2020.

Jan van den Brand, Danupon Nanongkai, and Thatchaphol Saranurak. Dynamic
matrix inverse: Improved algorithms and matching conditional lower bounds. In
FOCS, pages 456-480. IEEE Computer Society, 2019.

Jan van den Brand. A deterministic linear program solver in current matrix mul-
tiplication time. In SODA, pages 259-278. STAM, 2020.

Jan van den Brand. Unifying matrix data structures: Simplifying and speeding up
iterative algorithms. 2021.

Michael B Cohen, TS Jayram, and Jelani Nelson. Simple analyses of the sparse
johnson-lindenstrauss transform. In 1st Symposium on Simplicity in Algorithms
(SOSA). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

Michael B. Cohen, Rasmus Kyng, Gary L. Miller, Jakub W. Pachocki, Richard
Peng, Anup B. Rao, and Shen Chen Xu. Solving sdd linear systems in nearly
mlog'/? n time. In Proceedings of the 46th Annual ACM Symposium on Theory of
Computing (STOC), pages 343-352, 2014.

68

https//arxiv.org/pdf/2003.04863.pdf
https://arxiv.org/pdf/2010.05846.pdf
https://arxiv.org/pdf/2004.08432
https://arxiv.org/pdf/2002.02304.pdf

[Cla05]
[CLM™15]

[CLS19]

[CMMP13]

[CMSV17]

[CP15]

[CTCG*98]

[DG9S]

[DHNV20]

[Din70]

[DLS18]

[DNV20]

[DS08]

[EK72]

Kenneth L Clarkson. Subgradient and sampling algorithms for 1 1 regression. 2005.

Michael B Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard
Peng, and Aaron Sidford. Uniform sampling for matrix approximation. In Pro-

ceedings of the 2015 Conference on Innovations in Theoretical Computer Science
(ITCS), pages 181-190, 2015.

Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the cur-
rent matrix multiplication time. In STOC. https://arxiv.org/pdf/1810.07896,
2019.

Hui Han Chin, Aleksander Madry, Gary L. Miller, and Richard Peng. Runtime
guarantees for regression problems. In Robert D. Kleinberg, editor, Innovations
in Theoretical Computer Science, ITCS 13, Berkeley, CA, USA, January 9-12,
2013, pages 269-282. ACM, 2013.

Michael B Cohen, Aleksander Madry, Piotr Sankowski, and Adrian Vladu.
Negative-weight shortest paths and unit capacity minimum cost flow in
O(m'%Tlog W) time. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 752-771. STAM, 2017.

Michael B. Cohen and Richard Peng. ¢, row sampling by lewis weights. In STOC,
pages 183-192. ACM, 2015.

Jean Cochet-Terrasson, Guy Cohen, Stéphane Gaubert, Michael McGettrick, and
Jean-Pierre Quadrat. Numerical computation of spectral elements in max-plus
algebra. IFAC Proceedings Volumes, 31(18):667—674, 1998.

Ali Dasdan and Rajesh K. Gupta. Faster maximum and minimum mean cycle
algorithms for system-performance analysis. IEFEE Trans. Comput. Aided Des.
Integr. Circuits Syst., 17(10):889-899, 1998.

Daniel Dadush, Sophie Huiberts, Bento Natura, and Léaszlé A. Végh. A scaling-
invariant algorithm for linear programming whose running time depends only on
the constraint matrix. In Konstantin Makarychev, Yury Makarychev, Madhur
Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, Proccedings of the 52nd
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago,
IL, USA, June 22-26, 2020, pages 761-774. ACM, 2020.

Efim A Dinic. Algorithm for solution of a problem of maximum flow in networks
with power estimation. In Soviet Math. Doklady, volume 11, pages 1277-1280,
1970.

David Durfee, Kevin A. Lai, and Saurabh Sawlani. /1 regression using lewis weights
preconditioning and stochastic gradient descent. In Sébastien Bubeck, Vianney
Perchet, and Philippe Rigollet, editors, Conference On Learning Theory, COLT
2018, Stockholm, Sweden, 6-9 July 2018, volume 75 of Proceedings of Machine
Learning Research, pages 1626-1656. PMLR, 2018.

Daniel Dadush, Bento Natura, and Laszlé A Végh. Revisiting tardos’s framework
for linear programming: faster exact solutions using approximate solvers. arXiv
preprint arXiv:2009.04942, 2020.

Samuel I Daitch and Daniel A Spielman. Faster approximate lossy generalized flow
via interior point algorithms. In Proceedings of the fortieth annual ACM symposium
on Theory of computing (STOC), pages 451-460, 2008.

Jack Edmonds and Richard M Karp. Theoretical improvements in algorithmic
efficiency for network flow problems. Journal of the ACM (JACM), 19(2):248-264,
1972.

69

https://arxiv.org/pdf/1810.07896

[Gall4]
[GR9S]

[GRST21]

[GT88]

[GT90]

[JL84]

[JOA10]

[TSWZ20]

[Kar84]

[Kat20]

[KLP+16]

[KMP10]

[KMP11]

[KN14]

[KNPWT11]

[KOSA13]

[KS98]

Frangois Le Gall. Powers of tensors and fast matrix multiplication. In ISSAC,
pages 296-303. ACM, 2014.

Andrew V. Goldberg and Satish Rao. Beyond the flow decomposition barrier. .J.
ACM, 45(5):783-797, 1998. announced at FOCS’97.

Gramoz Goranci, Harald Récke, Thatchaphol Saranurak, and Zihan Tan. The
expander hierarchy and its applications to dynamic graph algorithms. pages 2212—
2228, 2021.

Zvi Galil and Eva Tardos. An O(n?(m +nlogn)logn) min-cost flow algorithm. J.
ACM, 35(2):374-386, 1988. announced at FOCS’86.

Andrew V Goldberg and Robert E Tarjan. Finding minimum-cost circulations
by successive approximation. Mathematics of Operations Research, 15(3):430-466,
1990.

William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings
into a Hilbert space. In Conference in modern analysis and probability (New Haven,
Conn., 1982), volume 26 of Contemp. Math., pages 189-206. Amer. Math. Soc.,
Providence, RI, 1984.

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for
reinforcement learning. J. Mach. Learn. Res., 11:1563-1600, 2010.

Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie Zhang. Faster dynamic
matrix inverse for faster lps. arXiv preprint arXiv:2004.07470, 2020.

Narendra Karmarkar. A new polynomial-time algorithm for linear programming.
Combinatorica, 4(4):373-396, 1984. Announced at STOC’84.

Tarun Kathuria. A potential reduction inspired algorithm for exact max flow in
almost o(m4/3) time. In FOCS. https://arxiv.org/pdf/2009.03260.pdf, 2020.

Rasmus Kyng, Yin Tat Lee, Richard Peng, Sushant Sachdeva, and Daniel A.
Spielman. Sparsified cholesky and multigrid solvers for connection laplacians. In
STOC’16: Proceedings of the 48th Annual ACM Symposium on Theory of Com-
puting, 2016.

Toannis Koutis, Gary L. Miller, and Richard Peng. Approaching optimality for
solving SDD systems. In Proceedings of the 51st Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 235-244, 2010.

Toannis Koutis, Gary L. Miller, and Richard Peng. A nearly mlogn-time solver
for SDD linear systems. In Proceedings of the 52nd Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 590-598, 2011.

Daniel M Kane and Jelani Nelson. Sparser johnson-lindenstrauss transforms. Jousr-
nal of the ACM (JACM), 61(1):1-23, 2014.

Daniel M Kane, Jelani Nelson, Ely Porat, and David P Woodruff. Fast moment
estimation in data streams in optimal space. In Proceedings of the forty-third
annual ACM symposium on Theory of computing (STOC), pages 745-754, 2011.

Jonathan A. Kelner, Lorenzo Orecchia, Aaron Sidford, and Zeyuan Allen Zhu. A
simple, combinatorial algorithm for solving SDD systems in nearly-linear time. In
Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA,
June 1-4, 2013, pages 911-920, 2013.

Michael J. Kearns and Satinder P. Singh. Finite-sample convergence rates for q-
learning and indirect algorithms. In Michael J. Kearns, Sara A. Solla, and David A.
Cohn, editors, Advances in Neural Information Processing Systems 11, [NIPS Con-
ference, Denver, Colorado, USA, November 30 - December 5, 1998], pages 996—
1002. The MIT Press, 1998.

70

https://arxiv.org/pdf/2009.03260.pdf

[KS16]

[LDK95]

[LMP13]

[LNNT16]

[LPS15]

[LS14]

[LS15]
[LS19]
[L.S20a]
[LS20b)]

[LSZ19]

[LSZ20]

[LWC+20]

[Mad02]
[Mad13]

[Mad16]

[Mah6]

Rasmus Kyng and Sushant Sachdeva. Approximate gaussian elimination for lapla-
cians - fast, sparse, and simple. In IEEE 57th Annual Symposium on Founda-
tions of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New
Brunswick, New Jersey, USA, pages 573-582, 2016.

Michael L. Littman, Thomas L. Dean, and Leslie Pack Kaelbling. On the complex-
ity of solving markov decision problems. In UAI ’95: Proceedings of the Eleventh

Annual Conference on Uncertainty in Artificial Intelligence, Montreal, Quebec,
Canada, August 18-20, 1995, pages 394-402, 1995.

Mu Li, Gary L. Miller, and Richard Peng. Iterative row sampling. In 54th An-
nual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29
October, 2013, Berkeley, CA, USA, pages 127-136. IEEE Computer Society, 2013.

Kasper Green Larsen, Jelani Nelson, Huy L Nguyen, and Mikkel Tho-
rup. Heavy hitters via cluster-preserving clustering. In 57th Annual Sym-
posium on Foundations of Computer Science (FOCS), pages 61-70. IEEE,
https://arxiv.org/pdf/1604.01357, 2016.

Yin Tat Lee, Richard Peng, and Daniel A Spielman. Sparsified cholesky solvers
for sdd linear systems. arXiv preprint arXiv:1506.08204, 2015.

Yin Tat Lee and Aaron Sidford. Path finding methods for linear program-
ming: Solving linear programs in O(v/rank) iterations and faster algorithms
for maximum flow. In 55th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS), pages 424-433. https://arxiv.org/pdf/1312.6677.pdf,
https://arxiv.org/pdf/1312.6713.pdf, 2014.

Yin Tat Lee and Aaron Sidford. Efficient inverse maintenance and faster algorithms
for linear programming. In FOCS, pages 230-249. IEEE Computer Society, 2015.

Yin Tat Lee and Aaron Sidford. Solving linear programs with v/ rank linear system
solves. In arXiv preprint. https://arxiv.org/pdf/1910.08033.pdf, 2019.

Yang P Liu and Aaron Sidford. Faster divergence maximization for faster maximum
flow. In FOCS. https://arxiv.org/pdf/2003.08929.pdf, 2020.

Yang P Liu and Aaron Sidford. Faster energy maximization for faster maximum
flow. In STOC. https://arxiv.org/pdf/1910.14276.pdf, 2020.

Yin Tat Lee, Zhao Song, and Qiuyi Zhang. Solving empirical risk
minimization in the current matrix multiplication time. In COLT.
https://arxiv.org/pdf/1905.04447, 2019.

S CIiff Liu, Zhao Song, and Hengjie Zhang. Breaking the n-pass barrier: A
streaming algorithm for maximum weight bipartite matching. arXiv preprint
arXiv:2009.06106, 2020.

Gen Li, Yuting Wei, Yuejie Chi, Yuantao Gu, and Yuxin Chen. Breaking the sample
size barrier in model-based reinforcement learning with a generative model. arXiv
preprint arXiv:2005.12900, 2020.

Omid Madani. Polynomial value iteration algorithms for detrerminstic mdps. In
UAI pages 311-318, 2002.

Aleksander Madry. Navigating central path with electrical flows: From flows to
matchings, and back. In FOCS, pages 253-262. IEEE Computer Society, 2013.

Aleksander Madry. Computing maximum flow with augmenting electrical flows. In
2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS),
pages 593-602. IEEE, 2016.

Sridhar Mahadevan. Average reward reinforcement learning: Foundations, algo-
rithms, and empirical results. Mach. Learn., 22(1-3):159-195, 1996.

71

https://arxiv.org/pdf/1604.01357
https://arxiv.org/pdf/1312.6677.pdf
https://arxiv.org/pdf/1312.6713.pdf
https://arxiv.org/pdf/1910.08033.pdf
https://arxiv.org/pdf/2003.08929.pdf
https://arxiv.org/pdf/1910.14276.pdf
https://arxiv.org/pdf/1905.04447

[MM13]

[MT03]

[MTO05]
[Nes98]
[Nes09]

[NNO1]

[NN13]

[NS19]

[NSW17]

[NSW19)

[Or184]
[Orl93]
[Pag13]

[PS14]

[PSW17]

[Ren8&8|
[San04]

[Sch16]

Xiangrui Meng and Michael W. Mahoney. Robust regression on mapreduce. In Pro-
ceedings of the 30th International Conference on Machine Learning, ICML 2013,
Atlanta, GA, USA, 16-21 June 2013, volume 28 of JMLR Workshop and Confer-
ence Proceedings, pages 888-896. JMLR.org, 2013.

Renato D. C. Monteiro and Takashi Tsuchiya. A variant of the vavasis—ye layered-
step interior-point algorithm for linear programming. SIAM J. Optim., 13(4):1054—
1079, 2003.

Renato D. C. Monteiro and Takashi Tsuchiya. A new iteration-complexity bound
for the MTY predictor-corrector algorithm. STAM J. Optim., 15(2):319-347, 2005.

Yurii Nesterov. Introductory lectures on convex programming volume i: Basic
course. Lecture notes, 3(4):5, 1998.

Yurii E. Nesterov. Unconstrained convex minimization in relative scale. Math.
Oper. Res., 34(1):180-193, 2009.

Yurii E. Nesterov and Arkadii Nemirovskii. Acceleration and parallelization of the
path-following interior point method for a linearly constrained convex quadratic
problem. SIAM J. Optim., 1(4):548-564, 1991.

Jelani Nelson and Huy L Nguyén. OSNAP: Faster numerical linear alge-
bra algorithms via sparser subspace embeddings. In 54th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS), pages 117-126. IEEE,
https://arxiv.org/pdf/1211.1002, 2013.

Vasileios Nakos and Zhao Song. Stronger 12/12 compressed sensing; without iter-
ating. In STOC. https://arxiv.org/pdf/1903.02742, 2019.

Danupon Nanongkai, Thatchaphol Saranurak, and Christian Wulff-Nilsen. Dy-
namic minimum spanning forest with subpolynomial worst-case update time. In
58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017,
Berkeley, CA, USA, October 15-17, 2017, pages 950-961, 2017.

Vasileios Nakos, Zhao Song, and Zhengyu Wang. (Nearly) Sample-optimal
sparse Fourier transform in any dimension; RIPless and Filterless. In FOCS.
https://arxiv.org/pdf/1909.11123.pdf, 2019.

James B Orlin. Genuinely polynomial simplex and non-simplex algorithms for the
minimum cost flow problem. 1984.

James B Orlin. A faster strongly polynomial minimum cost flow algorithm. Oper-
ations research, 41(2):338-350, 1993.

Rasmus Pagh. Compressed matrix multiplication. ACM Transactions on Compu-
tation Theory (TOCT), 5(3):1-17, 2013.

Richard Peng and Daniel A. Spielman. An efficient parallel solver for SDD linear
systems. In David B. Shmoys, editor, Symposium on Theory of Computing, STOC
2014, New York, NY, USA, May 31 - June 03, 201/, pages 333-342. ACM, 2014.

Eric Price, Zhao Song, and David P Woodruff. Fast regression with an ell_ in fty
guarantee. In 44th International Colloguium on Automata, Languages, and Pro-
gramming (ICALP). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

James Renegar. A polynomial-time algorithm, based on newton’s method, for
linear programming. Math. Program., 40(1-3):59-93, 1988.

Piotr Sankowski. Dynamic transitive closure via dynamic matrix inverse (extended
abstract). In FOCS, pages 509-517. IEEE Computer Society, 2004.

Bruno Scherrer. Improved and generalized upper bounds on the complexity of
policy iteration. Mathematics of Operations Research, 41(3):758-774, 2016.

72

https://arxiv.org/pdf/1211.1002
https://arxiv.org/pdf/1903.02742
https://arxiv.org/pdf/1909.11123.pdf

[SS08]

[SS11]

[STO04]

[SW19]

[SWW*1§]

[SWWY18]

[SY20]

[Tar85]
[Troll]
[Tse90]

[Vai89)]

[VY96]

[Wail9)]

[Wanl17]

[Wan20]

[Wil12]

Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resis-
tances. In Cynthia Dwork, editor, Proceedings of the 40th Annual ACM Symposium
on Theory of Computing, Victoria, British Columbia, Canada, May 17-20, 2008,
pages 563-568. ACM, 2008.

Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resis-
tances. SIAM Journal on Computing, 40(6):1913-1926, 2011.

Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph
partitioning, graph sparsification, and solving linear systems. In STOC, pages
81-90. ACM, 2004.

Thatchaphol Saranurak and Di Wang. FExpander decomposition and pruning:
Faster, stronger, and simpler. In Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA,
January 6-9, 2019, pages 2616-2635, 2019.

Aaron Sidford, Mengdi Wang, Xian Wu, Lin Yang, and Yinyu Ye. Near-optimal
time and sample complexities for solving markov decision processes with a gener-
ative model. In Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018, NeurIPS 2018, 3-8
December 2018, Montréal, Canada, pages 51925202, 2018.

Aaron Sidford, Mengdi Wang, Xian Wu, and Yinyu Ye. Variance reduced value
iteration and faster algorithms for solving markov decision processes. In Proceed-
ings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 770-787, 2018.

Zhao Song and Zheng Yu. Oblivious sketching-based central path
method for solving linear programming problems. In manuscript.
https://openreview.net/forum?id=£GiKxvF-eub, 2020.

Eva Tardos. A strongly polynomial minimum cost circulation algorithm. Combi-
natorica, 5(3):247-255, 1985.

Joel Tropp. Freedman’s inequality for matrix martingales. FElectronic Communi-
cations in Probability, 16:262-270, 2011.

Paul Tseng. Solving h-horizon, stationary markov decision problems in time pro-
portional to log (h). Operations Research Letters, 9(5):287-297, 1990.

Pravin M. Vaidya. Speeding-up linear programming using fast matrix multipli-
cation (extended abstract). In FOCS, pages 332-337. IEEE Computer Society,
1989.

Stephen A. Vavasis and Yinyu Ye. A primal-dual interior point method whose
running time depends only on the constraint matrix. Math. Program., 74:79-120,
1996.

Martin J Wainwright. Variance-reduced g-learning is minimax optimal. arXiv
preprint arXiv:1906.04697, 2019.

Mengdi Wang. Randomized linear programming solves the discounted markov de-
cision problem in nearly-linear (sometimes sublinear) running time. arXiv preprint
arXiv:1704.01869, 2017.

Mengdi Wang. Randomized linear programming solves the markov decision prob-
lem in nearly linear (sometimes sublinear) time. Mathematics of Operations Re-
search, 45(2):517-546, 2020.

Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-
winograd. In STOC, pages 8387-898. ACM, 2012.

73

https://openreview.net/forum?id=fGiKxvF-eub

[Will9] David P Williamson. Network Flow Algorithms. Cambridge University Press, 2019.

[YCRM16] Jiyan Yang, Yinlam Chow, Christopher Ré, and Michael W. Mahoney. Weighted
SGD for £, regression with randomized preconditioning. In Robert Krauthgamer,
editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages
558-569. SIAM, 2016.

[Ye05] Yinyu Ye. A new complexity result on solving the markov decision problem. Math-
ematics of Operations Research, 30(3):733-749, 2005.
[Yell] Yinyu Ye. The simplex and policy-iteration methods are strongly polynomial for

the markov decision problem with a fixed discount rate. Mathematics of Operations
Research, 36(4):593-603, 2011.

A IPM Proofs

A.1 Basic Analysis Tools

Lemma 4.2. For all { < wu the function ¢(x) = —log(x — £) — log(u — x) is highly 1-self-
concordant on the interval (¢,u).

Proof. Note that ¢"(z) = (u —2)"2 + (z — £)~2. For odd n, note that qﬁ(”)(ac) = (n —
DH(u—2)™" = (z = £)7"), s

o™ ()] < (n = 1)!min(u — z,z —)" < (n — 1)1¢" (z)"/2.
This shows the first two items. For even n > 2, we have ¢(™ (z) = (n—1)! (v —)" + (z — £)™"),

and
n/2

(=D (u-2)"+@ -0 <=1 (w=-2)2+@@-072)" < (n-1)1¢"@)"">
This shows the last item. O

Lemma 4.15 (Potential change bound). Define for u > 0 and y;

w; = H (u(j))cj- and w(new) — H (uz(]) +5§j))cj

1

jelk] J€E[K]
and
v; = yiw; and U(V) = (y, + ni)w; mew)
where H(U(J)) 1509) lloo < m for all 5 € [k], ||v|loo < 1/50, [Wn]leo < m, and
, A 1
. (G—150) < =
folle 3 e HU9) 160 < oo
Jelk]
Then we have that ||vY) — || < oy
U (0@eW)) < W(v) + ' (v) " (Wn + > ch(U(j))lé(j)) (13)
Jelk]
+ 8IWn 15y + 81+ llell)lvl1Z D e 11T 1695, (14)
JElk]
+ 8IWnll gy D e IITD) 169 gy + 81+ el lvlloe Y les 1T 16D 120 .-
J€E[K] JE[K]
(15)

74

Proof. For 0 <t <1 define

ol = T+ -6 and o = i+,

JE[K]
We first calculate
5@
and
NG SRR RN ;01
@l T VgV +nw; T = w; (m +yz‘j§[lz] m) . (58)

Applying (57) gives that

1
og(u"™)) ~log(w)] < | [() S| as
0 dt
1 c:5W)
1
<2 150))] 0o < =.
> leillU) 160 < o (59)

JE[K]

Therefore, W~ (™) — w) o < exp(|log(w{"™) — log(w:)|) — 1 < 2|log(w{**) — log(w)|.
Now we can use v = Wy and (59) to get that

[0 — vllog = |[(WE) — W)y +n) + Wh||
W (@) —) oo ([Wylloo + [Willc) + [Wi

IN

< W @) = w0l + W @) = w)]|oc [Wl + [Wiloc
1 1 1

<9 . (] —150) R —

< 2follos 3 lesl U)o + 5 - o5 + 25

JEk]
< 1 n 1 n 1 < 1
— 50\ 2500A 50X T 20X

as desired. We now proceed to controlling the potential ¥. To this end, define f(t)

By Taylor’s theorem we know that there is a ¢ € [0,1] so that f(1) = f(0) + f'(0) + 1 f"(¢).
Now compute using (58) that

and

©) ©)

ci0; 1310

+w'(v§t))w§t) E —Ju ;i + yi E — g7 (61)
s +t-57 jamu +t-57

(62)

We now bound (60), (61), (62). We will heavily use Lemma 4.14 and the fact that]wgt)yi] <
2|w;yi| = 2|vi| < 2||v]|0o < 1/10. To bound (60) use Cauchy-Schwarz to get that

5(])

2
9 (o) (w)? (myzz NN)

]E[k] ui 7) +1- (52(])

) 2

ci0;

< 29" (D) (wn:)? + 20" (WD) (wDyy;)2 (Z ﬁ)
L) Ly
jelk) Wi T

(2

< 8¢ (w3) (wimi)? + 80" (v el lo]% 3 Jej () =162,
JEK]

To bound (61) we compute that
s

(4)
Cj 5 C:0:

je[k} +t 5(]) jelk] ug]) +t'6z‘(J)

/ (-1 0) / (®) g 2
<8Iy (vi)|wilmal > lesl(ug?”)H7 | 4+ Al (vi)l|wgwal | D)

jelk] jelk] ul 4169
< 8¢ (wi)|wilms| 3 1ej 11wl 69 | + 8 (wi) el [o]loo 3 le] () 16102

et J€[k]
To bound (62) we compute that
< 2t (o)l 3 Ll
i W) 159y
= 4|1’Z) Ui |HvHoo Z |Cj| ui 152(])))

JElk]

(92
cj(6;")
w/(v())w()yz 2 : Ci\% .
jem W + - 67)y2

Note that

F1(0) = ¢ (v)wimi + ¢ (vi)vi > ¢j(y uy 15(])

JEK]

Summing the previous bounds over all i and using that f(1) < f(0) + f'(0) + § max¢e(o.1) f”(¢)
gives us that

VO™ < W) + (o) (an > (Ut W)

JE[K]

+82w" vi) (wini)? + 8|1cl1 [[v]|% Zw" v) S el (i) ~1s))?

i=1 JE[K]

76

+8Zw” vihwill 3 lesll @) 780+ 801+ el vlloe Y- 10wl 3 lesl((ut”)~10)?

JEK] i=1 JEK]

= WO + ¢/ (v)" (an > cj<U<”>15<J’>)

JEK]

+ 8IWlZ) + 8liclllvlZ Y e (U9 T16D 2,
JEK]

+8 <W!n\7 > ICj\!(U(j’)‘l\lé(j’!> +8(1+ [lell)llolloe 3 1es 1TD) 710D o
Tl v ()] 7

< W(P™) + 4/ (v) " (Wn+V S e (ul))” 15<J>)

JEk]

+ 8 W%) + 8L+ llell)vlZe D 1ol (T 16D 2,0,
JEK]

+ 8 Will oy S 15 11TD) 26D) + 81+ (el) [[0]oo ZH|Cj|||<U<j>>‘16(j>|I2¢f<v>|
J jelk

by the Cauchy-Schwarz inequality as desired.
A.2 Leverage Scores and Fundamental Matrix Proofs
The analysis and notation throughout this section is broadly based on that of [LS14].
Lemma 4.18 (Alternate definition of regularized Lewis weights). For all non-negative c
w(e) = argmin,,cpe f(w,0)
where
def 1 T 1,
w,c) = ——— logdet(A ' CW " »CA) + v; log w;
flw,e) = —— z g det(z:zl Z i log w;.

Proof. By [LS19, Lemma 23] we can compute that
Vof(w,c) = —Wlo(W2 5CA) + T — Wy,

Therefore, we have that

1

1_1 .
~W_o(W? PCA)+1T-W_ v =0,

1 1

which is equivalent to the desired bound of w(c) = o(WZ *CA) + v.

Lemma 4.19 (Jacobian of Regularized Lewis weight). For a fized vector v, we have that

-1
J.=2W, (WC - (1 - 2) Ac) A.C7L.
p

Proof. By Lemma 4.18 we have that

Vuwf(w(c),c) =0.

Differentiating with respect to ¢ gives us
Vel (w(e),¢) + Vi, f(w(c),c)Jc = 0.

7

As in the proof of [LS19, Lemma 24| we have that
V2. f(w,c) = —2WTA.C™!

and

2
v%vwf(wa C) = Wil (20 - <1 - _> Ac> ‘A/-i1 + WflVWA
p

2
=w! (zc +V - (1 — —) Ac) w1l
p
Now we can solve to get
2 —1
J.=2W, <z:c +V - <1 — —) Ac) A.C™!
p
2 -1 3
=2W. (W,.—[1——-] A, A.C
p
where we have used that W, = X. 4+ V by definition. O

Before continuing, we collect various properties of projection matrices, proven in [LS19,
Lemma 47].

Lemma A.1 (Facts related to T_lP(Q)). We have the following for a vector h € R™, where P
s an orthogonal projection matriz and T is a diagonal matriz with the same diagonal as P.
1. P@ < T.
TP < 1.
NTPPh)|: < [lhllpe < [IA]--
AT P hoe < IR

>~ o

We now show that the operator W 1J.C is bounded in the 7 + co norm.

def

Lemma A.2 (Facts related to W_'J.C). Define ||gllw(e)+o0 = 19lloc + Crormllgllwe)- If p €

[2/3,1] then for all vectors h we have
o W 'IChlluey < plihllw(e)-
o IW.'JChlloo < pllhllco + 2l[hllw(e)-
o W Chllue)ytoo < P(1 + 3/Crorm) 1P]lw(e)+oo-

_ _1 _1
Proof. Define A, = W, 2A. W, 2. Compute that
_1 1) -1
W, 2J.C = 2W? <wc - (1 -];) Ac> A,
2y — \ ' -1
:2(1_ <1—5>Ac) W, ZA,

2\ \ 1. 1
:2<I—<1——)Ac) AW?.
P

_ N1
Recall that A, < X, < W, so 0 < A. < I. Therefore (I — (1 - 1—2)) Ac) A, is a positive
semidefinite matrix with eigenvalues at most

max —————— —

A p
0<A<1 | — (1_2))\ 2

78

Thus, we have

_1
W I .Chllyiey = [We 2J:Chl|2
2N\ 1__
(1-(1-2)x) &
p

_1 _1 _1 _1
Define S, = W, 23X W, 2. Note that S. is diagonal and 0 < S. < I. Define Q. = W, 2 P£2)WC 2,

1
[WEhll2 < pllhlwe)-
2

By definition, A, = S. — Q.. Define D, = ﬁ, and note that D, is diagonal and
0 < D, < pl. Note from the above formula that '
1 2y ——\ ! 1 _1 1
W_1J.Ch—D.h =2W, A, <I - <1 - —) AC) WZh—-W.?’DWZh (63)
p

v s (1 (1)) (- () 5)
:Waes Q_E?é%ﬁgg_@_g@,aw)@_@_gxglwa
o (1= 1-2)8) " 11 2)5)

_1 2 -1 1 _1 2\ ——\ ! 1
= —2W, 2 (I - (1 - —> sc) W, 2PPwW, 2 (I - (1 — —) AC) WZh. (64)
p p

-

By Lemma A.1 and 3. < W, and both are diagonal matrices, we have that
W PPz < s, < 1|2 uwe)
Also, S. is non-negative and diagonal. Therefore,
W3 .Chllo

N\t 1
< [|Dehl|oo + ||2We. 2 ((1——)80) W, p@W, (I—(l——)A) W2hlso
p

2\ _ 1
< D+ 2w POWE (1 (122K whi

p

_1 1

< plhl+2IWH (1= (1-2) &) Wl

(-9

< pllhlloo + 2[llw(e)

W2l
2

< pllhlleo +2

At the end we have used that A, is a positive semidefinite matrix so (I + (% — 1) XC) has all

eigenvalues at least 1, hence 0 < (I + (% — 1) KC) =L
Finally, note that

‘|WQ1JCCh||w(c)+m < thHOO + 2Hh||w(c + CnormthHw(c)
< p(1+2/(Crormp)) [7llw(e)+o0
< p(l + 3/Cn0rm)“hHw(c)+oo

as p > 2/3. O

79

We will need one additional bound on the co norm of a matrix that appears in the expression
for the Jacobian in Lemma 4.19.

Lemma A.3 (Matrix co-norm bound). In the notation of Lemma A.2 we have that for any
vector h that

_1 2y —\! 1
WCQ(I—(l—Z—))AC) W2h| < 3)h||.

Proof. By Lemma A.1 we know ||3_ 1p? Hoo < 1. Define M, (Wc + (% - 1)20) = 3. Let
L=3 (5 — 1) . We calculate

1 2y —\~L 1
WCQ(I—(l——)AC) w2
p

[e.9] oo

-1
(- () v
p p -

P _1 S SN & e
=2 |Mm. 2 <1_£MC2P2)M§) M. *W,
2 oo
p _1 . _1 1 _1
=5 |Me* (M. *POM, ?)'M, > W,
>0 00
_Pp Zez 1P(2 zM W,
2 >0 0o
p =1 @) -
<S>y f='P M
R WR
2
< |mitw|| <=<3
0o T p

where we have used that if X is a symmetric matrix with | X[z < 1 then (I-X)™' = 3,5 X",
and M, ~ ch as diagonal matrices. O

Lemma 4.20 (Decomposition of J.). For any vector ¢ € RY,, there is a diagonal matric
0 < D. =< I such that for K. = W_1J.C — D, we have for all vectors h that

IKchlloo S l17loo-
o [Kehllwe) S MRl -

Proof. We follow the notation of the proof of Lemma A.2. We then have by (63) and (64) that

1 9 -1 2\ _\~! 1
K,=W;'J.C-D,=2W,? <I — <1 - —> sc) W, 2P(2)W (I - (1 - —) Ac> W2,
p p

We first bound the oo-norm of K.. By Lemma A.1 and Lemma A.3 we get

1 9 -1 2y _\~1 1
W, 2 (I - (1 - —) sc) W, QP(Z)W (I — (1 — —) AC) W2
P P

_1 2\ —\ ' 1
<ow PPWE (1- (1-2)K,) Wil 51
p

2

o0

80

For the 7-norm, we use that W, > Pg) and bound
-1 2 -1 _1 oN __\~! 1
2||W, 2 (I— (1 — —) sc> W, 2PAwW, 2 <I — <1 — —> AC> W2h
p p
_1 2y — \~! 1 _1 9 -1 1
=2|W.?2 (I— (1 - —) AC) W, 2PpPw, 2 (I— (1 - —) SC) WZh
p p
2\ — \ ! 1 _1 2 -1 1
<2 (I—(l——)AC) WC2P§>WC2(I—(1——)SC) Zh
p b
—1
<9 <1_<1_3>sc) h
p
—1
<9 <1_<1_3>sc) h
p

1 _1
In the third line (the equality) we have used that WZ K. W, ? is a symmetric matrix, as both
1 1

T

T

2

PYwW; P

< 2||Alll

p® P

W. 2J.CW., ? and D, are, so it equals its transpose.]

Lemma 4.21 (Alternate decomposition). In the notation of Lemma 4.20, there is a diagonal
matriz D!, and matriz K/, such that 0 <X D/ <1,

1 2N — \~! 1
WCQ(I—(l—Z—))AC) W? =D. + K.,

and for all vectors h,
o [Kehllwe S M11AHpe
o [IKChlloo < [17f]oo-

Proof. By Lemma 4.20 we can write

_1 2y — \~! 1 2 1 2\ _ \~l__
Wc2(1—(1——)AC) WE:I+(1——>WCQ<I—(1——)AC) AW
p p p

1 1
=TI+ (— — 1—)) w_1J.C

1 1 1 1
— I+ (-)De+(z- ") K.
" <2 p> ot <2 p> ‘
We set D, = I+ (1 - %) D, and K| = (% - %) K.. This immediately implies the two claims
about the 7 and oo norms of K.h. Finally, as in the proof of Lemma A.2 we know that

et (e ()

2
p

Qpof—

Therefore, D/, is diagonal and 0 < D/, < I as desired. O

Lemma 4.22 (Lewis weight approximation). Let p € (0,4). If C ~. C then wy(CA) =y,
wy(CA).

Proof. Define wy = w,(CA), and

2

o
— 2 2
w1 = Iter(w;, C) for Tter(u,C)y & (czag(ATCUIECA)lak +uf vk> °

81

Note that if C a2 C then Iter(u, C) a¥,. Iter(u,C) for all vectors u. Also, if u

Iter(u, C) R(1-p)e Iter(u/, C) for all diagonal matrices C. Now
2

wy = Iter(wo, C) Rope Iter(wo,é) = wq.

If w; =5 w;y1 then

wiy1 = Iter(w;, C) %(175)5 Iter(w;y1, C) = wjyo.

Therefore
wo zzizo 2(1-2)'pe klirgo wi, = wy(CA)
and
2y (1 — —) =4e
>0
as desired.

~
~e

u' then

O

Matrices such as Po(PXP) appears in the derivative of P® | and can be bounded as follows.

Lemma A.4 (Projection matrix facts). Let P be a projection matriz with diagonal given by T.

For all vectors z,v and X = diag(x), V = diag(v) we have that
P o (PXP)u| < P(2>()+ = P<2>()

as vectors coordinate-wise. In particular, we also have that
« [T7'Po(PXP)uf|, < 2 3 (2[5 + lIo]1%)-

o [T'P o (PXP)y||, < 5(l2*pe) + [V pe) < 51227 + [[0°]]-)-

Proof. By the inequality |a'b| < %a—ra + %b—rb we have

e/ P o (PXP)u| = |e] PXPVPe;

1 1
< §eTPXPXPei + §ej PVPVPg¢;

1
< §eZTPX2Pe,~ + §e;rPV2Pe,~

1 1
= 56/ PO(?) + ZeJPO W)

Also, we then can use Lemma A.1 that [|[T~'P® || <1 to get
1

|22 o PXPY|_ < LT PR @)oo + ST PO (02 o < g (2l + ol1%).

2
Finally, we have that

HT*1P o (PXP)v

T

1

IN

1
U lpe + [v*[pe)

82

1, 1 .
< SIT PO, + 5T PR),

= §(||x2HP(2)T*1P(2) + HUQHP@)T*lP(?))

Lemma 4.26 (Sharper bound on changes in 7 part 2). Let 6. = %) _ ¢ be a vy-bounded
change, and let r@ew) — 7 and 8, = 7)) — . For J as defined in Lemma 4.19, we have
T (B[] - IERD)|| S

T+400

Proof. We adopt the same notation as Lemma 4.24, and also define

N;, =2 (I— (1 — %) E)AE. We have

T-Y(E[5,] — JE[6.]) = /O ‘1o nT R [%Jtéc} . (65)

1 1
Recall that J, = T/ N,T? C;l, SO

dy, = (iT%) N,T;C;!+ T} (iN) T:C; !
dt det)ttt E\qet) Tt
L TN (ET%) C! & T?N,T? (icl)
t t dt t t t t4t dt t

We will bound all four terms separately. Define A;, = diag(d,), and note that %Tt = A,
Therefore, we may use Lemma 4.24 to bound the first term with

d 1 1 1 1
HET—1 (—Tg) N, T2C; 6, = - HET_th_lAnTE N,T2C; 6.
di T+00 2 T+00
=5 HIE[T*IT,leTtJtéc]
T+400
S [ElTta)?|| s

T+00

For the third term we first define v; = T; 'A,,C; 6, and use Lemma 4.20 to get

1 d 1
HETng N, (ETE> C; 1o,

1 1
< HET1TtT;1TthTET;1ATtC;1éc

T+00 T+00

_ HET_thT;IJtCtthT+OO

IN

[ET " TDyvt]| r 400 + [IET ™ T K0t -4 oo
Note that
[l S (T 67,)* + (Cy)
Therefore, we use Lemma 4.24 and y-boundedness (Definition 4.23 (17)) to bound
IET"T:Dyve]l o0 S NE(T; ' 07,)? 7400 + IE(Ci) [lr400 S 72
For the term with K;, we use Lemma 4.20 to first bound
IT™ TR velloo S IKevelloo S IT7 0r [loclICF oelloo S 77
Also, we can use Lemma 4.20, Lemma 4.24, and y-boundedness (Definition 4.23 (18)) to get

E|T'T K » S B[Keve -
< E||T; ' ArCr el lpe

S nyHC_lléc’”Pf) ,S VQ/Cnorm-

83

Therefore, the total contribution from the third term is O(y2). For the fourth term, we use
Lemma 4.20 to write

1 1 /d
HIETleNtT,? <Ect1) 5. = [Tty cucr |

T+400

T+00

IN

IET™"TD¢(Cy'6c)’|lrto0 + ET™ TeKe(Cr0c)? 7400
For the first piece, use y-boundedness (Definition 4.23 (17)) to bound
IET™'TD¢(Cy'6c)’|lrto0 S IIE(CT ' 06)?[lrr00 S 77

For the second piece, we use Lemma 4.20 and v-boundedness (Definition 4.23 (17)) to first
bound

IET™ K (Cy ' 0e) oo S 1(Ci100) lloo S 72
For the 7-norm we can use Lemma 4.20, y-boundedness (Definition 4.23 (17) and (18)) to bound

~

EHTithKt(Ct_l‘;CPHT N EH(Ct_l‘SC)QHpE?) < 72/Cnorm-

Therefore, the total contribution from this case is at most O(v?).
Now we bound the contribution from the %Nt term.

Analysis of %Nt. By the chain rule, we have that

d 2\ -\ 1 d_——
— N, =2I—-(1—-]A —A
at " ((p) t) at "

(2 (- (-2)%) 30)) s
(e (-2)) G- 0-)m)

— _1 1 1_
Recall that A; = T;'%; — T, QPEQ)Tt 2. Define the vectors z; = Ty oy, 0y = T}

11

the diagonal matrices Z; = diag(z;) = Tt_12t, L, = TfigCt, so that P, = P(L,A) =
1

— _1 _1
ATL;(ATL?A)"'L;A. In this way, A; = Z; — T, 2P(L;,A)®T, 2.
Define §,, = %Zt,égt = %Et, and A, = diag(d,), Ay, = diag(dy,). We have

=

ct, and

Asy = =T S A + T AL = T AL (T - T ' E).

and
1 1 11 1.1
Be = (5 - 13) T, " "Cid, + T "6
S0
-1 1 1 -1 -1
L, Ay = 5—]—9 T, A, +C; 6.

Therefore, using Lemma 4.24, y-boundedness (Definition 4.23 (16), (17), (18)) we get that

[0z)lcc S v and HE[éi]HT-i-oo S 7* and EH“S%‘HPS) < 7/ Crorm (66)
and

L7 00 lloo S 7 and [E[(L;"0,)%) 7400 S 7° and EHL{lI%IHPg) S Y/ Cuorm- (67)

84

A direct calculation gives that

d_— 1 _3 QDra—t 1 o1 gy 3 _1 d 1
T = A+ ST APIT 4 ST TPYT, P A, - 2T, PP(LeA) o (EP(LtA)) T, ®

1 _3 _1 1 1 _3
=, + 5T, AL PIT,Z 4 5T 2P, 2N, (68)

_1 1
2 2

_1 _1 _1 _ _
— 2T, *PPL A, T, 2 — 2T, L7 A, PPT, 2 44T, 2 (P, o (PyL; 1A, P,))T, 2.

NI

(69)

There are six terms here and we analyze them one by one. At a high level, for each of the six
—\—1

terms, we will use Lemma 4.21 to handle the (I — (1 — %) At) terms in %Nt. For simplicity,

we will omit the factor of 2. For the A,, term in (68) we get

1 2\ .\ L 2N\ "1 1
TIT? <I — (1 — 5) At) A, <I — <1 — 1—)) At> T?C; 16,
= T7'Ty(D} + KA., (D] + K;)C, 6.

= T 'T\D}A,,D,C; 6, + T 'T;K,A,, D,C; 6. (70)
+ T7!'TyD}A,,K,C; 6. + T'TVK} AL, K,C 16, (71)

We know by (66) and y-boundedness (Definition 4.23 (16))

1 2\ __\ ! 2\ _\"1 1
T'T? (I — (1 —]3) At> A, (I — (1 —]—)> At) T?C; 6.

so we focus on the 7-norm. First we use (66) and y-boundedness (Definition 4.23 (17)) to get

2
S5

IE[T™ T, DyA-, DGy o[- < EGZ]II- + IE(Cy'0e)] - < 7*/Chorm-
For the remaining three terms in (70), (71) we can use Lemma 4.21 to bound

HE[T_thK;fAZtD;C;ldc]HT S H5thooE”C;1’5c’HP§2) g 'YZ/Cnorm

and similar for the other two terms. Therefore, the total contribution from (70), (71) in 7 4 oo
norm is O(y?).

13 oL
For the 5T, *A;, P, T,

1p3 2\) i p@mt 2\ =\ b et
T (- (1) &) TUARPT (1o (1-)& TiCs

=

term in (68) we can use Lemma 4.21 to write (omitting the 3)

P
= T~'Ty(D} + KT, *A, PP (D} + K{)C; 6,

= T'T,D/T; 2A,, PPD,C; 16, + T 'T,K,T; 2A,, PP DC; 16, (72)
+ T'TD T 2A,, PPK,C 6, + T 1T, KT, 2A,, PYK,C 16 (73)

We can bound using HT;le)HC>c> <1 (Lemma A.1)

1 N1 3 1 Nt
HTle (I - (1 - %) At) T, A, PYT, 2 (I - (1 - %) At) T?C; 6,

<fy2,

~

o0

To bound the 7-norm we can bound the first term in (72) with

|B[T TD{T; *A- PPDIC; |- £ 1T 6| BIC; Bl < 47/ Chorm.

85

The other terms in (72), (73) follow similarly, e.g. using]]T;1P§2)]]T <1

E[|T'T:D,T; 2A, PP K,C; '6.|,] < BT, A, T, 'PPK,CL Y6,
< T 600 oo Bl K, C; 6 1)
< AE[IC; 6l o]
t

,S VZ/Cnorm-

_1 _3
Therefore, the total contribution from (72), (73) in 7 + oo norm is O(y?). The 3T, 2 P§2)Tt 2A,,
term in (68) can be handled equivalently.

_1 -1
We turn to the 2T, 2P§2)L; YA, T, 2 in (69), which can be handled similarly to previous
bounds. We can use Lemma 4.21 to write (omitting the 2)

1 2y —\ "L 1 @) 1 2y .\l 1
T'T? (I — (1 — 1—)) At) T, ’P, LA, T, 2 (I - (1 - 5) At) T?C; 6,
= T'Ty(D} + K))T; 'PPL 1A, (D) + K})C; L6,
= T'7,D;T; ' PPL; 1A, D|C; 16, + T T KT, ' PPL A, DC; 6, (74)

+ T'TD T ' PPL ALK C S, + T TK, T 'PPL 1A, K, C L6 (75)

We can bound using HTt_ngQ)HOO <1 (Lemma A.1)

1 -1 1 1 -1 3
—1m3 2\ “2p@y -1 2 2\ 2 -1 2
T T (I-(1- 5 Ay T, *P,”L; A, T, I-({1- 5 Ay T C, 6. < 4.

~

(e 9]

To bound the 7-norm we can bound the first term in (74) with

— — 2 — — — —
[B[T T DT, PEL T A DIC ol - S 1Ly e o BICr el 7/ Crorm

The other terms in (72), (73) follow similarly, e.g. using ||T;1P§2)||T <1

E|T'T,D,T, '"PPL ALK, C 6|, S BT PPL ALK Cr 6|,
S EIL; ALK C ol
S I 160, | EIKLCy e |-
S ’YEHC;H(SC’HPE?) < 7*/Cuorm.-

_1 _1
Therefore, the total contribution from the 2T, 2P§2)L;1AgtTt ? term in (69) O(y?). The
1 1
2T, QL;lAgtP,gQ)Tt ? term in (69) can be handled equivalently.
1 1
Finally we bound the 4T, 2 (P;o(P;L; ' Ay, P;))T, 2 term in (69). We start by using Lemma
4.21 to write (omitting the factor of 4)

1 2\ \ 1 1 _1 2\ _\—1 1
T'T? (I - (1 - 1_9) At) T, 2(P; o (P,L; 1A, P))T, 2 (I — (1 -];) At) T?C; o,
=TTy (D + K})T; ' (Py o (P,Ly 1Ay, Py)) (D] + K{)C; 1o,

= T 'T,D, T, (P; o (P;L;' Ay, P;))D,C; 6. + T ' T/K, T, (Py o (P:L; ' Ay, Py))D,C; 16,
(76)

+ T7'TyD T, (P o (PiL; A, Py) K,C 6. + T T KT, (Pr o (PiL; A, Py)) K, C 6.
(77)

86

Using Lemma A.3 and A.4 we get that

1 2N\l 1 it 2\ __\~l 1
HT—ng (I - (1 — 1_9) At) T, 2(P;o (P,L; 1A, P))T, 2 (I - (1 - 5) At) T2C; 6,

1 2y .\l 1
ST Py o (PL'ALPy)T, 2 (I - (1 - —) At) T7?C; 6.
p o
-1 2\ —\1 1 2
SIL7 AR+ T (1- (1-2) &) mieila| <4
p oo
by (67) and y-boundedness (Definition 4.23 (16)). We now bound the 7-norm of all four terms
in (76) and (77). For the first term in (76) we bound using Lemma A.4 and (67)
E|T'T,D,T; ' (P, o (P,L; 'Ay,P;))D;Cy 6 |-
S E|T; (Py o (PiLy ' Ay P))DyCr ol (78)
S EN(L; 10,)? |l pe + Ell(D{C; 160 pe
t t
S 1T 3t floe BTy e llpe + [1C; dellooBIC; el pe
< 7*/Chorm (79)
For the second term in (76) we also get
E[|T'TK,T; (P; o (PL; Ay, Py))DyCi o]
S BTy (Py o (PLy ' Ay P1))D1Cy e] <4/ Chorm
exactly as from (78) to (79). For the first term in (77) we use Lemma A.4 and (67) to bound
E|T'T,D;T; (P, o (P,L; Ay, P)K;Cy |-
S E[Ti (Py o (PLy ' Ay P))K;Cy |- (80)
S EN(Li 00, [lpe +EI(KCr60)? | pe
t t
< L7 0 BT 0 lpe) + BN (K Cyoe)? -
< 'YQ/Cnorm + HKQCt_ldcHOOEHKz/tct_l‘SCHT
< ’72/Cnorm +7- E||C;1|5C|||P§2) S ’72/Cnorm (81)
where we have used |K}| < 1 and Lemma 4.25. For the second term in (77), we exactly
follow (80) and (81) to bound
E[|T'TK T, (Py o (PL; Ay, Py))K; Gy 7]
S BTy (Pr o (P Ay P))K(Cy el] £ 9% /Chorm-
1 1
Therefore, the total contribution from the 7 + oo-norm from the 4T, 2 (P;o (P;L; ' A, Py))T, 2
term in (69) is at most O(y?). Therefore, the %Nt term has total contribution of O(y?2).
Combining everything, this gives our desired bound. U

A.3 Initial and Final Point

We will require some basic properties of self-concordant functions.

Lemma A.5 (Theorem 4.1.7, Lemma 4.2.4 in [Nes98]). Let ¢ be a v-self-concordant function
on the domain X. Then for any x,y € X we have that

87

o0

e Pa)T(y—=) <.
. (Voly) — Vo) (y — z) > —oiv2etn

- 1+||y $||v2¢(x) ’
Lemma 4.11 (Final point). Given an e-centered point (x, s,) where e < 1/80, we can compute
a point (z(al) g nal)y qrisfing
1. ATg(nal) — ¢ g(final) — Ay 4 ¢ for some y.
(final) —min 7., c'z Snp
i<z <u;Vi

2 ¢z

The algorithm takes O(nnz(A)) time plus the time for solving a linear system on ATDA
where D is a diagonal matriz.

Proof. Set stfina) — g and x(fina) — 5 — T '3 ()" LA(ATT '&"(z)"LA)~L(b — ATz). This
obviously satisfies the first point. For the second point, there are two steps: We first prove the
claim below, and then use the claim to prove the second point.

g(final) +MT(1‘)¢/ (x(ﬁnal))
/,n'(l')\/(b”(:v(ﬁ“al))

Claim A.6. ||®"(2)2 () — 2)||. <& and €.

Proof. We start by using Lemma 4.28 to get that

19" (2)2 (2 — 2| < [T '@"(2) 7AATT '&"(z)'A) " (b— AT2)||

SNATz = bl (AT r-100(z)-14)-1
< &7/Chorm < €.

1-self-concordance gives us that
o) (@) - g@)) | _ 5 197(@) 30 (@) @ — 2)]lc < =

Also, we know that ¢ (z) ~o ¢"(z2D) hence
‘ <
o

. def .
Now, we are ready to prove the second point. Define 2* = argmin 7., c¢'z, and
0 <x;<u;Vi

(fina) T / nal) .
zy =t 4 (1 —¢)z* for t € [0,1]. Let v = 2)y ()¢f o e) so that [vlloo < €. We will
pr(@)y/ ¢ (z(naD)

g(final) + ,U,T(x)dsl(:l?(ﬁnal))
() (b/l(ﬁnal)

g(final) +:U'T()¢/(ﬁnal))
p(2)/ 9" (2)

< e.

~

’ o

O

use that ||v]|e < 1. This gives us

CT(x(ﬁnal) _ CC*) — (S(ﬁnal) _ Ay)T(x(ﬁnal) _ x*)
_ (s(ﬁnal))—l—(x(ﬁnal) - 1'*)

:u(¢Wﬂmww—¢m@m%mexﬂhw—xﬂ

<p >y (

1€[m]

¢,, ﬁnal)(xgﬁnal)) ,U,(]S ((final))TT()((final) x*)

(82)
By Lemma A.5 above coordinate-wise on the 1-self-concordant functions ¢;, we can bound

¢/(w(ﬁnal))TT(w)(m(ﬁnal) - 1'*)

88

— 2¢/(x(ﬁnal))TT(x)(x(ﬁnal) _ $1/2)
2(¢/ (@) — ¢/ (21/)) T (@) (@B — 21 j5) + 20/ (21/9) ' T(2) (20 — 21 9)
2(¢/ (@) — ¢/ (21/2)) " T() (2™ — 1’1/2) +2¢/(21/2) ' T(2) (@172 —)

’ W (final) _ 361/2))

Ze% 1+]W 2 — (15):)
‘ \/W (inal) _ oy 2

- ie%ﬂ 2+‘ \/W (fal) _)

Applying this to the expression in (82) we get that

| \/

CT(x(ﬁnal) _ .YJ*) < (82)

‘ W (fnal) _ o) 2
" (ﬁnal (final) * z
S| Y @) |V (g) @ — af)| - N +22
A i 1" nal)y «_(final) ,f
i€[m] i 2+ F wz icm)
‘\/W ﬁnal) 1’*
8 Z \/,/(Tal (fnal) _ ey + Z = /"Z T(z)i S np
zEm 2+ ¢ I'i ZE } ZE[m]
]

A.4 Sampling Schemes
Lemma 4.41 (Independent sampling). Let vector q € RY, satisfy

_ 1
gi > C20a7(5,)i] + Coampleo (T 20" (T) "2 A); log(m)y >

for sufficiently large Csample- Then picking Ry = 1/ min(g;, 1) with probability min(g;,1) and 0
otherwise is a Ciyaq-valid (Definition 4.13).

Proof. The (Expectation) condition is clear by definition, and (Covariance) follows by inde-
pendence. The (Matrix approximation) condition follows by [CLM*15, Lemma 4] and that
qi = Csample IOg(m)772U(K)'

For the (Variance) condition, note that the variance is 0 if ¢; = 1. Otherwise, ¢; >
C2 a7 (8,)i| so we have

(57")2 7‘(57’)2’
Var[R;(0,);] < L <
S 4i CVQalid

—_1 _

Also, ¢; > Coampled (T 20" (Z) "2 A); log(m)y~2 so E[RZ] < 20(A)~L.
For the (Maximum) condition, we perform cases on ¢;. It is trivial for ¢; = 1. Otherwise,
6i = Chuna ™ 0)il, 50 lg; " (0,)il < 52— O

ld

Lemma 4.42 (Proportional sampling). Let vector ¢ € RT, satisfy
1 1
¢ > [(6;)il + o(T 20"(x)"2A);.

89

Let S > 3 ,qi. Let X be a random variable which equals q{lei (e; is the standard basis
vector) with probability q;/S for all i, and O otherwise. For Co = 100CL .47 2log(m) let

R = C’al chi”f X, where X; are i.i.d. copies of X. Then R is a Cyaiq-valid distribution

(Definition 4.13).

Proof. The (Expectation) condition follows directly. For the (Covariance) condition, note that

E[R;R;;] = Pr[X;, picks i] Pr[Xy, picks j] < C25? i qgg =1.
14

2.
1<t1,t2<Co S Coqzq]

Because variance is additive over independent samples, we use that ¢; > |(d,);| to get

(57")2 72‘(57’)2" 7’(57")1‘
R;i(9,):] < . < < .
Var([R;(0r)] 2 2 2 2

va, valid valid

Also, ¢; > o(A);, so we get that

E[RZ] <1+ Var[Ry] < 1+4¢; " < 20(A)7".
To show the (Maximum) condition, we recall that R = chif Cy 1Xj, and use Bernstein’s

inequality. Note that the maximum possible value of Cjy 1x ; is (Cogi)~!, and that Var[R;] <
(Coq;)~'. Therefore, by Bernstein’s inequality we know that

_t
Coqi 3Coq;

t2/2
Pr{|R, 1] >] < exp (_17/) |

For t = we have that

%
Cvalid [(6r):]

t2/2 - 1
R =P T TG)iy

-+ ;
Cogq; 3Coq; 50q; log(m) + 15003a1idqi log (m)

Now, because ¢; > |(0,);|, we have that

(57’)@2 < ’(57")z’ < 1
50¢; log(m) — 50log(m) — 50log(m)

as [|0r|lco < v by Lemma 4.29. From the definition of ¢;, we also calculate that

|(0r)ily < 1
15007, iq4i log(m) ~ 150C%,;qlog(m)

Therefore, we have that

1

exX
il RS (500
50q; log(m) 15OCnorvaalidqi IOg(m)

1
exXp 1 1
5oTog(m) T 150C2 ., log(m)

—10

IN

IN

exp(—25log(m)) < m

Finally, to show the (Matrix concentration) result, we will use the matrix Freedman Inequality
[Trol1]. Let a; be the rows of the matrix A, so we have that

CoS
~ T —1/2v T T — T 1 T
(A'R)VPATRAAA) V= Y (ATA) 20y g ey a) (A TA) T,
=1

90

where i; is the i-th selected nonzero entry for R. We now bound the maximum and the variance.
For the maximum, we know that

H(KTK)_UQC 1 _1azjaiTj(KTK)_1/2H2 < Co_lqi;lU(K)z‘j < 00_1’

Z

as q; > o(A); for all i € [m]. For the variance, by the above calculation using ¢; > o(A); for
all 7, we know that

E, [((A"A)712C5" g aiya] (ATA) 712
I 2
= > Ci%q %0/ - (B R)Vaj0] (KK)H?)
J
< G257 S (AT R) M aja] (ATA)TV? = 0257
J

As there are CpS total terms, the variance is bounded by Cj 1. Hence, the matrix Freedman
inequality tells us that

7*/2
Cy 't +1Co/3
as desired, by the choice of Cj. U

Pr [KTRK %y KTK} <m-exp (—) < m -exp(—25log(m)) <m0

Corollary 4.43 (Sampling by a mixture of ¢ and uniform). Let Cy,Co,C3 be constants such
that C3 > 4Csample and C1Cy > C 1id”Y 2 and

pi = C1v/n(8,); + Co/v/n + Cymy 2 logm.

Then p; > q; in each of Lemma 4.41 and 4.42. Hence replacing q; with p; in Lemma 4.41 and
4.42 and sampling acoordingly gives a valid distribution (Definition 4.13). Additionally

Z pi < ((01 + Cz)ﬁ + Csny 2 log m)) (25)

Proof. Note that by the choice of o = y we have that

1
4log(dm/n
__1 1 11 1
O'(T 2@”(?)_5A)i ~1 O'(T 2 1-a @”(T)_EA)Z‘ = T(T)i,
which gives the bound for the part with 7;. For the other piece, note by the AM-GM inequality

C1vn(6,)7 4 Co/v/n > 2¢/C1Ca|0,)i > CZriay 104 i-

Now we bound Y, p;. By Lemma 4.29 we have that
2 oM 2 2
15008 < 6,2 < 2me?/n <

because v < 1/2. Therefore, we have that

> pi= Y, Civn(6,); + Ca/v/n + Csry *logm
1€[m] 1€[m)]
_ 2 m -2
= C1vn|o, |3 + Co NG + Csny~“logm
<(C1+ Cz)% + Csny~? logm.

91

A.5 Additional IPM Properties

Lemma 4.44 (Nearby stability of). Suppose that R is sampled from a Cyalig-valid distribution
for Coatia > B2 log(mT) where 8 € (0,7). Let (¥, s®) for k € [T] be the sequence of points
found by Algorithm 1. With probability 1 — m 10, there is a sequence of points) from
1 <k <T such that

0" (z0) 3 (2*) — 20|, < /2.
19" (@®)3 (30 — 20| < 8.

0" (2®))3 (20+D — zR))||_

7(@*)) 400 < 2.

Proof. Define 21 = 2(). Define the stability potential, analogous to the centrality potential in
Definition 4.8, as

Ugtan (7,7) = Z cosh (stab(ﬁ"(A(k))z (azgk) _ :ng))>

1€[m]

for Astap = C'log(mT)/j for sufficiently large constant C'. We will choose Z(**1) using gradient
descent against the potential, and will analyze the procedure using Lemma 4.15. Precisely, fix
Estab = ﬁ for C' as the same constant as in Algorithm 1. Chosen this way, we can see
that v8 < egtap because eggap and v = ¢/(\C) < 1/(C3logm) by the choice of

parameters in Algorithm 1. R
Define 6 = Estabv?v\\I/(x(k),f(k))b(T(x(k))) and

_ 8
CZlog(mT)

20D =) _ g0+ W] 9" (2®) 735, = 20 —E[5,] — ¢"(«V) 26,

x
where 0, is defined in Algorithm 1 line 12. We will now verify the Condltlons of Lemma 4.15 and
apply it. Here, we will choose y = 28 — 2() and «(M) = P (x (k)) In the notation of Lemma
4.15, for simplicity we will just write ¢ = u(!), and 6, = 6(1), as in the notation of Section 4.4.
By Lemma 4.31 we know that [|C16.| s < 2y < 1/100.

Throughout the proof, we will use that 7(z(¥) Ro(8) 7(z®) because ®”(z(*¥) ~o(8) " (2(F)
by induction and Lemma 4.22. In particular, for any vector h we have that [[h||, G R0.1
[12l+o0-

By induction, we know that H@”(x(k))%(f(k) — M)l < /2 < 1/50, and thus

-1 15 (7(K) _ (k) _1
C ¢ <By <
by the choice of 7. Also, we know that

=gkt g0 _ (pk) _ g ®)) _ 5" (036 = (™) "2 (R4, — 6, — b2) .
Therefore, by the (Maximum) condition of Definition 4.13 and [|6;(|, G100 < Estab We know
that

[Witllao < 18 (2®9)F G — 59l < T+ eap < 78+ Eyad < 15—

- - Cgahd = 100Astab’

so all the conditions of Lemma 4.15 are satisfied. Now we bound the terms of (13), (14), (15)
in expectation over R. To bound (13), note that

BN (0) Wil = 0/(0) 85 = a0/ () oo o
and by Lemma 4.31

E[¢'(v) "VC0] < [[vllooll¥' (01 G100 1 C T ELOll 06400

92

* 1 *
< BV O oy € Sl @) e o
For (14) we have that
E[8I W[5)] < IVar(@) 215) + 185150
< VB0 Gy oo 19" ()1) 400 T 1027 G0 y400 18" () ik
S (72/82 + Egtab)HW(U)H:(m))m
S 52tab|’¢”(v)”i@(k)proo-

where the first step is via the triangle inequality and the definition of 7, the second step is by
the (Variance) condition of Definition 4.13 for Cyaq > S~2 and the definition of || - %100, the
third step is from Lemma 4.30 Part 2 and ||d-| < &stab by Definition, and the final step

is by 7/8 < Estab-
Also, we can bound that

E8(1 + flell1)llvl ZH 1T 6D 5]
Jjelk

S BPE[ICT 1050 ()]

= BBIC 2621?13)

< BPIEICT?02I G oo 18" (01)y 4o
< B2 ()1 09 400

< Rl (v >||T@(k)>+oo-

T(/x\(’“))—l—oo

where the first step follows from ||v||s < 8 by induction, |c¢;| = O(1) for all j, and the definition
of 6U), the third step follows from the definition of the dual norm || - ||%, ., the fourth step
follows from Lemma 4.31 Part 3, and the final step follows from v < egtab.-

For (15) we can bound using the Cauchy-Schwarz inequality and the above computations
that

EBIWallywy Y lelIlT9) 7169 [yry)

JElk]
07 1/2
E[[Wnl[?y)/ °E (Z e |[[(TD) 15(j)”1/1’(v)|)
JElk]
S €2anBY) I)II% G oo (83)

Also, we have that

8(1+ llell)llvllse Y |CJ|H(U(j))_15(j)H|2w/(v)|]

JElk]

< BIEICT?82) 214 (v) 2

< BIEICT 81 Gwrysoo ¥/ (01 G0y 0o

S BV ()15 G 4o0 (84)

For sufficiently small choice of v, we have that even with the suppressed constants in (83), (84)
that

1
@ (/8'72 + (6§tab/8’72)1/2) < Zestab-

93

Therefore combining everything, we get that

=~ =~ 1 * *
E[w (", 20 D)] < w(z®,2W) - 785tV)17 G400 T OEstan) 18" W17 G0y 400
As in the proof of Lemma 4.40, by [BLN"20, Lemma 4.36], and the fact that ||1||T(x M) oo <
4Cormy/n, we get that
1

B U N NN

< (1~ Tty o)
As U(zM, 2(D) = m, we have by induction that E[\I’(x(k),a?(k))] < 4ChormCmy/n < m? by
induction for all k. Therefore, with probability 1 — m~12 we have that W (z®), z()) < m!* for

all k. By the choice of Agap this implies that H‘I)I/(w(k)) @®) — 20| < /2 as desired.
To finish we must verify the other two conditions. The second item follows from self-
concordance and the first. To check the third condition, we have that

@ (@®)z (@D — 30 = ||o" (@) E[5,] - < L1y + eaar <7

(k))+oo T(x(k))—l—oo

where the first inequality follows by the triangle inequality and Lemma 4.29 Part 1. as ¢ <
B
m§017a85§7 O

Lemma 4.45 (Nearby stability of ¢” and 7). In the setup of Lemma 4.44, and @) =
@”(f(k))féT(A(k))%_%, we have the following.

@ (@0)3 (" (30) 72 — ¢ (@) 2]l < 5

187 (@02 (¢ (@*D) 72 — ¢"(39) 72 Gy o0 S -

o ITEW) T (@) — 7G]0 S 7

o [(WE)=1(@k+D) - D) G0y oo S -

Proof. The first two items directly follow from 1-self-concordance, specifically that
0" (@9) 7% = ¢"(a) 2] < 2 — 2

and Lemma 4.44.

For the third item, define py = ¢" (%))_% = gb”(x(k“))_% and 6, = p; — po. Define
pt =po +t-0p and 7 = w(ps). Note that 7 =4 70 = 7(Z (k)) for all t € [0,1] as p; ~0.01 po by
the second item of this lemma (Lemma 4.45), and Lemma 4.22. Therefore we can compute

IT@E") " (@ D) = 7 @), Gy = ‘ @) T

1
/0 HTt_le(pt)‘Sp

-1
S HPt 6pHTt+OO

~

S HP_l‘SpHT(E(k))

7(Z(*))+o0

A

Te+00

where we have used Lemma A.2.
For the fourth item, we once again use that 71 &g.04 70 and p; .01 po- This gives us
”(W(k))—l(@(k—kl) k))

”T(:L‘ (%)) 400

94

7(2(%))+o0

T(f(lﬁ‘l))%_% — T(/x\(k))%_%) ||7—(};\(k))+oo

)
S+ IEEED)TER) T 1, Gy e0
< 3+ [(r@F) /r@ER)) — 1] o) 1o

= 7+ IT@E®) " (F @) = r @), G0y 100 S 7

1_1
Here we have used that [z2 7 — 1| < |z — 1] for all z € [0.9,1.1], and items two and three of
this lemma (Lemma 4.45). O

Lemma 4.46 (Parameter changes along central path). For A € R™*" b € R" ¢ € R™ and
(,u € R™ assume that the point £ = (¢ 4 u)/2 is feasible, i.e. ATzt = b, Let W be the
ratio of the largest to smallest entry of (ﬁ”(x(init))l/?, and let W' be the ratio of the largest to
smallest entry of ¢”(x)1/2 encountered in Algorithm 2. Then

logW’' = O (logW + log(1/p{a)y 4 1og HcHOO) .

Proof. Note that the smallest possible entry of W and W’ is at least min;(u; — £;)~1, as
ol (x) > ﬁ for all x € (¢;,u;). By Lemma 4.11 and Claim A.6, for any e-centered

(x,s,p) encountered in the algorithm, we can find a point zal) guch that (x(ﬁnal),s,,u) is
also e-centered, ®" ()Y ~; & (), and ATzral) = p je. 2(nal) is exactly feasible. Thus,

it suffices to control the largest entry of ®”(z(i*2)) to bound log W'
/(.(final) .
Let v = %, so that ||v]e < e We will use that [|v]|e < 1/100 say. Also, we
know that s = Az + ¢ for some z € R™. This gives us that

Az + e+ prg (D)) —gpre” (inaly1l/2 — o,
Computing an inner product with (z(a) — z([iY)) gives that
0= (x(ﬁnal) o x(init))TAZ + CT((final) x(lmt)) (85)
+ MZ - (¢;(x§ﬁnal)) v, (Z(ﬁnal))l/Q) (xz(ﬁnal) . xz(init))

=me%%mWwZﬁw@m%vJUmWW@?”w@% (86)

We claim that (qﬁ‘(az(ﬁnal) — vl (x; (final))1/2) (ﬂ:(ﬁnal) (init)) —1 for all 7. To show this, we

)

without loss of genearlity assume that x(ﬁnal) > xgimt) Note that ¢}(x ﬁnal))(x(-ﬁnal) xginit)) by

our choice of ¢;(z) = —log(u; —x) —log(x —¢;) and (M) = (¢4+u)/2. If Z(ﬁnal) > ((init) u;)/2,
then note that
1 2 1

— U =
mz(ﬁnal)) mz(ﬁnal))2 4(u@ _ xl(ﬁnal))

G) — i ()2 > >0,

i

2 (uz - (ul —

so the claim is trivially true. So the remaining case if xz(init) < xz(ﬁnal) < (z; (init) 4 u;)/2. In this
case, we have that

7o (final)y " (final)\1/2 (final) _(init) . 1 " (ﬁnal) 1/2, (final) (init)
(Sh(ai™) —wig (™)) (@™ = 2f™) = a6l (™) 2 — ™)

95

- 10 (ul - fl

Going back to (86), we have for all j € [m] that

final) final) final ini
s (9™ — v (D)2 (2 — () (87)
- ¢ (x(ﬁnal) _ x(lmt - Z o~ (QSZ (final)) v; @((ﬁnal))1/2) (xz(ﬁnal) . xz(init))
ie[m]\{i}

< mllefloollu = Elloc + 1Y 75 < mllclloollu = Llloo + pin.
J

We now will bound (b” (x ﬁnal)) We will assume without loss of generality that x(ﬁnal) > xginit).

If x (ﬁnal) <(x glmt u;)/2, then we know that ¢/ (z ﬁnal)) < (u; — £;)72, as desired. Otherwise,
the above arguments give that

(final final
(5™) = w65 a5 WzPW-

Therefore, we get that

final)\ — -1 _— final init)\ —
(= 2§™0) 71 S e @ —) el oo 1 — oo + pim)
_1m _
< (g = 45) " (melloolu = Cloo + pm).
Using that ¢ (z (ﬁnal)) S (uj — :Ug»ﬁnal))_z completes the proof. O

B Matrix Data Structures

In this section we provide the existence of the required data structure for solving general lin-
ear programs. We start by citing the HEAVYHITTER- (Definition 3.1) and INVERSEMAINTE-
NANCE-data structure (Definition 6.2) proven in [BLSS20]. We then prove the existence of a
HEAVYSAMPLER-data structure (Definition 6.3).

Lemma B.1 ([BLSS20, Section 6.1]). There exists a (P,c,Q)-HEAVYHITTER data structure
(Definition 3.1) with P = O(nnz(A)), ¢; = O(n) for all i € [m], and Q = O(n).
Lemma B.2 ([BLSS20, Theorem 9]). There erists a (P,c,Q)-INVERSEMAINTENANCE data
structure (Definition 6.2) with P = O(nnz(A) +n®), ¢; = O(1) for all i € [m], and Q =
O(n? 4+ nv=1/2),

We now construct a data structure for the HEAVYSAMPLER-problem (Definition 6.3). We
first provide the data structure Algorithm 6 with guarantees given by the following, Lemma B.3.

We then show in Corollary B.6 how the data structure of Lemma B.3 can be used to solve the
HEAVYSAMPLER-problem.

Lemma B.3. There exists a data structure (Algorithm 6) that supports the following operations.
o INITIALIZE(A € R™" v € RYy, g € R™): The data structure is given a matriz A € R™*",
additive vector v € Ry, and a scaling vector g € R™. It initializes in O(nnz(A)) time.
e ScALE(i € [m],s > 0,b>0): Update g; < s and v; < b in O(nnz(a;)) time.

e SaMpPLE(h € R, U € Rug): If U > e*||GAR||2 then, with high probability, in O(n) time,
the data structure returns a random i € [m] with Pli = j] = (GAh)}/U, and with proba-
bility 1 — |GAR||3/U, returns nothing. Each random index returned by a call to SAMPLE
is independent from the previous call.

96

Algorithm 6: Sampler data structure.

// [M]" denotes the matrix formed by rows (j — 1)m/2' +1,--- jm/2! of M.
members

1 A cR™" geR™ // Assume m is a power of 2 for code simplicity
2 c=1/log(4m), k = O(c"2logm)

3 for 1 € {0,1,--- ,logm} do

4 for j € [2!] do

5 Jii e RFxm/2 77 JLi = JL(c,m/2') in Lemma B.4
6 Ql,j c RFkxd // Ql,j — Jhi. [GA]l,j

7 procedure INITIALIZE(A € R™*" g € R™)

8 A—A g—g v+

9 for 1 € {0,1,--- ,logm} do

10 for j € [2!] do

11 JbI < JL(c,m/2') // See Lemma B.4

12 QY « JW . [GA]W
13 procedure SCALE(i € [m],s > 0)

14 for 1 € {0,1,--- ,logm} do

15 j=1Ti-2"/m]

16 Ql’j — Ql’j + (S — gi).]l’j . []_Z'lZTA]l’j

17 gi < S
18 procedure SAMPLE(h € R", U € Ryg)

=
©

| return SAMPLEINTERNAL(R,1,1,0,U)
procedure SAMPLEINTERNAL(h € R", Z > 0,7,¢,U € R+)

N
o

21 if £ =logm then
. s 1 (GAR)? . .
22 With probability Z=" - ~—4— return j, otherwise return ()
23 else
24 r1 = [|QUIHY RS, 72 QH¥R|3
25 With probability r1/(r1 + r2),
26 return SAMPLEINTERNAL(h, Zr1/(r1 +1r2),2) — 1,0 + 1)
27 otherwise
28 return SAMPLEINTERNAL(h, Zra/(r1 + r2), 25, + 1)

First, we state a lemma used in the proof of Lemma B.3.

Lemma B.4 (Johnson-Lindenstrauss (JL) [JL84]). There exists a function JL(e,m) that given
€ > 0 returns a matriz J € R¥*™ with k = O(e~2logm) in O(km) time. For any v € R™ this
matriz J satisfies with high probability in m that ||Jvll2 =, ||v]]2.

Using Lemma B.4 allows us to give an algorithm for sampling coordinates proportional to
their fo weight (Lemma B.5). First, we show how to use this to prove Lemma B.3 by analyzing
the runtime costs and showing how to apply a SCALE operation. Then we show Lemma B.5,
where the high-level approach is to build a binary tree and walk down the tree using the JL
lemma to sample a node proportional to the 5 norm of its coordinates.

Lemma B.5. A call to SAMPLEINTERNAL(h,1,1,0,U) for ¢*|GAR|3 < U randomly returns

a single index i € [m], or no index at all. Index i € [m)] is returned with probability
(GAh)?
—

Proof of Lemma B.3. The implementation of our data structure is given in Algorithm 6. We
now analyze the correctness and efficiency of the operations.

pbi =

97

Initialize. We bound the running time of INITIALIZE. For each [€ 0,1,---logm and
j € [2!] we instantiate a matrix J4/ = JL(e,m/2') with ¢ = 1/logm, so each matrix J*/ has
k = O(c"?logm) rows. Creating a k xm/2 sized JL matrix takes O(km/2!) time (Lemma B.4),
so in total creating the JL matrices takes

logm
gz 2. O(km/2") = O(kmlog® m) = O(m).
=0

We use [GA]" to denote the submatrix of GA consisting of the {(j — 1)m/2! +1,--- 5 -
m/2'}-th rows of GA. We also use V! ‘to denote the sum of v; for i € {(j — 1)ym/2! +
1,---,7-m/2'} which can be computed in O(m) time. For any fixed [, computing the matrices
QM = Jhi . [GAJM € RF*™ for all j € [m/2!] takes O(k - nnz(A)) time since J& € R¥*™/2" and
the [GA]M ¢ R™/2'Xn are just a decomposition of the matrix GA. Since we create Q"7 for

every [€ {0,--- ,logm} and j € [2!], in total constructing all the Q matrices takes time
logm _
Z O(k -nnz(A)) = O(knnz(A) - log® m) = O(nnz(A)).
=0

Thus initialization can be done in O(nnz(A)) time.
Scale. We first prove Q" = J4 . [GA]Y is still satisfied after updating g; to be s. For any
1 €{0,--- ,logm}, we only need to update the Q" with j = (W} (since [GA]" has rows of

GA inset {(j — 1)m/2' +1,---,5-m/2'}. We have

Q" = I3 - [GAJY + (s — ;)3 - [1,1] A"
— 39 (G + (s — gi)1,1]) AJH

where the first step follows from how we update Q" (Line 16 of Algorithm 6), the second
step follows from merging terms. And (G + (s — ¢;)1;1]) is indeed the updated scaling vector
whose i-th coordinate is s. Note that we also update V%7 to be the partial sum of the v; for
ie{(G—1m/2 +1,--,j-m/2'}

Next we bound the running time of SCALE. We need to compute J7 - [1,1,] A]" for [€
{0,--- ,logm} and one j that depends on [,i. Since Jb/ € RF*m/2" and 1,17 A € R™/2' xn
only has one non-zero row, consisting of nnz(a;) non-zero entries, this multiplication takes
O(knnz(a;)) time. Thus in total computing the multiplication for all I takes time

O(logn) - O(knnz(a;)) = O(nnz(a;)),

which follows from k = O(c ™2 logm).
Sample. By Line 19 and Lemma B.5 we return a randomly sampled index j according to
the distribution P[j = i] = (GAh)?/U for all i € [m].
A call to SAMPLEINTERNAL requires O(n) time, because we compute O(log m) norms which
each require a matrix-vector-product with an O(1) x n matrix in Line 24.
O

Proof of Lemma B.5. Consider the binarytree where nodes are labeled by sub-intervalls of [m].
The root is labeled by [m]. For each node labeled by some [L, R], the left child is labeled by
[L, [(L+ R)/2|] and the right node is labeled by [[(L + R+ 1)/2], R]. We also identify the j-th
node on level ! via the tuple (I, 7).

Note that the execution of SAMPLEINTERNAL can be seen as a path from the root of this
tree to one of its leaves. For each node (4, j) it picks the left child with probability ri/(rq + 72)
and otherwise the right child.

98

We arrive at the index j € [m] on level £ = log(m) (i.e. a leaf) with probability as follows,
note that we are basically looking at the binary representation of j and multiplying together
the probabilities that the half containing j is selected in each level.

_l(ﬁm HQl [5/(m/2)] hH2
P QU272 DT B2 + [[QE21/ /2T 1 . | 2

o I[GAR]L1/ (/20112
_ H ptic 3
- 1[G ARJL205/(m/2=0T)12 4 || [G A K]0/ (/2=)T -1 2

logm m
g logm f—[[[GAR] /0200 3
|[GAR]=LI5/(m/270)1 |2

_ E H[GAh]lOgm’jH% _ ot 4 (GAR)} +v;
B [[GARP3 + V0T — IGAR|3

where the second step follows from the JL matrices guarantee that VI, Vj, with high probability
e |[GAIYR|Z < QY - b3 = (I3 - [GATR|3 < e*[GA]YR]3,

and the fourth step follows from ¢ = 1/log(4m). The other steps simply follow the definition of
[GAR]"I. Note that the variable Z tracks exactly this probability so in Line 22 we have Z = p.
This also means (GAR)?/U < e . (GARL)?/[GAR|3 < Z so the rejection sampling defined
in Line 22 is well defined. For any j, the probability of it being returned by SAMPLEINTER-
NAL(h, 1,1,0) is thus (GAh)?/U O

We now show how to combine the data structure of Lemma B.3 with an additional sampling
step to obtain a HEAVYSAMPLER data structure.

Corollary B.6. There ezists a (P, c,Q)-HEAVYSAMPLER data structure for matrices A € R™*"
with P = O(nnz(A)), ¢; = O(n) for all i € [m], and Q = O(n? + m+/n).

Proof. By Lemma 4.42 and Corollary 4.43 we need to be able to efficiently construct the fol-
lowing distribution: For some constants C, Co, C3 as in Corollary 4.43, let ¢ € R™, S € R such
that

g > C1V/n(GAR)} + Co//n + Csmiy* logm (88)

and S > >, ¢;. Let X be a random variable with X = ¢; 1&g, with probability ¢; /S for all 4,
and 0 otherwise.

Generating X We now describe how to efficiently generate this random X. Let v € RY,
with

1 1 115 Ti
v = = .
Y4 \m+nlb Jntn

where 7 is the current approximation of the Lewis weights. Further define U = m/n + /n and
note that ||[GAA||3 < m/n < U by guarantee of Definition 6.3 (the definition of HEAVYSAM-
PLER).

Flip a balanced coin and then either sample an index j with P[i = j] = (GAh)?/U via
Lemma B.3, or sample the index by P[i = j] = v;. We then return

X =& (C(Vn(GAR)} + =+ 1.57;/4)) "

v

for C' := max{Cy, Cy, C37y?logm}. Note that we might sample no index at all, in which case
we return X = 0. This procedure can be implemented to take O(n) time by Lemma B.3.

99

Correctness We now prove that the X generated in the paragraph above satisfies that X =
q; L&, with probability ¢, /S. For that we define the following

¢ = C(vVn(GAhR)? + F + 1.57;/4)

S :=2CU/n.

Here we clearly have (88) by definition of C' := max{C7, Ca, C37y?logm}. We also have S > 3, ¢;
by

+n/2) < 20(1= +n) < S.

iq, ZC VA(GAR)Y + —— 4 157,/4) = C(V/n| GAR|2 + 7

4\/n \/—

Note that the random X we generated in the previous paragraph is X = q; &, with proba-
bility 1/2 - ((GAR)? /U + v;). We now show that this probability is ¢;/S:

¢i/S =St C(vn(GAhL)? + 4\—F + 1.57;/4)

—1/2- ((GAR?/U + ﬁ + .54Unﬁ)
= 1/2-(GAR);/U + 4(m+1n L 54(%: ok

=1/2- ((GAL)?/U +v;),

where the first step uses the definition of ¢;, the second step uses the definition of S, the third
step uses the definition of U and the last step uses the definition of v;. Thus we indeed have
X = ¢; '€ with probability ¢;/S.

Final Complexity The complexity parameters P := O(nnz(A)) and ¢; := O(n) stem from
Lemma B.3. Generating one random X takes O(n) time and we must generate O(S) =
O(m/\/n+n) many independent copies of X by Lemma 4.42, which results in a total sampling
complexity of Q := O(m+/n + n?).

O

C Leverage Score

In this section we show how to efficiently maintain an approximation of the leverage scores
0(VA) under updates to V = Diag(v). The data structure is obtained via reduction to a
HEAVYHITTER-data structure.

Theorem C.1. Assume there ezists a (P, c,Q)-HEAVYHITTER data structure (Definition 3.1).
Then there exists a Monte-Carlo data-structure (Algorithm 7), that works against an adaptive
adversary, with the following procedures:

o INITIALIZE(A € R™ " v € R™, z € R™ e € (0,1)): The data structure initializes on a
matric A € R™*" | scaling v € R™, target accuracy € > 0, and regularization parameter
z € R™ with z > n/m+nc/||c|1 (where ¢ is the parameter of the heavy hitter data structure)
and returns a vector @ € R™ with & =, 0(VA) + z.

o SCALE(i € [m],c € R>q): For given ¢ ~q.25 vi, set v; < c.

e QUERY(): W.h.p. inn the data-structure outputs a vector @ € R™ such that & ~, 0(VA)+
z. The vector @ is returned as a pointer and the data structure also returns a set I C [m)
of indices i where &; has changed compared to the last call to QUERY.

100

The amortized complexities of our data structure depends on the parameters P, c, QQ of the
HEAVYHITTER data structure. Further, our complexity bounds require that some additional
properties are satisfied. These properties and the resulting amortized complexities are stated
in Theorem C.2.

Theorem C.2. Consider the data structure of Theorem C.1 (Algorithm 7) and let P,c,Q be
the parameters of the HEAVYHITTER data structure (Definition 3.1). Let v® be the vector v in
Theorem 5.1 during the t-th call to QUERY (and v during the initialization). Further, assume
the following:

1. For any given V € RZy we can solve linear systems in (ATVA)~! with ¢/(64n) accuracy
(i.e. forinput b we can output Hb for some H =, (g47) (ATVA)™) in O(P+¥4nnz(VA))
time. If

ATVA ~1/(64logn) AT(V(t))QA

for some t, then the required time is only O(¥ 4+ nnz(VA)).

2. There exists a sequence 0 such that for all t

v® e (1+1/(64logn))s® (89)

1@ @0 D)), G0, = O) (90)

for all t.
Then the following time complexities hold:
o INITIALIZE takes O(P 4 ¢ 2(¥ 4+ nnz(A))) time.
o SCALE(i,-) takes 6(%0(VA)¢ + %) amortized time.
« QUERY takes O(We 2 + e *n(max; nnz(a;)) 4 €2 % + Q). amortized time.

The high-level idea of Algorithm 7 (Theorem C.1) is as follows: For a set I C [m], the method
UPDATEINDICES(I) computes for all ¢ € I an approximation 7, &~ 0(VA); + z;. If ; % 7, then
we set 7; < 7;. So for all i € I we have 7; =~ 0(VA); + z; after a call to UPDATEINDICES(]),
as proven in Lemma C.7. Thus if the set I contains all indices where 7; % 0(VA); + z;, then &
will be a valid approximation after the execution of UPDATEINDICES(T).

The set I is constructed in method FINDINDICES as follows: Fix some T' € N. For j =
0,...,log T, the data structure checks every 2/ calls to QUERY, if 0(VA); + z; changed a lot
compared to its value 27 calls to QUERY in the past. This claim is proven in Lemma C.6 and we
prove in Lemma C.9 that such a set I suffices to maintain @ ~ o(VA)+ z for up to T iterations.
After T iterations the data structure restarts.

C.1 Correctness

As the vector v for which we want to maintain o(VA) changes over time, we use the following
notation during the proof of Theorem C.1 to specify which instance of v we refer to:

Definition C.3. Write v® for the vector v during the t-th call to QUERY and v© for the
vector v as given during the initialization. Likewise write 1 for the vector & returned by the
t-th call to QUERY.

So we want to prove that o) ~, O'(V(t)A) + z. We will prove this via induction, so let the
following Proposition C.4 be the induction hypothesis. Note that for ¢ = 0 the claim is true as
seen by the initialization procedure (Line 5).

Proposition C.4. During the t-th call to QUERY we have 71 =, O'(V(t_l)A) + z, i.e. the
result of the previous call to QUERY was correct.

101

Algorithm 7: Data structure for maintaining leverage scores

1

© o N O oA~ WN

[S T Y S TR
g O A W N = O

18
19
20
21
22

23
24
25
26
27

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

members
t,T,r € N, v € R™ AU € R™ and S;,C; C [m] for j = 1,...,0.5log n.
procedure INITIALIZE(A, v | 2 €)
t 0, v o™ 2 2 T« [2/Pn/|c]]
Compute 7 ~ 0(VA) + z
Let r = O(logn) be such that a r x m JL-matrix yields a 1/2-approximation.
for j =0,...,7 do
D; INITIALIZE(A, v - 2~ 1/2)
Sj ~0
Cj — 0
AY) 0,
return o
procedure FINDINDICES(h € R™)
I+0
for j =logT,...,0 do
if 27|t then
Sii = 1for i € S; UCj, and for other i we set S;; = 1/p; with probability
p; = min(1, ¢7;e 2lognloglogn) for some large constant ¢ > 0, and
S; i = 0 otherwise.
R + m x r JL-matrix
Let M~ /(oan) (AT(V = AU)282A) 71 and M = /(6an) (AT VZS2A)7!
H<« (MAT(V-AU)SR - MATVSR
I «+ 1 U D; HEAVYQUERY(He}, ¢/(48rlogn)) for all k € [r]
AU 0,
Dj.SCALE(i,viz;1/2) for i € S;
I<—[US]‘, Sj%@, Cj%@
return /

procedure UPDATEINDICES(I)
Sii = 1//pi with probability p; = min(1, ce 27 logn) for some large enough
constant ¢ > 0, and S;; = 0 otherwise.

R « exp(%e/16)-accurate JL-matrix
H < MATVSR for any M~ /g410gn) (AT VZSZA)™?
'+~
forv e do

if o; #3¢/s |le; VAH|]3 + z; then

Cj «+ C;U{i} for j =0,...,logn
I' — T'u{i}

return [’
procedure SCALE(i, ¢)
for j =0,...,logT do

Sj — Sj U {Z}

D;.ScALE(7,0)

AW« AU 4 ¢ —vp; // Maintain v® =) + AG)
Vi < C
procedure QUERY()
if ¢t =T then return [m|, INITIALIZE(A, v, w, €);
t«1t+1
I + FINDINDICES()
I <+ UpPDATEINDICES(])
return I, ¢ 102

During the ¢-th call to QUERY, the algorithm needs access to past v®) for k < t. In order to
not process an m-dimensional vector in every iteration, these vectors are maintained implicitly
by the data structure as stated in Lemma C.5.

Lemma C.5. When ezecuting Line 20 we have v = v=2) L AU,

Proof. Let t; be the last time we set AY) « 0,,. We set AU) «— 0, either during initialization
(so t; = 0) or in Line 22 (FINDINDICES) when 27|¢, so right after executing Line 22 we have
tp=t—27.

Further, whenever v; is increased by some é € R, we add J also to AZ(]

) for all J in Line 41,

so we always have vz(t) = o) 4 AG),
Thus in Line 20 we have vy) =02 1 AW, O
Next, we prove the previous claim of the data structure’s outline regarding FINDINDICES.
We claimed that every 27 calls to FINDINDICES for any j = 1,...,log T, the function returns a
set I C [m] of indices i where o(V®) A); + 2; changed a lot compared to o(VE2)A); + 2.

Lemma C.6. Let I C [m] be the set returned by FINDINDICES(h € R™). Then w.h.p set I
contains all indices i where for any 0 < j <logT we have 2/|t and

d(VOA), + 2 % ja10gm) 0 (VED)); + 2 (91)

Proof. Note that for j with w/|t the set I contains all indices i € S; by Line 24. So we only need
to consider the remaining indices ¢ ¢ S;. Let Z = Diag(z) and let F be diagonal with F; ; = 1 for
i ¢ S;. I contains all indices i where for some k we have (FZ~1/2V(=2) AHé,); > ¢/(48r logn).
(because we called D;.SCALE(%,0) whenever i was added to S; Line 40, and otherwise we call
D;.SCALE(i,v;/\/%) for i € S; in Line 23).

When R in Line 18 has 7 = O(logn) columns (and thus H has r columns), then if
|ETFZ-2VE2)AH|3 > €2/(4821og? n), then |&f FZ~Y/2VE=2)AHE,| > ¢/(48rlogn) for
some k, so i is added to set I in Line 21. So we must show that if (91) is satisfied, then
|ET FZ=1/2VE—2) AH|3 > €2/(48%log? n).

By Line 20 we have

1T FZ~/2VI2) AH|, = ||e] FZ71/2VI-2)A (M’ATV“—Q”S - MATV(”S) R/
> 0.5]|¢] FZ7/2VI=2) A (MATVE2)S - MATVOS) |

> 0.55] (|7 V) AMATVIEDIS 2 4)05

i

i

(I VO AMATVOS|R +)]

For the second step we used that R is a JL-matrix such that for any w € R™ we have w.h.p
|w™R|]2 > 0.5]|w||2. The third step uses triangle inequality and that we only consider i ¢ Sj,
SO v§t> = vi(t*y).

Note that set C; contains all indices for which the leverage score has changed by Line 34.
Thus for all & ¢ C; we have that &}, is a constant factor approximation of o(VEDA) + 2, and
c(VE2)A), + 2. Further, since v ~; v(=1) by assumption on SCALE (see Theorem C.1)
we have that 7, is also a constant factor approximation of O’(V(t)A) 1 + z1. Hence we have that
Sk.x = 1//pk with probability p; and 0 otherwise, where

pr > min{1, max{c(VHA),, J(V(’sz)A)k}ce*2 log nloglogn}
for some large enough constant ¢ > 0. Thus with high probability we have

M ~1/(10gn) (AT(VD)S2A) ! & 6a10gm) (AT(V)2A)!

103

and likewise M’ ~1 /(32108 n) (AT (V(t_Qj))QA)_l, because S is a valid leverage score sample for
both matrices. Finally, this means that

o(VOA); = [l&f VO AAT (V)2 A)TATVO 3

%e/(16logn) ||6;rv(t AMATV(t)SH%

and likewise for ¢t — 2/. By z; > n/m we thus have

(VDA + 2 %/ (a10gn) a(VEHIA),; + 2
= |&] VOAAT(VO)2ZA)TTATVO 2 4 2
I >+ zi
eftaiosn 167 VO AT (VE2)24) ATV 4o
= el VWAMATV®S|2 + 2
Fe/siogm) 6] VT AMATVIIS|S 4 2,
= (|l&f VOAMATVHS|2 + 2)0°
%5/(1610gn) (HGTV t72J)AM ATV(tiy)SH% + Zi)0.5
= | (HBTVt QJ)AM ATVt 2J S||2 + 2)05
— (&l VOAMATVIS|S 4 2)°® | > ey/zi/(481og n)
so the index ¢ is returned by FINDINDICES. O
Next, we prove the claim that calling UPDATEINDICES(]) indeed guarantees that &; =/
o(VOA); 4 z for all i € I.

Lemma C.7. For I C [m] after a call to UPDATEINDICES(I) we have G; =/, c(VOA); + 2
foralli eI w.h.p inn.

Proof. For i € I the method UPDATEINDICES computes

e v AH]|3
= |lef VWWAMATVHSR2
~efs llE] VI AMATVOS

= o(VWA),
where we used that R is a JL-matrix that yields an exp(+e/16)-factor approximation of the
norm and that ; ~, o(VEDA) x4 o(VDA), so S? is a leverage score sample and satisfies
with high probability AT(V(t))QSQA Re/32 AT(V®)2A Thus M Re/16 (AT(V®)2A)-1

So if T; ~3¢/s lef VO AH|3 + 2, then 7; Re/2 o(VWA); + z. On the other hand, if

the difference is larger, then UPDATEINDICES sets 7; < ||&] VO AH|3 + z;, so then 7; Ne/8
o(VOA); + z. O

At last, we combine the guarantees of FINDINDICES and UPDATEINDICES to show that we
always maintain the desired approximation. For that we will use the following natural lemma
about decomposing an interval into powers of two from [BLN"20].

Lemma C.8 ([BLN"20]). Given anyt < t, there exists a sequence
t=1y>1 >...>tk:E

such that k < 2logt and t,.1 = t, — 2% where {, satisfies ZZZ\tZ forallz=0,...,k—1.

104

Lemma C.9. After the t-th call to QUERY we have T; =, 0(VA); + z; w.h.p. in n.

Proof. Fix some i. We want to prove that 7; ~. O’(V(t)A)Z‘ + z;.

Assume index i was last contained in set I when calling UPDATEINDICES(]) during the #-th
call to QUERY (f = 0 if i was never in set I). By Lemma C.7 we have 7;)5 0(V'A); + 2. If
t = t, then we are done, so let us focus on the case t < t instead. In that case we are left with
showing O’(VtA)Z + z; Re/2 O’(V(t)A)Z + Zz;.

By Lemma C.8 there exists a sequence t = tg > t; > ... > tx = t with £ < 2logt and
t.41 = t, — 2% where £, satisfies 2%|t, for all z =0, ...,k — 1.

If during the t.-th call to QUERY we had o(V*)A); + 2 Fe/(41ogn) o(V#+1); + 2, then by
Lemma C.6 the index ¢ would have been added to set I in FINDINDICES. Since by assumption
i was not added to I since 7, we thus know o(V#)A); + 2 R /(41ogn) o(VE+1)); 4 2. As the
sequence of t, has length 2logt and ¢t < \/n (by restarting the data structure after \/n calls to
QUERY) we have 0(VWA); + z; = o(VIH A); 4 2 Re2logt/(4logn) o(Vt)), 4 2 = (VD) 4 2,

so o(VHA); Re/2 o(VD); + 2. O

C.2 Complexity

In this subsection we prove the amortized complexity guarantees of Theorem C.1. Remember
that the idea of our algorithm was to detect whenever a leverage score changes a lot, and to then
recompute the detected scores. Thus to bound the complexity, we must bound how many 7 are
detected for which o; might have changed a lot. For that we will use the following Lemma C.15,
which is proven in Appendix C.3.

Lemma C.15. Let A € R™". Let v oM ... o) ¢ R’ be a sequence of vectors with
o) ~1/4 p=1) for 5 =1,2,---,T. Let F and S be diagonal matrices on R™*™ such that
[F]2 <1,

o« FVUW) =FVU-D for je{1,2,--- T},
. (V(J') — V(J'*l))s =V —vU-D for j e {1,2,---,T},
o ATS2VUZA ~)y ATVU2A for j€{0,1,2,--- , T}

Suppose that there is a sequence 7, 71 ... 71 ¢ R’ such that

o) ~1/6 @) (95)

I(VE=) = @ — =) <z (96)

| =

(V=1 A)+oo

for j=1,2,---,T. Then, for PU) & VOAATVU282A)"TAVU) | we have

T
FED -POS|IE ST +> Y o(VDA),
j:l Uz(j)7évij_l)

As the complexity of UPDATEINDICES(]) depends on the size of set I, we first require a
bound on the size of these sets. The following lemma bounds the total size of all sets I, when
weighting each element ¢ € I by z;. This weighting is required because the runtime cost due to
one 7 € I in UPDATEINDICES scales in ¢;.

Lemma C.10. Let I® be the set I returned by FINDINDICES during the t-th call to QUERY.
Then

T

E E ¢ <O |T? HCH; + E E (Ci + —’LLCH; U(V(t)A)i> (92)
€

=1 je1)

Proof. An index ¢ is added to I, if it is contained in set S; for some j = 0, ...,logn. Thus one
call to SCALE(i, -) results in i being in logn many I. This is the S 7 Zv(t);év(t-kl) ¢; term in
(92). S

Next, an index ¢ is added to I, if it was returned by D; HEAVYQUERY in Line 21. The
number of returned indices (weighted by ¢;) is bounded by

Z Z G 1\(FZ—l/QV(t—Qj)AHEk)i|>e/(48rlogn)
ke[r]i€[m]

=0 (Z \|FZ_1/2V(t_2j)AH€kHze_Q)
ke(r]

O (@HFV“W’A (M/ATV(t*Qj)S - MATV@S) RH%e2)
n
S [llelh {2~ : L
<O ==124 (4) .
= n +'Z_ _Z_ o(VIA) | e 7], (93)
]:1&—2] U,EJ)7£U5J+1)

where the first step uses n - ¢/||c|li < z and the last step uses that R is a JL-matrix, that
M =1 (64n) (ATV®S2A)~1 and M/ 1 /(64n) (ATVE=2)82A)-1 and Lemma C.15. Note
that we can apply Lemma C.15, because (95) is satisfied by (89), (96) is satisfied by (90), the
conditions on F are satisfied by definition, and the conditions on S are satisfied by S being a
leverage score sample where we used probability p; = 1 for ¢ € S; UC;. As D; HEAVYQUERY is
performed once every j iterations for j = 0,...,T', we obtain (92). O

Using Lemma C.10 we can now bound the total runtime of all calls to UPDATEINDICES.

Lemma C.11. The amortized cost of the t-th call to UPDATEINDICES is

O | ¥e? + e *n(maxnnz(a;)) + T ||C||41 + Z (c_; + HCH41 O’(V(tl)A)i)

ne € ne
vz(t) #vz(t—l)

Proof. The matrix S has O(e 2nlogn) non-zero_entries and the matrix R has O(e2logn)
columns. Thus we can compute H in Line 29 in O(Ve~? + ¢~ *n max; nnz(a;)) time.
Next, we compute ||&; VAH||3 for all i € I. The time required for that is

O (Z nnz(a;)e 2 log n) =0 <e2 ch>

iel el
which according to Lemma C.10 is an amortized cost of
Ci

~ C C _
oy (G My g

vf”;éuf,t_l) € ne
for the t-th call to UPDATEINDICES. O

Next, we want to analyze the amortized cost of a call to FINDINDICES. Note that the
complexity will depend on the size of the sets C}, because for each 7 € C; the matrix S in
Line 17 will be more dense. An index i is added to C; in Line 34, if we changed @;. Thus
before bounding the complexity of FINDINDICES, we will first bound how often &; is changed.
We show that we can bound the number of times we change any entry of @ with respect to how
often the function SCALE is called.

106

Lemma C.12. Let 7" be the output after the t-th call to QUERY and v®) be the vector v during
the t-th call to QUERY. Then

m

m T
Z Z(O’(V(t)A)Z + Zi)lg(t)ia(t—l) < 0 (Z Z O-(V(t)A)i].v(t)#v(tnEl) .

i=1t=1 i=1t=1

Proof. Note that when we update @; in Line 33, then we have 7; ~ /g o(VA) + z;, because
el VAH||3 ~c/3 0(VA) (see proof of Lemma C.7). Further note that the ith entry of the

output vector & can only change, whenever ; %3, /g el VAH||2 + 2; because of Line 32. Thus
in order for @; to change, 0(VA); + z; must have changed by at least a exp(+e/8)-factor, so we
can bound

m

D

5
o

Here the difference of the two leverage scores can be bounded as follows

Mﬂ

V(t it Zz) _(t);éagt—l)

Il
-

t

V(t) + ZZ) .

NE
Mﬂ

[(0(VWA); + 2) = (o(VI"VA); +)]
(c(VOA); + z)e

<
I

R
I
-

t

NgE
M=

lo(VDA); — J(V(tl)A)ilel> :

1t=1

o(VOA); — o(VI-DA),|
= (V) (AAT(VO)?A)TAT), = (V)2 (A AT (VED)2A) 1AT),
< (V)2 = (D) (AAT(VO)2A) AT,
+ (VI (AT(VO)2A) LAY — (AT(VIED)2A)) AT,
Here the first term can be bounded by
(V)2 = (vi7D)?) (A(AT(VD)2A)7LAT),
= | (1= (Vi /vI?) (VI AAT (VO A) AT
= 30(VHA)
by using v a5 v("1. The second term can be bounded as follows. For
H, = AT ((1-2)(VED)?2 4 z(VD)H)A
we have
(AT(VORA)TA) T — (AT (VED) / H'AT (VD)2 — (VD)) AH ! do
(Vi 1’) (A ((AT< VIOPRA) AT - (AT(VED)2A)) AT,
= | [(VAR AT((VO) — (VAR AT de

<2 / (VOAH'ATVO (1 — (VEDVH) VO AHTATVY), | de
0

1
_ 2/ (1 = (VEDV-112)12y O AH ATV G2 de
0

107

Note that when taking the sum over all ¢ € [m] this can be bounded by

S [- (VDY VO AR ATVOR S de
0

; (1 . (V(tfl)V71)2)1/2v(t)AH;1ATv(t)H% dx

<@ = (VEIVII) PG de
where P := VO A(AT(V®)2A)"TATV®, This can be written as

10— (VEDVODERE = 37 (1 @Y) 3T P

1€[m)]

= > (1=) eV A),

ie[m]
< Z 1 (t);é (t— 1)O'(V()A)
1€[m)]
By combining we obtain
m T -
;;(U(V(t)A)i +2) 10 oe-n < O(;;a VOA)1 RPN .

Lemma C.13. The amortized cost of the t-th call to FINDINDICES is

O | ¥ + ne?(max nnz(a;)) + H Hl T+Q+ Z (HCHla(V(t_l)A)i—l—ci)
‘ o2y (t=1)
v F;

Proof. The cost of FINDINDICES is dominated by D; HEAVYQUERY(w) for w = Hé, k =
1,...,r, and the computation of H.

Cost from QueryHeavy The cost of D;.QUERYHEAVY is bounded by

O(Y (IFz 12V AHg 22 + Q)
ke(r]

~ el
O ne2

(FVEPIAH|Z + Q)

t
:5(\\0\\21_ 24 Y Y (VDA | +Q)

e G2) Lyl

where the last step bounds the frobenius-norm via (93). Note that this cost is paid every 2/ < T
iterations, so we can interpret this as amortized cost for the ¢-th call

5 HCH21‘ T+ Y o(veIA) | +Q

ne ol®) £ t=1)

108

Cost from matrix H Fix some j for which we have to compute H in Line 20. Here the
matrix R has O(logn) columns, so we must compute O(logn) products with A := SVA and
A :=S(V—AW)A, and further solve O(log n) linear systems in A'AandAA.

Note that both A and A’ have the same number of non-zero entries, so the time for com-
puting H is bounded by 5(\11 +nnz(A)). By definition of S, the number of non-zero entries in
both matrices is bounded by

nnz(A) = O (ne_Q(maX nnz(a;)) + Z nnz(a;) + Z nnz al))

i€S; 1€C

=0 | ne 2(maxnnz (a;)) + Z Z nnz(a;) + Z Z nnz(a;)

h=t=2 (1) 4, (1= k=t—21 (t=1) 7 (-2)
K3 7

As the cost for computing H is paid once every 27 calls to FINDINDICES, the total cost over all
T calls to FINDINDICES is bounded by

T T
o|T v+ TneiQ(mZaX nnz(a;)) + Z Z nnz(a;) | + Z Z nnz(a;)

t=1 Uit)5£vit_l) t=1 Egt—l)?éagt—m

Il
o}

T
T U+ Tne_Z(mZaX nnz(a;)) + Z Z ¢ |+ el Z Z (c(VEDA) + 2)

O|T-U+Tne? (maxnnz a;) —|—Z Z (H
t=1 (t);é (t=1)

by |lc|l1zi/n > ¢; > nnz(a;) and Lemma C.12.

Amortized Cost The amortized cost for the ¢-th call to FINDINDICES is thus

rear ¥ Fain

NOWNCSY n

||C||1

O | ¥ + ne ?(maxnnz(a;)) +

O

We now charge the terms in the complexities of FINDINDICES and UPDATEINDICES as amor-
tized cost to SCALE and QUERY to obtain the complexities as stated in Theorem C.2.

Proof of Theorem C.2. We now charge each term of the amortized cost of FINDINDICES and
UPDATEINDICES to SCALE and QUERY.
We charge the amortized cost of UPDATEINDICES (Lemma C.11) as follows

O|Te?2+en (max nnz(a;)) + Tufﬁ”l + Z + HC€H1 (VED A,
(t) (t— n €
#0!

QUERY

SCALE

And for FINDINDICES (Lemma C.13) we charge

O | ¥ 4 ne ?(max nnz(a;)) + ” ”1 T+ Q+ Z llellx H1 c(VEDA) + ¢
- NOWCE)
v FY;

QUERY

SCALE

109

Note that we reinitialize the data structure after 7' iterations. Thus the amortized complexity
of QUERY also depends on the cost of initializing the data structure, which we analyze next.

Initialization During initialization we have to compute exp(=+e)-approximate leverage scores.
It is known that this can be done in time O(nnz(A) + S), where S is the time required to
solve a linear system in a matrix of the form ATWA by using the Johnson-Lindenstrauss
lemma [JL.84, SSO8]. By Condition 1 of Theorem C.2 computing the leverage score thus takes
O(P 4+ ¥ +nnz(A)) time. We further initialize O(1) instances of the assumed HEAVYHITTER
data structure, which takes O(P) time.

Note that re-initializing the data structure every T iterations adds O((¥ + nnz(A) + P) /T)
amortized cost to QUERY.

Query By collecting all the terms that we charge to QUERY, we obtain the following amortized
cost per call to QUERY:
5 lella

@) <\Ife_2 + ¢ *n(max nnz(a;)) + T—r+Q+ P/T)
) ne

~ P
=0 (ﬁle_Q + € *n(max nnz(a;)) + € %y H:Hl + Q)

by choice of T = €2\/Pn/||c[1.

Scale When calling SCALE(7,-), the data structure calls D;.SCALE(7,-) for j = 1,...,logn
which takes O(c;) time. Together with the amortized complexity terms that we charged to
SCALE we obtain an amortized complexity per call to SCALE of

o (Ltoviony+%).

nel

Here we used that the sum Zv(t)#v(tﬂ) U(V(t_l)A)i + ¢; has one term for each call to SCALE.
7 7 D

C.3 Stabilizer

In this section we want to prove Lemma C.15. To prove the main lemma, we will first prove a
weaker variant that involves only one step on P.

Lemma C.14. Let A € R™*". Given v,v' € R} with v ~1/2 v'. Let F and S be di-
agonal matrices on R™ ™ such that FV = FV' (V- VS = V -V’ |F|l; < 1 and
ATS*VZA =~y ATVZA and ATS?V?2A x5 ATV2A. Let P = VA(ATV2S2A)71AV
and P’ = V' A(ATV2S2A)~1AV', we have

IE® = P)S|r <[V~ v)llorva)-
Proof. Let A = diag(U/T_U). Then, we have
P’ =AVA(ATV"?S2A) 1AV’ + VA(ATV2S2A)AVA + VA(ATV”2S2A) AV (94)
By Woodbury matrix identity, we have

(ATV?282A)~ = (ATVS(I+ A)2SVA)~!
= (ATV282A) 1 — (ATV2S2A) TATVS((2A + A2 L+ P)"ISVA(ATV2S2A) L.
Applying this into (94), we have

P — P =AVA(ATV?S?A) 1AV’ + VA(ATV™?S2A)"TAVA + PS((2A + AY) 71 + P)~ISP

110

Since FV = FV’ and (V- V’)S =V — V' we have FA = 0 and AS = A. Together with
|F||2 < 1, we have
|F(P' —P)S|r <|FVA(ATV™S2A) AVA|r + |[FPS((2A + A%~ + P)"1SPS||r
<|[VA(ATV"S2A)LAVA| r + [|[PS((2A + A%~ + P)1SPS|| .
For the first term, we have
IVA(ATV?SZA) TAVA|Z = Tr AVA(ATV282A) TAVZA(ATV2S2A) TAVA
<TrAVA(ATV?S2A)TAVA
<TrAVA(ATV2S?A)TAVA
=V (v - U)Hi(VA)
where we used ATV2S2A ~ ATV2A ~ ATV2A at the first and second inequality.
For the second term, we have
PS’P = VA(ATV?2S?A) TATS?VZA(ATV2S?A) ATV = P.
Hence, we have
IPS((2A + A%)~L + P)71SPS||% < |[PS((2A + A%~ + P)~ISP|%
< TrPS((2A + A%~ + P)2SP
< TrPS(2A + A?%)?SP
< 9Tr PSA’SP

where we used A < I at the last inequality. Finally, using SA?S = A2, we have that the last
term bounded by O(||[V~1(v' — v)Hi(VA))' Combining both terms give the result. O

Now, we can prove the main statement.

Lemma C.15. Let A € R™". Let v oM ... o) ¢ R’ be a sequence of vectors with
o) ~1/4 U= for j =1,2,--- ,T. Let F and S be diagonal matrices on R™*™ such that
[F|l2 <1,

o« FVU) =FVU-D for je{1,2,---,T},

o (VO —vU-S =VvU) - VU forje{1,2,---,T},

o ATS*VU2A ~y 9 ATVUA for je€{0,1,2,--- T}
Suppose that there is a sequence 7, 70 ... 71 ¢ R’ such that

) ~1/6 @) (95)

[e R]| <z (96)

| =

(VU= A)4o0
forj=1,2,---,T. Then, for P@) € VOAATVE282A) 1AV we have

T
@D —POSIE ST+ Y0 o(VUA),.
J=1) 4y 0D

Proof. Let I be the set of indices i such that vi(j) changed during the j € {0,1,--- ,T}. The
proof involves defining a new weight sequence

o [19O R0 e
w - =
1)(0) elses

111

and w(T+1) (t). We define

PU) = WOAATWU2S2A)" 1AW U),

Since w@(o) = vZ(O) and w(T+1) UZ(T), we have
_ _ T+1 o o
IF@ED —PO)S|p < [FPTH —PO)S|p < Y IFPY —PUD)S| 5.
j=1

Now we check the conditions of Lemma C.14. Since V) ~ ~1/6 v and ||(VEU-D)~1(50) —
U D) < & 5, we have wl) ~ R/ wU=D for all j. For any i € I, we have F;; = 0 and S;; = 1
(due to the condition FVW = FVU-1 and (VU — VvU-1)§ = VU — vU-D) For i ¢ I,
w(j) is a constant. Hence, this verifies the conditions of Lemma C.14: FW() = FWU-D,
(W 7 - wWU- 1))5 WU — WU-1 and AT(S(J'*U)Q(V(J 1))2A ~1/2 AT(V(J 1))2A

For j < T, Lemma C.14 shows that

[F@Y — BU)S] < (W) @ — w D) wona)
— [(VGD) @9 = 59D) | a)
SNV @D — D) Gy S 1

where we used the formula of w¥) and w=1) in the first equality, w1 ~1/6 U= and the
assumption on U at the last line.
For j =T + 1, Lemma C.14 shows that

IF@THY —PO)S|E < (W) T —)2 (WA)

S Y (WA ST o (VDA
w03V i€l

where we used ||(WU=)=1(@) —0=D)||, < 1 in the second inequality, we used (7 ~1/6

w™) and I contains all changing indices at the end.

Combining both cases, we have
IF@D —PO)S|F S T2+ 0i(VDA).
i€l
Hence, it suffices to prove that

Z (VDA <Zal A) + T2

el i€l

where ¢; be the time such that vz(ti) # vlgti_l). To prove this, we define algt") = 0;(VHA) and
for all j > t;, we define

o (VU+HD A) G) | e(VU+HD A)—g; (VWD A) S 1
(4+1) _ v i VO A =T
o; = ‘71‘() oi() .
O'i(J) elses

()

Intuitively, 0.’ is essentially the same as O'Z(V(])A) except we ignore all smaller than % relative

movement. Slnce there are only T steps, we have O’Z(j) R O’Z‘({/(j)A). By the assumption
|(VU=D)=1(50) — 6(]_1))H0({}(]’*1)A)+oo < ¢ and [LS15, Lemma 14], we have that

lo(VIDA)Ho(VDA) o (VODAN| o S 1

112

Using the definition of O’Z(j)),

, we have a similar bound for o,
1= (@D — o) |60 S 1.
Since 0\7) only makes relative movement at least %, this implies }°; |O'i(j) _ O'i(j 71)| < T. Hence,

we have
Y oi(VOA) S o <3 0 4 T2 <Y 0y (VIWA) + T2,

i€l i€l el i€l

D Primal and Gradient Maintenance

Theorem D.1 (Primal/Gradient Maintenance). There exists a deterministic data-structure
that supports the following operations
o INITIALIZE (A € R™*7 z(®it) ¢ R™ g ¢ R™ 7 € R™, 2z € R™ w € [0,1]™,e > 0): The
data-structure preprocesses the given matriz A € R™ ™ vectors ™Y ¢ 7 z € R™, and
the accuracy parameters w € [0,1)™ and € > 0 in O(nnz(A)) time. We denote G the
diagonal matriz Diag(g). The data-structure assumes 0.5 < z <2 and n/m <7 < 2.

o UPDATE(i € [m],a € R,b € R,c € R): Sets g; < a, T; < b and z; < ¢ in O(nnz(a;)+logn)
time. The data-structure assumes 0.5 < b <2 and n/m <c < 2.

o SETACCURACY(i,0d) Sets w; < d in O(logn) time.
« QUERYPRODUCT(): Returns ATGVU(2)’T) € R™ for some 7 € R™, 7 € R™ with 7 ~, 7

and ||Z — z||co < €, where

b(T) .
27 = argmax |, <1(z,w).

Every call to QUERYPRODUCT must be followed by a call to QUERYSUM, and we bound

their complezity together (see QUERYSUM).

o QUERYSUM(h € R™): Let v©) be the vector GV (2)"T) used for the result of the (-th call
to QUERYPRODUCT. Let h\©) be the input vector h given to the {-th call to QUERYSUM.
We define

2® = p(init) +zt:(f’+h“)

(=1

Then the t-th call to QUERYSUM returns a vector T € R™ with
lw ™ (@ — 21)loo <.

Assuming the input vector h is given in a sparse representation (e.g. a list of non-zero
entries), then after T calls to QUERYSUM and QUERYPRODUCT the total time for all calls
together is bounded by

T T
@) <Tne_210gn +logn -y 179]lo + Tlogn - > Hv(z)/w(g_l)ﬂg/ez)
=0 =1

The output T € R™ is returned in a compact representation to reduce the size. In particular,
the data-structure returns a pointer to T and a set J C [m] of indices which specifies which
entries of T have changed between the current and previous call to QUERYSUM.

« CoMPUTEEXACTSUM(): Returns the exact) in O(mlogn) time.
o POTENTIAL(): Returns W(Z) = Y, cosh(\z;) in O(1) time for some Z with ||Z — z||oc < €.

113

This is almost exactly Theorem 7.1 in [BLNT20] except here we include an additional per-
coordinate accuracy parameter w, and in QUERYSUM the guarantee becomes ||w™ (T—2®") | <
e instead of |Z-1(Z — 2®)|lsc < e. The implementation and analysis of the data strucutre
largely follows from [BLNT20], and we include it for completeness. The main idea is to main-
tain a O(e~2log n)-dimensional approximation V¥ (Z)’(™) of the m-dimensional exact gradient
V\If(z)l’(;) € R™ by slightly perturbing 7 and z. The approximation V¥(z)*(™) is formally still
m-dimensional, but we say O(¢~2logn) dimension in the sense that its m entries can be put
into O(e~2logn) buckets, and entries in the same bucket share a common value. The proof
of the theorem follows from two sub data structures which we specify below. The first lemma
addresses the construction and maintenance of the low dimensional approximation of the exact
gradient, and we use the corresponding result from [BLNT20] without modification.

Lemma D.2 ([BLN'20, Lemma 7.2]). There exists a deterministic data-structure that supports
the following operations

o INITIALIZE (A € R™*" g € R™, 7 € R™,z € R™ e > 0): The data-structure preprocesses
the given matric A € R™ " wectors g,7,z € R™, and accuracy parameter ¢ > 0 in
O(nnz(A)) time. The data-structure assumes 0.5 < z < 2 and n/m <7 < 2. The output
is a partition \Ji_, I, = [m] with K = O(e 2 logn).

o UPDATE(i € [m],a € R,b € R,c € R): Sets g; = a, 7, = b and z; = ¢ in O(nnz(a;)) time.
The data-structure assumes 0.5 < z < 2 and n/m <7 < 2. The index i might be moved to
a different set, so the data-structure returns k such that i € Iy,.

o QUERY(): Returns ATGVY(2)’™) € R™ for some 7 € R™, Z € R™ with 7 ~. 7 and
1Z = 2|0 < €, where 2™ = argmax|,|_, <1(z,w). The data-structure further returns

the low dimensional representation s € RE such that

K

Z Sklielk = (V\I'(E)W)))
k=1 !
for all i € [m], in O(ne=2logn) time.

o POTENTIAL() Returns ¥(z) in O(1) time.

The next lemma maintains the desired sum for QUERYSUM, which we need to slightly modify
the corresponding result (Lemma 7.6 in [BLN"20]) to accomodate our per-coordinate accuracy
requirement. The implementation of the data structure for the lemma is given in Algorithm 8.
The input to the data structure is the O(¢~? logn) dimensional representations of the gradients
of each iteration, which is computed by the data structure of the previous lemma. Here for a
set I C [m] we also use I as 0/1-vector with I; =1 when i € I and I; = 0 otherwise.

Lemma D.3. There exists a deterministic data-structure that supports the following operations

o INITIALIZE (200 € R™ g € R™, (Iy)1<p<i, € € (0,1]™): The data-structure initialized on
the given vectors £ g € R™, the partition |JS_, I, = [m] where K = O(e2logn), and
the per-coordinate accuracy parameter € € (0,1]™ in O(m) time.

o SCALE(i € [m],a € R): Sets g; < a in O(logn) amortized time.

o MovVE(i € [m],k € [1,K]): Mowves indez i to set I}, in O(logn) amortized time.

o SETACCURACY(i € [m],6 € (0,1]): Sets €; < 0 in O(logn) amortized time.

e QUERY(s € RK h € R™): Let g9 and € be the state of vector g and e respectively during
the (-th call to QUERY and let s and h be the input arguments of the respective call.
The vector h will always be provided as a sparse vector so that we know where are the non-
zeros in the vector. Define y©) = GO Zszl I,gg)s,(f) and z(0 = (i) 4 Sy RO 4 4O

114

then the t-th call to QUERY returns a vector T satisfying |T; — xgt)\ < ez(t) for all i € [m)].
After T calls to QUERY, the total time of all T calls is bounded by

T T
o) (TK +logn - Y RO+ Tlogn -y ||y<f>/e<f—1>\|g> .
=0 /=1

The vector T € R™ is returned as a pointer and additionally a set J C [m] is returned that
contains the indices where T changed compared to the result of the previous QUERY call.

« CoMPUTEEXACTSUM(): Returns the current exact vector) in O(mlogn) time.

The proof follows a trivial adaptation of the proof for Lemma 7.6 in [BLNT20] and we
reproduce it below for completeness.

Proof of Lemma D.3. We start by analyzing the correctness.

Invariant Let s, h(t),g(t),llgt), ¢® be the state of s, h, g, I, e during the ¢t-th call to QUERY
and by definition of z(!) we have for any index i that

o t K
0 =430 (30,0)
(=1 k=1

It is easy to check that ZZ always store the most recent iteration when Z; is updated by CoM-
PUTEX(1, h;). We first prove by induction that this update is always calculated correct, that is,
the data-structure maintains the invariant z; = :ngi).

We see from Line 32 that the data-structure maintains f® = Sty s®) . Further note that
CoMPUTEX (i, h;) is called whenever h; is non-zero (Line 34), g; or ¢; is changed, or i is moved to

a different Iy. Thus if b < t, we know none of these events happened during iteration ¢ € (lz, t]

and the only moving part is the s)’s over these iterations, which is exactly f (®) — (&) Thus,
if k is the set I where i belongs to over iterations (¢;,t], the execution of Line 11 gives

~ t t
RN S T N A N Ay ISy IO S

=l;+1 =li+1
O, w0 @ Lo (& ®
<0 3l (Slp) = 3 (o (S hege) +)
(=0;+1 k=1 0=0;+1 k=1

where the first equality uses f® = >%_, s() and the second equality uses gi(z)

ZZ < ¢ < t, because COMPUTEX (i, h;) is called whenever g; is changed. The third equality is
because COMPUTEX (4, h;) is called whenever i is moved to a different set, soi € 1, ,gé) for the same

k for all /; < ¢ < t. The last equality uses hgg) =0forl; < (< t, because COMPUTEX (4, h;) is
called whenever h; is non-zero. Thus by induction over the number of calls to COMPUTEX (%, h;),

= gZ(t) for all

when /; is increased to t we have

o t K
EZ’ = LEEt) = xz(lnlt) + Z (gge) (Z S](f) 1i€[,il)> + hy)> = iEZ(t),
/=1 k=1

so the invariant is always maintained.

115

Algorithm 8: Algorithm for accumulating GV ¥(7)* (Lemma D.3)

1

(S, SN M

© o N o

10

11
12
13
14
15

16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40
41
42

members
I, Ik ; // Partition U, Iy = [m]
teNTeR"™,; // QUERY counter and approximation of z(®
/e Nm ; // ZZ is value of t when we last update T; < x;
f® e RE // Maintain f() = Sty s(k)
Alhigh) Allow) ¢ gm . // Maintain A; =) & |e;/(10g;)| if i € I,

procedure INITIALIZE(z("Y) € R™ g € R™, (I},)1<p<K, € € (0,1]™)

‘ T < w(init)7 (Ik)lgkgK — (Ik)lngK, t <+ 0, f(o) — 6}(, g < g, €< €

private procedure CoMPUTEX(i, h;)

Let k be such that i € I},
7T+ g (£ = £) + b
@i —t

J — JU{i}

private procedure UPDATEDELTA(%)
Let k be such that i € 1.

Al(high) - f,géi) + |e;/(10g;)]

AL £ — i /(10g:)]
procedure MOVE(i € [m], k)
CompUTEX (4, 0)
Move index 7 to set I,
UPDATEDELTA (7)
private procedure SCALE(i,a)
CompUTEX (4, 0)
gi < a
UPDATEDELTA (7)
private procedure SETACCURACY(i,J)
CompUTEX (4, 0)
€; < 0
UPDATEDELTA (7)
procedure QUERY(s € R h € R™)
tet+1,J«0; // Collect all entries that have changed since the
last call to QUERY
fO — =) L g
for i such that h; # 0 do
| ComPUTEX(i, h;), UPDATEDELTA(i)
for k=1,...,K do
for i € I}, with f,gt) > Aghwh) or f,gt) < Al(lgw) do
| ComPUTEX(7,0), UPDATEDELTA()
return 7, J
procedure COMPUTEEXACTSUM()
for i € [m] and {; < t do
| CompuTEX(7,0), UPDATEDELTA(7)
return =

116

Correctness of Query. We claim that the function QUERY returns a vector Z such that for
all 4

t K
T; € [CCZ(-t) + egt)] = [xz(mlt) + Z (gi(z) (Z s,(f) 11‘61(”) + hl(-z)> + el(-t)
=1 k=1 .

Given the invariant discussed above, we only need to guarantee COMPUTEEXACT(i, h;) is called
whenever the approximation guarantee is violated for some i. Moreover, same as when we
proved the invariant above, we only need to guarantee this in the case that since iteration lZ,
h; is always 0, g;, €; remain constant and ¢ remains in the same [for some k. Thus, the task
is equivalent to detect whenever

Lo OO Nk
Z 9; Sk :|9i'(fk - kl)|>z_-

which is the same as
0 0
£ & 15— 1ei/(10g0)], £ + lei/ (10g0)]
(high)

Note that the lower and upper limits in the above range are exactly A; and Aglow) as
maintained by UPDATEDELTA (i), which will be called whenever any of the terms involved in
the calculation of these limits changes. Thus Line 37 makes sure that we indeed maintain

|TZ‘ — CCEt)| <€ Vi.
Also it is easy to check the returned set J contains all i’s such that Z; changed since last QUERY.

Complexity The call to INITIALIZE takes O(m + K) as we initialize a constant number of K
and m dimensional vectors, and this reduces to O(m) since there can be at most m non-empty
Ii’s. A call to COoMPUTEX takes O(1) time.

To implement Line 37 efficiently without enumerating all m indices, we maintain for each
k € [K] two sorted lists of the i’s in I, sorted by Aghzgh) and Az(lgw) respectively. Maintaining
these sorted lists results in O(logn) time per call for UPDATEDELTA. Hence MOVE, SCALE
and SETACCURACY also run in O(logn) time. To implement the loop for Line 37 we can go
through the two sorted lists in order, but stop as soon as the check condition no longer holds.
This bounds the cost of the loop by O(K) plus O(logn) times the number of indices i satisfying
f]gt) > Aghigh) or f < Aglow), ie. |fl§t) - f,gzi)| > @(egéi)/gi@i)). Note if a CoMPUTEX and
UPDATEDELTA is triggered by this condition for any ¢, h; must be 0 during (¢;,t] iterations.
Thus, let 2(®) := z®it) L 5™ GO, T ,(f)s,(f), we can rewrite that condition as]21@ — zy")] >
@(‘62(&')). Throughout T calls to QUERY, we can bound the total number of times where 4

satisfies |zl-(t) — ZZ-(Zi)| > @(|€§m|) by

T
0 (TZ IGOY fé”sé“)/e“”u%) .
/=1

k

The number of times COMPUTEX and UPDATEDELTA are triggered due to hgt) #0is ||h®]o
each iteration, and updating f*) takes O(K) time. So the total time for T calls to QUERY can
be bounded by

T T

0) (¢ _

O(TK +log(n) - 3" 1O g +log(n) - T3 1GO(S st 1) /e D 3 /é2).
=0 /=1 k

The time for COMPUTEEXACTSUM is O(mlogn) since it just calls COMPUTEX and UPDAT-
EDELTA on all m indices. U

117

Proof of Theorem D.1. The data-structure for Theorem D.1 follows directly by combining Lemma D.2
and Lemma D.3. The result for QUERYPRODUCT is obtained from Lemma D.2, and the result
for QUERYSUM is obtained from Lemma D.3 using the vector s € R¥ returned by Lemma D.2
as input to Lemma D.3 and ¢; being w;e. Note we charge the cost incurred by calling the data
structure of Lemma D.3 to the QUERYSUM complexity. U

118

E Dual Slack Maintenance

Theorem E.1 (Dual Maintenance). Assuming a (P, z,Q)-HeavyHitter data structure as in
Definition 3.1, there exists a data-structure (Algorithm 9) that supports the following operations.
Note in the bounds we use O to hide polynomials in log(nP/||z||1) in addition to logn factors,
and in our instantiations of the data structure the former factor will be bounded by logn.

o INITIALIZE(A € R™" pit) ¢ Rm 4)(0it) < [0,1]™ ¢ € [0,1]) The data-structure pre-
processes the given matriz A € R™", the vector oY) e R™ and accuracy vector 0 <
w™) < 1 in O(P) time.

e SETACCURACY(i,8): Sets w; < 6 in O(z;) amortized time.

o ADD(h € R™): Suppose this is the t-th time the ADD operations is called, and let %) e
the vector h given when the ADD operation is called for the k™ time. Define v® e R™ to
be the vector .

’U(t) — ,U(init) + A Z h(k)
k=1
Then the data structure returns a vector T € R™ such that |w= (7" — v®)|| < e
The output will be in a compact representation to reduce the size. In particular, the data-
structure returns a pointer tov and a set I C [m] of indices i where e

i
to Egtfl), i.e., the result of the previous call to ADD. The amortized time for the t-th call

to ADD 1is
O (Q+ yuP/lzl - 16 = o) /02 4 el P/n).

« CoMPUTEEXACT(): Returns vl € R™ in O(nnz(A)) time, where t is the number of times

ADD is called so far (i.e., v s the state of the exact vector v after the most recent call
to ADD).

s changed compared

The data structure for the theorem above is given in Algorithm 9. Both the implementation
and analysis follow straightforward adaptations of Algorithm 4 and Theorem 6.1 in [BLN"20],
and we reproduce the analysis below for completeness. Our new version makes the formal
reduction to HeavyHitters (Definition 3.1) more clear and adds the SETACCURACY method.
Throughout this section we denote h(*) the input vector h of the ¢-th call to ADD (or equivalently
referred to as the t-th iteration), and let v® = () - A St 1) be the state of the exact
solution v (as defined in Theorem E.1) for the ¢-th call to ADD.

In our algorithm (see Algorithm 9) we maintain a vector f which is the sum of all past input
vectors h, so we can retrieve the exact value of vgt) = vginit) + (Af); for any i efficiently. This
value is computed and assigned to v; whenever the approximation v that we maintain no longer
satisfies the error guarantee for some coordinate i. As to how we detect when this may happen,
we know the difference between v() and the state of v at an earlier ¢'-th ADD call is

t
v —) = A (Z h(t)))

k=t'+1

o~

and thus we can detect all coordinates 7 that changes above certain threshold from ¢ to ¢-th
ADD call using the (P, z, Q)-HeavyHitter data structure of Definition 3.1 (by querying it with
Z’,;:t, 11 h® as the parameter h). Note since the error guarantee we want is multiplicative in w
(i.e., @@ € vi(t) + ew; for all i), while the threshold e in Definition 3.1 is absolute and uniform,
we give w™! as the scaling vector to the HEAVYHITTER data structure to accommodate this.
Since the most recent updates on v; for different indices ¢’s happen at different iterations,

we need to track accumulated changes to v;’s over different intervals to detect the next time

119

Algorithm 9: Algorithm for Theorem E.1

1

© 0 N O O W N

AR W W o W W W W W W WY NN NDNNNNNNFEE R R R R R
H O © 0 9 0 A W N H O © g0 0K W N HO®© g o oA W N HFH O

members
foeER™ weR™ teN
D;, T =+/nP/|z|1 // D; are (P,z,Q)-HEAvYHITTER (Definition 3.1)
fU) € R™ and Fj C [m] for 0 < j <logT
procedure INITIALIZE(A, vt (i) ¢)
T ot Fo G w <+ wmit) ¢ 0
for j =0,...,logT do
D;.INITIALIZE(A, w™!) (Definition 3.1)
FO) B, By 0

return Ayt
private procedure FINDINDICES(h € R™)
I+0
for j =logT,...,0 do
D« f9 4+ h// When 29|t, then fU) =31, . AW
if 27|t then
I + I'U D; HEAVYQUERY(f1),0.2¢/ log n)
9 0,
return J
procedure SETACCURACY(i,0)
Wy < 0
for j =0,...,1o0gT do Fj < F;U{i}, D;.SCALE(%,0) ;
private procedure VERIFYINDEX(7)
if [7; — (v + A f);] > 0.2w;e/logn then
7; < (v L AF),
for j =0,...,logT do
F; < F;U{i} // Notify other D;’s to stop tracking i.
D;.ScALE(7,0)
return True

return False
procedure ADD(h € R"™)
if t =T then return INITIALIZE(A, A(]?—i— h),w,e);
tt+1, f f+h I« FINDINDICES(h)
I < {ili € I and VERIFYINDEX(i) = True}
for j:2/|t do I <+ IU{i|i € F; and VERIFYINDEX(i) = True} ;
for j : 27|t do

for i € ITUF; do

‘ Dj.SCALE(i, 1/U)Z)

Fj+ 0
return I, v
procedure COMPUTEEXACT()

‘ return vt 4 A f

120

an update is necessary for each ¢. Thus, it is not sufficient to just have one copy of the
HEAVYHITTER. On the other hand, keeping one individual copy of the HEAVYHITTER for
each 0 < t' < t will be too costly in terms of running time. We handle this by instantiating
log T' copies of the HEAVYHITTER data structure D; for j =0, ...,log T' where T' = /nP/||z||1,
and each copy takes charge of batches with increasing number of iterations. In particular, the
purpose of D; is to detect all coordinates ¢ in v with large accumulated change over batches of 2J
iterations (see how we update and reset fU) in FINDINDICES in Algorithm 9). Each D; has its
local copy of a scaling vector, which is initialized to be w™!, we refer to it as §¥), and the cost to
query Dj is proportional to ||@(j)Af(j) |24 @Q. Note 9 accumulates updates over 27 iterations,
and || 222, h®)||2 can be as large as 27 22, ||h®)||2. Since we want to bound the cost of our
data structure by the sum of the squares of updates (which can in turn be bounded by our
IPM method) instead of the square of the sum of updates, querying D; incurs an additional 2J
factor overhead. Thus for efficiency purposes, if v; would take much less than 27 iterations to
accumulate a large enough change, we can safely let D; stop tracking ¢ during its current batch
since v;’s change would have been detected by a D, of appropriate (and much smaller) j' so
that 7; would have been updated to be the exact value (see implementation of VERIFYINDEX).
Technically, we keep a set F}j to store all indices 7 that D; stops tracking for its current batch
of iterations and set §Z(J) to 0 so we don’t pay for coordinate 7 when we query D;. Also note
that whenever the accuracy requirement w; for coordinate ¢ changes, we add i to all F}’s (see
implementation of SETACCURACY), and this will make sure we explicitly check whether v; is
within the approximation requirement when ADD is called since we will call VERIFYINDEX on
i (see Line 33). At the start of a new batch of 2/ iterations for D;, we add back all indices in
Fj to D; (Line 37) and reset Fj. As a result, only those 4’s that indeed would take (close to) 27
iterations to accumulate a large enough change are necessary to be tracked by Dj;, so we can
query D; less often for large j to offset its large cost. In particular, we query each D; every 2J
iterations (see Line 16).

We start our formal analysis with the following lemma, which adapts Lemma 6.2 in [BLN"20].

Lemma E.2. Suppose we perform the t-th call to ADD. Then the call to FINDINDICES in
Line 32 returns a set I C [m] containing all i € [m] such that there exists some j with 27|t

satisfying both i ¢ F; and |vi(t72j) - v§t)| > O.ngt)e/ logn.

Proof. Pick any j with 27|t, if |v§t72j) — v§t)| > 0.2w§t)e/ log n, then

¢
el A > Ak > O.wa)e/logn.
k=t—27+1
We will argue why FINDINDICES detect all i’s satisfying this condition.
Note that we have fU) = Zl];:t72j+1 h(*), and thus by guarantee of Definition 3.1 when

we call Dj.HEAVYQUERY(f(j),O.Qe/ logn) (in Line 16), we obtain for every j with 27|t and all
i € [m] with

. ¢
§i(])el-TA Z RF)| > 0.2¢/log n.
k=t—27+1

Here @(])

= 0 if ¢ € F; due to change of w; in SETACCURACY or in Line 27, which happens
whenever 7; is changed in Line 24. Thus by Line 37 we have §§j) =1 /wgt) for all i ¢ F;.
Equivalently, we obtain all indices i ¢ F; satisfying the following condition, which proves the
lemma.

t
el A (Z h(k)) > 0.2w§t)e/ logn

k=t—27+1

121

O

To guarantee that the approximation T we maintain is within the required € error bound of
the exact vector v, we need to argue that the D;’s altogether are sufficient to detect all potential
events that would cause v; to become outside of v & ew. It is easy to see that if an index ¢
is included in the returned set I of FINDINDICES (Line 32), then our algorithm will follow up
with a call to VERIFYINDEX(7), which will guarantee that 7; is close to the exact value v; (or
v; will be updated to be v;). Thus, if we are in iteration ¢, and t is the most recent time

()

VERIFYINDEX(7) is called, we know T; satisfies the approximation guarantee for v;’, the value
of T; remains the same since iteration ¢, and the index ¢ is not in the result of FINDINDICES
for any of the iterations after . We will demonstrate the last condition is sufficient to show
vz(t) ~ vl(t), which in turn will prove 7; ~ UZ@. To start, we first need to argue that for any two
iterations ¢ < t, the interval can be partitioned into a small number of batches such that each
batch is exactly one of the batches tracked by some D;. We cite without proof the following

lemma from [BLNT20].

Lemma E.3 ([BLN'20, Lemma 6.3]). Given any t < t, there exists a sequence
t=1y>1 >...>tk:E
such that k < 2logt and ty,,1 = t, — 2% where £, satisfies 2&”]@3 forallz=0,... k—1.

Now we can argue v stays in the desired approximation range around v with the same
argument (with slight adaptation) of Lemma 6.4 in [BLNT20].

Lemma E.4 (Correctness of Theorem E.1). Assume we perform the t-th call to ADD, the
()

returned vector U satisfies v, —7;| < ewgt) for alli € [m], and I contains all indices that have
changed since the (t — 1)-th ADD call.

Proof. By f = Z;Zl h() we have v(init)—i—Af = v® in Line 23. So after a call to VERIFYINDEX(%)
we know that [v; — UZ@] < O.2ew§t) /logn, either because the comparison [7; — (v + A f);| >
0.2ew;/ log n in Line 23 returned false, or because we set 7; < (v(1) + A f); in Line 24. Note this
is also the only place we may change 7;. So consider some time ¢ < t when VERIFYINDEX (%) was
called for the last time (alternatively ¢ = 0). Then 7; has not changed during the past t —¢ calls
to ADD, and we know [v; —UZ@] < 0.2ew;/ logn. We now want to argue that |v® —v®] < 0.2ew;,
which via triangle inequality would then imply [v; — UZ@| < ew;. Note here we can omit the
superscript of w; since it has not changed during the past ¢t — ¢ calls to ADD, since otherwise
i would have been added to all D;’s (particularly D), which would have triggered a call to
VERIFYINDEX in Line 34.

For ¢ = ¢ this is obvious, so consider ¢ < t. We know from Lemma E.3 the existence of a
sequence

t=ty >t >...>tk:f

with 26 |ty and tz11 =ty —2%=_ In particular, this means that the interval between iteration tot1
and t, correspond to exactly a batch tracked by Dy, . Thus, at iteration ¢, when FINDINDICES
is called, Dy, . HEAVYQUERY is executed in Line 16. This gives us]vz(tx) - v?””\ < 0.2ew;/logn
for all x, because by Lemma E.2 the set I U (U] F;) contains all indices ¢ which might have
changed by 0.2w;e/logn over the past 2¢ iterations for any 2¢|t, and because VERIFYINDEX (i)
is called for all i € I U (U; Fy) in Line 33 and Line 34.

Note we can assume logt < logT since we reset the data-structure every T = /nP/||z|1
iterations, and this bounds the length of the sequence k < 2logT. This then yields the bound

k
|vi(t) - v(t)| = |v§t’“) - vi(to)| < Z |vi(tz) - v§tm_1)| < k-0.2ew;/logT < 0.4dew;
=1

(2

122

Thus we have [7; — v] < (0.4€ + 0.2¢/ log n)w;, which satisfies our approximation guarantee.
It is also stralghtforward to check that when we return the set I at the end of ADD, I contains
all the i’s where VERIFYINDEX(?) is called and returned true in this iteration, which are exactly
all the ¢’s where v;’s are changed in Line 24. O

Now we proceed to the complexity of our data structure. We start with the cost of FIND-
INDICES, which is mainly on the cost of querying D;’s. As we discussed at the beginning, there
can be a large overhead for large j, but this is compensated by querying large j less frequently.
The following is a straightforward adaptation of Lemma 6.5 in [BLNT20]. Note that SETAC-
CURACY also triggers VERIFYINDEX (indirectly in Add since we add i to all Fj’s whenever we
change w;). We attribute the cost of these VERIFYINDEX calls to the amortized running time
of SETACCURACY instead of counting it in the time spent in VERIFYINDEX.

Lemma E.5. After T calls to ADD, the total time spent in FINDINDICES and VERIFYINDEX
s bounded by

T
O <T62 Do = ol @2 + TQ)
t=1

Proof. We start with the cost of FINDINDICES. Every call to ADD invokes a call to FINDINDICES,
so we denote the t-th call to FINDINDICES as the one associated with the ¢-th ADD. Fix any
J and consider the cost for D;. We update fU) once in each call, which takes O(n) = O(Q)
(Q > n because the Heavy Hitter data structure needs to read the input which costs O(n) time).
Every 2/ calls would incur the cost to D; HEAVYQUERY(f (j)). Without loss of generality we
consider the cost of the first time this happens (at iteration 27) since the other batches follow
the same calculation. We denote §U) as the scaling vector in D; when the query happens. We

know g(]) —0ifi e Fj;, and gl(j) 1/w; otherwise. Note here we can skip the superscript

indicating the iteration number, since if ¢ ¢ F}; it must be that 7; and w; have not changed over
the 27 iterations. The cost to query D; in Line 16 can then be bounded by.

O(|GPVAfDZe2 + Q) < HZDlag 1/w) ANV |27 + Q)

IN

2
27
(Z | Diag(1/w®) ALY uz) e24Q
t=1

27
<0 (zﬂ‘ -3 | Diag(1/w®)ARD |22 + @)

t=1

The first line is by Definition 3.1, and note we use 0.2¢/logn as the error parameter in the

=)

;. for each index i separately. The value is elther

call. The first 1nequahty 1s by looking at g,
0 so replacing it by 1/wl- only increase the norm, or we know i ¢ F}, so g(= 1/w for
all t € [1,2/]. The second inequality uses the triangle inequality, and the third inequality uses
Cauchy-Schwarz. The cost of all subsequent queries to D; follows similar calculation, and as
this query is only performed once every 2/ iterations, the total time after T iterations is

0(T622||D1ag 1/w®) AR® |2 + 72" ﬂ@) <T622|| v“”)/w“’uzwzjcz)
t=1

Note that the equality follows the definition of v() in Theorem E.1. We can then sum over the
total cost for all D;’s as well as updating f9) for j=1,...,logT to get the final running time
bound in the lemma statement.

123

As to the cost of VERIFYINDEX (i), each call computes (v(1) +A f); which takes O(nnz(a;)) <
z; time as each row of A has nnz(a;) non-zero entries. Further, the updates to F}’s and calls to
D;.ScALE for all j’s take O(z;logT’) time. Now we need to bound the total number of times
we call VERIFYINDEX for some ¢, which can only happen in two cases. The first case (Line 33)
is when ¢ is returned by FINDINDICES in Line 32, and the total time we spent in VERIFYIN-
DEX is bounded by O(> ;c; zilogT). By the guarantee of },.; 2 given in Definition 3.1 for
the QUERYHEAVY calls, we know the total cost over T iterations of such VERIFYINDEX calls
is bounded by the toal running time of FINDINDICES (up to a logT factor). The second case
(Line 34) is when ¢ is in some F}; because T; was updated due to v; changing by more than
0.2ew; /logn (or w; is updated, but we count such cost separately in SETACCURACY), and the
total cost can be bounded by

T
O <T6_QZ ([v(t_l))/w(”IIi) -
t=1

Adding up the total cost of VERIFYINDEX and FINDINDICES proves the lemma. O

We proceed to prove the complexity bounds in Theorem E.1. We will set T" to be \/nP/||z||1
and re-initialize the data structure every T' ADD calls.

Initialize. The main work is to initialize the data structures D; for j = 1,...,log T, which
takes O(P) time in total by Definition 3.1.

SetAccuracy. The main work is to call D;.SCALE for all j’s, and this takes O(z;) time. Recall
we also add 7 to all F}’s, which triggers VERIFYINDEX later when we call ADD. Technically for
i’s that are added to all F}’s due to SETACCURACY we can flag them and skip the inner for loop
in VERIFYINDEX since the loop does nothing to these ¢’s. Thus, the total time to just update
T; is O(nnz(a;)) which is bounded by O(z;). We have another D;.SCALE cost incurred in ADD
when we restart D; every 27 iterations (see line Line 37), and such cost is bounded by O(z).

Add. The cost not associated with any FINDINDICES and VERIFYINDEX is O(n). Together
with Lemma E.5 gives the bound of total time of T calls to ADD

T
O (T62 DW= ol @3 + TQ)
t=1

Moreover, the cost to reinitialize the data structure (once every T iterations) is O(P). Together
with the bound above we get the amortized time specified in the theorem statement.

ComputeExact. This just takes O(nnz(A)) to compute the matrix-vector product.

F Graph Data Structures

In this section we formally state the data structure results we need to efficient implement our
interior point method to show Theorem 1.4 in Section 7.

Lemma F.1 ([BLN"20, Lemma 5.1]). There exists a (P,c,Q)-HEAVYHITTER data structure
(Definition 3.1) for matrices A, where A is obtained by removing one column from an incidence
matrix of a directed graph with n+1 vertices and m edges, P = 6(m), ¢ = 6(1) for alli € [m)],
and Q = 5(71 log W) where W is the ratio of the largest to smallest non-zero entry in g.

Proof. If A is an incidence matrix, then [BLN"20, Lemma 5.1] yields a (P, ¢, Q)-HEAVYHITTER
with P, ¢, @Q as stated in Lemma F.1. If we remove one column from A, then the remaining
matrix can be considered an incidence matrix with at most n additional rows that contain

124

only a single non-zero entry (i.e +1 or —1). For the rows that form an incidence matrix we
use [BLNT20, Lemma 5.1], while for the remaining n rows we compute (GAh); explicitly and
return the index 7 if [(GAh);| > e. This additional explicit computation requires only O(n)
time which is subsumed by Q. O

Lemma F.2. There exists a (P, c,Q)-INVERSEMAINTENANCE data structure for matrices A €
R™*" where A is obtained by removing one column from an incidence matriz of a directed
graph with n + 1 vertices and m edges, P = O(m), ¢; =1 for all i € [m|, and Q = n.

mxXm

Proof. For any diagonal matrix V € RI™ we have that ATVA is a symmetric diagonally
dominant matrix. For such matrices there exist nearly-linear time solvers, e.g. Lemma 7.1.
Thus INITIALIZE consists of reading the matrix. During UPDATE no operation is performed and
for SOLVE we use Lemma 7.1. O

We use the following lemma which follows from directly from Lemma 5.1 and 8.2 in [BLN"20)].

Lemma F.3 ([BLN'20, Lemma 5.1 and 8.2]). There exists the following data structure

o INITIALIZE(A € R™*", g € R, 7T) Initializes the data structure on the given matriz A in
O(m) time, where A is obtained by removing one column from an incidence matriz of a
directed graph with n + 1 vertices and m edges.

« SCALE(i,a,b) Sets g; < a and T; < i in O(1) time.

e SAMPLE(h € R"™, C1,C5,C3) Returns a random diagonal matrix R € R™*™ where inde-
pendently for all i we have R;; = 1/p; with probability p; and R;; = 0 otherwise for

GAh)? 1
piZmin{l,Cl m M—i—C’z——i—CgFi}.

Vi IGARE T e

With high probability the time (and thus also the output size of R) is bounded by 6((01 +
Cy)m/\/n+ Csnlog W) where W is a bound on the ratio of largest to smallest entry in g.

Note that by Corollary 4.43 the data structure of Lemma F.3 yields the following (P, ¢, Q)-
HEAVYSAMPLER.

Corollary F.4. There exists a (~P7 c, Q)—HEQVYSAMPLER data structure for edge-vertex incience
matrices A € R™ ™ with P = O(m), ¢; = O(1) for all i € [m], and Q@ = O(m/\/n +nlogW),
where W is the ratio of the largest to smallest non-zero entry in g.

125

	1 Introduction
	1.1 Our Results
	1.2 Related Work
	1.3 Organization

	2 Preliminaries
	3 Overview of Approach
	3.1 IPM
	3.2 Data Structures
	3.3 Putting Everything Together

	4 IPM
	4.1 Overview of Analysis
	4.2 Analysis Tools and Setup
	4.3 Regularized Lewis Weights
	4.4 Bounding , , c, y
	4.5 Feasibility and potential function analysis
	4.6 Sampling Schemes
	4.7 Additional Properties of the IPM

	5 Maintaining Regularized Lewis-Weights
	5.1 Correctness
	5.2 Complexity

	6 Path Following
	6.1 Outline
	6.2 Correctness
	6.3 Complexity

	7 Minimum Cost Flow and Applications
	7.1 Path Following for Graph Problems
	7.2 Initial and Final Points
	7.3 Application: Maximum Flow

	8 General Linear Programs
	8.1 Path Following for General LPs
	8.2 Initial and Final Primal Solutions
	8.3 Final Dual Solutions
	8.4 Application: Discounted Markov Decision Process

	A IPM Proofs
	A.1 Basic Analysis Tools
	A.2 Leverage Scores and Fundamental Matrix Proofs
	A.3 Initial and Final Point
	A.4 Sampling Schemes
	A.5 Additional IPM Properties

	B Matrix Data Structures
	C Leverage Score
	C.1 Correctness
	C.2 Complexity
	C.3 Stabilizer

	D Primal and Gradient Maintenance
	E Dual Slack Maintenance
	F Graph Data Structures

