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ABSTRACT 
In recent years, autonomous robots have been gradually 

introduced into various agricultural operations to address the 
ever-increasing labor shortage problem. Accurate navigation 
from one row to another is one of the many challenging tasks for 
an autonomous robot scouting in semi-structured agricultural 
fields. In this study, a marker-based row alignment control is 
proposed for the cross-bed motion of a scouting robot in 
strawberry fields. Specifically, a feature-based computer vision 
algorithm is used to detect primitive markers placed at the end of 
each planting bed. Then the image coordinates of detected 
markers are used to guide the robot to move away from one row 
and then align with the next one. The proposed method is low 
cost and robust with respect to varying lighting conditions, and 
has been validated in a local strawberry farm. 
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1 INTRODUCTION 
According to the United Nations, the human population will 

be around 9.7 billion in 2050 [1] and the food demand is 
expected to be 60% higher than it is today [2]. Yet in some of the 
most populated areas in the world, the percentage of working-
age population will drop as much as 20% in the next 50 years. 
On the other hand, climate change, pollution, over-fertilization, 
and land degradation are threatening our remaining cultivable 
lands. Precision agriculture emerges with the perspective of 
increasing the yields with limited resources. Aided with 
autonomous agricultural robots, it prospects to mitigate the effect 
of human labor shortage as well. 

Agricultural robots are commonly tasked to navigate 
through the fields and conduct disease detection, harvesting, or 
phenotyping. Two motion primitives in semi-structured fields 
like strawberry fields are: over-bed motion and cross-bed 
motion. The over-bed motion refers to the robot moving along 
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the planting bed, while the cross-bed motion refers to the robot 
transferring between adjacent planting beds. The challenge lies 
in achieving centimeter navigation accuracy at a manageable 
cost. Global positioning system (GPS) was promising to provide 
a guidance solution for agricultural robots. With the prevalence 
of Real Time Kinematics (RTK) technologies, RTK GPS based 
centimeter accuracy positioning [3] becomes affordable. Yet this 
method has seldomly been implemented because all headlands 
and turning points in a field need to be geo labeled beforehand. 
Considering the fact that the number of such landmarks varies 
dramatically between different fields, the workload to implement 
such a system can be prohibitive. 

Vision-based methods have been widely used on indoor 
robotic applications, such as picking or sorting packages [4], 
assisting medical surgery operations [5], and indoor navigations 
[6]. Researchers have also investigated vision based techniques 
for outdoor applications. For example, a color-system combined 
with a Photonic Mixer Device is used on a harvesting robot to 
help an end-effector locate apples [7]. A color-based vision 
system is developed to control a weeding tool to remove weeds 
[8]. Nevertheless, using vision techniques to guide a robot 
through a field is still a hurdle, mainly because of the divergent 
terrain types and different weather/lighting conditions. 

In our previous study [9], an ultrasonic sensor based 
proportional-integral-derivative (PID) controller and a vision 
based nonlinear robust controller were designed to help a field 
robot accomplish over-bed motion and cross-bed motion, 
respectively. In the cross-bed motion control, the robot uses 
webcams to find and follow the centerlines of beds. The field 
tests show some encouraging results. However, the proposed 
method is not robust with respect to different weather conditions 
or light intensities in the outdoor environment. For example, the 
cameras have to be manually re-calibrated if the weather changes 
from sunny to cloudy. The thresholds for the color channels must 
be manually adjusted when the light changes, e.g., when the sun 
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gets covered by the clouds. Besides, some strawberry beds are 
neither straight nor even in width, leading to inaccurate detection 
of the bed centerlines. 

This study is an extension of Ref. [9] aiming to improve the 
robustness of cross-bed motion control with respect to light 
intensity and weather condition. A simple marker-based row 
alignment control algorithm is proposed for the cross-bed 
motion. First, a color-ratio index [10] based computer vision 
algorithm with an auto exposure adjustment is developed to 
extract the markers from the background. Secondly, a vision-
based PID controller is designed to help the robot align with the 
target row. The proposed method is validated via experiments in 
a commercial strawberry farm. Compared with the method in 
Ref. [9], the algorithm can automatically adjust the exposure 
settings of the camera, avoid repetitive calibrations under 
different weather conditions, and is robust with respect to 
varying bed conditions. 

This paper is organized as follows. The problem is defined 
in Section 2. In Section 3, a marker based row alignment control 
algorithm is proposed, which includes three parts: a feature-
based marker detection method, the proof of necessary and 
sufficient conditions for the vision-based row alignment, and the 
design of the marker-based cross-bed control algorithm. In 
Section 4, the robot system is introduced, and the experiment 
results are presented. Conclusions are given in the end. 

2 PROBLEM DEFINITION 
The motion connecting two neighboring beds is referred as 

the cross-bed motion. The marker-based cross-bed motion 
control has three phases as shown in Figure 1. In Phase 1, the 
robot uses the right camera to align with Marker I. In Phase 2, 
the robot moves toward Bed II for a predefined distance and then 
uses the side camera to align with Bed II. In Phase 3, the robot 
turns 90   and uses the front camera to align with Marker II 
while entering Bed II. 

 
Figure 1. The cross-bed motion of the robot in a two-bed 
experiment 

To achieve the marker-based crossing bed motion, two 
algorithms are designed. First, an image processing algorithm is 
designed to extract the markers from the background in real time. 
Secondly, a marker-based cross-bed control algorithm is 

developed to guide the robot to enter the neighboring bed. The 
motion of the ground robot is governed by [11] as 
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where ( )w
botx  and ( )w

boty  are the robot position in the world frame 
defined in Figure 1, and   is the heading angel.   and   
are the speed and the angular velocity of robot, respectively. 

3 MARKER BASED MOTION CONTROL 
The marker-based cross-bed algorithm controls the 

transition and rotation of the robot to transit from the current bed 
to the next one and align with it both laterally and longitudinally. 
3.1 Feature-based Marker Detection 

Three features are considered when designing the marker: 
shape, color, and size. An equilateral triangle shaped flat marker 
made from red antiglare material is designed and installed at the 
end of each strawberry bed. The equilateral triangle shape is 
chosen for the fact that, based on the projection relationship, the 
median of the bottom side is perpendicular to the bottom side 
only when it is viewed straight. The red color is chosen to 
distinguish the marker from the green plants and black plastic 
films used to cover the beds, both of which resembles the marker 
in shape. The size of the marker is chosen so that it is sizable for 
feature extraction, yet not oversized for the ground clearance of 
the robot. 

The marker is installed at an upward inclination angle of 
approximately 60°, so that the robot can capture enough features 
whether it is away from or close to the bed. On the other hand, 
the camera aboard the robot is installed at a downward elevation 
angle that is fine-tuned to provide an unobstructed view of the 
marker from a wide range of distance. The bottom median of the 
marker is aligned with the orientation of the strawberry bed. 
Figure 2 shows an installed marker at the end of a strawberry 
bed. 

 
Figure 2. Demonstration of the marker in the strawberry field 

A feature based computer vision algorithm (shown in Figure 
3) is used to detect the marker features and extract it from the 
background. First, a color-ratio index based color filter is used to 
extract the red layer from the image. The uniqueness of this 
color-ratio index is the light scene invariance. Then, the features 
of a triangle are used to detect all triangles in the red layer. At 
last, one of the detected objects that resides closest to the 
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predicted location of the marker, meeting a predefined size 
criterion, is qualified as the extracted marker image. 

 
Figure 3. Feature based marker extraction algorithm 

Lighting condition is a major challenge when applying 
vision-based algorithms in a field robot. The chosen antiglare 
material for the marker minimizes the effect of solar zenith angle 
and presents accurate color within a wide range of viewing 
angles. To ensure the marker is accurately exposed under various 
lighting conditions, a computer vision algorithm utilizing the 
Matlab support package for USB webcams [12] is designed 
(shown in Figure 4) to automatically adjust the exposure settings 
(i.e., shutter speed and brightness) of the camera in case that an 
inaccurate exposure leads to a detection failure. Two 
overexposure ratio criteria are predefined that will direct the 
logic to whether yield a brighter image or a darker one. The 
criteria are chosen based on field test data. When the 
overexposure ratio falls between 0.1 and 0.3, the color filter is 
guaranteed to detect the color of the marker. 

 
Figure 4. Automatic exposure adjustment algorithm 

3.2 Row Alignment 
The position and heading angle   of scouting robot are 

defined in the world frame I , as shown in Figure 5. The mass 
center of robot is chosen to be the origin point Or of the robot 
frame. The original point Oc of the camera frame c  is placed 
at the focal point of the camera. 

 
Figure 5. Coordinates of the scouting robot 

Lemma 1: The robot aligns well with a point P in the world 
frame along the Ix  direction if and only if P locates along the 
vertical centerline in the image plane of the camera onboard the 
robot.  

Proof: Necessary condition: Assume that there is a ground 

point P in the world frame, such that      , , 0 
 

Tw w w
P Px yP . 

The origin of robot frame in the world frame is 
  ( ) ( ) ( ), ,   

Tw w w w
bot bot bot botx y zx  , where ( )w

botz   is the positional 
component along the zI direction in the world frame, and is half 
of the robot height rh . A camera is mounted on the robot with a 

fixed position bias    0, 2,  
 

Tr
r zw br

cx   in the robot 

frame Or and an elevation angle  , where wr is the width of the 

robot and  r
zb  is the position component along the zr direction 

in the robot frame. The position of P in the robot frame can be 
calculated by 

         /
 

r r w w w
zR botP P x  (2) 

where   3 3r w
zR   is the rotation matrix from the world frame 

to the robot frame. The position of P in the camera frame is  

        
r rc rRc

cP P x  (3) 

where 3 3c rR   is the rotation matrix from the robot frame to 
the camera frame. Finally, the pixel position of P in the image 
plane is 

    ( )
p cc

cK zP P  (4) 

where  cz   is the z component of ( )cP   and cK   is the 
intrinsic matrix of the camera [13] as 
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Here [fx, fy] and [cx, cy] are the focal length and focal point, which 
can be acquired by camera calibrations.  

If point P is located along the line   0w
px   , i.e. 

 ( ) 0, , 0 
 

Tww
pyP , when the robot aligns well with P, such 

that ( ) 0w
botx  and 0   , then according to Eq. (2), point P  

in the robot frame is  
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Point P in the camera frame by using Eq. (3) is  
 ( ) ( ) ( )0, ,   

Tc c cy zP  (7) 
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The position of P in the image can then be calculated by 
using Eq. (4) as 
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Therefore, when the robot aligns well, the target point P is 
along  p

xx c  in the image plan, where  px  is the positional 

component of ( )pP  along the x direction of the image plane. 
Sufficient Condition: Assume that there is a point P in the 

image plane, such that ( ) ,   
Tp

x yc c bP  , where b   is an 
offset distance along the y direction in the image plane, the 
distance between the camera to P can be measured as  cz , then 
the position of P in the camera frame can be calculated by 
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Point P in the robot frame is 
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Assume that the robot is straightly right, such that the 
heading angle 0  , the position of P in the world frame is 
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If point P in the world frame is  ( ) 0, , 0 
 

Tww yP , the 

positional component of ( )wP  when 0  in the xI direction 

has to be zero, i.e. ( ) 0w
botx . 

Lemma 1 describes the necessary and sufficient conditions 
for the robot to align with a point along the xI direction in the 
world frame. To make sure the robot is aligned with the 
strawberry bed, the robot needs to align with the median of 
bottom side of the marker. Therefore, Lemma 1 is extended to 
the following corollary. 

Corollary 1: The robot aligns well with a line in the world 
frame if and only if the projections of two points on this line are 
on the centerline ( ( ) p

xx c ) of the image plane. In other words, 
the projection of the line should along the image centerline 

( ) p
xx c . 

Remark 1: The robot is equipped with 2 side cameras (right 
and left) and 1 front camera. The side cameras are used to 
conduct the side alignment, while the front camera is used for the 
front alignment. To be brief, only the proof of the left side camera 
of the robot has been fully addressed, while the proof of other 
cameras can be proven following the same procedure. 
3.3 Marker-based Cross-Bed Motion Control 

The image of a marker is illustrated in Figure 6, in which c  
is the center of the image, 1m   and 2m   are the bottom 
midpoint and the top vertex of the marker in the image plane, 
respectively. Let subscripts x and y denote their corresponding 
pixel coordinates. According to Corollary 1, to align the robot 
with the strawberry bed, the following error variable 

 ( )   
Tpde   (13) 

should be driven to zero, where ( )pd   is the pixel distance 
between the center of the marker’s bottom side and the center 
line of the image plane, which is calculated by 

 ( )
1,

p
x xd c m    (14) 

  is the angle between the median of the marker’s bottom side 
and the center line of the camera image, which is calculated by 

    1
2, 1, 2, 1,tan /     

 y y x xm m m m   (15) 

 
Figure 6. Illustration of a marker in the camera image plane 
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The motion of the robot is governed by the dynamic model 
given by (1). Under the assumption that the robot can perform 
90   turns with an acceptable accuracy, the small angle 
assumption can be further established during the alignments. 
During the front alignment (Phase 3), the transitional speed v  
of the robot is set to be constant, and (1) can be simplified as 
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The dynamic model of the robot during front alignment can 
be simplified as  
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The error variable during the front alignment is 
( ) Tp

f fd    e  , where f    . The error system can be 
described by 

 
( ) 0

0 1

p
f

f

k vd 



      
     

      

  (18) 

where 0k   is a parameter determined by the distance between 
the marker and the camera. Since v   is constant during front 
alignment, the virtual control [14] to eliminate ( )pd   is f  , 
which we define as  

 ( ) ( ) ( )
, ,

,

1 dp p p
ref p y d y

i y

K d d t T d
T


 

   
 
 

   (19) 

We subsequently define ref fe      and the following 
controller is designed to reduce this error 
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During the side alignment (Phase 2), we assume the change 
of the distance between the robot and the bed is neglectable. 
Then the dynamic model of the robot during side alignment can 
be simplified as  
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The error variable is ( )[ , ] P T
s sde  , where 90s    . 

The error system can be described as 
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The following controller is designed for system (22) 
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4 EXPERIMENTAL VALIDATION 
4.1 Experiment Settings 

The experimental robot platform is a four-wheel ground 
robot that is equipped with two Microsoft Studio webcams 
respectively facing forwards and rightwards, one Arduino Mega 
board for motor control, and a laptop with a dual core 2GHz CPU 
for the marker-based motion control algorithm. The webcam 
model has an adjustable exposure value (EV) range of 14 stops 
(0 to -13) and a brightness range of 226 stops (30 to 255). Since 
the aperture of camera is not adjustable, the EV is directly 
associated with the shutter speed. The smaller the EV, the faster 
the shutter speed. In a two-bed experiment setting, two markers 
are installed at one end of two adjacent strawberry beds as shown 
in Figure 7. 

 
Figure 7. The two-bed experiment setup 

The proposed marker-based alignment method is applied in 
the experiment to control the robot to finish the cross-bed motion 
as shown in Figure 1. The robot starts at the end of Bed I in a 
gesture ready to drive off the bed and executes the following 
cross-bed operation sequence: 
 Drive off the bed for a preset distance of 3 meters. 
 Make a right turn of 90  to point the right camera to Bed I. 
 Execute the side alignment with Marker I using the right 

camera. 
 Drive across bed for 1.3 meters, which is the approximate 

distance between beds in the experiment strawberry field. 
 Execute the side alignment with Marker II using the right 

camera. 
 Make a right turn of 90  to point the front camera to Bed II. 
 Execute the front alignment with Marker II using the front 

camera and drive towards Bed II at a preset speed of 0.2 m/s. 
 

4.2 Experiment Results and Discussion 
In the cross-bed sequence, the off-bed transition, the cross-

bed transition, and the 90  turns are open-loop operations. The 
vision-based alignments eliminate the errors introduced in the 
open-loop procedures and prepare the robot for the subsequent 
procedures. 

The experiment presented below was conducted between 2 
and 3pm on a cloudy day. The webcams are initialized with an 
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EV of -5 and a brightness value of 100. After the off-bed 
transition and the subsequent 90  turn, the automatic exposure 
adjustment algorithm reduces the EV to -12 to accommodate the 
lighting condition. The initial error variable with respect to 
Marker I is 48.23 0 T

s px   e , where “px” denotes the unit 
for pixels. The side alignment with Marker I is executed to 
achieve  0 0

T
se . Under the alignment control, the position 

error is steadily reduced to 0, while the angle error is maintained 
around 0 throughout the process, as shown in Figure 8. 

 
Figure 8. Changes of the error variables during the side 
alignment with Marker I 

The robot then transits across these two beds. The error 
variable with respect to Marker II is 67.2 0.9548 T

s px   e . 
During the side alignment with Marker II, the angle error is 
maintained close to 0, while the position error shows some 
oscillation, which mostly results from the rotation of the robot to 
eliminate the angle error. Changes of the error variables are 
shown in Figure 9. 

 
Figure 9. Changes of the error variables during side alignment 
with Marker II 

After a 90  right turn to face Bed II, the robot carries out 
the front alignment with Marker II while transiting towards Bed 
II. The EV is increased to -11. The initial error variables with 

respect to Marker II is 122.17 4.76 T
f px    e . As shown in 

Figure 10, the error variables steadily converge to 0, with slight 
oscillations occurring when the robot is very close to the bed 
where the ground is uneven. 

 
Figure 10. Changes of the error variables during front 
alignment with Marker II 

We have conducted field tests on three cloudy and windy 
days. Our experiments usually extend from noon to late 
afternoon. The robot has flawlessly finished 11 uninterrupted 
cross-bed motions, all of which successfully connected two 
adjacent over-bed motions.  

5 CONCLUSIONS 
In this study, a simple marker-based row alignment control 

is proposed to enhance the performance of cross-bed motion of 
an agricultural robot in semi-structured fields. A robust feature-
based matching algorithm is designed to detect the customized 
marker under varying outdoor conditions in real time. A vision-
based alignment control algorithm is then developed to help the 
robot adjust its attitude and align with the target planting bed. 
Experiments are successfully conducted in a local strawberry 
farm. 
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