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ABSTRACT: Predictive modeling (calibration or training) with
various data formats, such as near-infrared (NIR) spectra and
quantitative structure—activity relationship (QSAR) data, provides
essential information if a proper model is selected. Similarly, with a
general model selection approach, spectral model maintenance
(updating) from original modeling conditions to new conditions
can be performed for dynamic modeling. Fundamental modeling
(partial least-squares (PLS) and others) and maintenance
processes (domain adaptation or transfer learning and others)
require selection of tuning parameter(s) values to isolate models
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that can accurately predict new samples or molecules, e.g, number of PLS latent variables to predict analyte concentration.
Regardless of the modeling task, model selection is complex and without a reliable protocol. Tuning parameter selection typically
depends on only one model quality measure assessing model bias using prediction accuracy. Developed in this paper is a generic
model selection process using concepts from consensus modeling and QSAR activity landscapes. It is a consensus filtering approach
that prioritizes model diversity (MD) while conserving prediction similarity (PS) fused with a common bias-variance trade-off
measure. A significant feature of MDPS is that a cross-validation scheme is not needed because models are selected relative to
predicting new samples or molecules, i.e., model selection uses unlabeled samples (without reference values) for active predictions.
The versatility and reliability of MDPS model selection is shown using four NIR data sets and a QSAR data set. The study also
substantiates the Rashomon effect where there is not one best model tuning parameter value that provides accurate predictions.

B INTRODUCTION

Modeling is a universal problem concerned with forming a
mathematical relationship (model) between measured varia-
bles for a collection of samples and respective reference
property quantities. The model is then used to predict future
sample content. For example, spectral data such as near-
infrared (NIR) is used with analyte concentration values to
form a multivariate calibration (also referred to as training)
allowing concentration predication of new samples. Another
example is to form quantitative structure—activity relationships
(QSAR) between molecular descriptors and the activity of
interest.

Generating mathematical calibration models for prediction
are often performed using partial least-squares (PLS), ridge
regression (RR), and other methods."”
methods require tuning parameter values to be varied (latent
variables (LVs) for PLS and ridge parameters for RR) to form
a collection of models (regression vectors). From the
collection, one model is selected. The PLS LV range is 1
through the mathematical rank k, and the RR ridge parameter
n value ranges from 0 to co. Thus, model selection is critical
for choosing a particular tuning parameter value corresponding
to a robust model with an appropriate bias-variance balance
(not under- or overfitted). The selected model needs to also
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deliver accurate predicted property values for new samples (or
molecules).

A significant modeling issue is model maintenance. Model
corrections become necessary when measurement (secondary)
conditions (sample (molecule), instrument, and environment
matrix effects) for new secondary samples become sufficiently
different from the original (primary) calibration conditions.
Because conditions have changed, the original model does not
provide accurate property values for secondary samples.'”

Model updating is one way to fix this problem. The process
usually involves augmenting the original primary calibration set
with a small set of secondary samples in order to orient the
new model regression vector to an appropriate direction while
simultaneously adjusting the model vector magnitude. At least
two tuning parameters are required with model updating: one
to solve the calibration equation and one to weight the few
augmented secondary samples.
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There are a variety of accepted model selection mechanisms
for PLS, RR, and others with one tuning parameter. Some of
these methods include versions of cross-validation (a common
approach),”* permutation,” L-curve,”” U-curve,*”'* sum of
ranking differences (SRD),"*"* H-principle,'> Mallow’s Cp,'°
and others. A few of these methods rely on only one model
quality measure such as prediction error (a bias measure), and
others combine one or more bias measures with one or more
variance or model complexity measure such as the model
regression vector magnitude.

At least two model quality measures should be used when
selecting only one tuning parameter value for a basic
calibration, e.g, PLS or RR where new samples are matrix
matched (similar) to the calibration set. One measure should
characterize bias and the other variance thereby selecting
models with an appropriate bias-variance trade-off. However,
in model maintenance processes with multiple tuning
parameters, evaluating the bias-variance trade-off for model
selection is not as straightforward.'*~*° Specifically, which bias
measures to include in the model selection protocol depends
on the degree of similarity between the primary and secondary
conditions, e.g., the degree of matrix (domain) matching
between primary and secondary spectra. These domain
differences influencing the ability to model update were
reported in other work.”!

Another difficulty in selecting calibration or maintenance
models is the large number of diverse models that can be
formed with unique features and yet predict accurately.””~>
This problem is compounded in model maintenance when two
or more tuning parameters are involved. Thus, there are many
tuning parameter values that can form applicable models in the
effective predictive domain of the new samples. Identifying the
one best tuning parameter value(s) is thus not practical. This
point is becoming more recognized, and recent work attempts
to define this collection of equally accurate predicting models
as the point of curvature in a Rashomon curve.’® The
application of the term “Rashomon effect” to modeling was
first noted by Leo Breinman.”” The Rashomon effect basically
applies to any situation where a single event can be described
in a variety of ways for different reasons that depend on the
application. In modeling, there are often a large number of
models that can accurately predict a single sample.

Needed is a model selection approach to identify a
collection of models providing acceptable bias-variance trade-
offs. The approach should function across multiple data sets
and calibration and maintenance methods and not depend on
the degree of domain differences. Developed and validated in
this paper is a novel generic model selection process that uses
concepts from consensus modeling'®**™>" and QSAR activity
landscapes to solve the problems.”” >

Consensus modeling theory designates using multiple
models rather than one for predicting property quantities.
For example, consensus modeling expects PLS or RR model
vectors at selected respective LVs and # values to maintain
diversity and yet generate accurate predictions. Diversity is
determined more by vector direction (shape) than magnitude.
The goal of model selection established in this paper is to
select these diverse models for a robust accurate property
prediction. Model predictions are fused to report the final
sample property amount.

To accomplish selection of diverse models with accurately
predicted property values, tactics are used analogous to those
used to form QSAR activity landscape maps for assessing
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structure—activity relationships between molecular structure
and potency (activity) differences.’* > Construction of an
activity landscape requires computing all possible molecular
pairwise comparisons. A landscape map is formed by plotting
activity similarities against structure diversity allowing
evaluation of the structure—activity relationships.

For the model selection method presented in this work, all
possible pairwise model vector comparisons are evaluated for
model dissimilarity and sample property prediction similarity.
Prediction similarity is used as a substitute for accuracy
because if diverse models predict accurately, then the models
should also equally predict similar property values. A
prediction landscape map is formed by plotting prediction
similarities against respective model differences. Because two
models can also predict similarly and yet predict inaccurately, a
model bias-variance trade-off measure is included with
prediction similarities in prediction landscape maps.

The predication landscape map is filtered identifying those
tuning parameter values (models) that prioritize model
diversity (MD) while conserving prediction similarity (PS)
relative to a commonly used bias-variance trade-off measure.
Results are presented in this paper evaluating the consistency
of the MDPS method over four near-infrared (NIR) data sets
to select accurately predicting single and multiple tuning
parameter calibration and maintenance models.

A significant feature of MDPS is that because prediction
similarities are used to identify models, reference property
values (labels) are not needed. Thus, models are selected to
only predict new samples, and complex cross-validation data
splitting schemes are not needed. The usual cross-validation
approach is to select one model from the training set based on
an elaborate cross-validation design and then predict the new
samples with the one model. With MDPS, models are selected
from the collection of models formed by the training set
targeting new sample predictions.

The original intent of MDPS was tuning parameter selection
for model updating because that is the situation where there is
not a strong model selection mechanism. Thus, the paper
emphasizes application of MDPS to two (and potentially
more) tuning parameter model updating circumstances. The
MDPS process is also applied to single tuning parameter RR
and PLS methods. The data set focus is NIR spectra, but
MDPS is also relevant and important to other modeling
situations such as with QSAR data, also examined in this paper
or single tuning parameter selection.

B METHODS

Original (Primary) Modeling. Multivariate calibration
(modeling) requires a collection of m samples of known
property reference values signified as an m X 1y vector. These
calibration samples are measured at w sensors, e.g, NIR
spectra measured over w wavelengths, expressed as an m X w X
matrix.

The Xy calibration data are used with y = Xb + e that is
solved for an estimated model regression vector b. The PLS
and RR methods are used in this paper. Respective tuning
parameter values are varied through ranges to create sets of
models to select from. The tuning parameter for PLS is the
number for the LV range (1, mathematical rank k). For RR, the
tuning parameter is the ridge parameter # value that weights an
identity matrix augmented to X and the range (0,00) albeit
models eventually converge at large 7 values.

https://doi.org/10.1021/acs.jcim.0c01493
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The pool of PLS models to select from is discrete due to the
discontinuous nature of LVs, and the RR models are
continuously depending on the number of digits in the ridge
value past the decimal point. Thus, model selection for PLS
and RR represents unique challenges. The novel MDPS is
shown to select acceptable PLS and RR models.

Model Updating. While PLS and RR calibrations need
only one tuning parameter, model updating methods typically
require at least two tuning parameter values. Two model
updating methods are used to demonstrate the utility of MDPS
to simultaneously select two turning parameters.

The first approach is commonly used and referred to as local
mean centering (LMC)>"*® where the primary (P) and
secondary (S) data are mean-centered to respective means in
the augmented system given by

o) -[)

where 4 weights the augmented secondary samples with values
from the range (0,00). Regression vector estimates are
obtained by applying PLS to the augmented equation. Thus,
LMC requires concurrent selection of two tuning parameter
values: the number of LVs and the 4 weight.

Because every combination of two tuning parameters must
be evaluated with MDPS, the number of total models to select
from multiplicatively increases compared to when only one
tuning parameter is involved. Confounding LMC model
selection is that the degree of domain difference between the
primary and secondary data dictates which bias model quality
measures to use.”’

The model updating method termed feature augmentation-2
(FA-2)" is similar to LMC, but instead of one model vector,
two b model vectors are formed. The relationship is expressed

as
Y, X, 0
P P bp
0|=|0 Xp
b
Ay, X AXG NS

where by is the model vector for predicting the primary data,
and bg symbolizes the model vector oriented to capture
secondary features different from primary features. The two
respective models are summed to form the final predicting
model and assessment by MDPS. Similar to LMC, primary and
secondary data are respectively mean-centered, and FA-2 uses
two tuning parameters to form a model: PLS LVs and the 4
weight. Analogous to LMC, one set of bias-variance model
quality measures was not possible for consistent model
selection for different data sets relative to respective domain
differences.*

Model Selection by Model Diversity Prediction
Similarity (MDPS). Model selection using the proposed
MDPS process requires comparison of all models pairwise for
model differences (diversity) and prediction similarities.

Model diversity is determined by using the cosine of the
angle formed between the two model vectors being compared
and is computed by

ATh A
COS(G);',,' =b bj/(”bi” “b,“)

where i and j are tuning parameter indexes for two models, and
llell designates the Euclidean vector norm (2-norm, L, norm).
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The cos(@) value focuses on vector shape (direction)
differences and ranges from 1 for exact similarity to O for
orthogonal differences. The Euclidian distance between two
vectors for magnitude differences is another common vector
similarity measure. However, this measure was found to ignore
changes attributed to A in LMC and FA-2.

All prediction similarities used in MDPS are for new samples
not part of the calibration or updating set, i.e., the new samples
needing to be predicted for property quantity. For consistency
between basic (primary) PLS or RR calibrations and the LMC
and FA-2 model updating methods, prediction similarities used
with MDPS are termed secondary prediction differences
(SPD) computed by

SPD,; = Z |5);L,i - }2;,;"
n=1

where ¥ signifies PLS, RR, LMC, or FA-2 predicted property
values for s new samples. The SPD value quantifies sample
prediction differences using prediction values from the tuning
parameter specific i and j models. The effect of the number of
new s samples used to select models is described in the Results
and Discussion section, but generally the size s does not
matter. The SPD values are ranged scaled (RS) to vary from 0
to 1 inclusive over all possible model pairs by

— SPD,,,)/(SPD,,, — SPD,

min)

SPD;> = (SPD,;

where min and max are minimum and maximum, respectively.

In order to select models with an appropriate bias-variance
trade-off balance, the final prediction similarity for two models
includes a weighted U-curve term. Including the U-curve
allows removing over- and underfitted models from consid-
eration. Of the many possible U-curves,”"* the one used with
MDPS is the combination of the range scaled mean regression

——RS
vector 2-norm (||b||,]) for models i and j and the
corresponding range scaled average root-mean-square error
for primary calibration samples (RMSECy'). The final
bl

composite prediction similarity value for models i and j used
in the prediction landscape plot is labeled C;; computed by
——RS _

C,;=SPD; + o(||bll  + RMSEC}"),; 1)
where @ (>0) weights the bias-variance trade-off determined
by the U-curve.

Figure 1 shows an example of an MDPS prediction
landscape map obtained by plotting composite prediction
similarity C;; values against the corresponding model diversity
cos(0), j values for each combination of two models. Figure 1 is
for LMC with the Goat data, but it characterizes the situation.
Model combinations are colored according to the average
RMSE of validation (RMSEV) value for the new samples
relative to respective model pairs. Shown in Figure 2 is a three-
dimensional plot of Figure 1 where the axes are cos(#), SPD,
and the RMSEC U-curve. A U-curve shape can be observed in
Figure 2, and selected models tend to be at the bottom of the
U-curve.

The contrast between the C;; axes in (a) with @ = 0 and (b)
with @ = 0.4 demonstrates the importance of using a weighted
U-curve. Weighting the U-curve in Figure 1b shifts upward
those models predicting similarly (small SPD,; values) but are
the poorly predicting underfitted (red points§ and overfitted
models (light blue points). Because of these upward shifts in

https://doi.org/10.1021/acs.jcim.0c01493
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Figure 1. All LMC model pairs for the Goat data situation with 2,300
models creating 2,643,850 combinations. (a) considers Cjwithw =0
and (b) has @ = 0.4. Model combinations are colored according to
the average RMSEV for respective model pairs. Red boxes encapsulate
316,143 model pairs in the diversity range 0.3 < cos(6),: ; <05, and
purple boxes contain the 31,614 model pairs selected with the lowest
10% composite prediction similarity C;; values.

C;; values, the corresponding models cannot be selected.
Figure 2 further shows this effect.

The first step in model selection is to identify all model
combinations in a model diversity range (0.3—0.5 for model
updating shown by the red rectangle in Figure 1). The 10%
subset of model pairs with the lowest composite C;; values are
then selected (purple rectangle). A weighted average of the
property predictions from the models in this subset is used for
final sample prediction values. Weights determined by the
frequency models are selected in the lower 10% subset of
model pairs. Specifically,

t t
= 2 O‘ixsuf’z =
i=1

where @; denotes the weight associated with the ith model of
the t individual models with each @; determined by the number
of times the ith model is selected divided by the total number
of models selected in the lower 10%, i.e., the weights sum to 1.
Another way to consider the final prediction is that there is one
final predicting model bf formed from a linear combination of
the selected models. In this portrayal, y = XSUbf where b =
¥ ab, As a reminder, MDPS selects models for all new
samples. Other approaches to forming final predictions for
each sample exist including a majority vote of prediction values
for a sample, the mode, median, etc. How the model
predictions are combined for a final prediction of each sample
is up to the user and not part of the MDPS selection. Only the
weighted mean is reported here.
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Figure 2. Two views ((a) and (b)) of MPDS terms in eq 1 showing
model diversity cos(#) with the composite prediction similarity term
separated. Plotted are LMC model pairs for the Goat data set in
Figure 1. The RMSEV color bar is the same for (a) and (b), and for
(c), purple points are for all model pairs, and yellow points are for
those selected in the lower 10% of part b.

For the Goat data set in Figures 1 and 2, there are 2,300
models formed across the LV and A ranges creating 2,643,850
model combinations. In the model similarity 0.3 < cos(6);; <
0.5 range, there are 316,143 model pairs leading to 31,614
model pairs remaining in the lower 10% region. Of these pairs,
there are 1,218 unique models whose selection frequencies are
examined in the Results and Discussion.

In order for MDPS to select good models, there are three
adjustable parameters: the cos(@) diversity range, @ for
weighting the U-curve, and how many models with the lowest
composite prediction similarity values. Thus, it seems selecting
model tuning parameter values has been traded for tuning the
MDPS process. However, it was found through empirical
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observations over many data situations that the values could be
fixed relative to the modeling task. For model updating with
more than one tuning parameter, the adjustable MDPS
parameters were set to 0.3 < cos(6),; < 0.5, ® = 0.4, and
the lowest 10% C;; values. For the single tuning parameter
modeling methods RR and PLS, the MDPS parameters
determined best are 0.6 < cos(6);; < 0.8, ® = 1.0, and the
lowest 10% C;;.

B EXPERIMENTAL SECTION

Software. All algorithms were developed by the authors
using MATLAB R2019a. The MDPS model selection
algorithm can be downloaded.””

Data Descriptions. Four NIR spectral data sets were used:
Corn,*® Soy,39 Tablet,”” and Goat.”" All 19 calibration and 40
model updating settings were studied. A QSAR data set is also
used for three calibration situations.*

Corn. Spectra of 80 samples of cornmeal with property
values moisture (9.377—10.993%), oil (3.088—3.832%),
protein (7.654—9.711%), and starch (62.826—66.472%) were
recorded across three instruments: m$S, mpS, and mpé.
Measured wavelengths ranged from 1100 to 2498 at 2 nm
increments for 700 wavelengths. Six updating scenarios are
analyzed noted by primary-secondary: mS-mpS, mS-mp6,
mpS-mS, mpS-mp6, mp6-mS, and mp6-mpS for each property
for a total of 24 situations.

Soy. Spectra of 60 soy seed samples with property
information for moisture (5.9—18.4%), oil (29.0—43.4%),
and protein (14.7—22.9%) were measured from 1100 to 2500
nm with 4 nm increments (300 wavelengths in total) on two
instruments: R1 and R2. Six updating settings are studied: R1-
R2 and R2-R1 each for the three properties.

Tablet. Pharmaceutical tablets were produced and measured
in two batches: laboratory (lab) and full production (full) with
the active pharmaceutical ingredient (API) Escitolopram.
Tablets are subdivided into four types for each batch (types
1—4) based on respective total tablet weights 90, 125, 188, and
250 mg. Because tablet types have different total weights,
respective tablet types have different shapes and sizes with
tablet thicknesses ranging from 2.9 to 4.3 mm. There are 30
tablets for each batch tablet type making 120 tablets for each
batch. The API content for lab is type 1 (4.7432—6.2297), type
2 (6.6456—9.7862%), type 3 (6.6180—9.2715%), and type 4
(6.7182—9.3824%). For the full batch, the API content is type
1 (5.1228—5.8386), type 2 (7.6028—8.40342%), type 3
(7.6400—8.4293%), and type 4 (7.4864—8.4779%). Spectra
were measured from 700 to 2500 nm for a total of 404
wavelengths. Primary is always the lab batch, and secondary is
always the full batch. Each primary and secondary data set
contains two tablet types with one tablet type in each
condition being type 1. The other tablet type is one of the
remaining three making 9 updating situations: 1&2-1&2, 1&2-
1&3, 1&2-1&4, 1&3-1&2, 1&3-1&3, 1&3-1&4, 1&4-1&2,
1&4-1&3, and 1&4-1&4.

Goat. Goat feces samples were analyzed for juniper berry
content in 1999 (61 samples with juniper berry 1-50%) and
2002 (48 samples with juniper berry 1—40%). Spectra are
measured over 1050 wavelengths from 400 to 2500 nm. Only
one updating situation is analyzed: 1999—2002.

QSAR. This data set is a study of carbonic anhydrase (CA)
inhibitors and consists of 142 compounds assayed for
inhibition of three CA isoenzymes: CAI, CAII, and CAIV.

2224

The log of respective inhibition values was modeled using 63
molecular descriptors.

Tuning Parameter Values. For PLS calibration, the
number of LVs ranged from 1 through the mathematical rank
of the calibration set in the respective X spectral matrix used
with PLS. There are 50 # tuning parameter values for RR
formed exponentially decreasing between the highest and
lowest singular values of each corresponding X spectral matrix
used with PLS.

For updating by LMC and FA-2, the PLS LVs ranged from 1
through the mathematical rank of each primary X, spectral
matrix. There are 50 A tuning parameter values formed
exponentially decreasing in the range between the highest and
lowest singular values of each corresponding Xp.

Data Splitting for Validation. Random data splitting is
used to distribute samples between calibration and validation
sets 100 times.*® Models are selected for each split, and mean
RMSE of validation (V) and corresponding R* values across
the 100 random data splits are assessed. The R* values for a
data split are obtained from plotting validation set predicted
property values against reference values.

For PLS and RR calibrations, each of the 100 random data
set splits is divided with 80% for calibration (model formation)
and the remaining 20% for validation. Models are selected by
MDPS using the 20% validation samples for eq 1 without
respective property values. The LMC and FA-2 data set
divisions are listed in Table 1 for the number of samples into
primary (PRI), augmented secondary calibration (CALS), and
secondary validation (VALS) sets.

Table 1. Updating Data Set Specific Sample Divisions for
Primary (PRI), Augmented Secondary Calibration (CALS),
and Secondary Validation (VALS)

data PRI CALS VALS
Corn 40 S 20
Soy 30 S 15
Tablet 60 6 24
Goat 61 S 20

Model Selection Benchmarks. MDPS Selection for
Model Updating by LMC and FA-2. Three baseline model
prediction errors are needed for comparison to prediction
errors from the two model updating methods. These baselines
are primary predicting secondary (PPS), secondary predicting
secondary (SPS), and small secondary predicting secondary
(SSPS). The same secondary validation sets listed in Table 1
are used for each of these three baselines and the MDPS
selected LMS and FA-2 models. Shown in figures are PPS, SPS,
and SSPS model RMSEV and R* boxplot trends at minima and
the first two quartiles.

The PPS models come from PLS calibrations of primary
samples in Table 1. The PPS RMSEV values for VALS samples
should ideally show the necessity for model updating.

Because the SPS RMSEV baseline goal is to show the
RMSEV quality that is achievable with an expensive full
secondary calibration, all samples in each secondary data set
are randomly split 100 times with 60% of the samples being
used for calibration and 40% for validation. A viable model
updating method should ideally be reasonable relative to SPS
RMSEV and R? values.

The point of the third baseline SSPS RMSEV values is to
verify that a PLS calibration model based on only the small

https://doi.org/10.1021/acs.jcim.0c01493
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augmented secondary calibration set CALS in Table 1 is not
teasible and the primary data set is needed.

PLS and RR Model Selection. A variety of benchmark
model selection methods can be used to establish baselines for
comparison to MDPS. For this study, three U-curves are used
where model selection at the minima of each U-curve®™'? is
the most straightforward and least judgmental for comparison
to MDPS. A U-curve selects the model best minimizing the
model 2-norm (or other measure of model complexity but
model 2-norm is used here) simultaneously with a prediction
error measure.

The three U-curves are compared to MDPS. In one instance,
a RMSEC U-curve (U) for each random 80% is formed across
the tuning parameter range and then used to select a model.
The selected model is used to predict the remaining 20%
validation set to generate the corresponding RMSEV and R*
values. This process is repeated for each of the 100 random
splits. The other situation performs additional 100 random
inner two-way data splits on each of the 80% calibration sets
with 60% for forming PLS or RR models and respective
RMSEC U-curves on each inner random split. The remaining
40% of the inner split is used to form respective RMSE of
cross-validation (CV) U-curves. A model (tuning parameter
value) is selected for each of the outer 100 random splits from
the minimum of mean RMSECV U-curve across the 100 inner
splits (Ucy). A tuning parameter value is also selected for each
of the outer 100 random splits from the minimum of the
average RMSEC and RMSECV U-curves (Uy) across the 100
inner splits. These selected PLS or RR tuning parameter values
are the models used from the outer 80% calibration set to
predict the 20% validation samples to form final RMSEV and
R? values. As a reminder, models are only selected by MDPS
from the 80% and are based on prediction similarity for the
20% without the property reference values. These MDPS
models are then used to compute final RMSEV and R* values
to compare with respective U-curve selected models.

B RESULTS AND DISCUSSION

For each calibration and updating process, minimum and
quartile (first and median) boxplots of RMSEV and
corresponding R* values are used to assess the quality of the
models selected over the 100 random data splits. However,
with tuning parameter-based calibration and updating
methods, there are often an excessive number of under- and
overfitted models generated depending on the ranges of tuning
parameter values. These subsets of models predict nearly the
same, and when compiling model quality measures such as
RMSEYV values, modeling algorithms can be misrepresented by
quartile boxplots. Therefore, it became necessary to identify
respective tuning parameter transition regions where variations
between models are important (active bias-variance trade-off
zones). Beyond these transition zones lie converged over- and
underfitted models that need to be removed before quartile
boxplots.

Presented in the Supporting Information (SI) is information
on how a tuning parameter active bias-variance trade-oft zone
is identified. Also included are boxplots showing the
misrepresentation when tuning parameters are allowed to
range into under- and overfitted regions.

Results shown and discussed as follows are based on models
selected from the active bias-variance trade-off zones in order
to fairly compare respective boxplots. However, it is important
for the reader to note that model selection by MDPS, in
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practice, does not require prior determination of the tuning
parameter active bias-variance trade-off zone. Boxplots in the
SI demonstrate that identifying convergence areas is
unnecessary for MDPS. This statement parallels other attempts
to remove under- and overfitted models from the model
selection pool'®"” as well as defining the Rashomon curve in
recent work on model selection.”®

Model Selection for Multiple Tuning Parameters.
Model updating methods need to be compared to baseline
methods PPS, SPS, and SSPS. These comparisons are used to
validate the efficiency and necessity of applying an updating
method. For MDPS with LMC and FA-2, the model diversity
thresholds of 0.3—0.5 in conjunction with the @ weight 0.4
were used. Shown in Figure 3 for four spectral data set
situations are boxplots of corresponding MDPS selected
models (including sample-wise) and SPS model trends. Plotted
in the SIin Figure SS are larger versions of these boxplots with
the PPS and SSPS trends included.

The boxplots reveal that the MDPS selected models predict
at or less than respective first quartiles and perform
comparably to the first quartile SPS models. The SPS models
have substantially more calibration samples, while the updating
methods use five to six secondary samples (Table 1). The
selected models generally outperform both SSPS and PPS.
Thus, the secondary set can be considered uniquely different
from the primary conditions, and the secondary set has enough
variance that a small calibration set cannot be used to form an
effective model. Results also show that LMC and FA-2 are
equally effective for these data sets. The boxplots demonstrate
that MDPS can be used to select models for one or more
samples.

In addition to forming MDPS boxplots using all s samples in
a data split to calculate SPD;; values in eq 1, a sample-wise
study was performed where models were selected for each
secondary sample. Sample-wise LMC and FA-2 boxplots
shown in Figure 3 demonstrate that MDPS can be used to
select models for one sample or a collection of new samples
with no real difference in prediction quality.

Models selected by MDPS are found most frequently in
ideal tuning parameter combination regions. Part of the reason
for this fact is that MDPS selects models specifically to predict
only the new samples, and thus, MDPS allows a slight overfit
advantage. Histograms and RMSEV heatmaps in Figure 4
characterize the situation for LMC using the Goat data set over
all 100 data splits. As a reminder, Figures 1 and 2 represent one
of the Goat data splits where 2,300 models are formed
producing 2,643,850 model combinations. There are 31,614
model pairs selected by MDPS composed of 1,218 unique
models. The dark blue regions in the top heatmap of Figure 4
correspond to the strongest models with the lowest RMSEV
values. The bottom heatmap shows that these models are most
frequently selected by MDPS. Complementing these heat
maps is Figure S with the selected regression vectors color
coded to selection frequency for one of the 100 data splits.

Additional boxplots are shown in Figure S6 of the SI for four
other data sets. Regression vectors and histograms of selected
models are displayed in Figure S7 for another data set further
demonstrating that the most frequently selected models are
those with lower RMSEV values and are characterized by a
range in shape and magnitude.

It has been suggested that to characterize the calibration
transfer quality for a method, the relationship of the new
samples to the updated model space should be assessed with a
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Figure 3. Model updating boxplots of RMSEV and R? values for the
SPS baseline and MDPS selected models across four NIR data sets.
Groups of three boxes with one color correspond to minima, first
quartiles, and medians of each category. Blue boxes represent MDPS
selected models, and purple boxes are the sample-wise selected
models. Data sets are (a) Corn mpS-mS5 starch, (b) Soy R2-Rl
moisture, (c) Tablet 1&4-1&3, and (d) Goat.
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prediction outlier diagnostic.”” However, such studies were not
performed.
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Model Selection for Single Tuning Parameter. Various
MDPS values for the degree of diversity and U-curve weight in
eq 1 were evaluated, and three are presented demonstrating
respective effects. These values are C1 (0.3 < cos(#) < 0.5, @
= 04), C2 (0.3 < cos(f) < 0.5, ® = 1.0), and C3 (0.6 <
cos(f) < 0.8, @ = 1.0). Figures 6 and 7 (and Figures S8—S13
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Figure 6. QSAR CAIV mean RMSEV (orange) and MDPS (a) RR
and (b) model selection frequencies (blue) using QSAR CAIV data
varying the cos(@) and @ thresholds associated with C1 (0.3 < cos(6)
< 0.5, w = 04), C2 (0.3 < cos(f) < 0.5, w = 1.0), and C3 (0.6 <
cos(0) <08, w = 1.0).

in the SI for other data sets) show that C3 is overall the best
compromise. Regardless of the data set, when C3 is used,
Figure 7 and the corresponding boxplots in the SI (Figures S9,
S11, and S13) show that MDPS selects models with either
equivalent or lower RMSEV values and corresponding R*
values compared to the three standard U-curves shown in
respective boxplots. The following discussion clarifies these
observations.

Plotted in Figure 6 (and Figures S8, S10, and S12) are
histograms of the models selected over the 100 data splits and
the mean RMSEV curves. The RMSEV curve is the prediction
error for the new samples, and the reader is reminded that
these samples are not used to form calibration models. These
samples are also not used to select models based on a cross-
validation but are only used by MDPS to select models to
predict these specific samples. In Figure 6, the MDPS selected
models using C3 show little improvement in RMSEV and R*
values compared to C1 and C2. However, this observation is
relative to the actual underlying shape of the RMSEV curve. In
Figure 6a, the RMSEV plots have a slight natural U-curve
behavior. Shown in Figures S8 and S10 are two other data set
situations with similar results to the QSAR CAIV data set. The
U shaped RMSEV is more pronounced in Figure S10. Thus,
the boxplots show fairly equivalent results for models selected
by MPDS (using Cl, C2, or C3) and U-curves due to
correlated U shapes.
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Figure 7. Corn mp$ oil RMSEV and R* boxplots for (a) RR and (b)
PLS models. Pink boxes are the minima and first two quartiles of all
models evaluated (min, Q1 and Q2). Blue boxes correspond to
MDPS selected models in Figure 3 histograms using C1, C2, and C3.
The purple box is the MDPS model selection sample-wise with C3
(SWe3). Orange boxes are the respective U-curve selected model
using outer calibration sets (Uc), mean inner CV (Ucgy), and the
mean inner calibration and CV (Uy).

Contradicting this trend is the data set in Figures S12 and
S13 where due to the L shaped RMSEV curve, model diversity
C3 is needed to obtain acceptable models and predictions.
Specifically, the RMSEV plots resemble the standard L shaped
RMSEC plot for the calibration even though the samples used
to compute the RMSEV values are not used to form calibration
models. To compensate for the lack of U shape, less model
diversity is needed, or else underfitted models are included as
shown in Figure S12. Thus, C3 is recommended when
selecting single tuning parameter values because this diversity
requirement is effective in whether the RMSEV is U or L
shaped.

By increasing the @ weight in C1 to that used in C2, some of
the C1 selected underfitted models are not selected. In both
situations, selection is bimodal for the RR histograms and
trimodal for PLS. Decreasing the model diversity threshold
fused with C2 to that used in C3 creates a unimodal model
selection distribution better correlated to those models with
lower RMSEV values.

Improvement over the U-curves by MDPS is possible
because MDPS selects models to directly predict new samples.
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As noted with the two tuning parameter situation, part of the
improvement by MDPS is because MDPS holds a small
overfitting advantage relative to the new samples being
predicted, i.e., MDPS selects models targeting to predict only
the new samples. The histograms characterize this slight overfit
feature of MDPS. Selecting a model from a calibration set
based on some form of cross-validation may not perform as
well depending on the degree new samples are spanned by the
calibration set. The usual cross-validation approach requires
multiple data splits of the training set to select one model
across the span of tuning parameter values. This one model is
then used to predict the new samples. Conversely, an ensemble
of models is used for prediction with MDPS providing a data
fusion benefit.

A sample-wise study similar to that used for LMC and FA-2
was performed for RR and PLS. Sample-wise RR and PLS
boxplots shown in Figures 7, S9, S11, and S13 demonstrate
that MDPS can also be used to select RR or PLS models for
one sample or a collection of new samples without substantive
differences in prediction quality.

It has been previously reported that numerous optimized
model regression vectors can be formed with different
magnitudes and shapes to accurately predict a data set.”””*
It was also suggested that the better predicting models with
different tuning parameter values, e.g,, different number of PLS
LVs or RR ridge parameter values, will cluster together in a
score plot of regression vector models over a full range of
tuning parameter values.*>** The under- and overfitted models
should tend to form respective multiple clusters.

This analysis process was termed regression model
comparison plot (REMOCOP). Shown in Figure 8 is a
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Figure 8. Score plot of RR and PLS models across tuning parameter
ranges for all 100 QSAR CAIV data set splits in Figure 6. Point colors
are (green) for RR and PLS MDPS selected models, (red) overfitted,
(cyan) underfitted, and (magenta) suitable nonselected models. The
PC1 axis is on a logarithmic scale.

principal component analysis (PCA) score plot of the
combined set of full tuning parameter ranged RR and PLS
regression vectors with C3 for all 100 QSAR CAIV data set
splits. Identified are the selected, suitable but not selected, and
under- and overfitted models showing respective clusters. To
identify approximate under- and overfitted models, an
empirical threshold was used for a U-curve (model 2-norm
and RMSEV). Models with U-curve values above 0.35 were
labeled over- and underfitted, and models below were deemed
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suitable if not selected by MDPS. With this threshold, the
score plot reveals one cluster for the selected models and
multiple clusters of under- and overfitted models. Similar score
plots were obtained using C1 and C2 with clusters formed
relative to histogram distributions in Figure 6. The score plot
further demonstrates the Rashomon effect that numerous
regression models with different shapes and magnitudes can be
formed to effectively predict samples. A PCA plot for another
data set is shown in Figure S14 revealing similar trends.

In the REMOCOP work, it was suggested that score values
can be modified to weight the calibration basis vectors (loading
vectors) to form other models in the regions of the better
models. As previously noted, the final MDPS predicting model
by is also a linear combination of models, and in essence, it can
also be considered a linear combination of basis vectors. More
definitely, it has been sh'g)wn‘w’48 that model vectors solving y =
XDb can be expressed as b = vf}, where f is a k X 1 weight vector
of the V basis vectors from the singular value decomposition of
X = USV’, and k denotes the rank of X. Each regression vector
is distinguished by a specific linear combination of the k basis
column vectors in V. Thus, MDPS can be considered a model
selection approach forming a final predicting model that is one
of the many linear combinations of the basis vectors that can
effectively predict samples.

Summarizing, the results presented in Figures 6—8 and in
the SI for other data sets document that MDPS can select
accurately predicting models for multivariate calibration based
on one tuning parameter as well as two tuning parameters.
Models can be selected for each new sample to be predicted as
well as a set of new samples, assuming the new samples are not
outliers to the calibration set. Additionally, results further verify
that many models with different shapes and magnitudes can
accurately predict new samples. This observation agrees with
the Rashomon effect previously noted.

MDPS Selection Time and Memory. A brief comparison
of the time needed to select RR and PLS models by MDPS and
the three standard U-curves was made. When cross-validation
is used, the time-consuming part is the training and model
selection. The exact time needed depends on the cross-
validation design and number of samples. Once a model is
selected, prediction of a new sample is immediate (only the
inner product of two vectors is needed). Because cross-
validation is not used with MDPS, forming model vectors is
rapid, and the time-consuming part is model selection because
all possible pairs of models are evaluated. Thus, the exact time
depends on the number of models formed and ultimately
compared relative to the number of samples to be predicted.
Once models are selected, prediction is also essentially
instantaneous because sample predictions were already formed
in order to select models. Values reported in Table 2 are the
total time needed to train and predict one set of new samples
using PLS and RR. Another consideration when evaluating the
times is that the time depends on the algorithm language,
configuration, and computer architecture. As expected, the
MDPS time is substantially less than a cross-validation
approach to model selection. Model selection for LMC and
FA-2 has similar MDPS times.

Memory requirements for MDPS are related to the storage
of the collection of regression vectors formed by the modeling
method. Additional memory would be needed to store the two
data points (model diversity and prediction similarity) for each
possible model pair, generally not a large requirement. As with
time, the actual memory size will depend on the number of
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Table 2. Representative Times to Select Existing RR and
PLS Models to Predict a Particular Set of Samples

MDPS time U time Ugy and Uy time
data set method (s) (s) (s)
Corn mp$ oil PLS 0.0039 0.0003 3.4123
Corn mp$5 PLS 0.0038 0.0002 3.7582
moisture
Soy R1 moisture PLS 0.0024 0.0001 1.3372
Corn m$ PLS 0.0036 0.0001 3.4409
moisture
QSAR CAI PLS 0.0023 0.0002 2.1478
QSAR CAIV PLS 0.0025 0.0001 2.0018
Corn mpS$ oil RR 0.0043 0.0011 96.5706
Corn mp$5 RR 0.0034 0.0004 95.5161
moisture
Soy R1 moisture RR 0.0029 0.0009 21.5554
Corn m$ RR 0.0033 0.0003 97.8993
moisture
QSAR CAI RR 0.0053 0.0013 1.7735
QSAR CAIV RR 0.0025 0.0001 1.7624

models and regression coefficients, algorithm language,
configuration, and computer architecture. For model updating,
models are generated dynamically for the new samples, and for
the basic primary calibration by RR or PLS, models can be
saved to a hard drive for future use.

B CONCLUSIONS

Harnessing model diversity and prediction similarity measures
for MDPS is an effective method of consensus model selection
achieving prediction errors at, below, or marginally different
than baseline expectations for the data sets studied. Because
models are selected to predict new samples without using a
cross-validation process, the MDPS also maintains a small
overfitting advantage. In the one tuning parameter case, MDPS
selected models outperformed standard traditional U-curves
because models are selected to directly predict the validation
samples and a collection of models is used to predict new
samples instead of just one model.

As just noted, prediction similarities are used to identify
models, and hence, reference property values (labels) are not
needed. Thus, models are selected tuned to predict new
samples not part of a calibration set. Current work in our
laboratory involves using MDPS to select updated models
where secondary property reference values are not used to
form models as with LMC and FA-2.

It has been shown that many dissimilar models can
effectively predict a sample,” > and the MDPS approach
leverages this fact to select a collection of dissimilar models
accurately predicting samples. However, in essence, the MDPS
selected models can be considered forming one final predicting
model that is one of the many models obtainable from linear
combinations of the basis vectors.">~*

Because single tuning parameter calibration methods have
less diversity between the better models than multiple tuning
parameter based methods, it is best to increase the cosine and
U-curve thresholds in MPDS relative to model updating
methods. The increase allows MDPS to select accurately
predicting models with an appropriate bias-variance trade-off.

The MDPS method was applied to linear regression
methods based on tuning parameters using spectra and
QSAR data sets. The approach is general and should be useful
to other tuning parameter based linear regression approaches
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involving other data sets. The usefulness of MDPS to nonlinear
based methods such as support vector machines is yet to be
determined. Current work in our laboratory is evaluating
MDPS for model selection relative to three tuning parameters.
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